smp.c 13 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591
  1. /*
  2. * linux/arch/arm/kernel/smp.c
  3. *
  4. * Copyright (C) 2002 ARM Limited, All Rights Reserved.
  5. *
  6. * This program is free software; you can redistribute it and/or modify
  7. * it under the terms of the GNU General Public License version 2 as
  8. * published by the Free Software Foundation.
  9. */
  10. #include <linux/module.h>
  11. #include <linux/delay.h>
  12. #include <linux/init.h>
  13. #include <linux/spinlock.h>
  14. #include <linux/sched.h>
  15. #include <linux/interrupt.h>
  16. #include <linux/cache.h>
  17. #include <linux/profile.h>
  18. #include <linux/errno.h>
  19. #include <linux/mm.h>
  20. #include <linux/err.h>
  21. #include <linux/cpu.h>
  22. #include <linux/smp.h>
  23. #include <linux/seq_file.h>
  24. #include <linux/irq.h>
  25. #include <linux/percpu.h>
  26. #include <linux/clockchips.h>
  27. #include <linux/completion.h>
  28. #include <linux/atomic.h>
  29. #include <asm/cacheflush.h>
  30. #include <asm/cpu.h>
  31. #include <asm/cputype.h>
  32. #include <asm/exception.h>
  33. #include <asm/idmap.h>
  34. #include <asm/topology.h>
  35. #include <asm/mmu_context.h>
  36. #include <asm/pgtable.h>
  37. #include <asm/pgalloc.h>
  38. #include <asm/processor.h>
  39. #include <asm/sections.h>
  40. #include <asm/tlbflush.h>
  41. #include <asm/ptrace.h>
  42. #include <asm/localtimer.h>
  43. #include <asm/smp_plat.h>
  44. /*
  45. * as from 2.5, kernels no longer have an init_tasks structure
  46. * so we need some other way of telling a new secondary core
  47. * where to place its SVC stack
  48. */
  49. struct secondary_data secondary_data;
  50. enum ipi_msg_type {
  51. IPI_TIMER = 2,
  52. IPI_RESCHEDULE,
  53. IPI_CALL_FUNC,
  54. IPI_CALL_FUNC_SINGLE,
  55. IPI_CPU_STOP,
  56. };
  57. static DECLARE_COMPLETION(cpu_running);
  58. int __cpuinit __cpu_up(unsigned int cpu, struct task_struct *idle)
  59. {
  60. int ret;
  61. /*
  62. * We need to tell the secondary core where to find
  63. * its stack and the page tables.
  64. */
  65. secondary_data.stack = task_stack_page(idle) + THREAD_START_SP;
  66. secondary_data.pgdir = virt_to_phys(idmap_pgd);
  67. secondary_data.swapper_pg_dir = virt_to_phys(swapper_pg_dir);
  68. __cpuc_flush_dcache_area(&secondary_data, sizeof(secondary_data));
  69. outer_clean_range(__pa(&secondary_data), __pa(&secondary_data + 1));
  70. /*
  71. * Now bring the CPU into our world.
  72. */
  73. ret = boot_secondary(cpu, idle);
  74. if (ret == 0) {
  75. /*
  76. * CPU was successfully started, wait for it
  77. * to come online or time out.
  78. */
  79. wait_for_completion_timeout(&cpu_running,
  80. msecs_to_jiffies(1000));
  81. if (!cpu_online(cpu)) {
  82. pr_crit("CPU%u: failed to come online\n", cpu);
  83. ret = -EIO;
  84. }
  85. } else {
  86. pr_err("CPU%u: failed to boot: %d\n", cpu, ret);
  87. }
  88. secondary_data.stack = NULL;
  89. secondary_data.pgdir = 0;
  90. return ret;
  91. }
  92. #ifdef CONFIG_HOTPLUG_CPU
  93. static void percpu_timer_stop(void);
  94. /*
  95. * __cpu_disable runs on the processor to be shutdown.
