sched.c 227 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223522452255226522752285229523052315232523352345235523652375238523952405241524252435244524552465247524852495250525152525253525452555256525752585259526052615262526352645265526652675268526952705271527252735274527552765277527852795280528152825283528452855286528752885289529052915292529352945295529652975298529953005301530253035304530553065307530853095310531153125313531453155316531753185319532053215322532353245325532653275328532953305331533253335334533553365337533853395340534153425343534453455346534753485349535053515352535353545355535653575358535953605361536253635364536553665367536853695370537153725373537453755376537753785379538053815382538353845385538653875388538953905391539253935394539553965397539853995400540154025403540454055406540754085409541054115412541354145415541654175418541954205421542254235424542554265427542854295430543154325433543454355436543754385439544054415442544354445445544654475448544954505451545254535454545554565457545854595460546154625463546454655466546754685469547054715472547354745475547654775478547954805481548254835484548554865487548854895490549154925493549454955496549754985499550055015502550355045505550655075508550955105511551255135514551555165517551855195520552155225523552455255526552755285529553055315532553355345535553655375538553955405541554255435544554555465547554855495550555155525553555455555556555755585559556055615562556355645565556655675568556955705571557255735574557555765577557855795580558155825583558455855586558755885589559055915592559355945595559655975598559956005601560256035604560556065607560856095610561156125613561456155616561756185619562056215622562356245625562656275628562956305631563256335634563556365637563856395640564156425643564456455646564756485649565056515652565356545655565656575658565956605661566256635664566556665667566856695670567156725673567456755676567756785679568056815682568356845685568656875688568956905691569256935694569556965697569856995700570157025703570457055706570757085709571057115712571357145715571657175718571957205721572257235724572557265727572857295730573157325733573457355736573757385739574057415742574357445745574657475748574957505751575257535754575557565757575857595760576157625763576457655766576757685769577057715772577357745775577657775778577957805781578257835784578557865787578857895790579157925793579457955796579757985799580058015802580358045805580658075808580958105811581258135814581558165817581858195820582158225823582458255826582758285829583058315832583358345835583658375838583958405841584258435844584558465847584858495850585158525853585458555856585758585859586058615862586358645865586658675868586958705871587258735874587558765877587858795880588158825883588458855886588758885889589058915892589358945895589658975898589959005901590259035904590559065907590859095910591159125913591459155916591759185919592059215922592359245925592659275928592959305931593259335934593559365937593859395940594159425943594459455946594759485949595059515952595359545955595659575958595959605961596259635964596559665967596859695970597159725973597459755976597759785979598059815982598359845985598659875988598959905991599259935994599559965997599859996000600160026003600460056006600760086009601060116012601360146015601660176018601960206021602260236024602560266027602860296030603160326033603460356036603760386039604060416042604360446045604660476048604960506051605260536054605560566057605860596060606160626063606460656066606760686069607060716072607360746075607660776078607960806081608260836084608560866087608860896090609160926093609460956096609760986099610061016102610361046105610661076108610961106111611261136114611561166117611861196120612161226123612461256126612761286129613061316132613361346135613661376138613961406141614261436144614561466147614861496150615161526153615461556156615761586159616061616162616361646165616661676168616961706171617261736174617561766177617861796180618161826183618461856186618761886189619061916192619361946195619661976198619962006201620262036204620562066207620862096210621162126213621462156216621762186219622062216222622362246225622662276228622962306231623262336234623562366237623862396240624162426243624462456246624762486249625062516252625362546255625662576258625962606261626262636264626562666267626862696270627162726273627462756276627762786279628062816282628362846285628662876288628962906291629262936294629562966297629862996300630163026303630463056306630763086309631063116312631363146315631663176318631963206321632263236324632563266327632863296330633163326333633463356336633763386339634063416342634363446345634663476348634963506351635263536354635563566357635863596360636163626363636463656366636763686369637063716372637363746375637663776378637963806381638263836384638563866387638863896390639163926393639463956396639763986399640064016402640364046405640664076408640964106411641264136414641564166417641864196420642164226423642464256426642764286429643064316432643364346435643664376438643964406441644264436444644564466447644864496450645164526453645464556456645764586459646064616462646364646465646664676468646964706471647264736474647564766477647864796480648164826483648464856486648764886489649064916492649364946495649664976498649965006501650265036504650565066507650865096510651165126513651465156516651765186519652065216522652365246525652665276528652965306531653265336534653565366537653865396540654165426543654465456546654765486549655065516552655365546555655665576558655965606561656265636564656565666567656865696570657165726573657465756576657765786579658065816582658365846585658665876588658965906591659265936594659565966597659865996600660166026603660466056606660766086609661066116612661366146615661666176618661966206621662266236624662566266627662866296630663166326633663466356636663766386639664066416642664366446645664666476648664966506651665266536654665566566657665866596660666166626663666466656666666766686669667066716672667366746675667666776678667966806681668266836684668566866687668866896690669166926693669466956696669766986699670067016702670367046705670667076708670967106711671267136714671567166717671867196720672167226723672467256726672767286729673067316732673367346735673667376738673967406741674267436744674567466747674867496750675167526753675467556756675767586759676067616762676367646765676667676768676967706771677267736774677567766777677867796780678167826783678467856786678767886789679067916792679367946795679667976798679968006801680268036804680568066807680868096810681168126813681468156816681768186819682068216822682368246825682668276828682968306831683268336834683568366837683868396840684168426843684468456846684768486849685068516852685368546855685668576858685968606861686268636864686568666867686868696870687168726873687468756876687768786879688068816882688368846885688668876888688968906891689268936894689568966897689868996900690169026903690469056906690769086909691069116912691369146915691669176918691969206921692269236924692569266927692869296930693169326933693469356936693769386939694069416942694369446945694669476948694969506951695269536954695569566957695869596960696169626963696469656966696769686969697069716972697369746975697669776978697969806981698269836984698569866987698869896990699169926993699469956996699769986999700070017002700370047005700670077008700970107011701270137014701570167017701870197020702170227023702470257026702770287029703070317032703370347035703670377038703970407041704270437044704570467047704870497050705170527053705470557056705770587059706070617062706370647065706670677068706970707071707270737074707570767077707870797080708170827083708470857086708770887089709070917092709370947095709670977098709971007101710271037104710571067107710871097110711171127113711471157116711771187119712071217122712371247125712671277128712971307131713271337134713571367137713871397140714171427143714471457146714771487149715071517152715371547155715671577158715971607161716271637164716571667167716871697170717171727173717471757176717771787179718071817182718371847185718671877188718971907191719271937194719571967197719871997200720172027203720472057206720772087209721072117212721372147215721672177218721972207221722272237224722572267227722872297230723172327233723472357236723772387239724072417242724372447245724672477248724972507251725272537254725572567257725872597260726172627263726472657266726772687269727072717272727372747275727672777278727972807281728272837284728572867287728872897290729172927293729472957296729772987299730073017302730373047305730673077308730973107311731273137314731573167317731873197320732173227323732473257326732773287329733073317332733373347335733673377338733973407341734273437344734573467347734873497350735173527353735473557356735773587359736073617362736373647365736673677368736973707371737273737374737573767377737873797380738173827383738473857386738773887389739073917392739373947395739673977398739974007401740274037404740574067407740874097410741174127413741474157416741774187419742074217422742374247425742674277428742974307431743274337434743574367437743874397440744174427443744474457446744774487449745074517452745374547455745674577458745974607461746274637464746574667467746874697470747174727473747474757476747774787479748074817482748374847485748674877488748974907491749274937494749574967497749874997500750175027503750475057506750775087509751075117512751375147515751675177518751975207521752275237524752575267527752875297530753175327533753475357536753775387539754075417542754375447545754675477548754975507551755275537554755575567557755875597560756175627563756475657566756775687569757075717572757375747575757675777578757975807581758275837584758575867587758875897590759175927593759475957596759775987599760076017602760376047605760676077608760976107611761276137614761576167617761876197620762176227623762476257626762776287629763076317632763376347635763676377638763976407641764276437644764576467647764876497650765176527653765476557656765776587659766076617662766376647665766676677668766976707671767276737674767576767677767876797680768176827683768476857686768776887689769076917692769376947695769676977698769977007701770277037704770577067707770877097710771177127713771477157716771777187719772077217722772377247725772677277728772977307731773277337734773577367737773877397740774177427743774477457746774777487749775077517752775377547755775677577758775977607761776277637764776577667767776877697770777177727773777477757776777777787779778077817782778377847785778677877788778977907791779277937794779577967797779877997800780178027803780478057806780778087809781078117812781378147815781678177818781978207821782278237824782578267827782878297830783178327833783478357836783778387839784078417842784378447845784678477848784978507851785278537854785578567857785878597860786178627863786478657866786778687869787078717872787378747875787678777878787978807881788278837884788578867887788878897890789178927893789478957896789778987899790079017902790379047905790679077908790979107911791279137914791579167917791879197920792179227923792479257926792779287929793079317932793379347935793679377938793979407941794279437944794579467947794879497950795179527953795479557956795779587959796079617962796379647965796679677968796979707971797279737974797579767977797879797980798179827983798479857986798779887989799079917992799379947995799679977998799980008001800280038004800580068007800880098010801180128013801480158016801780188019802080218022802380248025802680278028802980308031803280338034803580368037803880398040804180428043804480458046804780488049805080518052805380548055805680578058805980608061806280638064806580668067806880698070807180728073807480758076807780788079808080818082808380848085808680878088808980908091809280938094809580968097809880998100810181028103810481058106810781088109811081118112811381148115811681178118811981208121812281238124812581268127812881298130813181328133813481358136813781388139814081418142814381448145814681478148814981508151815281538154815581568157815881598160816181628163816481658166816781688169817081718172817381748175817681778178817981808181818281838184818581868187818881898190819181928193819481958196819781988199820082018202820382048205820682078208820982108211821282138214821582168217821882198220822182228223822482258226822782288229823082318232823382348235823682378238823982408241824282438244824582468247824882498250825182528253825482558256825782588259826082618262826382648265826682678268826982708271827282738274827582768277827882798280828182828283828482858286828782888289829082918292829382948295829682978298829983008301830283038304830583068307830883098310831183128313831483158316831783188319832083218322832383248325832683278328832983308331833283338334833583368337833883398340834183428343834483458346834783488349835083518352835383548355835683578358835983608361836283638364836583668367836883698370837183728373837483758376837783788379838083818382838383848385838683878388838983908391839283938394839583968397839883998400840184028403840484058406840784088409841084118412841384148415841684178418841984208421842284238424842584268427842884298430843184328433843484358436843784388439844084418442844384448445844684478448844984508451845284538454845584568457845884598460846184628463846484658466846784688469847084718472847384748475847684778478847984808481848284838484848584868487848884898490849184928493849484958496849784988499850085018502850385048505850685078508850985108511851285138514851585168517851885198520852185228523852485258526852785288529853085318532853385348535853685378538853985408541854285438544854585468547854885498550855185528553855485558556855785588559856085618562856385648565856685678568856985708571857285738574857585768577857885798580858185828583858485858586858785888589859085918592859385948595859685978598859986008601860286038604860586068607860886098610861186128613861486158616861786188619862086218622862386248625862686278628862986308631863286338634863586368637863886398640864186428643864486458646864786488649865086518652865386548655865686578658865986608661866286638664866586668667866886698670867186728673867486758676867786788679868086818682868386848685868686878688868986908691869286938694869586968697869886998700870187028703870487058706870787088709871087118712871387148715871687178718871987208721872287238724872587268727872887298730873187328733873487358736873787388739874087418742874387448745874687478748874987508751875287538754875587568757875887598760876187628763876487658766876787688769877087718772877387748775877687778778877987808781878287838784878587868787878887898790879187928793879487958796879787988799880088018802880388048805880688078808880988108811881288138814881588168817881888198820882188228823882488258826882788288829883088318832883388348835883688378838883988408841884288438844884588468847884888498850885188528853885488558856885788588859886088618862886388648865886688678868886988708871887288738874887588768877887888798880888188828883888488858886888788888889889088918892889388948895889688978898889989008901890289038904890589068907890889098910891189128913891489158916891789188919892089218922892389248925892689278928892989308931893289338934893589368937893889398940894189428943894489458946894789488949895089518952895389548955895689578958895989608961896289638964896589668967896889698970897189728973897489758976897789788979898089818982898389848985898689878988898989908991899289938994899589968997899889999000900190029003900490059006900790089009901090119012901390149015901690179018901990209021902290239024902590269027902890299030903190329033903490359036903790389039904090419042904390449045904690479048904990509051905290539054905590569057905890599060906190629063906490659066906790689069907090719072907390749075907690779078907990809081908290839084908590869087908890899090909190929093909490959096909790989099910091019102910391049105910691079108910991109111911291139114911591169117911891199120912191229123912491259126912791289129913091319132913391349135913691379138913991409141914291439144914591469147914891499150915191529153915491559156915791589159916091619162916391649165916691679168916991709171917291739174917591769177917891799180918191829183918491859186918791889189919091919192919391949195919691979198919992009201920292039204920592069207920892099210921192129213921492159216921792189219922092219222922392249225922692279228922992309231923292339234923592369237923892399240924192429243924492459246924792489249925092519252925392549255925692579258925992609261926292639264926592669267926892699270927192729273927492759276927792789279928092819282928392849285928692879288928992909291929292939294929592969297929892999300930193029303930493059306930793089309931093119312931393149315931693179318931993209321932293239324932593269327932893299330933193329333933493359336933793389339934093419342934393449345934693479348934993509351935293539354935593569357935893599360936193629363936493659366936793689369937093719372937393749375937693779378937993809381938293839384938593869387938893899390939193929393939493959396939793989399
  1. /*
  2. * kernel/sched.c
  3. *
  4. * Kernel scheduler and related syscalls
  5. *
  6. * Copyright (C) 1991-2002 Linus Torvalds
  7. *
  8. * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
  9. * make semaphores SMP safe
  10. * 1998-11-19 Implemented schedule_timeout() and related stuff
  11. * by Andrea Arcangeli
  12. * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
  13. * hybrid priority-list and round-robin design with
  14. * an array-switch method of distributing timeslices
  15. * and per-CPU runqueues. Cleanups and useful suggestions
  16. * by Davide Libenzi, preemptible kernel bits by Robert Love.
  17. * 2003-09-03 Interactivity tuning by Con Kolivas.
  18. * 2004-04-02 Scheduler domains code by Nick Piggin
  19. * 2007-04-15 Work begun on replacing all interactivity tuning with a
  20. * fair scheduling design by Con Kolivas.
  21. * 2007-05-05 Load balancing (smp-nice) and other improvements
  22. * by Peter Williams
  23. * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
  24. * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
  25. * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
  26. * Thomas Gleixner, Mike Kravetz
  27. */
  28. #include <linux/mm.h>
  29. #include <linux/module.h>
  30. #include <linux/nmi.h>
  31. #include <linux/init.h>
  32. #include <linux/uaccess.h>
  33. #include <linux/highmem.h>
  34. #include <linux/smp_lock.h>
  35. #include <asm/mmu_context.h>
  36. #include <linux/interrupt.h>
  37. #include <linux/capability.h>
  38. #include <linux/completion.h>
  39. #include <linux/kernel_stat.h>
  40. #include <linux/debug_locks.h>
  41. #include <linux/security.h>
  42. #include <linux/notifier.h>
  43. #include <linux/profile.h>
  44. #include <linux/freezer.h>
  45. #include <linux/vmalloc.h>
  46. #include <linux/blkdev.h>
  47. #include <linux/delay.h>
  48. #include <linux/pid_namespace.h>
  49. #include <linux/smp.h>
  50. #include <linux/threads.h>
  51. #include <linux/timer.h>
  52. #include <linux/rcupdate.h>
  53. #include <linux/cpu.h>
  54. #include <linux/cpuset.h>
  55. #include <linux/percpu.h>
  56. #include <linux/kthread.h>
  57. #include <linux/proc_fs.h>
  58. #include <linux/seq_file.h>
  59. #include <linux/sysctl.h>
  60. #include <linux/syscalls.h>
  61. #include <linux/times.h>
  62. #include <linux/tsacct_kern.h>
  63. #include <linux/kprobes.h>
  64. #include <linux/delayacct.h>
  65. #include <linux/reciprocal_div.h>
  66. #include <linux/unistd.h>
  67. #include <linux/pagemap.h>
  68. #include <linux/hrtimer.h>
  69. #include <linux/tick.h>
  70. #include <linux/bootmem.h>
  71. #include <linux/debugfs.h>
  72. #include <linux/ctype.h>
  73. #include <linux/ftrace.h>
  74. #include <trace/sched.h>
  75. #include <asm/tlb.h>
  76. #include <asm/irq_regs.h>
  77. #include "sched_cpupri.h"
  78. /*
  79. * Convert user-nice values [ -20 ... 0 ... 19 ]
  80. * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
  81. * and back.
  82. */
  83. #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
  84. #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
  85. #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
  86. /*
  87. * 'User priority' is the nice value converted to something we
  88. * can work with better when scaling various scheduler parameters,
  89. * it's a [ 0 ... 39 ] range.
  90. */
  91. #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
  92. #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
  93. #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
  94. /*
  95. * Helpers for converting nanosecond timing to jiffy resolution
  96. */
  97. #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
  98. #define NICE_0_LOAD SCHED_LOAD_SCALE
  99. #define NICE_0_SHIFT SCHED_LOAD_SHIFT
  100. /*
  101. * These are the 'tuning knobs' of the scheduler:
  102. *
  103. * default timeslice is 100 msecs (used only for SCHED_RR tasks).
  104. * Timeslices get refilled after they expire.
  105. */
  106. #define DEF_TIMESLICE (100 * HZ / 1000)
  107. /*
  108. * single value that denotes runtime == period, ie unlimited time.
  109. */
  110. #define RUNTIME_INF ((u64)~0ULL)
  111. DEFINE_TRACE(sched_wait_task);
  112. DEFINE_TRACE(sched_wakeup);
  113. DEFINE_TRACE(sched_wakeup_new);
  114. DEFINE_TRACE(sched_switch);
  115. DEFINE_TRACE(sched_migrate_task);
  116. #ifdef CONFIG_SMP
  117. /*
  118. * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
  119. * Since cpu_power is a 'constant', we can use a reciprocal divide.
  120. */
  121. static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
  122. {
  123. return reciprocal_divide(load, sg->reciprocal_cpu_power);
  124. }
  125. /*
  126. * Each time a sched group cpu_power is changed,
  127. * we must compute its reciprocal value
  128. */
  129. static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
  130. {
  131. sg->__cpu_power += val;
  132. sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
  133. }
  134. #endif
  135. static inline int rt_policy(int policy)
  136. {
  137. if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
  138. return 1;
  139. return 0;
  140. }
  141. static inline int task_has_rt_policy(struct task_struct *p)
  142. {
  143. return rt_policy(p->policy);
  144. }
  145. /*
  146. * This is the priority-queue data structure of the RT scheduling class:
  147. */
  148. struct rt_prio_array {
  149. DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
  150. struct list_head queue[MAX_RT_PRIO];
  151. };
  152. struct rt_bandwidth {
  153. /* nests inside the rq lock: */
  154. spinlock_t rt_runtime_lock;
  155. ktime_t rt_period;
  156. u64 rt_runtime;
  157. struct hrtimer rt_period_timer;
  158. };
  159. static struct rt_bandwidth def_rt_bandwidth;
  160. static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
  161. static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
  162. {
  163. struct rt_bandwidth *rt_b =
  164. container_of(timer, struct rt_bandwidth, rt_period_timer);
  165. ktime_t now;
  166. int overrun;
  167. int idle = 0;
  168. for (;;) {
  169. now = hrtimer_cb_get_time(timer);
  170. overrun = hrtimer_forward(timer, now, rt_b->rt_period);
  171. if (!overrun)
  172. break;
  173. idle = do_sched_rt_period_timer(rt_b, overrun);
  174. }
  175. return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
  176. }
  177. static
  178. void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
  179. {
  180. rt_b->rt_period = ns_to_ktime(period);
  181. rt_b->rt_runtime = runtime;
  182. spin_lock_init(&rt_b->rt_runtime_lock);
  183. hrtimer_init(&rt_b->rt_period_timer,
  184. CLOCK_MONOTONIC, HRTIMER_MODE_REL);
  185. rt_b->rt_period_timer.function = sched_rt_period_timer;
  186. rt_b->rt_period_timer.cb_mode = HRTIMER_CB_IRQSAFE_UNLOCKED;
  187. }
  188. static inline int rt_bandwidth_enabled(void)
  189. {
  190. return sysctl_sched_rt_runtime >= 0;
  191. }
  192. static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
  193. {
  194. ktime_t now;
  195. if (rt_bandwidth_enabled() && rt_b->rt_runtime == RUNTIME_INF)
  196. return;
  197. if (hrtimer_active(&rt_b->rt_period_timer))
  198. return;
  199. spin_lock(&rt_b->rt_runtime_lock);
  200. for (;;) {
  201. if (hrtimer_active(&rt_b->rt_period_timer))
  202. break;
  203. now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
  204. hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
  205. hrtimer_start_expires(&rt_b->rt_period_timer,
  206. HRTIMER_MODE_ABS);
  207. }
  208. spin_unlock(&rt_b->rt_runtime_lock);
  209. }
  210. #ifdef CONFIG_RT_GROUP_SCHED
  211. static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
  212. {
  213. hrtimer_cancel(&rt_b->rt_period_timer);
  214. }
  215. #endif
  216. /*
  217. * sched_domains_mutex serializes calls to arch_init_sched_domains,
  218. * detach_destroy_domains and partition_sched_domains.
  219. */
  220. static DEFINE_MUTEX(sched_domains_mutex);
  221. #ifdef CONFIG_GROUP_SCHED
  222. #include <linux/cgroup.h>
  223. struct cfs_rq;
  224. static LIST_HEAD(task_groups);
  225. /* task group related information */
  226. struct task_group {
  227. #ifdef CONFIG_CGROUP_SCHED
  228. struct cgroup_subsys_state css;
  229. #endif
  230. #ifdef CONFIG_FAIR_GROUP_SCHED
  231. /* schedulable entities of this group on each cpu */
  232. struct sched_entity **se;
  233. /* runqueue "owned" by this group on each cpu */
  234. struct cfs_rq **cfs_rq;
  235. unsigned long shares;
  236. #endif
  237. #ifdef CONFIG_RT_GROUP_SCHED
  238. struct sched_rt_entity **rt_se;
  239. struct rt_rq **rt_rq;
  240. struct rt_bandwidth rt_bandwidth;
  241. #endif
  242. struct rcu_head rcu;
  243. struct list_head list;
  244. struct task_group *parent;
  245. struct list_head siblings;
  246. struct list_head children;
  247. };
  248. #ifdef CONFIG_USER_SCHED
  249. /*
  250. * Root task group.
  251. * Every UID task group (including init_task_group aka UID-0) will
  252. * be a child to this group.
  253. */
  254. struct task_group root_task_group;
  255. #ifdef CONFIG_FAIR_GROUP_SCHED
  256. /* Default task group's sched entity on each cpu */
  257. static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
  258. /* Default task group's cfs_rq on each cpu */
  259. static DEFINE_PER_CPU(struct cfs_rq, init_cfs_rq) ____cacheline_aligned_in_smp;
  260. #endif /* CONFIG_FAIR_GROUP_SCHED */
  261. #ifdef CONFIG_RT_GROUP_SCHED
  262. static DEFINE_PER_CPU(struct sched_rt_entity, init_sched_rt_entity);
  263. static DEFINE_PER_CPU(struct rt_rq, init_rt_rq) ____cacheline_aligned_in_smp;
  264. #endif /* CONFIG_RT_GROUP_SCHED */
  265. #else /* !CONFIG_USER_SCHED */
  266. #define root_task_group init_task_group
  267. #endif /* CONFIG_USER_SCHED */
  268. /* task_group_lock serializes add/remove of task groups and also changes to
  269. * a task group's cpu shares.
  270. */
  271. static DEFINE_SPINLOCK(task_group_lock);
  272. #ifdef CONFIG_FAIR_GROUP_SCHED
  273. #ifdef CONFIG_USER_SCHED
  274. # define INIT_TASK_GROUP_LOAD (2*NICE_0_LOAD)
  275. #else /* !CONFIG_USER_SCHED */
  276. # define INIT_TASK_GROUP_LOAD NICE_0_LOAD
  277. #endif /* CONFIG_USER_SCHED */
  278. /*
  279. * A weight of 0 or 1 can cause arithmetics problems.
  280. * A weight of a cfs_rq is the sum of weights of which entities
  281. * are queued on this cfs_rq, so a weight of a entity should not be
  282. * too large, so as the shares value of a task group.
  283. * (The default weight is 1024 - so there's no practical
  284. * limitation from this.)
  285. */
  286. #define MIN_SHARES 2
  287. #define MAX_SHARES (1UL << 18)
  288. static int init_task_group_load = INIT_TASK_GROUP_LOAD;
  289. #endif
  290. /* Default task group.
  291. * Every task in system belong to this group at bootup.
  292. */
  293. struct task_group init_task_group;
  294. /* return group to which a task belongs */
  295. static inline struct task_group *task_group(struct task_struct *p)
  296. {
  297. struct task_group *tg;
  298. #ifdef CONFIG_USER_SCHED
  299. tg = p->user->tg;
  300. #elif defined(CONFIG_CGROUP_SCHED)
  301. tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
  302. struct task_group, css);
  303. #else
  304. tg = &init_task_group;
  305. #endif
  306. return tg;
  307. }
  308. /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
  309. static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
  310. {
  311. #ifdef CONFIG_FAIR_GROUP_SCHED
  312. p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
  313. p->se.parent = task_group(p)->se[cpu];
  314. #endif
  315. #ifdef CONFIG_RT_GROUP_SCHED
  316. p->rt.rt_rq = task_group(p)->rt_rq[cpu];
  317. p->rt.parent = task_group(p)->rt_se[cpu];
  318. #endif
  319. }
  320. #else
  321. static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
  322. static inline struct task_group *task_group(struct task_struct *p)
  323. {
  324. return NULL;
  325. }
  326. #endif /* CONFIG_GROUP_SCHED */
  327. /* CFS-related fields in a runqueue */
  328. struct cfs_rq {
  329. struct load_weight load;
  330. unsigned long nr_running;
  331. u64 exec_clock;
  332. u64 min_vruntime;
  333. struct rb_root tasks_timeline;
  334. struct rb_node *rb_leftmost;
  335. struct list_head tasks;
  336. struct list_head *balance_iterator;
  337. /*
  338. * 'curr' points to currently running entity on this cfs_rq.
  339. * It is set to NULL otherwise (i.e when none are currently running).
  340. */
  341. struct sched_entity *curr, *next, *last;
  342. unsigned int nr_spread_over;
  343. #ifdef CONFIG_FAIR_GROUP_SCHED
  344. struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
  345. /*
  346. * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
  347. * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
  348. * (like users, containers etc.)
  349. *
  350. * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
  351. * list is used during load balance.
  352. */
  353. struct list_head leaf_cfs_rq_list;
  354. struct task_group *tg; /* group that "owns" this runqueue */
  355. #ifdef CONFIG_SMP
  356. /*
  357. * the part of load.weight contributed by tasks
  358. */
  359. unsigned long task_weight;
  360. /*
  361. * h_load = weight * f(tg)
  362. *
  363. * Where f(tg) is the recursive weight fraction assigned to
  364. * this group.
  365. */
  366. unsigned long h_load;
  367. /*
  368. * this cpu's part of tg->shares
  369. */
  370. unsigned long shares;
  371. /*
  372. * load.weight at the time we set shares
  373. */
  374. unsigned long rq_weight;
  375. #endif
  376. #endif
  377. };
  378. /* Real-Time classes' related field in a runqueue: */
  379. struct rt_rq {
  380. struct rt_prio_array active;
  381. unsigned long rt_nr_running;
  382. #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
  383. int highest_prio; /* highest queued rt task prio */
  384. #endif
  385. #ifdef CONFIG_SMP
  386. unsigned long rt_nr_migratory;
  387. int overloaded;
  388. #endif
  389. int rt_throttled;
  390. u64 rt_time;
  391. u64 rt_runtime;
  392. /* Nests inside the rq lock: */
  393. spinlock_t rt_runtime_lock;
  394. #ifdef CONFIG_RT_GROUP_SCHED
  395. unsigned long rt_nr_boosted;
  396. struct rq *rq;
  397. struct list_head leaf_rt_rq_list;
  398. struct task_group *tg;
  399. struct sched_rt_entity *rt_se;
  400. #endif
  401. };
  402. #ifdef CONFIG_SMP
  403. /*
  404. * We add the notion of a root-domain which will be used to define per-domain
  405. * variables. Each exclusive cpuset essentially defines an island domain by
  406. * fully partitioning the member cpus from any other cpuset. Whenever a new
  407. * exclusive cpuset is created, we also create and attach a new root-domain
  408. * object.
  409. *
  410. */
  411. struct root_domain {
  412. atomic_t refcount;
  413. cpumask_var_t span;
  414. cpumask_var_t online;
  415. /*
  416. * The "RT overload" flag: it gets set if a CPU has more than
  417. * one runnable RT task.
  418. */
  419. cpumask_var_t rto_mask;
  420. atomic_t rto_count;
  421. #ifdef CONFIG_SMP
  422. struct cpupri cpupri;
  423. #endif
  424. };
  425. /*
  426. * By default the system creates a single root-domain with all cpus as
  427. * members (mimicking the global state we have today).
  428. */
  429. static struct root_domain def_root_domain;
  430. #endif
  431. /*
  432. * This is the main, per-CPU runqueue data structure.
  433. *
  434. * Locking rule: those places that want to lock multiple runqueues
  435. * (such as the load balancing or the thread migration code), lock
  436. * acquire operations must be ordered by ascending &runqueue.
  437. */
  438. struct rq {
  439. /* runqueue lock: */
  440. spinlock_t lock;
  441. /*
  442. * nr_running and cpu_load should be in the same cacheline because
  443. * remote CPUs use both these fields when doing load calculation.
  444. */
  445. unsigned long nr_running;
  446. #define CPU_LOAD_IDX_MAX 5
  447. unsigned long cpu_load[CPU_LOAD_IDX_MAX];
  448. unsigned char idle_at_tick;
  449. #ifdef CONFIG_NO_HZ
  450. unsigned long last_tick_seen;
  451. unsigned char in_nohz_recently;
  452. #endif
  453. /* capture load from *all* tasks on this cpu: */
  454. struct load_weight load;
  455. unsigned long nr_load_updates;
  456. u64 nr_switches;
  457. struct cfs_rq cfs;
  458. struct rt_rq rt;
  459. #ifdef CONFIG_FAIR_GROUP_SCHED
  460. /* list of leaf cfs_rq on this cpu: */
  461. struct list_head leaf_cfs_rq_list;
  462. #endif
  463. #ifdef CONFIG_RT_GROUP_SCHED
  464. struct list_head leaf_rt_rq_list;
  465. #endif
  466. /*
  467. * This is part of a global counter where only the total sum
  468. * over all CPUs matters. A task can increase this counter on
  469. * one CPU and if it got migrated afterwards it may decrease
  470. * it on another CPU. Always updated under the runqueue lock:
  471. */
  472. unsigned long nr_uninterruptible;
  473. struct task_struct *curr, *idle;
  474. unsigned long next_balance;
  475. struct mm_struct *prev_mm;
  476. u64 clock;
  477. atomic_t nr_iowait;
  478. #ifdef CONFIG_SMP
  479. struct root_domain *rd;
  480. struct sched_domain *sd;
  481. /* For active balancing */
  482. int active_balance;
  483. int push_cpu;
  484. /* cpu of this runqueue: */
  485. int cpu;
  486. int online;
  487. unsigned long avg_load_per_task;
  488. struct task_struct *migration_thread;
  489. struct list_head migration_queue;
  490. #endif
  491. #ifdef CONFIG_SCHED_HRTICK
  492. #ifdef CONFIG_SMP
  493. int hrtick_csd_pending;
  494. struct call_single_data hrtick_csd;
  495. #endif
  496. struct hrtimer hrtick_timer;
  497. #endif
  498. #ifdef CONFIG_SCHEDSTATS
  499. /* latency stats */
  500. struct sched_info rq_sched_info;
  501. /* sys_sched_yield() stats */
  502. unsigned int yld_exp_empty;
  503. unsigned int yld_act_empty;
  504. unsigned int yld_both_empty;
  505. unsigned int yld_count;
  506. /* schedule() stats */
  507. unsigned int sched_switch;
  508. unsigned int sched_count;
  509. unsigned int sched_goidle;
  510. /* try_to_wake_up() stats */
  511. unsigned int ttwu_count;
  512. unsigned int ttwu_local;
  513. /* BKL stats */
  514. unsigned int bkl_count;
  515. #endif
  516. };
  517. static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
  518. static inline void check_preempt_curr(struct rq *rq, struct task_struct *p, int sync)
  519. {
  520. rq->curr->sched_class->check_preempt_curr(rq, p, sync);
  521. }
  522. static inline int cpu_of(struct rq *rq)
  523. {
  524. #ifdef CONFIG_SMP
  525. return rq->cpu;
  526. #else
  527. return 0;
  528. #endif
  529. }
  530. /*
  531. * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
  532. * See detach_destroy_domains: synchronize_sched for details.
  533. *
  534. * The domain tree of any CPU may only be accessed from within
  535. * preempt-disabled sections.