  96. */
  97. int __cpu_disable(void)
  98. {
  99. unsigned int cpu = smp_processor_id();
  100. struct task_struct *p;
  101. int ret;
  102. ret = platform_cpu_disable(cpu);
  103. if (ret)
  104. return ret;
  105. /*
  106. * Take this CPU offline. Once we clear this, we can't return,
  107. * and we must not schedule until we're ready to give up the cpu.
  108. */
  109. set_cpu_online(cpu, false);
  110. /*
  111. * OK - migrate IRQs away from this CPU
  112. */
  113. migrate_irqs();
  114. /*
  115. * Stop the local timer for this CPU.
  116. */
  117. percpu_timer_stop();
  118. /*
  119. * Flush user cache and TLB mappings, and then remove this CPU
  120. * from the vm mask set of all processes.
  121. */
  122. flush_cache_all();
  123. local_flush_tlb_all();
  124. read_lock(&tasklist_lock);
  125. for_each_process(p) {
  126. if (p->mm)
  127. cpumask_clear_cpu(cpu, mm_cpumask(p->mm));
  128. }
  129. read_unlock(&tasklist_lock);
  130. return 0;
  131. }
  132. static DECLARE_COMPLETION(cpu_died);
  133. /*
  134. * called on the thread which is asking for a CPU to be shutdown -
  135. * waits until shutdown has completed, or it is timed out.
  136. */
  137. void __cpu_die(unsigned int cpu)
  138. {
  139. if (!wait_for_completion_timeout(&cpu_died, msecs_to_jiffies(5000))) {
  140. pr_err("CPU%u: cpu didn't die\n", cpu);
  141. return;
  142. }
  143. printk(KERN_NOTICE "CPU%u: shutdown\n", cpu);
  144. if (!platform_cpu_kill(cpu))
  145. printk("CPU%u: unable to kill\n", cpu);
  146. }
  147. /*
  148. * Called from the idle thread for the CPU which has been shutdown.
  149. *
  150. * Note that we disable IRQs here, but do not re-enable them
  151. * before returning to the caller. This is also the behaviour
  152. * of the other hotplug-cpu capable cores, so presumably coming
  153. * out of idle fixes this.
  154. */
  155. void __ref cpu_die(void)
  156. {
  157. unsigned int cpu = smp_processor_id();
  158. idle_task_exit();
  159. local_irq_disable();
  160. mb();
  161. /* Tell __cpu_die() that this CPU is now safe to dispose of */
  162. complete(&cpu_died);
  163. /*
  164. * actual CPU shutdown procedure is at least platform (if not
  165. * CPU) specific.
  166. */
  167. platform_cpu_die(cpu);
  168. /*
  169. * Do not return to the idle loop - jump back to the secondary
  170. * cpu initialisation. There's some initialisation which needs
  171. * to be repeated to undo the effects of taking the CPU offline.
  172. */
  173. __asm__("mov sp, %0\n"
  174. " mov fp, #0\n"
  175. " b secondary_start_kernel"
  176. :
  177. : "r" (task_stack_page(current) + THREAD_SIZE - 8));
  178. }
  179. #endif /* CONFIG_HOTPLUG_CPU */
  180. /*
  181. * Called by both boot and secondaries to move global data into
  182. * per-processor storage.
  183. */
  184. static void __cpuinit smp_store_cpu_info(unsigned int cpuid)
  185. {
  186. struct cpuinfo_arm *cpu_info = &per_cpu(cpu_data, cpuid);
  187. cpu_info->loops_per_jiffy = loops_per_jiffy;
  188. store_cpu_topology(cpuid);
  189. }
  190. static void percpu_timer_setup(void);
  191. /*
  192. * This is the secondary CPU boot entry. We're using this CPUs
  193. * idle thread stack, but a set of temporary page tables.