  536. */
  537. #define for_each_domain(cpu, __sd) \
  538. for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
  539. #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
  540. #define this_rq() (&__get_cpu_var(runqueues))
  541. #define task_rq(p) cpu_rq(task_cpu(p))
  542. #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
  543. static inline void update_rq_clock(struct rq *rq)
  544. {
  545. rq->clock = sched_clock_cpu(cpu_of(rq));
  546. }
  547. /*
  548. * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
  549. */
  550. #ifdef CONFIG_SCHED_DEBUG
  551. # define const_debug __read_mostly
  552. #else
  553. # define const_debug static const
  554. #endif
  555. /**
  556. * runqueue_is_locked
  557. *
  558. * Returns true if the current cpu runqueue is locked.
  559. * This interface allows printk to be called with the runqueue lock
  560. * held and know whether or not it is OK to wake up the klogd.
  561. */
  562. int runqueue_is_locked(void)
  563. {
  564. int cpu = get_cpu();
  565. struct rq *rq = cpu_rq(cpu);
  566. int ret;
  567. ret = spin_is_locked(&rq->lock);
  568. put_cpu();
  569. return ret;
  570. }
  571. /*
  572. * Debugging: various feature bits
  573. */
  574. #define SCHED_FEAT(name, enabled) \
  575. __SCHED_FEAT_##name ,
  576. enum {
  577. #include "sched_features.h"
  578. };
  579. #undef SCHED_FEAT
  580. #define SCHED_FEAT(name, enabled) \
  581. (1UL << __SCHED_FEAT_##name) * enabled |
  582. const_debug unsigned int sysctl_sched_features =
  583. #include "sched_features.h"
  584. 0;
  585. #undef SCHED_FEAT
  586. #ifdef CONFIG_SCHED_DEBUG
  587. #define SCHED_FEAT(name, enabled) \
  588. #name ,
  589. static __read_mostly char *sched_feat_names[] = {
  590. #include "sched_features.h"
  591. NULL
  592. };
  593. #undef SCHED_FEAT
  594. static int sched_feat_show(struct seq_file *m, void *v)
  595. {
  596. int i;
  597. for (i = 0; sched_feat_names[i]; i++) {
  598. if (!(sysctl_sched_features & (1UL << i)))
  599. seq_puts(m, "NO_");
  600. seq_printf(m, "%s ", sched_feat_names[i]);
  601. }
  602. seq_puts(m, "\n");
  603. return 0;
  604. }
  605. static ssize_t
  606. sched_feat_write(struct file *filp, const char __user *ubuf,
  607. size_t cnt, loff_t *ppos)
  608. {
  609. char buf[64];
  610. char *cmp = buf;
  611. int neg = 0;
  612. int i;
  613. if (cnt > 63)
  614. cnt = 63;
  615. if (copy_from_user(&buf, ubuf, cnt))
  616. return -EFAULT;
  617. buf[cnt] = 0;
  618. if (strncmp(buf, "NO_", 3) == 0) {
  619. neg = 1;
  620. cmp += 3;
  621. }
  622. for (i = 0; sched_feat_names[i]; i++) {
  623. int len = strlen(sched_feat_names[i]);
  624. if (strncmp(cmp, sched_feat_names[i], len) == 0) {
  625. if (neg)
  626. sysctl_sched_features &= ~(1UL << i);
  627. else
  628. sysctl_sched_features |= (1UL << i);
  629. break;
  630. }
  631. }
  632. if (!sched_feat_names[i])
  633. return -EINVAL;
  634. filp->f_pos += cnt;
  635. return cnt;
  636. }
  637. static int sched_feat_open(struct inode *inode, struct file *filp)
  638. {
  639. return single_open(filp, sched_feat_show, NULL);
  640. }
  641. static struct file_operations sched_feat_fops = {
  642. .open = sched_feat_open,
  643. .write = sched_feat_write,
  644. .read = seq_read,
  645. .llseek = seq_lseek,
  646. .release = single_release,
  647. };
  648. static __init int sched_init_debug(void)
  649. {
  650. debugfs_create_file("sched_features", 0644, NULL, NULL,
  651. &sched_feat_fops);
  652. return 0;
  653. }
  654. late_initcall(sched_init_debug);
  655. #endif
  656. #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
  657. /*
  658. * Number of tasks to iterate in a single balance run.
  659. * Limited because this is done with IRQs disabled.
  660. */
  661. const_debug unsigned int sysctl_sched_nr_migrate = 32;
  662. /*
  663. * ratelimit for updating the group shares.
  664. * default: 0.25ms
  665. */
  666. unsigned int sysctl_sched_shares_ratelimit = 250000;
  667. /*
  668. * Inject some fuzzyness into changing the per-cpu group shares
  669. * this avoids remote rq-locks at the expense of fairness.
  670. * default: 4
  671. */
  672. unsigned int sysctl_sched_shares_thresh = 4;
  673. /*
  674. * period over which we measure -rt task cpu usage in us.
  675. * default: 1s
  676. */
  677. unsigned int sysctl_sched_rt_period = 1000000;
  678. static __read_mostly int scheduler_running;
  679. /*
  680. * part of the period that we allow rt tasks to run in us.
  681. * default: 0.95s
  682. */
  683. int sysctl_sched_rt_runtime = 950000;
  684. static inline u64 global_rt_period(void)
  685. {
  686. return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
  687. }
  688. static inline u64 global_rt_runtime(void)
  689. {
  690. if (sysctl_sched_rt_runtime < 0)
  691. return RUNTIME_INF;
  692. return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
  693. }
  694. #ifndef prepare_arch_switch
  695. # define prepare_arch_switch(next) do { } while (0)
  696. #endif
  697. #ifndef finish_arch_switch
  698. # define finish_arch_switch(prev) do { } while (0)
  699. #endif
  700. static inline int task_current(struct rq *rq, struct task_struct *p)
  701. {
  702. return rq->curr == p;
  703. }
  704. #ifndef __ARCH_WANT_UNLOCKED_CTXSW
  705. static inline int task_running(struct rq *rq, struct task_struct *p)
  706. {
  707. return task_current(rq, p);
  708. }
  709. static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
  710. {
  711. }
  712. static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
  713. {
  714. #ifdef CONFIG_DEBUG_SPINLOCK
  715. /* this is a valid case when another task releases the spinlock */
  716. rq->lock.owner = current;
  717. #endif
  718. /*
  719. * If we are tracking spinlock dependencies then we have to
  720. * fix up the runqueue lock - which gets 'carried over' from
  721. * prev into current:
  722. */
  723. spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
  724. spin_unlock_irq(&rq->lock);
  725. }
  726. #else /* __ARCH_WANT_UNLOCKED_CTXSW */
  727. static inline int task_running(struct rq *rq, struct task_struct *p)
  728. {
  729. #ifdef CONFIG_SMP
  730. return p->oncpu;
  731. #else
  732. return task_current(rq, p);
  733. #endif
  734. }
  735. static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
  736. {
  737. #ifdef CONFIG_SMP
  738. /*
  739. * We can optimise this out completely for !SMP, because the
  740. * SMP rebalancing from interrupt is the only thing that cares
  741. * here.
  742. */
  743. next->oncpu = 1;
  744. #endif
  745. #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  746. spin_unlock_irq(&rq->lock);
  747. #else
  748. spin_unlock(&rq->lock);
  749. #endif
  750. }
  751. static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
  752. {
  753. #ifdef CONFIG_SMP
  754. /*
  755. * After ->oncpu is cleared, the task can be moved to a different CPU.
  756. * We must ensure this doesn't happen until the switch is completely
  757. * finished.
  758. */
  759. smp_wmb();
  760. prev->oncpu = 0;
  761. #endif
  762. #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  763. local_irq_enable();
  764. #endif
  765. }
  766. #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
  767. /*
  768. * __task_rq_lock - lock the runqueue a given task resides on.
  769. * Must be called interrupts disabled.
  770. */
  771. static inline struct rq *__task_rq_lock(struct task_struct *p)
  772. __acquires(rq->lock)
  773. {
  774. for (;;) {
  775. struct rq *rq = task_rq(p);
  776. spin_lock(&rq->lock);
  777. if (likely(rq == task_rq(p)))
  778. return rq;
  779. spin_unlock(&rq->lock);
  780. }
  781. }
  782. /*
  783. * task_rq_lock - lock the runqueue a given task resides on and disable
  784. * interrupts. Note the ordering: we can safely lookup the task_rq without
  785. * explicitly disabling preemption.
  786. */
  787. static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
  788. __acquires(rq->lock)
  789. {
  790. struct rq *rq;
  791. for (;;) {
  792. local_irq_save(*flags);
  793. rq = task_rq(p);
  794. spin_lock(&rq->lock);
  795. if (likely(rq == task_rq(p)))
  796. return rq;
  797. spin_unlock_irqrestore(&rq->lock, *flags);
  798. }
  799. }
  800. void task_rq_unlock_wait(struct task_struct *p)
  801. {
  802. struct rq *rq = task_rq(p);
  803. smp_mb(); /* spin-unlock-wait is not a full memory barrier */
  804. spin_unlock_wait(&rq->lock);
  805. }
  806. static void __task_rq_unlock(struct rq *rq)
  807. __releases(rq->lock)
  808. {
  809. spin_unlock(&rq->lock);
  810. }
  811. static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
  812. __releases(rq->lock)
  813. {
  814. spin_unlock_irqrestore(&rq->lock, *flags);
  815. }
  816. /*
  817. * this_rq_lock - lock this runqueue and disable interrupts.
  818. */
  819. static struct rq *this_rq_lock(void)
  820. __acquires(rq->lock)
  821. {
  822. struct rq *rq;
  823. local_irq_disable();
  824. rq = this_rq();
  825. spin_lock(&rq->lock);
  826. return rq;
  827. }
  828. #ifdef CONFIG_SCHED_HRTICK
  829. /*
  830. * Use HR-timers to deliver accurate preemption points.
  831. *
  832. * Its all a bit involved since we cannot program an hrt while holding the
  833. * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
  834. * reschedule event.
  835. *
  836. * When we get rescheduled we reprogram the hrtick_timer outside of the
  837. * rq->lock.
  838. */
  839. /*
  840. * Use hrtick when:
  841. * - enabled by features
  842. * - hrtimer is actually high res
  843. */
  844. static inline int hrtick_enabled(struct rq *rq)
  845. {
  846. if (!sched_feat(HRTICK))
  847. return 0;
  848. if (!cpu_active(cpu_of(rq)))
  849. return 0;
  850. return hrtimer_is_hres_active(&rq->hrtick_timer);
  851. }
  852. static void hrtick_clear(struct rq *rq)
  853. {
  854. if (hrtimer_active(&rq->hrtick_timer))
  855. hrtimer_cancel(&rq->hrtick_timer);
  856. }
  857. /*
  858. * High-resolution timer tick.
  859. * Runs from hardirq context with interrupts disabled.
  860. */
  861. static enum hrtimer_restart hrtick(struct hrtimer *timer)
  862. {
  863. struct rq *rq = container_of(timer, struct rq, hrtick_timer);
  864. WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
  865. spin_lock(&rq->lock);
  866. update_rq_clock(rq);
  867. rq->curr->sched_class->task_tick(rq, rq->curr, 1);
  868. spin_unlock(&rq->lock);
  869. return HRTIMER_NORESTART;
  870. }
  871. #ifdef CONFIG_SMP
  872. /*
  873. * called from hardirq (IPI) context
  874. */
  875. static void __hrtick_start(void *arg)
  876. {
  877. struct rq *rq = arg;
  878. spin_lock(&rq->lock);
  879. hrtimer_restart(&rq->hrtick_timer);
  880. rq->hrtick_csd_pending = 0;
  881. spin_unlock(&rq->lock);
  882. }
  883. /*
  884. * Called to set the hrtick timer state.
  885. *
  886. * called with rq->lock held and irqs disabled
  887. */
  888. static void hrtick_start(struct rq *rq, u64 delay)
  889. {
  890. struct hrtimer *timer = &rq->hrtick_timer;
  891. ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
  892. hrtimer_set_expires(timer, time);
  893. if (rq == this_rq()) {
  894. hrtimer_restart(timer);
  895. } else if (!rq->hrtick_csd_pending) {
  896. __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd);
  897. rq->hrtick_csd_pending = 1;
  898. }
  899. }
  900. static int
  901. hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
  902. {
  903. int cpu = (int)(long)hcpu;
  904. switch (action) {
  905. case CPU_UP_CANCELED:
  906. case CPU_UP_CANCELED_FROZEN:
  907. case CPU_DOWN_PREPARE:
  908. case CPU_DOWN_PREPARE_FROZEN:
  909. case CPU_DEAD:
  910. case CPU_DEAD_FROZEN:
  911. hrtick_clear(cpu_rq(cpu));
  912. return NOTIFY_OK;
  913. }
  914. return NOTIFY_DONE;
  915. }
  916. static __init void init_hrtick(void)
  917. {
  918. hotcpu_notifier(hotplug_hrtick, 0);
  919. }
  920. #else
  921. /*
  922. * Called to set the hrtick timer state.
  923. *
  924. * called with rq->lock held and irqs disabled
  925. */
  926. static void hrtick_start(struct rq *rq, u64 delay)
  927. {
  928. hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay), HRTIMER_MODE_REL);
  929. }
  930. static inline void init_hrtick(void)
  931. {
  932. }
  933. #endif /* CONFIG_SMP */
  934. static void init_rq_hrtick(struct rq *rq)
  935. {
  936. #ifdef CONFIG_SMP
  937. rq->hrtick_csd_pending = 0;
  938. rq->hrtick_csd.flags = 0;
  939. rq->hrtick_csd.func = __hrtick_start;
  940. rq->hrtick_csd.info = rq;
  941. #endif
  942. hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
  943. rq->hrtick_timer.function = hrtick;
  944. rq->hrtick_timer.cb_mode = HRTIMER_CB_IRQSAFE_PERCPU;
  945. }
  946. #else /* CONFIG_SCHED_HRTICK */
  947. static inline void hrtick_clear(struct rq *rq)
  948. {
  949. }
  950. static inline void init_rq_hrtick(struct rq *rq)
  951. {
  952. }
  953. static inline void init_hrtick(void)
  954. {
  955. }
  956. #endif /* CONFIG_SCHED_HRTICK */
  957. /*
  958. * resched_task - mark a task 'to be rescheduled now'.
  959. *
  960. * On UP this means the setting of the need_resched flag, on SMP it
  961. * might also involve a cross-CPU call to trigger the scheduler on
  962. * the target CPU.
  963. */
  964. #ifdef CONFIG_SMP
  965. #ifndef tsk_is_polling
  966. #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
  967. #endif
  968. static void resched_task(struct task_struct *p)
  969. {
  970. int cpu;
  971. assert_spin_locked(&task_rq(p)->lock);
  972. if (unlikely(test_tsk_thread_flag(p, TIF_NEED_RESCHED)))
  973. return;
  974. set_tsk_thread_flag(p, TIF_NEED_RESCHED);
  975. cpu = task_cpu(p);
  976. if (cpu == smp_processor_id())
  977. return;
  978. /* NEED_RESCHED must be visible before we test polling */
  979. smp_mb();
  980. if (!tsk_is_polling(p))
  981. smp_send_reschedule(cpu);
  982. }
  983. static void resched_cpu(int cpu)
  984. {
  985. struct rq *rq = cpu_rq(cpu);
  986. unsigned long flags;
  987. if (!spin_trylock_irqsave(&rq->lock, flags))
  988. return;
  989. resched_task(cpu_curr(cpu));
  990. spin_unlock_irqrestore(&rq->lock, flags);
  991. }
  992. #ifdef CONFIG_NO_HZ
  993. /*
  994. * When add_timer_on() enqueues a timer into the timer wheel of an
  995. * idle CPU then this timer might expire before the next timer event
  996. * which is scheduled to wake up that CPU. In case of a completely
  997. * idle system the next event might even be infinite time into the
  998. * future. wake_up_idle_cpu() ensures that the CPU is woken up and
  999. * leaves the inner idle loop so the newly added timer is taken into
  1000. * account when the CPU goes back to idle and evaluates the timer
  1001. * wheel for the next timer event.
  1002. */
  1003. void wake_up_idle_cpu(int cpu)
  1004. {
  1005. struct rq *rq = cpu_rq(cpu);
  1006. if (cpu == smp_processor_id())
  1007. return;
  1008. /*
  1009. * This is safe, as this function is called with the timer
  1010. * wheel base lock of (cpu) held. When the CPU is on the way
  1011. * to idle and has not yet set rq->curr to idle then it will
  1012. * be serialized on the timer wheel base lock and take the new
  1013. * timer into account automatically.
  1014. */
  1015. if (rq->curr != rq->idle)
  1016. return;
  1017. /*
  1018. * We can set TIF_RESCHED on the idle task of the other CPU
  1019. * lockless. The worst case is that the other CPU runs the
  1020. * idle task through an additional NOOP schedule()
  1021. */
  1022. set_tsk_thread_flag(rq->idle, TIF_NEED_RESCHED);
  1023. /* NEED_RESCHED must be visible before we test polling */
  1024. smp_mb();
  1025. if (!tsk_is_polling(rq->idle))
  1026. smp_send_reschedule(cpu);
  1027. }
  1028. #endif /* CONFIG_NO_HZ */
  1029. #else /* !CONFIG_SMP */
  1030. static void resched_task(struct task_struct *p)
  1031. {
  1032. assert_spin_locked(&task_rq(p)->lock);
  1033. set_tsk_need_resched(p);
  1034. }
  1035. #endif /* CONFIG_SMP */
  1036. #if BITS_PER_LONG == 32
  1037. # define WMULT_CONST (~0UL)
  1038. #else
  1039. # define WMULT_CONST (1UL << 32)
  1040. #endif
  1041. #define WMULT_SHIFT 32
  1042. /*
  1043. * Shift right and round:
  1044. */
  1045. #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
  1046. /*
  1047. * delta *= weight / lw
  1048. */
  1049. static unsigned long
  1050. calc_delta_mine(unsigned long delta_exec, unsigned long weight,
  1051. struct load_weight *lw)
  1052. {
  1053. u64 tmp;
  1054. if (!lw->inv_weight) {
  1055. if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST))
  1056. lw->inv_weight = 1;
  1057. else
  1058. lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)
  1059. / (lw->weight+1);
  1060. }
  1061. tmp = (u64)delta_exec * weight;
  1062. /*
  1063. * Check whether we'd overflow the 64-bit multiplication:
  1064. */
  1065. if (unlikely(tmp > WMULT_CONST))
  1066. tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
  1067. WMULT_SHIFT/2);
  1068. else
  1069. tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
  1070. return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
  1071. }
  1072. static inline void update_load_add(struct load_weight *lw, unsigned long inc)
  1073. {
  1074. lw->weight += inc;
  1075. lw->inv_weight = 0;
  1076. }
  1077. static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
  1078. {
  1079. lw->weight -= dec;
  1080. lw->inv_weight = 0;
  1081. }
  1082. /*
  1083. * To aid in avoiding the subversion of "niceness" due to uneven distribution
  1084. * of tasks with abnormal "nice" values across CPUs the contribution that
  1085. * each task makes to its run queue's load is weighted according to its
  1086. * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
  1087. * scaled version of the new time slice allocation that they receive on time
  1088. * slice expiry etc.
  1089. */
  1090. #define WEIGHT_IDLEPRIO 2
  1091. #define WMULT_IDLEPRIO (1 << 31)
  1092. /*
  1093. * Nice levels are multiplicative, with a gentle 10% change for every
  1094. * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
  1095. * nice 1, it will get ~10% less CPU time than another CPU-bound task
  1096. * that remained on nice 0.
  1097. *
  1098. * The "10% effect" is relative and cumulative: from _any_ nice level,
  1099. * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
  1100. * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
  1101. * If a task goes up by ~10% and another task goes down by ~10% then
  1102. * the relative distance between them is ~25%.)
  1103. */
  1104. static const int prio_to_weight[40] = {
  1105. /* -20 */ 88761, 71755, 56483, 46273, 36291,
  1106. /* -15 */ 29154, 23254, 18705, 14949, 11916,
  1107. /* -10 */ 9548, 7620, 6100, 4904, 3906,
  1108. /* -5 */ 3121, 2501, 1991, 1586, 1277,
  1109. /* 0 */ 1024, 820, 655, 526, 423,
  1110. /* 5 */ 335, 272, 215, 172, 137,
  1111. /* 10 */ 110, 87, 70, 56, 45,
  1112. /* 15 */ 36, 29, 23, 18, 15,
  1113. };
  1114. /*
  1115. * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
  1116. *
  1117. * In cases where the weight does not change often, we can use the
  1118. * precalculated inverse to speed up arithmetics by turning divisions
  1119. * into multiplications:
  1120. */
  1121. static const u32 prio_to_wmult[40] = {
  1122. /* -20 */ 48388, 59856, 76040, 92818, 118348,
  1123. /* -15 */ 147320, 184698, 229616, 287308, 360437,
  1124. /* -10 */ 449829, 563644, 704093, 875809, 1099582,
  1125. /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
  1126. /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
  1127. /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
  1128. /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
  1129. /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
  1130. };
  1131. static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);
  1132. /*
  1133. * runqueue iterator, to support SMP load-balancing between different
  1134. * scheduling classes, without having to expose their internal data
  1135. * structures to the load-balancing proper:
  1136. */
  1137. struct rq_iterator {
  1138. void *arg;
  1139. struct task_struct *(*start)(void *);
  1140. struct task_struct *(*next)(void *);
  1141. };
  1142. #ifdef CONFIG_SMP
  1143. static unsigned long
  1144. balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
  1145. unsigned long max_load_move, struct sched_domain *sd,
  1146. enum cpu_idle_type idle, int *all_pinned,
  1147. int *this_best_prio, struct rq_iterator *iterator);
  1148. static int
  1149. iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
  1150. struct sched_domain *sd, enum cpu_idle_type idle,
  1151. struct rq_iterator *iterator);
  1152. #endif
  1153. #ifdef CONFIG_CGROUP_CPUACCT
  1154. static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
  1155. #else
  1156. static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
  1157. #endif
  1158. static inline void inc_cpu_load(struct rq *rq, unsigned long load)
  1159. {
  1160. update_load_add(&rq->load, load);
  1161. }
  1162. static inline void dec_cpu_load(struct rq *rq, unsigned long load)
  1163. {
  1164. update_load_sub(&rq->load, load);
  1165. }
  1166. #if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED)
  1167. typedef int (*tg_visitor)(struct task_group *, void *);
  1168. /*
  1169. * Iterate the full tree, calling @down when first entering a node and @up when
  1170. * leaving it for the final time.
  1171. */
  1172. static int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
  1173. {
  1174. struct task_group *parent, *child;
  1175. int ret;
  1176. rcu_read_lock();
  1177. parent = &root_task_group;
  1178. down:
  1179. ret = (*down)(parent, data);
  1180. if (ret)
  1181. goto out_unlock;
  1182. list_for_each_entry_rcu(child, &parent->children, siblings) {
  1183. parent = child;
  1184. goto down;
  1185. up:
  1186. continue;
  1187. }
  1188. ret = (*up)(parent, data);
  1189. if (ret)
  1190. goto out_unlock;
  1191. child = parent;
  1192. parent = parent->parent;
  1193. if (parent)
  1194. goto up;
  1195. out_unlock:
  1196. rcu_read_unlock();
  1197. return ret;
  1198. }
  1199. static int tg_nop(struct task_group *tg, void *data)
  1200. {
  1201. return 0;
  1202. }
  1203. #endif
  1204. #ifdef CONFIG_SMP
  1205. static unsigned long source_load(int cpu, int type);
  1206. static unsigned long target_load(int cpu, int type);
  1207. static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
  1208. static unsigned long cpu_avg_load_per_task(int cpu)
  1209. {
  1210. struct rq *rq = cpu_rq(cpu);
  1211. if (rq->nr_running)
  1212. rq->avg_load_per_task = rq->load.weight / rq->nr_running;
  1213. else
  1214. rq->avg_load_per_task = 0;
  1215. return rq->avg_load_per_task;
  1216. }
  1217. #ifdef CONFIG_FAIR_GROUP_SCHED
  1218. static void __set_se_shares(struct sched_entity *se, unsigned long shares);
  1219. /*
  1220. * Calculate and set the cpu's group shares.
  1221. */
  1222. static void
  1223. update_group_shares_cpu(struct task_group *tg, int cpu,
  1224. unsigned long sd_shares, unsigned long sd_rq_weight)
  1225. {
  1226. unsigned long shares;
  1227. unsigned long rq_weight;
  1228. if (!tg->se[cpu])
  1229. return;
  1230. rq_weight = tg->cfs_rq[cpu]->rq_weight;
  1231. /*
  1232. * \Sum shares * rq_weight
  1233. * shares = -----------------------
  1234. * \Sum rq_weight
  1235. *
  1236. */
  1237. shares = (sd_shares * rq_weight) / sd_rq_weight;
  1238. shares = clamp_t(unsigned long, shares, MIN_SHARES, MAX_SHARES);
  1239. if (abs(shares - tg->se[cpu]->load.weight) >
  1240. sysctl_sched_shares_thresh) {
  1241. struct rq *rq = cpu_rq(cpu);
  1242. unsigned long flags;
  1243. spin_lock_irqsave(&rq->lock, flags);
  1244. tg->cfs_rq[cpu]->shares = shares;
  1245. __set_se_shares(tg->se[cpu], shares);
  1246. spin_unlock_irqrestore(&rq->lock, flags);
  1247. }
  1248. }
  1249. /*
  1250. * Re-compute the task group their per cpu shares over the given domain.
  1251. * This needs to be done in a bottom-up fashion because the rq weight of a
  1252. * parent group depends on the shares of its child groups.
  1253. */
  1254. static int tg_shares_up(struct task_group *tg, void *data)
  1255. {
  1256. unsigned long weight, rq_weight = 0;
  1257. unsigned long shares = 0;
  1258. struct sched_domain *sd = data;
  1259. int i;
  1260. for_each_cpu(i, sched_domain_span(sd)) {
  1261. /*
  1262. * If there are currently no tasks on the cpu pretend there
  1263. * is one of average load so that when a new task gets to
  1264. * run here it will not get delayed by group starvation.
  1265. */
  1266. weight = tg->cfs_rq[i]->load.weight;
  1267. if (!weight)
  1268. weight = NICE_0_LOAD;
  1269. tg->cfs_rq[i]->rq_weight = weight;
  1270. rq_weight += weight;
  1271. shares += tg->cfs_rq[i]->shares;
  1272. }
  1273. if ((!shares && rq_weight) || shares > tg->shares)
  1274. shares = tg->shares;
  1275. if (!sd->parent || !(sd->parent->flags & SD_LOAD_BALANCE))
  1276. shares = tg->shares;
  1277. for_each_cpu(i, sched_domain_span(sd))
  1278. update_group_shares_cpu(tg, i, shares, rq_weight);
  1279. return 0;
  1280. }
  1281. /*
  1282. * Compute the cpu's hierarchical load factor for each task group.
  1283. * This needs to be done in a top-down fashion because the load of a child
  1284. * group is a fraction of its parents load.
  1285. */
  1286. static int tg_load_down(struct task_group *tg, void *data)
  1287. {
  1288. unsigned long load;
  1289. long cpu = (long)data;
  1290. if (!tg->parent) {
  1291. load = cpu_rq(cpu)->load.weight;
  1292. } else {
  1293. load = tg->parent->cfs_rq[cpu]->h_load;
  1294. load *= tg->cfs_rq[cpu]->shares;
  1295. load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
  1296. }
  1297. tg->cfs_rq[cpu]->h_load = load;
  1298. return 0;
  1299. }
  1300. static void update_shares(struct sched_domain *sd)
  1301. {
  1302. u64 now = cpu_clock(raw_smp_processor_id());
  1303. s64 elapsed = now - sd->last_update;
  1304. if (elapsed >= (s64)(u64)sysctl_sched_shares_ratelimit) {
  1305. sd->last_update = now;
  1306. walk_tg_tree(tg_nop, tg_shares_up, sd);
  1307. }
  1308. }
  1309. static void update_shares_locked(struct rq *rq, struct sched_domain *sd)
  1310. {
  1311. spin_unlock(&rq->lock);
  1312. update_shares(sd);
  1313. spin_lock(&rq->lock);
  1314. }
  1315. static void update_h_load(long cpu)
  1316. {
  1317. walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
  1318. }
  1319. #else
  1320. static inline void update_shares(struct sched_domain *sd)
  1321. {
  1322. }
  1323. static inline void update_shares_locked(struct rq *rq, struct sched_domain *sd)
  1324. {
  1325. }
  1326. #endif
  1327. #endif
  1328. #ifdef CONFIG_FAIR_GROUP_SCHED
  1329. static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares)
  1330. {
  1331. #ifdef CONFIG_SMP
  1332. cfs_rq->shares = shares;
  1333. #endif
  1334. }
  1335. #endif
  1336. #include "sched_stats.h"
  1337. #include "sched_idletask.c"
  1338. #include "sched_fair.c"
  1339. #include "sched_rt.c"
  1340. #ifdef CONFIG_SCHED_DEBUG
  1341. # include "sched_debug.c"
  1342. #endif
  1343. #define sched_class_highest (&rt_sched_class)
  1344. #define for_each_class(class) \
  1345. for (class = sched_class_highest; class; class = class->next)
  1346. static void inc_nr_running(struct rq *rq)
  1347. {
  1348. rq->nr_running++;
  1349. }
  1350. static void dec_nr_running(struct rq *rq)
  1351. {
  1352. rq->nr_running--;
  1353. }
  1354. static void set_load_weight(struct task_struct *p)
  1355. {
  1356. if (task_has_rt_policy(p)) {
  1357. p->se.load.weight = prio_to_weight[0] * 2;
  1358. p->se.load.inv_weight = prio_to_wmult[0] >> 1;
  1359. return;
  1360. }
  1361. /*
  1362. * SCHED_IDLE tasks get minimal weight:
  1363. */
  1364. if (p->policy == SCHED_IDLE) {
  1365. p->se.load.weight = WEIGHT_IDLEPRIO;
  1366. p->se.load.inv_weight = WMULT_IDLEPRIO;
  1367. return;
  1368. }
  1369. p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
  1370. p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
  1371. }
  1372. static void update_avg(u64 *avg, u64 sample)
  1373. {
  1374. s64 diff = sample - *avg;
  1375. *avg += diff >> 3;
  1376. }
  1377. static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
  1378. {
  1379. sched_info_queued(p);
  1380. p->sched_class->enqueue_task(rq, p, wakeup);
  1381. p->se.on_rq = 1;
  1382. }
  1383. static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
  1384. {
  1385. if (sleep && p->se.last_wakeup) {
  1386. update_avg(&p->se.avg_overlap,
  1387. p->se.sum_exec_runtime - p->se.last_wakeup);
  1388. p->se.last_wakeup = 0;
  1389. }
  1390. sched_info_dequeued(p);
  1391. p->sched_class->dequeue_task(rq, p, sleep);
  1392. p->se.on_rq = 0;
  1393. }
  1394. /*
  1395. * __normal_prio - return the priority that is based on the static prio
  1396. */
  1397. static inline int __normal_prio(struct task_struct *p)
  1398. {
  1399. return p->static_prio;
  1400. }
  1401. /*
  1402. * Calculate the expected normal priority: i.e. priority
  1403. * without taking RT-inheritance into account. Might be
  1404. * boosted by interactivity modifiers. Changes upon fork,
  1405. * setprio syscalls, and whenever the interactivity
  1406. * estimator recalculates.
  1407. */
  1408. static inline int normal_prio(struct task_struct *p)
  1409. {
  1410. int prio;
  1411. if (task_has_rt_policy(p))
  1412. prio = MAX_RT_PRIO-1 - p->rt_priority;
  1413. else
  1414. prio = __normal_prio(p);
  1415. return prio;
  1416. }
  1417. /*
  1418. * Calculate the current priority, i.e. the priority
  1419. * taken into account by the scheduler. This value might
  1420. * be boosted by RT tasks, or might be boosted by
  1421. * interactivity modifiers. Will be RT if the task got
  1422. * RT-boosted. If not then it returns p->normal_prio.
  1423. */
  1424. static int effective_prio(struct task_struct *p)
  1425. {
  1426. p->normal_prio = normal_prio(p);
  1427. /*
  1428. * If we are RT tasks or we were boosted to RT priority,
  1429. * keep the priority unchanged. Otherwise, update priority
  1430. * to the normal priority:
  1431. */
  1432. if (!rt_prio(p->prio))
  1433. return p->normal_prio;
  1434. return p->prio;
  1435. }
  1436. /*
  1437. * activate_task - move a task to the runqueue.
  1438. */
  1439. static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
  1440. {
  1441. if (task_contributes_to_load(p))
  1442. rq->nr_uninterruptible--;
  1443. enqueue_task(rq, p, wakeup);
  1444. inc_nr_running(rq);
  1445. }
  1446. /*
  1447. * deactivate_task - remove a task from the runqueue.
  1448. */
  1449. static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
  1450. {
  1451. if (task_contributes_to_load(p))
  1452. rq->nr_uninterruptible++;
  1453. dequeue_task(rq, p, sleep);
  1454. dec_nr_running(rq);
  1455. }
  1456. /**
  1457. * task_curr - is this task currently executing on a CPU?
  1458. * @p: the task in question.