  194. */
  195. asmlinkage void __cpuinit secondary_start_kernel(void)
  196. {
  197. struct mm_struct *mm = &init_mm;
  198. unsigned int cpu = smp_processor_id();
  199. /*
  200. * All kernel threads share the same mm context; grab a
  201. * reference and switch to it.
  202. */
  203. atomic_inc(&mm->mm_count);
  204. current->active_mm = mm;
  205. cpumask_set_cpu(cpu, mm_cpumask(mm));
  206. cpu_switch_mm(mm->pgd, mm);
  207. enter_lazy_tlb(mm, current);
  208. local_flush_tlb_all();
  209. printk("CPU%u: Booted secondary processor\n", cpu);
  210. cpu_init();
  211. preempt_disable();
  212. trace_hardirqs_off();
  213. /*
  214. * Give the platform a chance to do its own initialisation.
  215. */
  216. platform_secondary_init(cpu);
  217. notify_cpu_starting(cpu);
  218. calibrate_delay();
  219. smp_store_cpu_info(cpu);
  220. /*
  221. * OK, now it's safe to let the boot CPU continue. Wait for
  222. * the CPU migration code to notice that the CPU is online
  223. * before we continue - which happens after __cpu_up returns.
  224. */
  225. set_cpu_online(cpu, true);
  226. complete(&cpu_running);
  227. /*
  228. * Setup the percpu timer for this CPU.
  229. */
  230. percpu_timer_setup();
  231. local_irq_enable();
  232. local_fiq_enable();
  233. /*
  234. * OK, it's off to the idle thread for us
  235. */
  236. cpu_idle();
  237. }
  238. void __init smp_cpus_done(unsigned int max_cpus)
  239. {
  240. int cpu;
  241. unsigned long bogosum = 0;
  242. for_each_online_cpu(cpu)
  243. bogosum += per_cpu(cpu_data, cpu).loops_per_jiffy;
  244. printk(KERN_INFO "SMP: Total of %d processors activated "
  245. "(%lu.%02lu BogoMIPS).\n",
  246. num_online_cpus(),
  247. bogosum / (500000/HZ),
  248. (bogosum / (5000/HZ)) % 100);
  249. }
  250. void __init smp_prepare_boot_cpu(void)
  251. {
  252. }
  253. void __init smp_prepare_cpus(unsigned int max_cpus)
  254. {
  255. unsigned int ncores = num_possible_cpus();
  256. init_cpu_topology();
  257. smp_store_cpu_info(smp_processor_id());
  258. /*
  259. * are we trying to boot more cores than exist?
  260. */
  261. if (max_cpus > ncores)
  262. max_cpus = ncores;
  263. if (ncores > 1 && max_cpus) {
  264. /*
  265. * Enable the local timer or broadcast device for the
  266. * boot CPU, but only if we have more than one CPU.
  267. */
  268. percpu_timer_setup();
  269. /*
  270. * Initialise the present map, which describes the set of CPUs
  271. * actually populated at the present time. A platform should
  272. * re-initialize the map in platform_smp_prepare_cpus() if
  273. * present != possible (e.g. physical hotplug).
  274. */
  275. init_cpu_present(cpu_possible_mask);
  276. /*
  277. * Initialise the SCU if there are more than one CPU
  278. * and let them know where to start.
  279. */
  280. platform_smp_prepare_cpus(max_cpus);
  281. }
  282. }
  283. static void (*smp_cross_call)(const struct cpumask *, unsigned int);
  284. void __init set_smp_cross_call(void (*fn)(const struct cpumask *, unsigned int))
  285. {
  286. smp_cross_call = fn;
  287. }
  288. void arch_send_call_function_ipi_mask(const struct cpumask *mask)
  289. {
  290. smp_cross_call(mask, IPI_CALL_FUNC);
  291. }
  292. void arch_send_call_function_single_ipi(int cpu)
  293. {
  294. smp_cross_call(cpumask_of(cpu), IPI_CALL_FUNC_SINGLE);
  295. }
  296. static const char *ipi_types[NR_IPI] = {
  297. #define S(x,s) [x - IPI_TIMER] = s
  298. S(IPI_TIMER, "Timer broadcast interrupts"),
  299. S(IPI_RESCHEDULE, "Rescheduling interrupts"),
  300. S(IPI_CALL_FUNC, "Function call interrupts"),
  301. S(IPI_CALL_FUNC_SINGLE, "Single function call interrupts"),
  302. S(IPI_CPU_STOP, "CPU stop interrupts"),
  303. };
  304. void show_ipi_list(struct seq_file *p, int prec)
  305. {
  306. unsigned int cpu, i;
  307. for (i = 0; i < NR_IPI; i++) {
  308. seq_printf(p, "%*s%u: ", prec - 1, "IPI", i);
  309. for_each_present_cpu(cpu)
  310. seq_printf(p, "%10u ",
  311. __get_irq_stat(cpu, ipi_irqs[i]));
  312. seq_printf(p, " %s\n", ipi_types[i]);
  313. }
  314. }
  315. u64 smp_irq_stat_cpu(unsigned int cpu)
  316. {
  317. u64 sum = 0;
  318. int i;
  319. for (i = 0; i < NR_IPI; i++)
  320. sum += __get_irq_stat(cpu, ipi_irqs[i]);
  321. return sum;
  322. }
  323. /*
  324. * Timer (local or broadcast) support
  325. */
  326. static DEFINE_PER_CPU(struct clock_event_device, percpu_clockevent);
  327. static void ipi_timer(void)
  328. {
  329. struct clock_event_device *evt = &__get_cpu_var(percpu_clockevent);
  330. evt->event_handler(evt);
  331. }
  332. #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
  333. static void smp_timer_broadcast(const struct cpumask *mask)
  334. {
  335. smp_cross_call(mask, IPI_TIMER);
  336. }
  337. #else
  338. #define smp_timer_broadcast NULL
  339. #endif
  340. static void broadcast_timer_set_mode(enum clock_event_mode mode,
  341. struct clock_event_device *evt)
  342. {
  343. }
  344. static void __cpuinit broadcast_timer_setup(struct clock_event_device *evt)
  345. {
  346. evt->name = "dummy_timer";
  347. evt->features = CLOCK_EVT_FEAT_ONESHOT |
  348. CLOCK_EVT_FEAT_PERIODIC |
  349. CLOCK_EVT_FEAT_DUMMY;
  350. evt->rating = 400;
  351. evt->mult = 1;
  352. evt->set_mode = broadcast_timer_set_mode;
  353. clockevents_register_device(evt);
  354. }
  355. static struct local_timer_ops *lt_ops;
  356. #ifdef CONFIG_LOCAL_TIMERS
  357. int local_timer_register(struct local_timer_ops *ops)
  358. {
  359. if (!is_smp() || !setup_max_cpus)
  360. return -ENXIO;
  361. if (lt_ops)
  362. return -EBUSY;
  363. lt_ops = ops;
  364. return 0;
  365. }
  366. #endif
  367. static void __cpuinit percpu_timer_setup(void)
  368. {
  369. unsigned int cpu = smp_processor_id();
  370. struct clock_event_device *evt = &per_cpu(percpu_clockevent, cpu);
  371. evt->cpumask = cpumask_of(cpu);
  372. evt->broadcast = smp_timer_broadcast;
  373. if (!lt_ops || lt_ops->setup(evt))
  374. broadcast_timer_setup(evt);
  375. }
  376. #ifdef CONFIG_HOTPLUG_CPU
  377. /*
  378. * The generic clock events code purposely does not stop the local timer
  379. * on CPU_DEAD/CPU_DEAD_FROZEN hotplug events, so we have to do it
  380. * manually here.