  1459. */
  1460. inline int task_curr(const struct task_struct *p)
  1461. {
  1462. return cpu_curr(task_cpu(p)) == p;
  1463. }
  1464. static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
  1465. {
  1466. set_task_rq(p, cpu);
  1467. #ifdef CONFIG_SMP
  1468. /*
  1469. * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
  1470. * successfuly executed on another CPU. We must ensure that updates of
  1471. * per-task data have been completed by this moment.
  1472. */
  1473. smp_wmb();
  1474. task_thread_info(p)->cpu = cpu;
  1475. #endif
  1476. }
  1477. static inline void check_class_changed(struct rq *rq, struct task_struct *p,
  1478. const struct sched_class *prev_class,
  1479. int oldprio, int running)
  1480. {
  1481. if (prev_class != p->sched_class) {
  1482. if (prev_class->switched_from)
  1483. prev_class->switched_from(rq, p, running);
  1484. p->sched_class->switched_to(rq, p, running);
  1485. } else
  1486. p->sched_class->prio_changed(rq, p, oldprio, running);
  1487. }
  1488. #ifdef CONFIG_SMP
  1489. /* Used instead of source_load when we know the type == 0 */
  1490. static unsigned long weighted_cpuload(const int cpu)
  1491. {
  1492. return cpu_rq(cpu)->load.weight;
  1493. }
  1494. /*
  1495. * Is this task likely cache-hot:
  1496. */
  1497. static int
  1498. task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
  1499. {
  1500. s64 delta;
  1501. /*
  1502. * Buddy candidates are cache hot:
  1503. */
  1504. if (sched_feat(CACHE_HOT_BUDDY) &&
  1505. (&p->se == cfs_rq_of(&p->se)->next ||
  1506. &p->se == cfs_rq_of(&p->se)->last))
  1507. return 1;
  1508. if (p->sched_class != &fair_sched_class)
  1509. return 0;
  1510. if (sysctl_sched_migration_cost == -1)
  1511. return 1;
  1512. if (sysctl_sched_migration_cost == 0)
  1513. return 0;
  1514. delta = now - p->se.exec_start;
  1515. return delta < (s64)sysctl_sched_migration_cost;
  1516. }
  1517. void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
  1518. {
  1519. int old_cpu = task_cpu(p);
  1520. struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
  1521. struct cfs_rq *old_cfsrq = task_cfs_rq(p),
  1522. *new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu);
  1523. u64 clock_offset;
  1524. clock_offset = old_rq->clock - new_rq->clock;
  1525. #ifdef CONFIG_SCHEDSTATS
  1526. if (p->se.wait_start)
  1527. p->se.wait_start -= clock_offset;
  1528. if (p->se.sleep_start)
  1529. p->se.sleep_start -= clock_offset;
  1530. if (p->se.block_start)
  1531. p->se.block_start -= clock_offset;
  1532. if (old_cpu != new_cpu) {
  1533. schedstat_inc(p, se.nr_migrations);
  1534. if (task_hot(p, old_rq->clock, NULL))
  1535. schedstat_inc(p, se.nr_forced2_migrations);
  1536. }
  1537. #endif
  1538. p->se.vruntime -= old_cfsrq->min_vruntime -
  1539. new_cfsrq->min_vruntime;
  1540. __set_task_cpu(p, new_cpu);
  1541. }
  1542. struct migration_req {
  1543. struct list_head list;
  1544. struct task_struct *task;
  1545. int dest_cpu;
  1546. struct completion done;
  1547. };
  1548. /*
  1549. * The task's runqueue lock must be held.
  1550. * Returns true if you have to wait for migration thread.
  1551. */
  1552. static int
  1553. migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
  1554. {
  1555. struct rq *rq = task_rq(p);
  1556. /*
  1557. * If the task is not on a runqueue (and not running), then
  1558. * it is sufficient to simply update the task's cpu field.
  1559. */
  1560. if (!p->se.on_rq && !task_running(rq, p)) {
  1561. set_task_cpu(p, dest_cpu);
  1562. return 0;
  1563. }
  1564. init_completion(&req->done);
  1565. req->task = p;
  1566. req->dest_cpu = dest_cpu;
  1567. list_add(&req->list, &rq->migration_queue);
  1568. return 1;
  1569. }
  1570. /*
  1571. * wait_task_inactive - wait for a thread to unschedule.
  1572. *
  1573. * If @match_state is nonzero, it's the @p->state value just checked and
  1574. * not expected to change. If it changes, i.e. @p might have woken up,
  1575. * then return zero. When we succeed in waiting for @p to be off its CPU,
  1576. * we return a positive number (its total switch count). If a second call
  1577. * a short while later returns the same number, the caller can be sure that
  1578. * @p has remained unscheduled the whole time.
  1579. *
  1580. * The caller must ensure that the task *will* unschedule sometime soon,
  1581. * else this function might spin for a *long* time. This function can't
  1582. * be called with interrupts off, or it may introduce deadlock with
  1583. * smp_call_function() if an IPI is sent by the same process we are
  1584. * waiting to become inactive.
  1585. */
  1586. unsigned long wait_task_inactive(struct task_struct *p, long match_state)
  1587. {
  1588. unsigned long flags;
  1589. int running, on_rq;
  1590. unsigned long ncsw;
  1591. struct rq *rq;
  1592. for (;;) {
  1593. /*
  1594. * We do the initial early heuristics without holding
  1595. * any task-queue locks at all. We'll only try to get
  1596. * the runqueue lock when things look like they will
  1597. * work out!
  1598. */
  1599. rq = task_rq(p);
  1600. /*
  1601. * If the task is actively running on another CPU
  1602. * still, just relax and busy-wait without holding
  1603. * any locks.
  1604. *
  1605. * NOTE! Since we don't hold any locks, it's not
  1606. * even sure that "rq" stays as the right runqueue!
  1607. * But we don't care, since "task_running()" will
  1608. * return false if the runqueue has changed and p
  1609. * is actually now running somewhere else!
  1610. */
  1611. while (task_running(rq, p)) {
  1612. if (match_state && unlikely(p->state != match_state))
  1613. return 0;
  1614. cpu_relax();
  1615. }
  1616. /*
  1617. * Ok, time to look more closely! We need the rq
  1618. * lock now, to be *sure*. If we're wrong, we'll
  1619. * just go back and repeat.
  1620. */
  1621. rq = task_rq_lock(p, &flags);
  1622. trace_sched_wait_task(rq, p);
  1623. running = task_running(rq, p);
  1624. on_rq = p->se.on_rq;
  1625. ncsw = 0;
  1626. if (!match_state || p->state == match_state)
  1627. ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
  1628. task_rq_unlock(rq, &flags);
  1629. /*
  1630. * If it changed from the expected state, bail out now.
  1631. */
  1632. if (unlikely(!ncsw))
  1633. break;
  1634. /*
  1635. * Was it really running after all now that we
  1636. * checked with the proper locks actually held?
  1637. *
  1638. * Oops. Go back and try again..
  1639. */
  1640. if (unlikely(running)) {
  1641. cpu_relax();
  1642. continue;
  1643. }
  1644. /*
  1645. * It's not enough that it's not actively running,
  1646. * it must be off the runqueue _entirely_, and not
  1647. * preempted!
  1648. *
  1649. * So if it wa still runnable (but just not actively
  1650. * running right now), it's preempted, and we should
  1651. * yield - it could be a while.
  1652. */
  1653. if (unlikely(on_rq)) {
  1654. schedule_timeout_uninterruptible(1);
  1655. continue;
  1656. }
  1657. /*
  1658. * Ahh, all good. It wasn't running, and it wasn't
  1659. * runnable, which means that it will never become
  1660. * running in the future either. We're all done!
  1661. */
  1662. break;
  1663. }
  1664. return ncsw;
  1665. }
  1666. /***
  1667. * kick_process - kick a running thread to enter/exit the kernel
  1668. * @p: the to-be-kicked thread
  1669. *
  1670. * Cause a process which is running on another CPU to enter
  1671. * kernel-mode, without any delay. (to get signals handled.)
  1672. *
  1673. * NOTE: this function doesnt have to take the runqueue lock,
  1674. * because all it wants to ensure is that the remote task enters
  1675. * the kernel. If the IPI races and the task has been migrated
  1676. * to another CPU then no harm is done and the purpose has been
  1677. * achieved as well.
  1678. */
  1679. void kick_process(struct task_struct *p)
  1680. {
  1681. int cpu;
  1682. preempt_disable();
  1683. cpu = task_cpu(p);
  1684. if ((cpu != smp_processor_id()) && task_curr(p))
  1685. smp_send_reschedule(cpu);
  1686. preempt_enable();
  1687. }
  1688. /*
  1689. * Return a low guess at the load of a migration-source cpu weighted
  1690. * according to the scheduling class and "nice" value.
  1691. *
  1692. * We want to under-estimate the load of migration sources, to
  1693. * balance conservatively.
  1694. */
  1695. static unsigned long source_load(int cpu, int type)
  1696. {
  1697. struct rq *rq = cpu_rq(cpu);
  1698. unsigned long total = weighted_cpuload(cpu);
  1699. if (type == 0 || !sched_feat(LB_BIAS))
  1700. return total;
  1701. return min(rq->cpu_load[type-1], total);
  1702. }
  1703. /*
  1704. * Return a high guess at the load of a migration-target cpu weighted
  1705. * according to the scheduling class and "nice" value.
  1706. */
  1707. static unsigned long target_load(int cpu, int type)
  1708. {
  1709. struct rq *rq = cpu_rq(cpu);
  1710. unsigned long total = weighted_cpuload(cpu);
  1711. if (type == 0 || !sched_feat(LB_BIAS))
  1712. return total;
  1713. return max(rq->cpu_load[type-1], total);
  1714. }
  1715. /*
  1716. * find_idlest_group finds and returns the least busy CPU group within the
  1717. * domain.
  1718. */
  1719. static struct sched_group *
  1720. find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
  1721. {
  1722. struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
  1723. unsigned long min_load = ULONG_MAX, this_load = 0;
  1724. int load_idx = sd->forkexec_idx;
  1725. int imbalance = 100 + (sd->imbalance_pct-100)/2;
  1726. do {
  1727. unsigned long load, avg_load;
  1728. int local_group;
  1729. int i;
  1730. /* Skip over this group if it has no CPUs allowed */
  1731. if (!cpumask_intersects(sched_group_cpus(group),
  1732. &p->cpus_allowed))
  1733. continue;
  1734. local_group = cpumask_test_cpu(this_cpu,
  1735. sched_group_cpus(group));
  1736. /* Tally up the load of all CPUs in the group */
  1737. avg_load = 0;
  1738. for_each_cpu(i, sched_group_cpus(group)) {
  1739. /* Bias balancing toward cpus of our domain */
  1740. if (local_group)
  1741. load = source_load(i, load_idx);
  1742. else
  1743. load = target_load(i, load_idx);
  1744. avg_load += load;
  1745. }
  1746. /* Adjust by relative CPU power of the group */
  1747. avg_load = sg_div_cpu_power(group,
  1748. avg_load * SCHED_LOAD_SCALE);
  1749. if (local_group) {
  1750. this_load = avg_load;
  1751. this = group;
  1752. } else if (avg_load < min_load) {
  1753. min_load = avg_load;
  1754. idlest = group;
  1755. }
  1756. } while (group = group->next, group != sd->groups);
  1757. if (!idlest || 100*this_load < imbalance*min_load)
  1758. return NULL;
  1759. return idlest;
  1760. }
  1761. /*
  1762. * find_idlest_cpu - find the idlest cpu among the cpus in group.
  1763. */
  1764. static int
  1765. find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
  1766. {
  1767. unsigned long load, min_load = ULONG_MAX;
  1768. int idlest = -1;
  1769. int i;
  1770. /* Traverse only the allowed CPUs */
  1771. for_each_cpu_and(i, sched_group_cpus(group), &p->cpus_allowed) {
  1772. load = weighted_cpuload(i);
  1773. if (load < min_load || (load == min_load && i == this_cpu)) {
  1774. min_load = load;
  1775. idlest = i;
  1776. }
  1777. }
  1778. return idlest;
  1779. }
  1780. /*
  1781. * sched_balance_self: balance the current task (running on cpu) in domains
  1782. * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
  1783. * SD_BALANCE_EXEC.
  1784. *
  1785. * Balance, ie. select the least loaded group.
  1786. *
  1787. * Returns the target CPU number, or the same CPU if no balancing is needed.
  1788. *
  1789. * preempt must be disabled.
  1790. */
  1791. static int sched_balance_self(int cpu, int flag)
  1792. {
  1793. struct task_struct *t = current;
  1794. struct sched_domain *tmp, *sd = NULL;
  1795. for_each_domain(cpu, tmp) {
  1796. /*
  1797. * If power savings logic is enabled for a domain, stop there.
  1798. */
  1799. if (tmp->flags & SD_POWERSAVINGS_BALANCE)
  1800. break;
  1801. if (tmp->flags & flag)
  1802. sd = tmp;
  1803. }
  1804. if (sd)
  1805. update_shares(sd);
  1806. while (sd) {
  1807. struct sched_group *group;
  1808. int new_cpu, weight;
  1809. if (!(sd->flags & flag)) {
  1810. sd = sd->child;
  1811. continue;
  1812. }
  1813. group = find_idlest_group(sd, t, cpu);
  1814. if (!group) {
  1815. sd = sd->child;
  1816. continue;
  1817. }
  1818. new_cpu = find_idlest_cpu(group, t, cpu);
  1819. if (new_cpu == -1 || new_cpu == cpu) {
  1820. /* Now try balancing at a lower domain level of cpu */
  1821. sd = sd->child;
  1822. continue;
  1823. }
  1824. /* Now try balancing at a lower domain level of new_cpu */
  1825. cpu = new_cpu;
  1826. weight = cpumask_weight(sched_domain_span(sd));
  1827. sd = NULL;
  1828. for_each_domain(cpu, tmp) {
  1829. if (weight <= cpumask_weight(sched_domain_span(tmp)))
  1830. break;
  1831. if (tmp->flags & flag)
  1832. sd = tmp;
  1833. }
  1834. /* while loop will break here if sd == NULL */
  1835. }
  1836. return cpu;
  1837. }
  1838. #endif /* CONFIG_SMP */
  1839. /***
  1840. * try_to_wake_up - wake up a thread
  1841. * @p: the to-be-woken-up thread
  1842. * @state: the mask of task states that can be woken
  1843. * @sync: do a synchronous wakeup?
  1844. *
  1845. * Put it on the run-queue if it's not already there. The "current"
  1846. * thread is always on the run-queue (except when the actual
  1847. * re-schedule is in progress), and as such you're allowed to do
  1848. * the simpler "current->state = TASK_RUNNING" to mark yourself
  1849. * runnable without the overhead of this.
  1850. *
  1851. * returns failure only if the task is already active.
  1852. */
  1853. static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
  1854. {
  1855. int cpu, orig_cpu, this_cpu, success = 0;
  1856. unsigned long flags;
  1857. long old_state;
  1858. struct rq *rq;
  1859. if (!sched_feat(SYNC_WAKEUPS))
  1860. sync = 0;
  1861. #ifdef CONFIG_SMP
  1862. if (sched_feat(LB_WAKEUP_UPDATE)) {
  1863. struct sched_domain *sd;
  1864. this_cpu = raw_smp_processor_id();
  1865. cpu = task_cpu(p);
  1866. for_each_domain(this_cpu, sd) {
  1867. if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
  1868. update_shares(sd);
  1869. break;
  1870. }
  1871. }
  1872. }
  1873. #endif
  1874. smp_wmb();
  1875. rq = task_rq_lock(p, &flags);
  1876. old_state = p->state;
  1877. if (!(old_state & state))
  1878. goto out;
  1879. if (p->se.on_rq)
  1880. goto out_running;
  1881. cpu = task_cpu(p);
  1882. orig_cpu = cpu;
  1883. this_cpu = smp_processor_id();
  1884. #ifdef CONFIG_SMP
  1885. if (unlikely(task_running(rq, p)))
  1886. goto out_activate;
  1887. cpu = p->sched_class->select_task_rq(p, sync);
  1888. if (cpu != orig_cpu) {
  1889. set_task_cpu(p, cpu);
  1890. task_rq_unlock(rq, &flags);
  1891. /* might preempt at this point */
  1892. rq = task_rq_lock(p, &flags);
  1893. old_state = p->state;
  1894. if (!(old_state & state))
  1895. goto out;
  1896. if (p->se.on_rq)
  1897. goto out_running;
  1898. this_cpu = smp_processor_id();
  1899. cpu = task_cpu(p);
  1900. }
  1901. #ifdef CONFIG_SCHEDSTATS
  1902. schedstat_inc(rq, ttwu_count);
  1903. if (cpu == this_cpu)
  1904. schedstat_inc(rq, ttwu_local);
  1905. else {
  1906. struct sched_domain *sd;
  1907. for_each_domain(this_cpu, sd) {
  1908. if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
  1909. schedstat_inc(sd, ttwu_wake_remote);
  1910. break;
  1911. }
  1912. }
  1913. }
  1914. #endif /* CONFIG_SCHEDSTATS */
  1915. out_activate:
  1916. #endif /* CONFIG_SMP */
  1917. schedstat_inc(p, se.nr_wakeups);
  1918. if (sync)
  1919. schedstat_inc(p, se.nr_wakeups_sync);
  1920. if (orig_cpu != cpu)
  1921. schedstat_inc(p, se.nr_wakeups_migrate);
  1922. if (cpu == this_cpu)
  1923. schedstat_inc(p, se.nr_wakeups_local);
  1924. else
  1925. schedstat_inc(p, se.nr_wakeups_remote);
  1926. update_rq_clock(rq);
  1927. activate_task(rq, p, 1);
  1928. success = 1;
  1929. out_running:
  1930. trace_sched_wakeup(rq, p);
  1931. check_preempt_curr(rq, p, sync);
  1932. p->state = TASK_RUNNING;
  1933. #ifdef CONFIG_SMP
  1934. if (p->sched_class->task_wake_up)
  1935. p->sched_class->task_wake_up(rq, p);
  1936. #endif
  1937. out:
  1938. current->se.last_wakeup = current->se.sum_exec_runtime;
  1939. task_rq_unlock(rq, &flags);
  1940. return success;
  1941. }
  1942. int wake_up_process(struct task_struct *p)
  1943. {
  1944. return try_to_wake_up(p, TASK_ALL, 0);
  1945. }
  1946. EXPORT_SYMBOL(wake_up_process);
  1947. int wake_up_state(struct task_struct *p, unsigned int state)
  1948. {
  1949. return try_to_wake_up(p, state, 0);
  1950. }
  1951. /*
  1952. * Perform scheduler related setup for a newly forked process p.
  1953. * p is forked by current.
  1954. *
  1955. * __sched_fork() is basic setup used by init_idle() too:
  1956. */
  1957. static void __sched_fork(struct task_struct *p)
  1958. {
  1959. p->se.exec_start = 0;
  1960. p->se.sum_exec_runtime = 0;
  1961. p->se.prev_sum_exec_runtime = 0;
  1962. p->se.last_wakeup = 0;
  1963. p->se.avg_overlap = 0;
  1964. #ifdef CONFIG_SCHEDSTATS
  1965. p->se.wait_start = 0;
  1966. p->se.sum_sleep_runtime = 0;
  1967. p->se.sleep_start = 0;
  1968. p->se.block_start = 0;
  1969. p->se.sleep_max = 0;
  1970. p->se.block_max = 0;
  1971. p->se.exec_max = 0;
  1972. p->se.slice_max = 0;
  1973. p->se.wait_max = 0;
  1974. #endif
  1975. INIT_LIST_HEAD(&p->rt.run_list);
  1976. p->se.on_rq = 0;
  1977. INIT_LIST_HEAD(&p->se.group_node);
  1978. #ifdef CONFIG_PREEMPT_NOTIFIERS
  1979. INIT_HLIST_HEAD(&p->preempt_notifiers);
  1980. #endif
  1981. /*
  1982. * We mark the process as running here, but have not actually
  1983. * inserted it onto the runqueue yet. This guarantees that
  1984. * nobody will actually run it, and a signal or other external
  1985. * event cannot wake it up and insert it on the runqueue either.
  1986. */
  1987. p->state = TASK_RUNNING;
  1988. }
  1989. /*
  1990. * fork()/clone()-time setup:
  1991. */
  1992. void sched_fork(struct task_struct *p, int clone_flags)
  1993. {
  1994. int cpu = get_cpu();
  1995. __sched_fork(p);
  1996. #ifdef CONFIG_SMP
  1997. cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
  1998. #endif
  1999. set_task_cpu(p, cpu);
  2000. /*
  2001. * Make sure we do not leak PI boosting priority to the child:
  2002. */
  2003. p->prio = current->normal_prio;
  2004. if (!rt_prio(p->prio))
  2005. p->sched_class = &fair_sched_class;
  2006. #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
  2007. if (likely(sched_info_on()))
  2008. memset(&p->sched_info, 0, sizeof(p->sched_info));
  2009. #endif
  2010. #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
  2011. p->oncpu = 0;
  2012. #endif
  2013. #ifdef CONFIG_PREEMPT
  2014. /* Want to start with kernel preemption disabled. */
  2015. task_thread_info(p)->preempt_count = 1;
  2016. #endif
  2017. put_cpu();
  2018. }
  2019. /*
  2020. * wake_up_new_task - wake up a newly created task for the first time.
  2021. *
  2022. * This function will do some initial scheduler statistics housekeeping
  2023. * that must be done for every newly created context, then puts the task
  2024. * on the runqueue and wakes it.
  2025. */
  2026. void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
  2027. {
  2028. unsigned long flags;
  2029. struct rq *rq;
  2030. rq = task_rq_lock(p, &flags);
  2031. BUG_ON(p->state != TASK_RUNNING);
  2032. update_rq_clock(rq);
  2033. p->prio = effective_prio(p);
  2034. if (!p->sched_class->task_new || !current->se.on_rq) {
  2035. activate_task(rq, p, 0);
  2036. } else {
  2037. /*
  2038. * Let the scheduling class do new task startup
  2039. * management (if any):
  2040. */
  2041. p->sched_class->task_new(rq, p);
  2042. inc_nr_running(rq);
  2043. }
  2044. trace_sched_wakeup_new(rq, p);
  2045. check_preempt_curr(rq, p, 0);
  2046. #ifdef CONFIG_SMP
  2047. if (p->sched_class->task_wake_up)
  2048. p->sched_class->task_wake_up(rq, p);
  2049. #endif
  2050. task_rq_unlock(rq, &flags);
  2051. }
  2052. #ifdef CONFIG_PREEMPT_NOTIFIERS
  2053. /**
  2054. * preempt_notifier_register - tell me when current is being being preempted & rescheduled
  2055. * @notifier: notifier struct to register
  2056. */
  2057. void preempt_notifier_register(struct preempt_notifier *notifier)
  2058. {
  2059. hlist_add_head(&notifier->link, &current->preempt_notifiers);
  2060. }
  2061. EXPORT_SYMBOL_GPL(preempt_notifier_register);
  2062. /**
  2063. * preempt_notifier_unregister - no longer interested in preemption notifications
  2064. * @notifier: notifier struct to unregister
  2065. *
  2066. * This is safe to call from within a preemption notifier.
  2067. */
  2068. void preempt_notifier_unregister(struct preempt_notifier *notifier)
  2069. {
  2070. hlist_del(&notifier->link);
  2071. }
  2072. EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
  2073. static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
  2074. {
  2075. struct preempt_notifier *notifier;
  2076. struct hlist_node *node;
  2077. hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
  2078. notifier->ops->sched_in(notifier, raw_smp_processor_id());
  2079. }
  2080. static void
  2081. fire_sched_out_preempt_notifiers(struct task_struct *curr,
  2082. struct task_struct *next)
  2083. {
  2084. struct preempt_notifier *notifier;
  2085. struct hlist_node *node;
  2086. hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
  2087. notifier->ops->sched_out(notifier, next);
  2088. }
  2089. #else /* !CONFIG_PREEMPT_NOTIFIERS */
  2090. static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
  2091. {
  2092. }
  2093. static void
  2094. fire_sched_out_preempt_notifiers(struct task_struct *curr,
  2095. struct task_struct *next)
  2096. {
  2097. }
  2098. #endif /* CONFIG_PREEMPT_NOTIFIERS */
  2099. /**
  2100. * prepare_task_switch - prepare to switch tasks
  2101. * @rq: the runqueue preparing to switch
  2102. * @prev: the current task that is being switched out
  2103. * @next: the task we are going to switch to.
  2104. *
  2105. * This is called with the rq lock held and interrupts off. It must
  2106. * be paired with a subsequent finish_task_switch after the context
  2107. * switch.
  2108. *
  2109. * prepare_task_switch sets up locking and calls architecture specific
  2110. * hooks.
  2111. */
  2112. static inline void
  2113. prepare_task_switch(struct rq *rq, struct task_struct *prev,
  2114. struct task_struct *next)
  2115. {
  2116. fire_sched_out_preempt_notifiers(prev, next);
  2117. prepare_lock_switch(rq, next);
  2118. prepare_arch_switch(next);
  2119. }
  2120. /**
  2121. * finish_task_switch - clean up after a task-switch
  2122. * @rq: runqueue associated with task-switch
  2123. * @prev: the thread we just switched away from.
  2124. *
  2125. * finish_task_switch must be called after the context switch, paired
  2126. * with a prepare_task_switch call before the context switch.
  2127. * finish_task_switch will reconcile locking set up by prepare_task_switch,
  2128. * and do any other architecture-specific cleanup actions.
  2129. *
  2130. * Note that we may have delayed dropping an mm in context_switch(). If
  2131. * so, we finish that here outside of the runqueue lock. (Doing it
  2132. * with the lock held can cause deadlocks; see schedule() for
  2133. * details.)
  2134. */
  2135. static void finish_task_switch(struct rq *rq, struct task_struct *prev)
  2136. __releases(rq->lock)
  2137. {
  2138. struct mm_struct *mm = rq->prev_mm;
  2139. long prev_state;
  2140. rq->prev_mm = NULL;
  2141. /*
  2142. * A task struct has one reference for the use as "current".
  2143. * If a task dies, then it sets TASK_DEAD in tsk->state and calls
  2144. * schedule one last time. The schedule call will never return, and
  2145. * the scheduled task must drop that reference.
  2146. * The test for TASK_DEAD must occur while the runqueue locks are
  2147. * still held, otherwise prev could be scheduled on another cpu, die
  2148. * there before we look at prev->state, and then the reference would
  2149. * be dropped twice.
  2150. * Manfred Spraul <manfred@colorfullife.com>
  2151. */
  2152. prev_state = prev->state;
  2153. finish_arch_switch(prev);
  2154. finish_lock_switch(rq, prev);
  2155. #ifdef CONFIG_SMP
  2156. if (current->sched_class->post_schedule)
  2157. current->sched_class->post_schedule(rq);
  2158. #endif
  2159. fire_sched_in_preempt_notifiers(current);
  2160. if (mm)
  2161. mmdrop(mm);
  2162. if (unlikely(prev_state == TASK_DEAD)) {
  2163. /*
  2164. * Remove function-return probe instances associated with this
  2165. * task and put them back on the free list.
  2166. */
  2167. kprobe_flush_task(prev);
  2168. put_task_struct(prev);
  2169. }
  2170. }
  2171. /**
  2172. * schedule_tail - first thing a freshly forked thread must call.
  2173. * @prev: the thread we just switched away from.
  2174. */
  2175. asmlinkage void schedule_tail(struct task_struct *prev)
  2176. __releases(rq->lock)
  2177. {
  2178. struct rq *rq = this_rq();
  2179. finish_task_switch(rq, prev);
  2180. #ifdef __ARCH_WANT_UNLOCKED_CTXSW
  2181. /* In this case, finish_task_switch does not reenable preemption */
  2182. preempt_enable();
  2183. #endif
  2184. if (current->set_child_tid)
  2185. put_user(task_pid_vnr(current), current->set_child_tid);
  2186. }
  2187. /*
  2188. * context_switch - switch to the new MM and the new
  2189. * thread's register state.
  2190. */
  2191. static inline void
  2192. context_switch(struct rq *rq, struct task_struct *prev,
  2193. struct task_struct *next)
  2194. {
  2195. struct mm_struct *mm, *oldmm;
  2196. prepare_task_switch(rq, prev, next);
  2197. trace_sched_switch(rq, prev, next);
  2198. mm = next->mm;
  2199. oldmm = prev->active_mm;
  2200. /*
  2201. * For paravirt, this is coupled with an exit in switch_to to
  2202. * combine the page table reload and the switch backend into
  2203. * one hypercall.
  2204. */
  2205. arch_enter_lazy_cpu_mode();
  2206. if (unlikely(!mm)) {
  2207. next->active_mm = oldmm;
  2208. atomic_inc(&oldmm->mm_count);
  2209. enter_lazy_tlb(oldmm, next);
  2210. } else
  2211. switch_mm(oldmm, mm, next);
  2212. if (unlikely(!prev->mm)) {
  2213. prev->active_mm = NULL;
  2214. rq->prev_mm = oldmm;
  2215. }
  2216. /*
  2217. * Since the runqueue lock will be released by the next
  2218. * task (which is an invalid locking op but in the case
  2219. * of the scheduler it's an obvious special-case), so we
  2220. * do an early lockdep release here:
  2221. */
  2222. #ifndef __ARCH_WANT_UNLOCKED_CTXSW
  2223. spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
  2224. #endif
  2225. /* Here we just switch the register state and the stack. */
  2226. switch_to(prev, next, prev);
  2227. barrier();
  2228. /*
  2229. * this_rq must be evaluated again because prev may have moved
  2230. * CPUs since it called schedule(), thus the 'rq' on its stack
  2231. * frame will be invalid.
  2232. */
  2233. finish_task_switch(this_rq(), prev);
  2234. }
  2235. /*
  2236. * nr_running, nr_uninterruptible and nr_context_switches:
  2237. *
  2238. * externally visible scheduler statistics: current number of runnable
  2239. * threads, current number of uninterruptible-sleeping threads, total
  2240. * number of context switches performed since bootup.
  2241. */
  2242. unsigned long nr_running(void)
  2243. {
  2244. unsigned long i, sum = 0;
  2245. for_each_online_cpu(i)
  2246. sum += cpu_rq(i)->nr_running;
  2247. return sum;
  2248. }
  2249. unsigned long nr_uninterruptible(void)
  2250. {
  2251. unsigned long i, sum = 0;
  2252. for_each_possible_cpu(i)
  2253. sum += cpu_rq(i)->nr_uninterruptible;
  2254. /*
  2255. * Since we read the counters lockless, it might be slightly
  2256. * inaccurate. Do not allow it to go below zero though:
  2257. */
  2258. if (unlikely((long)sum < 0))
  2259. sum = 0;
  2260. return sum;
  2261. }
  2262. unsigned long long nr_context_switches(void)
  2263. {
  2264. int i;
  2265. unsigned long long sum = 0;
  2266. for_each_possible_cpu(i)
  2267. sum += cpu_rq(i)->nr_switches;
  2268. return sum;
  2269. }
  2270. unsigned long nr_iowait(void)
  2271. {
  2272. unsigned long i, sum = 0;
  2273. for_each_possible_cpu(i)
  2274. sum += atomic_read(&cpu_rq(i)->nr_iowait);
  2275. return sum;
  2276. }
  2277. unsigned long nr_active(void)
  2278. {
  2279. unsigned long i, running = 0, uninterruptible = 0;
  2280. for_each_online_cpu(i) {
  2281. running += cpu_rq(i)->nr_running;
  2282. uninterruptible += cpu_rq(i)->nr_uninterruptible;
  2283. }
  2284. if (unlikely((long)uninterruptible < 0))
  2285. uninterruptible = 0;
  2286. return running + uninterruptible;
  2287. }
  2288. /*
  2289. * Update rq->cpu_load[] statistics. This function is usually called every
  2290. * scheduler tick (TICK_NSEC).
  2291. */
  2292. static void update_cpu_load(struct rq *this_rq)
  2293. {
  2294. unsigned long this_load = this_rq->load.weight;
  2295. int i, scale;
  2296. this_rq->nr_load_updates++;
  2297. /* Update our load: */
  2298. for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
  2299. unsigned long old_load, new_load;
  2300. /* scale is effectively 1 << i now, and >> i divides by scale */
  2301. old_load = this_rq->cpu_load[i];
  2302. new_load = this_load;
  2303. /*
  2304. * Round up the averaging division if load is increasing. This
  2305. * prevents us from getting stuck on 9 if the load is 10, for
  2306. * example.
  2307. */
  2308. if (new_load > old_load)
  2309. new_load += scale-1;
  2310. this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
  2311. }
  2312. }
  2313. #ifdef CONFIG_SMP
  2314. /*
  2315. * double_rq_lock - safely lock two runqueues
  2316. *
  2317. * Note this does not disable interrupts like task_rq_lock,
  2318. * you need to do so manually before calling.
  2319. */
  2320. static void double_rq_lock(struct rq *rq1, struct rq *rq2)
  2321. __acquires(rq1->lock)
  2322. __acquires(rq2->lock)
  2323. {
  2324. BUG_ON(!irqs_disabled());
  2325. if (rq1 == rq2) {
  2326. spin_lock(&rq1->lock);
  2327. __acquire(rq2->lock); /* Fake it out ;) */
  2328. } else {
  2329. if (rq1 < rq2) {
  2330. spin_lock(&rq1->lock);
  2331. spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
  2332. } else {
  2333. spin_lock(&rq2->lock);
  2334. spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
  2335. }
  2336. }
  2337. update_rq_clock(rq1);
  2338. update_rq_clock(rq2);
  2339. }
  2340. /*
  2341. * double_rq_unlock - safely unlock two runqueues
  2342. *
  2343. * Note this does not restore interrupts like task_rq_unlock,
  2344. * you need to do so manually after calling.
  2345. */
  2346. static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
  2347. __releases(rq1->lock)
  2348. __releases(rq2->lock)
  2349. {
  2350. spin_unlock(&rq1->lock);
  2351. if (rq1 != rq2)
  2352. spin_unlock(&rq2->lock);
  2353. else
  2354. __release(rq2->lock);
  2355. }
  2356. /*
  2357. * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
  2358. */
  2359. static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
  2360. __releases(this_rq->lock)
  2361. __acquires(busiest->lock)
  2362. __acquires(this_rq->lock)
  2363. {
  2364. int ret = 0;
  2365. if (unlikely(!irqs_disabled())) {
  2366. /* printk() doesn't work good under rq->lock */
  2367. spin_unlock(&this_rq->lock);
  2368. BUG_ON(1);
  2369. }
  2370. if (unlikely(!spin_trylock(&busiest->lock))) {
  2371. if (busiest < this_rq) {
  2372. spin_unlock(&this_rq->lock);
  2373. spin_lock(&busiest->lock);
  2374. spin_lock_nested(&this_rq->lock, SINGLE_DEPTH_NESTING);
  2375. ret = 1;
  2376. } else
  2377. spin_lock_nested(&busiest->lock, SINGLE_DEPTH_NESTING);
  2378. }
  2379. return ret;
  2380. }
  2381. static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
  2382. __releases(busiest->lock)
  2383. {
  2384. spin_unlock(&busiest->lock);
  2385. lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
  2386. }
  2387. /*
  2388. * If dest_cpu is allowed for this process, migrate the task to it.
  2389. * This is accomplished by forcing the cpu_allowed mask to only
  2390. * allow dest_cpu, which will force the cpu onto dest_cpu. Then
  2391. * the cpu_allowed mask is restored.
  2392. */
  2393. static void sched_migrate_task(struct task_struct *p, int dest_cpu)
  2394. {
  2395. struct migration_req req;
  2396. unsigned long flags;
  2397. struct rq *rq;
  2398. rq = task_rq_lock(p, &flags);
  2399. if (!cpu_isset(dest_cpu, p->cpus_allowed)
  2400. || unlikely(!cpu_active(dest_cpu)))
  2401. goto out;
  2402. trace_sched_migrate_task(rq, p, dest_cpu);
  2403. /* force the process onto the specified CPU */
  2404. if (migrate_task(p, dest_cpu, &req)) {
  2405. /* Need to wait for migration thread (might exit: take ref). */
  2406. struct task_struct *mt = rq->migration_thread;
  2407. get_task_struct(mt);
  2408. task_rq_unlock(rq, &flags);
  2409. wake_up_process(mt);
  2410. put_task_struct(mt);
  2411. wait_for_completion(&req.done);
  2412. return;
  2413. }
  2414. out:
  2415. task_rq_unlock(rq, &flags);
  2416. }
  2417. /*
  2418. * sched_exec - execve() is a valuable balancing opportunity, because at
  2419. * this point the task has the smallest effective memory and cache footprint.
  2420. */
  2421. void sched_exec(void)
  2422. {
  2423. int new_cpu, this_cpu = get_cpu();
  2424. new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
  2425. put_cpu();
  2426. if (new_cpu != this_cpu)
  2427. sched_migrate_task(current, new_cpu);
  2428. }
  2429. /*
  2430. * pull_task - move a task from a remote runqueue to the local runqueue.
  2431. * Both runqueues must be locked.
  2432. */
  2433. static void pull_task(struct rq *src_rq, struct task_struct *p,
  2434. struct rq *this_rq, int this_cpu)
  2435. {
  2436. deactivate_task(src_rq, p, 0);
  2437. set_task_cpu(p, this_cpu);
  2438. activate_task(this_rq, p, 0);
  2439. /*
  2440. * Note that idle threads have a prio of MAX_PRIO, for this test
  2441. * to be always true for them.
  2442. */
  2443. check_preempt_curr(this_rq, p, 0);
  2444. }
  2445. /*
  2446. * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
  2447. */
  2448. static
  2449. int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
  2450. struct sched_domain *sd, enum cpu_idle_type idle,
  2451. int *all_pinned)
  2452. {
  2453. /*
  2454. * We do not migrate tasks that are:
  2455. * 1) running (obviously), or
  2456. * 2) cannot be migrated to this CPU due to cpus_allowed, or
  2457. * 3) are cache-hot on their current CPU.
  2458. */
  2459. if (!cpu_isset(this_cpu, p->cpus_allowed)) {
  2460. schedstat_inc(p, se.nr_failed_migrations_affine);
  2461. return 0;
  2462. }
  2463. *all_pinned = 0;
  2464. if (task_running(rq, p)) {
  2465. schedstat_inc(p, se.nr_failed_migrations_running);
  2466. return 0;
  2467. }
  2468. /*
  2469. * Aggressive migration if:
  2470. * 1) task is cache cold, or
  2471. * 2) too many balance attempts have failed.
  2472. */
  2473. if (!task_hot(p, rq->clock, sd) ||
  2474. sd->nr_balance_failed > sd->cache_nice_tries) {
  2475. #ifdef CONFIG_SCHEDSTATS
  2476. if (task_hot(p, rq->clock, sd)) {
  2477. schedstat_inc(sd, lb_hot_gained[idle]);
  2478. schedstat_inc(p, se.nr_forced_migrations);
  2479. }
  2480. #endif
  2481. return 1;
  2482. }
  2483. if (task_hot(p, rq->clock, sd)) {
  2484. schedstat_inc(p, se.nr_failed_migrations_hot);
  2485. return 0;
  2486. }
  2487. return 1;
  2488. }
  2489. static unsigned long
  2490. balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
  2491. unsigned long max_load_move, struct sched_domain *sd,
  2492. enum cpu_idle_type idle, int *all_pinned,
  2493. int *this_best_prio, struct rq_iterator *iterator)
  2494. {
  2495. int loops = 0, pulled = 0, pinned = 0;
  2496. struct task_struct *p;
  2497. long rem_load_move = max_load_move;
  2498. if (max_load_move == 0)
  2499. goto out;
  2500. pinned = 1;
  2501. /*
  2502. * Start the load-balancing iterator:
  2503. */
  2504. p = iterator->start(iterator->arg);
  2505. next:
  2506. if (!p || loops++ > sysctl_sched_nr_migrate)
  2507. goto out;
  2508. if ((p->se.load.weight >> 1) > rem_load_move ||
  2509. !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
  2510. p = iterator->next(iterator->arg);
  2511. goto next;
  2512. }
  2513. pull_task(busiest, p, this_rq, this_cpu);
  2514. pulled++;
  2515. rem_load_move -= p->se.load.weight;
  2516. /*
  2517. * We only want to steal up to the prescribed amount of weighted load.
  2518. */
  2519. if (rem_load_move > 0) {
  2520. if (p->prio < *this_best_prio)
  2521. *this_best_prio = p->prio;
  2522. p = iterator->next(iterator->arg);
  2523. goto next;
  2524. }
  2525. out:
  2526. /*
  2527. * Right now, this is one of only two places pull_task() is called,
  2528. * so we can safely collect pull_task() stats here rather than
  2529. * inside pull_task().
  2530. */
  2531. schedstat_add(sd, lb_gained[idle], pulled);
  2532. if (all_pinned)
  2533. *all_pinned = pinned;
  2534. return max_load_move - rem_load_move;
  2535. }
  2536. /*
  2537. * move_tasks tries to move up to max_load_move weighted load from busiest to
  2538. * this_rq, as part of a balancing operation within domain "sd".
  2539. * Returns 1 if successful and 0 otherwise.
  2540. *
  2541. * Called with both runqueues locked.
  2542. */
  2543. static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
  2544. unsigned long max_load_move,
  2545. struct sched_domain *sd, enum cpu_idle_type idle,
  2546. int *all_pinned)
  2547. {
  2548. const struct sched_class *class = sched_class_highest;
  2549. unsigned long total_load_moved = 0;
  2550. int this_best_prio = this_rq->curr->prio;
  2551. do {
  2552. total_load_moved +=
  2553. class->load_balance(this_rq, this_cpu, busiest,
  2554. max_load_move - total_load_moved,
  2555. sd, idle, all_pinned, &this_best_prio);
  2556. class = class->next;
  2557. if (idle == CPU_NEWLY_IDLE && this_rq->nr_running)
  2558. break;
  2559. } while (class && max_load_move > total_load_moved);
  2560. return total_load_moved > 0;
  2561. }
  2562. static int
  2563. iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
  2564. struct sched_domain *sd, enum cpu_idle_type idle,
  2565. struct rq_iterator *iterator)
  2566. {
  2567. struct task_struct *p = iterator->start(iterator->arg);
  2568. int pinned = 0;
  2569. while (p) {
  2570. if (can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
  2571. pull_task(busiest, p, this_rq, this_cpu);
  2572. /*
  2573. * Right now, this is only the second place pull_task()
  2574. * is called, so we can safely collect pull_task()
  2575. * stats here rather than inside pull_task().
  2576. */
  2577. schedstat_inc(sd, lb_gained[idle]);
  2578. return 1;
  2579. }
  2580. p = iterator->next(iterator->arg);
  2581. }
  2582. return 0;
  2583. }
  2584. /*
  2585. * move_one_task tries to move exactly one task from busiest to this_rq, as
  2586. * part of active balancing operations within "domain".
  2587. * Returns 1 if successful and 0 otherwise.
  2588. *
  2589. * Called with both runqueues locked.
  2590. */
  2591. static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
  2592. struct sched_domain *sd, enum cpu_idle_type idle)
  2593. {
  2594. const struct sched_class *class;
  2595. for (class = sched_class_highest; class; class = class->next)
  2596. if (class->move_one_task(this_rq, this_cpu, busiest, sd, idle))
  2597. return 1;
  2598. return 0;
  2599. }
  2600. /*
  2601. * find_busiest_group finds and returns the busiest CPU group within the
  2602. * domain. It calculates and returns the amount of weighted load which
  2603. * should be moved to restore balance via the imbalance parameter.
  2604. */
  2605. static struct sched_group *
  2606. find_busiest_group(struct sched_domain *sd, int this_cpu,
  2607. unsigned long *imbalance, enum cpu_idle_type idle,
  2608. int *sd_idle, const cpumask_t *cpus, int *balance)
  2609. {
  2610. struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
  2611. unsigned long max_load, avg_load, total_load, this_load, total_pwr;
  2612. unsigned long max_pull;
  2613. unsigned long busiest_load_per_task, busiest_nr_running;
  2614. unsigned long this_load_per_task, this_nr_running;
  2615. int load_idx, group_imb = 0;
  2616. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  2617. int power_savings_balance = 1;
  2618. unsigned long leader_nr_running = 0, min_load_per_task = 0;
  2619. unsigned long min_nr_running = ULONG_MAX;
  2620. struct sched_group *group_min = NULL, *group_leader = NULL;
  2621. #endif
  2622. max_load = this_load = total_load = total_pwr = 0;
  2623. busiest_load_per_task = busiest_nr_running = 0;
  2624. this_load_per_task = this_nr_running = 0;
  2625. if (idle == CPU_NOT_IDLE)
  2626. load_idx = sd->busy_idx;
  2627. else if (idle == CPU_NEWLY_IDLE)
  2628. load_idx = sd->newidle_idx;
  2629. else
  2630. load_idx = sd->idle_idx;
  2631. do {
  2632. unsigned long load, group_capacity, max_cpu_load, min_cpu_load;
  2633. int local_group;
  2634. int i;
  2635. int __group_imb = 0;
  2636. unsigned int balance_cpu = -1, first_idle_cpu = 0;
  2637. unsigned long sum_nr_running, sum_weighted_load;
  2638. unsigned long sum_avg_load_per_task;
  2639. unsigned long avg_load_per_task;
  2640. local_group = cpumask_test_cpu(this_cpu,
  2641. sched_group_cpus(group));
  2642. if (local_group)
  2643. balance_cpu = cpumask_first(sched_group_cpus(group));
  2644. /* Tally up the load of all CPUs in the group */
  2645. sum_weighted_load = sum_nr_running = avg_load = 0;
  2646. sum_avg_load_per_task = avg_load_per_task = 0;
  2647. max_cpu_load = 0;
  2648. min_cpu_load = ~0UL;
  2649. for_each_cpu_and(i, sched_group_cpus(group), cpus) {
  2650. struct rq *rq = cpu_rq(i);
  2651. if (*sd_idle && rq->nr_running)
  2652. *sd_idle = 0;
  2653. /* Bias balancing toward cpus of our domain */
  2654. if (local_group) {
  2655. if (idle_cpu(i) && !first_idle_cpu) {
  2656. first_idle_cpu = 1;
  2657. balance_cpu = i;
  2658. }
  2659. load = target_load(i, load_idx);
  2660. } else {
  2661. load = source_load(i, load_idx);
  2662. if (load > max_cpu_load)
  2663. max_cpu_load = load;
  2664. if (min_cpu_load > load)
  2665. min_cpu_load = load;
  2666. }
  2667. avg_load += load;
  2668. sum_nr_running += rq->nr_running;
  2669. sum_weighted_load += weighted_cpuload(i);
  2670. sum_avg_load_per_task += cpu_avg_load_per_task(i);
  2671. }
  2672. /*
  2673. * First idle cpu or the first cpu(busiest) in this sched group
  2674. * is eligible for doing load balancing at this and above
  2675. * domains. In the newly idle case, we will allow all the cpu's
  2676. * to do the newly idle load balance.
  2677. */
  2678. if (idle != CPU_NEWLY_IDLE && local_group &&
  2679. balance_cpu != this_cpu && balance) {
  2680. *balance = 0;
  2681. goto ret;
  2682. }
  2683. total_load += avg_load;
  2684. total_pwr += group->__cpu_power;
  2685. /* Adjust by relative CPU power of the group */
  2686. avg_load = sg_div_cpu_power(group,
  2687. avg_load * SCHED_LOAD_SCALE);
  2688. /*
  2689. * Consider the group unbalanced when the imbalance is larger
  2690. * than the average weight of two tasks.
  2691. *
  2692. * APZ: with cgroup the avg task weight can vary wildly and
  2693. * might not be a suitable number - should we keep a
  2694. * normalized nr_running number somewhere that negates
  2695. * the hierarchy?
  2696. */
  2697. avg_load_per_task = sg_div_cpu_power(group,
  2698. sum_avg_load_per_task * SCHED_LOAD_SCALE);
  2699. if ((max_cpu_load - min_cpu_load) > 2*avg_load_per_task)
  2700. __group_imb = 1;
  2701. group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;
  2702. if (local_group) {
  2703. this_load = avg_load;
  2704. this = group;
  2705. this_nr_running = sum_nr_running;
  2706. this_load_per_task = sum_weighted_load;
  2707. } else if (avg_load > max_load &&
  2708. (sum_nr_running > group_capacity || __group_imb)) {
  2709. max_load = avg_load;
  2710. busiest = group;
  2711. busiest_nr_running = sum_nr_running;
  2712. busiest_load_per_task = sum_weighted_load;
  2713. group_imb = __group_imb;
  2714. }
  2715. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  2716. /*
  2717. * Busy processors will not participate in power savings
  2718. * balance.
  2719. */
  2720. if (idle == CPU_NOT_IDLE ||
  2721. !(sd->flags & SD_POWERSAVINGS_BALANCE))
  2722. goto group_next;
  2723. /*
  2724. * If the local group is idle or completely loaded
  2725. * no need to do power savings balance at this domain
  2726. */
  2727. if (local_group && (this_nr_running >= group_capacity ||
  2728. !this_nr_running))
  2729. power_savings_balance = 0;
  2730. /*
  2731. * If a group is already running at full capacity or idle,
  2732. * don't include that group in power savings calculations
  2733. */
  2734. if (!power_savings_balance || sum_nr_running >= group_capacity
  2735. || !sum_nr_running)
  2736. goto group_next;
  2737. /*
  2738. * Calculate the group which has the least non-idle load.
  2739. * This is the group from where we need to pick up the load
  2740. * for saving power
  2741. */
  2742. if ((sum_nr_running < min_nr_running) ||
  2743. (sum_nr_running == min_nr_running &&
  2744. cpumask_first(sched_group_cpus(group)) <
  2745. cpumask_first(sched_group_cpus(group_min)))) {
  2746. group_min = group;
  2747. min_nr_running = sum_nr_running;
  2748. min_load_per_task = sum_weighted_load /
  2749. sum_nr_running;
  2750. }
  2751. /*
  2752. * Calculate the group which is almost near its
  2753. * capacity but still has some space to pick up some load
  2754. * from other group and save more power
  2755. */
  2756. if (sum_nr_running <= group_capacity - 1) {
  2757. if (sum_nr_running > leader_nr_running ||
  2758. (sum_nr_running == leader_nr_running &&
  2759. cpumask_first(sched_group_cpus(group)) >
  2760. cpumask_first(sched_group_cpus(group_leader)))) {
  2761. group_leader = group;
  2762. leader_nr_running = sum_nr_running;
  2763. }
  2764. }
  2765. group_next:
  2766. #endif
  2767. group = group->next;
  2768. } while (group != sd->groups);
  2769. if (!busiest || this_load >= max_load || busiest_nr_running == 0)
  2770. goto out_balanced;
  2771. avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;
  2772. if (this_load >= avg_load ||
  2773. 100*max_load <= sd->imbalance_pct*this_load)
  2774. goto out_balanced;
  2775. busiest_load_per_task /= busiest_nr_running;
  2776. if (group_imb)
  2777. busiest_load_per_task = min(busiest_load_per_task, avg_load);
  2778. /*
  2779. * We're trying to get all the cpus to the average_load, so we don't
  2780. * want to push ourselves above the average load, nor do we wish to
  2781. * reduce the max loaded cpu below the average load, as either of these
  2782. * actions would just result in more rebalancing later, and ping-pong
  2783. * tasks around. Thus we look for the minimum possible imbalance.
  2784. * Negative imbalances (*we* are more loaded than anyone else) will
  2785. * be counted as no imbalance for these purposes -- we can't fix that
  2786. * by pulling tasks to us. Be careful of negative numbers as they'll
  2787. * appear as very large values with unsigned longs.
  2788. */
  2789. if (max_load <= busiest_load_per_task)
  2790. goto out_balanced;
  2791. /*
  2792. * In the presence of smp nice balancing, certain scenarios can have
  2793. * max load less than avg load(as we skip the groups at or below
  2794. * its cpu_power, while calculating max_load..)
  2795. */
  2796. if (max_load < avg_load) {
  2797. *imbalance = 0;
  2798. goto small_imbalance;
  2799. }
  2800. /* Don't want to pull so many tasks that a group would go idle */
  2801. max_pull = min(max_load - avg_load, max_load - busiest_load_per_task);
  2802. /* How much load to actually move to equalise the imbalance */
  2803. *imbalance = min(max_pull * busiest->__cpu_power,
  2804. (avg_load - this_load) * this->__cpu_power)
  2805. / SCHED_LOAD_SCALE;
  2806. /*
  2807. * if *imbalance is less than the average load per runnable task
  2808. * there is no gaurantee that any tasks will be moved so we'll have
  2809. * a think about bumping its value to force at least one task to be
  2810. * moved
  2811. */
  2812. if (*imbalance < busiest_load_per_task) {
  2813. unsigned long tmp, pwr_now, pwr_move;
  2814. unsigned int imbn;
  2815. small_imbalance:
  2816. pwr_move = pwr_now = 0;
  2817. imbn = 2;
  2818. if (this_nr_running) {
  2819. this_load_per_task /= this_nr_running;
  2820. if (busiest_load_per_task > this_load_per_task)
  2821. imbn = 1;
  2822. } else
  2823. this_load_per_task = cpu_avg_load_per_task(this_cpu);
  2824. if (max_load - this_load + busiest_load_per_task >=
  2825. busiest_load_per_task * imbn) {
  2826. *imbalance = busiest_load_per_task;
  2827. return busiest;
  2828. }
  2829. /*
  2830. * OK, we don't have enough imbalance to justify moving tasks,
  2831. * however we may be able to increase total CPU power used by
  2832. * moving them.
  2833. */
  2834. pwr_now += busiest->__cpu_power *
  2835. min(busiest_load_per_task, max_load);
  2836. pwr_now += this->__cpu_power *
  2837. min(this_load_per_task, this_load);
  2838. pwr_now /= SCHED_LOAD_SCALE;
  2839. /* Amount of load we'd subtract */
  2840. tmp = sg_div_cpu_power(busiest,
  2841. busiest_load_per_task * SCHED_LOAD_SCALE);
  2842. if (max_load > tmp)
  2843. pwr_move += busiest->__cpu_power *
  2844. min(busiest_load_per_task, max_load - tmp);
  2845. /* Amount of load we'd add */
  2846. if (max_load * busiest->__cpu_power <
  2847. busiest_load_per_task * SCHED_LOAD_SCALE)
  2848. tmp = sg_div_cpu_power(this,
  2849. max_load * busiest->__cpu_power);
  2850. else
  2851. tmp = sg_div_cpu_power(this,
  2852. busiest_load_per_task * SCHED_LOAD_SCALE);
  2853. pwr_move += this->__cpu_power *
  2854. min(this_load_per_task, this_load + tmp);
  2855. pwr_move /= SCHED_LOAD_SCALE;
  2856. /* Move if we gain throughput */
  2857. if (pwr_move > pwr_now)
  2858. *imbalance = busiest_load_per_task;
  2859. }
  2860. return busiest;
  2861. out_balanced:
  2862. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  2863. if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
  2864. goto ret;
  2865. if (this == group_leader && group_leader != group_min) {
  2866. *imbalance = min_load_per_task;
  2867. return group_min;
  2868. }
  2869. #endif
  2870. ret:
  2871. *imbalance = 0;
  2872. return NULL;
  2873. }
  2874. /*
  2875. * find_busiest_queue - find the busiest runqueue among the cpus in group.
  2876. */
  2877. static struct rq *
  2878. find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
  2879. unsigned long imbalance, const cpumask_t *cpus)
  2880. {
  2881. struct rq *busiest = NULL, *rq;
  2882. unsigned long max_load = 0;
  2883. int i;
  2884. for_each_cpu(i, sched_group_cpus(group)) {
  2885. unsigned long wl;
  2886. if (!cpu_isset(i, *cpus))
  2887. continue;
  2888. rq = cpu_rq(i);
  2889. wl = weighted_cpuload(i);
  2890. if (rq->nr_running == 1 && wl > imbalance)
  2891. continue;
  2892. if (wl > max_load) {
  2893. max_load = wl;
  2894. busiest = rq;
  2895. }
  2896. }
  2897. return busiest;
  2898. }
  2899. /*
  2900. * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
  2901. * so long as it is large enough.
  2902. */
  2903. #define MAX_PINNED_INTERVAL 512
  2904. /*
  2905. * Check this_cpu to ensure it is balanced within domain. Attempt to move
  2906. * tasks if there is an imbalance.
  2907. */
  2908. static int load_balance(int this_cpu, struct rq *this_rq,
  2909. struct sched_domain *sd, enum cpu_idle_type idle,
  2910. int *balance, cpumask_t *cpus)
  2911. {
  2912. int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
  2913. struct sched_group *group;
  2914. unsigned long imbalance;
  2915. struct rq *busiest;
  2916. unsigned long flags;
  2917. cpus_setall(*cpus);
  2918. /*
  2919. * When power savings policy is enabled for the parent domain, idle
  2920. * sibling can pick up load irrespective of busy siblings. In this case,
  2921. * let the state of idle sibling percolate up as CPU_IDLE, instead of
  2922. * portraying it as CPU_NOT_IDLE.
  2923. */
  2924. if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
  2925. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  2926. sd_idle = 1;
  2927. schedstat_inc(sd, lb_count[idle]);
  2928. redo:
  2929. update_shares(sd);
  2930. group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
  2931. cpus, balance);
  2932. if (*balance == 0)
  2933. goto out_balanced;
  2934. if (!group) {
  2935. schedstat_inc(sd, lb_nobusyg[idle]);
  2936. goto out_balanced;
  2937. }
  2938. busiest = find_busiest_queue(group, idle, imbalance, cpus);
  2939. if (!busiest) {
  2940. schedstat_inc(sd, lb_nobusyq[idle]);
  2941. goto out_balanced;
  2942. }
  2943. BUG_ON(busiest == this_rq);
  2944. schedstat_add(sd, lb_imbalance[idle], imbalance);
  2945. ld_moved = 0;
  2946. if (busiest->nr_running > 1) {
  2947. /*
  2948. * Attempt to move tasks. If find_busiest_group has found
  2949. * an imbalance but busiest->nr_running <= 1, the group is
  2950. * still unbalanced. ld_moved simply stays zero, so it is
  2951. * correctly treated as an imbalance.
  2952. */
  2953. local_irq_save(flags);
  2954. double_rq_lock(this_rq, busiest);
  2955. ld_moved = move_tasks(this_rq, this_cpu, busiest,
  2956. imbalance, sd, idle, &all_pinned);
  2957. double_rq_unlock(this_rq, busiest);
  2958. local_irq_restore(flags);
  2959. /*
  2960. * some other cpu did the load balance for us.
  2961. */
  2962. if (ld_moved && this_cpu != smp_processor_id())
  2963. resched_cpu(this_cpu);
  2964. /* All tasks on this runqueue were pinned by CPU affinity */
  2965. if (unlikely(all_pinned)) {
  2966. cpu_clear(cpu_of(busiest), *cpus);
  2967. if (!cpus_empty(*cpus))
  2968. goto redo;
  2969. goto out_balanced;
  2970. }
  2971. }
  2972. if (!ld_moved) {
  2973. schedstat_inc(sd, lb_failed[idle]);
  2974. sd->nr_balance_failed++;
  2975. if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
  2976. spin_lock_irqsave(&busiest->lock, flags);
  2977. /* don't kick the migration_thread, if the curr
  2978. * task on busiest cpu can't be moved to this_cpu
  2979. */
  2980. if (!cpu_isset(this_cpu, busiest->curr->cpus_allowed)) {
  2981. spin_unlock_irqrestore(&busiest->lock, flags);
  2982. all_pinned = 1;
  2983. goto out_one_pinned;
  2984. }
  2985. if (!busiest->active_balance) {
  2986. busiest->active_balance = 1;
  2987. busiest->push_cpu = this_cpu;
  2988. active_balance = 1;
  2989. }
  2990. spin_unlock_irqrestore(&busiest->lock, flags);
  2991. if (active_balance)
  2992. wake_up_process(busiest->migration_thread);
  2993. /*
  2994. * We've kicked active balancing, reset the failure
  2995. * counter.
  2996. */
  2997. sd->nr_balance_failed = sd->cache_nice_tries+1;
  2998. }
  2999. } else
  3000. sd->nr_balance_failed = 0;
  3001. if (likely(!active_balance)) {
  3002. /* We were unbalanced, so reset the balancing interval */
  3003. sd->balance_interval = sd->min_interval;
  3004. } else {
  3005. /*
  3006. * If we've begun active balancing, start to back off. This
  3007. * case may not be covered by the all_pinned logic if there
  3008. * is only 1 task on the busy runqueue (because we don't call
  3009. * move_tasks).
  3010. */
  3011. if (sd->balance_interval < sd->max_interval)
  3012. sd->balance_interval *= 2;
  3013. }
  3014. if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  3015. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  3016. ld_moved = -1;
  3017. goto out;
  3018. out_balanced:
  3019. schedstat_inc(sd, lb_balanced[idle]);
  3020. sd->nr_balance_failed = 0;
  3021. out_one_pinned:
  3022. /* tune up the balancing interval */
  3023. if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
  3024. (sd->balance_interval < sd->max_interval))
  3025. sd->balance_interval *= 2;
  3026. if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  3027. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  3028. ld_moved = -1;
  3029. else
  3030. ld_moved = 0;
  3031. out:
  3032. if (ld_moved)
  3033. update_shares(sd);
  3034. return ld_moved;
  3035. }
  3036. /*
  3037. * Check this_cpu to ensure it is balanced within domain. Attempt to move
  3038. * tasks if there is an imbalance.
  3039. *
  3040. * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
  3041. * this_rq is locked.
  3042. */
  3043. static int
  3044. load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd,
  3045. cpumask_t *cpus)
  3046. {
  3047. struct sched_group *group;
  3048. struct rq *busiest = NULL;
  3049. unsigned long imbalance;
  3050. int ld_moved = 0;
  3051. int sd_idle = 0;
  3052. int all_pinned = 0;
  3053. cpus_setall(*cpus);
  3054. /*
  3055. * When power savings policy is enabled for the parent domain, idle
  3056. * sibling can pick up load irrespective of busy siblings. In this case,
  3057. * let the state of idle sibling percolate up as IDLE, instead of
  3058. * portraying it as CPU_NOT_IDLE.
  3059. */
  3060. if (sd->flags & SD_SHARE_CPUPOWER &&
  3061. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  3062. sd_idle = 1;
  3063. schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
  3064. redo:
  3065. update_shares_locked(this_rq, sd);
  3066. group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
  3067. &sd_idle, cpus, NULL);
  3068. if (!group) {
  3069. schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
  3070. goto out_balanced;
  3071. }
  3072. busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance, cpus);
  3073. if (!busiest) {
  3074. schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
  3075. goto out_balanced;
  3076. }
  3077. BUG_ON(busiest == this_rq);
  3078. schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
  3079. ld_moved = 0;
  3080. if (busiest->nr_running > 1) {
  3081. /* Attempt to move tasks */
  3082. double_lock_balance(this_rq, busiest);
  3083. /* this_rq->clock is already updated */
  3084. update_rq_clock(busiest);
  3085. ld_moved = move_tasks(this_rq, this_cpu, busiest,
  3086. imbalance, sd, CPU_NEWLY_IDLE,
  3087. &all_pinned);
  3088. double_unlock_balance(this_rq, busiest);
  3089. if (unlikely(all_pinned)) {
  3090. cpu_clear(cpu_of(busiest), *cpus);
  3091. if (!cpus_empty(*cpus))
  3092. goto redo;
  3093. }
  3094. }
  3095. if (!ld_moved) {
  3096. schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
  3097. if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  3098. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  3099. return -1;
  3100. } else
  3101. sd->nr_balance_failed = 0;
  3102. update_shares_locked(this_rq, sd);
  3103. return ld_moved;
  3104. out_balanced:
  3105. schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
  3106. if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  3107. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  3108. return -1;
  3109. sd->nr_balance_failed = 0;
  3110. return 0;
  3111. }
  3112. /*
  3113. * idle_balance is called by schedule() if this_cpu is about to become
  3114. * idle. Attempts to pull tasks from other CPUs.
  3115. */
  3116. static void idle_balance(int this_cpu, struct rq *this_rq)
  3117. {
  3118. struct sched_domain *sd;
  3119. int pulled_task = -1;
  3120. unsigned long next_balance = jiffies + HZ;
  3121. cpumask_var_t tmpmask;
  3122. if (!alloc_cpumask_var(&tmpmask, GFP_ATOMIC))
  3123. return;
  3124. for_each_domain(this_cpu, sd) {
  3125. unsigned long interval;
  3126. if (!(sd->flags & SD_LOAD_BALANCE))
  3127. continue;
  3128. if (sd->flags & SD_BALANCE_NEWIDLE)
  3129. /* If we've pulled tasks over stop searching: */
  3130. pulled_task = load_balance_newidle(this_cpu, this_rq,
  3131. sd, tmpmask);
  3132. interval = msecs_to_jiffies(sd->balance_interval);
  3133. if (time_after(next_balance, sd->last_balance + interval))
  3134. next_balance = sd->last_balance + interval;
  3135. if (pulled_task)
  3136. break;
  3137. }
  3138. if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
  3139. /*
  3140. * We are going idle. next_balance may be set based on
  3141. * a busy processor. So reset next_balance.
  3142. */
  3143. this_rq->next_balance = next_balance;
  3144. }
  3145. free_cpumask_var(tmpmask);
  3146. }
  3147. /*
  3148. * active_load_balance is run by migration threads. It pushes running tasks
  3149. * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
  3150. * running on each physical CPU where possible, and avoids physical /
  3151. * logical imbalances.
  3152. *
  3153. * Called with busiest_rq locked.
  3154. */
  3155. static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
  3156. {
  3157. int target_cpu = busiest_rq->push_cpu;
  3158. struct sched_domain *sd;
  3159. struct rq *target_rq;
  3160. /* Is there any task to move? */
  3161. if (busiest_rq->nr_running <= 1)
  3162. return;
  3163. target_rq = cpu_rq(target_cpu);
  3164. /*
  3165. * This condition is "impossible", if it occurs
  3166. * we need to fix it. Originally reported by
  3167. * Bjorn Helgaas on a 128-cpu setup.