  381. */
  382. static void percpu_timer_stop(void)
  383. {
  384. unsigned int cpu = smp_processor_id();
  385. struct clock_event_device *evt = &per_cpu(percpu_clockevent, cpu);
  386. if (lt_ops)
  387. lt_ops->stop(evt);
  388. }
  389. #endif
  390. static DEFINE_RAW_SPINLOCK(stop_lock);
  391. /*
  392. * ipi_cpu_stop - handle IPI from smp_send_stop()
  393. */
  394. static void ipi_cpu_stop(unsigned int cpu)
  395. {
  396. if (system_state == SYSTEM_BOOTING ||
  397. system_state == SYSTEM_RUNNING) {
  398. raw_spin_lock(&stop_lock);
  399. printk(KERN_CRIT "CPU%u: stopping\n", cpu);
  400. dump_stack();
  401. raw_spin_unlock(&stop_lock);
  402. }
  403. set_cpu_online(cpu, false);
  404. local_fiq_disable();
  405. local_irq_disable();
  406. while (1)
  407. cpu_relax();
  408. }
  409. /*
  410. * Main handler for inter-processor interrupts
  411. */
  412. asmlinkage void __exception_irq_entry do_IPI(int ipinr, struct pt_regs *regs)
  413. {
  414. handle_IPI(ipinr, regs);
  415. }
  416. void handle_IPI(int ipinr, struct pt_regs *regs)
  417. {
  418. unsigned int cpu = smp_processor_id();
  419. struct pt_regs *old_regs = set_irq_regs(regs);
  420. if (ipinr >= IPI_TIMER && ipinr < IPI_TIMER + NR_IPI)
  421. __inc_irq_stat(cpu, ipi_irqs[ipinr - IPI_TIMER]);
  422. switch (ipinr) {
  423. case IPI_TIMER:
  424. irq_enter();
  425. ipi_timer();
  426. irq_exit();
  427. break;
  428. case IPI_RESCHEDULE:
  429. scheduler_ipi();
  430. break;
  431. case IPI_CALL_FUNC:
  432. irq_enter();
  433. generic_smp_call_function_interrupt();
  434. irq_exit();
  435. break;
  436. case IPI_CALL_FUNC_SINGLE:
  437. irq_enter();
  438. generic_smp_call_function_single_interrupt();
  439. irq_exit();
  440. break;
  441. case IPI_CPU_STOP:
  442. irq_enter();
  443. ipi_cpu_stop(cpu);
  444. irq_exit();
  445. break;
  446. default:
  447. printk(KERN_CRIT "CPU%u: Unknown IPI message 0x%x\n",
  448. cpu, ipinr);
  449. break;
  450. }
  451. set_irq_regs(old_regs);
  452. }
  453. void smp_send_reschedule(int cpu)
  454. {
  455. smp_cross_call(cpumask_of(cpu), IPI_RESCHEDULE);
  456. }
  457. #ifdef CONFIG_HOTPLUG_CPU
  458. static void smp_kill_cpus(cpumask_t *mask)
  459. {
  460. unsigned int cpu;
  461. for_each_cpu(cpu, mask)
  462. platform_cpu_kill(cpu);
  463. }
  464. #else
  465. static void smp_kill_cpus(cpumask_t *mask) { }
  466. #endif
  467. void smp_send_stop(void)
  468. {
  469. unsigned long timeout;
  470. struct cpumask mask;
  471. cpumask_copy(&mask, cpu_online_mask);
  472. cpumask_clear_cpu(smp_processor_id(), &mask);
  473. smp_cross_call(&mask, IPI_CPU_STOP);
  474. /* Wait up to one second for other CPUs to stop */
  475. timeout = USEC_PER_SEC;
  476. while (num_online_cpus() > 1 && timeout--)
  477. udelay(1);
  478. if (num_online_cpus() > 1)
  479. pr_warning("SMP: failed to stop secondary CPUs\n");
  480. smp_kill_cpus(&mask);
  481. }
  482. /*
  483. * not supported here
  484. */
  485. int setup_profiling_timer(unsigned int multiplier)
  486. {
  487. return -EINVAL;
  488. }