  3168. */
  3169. BUG_ON(busiest_rq == target_rq);
  3170. /* move a task from busiest_rq to target_rq */
  3171. double_lock_balance(busiest_rq, target_rq);
  3172. update_rq_clock(busiest_rq);
  3173. update_rq_clock(target_rq);
  3174. /* Search for an sd spanning us and the target CPU. */
  3175. for_each_domain(target_cpu, sd) {
  3176. if ((sd->flags & SD_LOAD_BALANCE) &&
  3177. cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
  3178. break;
  3179. }
  3180. if (likely(sd)) {
  3181. schedstat_inc(sd, alb_count);
  3182. if (move_one_task(target_rq, target_cpu, busiest_rq,
  3183. sd, CPU_IDLE))
  3184. schedstat_inc(sd, alb_pushed);
  3185. else
  3186. schedstat_inc(sd, alb_failed);
  3187. }
  3188. double_unlock_balance(busiest_rq, target_rq);
  3189. }
  3190. #ifdef CONFIG_NO_HZ
  3191. static struct {
  3192. atomic_t load_balancer;
  3193. cpumask_var_t cpu_mask;
  3194. } nohz ____cacheline_aligned = {
  3195. .load_balancer = ATOMIC_INIT(-1),
  3196. };
  3197. /*
  3198. * This routine will try to nominate the ilb (idle load balancing)
  3199. * owner among the cpus whose ticks are stopped. ilb owner will do the idle
  3200. * load balancing on behalf of all those cpus. If all the cpus in the system
  3201. * go into this tickless mode, then there will be no ilb owner (as there is
  3202. * no need for one) and all the cpus will sleep till the next wakeup event
  3203. * arrives...
  3204. *
  3205. * For the ilb owner, tick is not stopped. And this tick will be used
  3206. * for idle load balancing. ilb owner will still be part of
  3207. * nohz.cpu_mask..
  3208. *
  3209. * While stopping the tick, this cpu will become the ilb owner if there
  3210. * is no other owner. And will be the owner till that cpu becomes busy
  3211. * or if all cpus in the system stop their ticks at which point
  3212. * there is no need for ilb owner.
  3213. *
  3214. * When the ilb owner becomes busy, it nominates another owner, during the
  3215. * next busy scheduler_tick()
  3216. */
  3217. int select_nohz_load_balancer(int stop_tick)
  3218. {
  3219. int cpu = smp_processor_id();
  3220. if (stop_tick) {
  3221. cpumask_set_cpu(cpu, nohz.cpu_mask);
  3222. cpu_rq(cpu)->in_nohz_recently = 1;
  3223. /*
  3224. * If we are going offline and still the leader, give up!
  3225. */
  3226. if (!cpu_active(cpu) &&
  3227. atomic_read(&nohz.load_balancer) == cpu) {
  3228. if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
  3229. BUG();
  3230. return 0;
  3231. }
  3232. /* time for ilb owner also to sleep */
  3233. if (cpumask_weight(nohz.cpu_mask) == num_online_cpus()) {
  3234. if (atomic_read(&nohz.load_balancer) == cpu)
  3235. atomic_set(&nohz.load_balancer, -1);
  3236. return 0;
  3237. }
  3238. if (atomic_read(&nohz.load_balancer) == -1) {
  3239. /* make me the ilb owner */
  3240. if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
  3241. return 1;
  3242. } else if (atomic_read(&nohz.load_balancer) == cpu)
  3243. return 1;
  3244. } else {
  3245. if (!cpumask_test_cpu(cpu, nohz.cpu_mask))
  3246. return 0;
  3247. cpumask_clear_cpu(cpu, nohz.cpu_mask);
  3248. if (atomic_read(&nohz.load_balancer) == cpu)
  3249. if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
  3250. BUG();
  3251. }
  3252. return 0;
  3253. }
  3254. #endif
  3255. static DEFINE_SPINLOCK(balancing);
  3256. /*
  3257. * It checks each scheduling domain to see if it is due to be balanced,
  3258. * and initiates a balancing operation if so.
  3259. *
  3260. * Balancing parameters are set up in arch_init_sched_domains.
  3261. */
  3262. static void rebalance_domains(int cpu, enum cpu_idle_type idle)
  3263. {
  3264. int balance = 1;
  3265. struct rq *rq = cpu_rq(cpu);
  3266. unsigned long interval;
  3267. struct sched_domain *sd;
  3268. /* Earliest time when we have to do rebalance again */
  3269. unsigned long next_balance = jiffies + 60*HZ;
  3270. int update_next_balance = 0;
  3271. int need_serialize;
  3272. cpumask_var_t tmp;
  3273. /* Fails alloc? Rebalancing probably not a priority right now. */
  3274. if (!alloc_cpumask_var(&tmp, GFP_ATOMIC))
  3275. return;
  3276. for_each_domain(cpu, sd) {
  3277. if (!(sd->flags & SD_LOAD_BALANCE))
  3278. continue;
  3279. interval = sd->balance_interval;
  3280. if (idle != CPU_IDLE)
  3281. interval *= sd->busy_factor;
  3282. /* scale ms to jiffies */
  3283. interval = msecs_to_jiffies(interval);
  3284. if (unlikely(!interval))
  3285. interval = 1;
  3286. if (interval > HZ*NR_CPUS/10)
  3287. interval = HZ*NR_CPUS/10;
  3288. need_serialize = sd->flags & SD_SERIALIZE;
  3289. if (need_serialize) {
  3290. if (!spin_trylock(&balancing))
  3291. goto out;
  3292. }
  3293. if (time_after_eq(jiffies, sd->last_balance + interval)) {
  3294. if (load_balance(cpu, rq, sd, idle, &balance, tmp)) {
  3295. /*
  3296. * We've pulled tasks over so either we're no
  3297. * longer idle, or one of our SMT siblings is
  3298. * not idle.
  3299. */
  3300. idle = CPU_NOT_IDLE;
  3301. }
  3302. sd->last_balance = jiffies;
  3303. }
  3304. if (need_serialize)
  3305. spin_unlock(&balancing);
  3306. out:
  3307. if (time_after(next_balance, sd->last_balance + interval)) {
  3308. next_balance = sd->last_balance + interval;
  3309. update_next_balance = 1;
  3310. }
  3311. /*
  3312. * Stop the load balance at this level. There is another
  3313. * CPU in our sched group which is doing load balancing more
  3314. * actively.
  3315. */
  3316. if (!balance)
  3317. break;
  3318. }
  3319. /*
  3320. * next_balance will be updated only when there is a need.
  3321. * When the cpu is attached to null domain for ex, it will not be
  3322. * updated.
  3323. */
  3324. if (likely(update_next_balance))
  3325. rq->next_balance = next_balance;
  3326. free_cpumask_var(tmp);
  3327. }
  3328. /*
  3329. * run_rebalance_domains is triggered when needed from the scheduler tick.
  3330. * In CONFIG_NO_HZ case, the idle load balance owner will do the
  3331. * rebalancing for all the cpus for whom scheduler ticks are stopped.
  3332. */
  3333. static void run_rebalance_domains(struct softirq_action *h)
  3334. {
  3335. int this_cpu = smp_processor_id();
  3336. struct rq *this_rq = cpu_rq(this_cpu);
  3337. enum cpu_idle_type idle = this_rq->idle_at_tick ?
  3338. CPU_IDLE : CPU_NOT_IDLE;
  3339. rebalance_domains(this_cpu, idle);
  3340. #ifdef CONFIG_NO_HZ
  3341. /*
  3342. * If this cpu is the owner for idle load balancing, then do the
  3343. * balancing on behalf of the other idle cpus whose ticks are
  3344. * stopped.
  3345. */
  3346. if (this_rq->idle_at_tick &&
  3347. atomic_read(&nohz.load_balancer) == this_cpu) {
  3348. struct rq *rq;
  3349. int balance_cpu;
  3350. for_each_cpu(balance_cpu, nohz.cpu_mask) {
  3351. if (balance_cpu == this_cpu)
  3352. continue;
  3353. /*
  3354. * If this cpu gets work to do, stop the load balancing
  3355. * work being done for other cpus. Next load
  3356. * balancing owner will pick it up.
  3357. */
  3358. if (need_resched())
  3359. break;
  3360. rebalance_domains(balance_cpu, CPU_IDLE);
  3361. rq = cpu_rq(balance_cpu);
  3362. if (time_after(this_rq->next_balance, rq->next_balance))
  3363. this_rq->next_balance = rq->next_balance;
  3364. }
  3365. }
  3366. #endif
  3367. }
  3368. /*
  3369. * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
  3370. *
  3371. * In case of CONFIG_NO_HZ, this is the place where we nominate a new
  3372. * idle load balancing owner or decide to stop the periodic load balancing,
  3373. * if the whole system is idle.
  3374. */
  3375. static inline void trigger_load_balance(struct rq *rq, int cpu)
  3376. {
  3377. #ifdef CONFIG_NO_HZ
  3378. /*
  3379. * If we were in the nohz mode recently and busy at the current
  3380. * scheduler tick, then check if we need to nominate new idle
  3381. * load balancer.
  3382. */
  3383. if (rq->in_nohz_recently && !rq->idle_at_tick) {
  3384. rq->in_nohz_recently = 0;
  3385. if (atomic_read(&nohz.load_balancer) == cpu) {
  3386. cpumask_clear_cpu(cpu, nohz.cpu_mask);
  3387. atomic_set(&nohz.load_balancer, -1);
  3388. }
  3389. if (atomic_read(&nohz.load_balancer) == -1) {
  3390. /*
  3391. * simple selection for now: Nominate the
  3392. * first cpu in the nohz list to be the next
  3393. * ilb owner.
  3394. *
  3395. * TBD: Traverse the sched domains and nominate
  3396. * the nearest cpu in the nohz.cpu_mask.
  3397. */
  3398. int ilb = cpumask_first(nohz.cpu_mask);
  3399. if (ilb < nr_cpu_ids)
  3400. resched_cpu(ilb);
  3401. }
  3402. }
  3403. /*
  3404. * If this cpu is idle and doing idle load balancing for all the
  3405. * cpus with ticks stopped, is it time for that to stop?
  3406. */
  3407. if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
  3408. cpumask_weight(nohz.cpu_mask) == num_online_cpus()) {
  3409. resched_cpu(cpu);
  3410. return;
  3411. }
  3412. /*
  3413. * If this cpu is idle and the idle load balancing is done by
  3414. * someone else, then no need raise the SCHED_SOFTIRQ
  3415. */
  3416. if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
  3417. cpumask_test_cpu(cpu, nohz.cpu_mask))
  3418. return;
  3419. #endif
  3420. if (time_after_eq(jiffies, rq->next_balance))
  3421. raise_softirq(SCHED_SOFTIRQ);
  3422. }
  3423. #else /* CONFIG_SMP */
  3424. /*
  3425. * on UP we do not need to balance between CPUs:
  3426. */
  3427. static inline void idle_balance(int cpu, struct rq *rq)
  3428. {
  3429. }
  3430. #endif
  3431. DEFINE_PER_CPU(struct kernel_stat, kstat);
  3432. EXPORT_PER_CPU_SYMBOL(kstat);
  3433. /*
  3434. * Return any ns on the sched_clock that have not yet been banked in
  3435. * @p in case that task is currently running.
  3436. */
  3437. unsigned long long task_delta_exec(struct task_struct *p)
  3438. {
  3439. unsigned long flags;
  3440. struct rq *rq;
  3441. u64 ns = 0;
  3442. rq = task_rq_lock(p, &flags);
  3443. if (task_current(rq, p)) {
  3444. u64 delta_exec;
  3445. update_rq_clock(rq);
  3446. delta_exec = rq->clock - p->se.exec_start;
  3447. if ((s64)delta_exec > 0)
  3448. ns = delta_exec;
  3449. }
  3450. task_rq_unlock(rq, &flags);
  3451. return ns;
  3452. }
  3453. /*
  3454. * Account user cpu time to a process.
  3455. * @p: the process that the cpu time gets accounted to
  3456. * @cputime: the cpu time spent in user space since the last update
  3457. */
  3458. void account_user_time(struct task_struct *p, cputime_t cputime)
  3459. {
  3460. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  3461. cputime64_t tmp;
  3462. p->utime = cputime_add(p->utime, cputime);
  3463. account_group_user_time(p, cputime);
  3464. /* Add user time to cpustat. */
  3465. tmp = cputime_to_cputime64(cputime);
  3466. if (TASK_NICE(p) > 0)
  3467. cpustat->nice = cputime64_add(cpustat->nice, tmp);
  3468. else
  3469. cpustat->user = cputime64_add(cpustat->user, tmp);
  3470. /* Account for user time used */
  3471. acct_update_integrals(p);
  3472. }
  3473. /*
  3474. * Account guest cpu time to a process.
  3475. * @p: the process that the cpu time gets accounted to
  3476. * @cputime: the cpu time spent in virtual machine since the last update
  3477. */
  3478. static void account_guest_time(struct task_struct *p, cputime_t cputime)
  3479. {
  3480. cputime64_t tmp;
  3481. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  3482. tmp = cputime_to_cputime64(cputime);
  3483. p->utime = cputime_add(p->utime, cputime);
  3484. account_group_user_time(p, cputime);
  3485. p->gtime = cputime_add(p->gtime, cputime);
  3486. cpustat->user = cputime64_add(cpustat->user, tmp);
  3487. cpustat->guest = cputime64_add(cpustat->guest, tmp);
  3488. }
  3489. /*
  3490. * Account scaled user cpu time to a process.
  3491. * @p: the process that the cpu time gets accounted to
  3492. * @cputime: the cpu time spent in user space since the last update
  3493. */
  3494. void account_user_time_scaled(struct task_struct *p, cputime_t cputime)
  3495. {
  3496. p->utimescaled = cputime_add(p->utimescaled, cputime);
  3497. }
  3498. /*
  3499. * Account system cpu time to a process.
  3500. * @p: the process that the cpu time gets accounted to
  3501. * @hardirq_offset: the offset to subtract from hardirq_count()
  3502. * @cputime: the cpu time spent in kernel space since the last update
  3503. */
  3504. void account_system_time(struct task_struct *p, int hardirq_offset,
  3505. cputime_t cputime)
  3506. {
  3507. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  3508. struct rq *rq = this_rq();
  3509. cputime64_t tmp;
  3510. if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
  3511. account_guest_time(p, cputime);
  3512. return;
  3513. }
  3514. p->stime = cputime_add(p->stime, cputime);
  3515. account_group_system_time(p, cputime);
  3516. /* Add system time to cpustat. */
  3517. tmp = cputime_to_cputime64(cputime);
  3518. if (hardirq_count() - hardirq_offset)
  3519. cpustat->irq = cputime64_add(cpustat->irq, tmp);
  3520. else if (softirq_count())
  3521. cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
  3522. else if (p != rq->idle)
  3523. cpustat->system = cputime64_add(cpustat->system, tmp);
  3524. else if (atomic_read(&rq->nr_iowait) > 0)
  3525. cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
  3526. else
  3527. cpustat->idle = cputime64_add(cpustat->idle, tmp);
  3528. /* Account for system time used */
  3529. acct_update_integrals(p);
  3530. }
  3531. /*
  3532. * Account scaled system cpu time to a process.
  3533. * @p: the process that the cpu time gets accounted to
  3534. * @hardirq_offset: the offset to subtract from hardirq_count()
  3535. * @cputime: the cpu time spent in kernel space since the last update
  3536. */
  3537. void account_system_time_scaled(struct task_struct *p, cputime_t cputime)
  3538. {
  3539. p->stimescaled = cputime_add(p->stimescaled, cputime);
  3540. }
  3541. /*
  3542. * Account for involuntary wait time.
  3543. * @p: the process from which the cpu time has been stolen
  3544. * @steal: the cpu time spent in involuntary wait
  3545. */
  3546. void account_steal_time(struct task_struct *p, cputime_t steal)
  3547. {
  3548. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  3549. cputime64_t tmp = cputime_to_cputime64(steal);
  3550. struct rq *rq = this_rq();
  3551. if (p == rq->idle) {
  3552. p->stime = cputime_add(p->stime, steal);
  3553. if (atomic_read(&rq->nr_iowait) > 0)
  3554. cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
  3555. else
  3556. cpustat->idle = cputime64_add(cpustat->idle, tmp);
  3557. } else
  3558. cpustat->steal = cputime64_add(cpustat->steal, tmp);
  3559. }
  3560. /*
  3561. * Use precise platform statistics if available:
  3562. */
  3563. #ifdef CONFIG_VIRT_CPU_ACCOUNTING
  3564. cputime_t task_utime(struct task_struct *p)
  3565. {
  3566. return p->utime;
  3567. }
  3568. cputime_t task_stime(struct task_struct *p)
  3569. {
  3570. return p->stime;
  3571. }
  3572. #else
  3573. cputime_t task_utime(struct task_struct *p)
  3574. {
  3575. clock_t utime = cputime_to_clock_t(p->utime),
  3576. total = utime + cputime_to_clock_t(p->stime);
  3577. u64 temp;
  3578. /*
  3579. * Use CFS's precise accounting:
  3580. */
  3581. temp = (u64)nsec_to_clock_t(p->se.sum_exec_runtime);
  3582. if (total) {
  3583. temp *= utime;
  3584. do_div(temp, total);
  3585. }
  3586. utime = (clock_t)temp;
  3587. p->prev_utime = max(p->prev_utime, clock_t_to_cputime(utime));
  3588. return p->prev_utime;
  3589. }
  3590. cputime_t task_stime(struct task_struct *p)
  3591. {
  3592. clock_t stime;
  3593. /*
  3594. * Use CFS's precise accounting. (we subtract utime from
  3595. * the total, to make sure the total observed by userspace
  3596. * grows monotonically - apps rely on that):
  3597. */
  3598. stime = nsec_to_clock_t(p->se.sum_exec_runtime) -
  3599. cputime_to_clock_t(task_utime(p));
  3600. if (stime >= 0)
  3601. p->prev_stime = max(p->prev_stime, clock_t_to_cputime(stime));
  3602. return p->prev_stime;
  3603. }
  3604. #endif
  3605. inline cputime_t task_gtime(struct task_struct *p)
  3606. {
  3607. return p->gtime;
  3608. }
  3609. /*
  3610. * This function gets called by the timer code, with HZ frequency.
  3611. * We call it with interrupts disabled.
  3612. *
  3613. * It also gets called by the fork code, when changing the parent's
  3614. * timeslices.
  3615. */
  3616. void scheduler_tick(void)
  3617. {
  3618. int cpu = smp_processor_id();
  3619. struct rq *rq = cpu_rq(cpu);
  3620. struct task_struct *curr = rq->curr;
  3621. sched_clock_tick();
  3622. spin_lock(&rq->lock);
  3623. update_rq_clock(rq);
  3624. update_cpu_load(rq);
  3625. curr->sched_class->task_tick(rq, curr, 0);
  3626. spin_unlock(&rq->lock);
  3627. #ifdef CONFIG_SMP
  3628. rq->idle_at_tick = idle_cpu(cpu);
  3629. trigger_load_balance(rq, cpu);
  3630. #endif
  3631. }
  3632. #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
  3633. defined(CONFIG_PREEMPT_TRACER))
  3634. static inline unsigned long get_parent_ip(unsigned long addr)
  3635. {
  3636. if (in_lock_functions(addr)) {
  3637. addr = CALLER_ADDR2;
  3638. if (in_lock_functions(addr))
  3639. addr = CALLER_ADDR3;
  3640. }
  3641. return addr;
  3642. }
  3643. void __kprobes add_preempt_count(int val)
  3644. {
  3645. #ifdef CONFIG_DEBUG_PREEMPT
  3646. /*
  3647. * Underflow?
  3648. */
  3649. if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
  3650. return;
  3651. #endif
  3652. preempt_count() += val;
  3653. #ifdef CONFIG_DEBUG_PREEMPT
  3654. /*
  3655. * Spinlock count overflowing soon?
  3656. */
  3657. DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
  3658. PREEMPT_MASK - 10);
  3659. #endif
  3660. if (preempt_count() == val)
  3661. trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
  3662. }
  3663. EXPORT_SYMBOL(add_preempt_count);
  3664. void __kprobes sub_preempt_count(int val)
  3665. {
  3666. #ifdef CONFIG_DEBUG_PREEMPT
  3667. /*
  3668. * Underflow?
  3669. */
  3670. if (DEBUG_LOCKS_WARN_ON(val > preempt_count() - (!!kernel_locked())))
  3671. return;
  3672. /*
  3673. * Is the spinlock portion underflowing?
  3674. */
  3675. if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
  3676. !(preempt_count() & PREEMPT_MASK)))
  3677. return;
  3678. #endif
  3679. if (preempt_count() == val)
  3680. trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
  3681. preempt_count() -= val;
  3682. }
  3683. EXPORT_SYMBOL(sub_preempt_count);
  3684. #endif
  3685. /*
  3686. * Print scheduling while atomic bug:
  3687. */
  3688. static noinline void __schedule_bug(struct task_struct *prev)
  3689. {
  3690. struct pt_regs *regs = get_irq_regs();
  3691. printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
  3692. prev->comm, prev->pid, preempt_count());
  3693. debug_show_held_locks(prev);
  3694. print_modules();
  3695. if (irqs_disabled())
  3696. print_irqtrace_events(prev);
  3697. if (regs)
  3698. show_regs(regs);
  3699. else
  3700. dump_stack();
  3701. }
  3702. /*
  3703. * Various schedule()-time debugging checks and statistics:
  3704. */
  3705. static inline void schedule_debug(struct task_struct *prev)
  3706. {
  3707. /*
  3708. * Test if we are atomic. Since do_exit() needs to call into
  3709. * schedule() atomically, we ignore that path for now.
  3710. * Otherwise, whine if we are scheduling when we should not be.
  3711. */
  3712. if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
  3713. __schedule_bug(prev);
  3714. profile_hit(SCHED_PROFILING, __builtin_return_address(0));
  3715. schedstat_inc(this_rq(), sched_count);
  3716. #ifdef CONFIG_SCHEDSTATS
  3717. if (unlikely(prev->lock_depth >= 0)) {
  3718. schedstat_inc(this_rq(), bkl_count);
  3719. schedstat_inc(prev, sched_info.bkl_count);
  3720. }
  3721. #endif
  3722. }
  3723. /*
  3724. * Pick up the highest-prio task:
  3725. */
  3726. static inline struct task_struct *
  3727. pick_next_task(struct rq *rq, struct task_struct *prev)
  3728. {
  3729. const struct sched_class *class;
  3730. struct task_struct *p;
  3731. /*
  3732. * Optimization: we know that if all tasks are in
  3733. * the fair class we can call that function directly:
  3734. */
  3735. if (likely(rq->nr_running == rq->cfs.nr_running)) {
  3736. p = fair_sched_class.pick_next_task(rq);
  3737. if (likely(p))
  3738. return p;
  3739. }
  3740. class = sched_class_highest;
  3741. for ( ; ; ) {
  3742. p = class->pick_next_task(rq);
  3743. if (p)
  3744. return p;
  3745. /*
  3746. * Will never be NULL as the idle class always
  3747. * returns a non-NULL p:
  3748. */
  3749. class = class->next;
  3750. }
  3751. }
  3752. /*
  3753. * schedule() is the main scheduler function.
  3754. */
  3755. asmlinkage void __sched schedule(void)
  3756. {
  3757. struct task_struct *prev, *next;
  3758. unsigned long *switch_count;
  3759. struct rq *rq;
  3760. int cpu;
  3761. need_resched:
  3762. preempt_disable();
  3763. cpu = smp_processor_id();
  3764. rq = cpu_rq(cpu);
  3765. rcu_qsctr_inc(cpu);
  3766. prev = rq->curr;
  3767. switch_count = &prev->nivcsw;
  3768. release_kernel_lock(prev);
  3769. need_resched_nonpreemptible:
  3770. schedule_debug(prev);
  3771. if (sched_feat(HRTICK))
  3772. hrtick_clear(rq);
  3773. spin_lock_irq(&rq->lock);
  3774. update_rq_clock(rq);
  3775. clear_tsk_need_resched(prev);
  3776. if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
  3777. if (unlikely(signal_pending_state(prev->state, prev)))
  3778. prev->state = TASK_RUNNING;
  3779. else
  3780. deactivate_task(rq, prev, 1);
  3781. switch_count = &prev->nvcsw;
  3782. }
  3783. #ifdef CONFIG_SMP
  3784. if (prev->sched_class->pre_schedule)
  3785. prev->sched_class->pre_schedule(rq, prev);
  3786. #endif
  3787. if (unlikely(!rq->nr_running))
  3788. idle_balance(cpu, rq);
  3789. prev->sched_class->put_prev_task(rq, prev);
  3790. next = pick_next_task(rq, prev);
  3791. if (likely(prev != next)) {
  3792. sched_info_switch(prev, next);
  3793. rq->nr_switches++;
  3794. rq->curr = next;
  3795. ++*switch_count;
  3796. context_switch(rq, prev, next); /* unlocks the rq */
  3797. /*
  3798. * the context switch might have flipped the stack from under
  3799. * us, hence refresh the local variables.
  3800. */
  3801. cpu = smp_processor_id();
  3802. rq = cpu_rq(cpu);
  3803. } else
  3804. spin_unlock_irq(&rq->lock);
  3805. if (unlikely(reacquire_kernel_lock(current) < 0))
  3806. goto need_resched_nonpreemptible;
  3807. preempt_enable_no_resched();
  3808. if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
  3809. goto need_resched;
  3810. }
  3811. EXPORT_SYMBOL(schedule);
  3812. #ifdef CONFIG_PREEMPT
  3813. /*
  3814. * this is the entry point to schedule() from in-kernel preemption
  3815. * off of preempt_enable. Kernel preemptions off return from interrupt
  3816. * occur there and call schedule directly.
  3817. */
  3818. asmlinkage void __sched preempt_schedule(void)
  3819. {
  3820. struct thread_info *ti = current_thread_info();
  3821. /*
  3822. * If there is a non-zero preempt_count or interrupts are disabled,
  3823. * we do not want to preempt the current task. Just return..
  3824. */
  3825. if (likely(ti->preempt_count || irqs_disabled()))
  3826. return;
  3827. do {
  3828. add_preempt_count(PREEMPT_ACTIVE);
  3829. schedule();
  3830. sub_preempt_count(PREEMPT_ACTIVE);
  3831. /*
  3832. * Check again in case we missed a preemption opportunity
  3833. * between schedule and now.
  3834. */
  3835. barrier();
  3836. } while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
  3837. }
  3838. EXPORT_SYMBOL(preempt_schedule);
  3839. /*
  3840. * this is the entry point to schedule() from kernel preemption
  3841. * off of irq context.
  3842. * Note, that this is called and return with irqs disabled. This will
  3843. * protect us against recursive calling from irq.
  3844. */
  3845. asmlinkage void __sched preempt_schedule_irq(void)
  3846. {
  3847. struct thread_info *ti = current_thread_info();
  3848. /* Catch callers which need to be fixed */
  3849. BUG_ON(ti->preempt_count || !irqs_disabled());
  3850. do {
  3851. add_preempt_count(PREEMPT_ACTIVE);
  3852. local_irq_enable();
  3853. schedule();
  3854. local_irq_disable();
  3855. sub_preempt_count(PREEMPT_ACTIVE);
  3856. /*
  3857. * Check again in case we missed a preemption opportunity
  3858. * between schedule and now.
  3859. */
  3860. barrier();
  3861. } while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
  3862. }
  3863. #endif /* CONFIG_PREEMPT */
  3864. int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
  3865. void *key)
  3866. {
  3867. return try_to_wake_up(curr->private, mode, sync);
  3868. }
  3869. EXPORT_SYMBOL(default_wake_function);
  3870. /*
  3871. * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
  3872. * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
  3873. * number) then we wake all the non-exclusive tasks and one exclusive task.
  3874. *
  3875. * There are circumstances in which we can try to wake a task which has already
  3876. * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
  3877. * zero in this (rare) case, and we handle it by continuing to scan the queue.
  3878. */
  3879. static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
  3880. int nr_exclusive, int sync, void *key)
  3881. {
  3882. wait_queue_t *curr, *next;
  3883. list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
  3884. unsigned flags = curr->flags;
  3885. if (curr->func(curr, mode, sync, key) &&
  3886. (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
  3887. break;
  3888. }
  3889. }
  3890. /**
  3891. * __wake_up - wake up threads blocked on a waitqueue.
  3892. * @q: the waitqueue
  3893. * @mode: which threads
  3894. * @nr_exclusive: how many wake-one or wake-many threads to wake up
  3895. * @key: is directly passed to the wakeup function
  3896. */
  3897. void __wake_up(wait_queue_head_t *q, unsigned int mode,
  3898. int nr_exclusive, void *key)
  3899. {
  3900. unsigned long flags;
  3901. spin_lock_irqsave(&q->lock, flags);
  3902. __wake_up_common(q, mode, nr_exclusive, 0, key);
  3903. spin_unlock_irqrestore(&q->lock, flags);
  3904. }
  3905. EXPORT_SYMBOL(__wake_up);
  3906. /*
  3907. * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
  3908. */
  3909. void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
  3910. {
  3911. __wake_up_common(q, mode, 1, 0, NULL);
  3912. }
  3913. /**
  3914. * __wake_up_sync - wake up threads blocked on a waitqueue.
  3915. * @q: the waitqueue
  3916. * @mode: which threads
  3917. * @nr_exclusive: how many wake-one or wake-many threads to wake up
  3918. *
  3919. * The sync wakeup differs that the waker knows that it will schedule
  3920. * away soon, so while the target thread will be woken up, it will not
  3921. * be migrated to another CPU - ie. the two threads are 'synchronized'
  3922. * with each other. This can prevent needless bouncing between CPUs.
  3923. *
  3924. * On UP it can prevent extra preemption.
  3925. */
  3926. void
  3927. __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
  3928. {
  3929. unsigned long flags;
  3930. int sync = 1;
  3931. if (unlikely(!q))
  3932. return;
  3933. if (unlikely(!nr_exclusive))
  3934. sync = 0;
  3935. spin_lock_irqsave(&q->lock, flags);
  3936. __wake_up_common(q, mode, nr_exclusive, sync, NULL);
  3937. spin_unlock_irqrestore(&q->lock, flags);
  3938. }
  3939. EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
  3940. /**
  3941. * complete: - signals a single thread waiting on this completion
  3942. * @x: holds the state of this particular completion
  3943. *
  3944. * This will wake up a single thread waiting on this completion. Threads will be
  3945. * awakened in the same order in which they were queued.
  3946. *
  3947. * See also complete_all(), wait_for_completion() and related routines.
  3948. */
  3949. void complete(struct completion *x)
  3950. {
  3951. unsigned long flags;
  3952. spin_lock_irqsave(&x->wait.lock, flags);
  3953. x->done++;
  3954. __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
  3955. spin_unlock_irqrestore(&x->wait.lock, flags);
  3956. }
  3957. EXPORT_SYMBOL(complete);
  3958. /**
  3959. * complete_all: - signals all threads waiting on this completion
  3960. * @x: holds the state of this particular completion
  3961. *
  3962. * This will wake up all threads waiting on this particular completion event.
  3963. */
  3964. void complete_all(struct completion *x)
  3965. {
  3966. unsigned long flags;
  3967. spin_lock_irqsave(&x->wait.lock, flags);
  3968. x->done += UINT_MAX/2;
  3969. __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
  3970. spin_unlock_irqrestore(&x->wait.lock, flags);
  3971. }
  3972. EXPORT_SYMBOL(complete_all);
  3973. static inline long __sched
  3974. do_wait_for_common(struct completion *x, long timeout, int state)
  3975. {
  3976. if (!x->done) {
  3977. DECLARE_WAITQUEUE(wait, current);
  3978. wait.flags |= WQ_FLAG_EXCLUSIVE;
  3979. __add_wait_queue_tail(&x->wait, &wait);
  3980. do {
  3981. if (signal_pending_state(state, current)) {
  3982. timeout = -ERESTARTSYS;
  3983. break;
  3984. }
  3985. __set_current_state(state);
  3986. spin_unlock_irq(&x->wait.lock);
  3987. timeout = schedule_timeout(timeout);
  3988. spin_lock_irq(&x->wait.lock);
  3989. } while (!x->done && timeout);
  3990. __remove_wait_queue(&x->wait, &wait);
  3991. if (!x->done)
  3992. return timeout;
  3993. }
  3994. x->done--;
  3995. return timeout ?: 1;
  3996. }
  3997. static long __sched
  3998. wait_for_common(struct completion *x, long timeout, int state)
  3999. {
  4000. might_sleep();
  4001. spin_lock_irq(&x->wait.lock);
  4002. timeout = do_wait_for_common(x, timeout, state);
  4003. spin_unlock_irq(&x->wait.lock);
  4004. return timeout;
  4005. }
  4006. /**
  4007. * wait_for_completion: - waits for completion of a task
  4008. * @x: holds the state of this particular completion
  4009. *
  4010. * This waits to be signaled for completion of a specific task. It is NOT
  4011. * interruptible and there is no timeout.
  4012. *
  4013. * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
  4014. * and interrupt capability. Also see complete().
  4015. */
  4016. void __sched wait_for_completion(struct completion *x)
  4017. {
  4018. wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
  4019. }
  4020. EXPORT_SYMBOL(wait_for_completion);
  4021. /**
  4022. * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
  4023. * @x: holds the state of this particular completion
  4024. * @timeout: timeout value in jiffies
  4025. *
  4026. * This waits for either a completion of a specific task to be signaled or for a
  4027. * specified timeout to expire. The timeout is in jiffies. It is not
  4028. * interruptible.
  4029. */
  4030. unsigned long __sched
  4031. wait_for_completion_timeout(struct completion *x, unsigned long timeout)
  4032. {
  4033. return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
  4034. }
  4035. EXPORT_SYMBOL(wait_for_completion_timeout);
  4036. /**
  4037. * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
  4038. * @x: holds the state of this particular completion
  4039. *
  4040. * This waits for completion of a specific task to be signaled. It is
  4041. * interruptible.
  4042. */
  4043. int __sched wait_for_completion_interruptible(struct completion *x)
  4044. {
  4045. long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
  4046. if (t == -ERESTARTSYS)
  4047. return t;
  4048. return 0;
  4049. }
  4050. EXPORT_SYMBOL(wait_for_completion_interruptible);
  4051. /**
  4052. * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
  4053. * @x: holds the state of this particular completion
  4054. * @timeout: timeout value in jiffies
  4055. *
  4056. * This waits for either a completion of a specific task to be signaled or for a
  4057. * specified timeout to expire. It is interruptible. The timeout is in jiffies.
  4058. */
  4059. unsigned long __sched
  4060. wait_for_completion_interruptible_timeout(struct completion *x,
  4061. unsigned long timeout)
  4062. {
  4063. return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
  4064. }
  4065. EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
  4066. /**
  4067. * wait_for_completion_killable: - waits for completion of a task (killable)
  4068. * @x: holds the state of this particular completion
  4069. *
  4070. * This waits to be signaled for completion of a specific task. It can be
  4071. * interrupted by a kill signal.
  4072. */
  4073. int __sched wait_for_completion_killable(struct completion *x)
  4074. {
  4075. long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
  4076. if (t == -ERESTARTSYS)
  4077. return t;
  4078. return 0;
  4079. }
  4080. EXPORT_SYMBOL(wait_for_completion_killable);
  4081. /**
  4082. * try_wait_for_completion - try to decrement a completion without blocking
  4083. * @x: completion structure
  4084. *
  4085. * Returns: 0 if a decrement cannot be done without blocking
  4086. * 1 if a decrement succeeded.
  4087. *
  4088. * If a completion is being used as a counting completion,
  4089. * attempt to decrement the counter without blocking. This
  4090. * enables us to avoid waiting if the resource the completion
  4091. * is protecting is not available.
  4092. */
  4093. bool try_wait_for_completion(struct completion *x)
  4094. {
  4095. int ret = 1;
  4096. spin_lock_irq(&x->wait.lock);
  4097. if (!x->done)
  4098. ret = 0;
  4099. else
  4100. x->done--;
  4101. spin_unlock_irq(&x->wait.lock);
  4102. return ret;
  4103. }
  4104. EXPORT_SYMBOL(try_wait_for_completion);
  4105. /**
  4106. * completion_done - Test to see if a completion has any waiters
  4107. * @x: completion structure
  4108. *
  4109. * Returns: 0 if there are waiters (wait_for_completion() in progress)
  4110. * 1 if there are no waiters.
  4111. *
  4112. */
  4113. bool completion_done(struct completion *x)
  4114. {
  4115. int ret = 1;
  4116. spin_lock_irq(&x->wait.lock);
  4117. if (!x->done)
  4118. ret = 0;
  4119. spin_unlock_irq(&x->wait.lock);
  4120. return ret;
  4121. }
  4122. EXPORT_SYMBOL(completion_done);
  4123. static long __sched
  4124. sleep_on_common(wait_queue_head_t *q, int state, long timeout)
  4125. {
  4126. unsigned long flags;
  4127. wait_queue_t wait;
  4128. init_waitqueue_entry(&wait, current);
  4129. __set_current_state(state);
  4130. spin_lock_irqsave(&q->lock, flags);
  4131. __add_wait_queue(q, &wait);
  4132. spin_unlock(&q->lock);
  4133. timeout = schedule_timeout(timeout);
  4134. spin_lock_irq(&q->lock);
  4135. __remove_wait_queue(q, &wait);
  4136. spin_unlock_irqrestore(&q->lock, flags);
  4137. return timeout;
  4138. }
  4139. void __sched interruptible_sleep_on(wait_queue_head_t *q)
  4140. {
  4141. sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
  4142. }
  4143. EXPORT_SYMBOL(interruptible_sleep_on);
  4144. long __sched
  4145. interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
  4146. {
  4147. return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
  4148. }
  4149. EXPORT_SYMBOL(interruptible_sleep_on_timeout);
  4150. void __sched sleep_on(wait_queue_head_t *q)
  4151. {
  4152. sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
  4153. }
  4154. EXPORT_SYMBOL(sleep_on);
  4155. long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
  4156. {
  4157. return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
  4158. }
  4159. EXPORT_SYMBOL(sleep_on_timeout);
  4160. #ifdef CONFIG_RT_MUTEXES
  4161. /*
  4162. * rt_mutex_setprio - set the current priority of a task
  4163. * @p: task
  4164. * @prio: prio value (kernel-internal form)
  4165. *
  4166. * This function changes the 'effective' priority of a task. It does
  4167. * not touch ->normal_prio like __setscheduler().
  4168. *
  4169. * Used by the rt_mutex code to implement priority inheritance logic.
  4170. */
  4171. void rt_mutex_setprio(struct task_struct *p, int prio)
  4172. {
  4173. unsigned long flags;
  4174. int oldprio, on_rq, running;
  4175. struct rq *rq;
  4176. const struct sched_class *prev_class = p->sched_class;
  4177. BUG_ON(prio < 0 || prio > MAX_PRIO);
  4178. rq = task_rq_lock(p, &flags);
  4179. update_rq_clock(rq);
  4180. oldprio = p->prio;
  4181. on_rq = p->se.on_rq;
  4182. running = task_current(rq, p);
  4183. if (on_rq)
  4184. dequeue_task(rq, p, 0);
  4185. if (running)
  4186. p->sched_class->put_prev_task(rq, p);
  4187. if (rt_prio(prio))
  4188. p->sched_class = &rt_sched_class;
  4189. else
  4190. p->sched_class = &fair_sched_class;
  4191. p->prio = prio;
  4192. if (running)
  4193. p->sched_class->set_curr_task(rq);
  4194. if (on_rq) {
  4195. enqueue_task(rq, p, 0);
  4196. check_class_changed(rq, p, prev_class, oldprio, running);
  4197. }
  4198. task_rq_unlock(rq, &flags);
  4199. }
  4200. #endif
  4201. void set_user_nice(struct task_struct *p, long nice)
  4202. {
  4203. int old_prio, delta, on_rq;
  4204. unsigned long flags;
  4205. struct rq *rq;
  4206. if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
  4207. return;
  4208. /*
  4209. * We have to be careful, if called from sys_setpriority(),
  4210. * the task might be in the middle of scheduling on another CPU.
  4211. */
  4212. rq = task_rq_lock(p, &flags);
  4213. update_rq_clock(rq);
  4214. /*
  4215. * The RT priorities are set via sched_setscheduler(), but we still
  4216. * allow the 'normal' nice value to be set - but as expected
  4217. * it wont have any effect on scheduling until the task is
  4218. * SCHED_FIFO/SCHED_RR:
  4219. */
  4220. if (task_has_rt_policy(p)) {
  4221. p->static_prio = NICE_TO_PRIO(nice);
  4222. goto out_unlock;
  4223. }
  4224. on_rq = p->se.on_rq;
  4225. if (on_rq)
  4226. dequeue_task(rq, p, 0);
  4227. p->static_prio = NICE_TO_PRIO(nice);
  4228. set_load_weight(p);
  4229. old_prio = p->prio;
  4230. p->prio = effective_prio(p);
  4231. delta = p->prio - old_prio;
  4232. if (on_rq) {
  4233. enqueue_task(rq, p, 0);
  4234. /*
  4235. * If the task increased its priority or is running and
  4236. * lowered its priority, then reschedule its CPU:
  4237. */
  4238. if (delta < 0 || (delta > 0 && task_running(rq, p)))
  4239. resched_task(rq->curr);
  4240. }
  4241. out_unlock:
  4242. task_rq_unlock(rq, &flags);
  4243. }
  4244. EXPORT_SYMBOL(set_user_nice);
  4245. /*
  4246. * can_nice - check if a task can reduce its nice value
  4247. * @p: task
  4248. * @nice: nice value
  4249. */
  4250. int can_nice(const struct task_struct *p, const int nice)
  4251. {
  4252. /* convert nice value [19,-20] to rlimit style value [1,40] */
  4253. int nice_rlim = 20 - nice;
  4254. return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
  4255. capable(CAP_SYS_NICE));
  4256. }
  4257. #ifdef __ARCH_WANT_SYS_NICE
  4258. /*
  4259. * sys_nice - change the priority of the current process.
  4260. * @increment: priority increment
  4261. *
  4262. * sys_setpriority is a more generic, but much slower function that
  4263. * does similar things.
  4264. */
  4265. asmlinkage long sys_nice(int increment)
  4266. {
  4267. long nice, retval;
  4268. /*
  4269. * Setpriority might change our priority at the same moment.
  4270. * We don't have to worry. Conceptually one call occurs first
  4271. * and we have a single winner.
  4272. */
  4273. if (increment < -40)
  4274. increment = -40;
  4275. if (increment > 40)
  4276. increment = 40;
  4277. nice = PRIO_TO_NICE(current->static_prio) + increment;
  4278. if (nice < -20)
  4279. nice = -20;
  4280. if (nice > 19)
  4281. nice = 19;
  4282. if (increment < 0 && !can_nice(current, nice))
  4283. return -EPERM;
  4284. retval = security_task_setnice(current, nice);
  4285. if (retval)
  4286. return retval;
  4287. set_user_nice(current, nice);
  4288. return 0;
  4289. }
  4290. #endif
  4291. /**
  4292. * task_prio - return the priority value of a given task.
  4293. * @p: the task in question.
  4294. *
  4295. * This is the priority value as seen by users in /proc.
  4296. * RT tasks are offset by -200. Normal tasks are centered
  4297. * around 0, value goes from -16 to +15.
  4298. */
  4299. int task_prio(const struct task_struct *p)
  4300. {
  4301. return p->prio - MAX_RT_PRIO;
  4302. }
  4303. /**
  4304. * task_nice - return the nice value of a given task.
  4305. * @p: the task in question.
  4306. */
  4307. int task_nice(const struct task_struct *p)
  4308. {
  4309. return TASK_NICE(p);
  4310. }
  4311. EXPORT_SYMBOL(task_nice);
  4312. /**
  4313. * idle_cpu - is a given cpu idle currently?
  4314. * @cpu: the processor in question.
  4315. */
  4316. int idle_cpu(int cpu)
  4317. {
  4318. return cpu_curr(cpu) == cpu_rq(cpu)->idle;
  4319. }
  4320. /**
  4321. * idle_task - return the idle task for a given cpu.
  4322. * @cpu: the processor in question.
  4323. */
  4324. struct task_struct *idle_task(int cpu)
  4325. {
  4326. return cpu_rq(cpu)->idle;
  4327. }
  4328. /**
  4329. * find_process_by_pid - find a process with a matching PID value.
  4330. * @pid: the pid in question.
  4331. */
  4332. static struct task_struct *find_process_by_pid(pid_t pid)
  4333. {
  4334. return pid ? find_task_by_vpid(pid) : current;
  4335. }
  4336. /* Actually do priority change: must hold rq lock. */
  4337. static void
  4338. __setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
  4339. {
  4340. BUG_ON(p->se.on_rq);
  4341. p->policy = policy;
  4342. switch (p->policy) {
  4343. case SCHED_NORMAL:
  4344. case SCHED_BATCH:
  4345. case SCHED_IDLE:
  4346. p->sched_class = &fair_sched_class;
  4347. break;
  4348. case SCHED_FIFO:
  4349. case SCHED_RR:
  4350. p->sched_class = &rt_sched_class;
  4351. break;
  4352. }
  4353. p->rt_priority = prio;
  4354. p->normal_prio = normal_prio(p);
  4355. /* we are holding p->pi_lock already */
  4356. p->prio = rt_mutex_getprio(p);
  4357. set_load_weight(p);
  4358. }
  4359. static int __sched_setscheduler(struct task_struct *p, int policy,
  4360. struct sched_param *param, bool user)
  4361. {
  4362. int retval, oldprio, oldpolicy = -1, on_rq, running;
  4363. unsigned long flags;
  4364. const struct sched_class *prev_class = p->sched_class;
  4365. struct rq *rq;
  4366. /* may grab non-irq protected spin_locks */
  4367. BUG_ON(in_interrupt());
  4368. recheck:
  4369. /* double check policy once rq lock held */
  4370. if (policy < 0)
  4371. policy = oldpolicy = p->policy;
  4372. else if (policy != SCHED_FIFO && policy != SCHED_RR &&
  4373. policy != SCHED_NORMAL && policy != SCHED_BATCH &&
  4374. policy != SCHED_IDLE)
  4375. return -EINVAL;
  4376. /*
  4377. * Valid priorities for SCHED_FIFO and SCHED_RR are
  4378. * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
  4379. * SCHED_BATCH and SCHED_IDLE is 0.
  4380. */
  4381. if (param->sched_priority < 0 ||
  4382. (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
  4383. (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
  4384. return -EINVAL;
  4385. if (rt_policy(policy) != (param->sched_priority != 0))
  4386. return -EINVAL;
  4387. /*
  4388. * Allow unprivileged RT tasks to decrease priority:
  4389. */
  4390. if (user && !capable(CAP_SYS_NICE)) {
  4391. if (rt_policy(policy)) {
  4392. unsigned long rlim_rtprio;
  4393. if (!lock_task_sighand(p, &flags))
  4394. return -ESRCH;
  4395. rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
  4396. unlock_task_sighand(p, &flags);
  4397. /* can't set/change the rt policy */
  4398. if (policy != p->policy && !rlim_rtprio)
  4399. return -EPERM;
  4400. /* can't increase priority */
  4401. if (param->sched_priority > p->rt_priority &&
  4402. param->sched_priority > rlim_rtprio)
  4403. return -EPERM;
  4404. }
  4405. /*
  4406. * Like positive nice levels, dont allow tasks to
  4407. * move out of SCHED_IDLE either:
  4408. */
  4409. if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
  4410. return -EPERM;
  4411. /* can't change other user's priorities */
  4412. if ((current->euid != p->euid) &&
  4413. (current->euid != p->uid))
  4414. return -EPERM;
  4415. }
  4416. if (user) {
  4417. #ifdef CONFIG_RT_GROUP_SCHED
  4418. /*
  4419. * Do not allow realtime tasks into groups that have no runtime
  4420. * assigned.
  4421. */
  4422. if (rt_bandwidth_enabled() && rt_policy(policy) &&
  4423. task_group(p)->rt_bandwidth.rt_runtime == 0)
  4424. return -EPERM;
  4425. #endif
  4426. retval = security_task_setscheduler(p, policy, param);
  4427. if (retval)
  4428. return retval;
  4429. }
  4430. /*
  4431. * make sure no PI-waiters arrive (or leave) while we are
  4432. * changing the priority of the task:
  4433. */
  4434. spin_lock_irqsave(&p->pi_lock, flags);
  4435. /*
  4436. * To be able to change p->policy safely, the apropriate
  4437. * runqueue lock must be held.
  4438. */
  4439. rq = __task_rq_lock(p);
  4440. /* recheck policy now with rq lock held */
  4441. if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
  4442. policy = oldpolicy = -1;
  4443. __task_rq_unlock(rq);
  4444. spin_unlock_irqrestore(&p->pi_lock, flags);
  4445. goto recheck;
  4446. }
  4447. update_rq_clock(rq);
  4448. on_rq = p->se.on_rq;
  4449. running = task_current(rq, p);
  4450. if (on_rq)
  4451. deactivate_task(rq, p, 0);
  4452. if (running)
  4453. p->sched_class->put_prev_task(rq, p);
  4454. oldprio = p->prio;
  4455. __setscheduler(rq, p, policy, param->sched_priority);
  4456. if (running)
  4457. p->sched_class->set_curr_task(rq);
  4458. if (on_rq) {
  4459. activate_task(rq, p, 0);
  4460. check_class_changed(rq, p, prev_class, oldprio, running);
  4461. }
  4462. __task_rq_unlock(rq);
  4463. spin_unlock_irqrestore(&p->pi_lock, flags);
  4464. rt_mutex_adjust_pi(p);
  4465. return 0;
  4466. }
  4467. /**
  4468. * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
  4469. * @p: the task in question.
  4470. * @policy: new policy.
  4471. * @param: structure containing the new RT priority.
  4472. *
  4473. * NOTE that the task may be already dead.
  4474. */
  4475. int sched_setscheduler(struct task_struct *p, int policy,
  4476. struct sched_param *param)
  4477. {
  4478. return __sched_setscheduler(p, policy, param, true);
  4479. }
  4480. EXPORT_SYMBOL_GPL(sched_setscheduler);
  4481. /**
  4482. * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
  4483. * @p: the task in question.
  4484. * @policy: new policy.
  4485. * @param: structure containing the new RT priority.
  4486. *
  4487. * Just like sched_setscheduler, only don't bother checking if the
  4488. * current context has permission. For example, this is needed in
  4489. * stop_machine(): we create temporary high priority worker threads,
  4490. * but our caller might not have that capability.
  4491. */
  4492. int sched_setscheduler_nocheck(struct task_struct *p, int policy,
  4493. struct sched_param *param)
  4494. {
  4495. return __sched_setscheduler(p, policy, param, false);
  4496. }
  4497. static int
  4498. do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
  4499. {
  4500. struct sched_param lparam;
  4501. struct task_struct *p;
  4502. int retval;
  4503. if (!param || pid < 0)
  4504. return -EINVAL;
  4505. if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
  4506. return -EFAULT;
  4507. rcu_read_lock();
  4508. retval = -ESRCH;
  4509. p = find_process_by_pid(pid);
  4510. if (p != NULL)
  4511. retval = sched_setscheduler(p, policy, &lparam);
  4512. rcu_read_unlock();
  4513. return retval;
  4514. }
  4515. /**
  4516. * sys_sched_setscheduler - set/change the scheduler policy and RT priority
  4517. * @pid: the pid in question.
  4518. * @policy: new policy.
  4519. * @param: structure containing the new RT priority.
  4520. */
  4521. asmlinkage long
  4522. sys_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
  4523. {
  4524. /* negative values for policy are not valid */
  4525. if (policy < 0)
  4526. return -EINVAL;
  4527. return do_sched_setscheduler(pid, policy, param);
  4528. }
  4529. /**
  4530. * sys_sched_setparam - set/change the RT priority of a thread
  4531. * @pid: the pid in question.
  4532. * @param: structure containing the new RT priority.
  4533. */
  4534. asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param)
  4535. {
  4536. return do_sched_setscheduler(pid, -1, param);
  4537. }
  4538. /**
  4539. * sys_sched_getscheduler - get the policy (scheduling class) of a thread
  4540. * @pid: the pid in question.
  4541. */
  4542. asmlinkage long sys_sched_getscheduler(pid_t pid)
  4543. {
  4544. struct task_struct *p;
  4545. int retval;
  4546. if (pid < 0)
  4547. return -EINVAL;
  4548. retval = -ESRCH;
  4549. read_lock(&tasklist_lock);
  4550. p = find_process_by_pid(pid);
  4551. if (p) {
  4552. retval = security_task_getscheduler(p);
  4553. if (!retval)
  4554. retval = p->policy;
  4555. }
  4556. read_unlock(&tasklist_lock);
  4557. return retval;
  4558. }
  4559. /**
  4560. * sys_sched_getscheduler - get the RT priority of a thread
  4561. * @pid: the pid in question.
  4562. * @param: structure containing the RT priority.
  4563. */
  4564. asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param)
  4565. {
  4566. struct sched_param lp;
  4567. struct task_struct *p;
  4568. int retval;
  4569. if (!param || pid < 0)
  4570. return -EINVAL;
  4571. read_lock(&tasklist_lock);
  4572. p = find_process_by_pid(pid);
  4573. retval = -ESRCH;
  4574. if (!p)
  4575. goto out_unlock;
  4576. retval = security_task_getscheduler(p);
  4577. if (retval)
  4578. goto out_unlock;
  4579. lp.sched_priority = p->rt_priority;
  4580. read_unlock(&tasklist_lock);
  4581. /*
  4582. * This one might sleep, we cannot do it with a spinlock held ...
  4583. */
  4584. retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
  4585. return retval;
  4586. out_unlock:
  4587. read_unlock(&tasklist_lock);
  4588. return retval;
  4589. }
  4590. long sched_setaffinity(pid_t pid, const cpumask_t *in_mask)
  4591. {
  4592. cpumask_var_t cpus_allowed, new_mask;
  4593. struct task_struct *p;
  4594. int retval;
  4595. get_online_cpus();
  4596. read_lock(&tasklist_lock);
  4597. p = find_process_by_pid(pid);
  4598. if (!p) {
  4599. read_unlock(&tasklist_lock);
  4600. put_online_cpus();
  4601. return -ESRCH;
  4602. }
  4603. /*
  4604. * It is not safe to call set_cpus_allowed with the
  4605. * tasklist_lock held. We will bump the task_struct's
  4606. * usage count and then drop tasklist_lock.
  4607. */
  4608. get_task_struct(p);
  4609. read_unlock(&tasklist_lock);
  4610. if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
  4611. retval = -ENOMEM;
  4612. goto out_put_task;
  4613. }
  4614. if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
  4615. retval = -ENOMEM;
  4616. goto out_free_cpus_allowed;
  4617. }
  4618. retval = -EPERM;
  4619. if ((current->euid != p->euid) && (current->euid != p->uid) &&
  4620. !capable(CAP_SYS_NICE))
  4621. goto out_unlock;
  4622. retval = security_task_setscheduler(p, 0, NULL);
  4623. if (retval)
  4624. goto out_unlock;
  4625. cpuset_cpus_allowed(p, cpus_allowed);
  4626. cpumask_and(new_mask, in_mask, cpus_allowed);
  4627. again:
  4628. retval = set_cpus_allowed_ptr(p, new_mask);
  4629. if (!retval) {
  4630. cpuset_cpus_allowed(p, cpus_allowed);
  4631. if (!cpumask_subset(new_mask, cpus_allowed)) {
  4632. /*
  4633. * We must have raced with a concurrent cpuset
  4634. * update. Just reset the cpus_allowed to the
  4635. * cpuset's cpus_allowed
  4636. */
  4637. cpumask_copy(new_mask, cpus_allowed);
  4638. goto again;
  4639. }
  4640. }
  4641. out_unlock:
  4642. free_cpumask_var(new_mask);
  4643. out_free_cpus_allowed:
  4644. free_cpumask_var(cpus_allowed);
  4645. out_put_task:
  4646. put_task_struct(p);
  4647. put_online_cpus();
  4648. return retval;
  4649. }
  4650. static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
  4651. cpumask_t *new_mask)
  4652. {
  4653. if (len < sizeof(cpumask_t)) {
  4654. memset(new_mask, 0, sizeof(cpumask_t));
  4655. } else if (len > sizeof(cpumask_t)) {
  4656. len = sizeof(cpumask_t);
  4657. }
  4658. return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
  4659. }
  4660. /**
  4661. * sys_sched_setaffinity - set the cpu affinity of a process
  4662. * @pid: pid of the process
  4663. * @len: length in bytes of the bitmask pointed to by user_mask_ptr
  4664. * @user_mask_ptr: user-space pointer to the new cpu mask
  4665. */
  4666. asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len,
  4667. unsigned long __user *user_mask_ptr)
  4668. {
  4669. cpumask_var_t new_mask;
  4670. int retval;
  4671. if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
  4672. return -ENOMEM;
  4673. retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
  4674. if (retval == 0)
  4675. retval = sched_setaffinity(pid, new_mask);
  4676. free_cpumask_var(new_mask);
  4677. return retval;
  4678. }
  4679. long sched_getaffinity(pid_t pid, cpumask_t *mask)
  4680. {
  4681. struct task_struct *p;
  4682. int retval;
  4683. get_online_cpus();
  4684. read_lock(&tasklist_lock);
  4685. retval = -ESRCH;
  4686. p = find_process_by_pid(pid);
  4687. if (!p)
  4688. goto out_unlock;
  4689. retval = security_task_getscheduler(p);
  4690. if (retval)
  4691. goto out_unlock;
  4692. cpus_and(*mask, p->cpus_allowed, cpu_online_map);
  4693. out_unlock:
  4694. read_unlock(&tasklist_lock);
  4695. put_online_cpus();
  4696. return retval;
  4697. }
  4698. /**
  4699. * sys_sched_getaffinity - get the cpu affinity of a process
  4700. * @pid: pid of the process
  4701. * @len: length in bytes of the bitmask pointed to by user_mask_ptr
  4702. * @user_mask_ptr: user-space pointer to hold the current cpu mask
  4703. */
  4704. asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len,
  4705. unsigned long __user *user_mask_ptr)
  4706. {
  4707. int ret;
  4708. cpumask_var_t mask;
  4709. if (len < cpumask_size())
  4710. return -EINVAL;
  4711. if (!alloc_cpumask_var(&mask, GFP_KERNEL))
  4712. return -ENOMEM;
  4713. ret = sched_getaffinity(pid, mask);
  4714. if (ret == 0) {
  4715. if (copy_to_user(user_mask_ptr, mask, cpumask_size()))
  4716. ret = -EFAULT;
  4717. else
  4718. ret = cpumask_size();
  4719. }
  4720. free_cpumask_var(mask);
  4721. return ret;
  4722. }
  4723. /**
  4724. * sys_sched_yield - yield the current processor to other threads.
  4725. *
  4726. * This function yields the current CPU to other tasks. If there are no
  4727. * other threads running on this CPU then this function will return.
  4728. */
  4729. asmlinkage long sys_sched_yield(void)
  4730. {
  4731. struct rq *rq = this_rq_lock();
  4732. schedstat_inc(rq, yld_count);
  4733. current->sched_class->yield_task(rq);
  4734. /*
  4735. * Since we are going to call schedule() anyway, there's
  4736. * no need to preempt or enable interrupts:
  4737. */
  4738. __release(rq->lock);
  4739. spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
  4740. _raw_spin_unlock(&rq->lock);
  4741. preempt_enable_no_resched();
  4742. schedule();
  4743. return 0;
  4744. }
  4745. static void __cond_resched(void)
  4746. {
  4747. #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
  4748. __might_sleep(__FILE__, __LINE__);
  4749. #endif
  4750. /*
  4751. * The BKS might be reacquired before we have dropped
  4752. * PREEMPT_ACTIVE, which could trigger a second
  4753. * cond_resched() call.
  4754. */
  4755. do {
  4756. add_preempt_count(PREEMPT_ACTIVE);
  4757. schedule();
  4758. sub_preempt_count(PREEMPT_ACTIVE);
  4759. } while (need_resched());
  4760. }
  4761. int __sched _cond_resched(void)
  4762. {
  4763. if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE) &&
  4764. system_state == SYSTEM_RUNNING) {
  4765. __cond_resched();
  4766. return 1;
  4767. }
  4768. return 0;
  4769. }
  4770. EXPORT_SYMBOL(_cond_resched);
  4771. /*
  4772. * cond_resched_lock() - if a reschedule is pending, drop the given lock,
  4773. * call schedule, and on return reacquire the lock.
  4774. *
  4775. * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
  4776. * operations here to prevent schedule() from being called twice (once via
  4777. * spin_unlock(), once by hand).
  4778. */
  4779. int cond_resched_lock(spinlock_t *lock)
  4780. {
  4781. int resched = need_resched() && system_state == SYSTEM_RUNNING;
  4782. int ret = 0;
  4783. if (spin_needbreak(lock) || resched) {
  4784. spin_unlock(lock);
  4785. if (resched && need_resched())
  4786. __cond_resched();
  4787. else
  4788. cpu_relax();
  4789. ret = 1;
  4790. spin_lock(lock);
  4791. }
  4792. return ret;
  4793. }
  4794. EXPORT_SYMBOL(cond_resched_lock);
  4795. int __sched cond_resched_softirq(void)
  4796. {
  4797. BUG_ON(!in_softirq());
  4798. if (need_resched() && system_state == SYSTEM_RUNNING) {
  4799. local_bh_enable();
  4800. __cond_resched();
  4801. local_bh_disable();
  4802. return 1;
  4803. }
  4804. return 0;
  4805. }
  4806. EXPORT_SYMBOL(cond_resched_softirq);
  4807. /**
  4808. * yield - yield the current processor to other threads.
  4809. *
  4810. * This is a shortcut for kernel-space yielding - it marks the
  4811. * thread runnable and calls sys_sched_yield().
  4812. */
  4813. void __sched yield(void)
  4814. {
  4815. set_current_state(TASK_RUNNING);
  4816. sys_sched_yield();
  4817. }
  4818. EXPORT_SYMBOL(yield);
  4819. /*
  4820. * This task is about to go to sleep on IO. Increment rq->nr_iowait so
  4821. * that process accounting knows that this is a task in IO wait state.
  4822. *
  4823. * But don't do that if it is a deliberate, throttling IO wait (this task
  4824. * has set its backing_dev_info: the queue against which it should throttle)
  4825. */
  4826. void __sched io_schedule(void)
  4827. {
  4828. struct rq *rq = &__raw_get_cpu_var(runqueues);
  4829. delayacct_blkio_start();
  4830. atomic_inc(&rq->nr_iowait);
  4831. schedule();
  4832. atomic_dec(&rq->nr_iowait);
  4833. delayacct_blkio_end();
  4834. }
  4835. EXPORT_SYMBOL(io_schedule);
  4836. long __sched io_schedule_timeout(long timeout)
  4837. {
  4838. struct rq *rq = &__raw_get_cpu_var(runqueues);
  4839. long ret;
  4840. delayacct_blkio_start();
  4841. atomic_inc(&rq->nr_iowait);
  4842. ret = schedule_timeout(timeout);
  4843. atomic_dec(&rq->nr_iowait);
  4844. delayacct_blkio_end();
  4845. return ret;
  4846. }
  4847. /**
  4848. * sys_sched_get_priority_max - return maximum RT priority.
  4849. * @policy: scheduling class.
  4850. *
  4851. * this syscall returns the maximum rt_priority that can be used
  4852. * by a given scheduling class.
  4853. */
  4854. asmlinkage long sys_sched_get_priority_max(int policy)
  4855. {
  4856. int ret = -EINVAL;
  4857. switch (policy) {
  4858. case SCHED_FIFO:
  4859. case SCHED_RR:
  4860. ret = MAX_USER_RT_PRIO-1;
  4861. break;
  4862. case SCHED_NORMAL:
  4863. case SCHED_BATCH:
  4864. case SCHED_IDLE:
  4865. ret = 0;
  4866. break;
  4867. }
  4868. return ret;
  4869. }
  4870. /**
  4871. * sys_sched_get_priority_min - return minimum RT priority.
  4872. * @policy: scheduling class.
  4873. *
  4874. * this syscall returns the minimum rt_priority that can be used
  4875. * by a given scheduling class.
  4876. */
  4877. asmlinkage long sys_sched_get_priority_min(int policy)
  4878. {
  4879. int ret = -EINVAL;
  4880. switch (policy) {
  4881. case SCHED_FIFO:
  4882. case SCHED_RR:
  4883. ret = 1;
  4884. break;
  4885. case SCHED_NORMAL:
  4886. case SCHED_BATCH:
  4887. case SCHED_IDLE:
  4888. ret = 0;
  4889. }
  4890. return ret;
  4891. }
  4892. /**
  4893. * sys_sched_rr_get_interval - return the default timeslice of a process.
  4894. * @pid: pid of the process.
  4895. * @interval: userspace pointer to the timeslice value.
  4896. *
  4897. * this syscall writes the default timeslice value of a given process
  4898. * into the user-space timespec buffer. A value of '0' means infinity.
  4899. */
  4900. asmlinkage
  4901. long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval)
  4902. {
  4903. struct task_struct *p;
  4904. unsigned int time_slice;
  4905. int retval;
  4906. struct timespec t;
  4907. if (pid < 0)
  4908. return -EINVAL;
  4909. retval = -ESRCH;
  4910. read_lock(&tasklist_lock);
  4911. p = find_process_by_pid(pid);
  4912. if (!p)
  4913. goto out_unlock;
  4914. retval = security_task_getscheduler(p);
  4915. if (retval)
  4916. goto out_unlock;
  4917. /*
  4918. * Time slice is 0 for SCHED_FIFO tasks and for SCHED_OTHER
  4919. * tasks that are on an otherwise idle runqueue:
  4920. */
  4921. time_slice = 0;
  4922. if (p->policy == SCHED_RR) {
  4923. time_slice = DEF_TIMESLICE;
  4924. } else if (p->policy != SCHED_FIFO) {
  4925. struct sched_entity *se = &p->se;
  4926. unsigned long flags;
  4927. struct rq *rq;
  4928. rq = task_rq_lock(p, &flags);
  4929. if (rq->cfs.load.weight)
  4930. time_slice = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));
  4931. task_rq_unlock(rq, &flags);
  4932. }
  4933. read_unlock(&tasklist_lock);
  4934. jiffies_to_timespec(time_slice, &t);
  4935. retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
  4936. return retval;
  4937. out_unlock:
  4938. read_unlock(&tasklist_lock);
  4939. return retval;
  4940. }
  4941. static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
  4942. void sched_show_task(struct task_struct *p)
  4943. {
  4944. unsigned long free = 0;
  4945. unsigned state;
  4946. state = p->state ? __ffs(p->state) + 1 : 0;
  4947. printk(KERN_INFO "%-13.13s %c", p->comm,
  4948. state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
  4949. #if BITS_PER_LONG == 32
  4950. if (state == TASK_RUNNING)
  4951. printk(KERN_CONT " running ");
  4952. else
  4953. printk(KERN_CONT " %08lx ", thread_saved_pc(p));
  4954. #else
  4955. if (state == TASK_RUNNING)
  4956. printk(KERN_CONT " running task ");
  4957. else
  4958. printk(KERN_CONT " %016lx ", thread_saved_pc(p));
  4959. #endif
  4960. #ifdef CONFIG_DEBUG_STACK_USAGE
  4961. {
  4962. unsigned long *n = end_of_stack(p);
  4963. while (!*n)
  4964. n++;
  4965. free = (unsigned long)n - (unsigned long)end_of_stack(p);
  4966. }
  4967. #endif
  4968. printk(KERN_CONT "%5lu %5d %6d\n", free,
  4969. task_pid_nr(p), task_pid_nr(p->real_parent));
  4970. show_stack(p, NULL);
  4971. }
  4972. void show_state_filter(unsigned long state_filter)
  4973. {
  4974. struct task_struct *g, *p;
  4975. #if BITS_PER_LONG == 32
  4976. printk(KERN_INFO
  4977. " task PC stack pid father\n");
  4978. #else
  4979. printk(KERN_INFO
  4980. " task PC stack pid father\n");
  4981. #endif
  4982. read_lock(&tasklist_lock);
  4983. do_each_thread(g, p) {
  4984. /*
  4985. * reset the NMI-timeout, listing all files on a slow
  4986. * console might take alot of time:
  4987. */
  4988. touch_nmi_watchdog();
  4989. if (!state_filter || (p->state & state_filter))
  4990. sched_show_task(p);
  4991. } while_each_thread(g, p);
  4992. touch_all_softlockup_watchdogs();
  4993. #ifdef CONFIG_SCHED_DEBUG
  4994. sysrq_sched_debug_show();
  4995. #endif
  4996. read_unlock(&tasklist_lock);
  4997. /*
  4998. * Only show locks if all tasks are dumped:
  4999. */
  5000. if (state_filter == -1)
  5001. debug_show_all_locks();
  5002. }
  5003. void __cpuinit init_idle_bootup_task(struct task_struct *idle)
  5004. {
  5005. idle->sched_class = &idle_sched_class;
  5006. }
  5007. /**
  5008. * init_idle - set up an idle thread for a given CPU
  5009. * @idle: task in question
  5010. * @cpu: cpu the idle task belongs to
  5011. *
  5012. * NOTE: this function does not set the idle thread's NEED_RESCHED
  5013. * flag, to make booting more robust.
  5014. */
  5015. void __cpuinit init_idle(struct task_struct *idle, int cpu)
  5016. {
  5017. struct rq *rq = cpu_rq(cpu);
  5018. unsigned long flags;
  5019. spin_lock_irqsave(&rq->lock, flags);
  5020. __sched_fork(idle);
  5021. idle->se.exec_start = sched_clock();
  5022. idle->prio = idle->normal_prio = MAX_PRIO;
  5023. idle->cpus_allowed = cpumask_of_cpu(cpu);
  5024. __set_task_cpu(idle, cpu);
  5025. rq->curr = rq->idle = idle;
  5026. #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
  5027. idle->oncpu = 1;
  5028. #endif
  5029. spin_unlock_irqrestore(&rq->lock, flags);
  5030. /* Set the preempt count _outside_ the spinlocks! */
  5031. #if defined(CONFIG_PREEMPT)
  5032. task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
  5033. #else
  5034. task_thread_info(idle)->preempt_count = 0;
  5035. #endif
  5036. /*
  5037. * The idle tasks have their own, simple scheduling class:
  5038. */
  5039. idle->sched_class = &idle_sched_class;
  5040. ftrace_retfunc_init_task(idle);
  5041. }
  5042. /*
  5043. * In a system that switches off the HZ timer nohz_cpu_mask
  5044. * indicates which cpus entered this state. This is used
  5045. * in the rcu update to wait only for active cpus. For system
  5046. * which do not switch off the HZ timer nohz_cpu_mask should
  5047. * always be CPU_BITS_NONE.
  5048. */
  5049. cpumask_var_t nohz_cpu_mask;
  5050. /*
  5051. * Increase the granularity value when there are more CPUs,
  5052. * because with more CPUs the 'effective latency' as visible
  5053. * to users decreases. But the relationship is not linear,
  5054. * so pick a second-best guess by going with the log2 of the
  5055. * number of CPUs.
  5056. *
  5057. * This idea comes from the SD scheduler of Con Kolivas:
  5058. */
  5059. static inline void sched_init_granularity(void)
  5060. {
  5061. unsigned int factor = 1 + ilog2(num_online_cpus());
  5062. const unsigned long limit = 200000000;
  5063. sysctl_sched_min_granularity *= factor;
  5064. if (sysctl_sched_min_granularity > limit)
  5065. sysctl_sched_min_granularity = limit;
  5066. sysctl_sched_latency *= factor;
  5067. if (sysctl_sched_latency > limit)
  5068. sysctl_sched_latency = limit;
  5069. sysctl_sched_wakeup_granularity *= factor;
  5070. sysctl_sched_shares_ratelimit *= factor;
  5071. }
  5072. #ifdef CONFIG_SMP
  5073. /*
  5074. * This is how migration works:
  5075. *
  5076. * 1) we queue a struct migration_req structure in the source CPU's
  5077. * runqueue and wake up that CPU's migration thread.
  5078. * 2) we down() the locked semaphore => thread blocks.
  5079. * 3) migration thread wakes up (implicitly it forces the migrated
  5080. * thread off the CPU)
  5081. * 4) it gets the migration request and checks whether the migrated
  5082. * task is still in the wrong runqueue.
  5083. * 5) if it's in the wrong runqueue then the migration thread removes
  5084. * it and puts it into the right queue.
  5085. * 6) migration thread up()s the semaphore.
  5086. * 7) we wake up and the migration is done.
  5087. */
  5088. /*
  5089. * Change a given task's CPU affinity. Migrate the thread to a
  5090. * proper CPU and schedule it away if the CPU it's executing on
  5091. * is removed from the allowed bitmask.
  5092. *
  5093. * NOTE: the caller must have a valid reference to the task, the
  5094. * task must not exit() & deallocate itself prematurely. The
  5095. * call is not atomic; no spinlocks may be held.
  5096. */
  5097. int set_cpus_allowed_ptr(struct task_struct *p, const cpumask_t *new_mask)
  5098. {
  5099. struct migration_req req;
  5100. unsigned long flags;
  5101. struct rq *rq;
  5102. int ret = 0;
  5103. rq = task_rq_lock(p, &flags);
  5104. if (!cpus_intersects(*new_mask, cpu_online_map)) {
  5105. ret = -EINVAL;
  5106. goto out;
  5107. }
  5108. if (unlikely((p->flags & PF_THREAD_BOUND) && p != current &&
  5109. !cpus_equal(p->cpus_allowed, *new_mask))) {
  5110. ret = -EINVAL;
  5111. goto out;
  5112. }
  5113. if (p->sched_class->set_cpus_allowed)
  5114. p->sched_class->set_cpus_allowed(p, new_mask);
  5115. else {
  5116. p->cpus_allowed = *new_mask;
  5117. p->rt.nr_cpus_allowed = cpus_weight(*new_mask);
  5118. }
  5119. /* Can the task run on the task's current CPU? If so, we're done */
  5120. if (cpu_isset(task_cpu(p), *new_mask))
  5121. goto out;
  5122. if (migrate_task(p, cpumask_any_and(cpu_online_mask, new_mask), &req)) {
  5123. /* Need help from migration thread: drop lock and wait. */
  5124. task_rq_unlock(rq, &flags);
  5125. wake_up_process(rq->migration_thread);
  5126. wait_for_completion(&req.done);
  5127. tlb_migrate_finish(p->mm);
  5128. return 0;
  5129. }
  5130. out:
  5131. task_rq_unlock(rq, &flags);
  5132. return ret;
  5133. }
  5134. EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
  5135. /*
  5136. * Move (not current) task off this cpu, onto dest cpu. We're doing
  5137. * this because either it can't run here any more (set_cpus_allowed()
  5138. * away from this CPU, or CPU going down), or because we're
  5139. * attempting to rebalance this task on exec (sched_exec).
  5140. *
  5141. * So we race with normal scheduler movements, but that's OK, as long
  5142. * as the task is no longer on this CPU.
  5143. *
  5144. * Returns non-zero if task was successfully migrated.
  5145. */
  5146. static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
  5147. {
  5148. struct rq *rq_dest, *rq_src;
  5149. int ret = 0, on_rq;
  5150. if (unlikely(!cpu_active(dest_cpu)))
  5151. return ret;
  5152. rq_src = cpu_rq(src_cpu);
  5153. rq_dest = cpu_rq(dest_cpu);
  5154. double_rq_lock(rq_src, rq_dest);
  5155. /* Already moved. */
  5156. if (task_cpu(p) != src_cpu)
  5157. goto done;
  5158. /* Affinity changed (again). */
  5159. if (!cpu_isset(dest_cpu, p->cpus_allowed))
  5160. goto fail;
  5161. on_rq = p->se.on_rq;
  5162. if (on_rq)
  5163. deactivate_task(rq_src, p, 0);
  5164. set_task_cpu(p, dest_cpu);
  5165. if (on_rq) {
  5166. activate_task(rq_dest, p, 0);
  5167. check_preempt_curr(rq_dest, p, 0);
  5168. }
  5169. done:
  5170. ret = 1;
  5171. fail:
  5172. double_rq_unlock(rq_src, rq_dest);
  5173. return ret;
  5174. }
  5175. /*
  5176. * migration_thread - this is a highprio system thread that performs
  5177. * thread migration by bumping thread off CPU then 'pushing' onto
  5178. * another runqueue.
  5179. */
  5180. static int migration_thread(void *data)
  5181. {
  5182. int cpu = (long)data;
  5183. struct rq *rq;
  5184. rq = cpu_rq(cpu);
  5185. BUG_ON(rq->migration_thread != current);
  5186. set_current_state(TASK_INTERRUPTIBLE);
  5187. while (!kthread_should_stop()) {
  5188. struct migration_req *req;
  5189. struct list_head *head;
  5190. spin_lock_irq(&rq->lock);
  5191. if (cpu_is_offline(cpu)) {
  5192. spin_unlock_irq(&rq->lock);
  5193. goto wait_to_die;
  5194. }
  5195. if (rq->active_balance) {
  5196. active_load_balance(rq, cpu);
  5197. rq->active_balance = 0;
  5198. }
  5199. head = &rq->migration_queue;
  5200. if (list_empty(head)) {
  5201. spin_unlock_irq(&rq->lock);
  5202. schedule();
  5203. set_current_state(TASK_INTERRUPTIBLE);
  5204. continue;
  5205. }
  5206. req = list_entry(head->next, struct migration_req, list);
  5207. list_del_init(head->next);
  5208. spin_unlock(&rq->lock);
  5209. __migrate_task(req->task, cpu, req->dest_cpu);
  5210. local_irq_enable();
  5211. complete(&req->done);
  5212. }
  5213. __set_current_state(TASK_RUNNING);
  5214. return 0;
  5215. wait_to_die:
  5216. /* Wait for kthread_stop */
  5217. set_current_state(TASK_INTERRUPTIBLE);
  5218. while (!kthread_should_stop()) {
  5219. schedule();
  5220. set_current_state(TASK_INTERRUPTIBLE);
  5221. }
  5222. __set_current_state(TASK_RUNNING);
  5223. return 0;
  5224. }
  5225. #ifdef CONFIG_HOTPLUG_CPU
  5226. static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu)
  5227. {
  5228. int ret;
  5229. local_irq_disable();
  5230. ret = __migrate_task(p, src_cpu, dest_cpu);
  5231. local_irq_enable();
  5232. return ret;
  5233. }
  5234. /*
  5235. * Figure out where task on dead CPU should go, use force if necessary.
  5236. */
  5237. static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
  5238. {
  5239. unsigned long flags;
  5240. struct rq *rq;
  5241. int dest_cpu;
  5242. /* FIXME: Use cpumask_of_node here. */
  5243. cpumask_t _nodemask = node_to_cpumask(cpu_to_node(dead_cpu));
  5244. const struct cpumask *nodemask = &_nodemask;
  5245. again:
  5246. /* Look for allowed, online CPU in same node. */
  5247. for_each_cpu_and(dest_cpu, nodemask, cpu_online_mask)
  5248. if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
  5249. goto move;
  5250. /* Any allowed, online CPU? */
  5251. dest_cpu = cpumask_any_and(&p->cpus_allowed, cpu_online_mask);
  5252. if (dest_cpu < nr_cpu_ids)
  5253. goto move;
  5254. /* No more Mr. Nice Guy. */
  5255. if (dest_cpu >= nr_cpu_ids) {
  5256. rq = task_rq_lock(p, &flags);
  5257. cpuset_cpus_allowed_locked(p, &p->cpus_allowed);
  5258. dest_cpu = cpumask_any_and(cpu_online_mask, &p->cpus_allowed);
  5259. task_rq_unlock(rq, &flags);
  5260. /*
  5261. * Don't tell them about moving exiting tasks or
  5262. * kernel threads (both mm NULL), since they never
  5263. * leave kernel.
  5264. */
  5265. if (p->mm && printk_ratelimit()) {
  5266. printk(KERN_INFO "process %d (%s) no "
  5267. "longer affine to cpu%d\n",
  5268. task_pid_nr(p), p->comm, dead_cpu);
  5269. }
  5270. }
  5271. move:
  5272. /* It can have affinity changed while we were choosing. */
  5273. if (unlikely(!__migrate_task_irq(p, dead_cpu, dest_cpu)))
  5274. goto again;
  5275. }
  5276. /*
  5277. * While a dead CPU has no uninterruptible tasks queued at this point,
  5278. * it might still have a nonzero ->nr_uninterruptible counter, because
  5279. * for performance reasons the counter is not stricly tracking tasks to
  5280. * their home CPUs. So we just add the counter to another CPU's counter,
  5281. * to keep the global sum constant after CPU-down:
  5282. */
  5283. static void migrate_nr_uninterruptible(struct rq *rq_src)
  5284. {
  5285. struct rq *rq_dest = cpu_rq(cpumask_any(cpu_online_mask));
  5286. unsigned long flags;
  5287. local_irq_save(flags);
  5288. double_rq_lock(rq_src, rq_dest);
  5289. rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
  5290. rq_src->nr_uninterruptible = 0;
  5291. double_rq_unlock(rq_src, rq_dest);
  5292. local_irq_restore(flags);
  5293. }
  5294. /* Run through task list and migrate tasks from the dead cpu. */
  5295. static void migrate_live_tasks(int src_cpu)
  5296. {
  5297. struct task_struct *p, *t;
  5298. read_lock(&tasklist_lock);
  5299. do_each_thread(t, p) {
  5300. if (p == current)
  5301. continue;
  5302. if (task_cpu(p) == src_cpu)
  5303. move_task_off_dead_cpu(src_cpu, p);
  5304. } while_each_thread(t, p);
  5305. read_unlock(&tasklist_lock);
  5306. }
  5307. /*
  5308. * Schedules idle task to be the next runnable task on current CPU.
  5309. * It does so by boosting its priority to highest possible.
  5310. * Used by CPU offline code.
  5311. */
  5312. void sched_idle_next(void)
  5313. {
  5314. int this_cpu = smp_processor_id();
  5315. struct rq *rq = cpu_rq(this_cpu);
  5316. struct task_struct *p = rq->idle;
  5317. unsigned long flags;
  5318. /* cpu has to be offline */
  5319. BUG_ON(cpu_online(this_cpu));
  5320. /*
  5321. * Strictly not necessary since rest of the CPUs are stopped by now
  5322. * and interrupts disabled on the current cpu.
  5323. */
  5324. spin_lock_irqsave(&rq->lock, flags);
  5325. __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
  5326. update_rq_clock(rq);
  5327. activate_task(rq, p, 0);
  5328. spin_unlock_irqrestore(&rq->lock, flags);
  5329. }
  5330. /*
  5331. * Ensures that the idle task is using init_mm right before its cpu goes
  5332. * offline.
  5333. */
  5334. void idle_task_exit(void)
  5335. {
  5336. struct mm_struct *mm = current->active_mm;
  5337. BUG_ON(cpu_online(smp_processor_id()));
  5338. if (mm != &init_mm)
  5339. switch_mm(mm, &init_mm, current);
  5340. mmdrop(mm);
  5341. }
  5342. /* called under rq->lock with disabled interrupts */
  5343. static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
  5344. {
  5345. struct rq *rq = cpu_rq(dead_cpu);
  5346. /* Must be exiting, otherwise would be on tasklist. */
  5347. BUG_ON(!p->exit_state);
  5348. /* Cannot have done final schedule yet: would have vanished. */
  5349. BUG_ON(p->state == TASK_DEAD);
  5350. get_task_struct(p);
  5351. /*
  5352. * Drop lock around migration; if someone else moves it,
  5353. * that's OK. No task can be added to this CPU, so iteration is
  5354. * fine.
  5355. */
  5356. spin_unlock_irq(&rq->lock);
  5357. move_task_off_dead_cpu(dead_cpu, p);
  5358. spin_lock_irq(&rq->lock);
  5359. put_task_struct(p);
  5360. }
  5361. /* release_task() removes task from tasklist, so we won't find dead tasks. */
  5362. static void migrate_dead_tasks(unsigned int dead_cpu)
  5363. {
  5364. struct rq *rq = cpu_rq(dead_cpu);
  5365. struct task_struct *next;
  5366. for ( ; ; ) {
  5367. if (!rq->nr_running)
  5368. break;
  5369. update_rq_clock(rq);
  5370. next = pick_next_task(rq, rq->curr);
  5371. if (!next)
  5372. break;
  5373. next->sched_class->put_prev_task(rq, next);
  5374. migrate_dead(dead_cpu, next);
  5375. }
  5376. }
  5377. #endif /* CONFIG_HOTPLUG_CPU */
  5378. #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
  5379. static struct ctl_table sd_ctl_dir[] = {
  5380. {
  5381. .procname = "sched_domain",
  5382. .mode = 0555,
  5383. },
  5384. {0, },
  5385. };
  5386. static struct ctl_table sd_ctl_root[] = {
  5387. {
  5388. .ctl_name = CTL_KERN,
  5389. .procname = "kernel",
  5390. .mode = 0555,
  5391. .child = sd_ctl_dir,
  5392. },
  5393. {0, },
  5394. };
  5395. static struct ctl_table *sd_alloc_ctl_entry(int n)
  5396. {
  5397. struct ctl_table *entry =
  5398. kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
  5399. return entry;
  5400. }
  5401. static void sd_free_ctl_entry(struct ctl_table **tablep)
  5402. {
  5403. struct ctl_table *entry;
  5404. /*
  5405. * In the intermediate directories, both the child directory and
  5406. * procname are dynamically allocated and could fail but the mode
  5407. * will always be set. In the lowest directory the names are
  5408. * static strings and all have proc handlers.
  5409. */
  5410. for (entry = *tablep; entry->mode; entry++) {
  5411. if (entry->child)
  5412. sd_free_ctl_entry(&entry->child);
  5413. if (entry->proc_handler == NULL)
  5414. kfree(entry->procname);
  5415. }
  5416. kfree(*tablep);
  5417. *tablep = NULL;
  5418. }
  5419. static void
  5420. set_table_entry(struct ctl_table *entry,
  5421. const char *procname, void *data, int maxlen,
  5422. mode_t mode, proc_handler *proc_handler)
  5423. {
  5424. entry->procname = procname;
  5425. entry->data = data;
  5426. entry->maxlen = maxlen;
  5427. entry->mode = mode;
  5428. entry->proc_handler = proc_handler;
  5429. }
  5430. static struct ctl_table *
  5431. sd_alloc_ctl_domain_table(struct sched_domain *sd)
  5432. {
  5433. struct ctl_table *table = sd_alloc_ctl_entry(13);
  5434. if (table == NULL)
  5435. return NULL;
  5436. set_table_entry(&table[0], "min_interval", &sd->min_interval,
  5437. sizeof(long), 0644, proc_doulongvec_minmax);
  5438. set_table_entry(&table[1], "max_interval", &sd->max_interval,
  5439. sizeof(long), 0644, proc_doulongvec_minmax);
  5440. set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
  5441. sizeof(int), 0644, proc_dointvec_minmax);
  5442. set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
  5443. sizeof(int), 0644, proc_dointvec_minmax);
  5444. set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
  5445. sizeof(int), 0644, proc_dointvec_minmax);
  5446. set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
  5447. sizeof(int), 0644, proc_dointvec_minmax);
  5448. set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
  5449. sizeof(int), 0644, proc_dointvec_minmax);
  5450. set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
  5451. sizeof(int), 0644, proc_dointvec_minmax);
  5452. set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
  5453. sizeof(int), 0644, proc_dointvec_minmax);
  5454. set_table_entry(&table[9], "cache_nice_tries",
  5455. &sd->cache_nice_tries,
  5456. sizeof(int), 0644, proc_dointvec_minmax);
  5457. set_table_entry(&table[10], "flags", &sd->flags,
  5458. sizeof(int), 0644, proc_dointvec_minmax);
  5459. set_table_entry(&table[11], "name", sd->name,
  5460. CORENAME_MAX_SIZE, 0444, proc_dostring);
  5461. /* &table[12] is terminator */
  5462. return table;
  5463. }
  5464. static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
  5465. {
  5466. struct ctl_table *entry, *table;
  5467. struct sched_domain *sd;
  5468. int domain_num = 0, i;
  5469. char buf[32];
  5470. for_each_domain(cpu, sd)
  5471. domain_num++;
  5472. entry = table = sd_alloc_ctl_entry(domain_num + 1);
  5473. if (table == NULL)
  5474. return NULL;
  5475. i = 0;
  5476. for_each_domain(cpu, sd) {
  5477. snprintf(buf, 32, "domain%d", i);
  5478. entry->procname = kstrdup(buf, GFP_KERNEL);
  5479. entry->mode = 0555;
  5480. entry->child = sd_alloc_ctl_domain_table(sd);
  5481. entry++;
  5482. i++;
  5483. }
  5484. return table;
  5485. }
  5486. static struct ctl_table_header *sd_sysctl_header;
  5487. static void register_sched_domain_sysctl(void)
  5488. {
  5489. int i, cpu_num = num_online_cpus();
  5490. struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
  5491. char buf[32];
  5492. WARN_ON(sd_ctl_dir[0].child);
  5493. sd_ctl_dir[0].child = entry;
  5494. if (entry == NULL)
  5495. return;
  5496. for_each_online_cpu(i) {
  5497. snprintf(buf, 32, "cpu%d", i);
  5498. entry->procname = kstrdup(buf, GFP_KERNEL);
  5499. entry->mode = 0555;
  5500. entry->child = sd_alloc_ctl_cpu_table(i);
  5501. entry++;
  5502. }
  5503. WARN_ON(sd_sysctl_header);
  5504. sd_sysctl_header = register_sysctl_table(sd_ctl_root);
  5505. }
  5506. /* may be called multiple times per register */
  5507. static void unregister_sched_domain_sysctl(void)
  5508. {
  5509. if (sd_sysctl_header)
  5510. unregister_sysctl_table(sd_sysctl_header);
  5511. sd_sysctl_header = NULL;
  5512. if (sd_ctl_dir[0].child)
  5513. sd_free_ctl_entry(&sd_ctl_dir[0].child);
  5514. }
  5515. #else
  5516. static void register_sched_domain_sysctl(void)
  5517. {
  5518. }
  5519. static void unregister_sched_domain_sysctl(void)
  5520. {
  5521. }
  5522. #endif
  5523. static void set_rq_online(struct rq *rq)
  5524. {
  5525. if (!rq->online) {
  5526. const struct sched_class *class;
  5527. cpumask_set_cpu(rq->cpu, rq->rd->online);
  5528. rq->online = 1;
  5529. for_each_class(class) {
  5530. if (class->rq_online)
  5531. class->rq_online(rq);
  5532. }
  5533. }
  5534. }
  5535. static void set_rq_offline(struct rq *rq)
  5536. {
  5537. if (rq->online) {
  5538. const struct sched_class *class;
  5539. for_each_class(class) {
  5540. if (class->rq_offline)
  5541. class->rq_offline(rq);
  5542. }
  5543. cpumask_clear_cpu(rq->cpu, rq->rd->online);
  5544. rq->online = 0;
  5545. }
  5546. }
  5547. /*
  5548. * migration_call - callback that gets triggered when a CPU is added.
  5549. * Here we can start up the necessary migration thread for the new CPU.
  5550. */
  5551. static int __cpuinit
  5552. migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
  5553. {
  5554. struct task_struct *p;
  5555. int cpu = (long)hcpu;
  5556. unsigned long flags;
  5557. struct rq *rq;
  5558. switch (action) {
  5559. case CPU_UP_PREPARE:
  5560. case CPU_UP_PREPARE_FROZEN:
  5561. p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
  5562. if (IS_ERR(p))
  5563. return NOTIFY_BAD;
  5564. kthread_bind(p, cpu);
  5565. /* Must be high prio: stop_machine expects to yield to it. */
  5566. rq = task_rq_lock(p, &flags);
  5567. __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
  5568. task_rq_unlock(rq, &flags);
  5569. cpu_rq(cpu)->migration_thread = p;
  5570. break;
  5571. case CPU_ONLINE:
  5572. case CPU_ONLINE_FROZEN:
  5573. /* Strictly unnecessary, as first user will wake it. */
  5574. wake_up_process(cpu_rq(cpu)->migration_thread);
  5575. /* Update our root-domain */
  5576. rq = cpu_rq(cpu);
  5577. spin_lock_irqsave(&rq->lock, flags);
  5578. if (rq->rd) {
  5579. BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
  5580. set_rq_online(rq);
  5581. }
  5582. spin_unlock_irqrestore(&rq->lock, flags);
  5583. break;
  5584. #ifdef CONFIG_HOTPLUG_CPU
  5585. case CPU_UP_CANCELED:
  5586. case CPU_UP_CANCELED_FROZEN:
  5587. if (!cpu_rq(cpu)->migration_thread)
  5588. break;
  5589. /* Unbind it from offline cpu so it can run. Fall thru. */
  5590. kthread_bind(cpu_rq(cpu)->migration_thread,
  5591. cpumask_any(cpu_online_mask));
  5592. kthread_stop(cpu_rq(cpu)->migration_thread);
  5593. cpu_rq(cpu)->migration_thread = NULL;
  5594. break;
  5595. case CPU_DEAD:
  5596. case CPU_DEAD_FROZEN:
  5597. cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
  5598. migrate_live_tasks(cpu);
  5599. rq = cpu_rq(cpu);
  5600. kthread_stop(rq->migration_thread);
  5601. rq->migration_thread = NULL;
  5602. /* Idle task back to normal (off runqueue, low prio) */
  5603. spin_lock_irq(&rq->lock);
  5604. update_rq_clock(rq);
  5605. deactivate_task(rq, rq->idle, 0);
  5606. rq->idle->static_prio = MAX_PRIO;
  5607. __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
  5608. rq->idle->sched_class = &idle_sched_class;
  5609. migrate_dead_tasks(cpu);
  5610. spin_unlock_irq(&rq->lock);
  5611. cpuset_unlock();
  5612. migrate_nr_uninterruptible(rq);
  5613. BUG_ON(rq->nr_running != 0);
  5614. /*
  5615. * No need to migrate the tasks: it was best-effort if
  5616. * they didn't take sched_hotcpu_mutex. Just wake up
  5617. * the requestors.
  5618. */
  5619. spin_lock_irq(&rq->lock);
  5620. while (!list_empty(&rq->migration_queue)) {
  5621. struct migration_req *req;
  5622. req = list_entry(rq->migration_queue.next,
  5623. struct migration_req, list);
  5624. list_del_init(&req->list);
  5625. complete(&req->done);
  5626. }
  5627. spin_unlock_irq(&rq->lock);
  5628. break;
  5629. case CPU_DYING:
  5630. case CPU_DYING_FROZEN:
  5631. /* Update our root-domain */
  5632. rq = cpu_rq(cpu);
  5633. spin_lock_irqsave(&rq->lock, flags);
  5634. if (rq->rd) {
  5635. BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
  5636. set_rq_offline(rq);
  5637. }
  5638. spin_unlock_irqrestore(&rq->lock, flags);
  5639. break;
  5640. #endif
  5641. }
  5642. return NOTIFY_OK;
  5643. }
  5644. /* Register at highest priority so that task migration (migrate_all_tasks)
  5645. * happens before everything else.
  5646. */
  5647. static struct notifier_block __cpuinitdata migration_notifier = {
  5648. .notifier_call = migration_call,
  5649. .priority = 10
  5650. };
  5651. static int __init migration_init(void)
  5652. {
  5653. void *cpu = (void *)(long)smp_processor_id();
  5654. int err;
  5655. /* Start one for the boot CPU: */
  5656. err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
  5657. BUG_ON(err == NOTIFY_BAD);
  5658. migration_call(&migration_notifier, CPU_ONLINE, cpu);
  5659. register_cpu_notifier(&migration_notifier);
  5660. return err;
  5661. }
  5662. early_initcall(migration_init);
  5663. #endif
  5664. #ifdef CONFIG_SMP
  5665. #ifdef CONFIG_SCHED_DEBUG
  5666. static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
  5667. cpumask_t *groupmask)
  5668. {
  5669. struct sched_group *group = sd->groups;
  5670. char str[256];
  5671. cpulist_scnprintf(str, sizeof(str), *sched_domain_span(sd));
  5672. cpus_clear(*groupmask);
  5673. printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
  5674. if (!(sd->flags & SD_LOAD_BALANCE)) {
  5675. printk("does not load-balance\n");
  5676. if (sd->parent)
  5677. printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
  5678. " has parent");
  5679. return -1;
  5680. }
  5681. printk(KERN_CONT "span %s level %s\n", str, sd->name);
  5682. if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
  5683. printk(KERN_ERR "ERROR: domain->span does not contain "
  5684. "CPU%d\n", cpu);
  5685. }
  5686. if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
  5687. printk(KERN_ERR "ERROR: domain->groups does not contain"
  5688. " CPU%d\n", cpu);
  5689. }
  5690. printk(KERN_DEBUG "%*s groups:", level + 1, "");
  5691. do {
  5692. if (!group) {
  5693. printk("\n");
  5694. printk(KERN_ERR "ERROR: group is NULL\n");
  5695. break;
  5696. }
  5697. if (!group->__cpu_power) {
  5698. printk(KERN_CONT "\n");
  5699. printk(KERN_ERR "ERROR: domain->cpu_power not "
  5700. "set\n");
  5701. break;
  5702. }
  5703. if (!cpumask_weight(sched_group_cpus(group))) {
  5704. printk(KERN_CONT "\n");
  5705. printk(KERN_ERR "ERROR: empty group\n");
  5706. break;
  5707. }
  5708. if (cpumask_intersects(groupmask, sched_group_cpus(group))) {
  5709. printk(KERN_CONT "\n");
  5710. printk(KERN_ERR "ERROR: repeated CPUs\n");
  5711. break;
  5712. }
  5713. cpumask_or(groupmask, groupmask, sched_group_cpus(group));
  5714. cpulist_scnprintf(str, sizeof(str), *sched_group_cpus(group));
  5715. printk(KERN_CONT " %s", str);
  5716. group = group->next;
  5717. } while (group != sd->groups);
  5718. printk(KERN_CONT "\n");
  5719. if (!cpumask_equal(sched_domain_span(sd), groupmask))
  5720. printk(KERN_ERR "ERROR: groups don't span domain->span\n");
  5721. if (sd->parent &&
  5722. !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
  5723. printk(KERN_ERR "ERROR: parent span is not a superset "
  5724. "of domain->span\n");
  5725. return 0;
  5726. }
  5727. static void sched_domain_debug(struct sched_domain *sd, int cpu)
  5728. {
  5729. cpumask_var_t groupmask;
  5730. int level = 0;
  5731. if (!sd) {
  5732. printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
  5733. return;
  5734. }
  5735. printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
  5736. if (!alloc_cpumask_var(&groupmask, GFP_KERNEL)) {
  5737. printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
  5738. return;
  5739. }
  5740. for (;;) {
  5741. if (sched_domain_debug_one(sd, cpu, level, groupmask))
  5742. break;
  5743. level++;
  5744. sd = sd->parent;
  5745. if (!sd)
  5746. break;
  5747. }
  5748. free_cpumask_var(groupmask);
  5749. }
  5750. #else /* !CONFIG_SCHED_DEBUG */
  5751. # define sched_domain_debug(sd, cpu) do { } while (0)
  5752. #endif /* CONFIG_SCHED_DEBUG */
  5753. static int sd_degenerate(struct sched_domain *sd)
  5754. {
  5755. if (cpumask_weight(sched_domain_span(sd)) == 1)
  5756. return 1;
  5757. /* Following flags need at least 2 groups */
  5758. if (sd->flags & (SD_LOAD_BALANCE |
  5759. SD_BALANCE_NEWIDLE |
  5760. SD_BALANCE_FORK |
  5761. SD_BALANCE_EXEC |
  5762. SD_SHARE_CPUPOWER |
  5763. SD_SHARE_PKG_RESOURCES)) {
  5764. if (sd->groups != sd->groups->next)
  5765. return 0;
  5766. }
  5767. /* Following flags don't use groups */
  5768. if (sd->flags & (SD_WAKE_IDLE |
  5769. SD_WAKE_AFFINE |
  5770. SD_WAKE_BALANCE))
  5771. return 0;
  5772. return 1;
  5773. }
  5774. static int
  5775. sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
  5776. {
  5777. unsigned long cflags = sd->flags, pflags = parent->flags;
  5778. if (sd_degenerate(parent))
  5779. return 1;
  5780. if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
  5781. return 0;
  5782. /* Does parent contain flags not in child? */
  5783. /* WAKE_BALANCE is a subset of WAKE_AFFINE */
  5784. if (cflags & SD_WAKE_AFFINE)
  5785. pflags &= ~SD_WAKE_BALANCE;
  5786. /* Flags needing groups don't count if only 1 group in parent */
  5787. if (parent->groups == parent->groups->next) {
  5788. pflags &= ~(SD_LOAD_BALANCE |
  5789. SD_BALANCE_NEWIDLE |
  5790. SD_BALANCE_FORK |
  5791. SD_BALANCE_EXEC |
  5792. SD_SHARE_CPUPOWER |
  5793. SD_SHARE_PKG_RESOURCES);
  5794. }
  5795. if (~cflags & pflags)
  5796. return 0;
  5797. return 1;
  5798. }
  5799. static void free_rootdomain(struct root_domain *rd)
  5800. {
  5801. cpupri_cleanup(&rd->cpupri);
  5802. free_cpumask_var(rd->rto_mask);
  5803. free_cpumask_var(rd->online);
  5804. free_cpumask_var(rd->span);
  5805. kfree(rd);
  5806. }
  5807. static void rq_attach_root(struct rq *rq, struct root_domain *rd)
  5808. {
  5809. unsigned long flags;
  5810. spin_lock_irqsave(&rq->lock, flags);
  5811. if (rq->rd) {
  5812. struct root_domain *old_rd = rq->rd;
  5813. if (cpumask_test_cpu(rq->cpu, old_rd->online))
  5814. set_rq_offline(rq);
  5815. cpumask_clear_cpu(rq->cpu, old_rd->span);
  5816. if (atomic_dec_and_test(&old_rd->refcount))
  5817. free_rootdomain(old_rd);
  5818. }
  5819. atomic_inc(&rd->refcount);
  5820. rq->rd = rd;
  5821. cpumask_set_cpu(rq->cpu, rd->span);
  5822. if (cpumask_test_cpu(rq->cpu, cpu_online_mask))
  5823. set_rq_online(rq);
  5824. spin_unlock_irqrestore(&rq->lock, flags);
  5825. }
  5826. static int init_rootdomain(struct root_domain *rd, bool bootmem)
  5827. {
  5828. memset(rd, 0, sizeof(*rd));
  5829. if (bootmem) {
  5830. alloc_bootmem_cpumask_var(&def_root_domain.span);
  5831. alloc_bootmem_cpumask_var(&def_root_domain.online);
  5832. alloc_bootmem_cpumask_var(&def_root_domain.rto_mask);
  5833. cpupri_init(&rd->cpupri, true);
  5834. return 0;
  5835. }
  5836. if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
  5837. goto free_rd;
  5838. if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
  5839. goto free_span;
  5840. if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
  5841. goto free_online;
  5842. if (cpupri_init(&rd->cpupri, false) != 0)
  5843. goto free_rto_mask;
  5844. return 0;
  5845. free_rto_mask:
  5846. free_cpumask_var(rd->rto_mask);
  5847. free_online:
  5848. free_cpumask_var(rd->online);
  5849. free_span:
  5850. free_cpumask_var(rd->span);
  5851. free_rd:
  5852. kfree(rd);
  5853. return -ENOMEM;
  5854. }
  5855. static void init_defrootdomain(void)
  5856. {
  5857. init_rootdomain(&def_root_domain, true);
  5858. atomic_set(&def_root_domain.refcount, 1);
  5859. }
  5860. static struct root_domain *alloc_rootdomain(void)
  5861. {
  5862. struct root_domain *rd;
  5863. rd = kmalloc(sizeof(*rd), GFP_KERNEL);
  5864. if (!rd)
  5865. return NULL;
  5866. if (init_rootdomain(rd, false) != 0) {
  5867. kfree(rd);
  5868. return NULL;
  5869. }
  5870. return rd;
  5871. }
  5872. /*
  5873. * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
  5874. * hold the hotplug lock.
  5875. */
  5876. static void
  5877. cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
  5878. {
  5879. struct rq *rq = cpu_rq(cpu);
  5880. struct sched_domain *tmp;
  5881. /* Remove the sched domains which do not contribute to scheduling. */
  5882. for (tmp = sd; tmp; ) {
  5883. struct sched_domain *parent = tmp->parent;
  5884. if (!parent)
  5885. break;
  5886. if (sd_parent_degenerate(tmp, parent)) {
  5887. tmp->parent = parent->parent;
  5888. if (parent->parent)
  5889. parent->parent->child = tmp;
  5890. } else
  5891. tmp = tmp->parent;
  5892. }
  5893. if (sd && sd_degenerate(sd)) {
  5894. sd = sd->parent;
  5895. if (sd)
  5896. sd->child = NULL;
  5897. }
  5898. sched_domain_debug(sd, cpu);
  5899. rq_attach_root(rq, rd);
  5900. rcu_assign_pointer(rq->sd, sd);
  5901. }
  5902. /* cpus with isolated domains */
  5903. static cpumask_var_t cpu_isolated_map;
  5904. /* Setup the mask of cpus configured for isolated domains */
  5905. static int __init isolated_cpu_setup(char *str)
  5906. {
  5907. cpulist_parse(str, *cpu_isolated_map);
  5908. return 1;
  5909. }
  5910. __setup("isolcpus=", isolated_cpu_setup);
  5911. /*
  5912. * init_sched_build_groups takes the cpumask we wish to span, and a pointer
  5913. * to a function which identifies what group(along with sched group) a CPU
  5914. * belongs to. The return value of group_fn must be a >= 0 and < NR_CPUS
  5915. * (due to the fact that we keep track of groups covered with a cpumask_t).
  5916. *
  5917. * init_sched_build_groups will build a circular linked list of the groups
  5918. * covered by the given span, and will set each group's ->cpumask correctly,
  5919. * and ->cpu_power to 0.
  5920. */
  5921. static void
  5922. init_sched_build_groups(const cpumask_t *span, const cpumask_t *cpu_map,
  5923. int (*group_fn)(int cpu, const cpumask_t *cpu_map,
  5924. struct sched_group **sg,
  5925. cpumask_t *tmpmask),
  5926. cpumask_t *covered, cpumask_t *tmpmask)
  5927. {
  5928. struct sched_group *first = NULL, *last = NULL;
  5929. int i;
  5930. cpus_clear(*covered);
  5931. for_each_cpu(i, span) {
  5932. struct sched_group *sg;
  5933. int group = group_fn(i, cpu_map, &sg, tmpmask);
  5934. int j;
  5935. if (cpumask_test_cpu(i, covered))
  5936. continue;
  5937. cpumask_clear(sched_group_cpus(sg));
  5938. sg->__cpu_power = 0;
  5939. for_each_cpu(j, span) {
  5940. if (group_fn(j, cpu_map, NULL, tmpmask) != group)
  5941. continue;
  5942. cpu_set(j, *covered);
  5943. cpumask_set_cpu(j, sched_group_cpus(sg));
  5944. }
  5945. if (!first)
  5946. first = sg;
  5947. if (last)
  5948. last->next = sg;
  5949. last = sg;
  5950. }
  5951. last->next = first;
  5952. }
  5953. #define SD_NODES_PER_DOMAIN 16
  5954. #ifdef CONFIG_NUMA
  5955. /**
  5956. * find_next_best_node - find the next node to include in a sched_domain
  5957. * @node: node whose sched_domain we're building
  5958. * @used_nodes: nodes already in the sched_domain
  5959. *
  5960. * Find the next node to include in a given scheduling domain. Simply
  5961. * finds the closest node not already in the @used_nodes map.
  5962. *
  5963. * Should use nodemask_t.
  5964. */
  5965. static int find_next_best_node(int node, nodemask_t *used_nodes)
  5966. {
  5967. int i, n, val, min_val, best_node = 0;
  5968. min_val = INT_MAX;
  5969. for (i = 0; i < nr_node_ids; i++) {
  5970. /* Start at @node */
  5971. n = (node + i) % nr_node_ids;
  5972. if (!nr_cpus_node(n))
  5973. continue;
  5974. /* Skip already used nodes */
  5975. if (node_isset(n, *used_nodes))
  5976. continue;
  5977. /* Simple min distance search */
  5978. val = node_distance(node, n);
  5979. if (val < min_val) {
  5980. min_val = val;
  5981. best_node = n;
  5982. }
  5983. }
  5984. node_set(best_node, *used_nodes);
  5985. return best_node;
  5986. }
  5987. /**
  5988. * sched_domain_node_span - get a cpumask for a node's sched_domain
  5989. * @node: node whose cpumask we're constructing
  5990. * @span: resulting cpumask
  5991. *
  5992. * Given a node, construct a good cpumask for its sched_domain to span. It
  5993. * should be one that prevents unnecessary balancing, but also spreads tasks
  5994. * out optimally.
  5995. */
  5996. static void sched_domain_node_span(int node, cpumask_t *span)
  5997. {
  5998. nodemask_t used_nodes;
  5999. node_to_cpumask_ptr(nodemask, node);
  6000. int i;
  6001. cpus_clear(*span);
  6002. nodes_clear(used_nodes);
  6003. cpus_or(*span, *span, *nodemask);
  6004. node_set(node, used_nodes);
  6005. for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
  6006. int next_node = find_next_best_node(node, &used_nodes);
  6007. node_to_cpumask_ptr_next(nodemask, next_node);
  6008. cpus_or(*span, *span, *nodemask);
  6009. }
  6010. }
  6011. #endif /* CONFIG_NUMA */
  6012. int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
  6013. /*
  6014. * The cpus mask in sched_group and sched_domain hangs off the end.
  6015. * FIXME: use cpumask_var_t or dynamic percpu alloc to avoid wasting space
  6016. * for nr_cpu_ids < CONFIG_NR_CPUS.
  6017. */
  6018. struct static_sched_group {
  6019. struct sched_group sg;
  6020. DECLARE_BITMAP(cpus, CONFIG_NR_CPUS);
  6021. };
  6022. struct static_sched_domain {
  6023. struct sched_domain sd;
  6024. DECLARE_BITMAP(span, CONFIG_NR_CPUS);
  6025. };
  6026. /*
  6027. * SMT sched-domains:
  6028. */
  6029. #ifdef CONFIG_SCHED_SMT
  6030. static DEFINE_PER_CPU(struct static_sched_domain, cpu_domains);
  6031. static DEFINE_PER_CPU(struct static_sched_group, sched_group_cpus);
  6032. static int
  6033. cpu_to_cpu_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
  6034. cpumask_t *unused)
  6035. {
  6036. if (sg)
  6037. *sg = &per_cpu(sched_group_cpus, cpu).sg;
  6038. return cpu;
  6039. }
  6040. #endif /* CONFIG_SCHED_SMT */
  6041. /*
  6042. * multi-core sched-domains:
  6043. */
  6044. #ifdef CONFIG_SCHED_MC
  6045. static DEFINE_PER_CPU(struct static_sched_domain, core_domains);
  6046. static DEFINE_PER_CPU(struct static_sched_group, sched_group_core);
  6047. #endif /* CONFIG_SCHED_MC */
  6048. #if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
  6049. static int
  6050. cpu_to_core_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
  6051. cpumask_t *mask)
  6052. {
  6053. int group;
  6054. *mask = per_cpu(cpu_sibling_map, cpu);
  6055. cpus_and(*mask, *mask, *cpu_map);
  6056. group = first_cpu(*mask);
  6057. if (sg)
  6058. *sg = &per_cpu(sched_group_core, group).sg;
  6059. return group;
  6060. }
  6061. #elif defined(CONFIG_SCHED_MC)
  6062. static int
  6063. cpu_to_core_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
  6064. cpumask_t *unused)
  6065. {
  6066. if (sg)
  6067. *sg = &per_cpu(sched_group_core, cpu).sg;
  6068. return cpu;
  6069. }
  6070. #endif
  6071. static DEFINE_PER_CPU(struct static_sched_domain, phys_domains);
  6072. static DEFINE_PER_CPU(struct static_sched_group, sched_group_phys);
  6073. static int
  6074. cpu_to_phys_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
  6075. cpumask_t *mask)
  6076. {
  6077. int group;
  6078. #ifdef CONFIG_SCHED_MC
  6079. *mask = cpu_coregroup_map(cpu);
  6080. cpus_and(*mask, *mask, *cpu_map);
  6081. group = first_cpu(*mask);
  6082. #elif defined(CONFIG_SCHED_SMT)
  6083. *mask = per_cpu(cpu_sibling_map, cpu);
  6084. cpus_and(*mask, *mask, *cpu_map);
  6085. group = first_cpu(*mask);
  6086. #else
  6087. group = cpu;
  6088. #endif
  6089. if (sg)
  6090. *sg = &per_cpu(sched_group_phys, group).sg;
  6091. return group;
  6092. }
  6093. #ifdef CONFIG_NUMA
  6094. /*
  6095. * The init_sched_build_groups can't handle what we want to do with node
  6096. * groups, so roll our own. Now each node has its own list of groups which
  6097. * gets dynamically allocated.
  6098. */
  6099. static DEFINE_PER_CPU(struct sched_domain, node_domains);
  6100. static struct sched_group ***sched_group_nodes_bycpu;
  6101. static DEFINE_PER_CPU(struct sched_domain, allnodes_domains);
  6102. static DEFINE_PER_CPU(struct static_sched_group, sched_group_allnodes);
  6103. static int cpu_to_allnodes_group(int cpu, const cpumask_t *cpu_map,
  6104. struct sched_group **sg, cpumask_t *nodemask)
  6105. {
  6106. int group;
  6107. node_to_cpumask_ptr(pnodemask, cpu_to_node(cpu));
  6108. cpus_and(*nodemask, *pnodemask, *cpu_map);
  6109. group = first_cpu(*nodemask);
  6110. if (sg)
  6111. *sg = &per_cpu(sched_group_allnodes, group).sg;
  6112. return group;
  6113. }
  6114. static void init_numa_sched_groups_power(struct sched_group *group_head)
  6115. {
  6116. struct sched_group *sg = group_head;
  6117. int j;
  6118. if (!sg)
  6119. return;
  6120. do {
  6121. for_each_cpu(j, sched_group_cpus(sg)) {
  6122. struct sched_domain *sd;
  6123. sd = &per_cpu(phys_domains, j).sd;
  6124. if (j != cpumask_first(sched_group_cpus(sd->groups))) {
  6125. /*
  6126. * Only add "power" once for each
  6127. * physical package.
  6128. */
  6129. continue;
  6130. }
  6131. sg_inc_cpu_power(sg, sd->groups->__cpu_power);
  6132. }
  6133. sg = sg->next;
  6134. } while (sg != group_head);
  6135. }
  6136. #endif /* CONFIG_NUMA */
  6137. #ifdef CONFIG_NUMA
  6138. /* Free memory allocated for various sched_group structures */
  6139. static void free_sched_groups(const cpumask_t *cpu_map, cpumask_t *nodemask)
  6140. {
  6141. int cpu, i;
  6142. for_each_cpu(cpu, cpu_map) {
  6143. struct sched_group **sched_group_nodes
  6144. = sched_group_nodes_bycpu[cpu];
  6145. if (!sched_group_nodes)
  6146. continue;
  6147. for (i = 0; i < nr_node_ids; i++) {
  6148. struct sched_group *oldsg, *sg = sched_group_nodes[i];
  6149. node_to_cpumask_ptr(pnodemask, i);
  6150. cpus_and(*nodemask, *pnodemask, *cpu_map);
  6151. if (cpus_empty(*nodemask))
  6152. continue;
  6153. if (sg == NULL)
  6154. continue;
  6155. sg = sg->next;
  6156. next_sg:
  6157. oldsg = sg;
  6158. sg = sg->next;
  6159. kfree(oldsg);
  6160. if (oldsg != sched_group_nodes[i])
  6161. goto next_sg;
  6162. }
  6163. kfree(sched_group_nodes);
  6164. sched_group_nodes_bycpu[cpu] = NULL;
  6165. }
  6166. }
  6167. #else /* !CONFIG_NUMA */
  6168. static void free_sched_groups(const cpumask_t *cpu_map, cpumask_t *nodemask)
  6169. {
  6170. }
  6171. #endif /* CONFIG_NUMA */
  6172. /*
  6173. * Initialize sched groups cpu_power.
  6174. *
  6175. * cpu_power indicates the capacity of sched group, which is used while
  6176. * distributing the load between different sched groups in a sched domain.
  6177. * Typically cpu_power for all the groups in a sched domain will be same unless
  6178. * there are asymmetries in the topology. If there are asymmetries, group
  6179. * having more cpu_power will pickup more load compared to the group having
  6180. * less cpu_power.
  6181. *
  6182. * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
  6183. * the maximum number of tasks a group can handle in the presence of other idle
  6184. * or lightly loaded groups in the same sched domain.
  6185. */
  6186. static void init_sched_groups_power(int cpu, struct sched_domain *sd)
  6187. {
  6188. struct sched_domain *child;
  6189. struct sched_group *group;
  6190. WARN_ON(!sd || !sd->groups);
  6191. if (cpu != cpumask_first(sched_group_cpus(sd->groups)))
  6192. return;
  6193. child = sd->child;
  6194. sd->groups->__cpu_power = 0;
  6195. /*
  6196. * For perf policy, if the groups in child domain share resources
  6197. * (for example cores sharing some portions of the cache hierarchy
  6198. * or SMT), then set this domain groups cpu_power such that each group
  6199. * can handle only one task, when there are other idle groups in the
  6200. * same sched domain.
  6201. */
  6202. if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
  6203. (child->flags &
  6204. (SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
  6205. sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE);
  6206. return;
  6207. }
  6208. /*
  6209. * add cpu_power of each child group to this groups cpu_power
  6210. */
  6211. group = child->groups;
  6212. do {
  6213. sg_inc_cpu_power(sd->groups, group->__cpu_power);
  6214. group = group->next;
  6215. } while (group != child->groups);
  6216. }
  6217. /*
  6218. * Initializers for schedule domains
  6219. * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
  6220. */
  6221. #ifdef CONFIG_SCHED_DEBUG
  6222. # define SD_INIT_NAME(sd, type) sd->name = #type
  6223. #else
  6224. # define SD_INIT_NAME(sd, type) do { } while (0)
  6225. #endif
  6226. #define SD_INIT(sd, type) sd_init_##type(sd)
  6227. #define SD_INIT_FUNC(type) \
  6228. static noinline void sd_init_##type(struct sched_domain *sd) \
  6229. { \
  6230. memset(sd, 0, sizeof(*sd)); \
  6231. *sd = SD_##type##_INIT; \
  6232. sd->level = SD_LV_##type; \
  6233. SD_INIT_NAME(sd, type); \
  6234. }
  6235. SD_INIT_FUNC(CPU)
  6236. #ifdef CONFIG_NUMA
  6237. SD_INIT_FUNC(ALLNODES)
  6238. SD_INIT_FUNC(NODE)
  6239. #endif
  6240. #ifdef CONFIG_SCHED_SMT
  6241. SD_INIT_FUNC(SIBLING)
  6242. #endif
  6243. #ifdef CONFIG_SCHED_MC
  6244. SD_INIT_FUNC(MC)
  6245. #endif
  6246. static int default_relax_domain_level = -1;
  6247. static int __init setup_relax_domain_level(char *str)
  6248. {
  6249. unsigned long val;
  6250. val = simple_strtoul(str, NULL, 0);
  6251. if (val < SD_LV_MAX)
  6252. default_relax_domain_level = val;
  6253. return 1;
  6254. }
  6255. __setup("relax_domain_level=", setup_relax_domain_level);
  6256. static void set_domain_attribute(struct sched_domain *sd,
  6257. struct sched_domain_attr *attr)
  6258. {
  6259. int request;
  6260. if (!attr || attr->relax_domain_level < 0) {
  6261. if (default_relax_domain_level < 0)
  6262. return;
  6263. else
  6264. request = default_relax_domain_level;
  6265. } else
  6266. request = attr->relax_domain_level;
  6267. if (request < sd->level) {
  6268. /* turn off idle balance on this domain */
  6269. sd->flags &= ~(SD_WAKE_IDLE|SD_BALANCE_NEWIDLE);
  6270. } else {
  6271. /* turn on idle balance on this domain */
  6272. sd->flags |= (SD_WAKE_IDLE_FAR|SD_BALANCE_NEWIDLE);
  6273. }
  6274. }
  6275. /*
  6276. * Build sched domains for a given set of cpus and attach the sched domains
  6277. * to the individual cpus
  6278. */
  6279. static int __build_sched_domains(const cpumask_t *cpu_map,
  6280. struct sched_domain_attr *attr)
  6281. {
  6282. int i, err = -ENOMEM;
  6283. struct root_domain *rd;
  6284. cpumask_var_t nodemask, this_sibling_map, this_core_map, send_covered,
  6285. tmpmask;
  6286. #ifdef CONFIG_NUMA
  6287. cpumask_var_t domainspan, covered, notcovered;
  6288. struct sched_group **sched_group_nodes = NULL;
  6289. int sd_allnodes = 0;
  6290. if (!alloc_cpumask_var(&domainspan, GFP_KERNEL))
  6291. goto out;
  6292. if (!alloc_cpumask_var(&covered, GFP_KERNEL))
  6293. goto free_domainspan;
  6294. if (!alloc_cpumask_var(&notcovered, GFP_KERNEL))
  6295. goto free_covered;
  6296. #endif
  6297. if (!alloc_cpumask_var(&nodemask, GFP_KERNEL))
  6298. goto free_notcovered;
  6299. if (!alloc_cpumask_var(&this_sibling_map, GFP_KERNEL))
  6300. goto free_nodemask;
  6301. if (!alloc_cpumask_var(&this_core_map, GFP_KERNEL))
  6302. goto free_this_sibling_map;
  6303. if (!alloc_cpumask_var(&send_covered, GFP_KERNEL))
  6304. goto free_this_core_map;
  6305. if (!alloc_cpumask_var(&tmpmask, GFP_KERNEL))
  6306. goto free_send_covered;
  6307. #ifdef CONFIG_NUMA
  6308. /*
  6309. * Allocate the per-node list of sched groups
  6310. */
  6311. sched_group_nodes = kcalloc(nr_node_ids, sizeof(struct sched_group *),
  6312. GFP_KERNEL);
  6313. if (!sched_group_nodes) {
  6314. printk(KERN_WARNING "Can not alloc sched group node list\n");
  6315. goto free_tmpmask;
  6316. }
  6317. #endif
  6318. rd = alloc_rootdomain();
  6319. if (!rd) {
  6320. printk(KERN_WARNING "Cannot alloc root domain\n");
  6321. goto free_sched_groups;
  6322. }
  6323. #ifdef CONFIG_NUMA
  6324. sched_group_nodes_bycpu[first_cpu(*cpu_map)] = sched_group_nodes;
  6325. #endif
  6326. /*
  6327. * Set up domains for cpus specified by the cpu_map.
  6328. */
  6329. for_each_cpu(i, cpu_map) {
  6330. struct sched_domain *sd = NULL, *p;
  6331. *nodemask = node_to_cpumask(cpu_to_node(i));
  6332. cpus_and(*nodemask, *nodemask, *cpu_map);
  6333. #ifdef CONFIG_NUMA
  6334. if (cpus_weight(*cpu_map) >
  6335. SD_NODES_PER_DOMAIN*cpus_weight(*nodemask)) {
  6336. sd = &per_cpu(allnodes_domains, i);
  6337. SD_INIT(sd, ALLNODES);
  6338. set_domain_attribute(sd, attr);
  6339. cpumask_copy(sched_domain_span(sd), cpu_map);
  6340. cpu_to_allnodes_group(i, cpu_map, &sd->groups, tmpmask);
  6341. p = sd;
  6342. sd_allnodes = 1;
  6343. } else
  6344. p = NULL;
  6345. sd = &per_cpu(node_domains, i);
  6346. SD_INIT(sd, NODE);
  6347. set_domain_attribute(sd, attr);
  6348. sched_domain_node_span(cpu_to_node(i), sched_domain_span(sd));
  6349. sd->parent = p;
  6350. if (p)
  6351. p->child = sd;
  6352. cpumask_and(sched_domain_span(sd),
  6353. sched_domain_span(sd), cpu_map);
  6354. #endif
  6355. p = sd;
  6356. sd = &per_cpu(phys_domains, i).sd;
  6357. SD_INIT(sd, CPU);
  6358. set_domain_attribute(sd, attr);
  6359. cpumask_copy(sched_domain_span(sd), nodemask);
  6360. sd->parent = p;
  6361. if (p)
  6362. p->child = sd;
  6363. cpu_to_phys_group(i, cpu_map, &sd->groups, tmpmask);
  6364. #ifdef CONFIG_SCHED_MC
  6365. p = sd;
  6366. sd = &per_cpu(core_domains, i).sd;
  6367. SD_INIT(sd, MC);
  6368. set_domain_attribute(sd, attr);
  6369. *sched_domain_span(sd) = cpu_coregroup_map(i);
  6370. cpumask_and(sched_domain_span(sd),
  6371. sched_domain_span(sd), cpu_map);
  6372. sd->parent = p;
  6373. p->child = sd;
  6374. cpu_to_core_group(i, cpu_map, &sd->groups, tmpmask);
  6375. #endif
  6376. #ifdef CONFIG_SCHED_SMT
  6377. p = sd;
  6378. sd = &per_cpu(cpu_domains, i).sd;
  6379. SD_INIT(sd, SIBLING);
  6380. set_domain_attribute(sd, attr);
  6381. cpumask_and(sched_domain_span(sd),
  6382. &per_cpu(cpu_sibling_map, i), cpu_map);
  6383. sd->parent = p;
  6384. p->child = sd;
  6385. cpu_to_cpu_group(i, cpu_map, &sd->groups, tmpmask);
  6386. #endif
  6387. }
  6388. #ifdef CONFIG_SCHED_SMT
  6389. /* Set up CPU (sibling) groups */
  6390. for_each_cpu(i, cpu_map) {
  6391. *this_sibling_map = per_cpu(cpu_sibling_map, i);
  6392. cpus_and(*this_sibling_map, *this_sibling_map, *cpu_map);
  6393. if (i != first_cpu(*this_sibling_map))
  6394. continue;
  6395. init_sched_build_groups(this_sibling_map, cpu_map,
  6396. &cpu_to_cpu_group,
  6397. send_covered, tmpmask);
  6398. }
  6399. #endif
  6400. #ifdef CONFIG_SCHED_MC
  6401. /* Set up multi-core groups */
  6402. for_each_cpu(i, cpu_map) {
  6403. *this_core_map = cpu_coregroup_map(i);
  6404. cpus_and(*this_core_map, *this_core_map, *cpu_map);
  6405. if (i != first_cpu(*this_core_map))
  6406. continue;
  6407. init_sched_build_groups(this_core_map, cpu_map,
  6408. &cpu_to_core_group,
  6409. send_covered, tmpmask);
  6410. }
  6411. #endif
  6412. /* Set up physical groups */
  6413. for (i = 0; i < nr_node_ids; i++) {
  6414. *nodemask = node_to_cpumask(i);
  6415. cpus_and(*nodemask, *nodemask, *cpu_map);
  6416. if (cpus_empty(*nodemask))
  6417. continue;
  6418. init_sched_build_groups(nodemask, cpu_map,
  6419. &cpu_to_phys_group,
  6420. send_covered, tmpmask);
  6421. }
  6422. #ifdef CONFIG_NUMA
  6423. /* Set up node groups */
  6424. if (sd_allnodes) {
  6425. init_sched_build_groups(cpu_map, cpu_map,
  6426. &cpu_to_allnodes_group,
  6427. send_covered, tmpmask);
  6428. }
  6429. for (i = 0; i < nr_node_ids; i++) {
  6430. /* Set up node groups */
  6431. struct sched_group *sg, *prev;
  6432. int j;
  6433. *nodemask = node_to_cpumask(i);
  6434. cpus_clear(*covered);
  6435. cpus_and(*nodemask, *nodemask, *cpu_map);
  6436. if (cpus_empty(*nodemask)) {
  6437. sched_group_nodes[i] = NULL;
  6438. continue;
  6439. }
  6440. sched_domain_node_span(i, domainspan);
  6441. cpus_and(*domainspan, *domainspan, *cpu_map);
  6442. sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
  6443. GFP_KERNEL, i);
  6444. if (!sg) {
  6445. printk(KERN_WARNING "Can not alloc domain group for "
  6446. "node %d\n", i);
  6447. goto error;
  6448. }
  6449. sched_group_nodes[i] = sg;
  6450. for_each_cpu(j, nodemask) {
  6451. struct sched_domain *sd;
  6452. sd = &per_cpu(node_domains, j);
  6453. sd->groups = sg;
  6454. }
  6455. sg->__cpu_power = 0;
  6456. cpumask_copy(sched_group_cpus(sg), nodemask);
  6457. sg->next = sg;
  6458. cpus_or(*covered, *covered, *nodemask);
  6459. prev = sg;
  6460. for (j = 0; j < nr_node_ids; j++) {
  6461. int n = (i + j) % nr_node_ids;
  6462. node_to_cpumask_ptr(pnodemask, n);
  6463. cpus_complement(*notcovered, *covered);
  6464. cpus_and(*tmpmask, *notcovered, *cpu_map);
  6465. cpus_and(*tmpmask, *tmpmask, *domainspan);
  6466. if (cpus_empty(*tmpmask))
  6467. break;
  6468. cpus_and(*tmpmask, *tmpmask, *pnodemask);
  6469. if (cpus_empty(*tmpmask))
  6470. continue;
  6471. sg = kmalloc_node(sizeof(struct sched_group) +
  6472. cpumask_size(),
  6473. GFP_KERNEL, i);
  6474. if (!sg) {
  6475. printk(KERN_WARNING
  6476. "Can not alloc domain group for node %d\n", j);
  6477. goto error;
  6478. }
  6479. sg->__cpu_power = 0;
  6480. cpumask_copy(sched_group_cpus(sg), tmpmask);
  6481. sg->next = prev->next;
  6482. cpus_or(*covered, *covered, *tmpmask);
  6483. prev->next = sg;
  6484. prev = sg;
  6485. }
  6486. }
  6487. #endif
  6488. /* Calculate CPU power for physical packages and nodes */
  6489. #ifdef CONFIG_SCHED_SMT
  6490. for_each_cpu(i, cpu_map) {
  6491. struct sched_domain *sd = &per_cpu(cpu_domains, i).sd;
  6492. init_sched_groups_power(i, sd);
  6493. }
  6494. #endif
  6495. #ifdef CONFIG_SCHED_MC
  6496. for_each_cpu(i, cpu_map) {
  6497. struct sched_domain *sd = &per_cpu(core_domains, i).sd;
  6498. init_sched_groups_power(i, sd);
  6499. }
  6500. #endif
  6501. for_each_cpu(i, cpu_map) {
  6502. struct sched_domain *sd = &per_cpu(phys_domains, i).sd;
  6503. init_sched_groups_power(i, sd);
  6504. }
  6505. #ifdef CONFIG_NUMA
  6506. for (i = 0; i < nr_node_ids; i++)
  6507. init_numa_sched_groups_power(sched_group_nodes[i]);
  6508. if (sd_allnodes) {
  6509. struct sched_group *sg;
  6510. cpu_to_allnodes_group(first_cpu(*cpu_map), cpu_map, &sg,
  6511. tmpmask);
  6512. init_numa_sched_groups_power(sg);
  6513. }
  6514. #endif
  6515. /* Attach the domains */
  6516. for_each_cpu(i, cpu_map) {
  6517. struct sched_domain *sd;
  6518. #ifdef CONFIG_SCHED_SMT
  6519. sd = &per_cpu(cpu_domains, i).sd;
  6520. #elif defined(CONFIG_SCHED_MC)
  6521. sd = &per_cpu(core_domains, i).sd;
  6522. #else
  6523. sd = &per_cpu(phys_domains, i).sd;
  6524. #endif
  6525. cpu_attach_domain(sd, rd, i);
  6526. }
  6527. err = 0;
  6528. free_tmpmask:
  6529. free_cpumask_var(tmpmask);
  6530. free_send_covered:
  6531. free_cpumask_var(send_covered);
  6532. free_this_core_map:
  6533. free_cpumask_var(this_core_map);
  6534. free_this_sibling_map:
  6535. free_cpumask_var(this_sibling_map);
  6536. free_nodemask:
  6537. free_cpumask_var(nodemask);
  6538. free_notcovered:
  6539. #ifdef CONFIG_NUMA
  6540. free_cpumask_var(notcovered);
  6541. free_covered:
  6542. free_cpumask_var(covered);
  6543. free_domainspan:
  6544. free_cpumask_var(domainspan);
  6545. out:
  6546. #endif
  6547. return err;
  6548. free_sched_groups:
  6549. #ifdef CONFIG_NUMA
  6550. kfree(sched_group_nodes);
  6551. #endif
  6552. goto free_tmpmask;
  6553. #ifdef CONFIG_NUMA
  6554. error:
  6555. free_sched_groups(cpu_map, tmpmask);
  6556. free_rootdomain(rd);
  6557. goto free_tmpmask;
  6558. #endif
  6559. }
  6560. static int build_sched_domains(const cpumask_t *cpu_map)
  6561. {
  6562. return __build_sched_domains(cpu_map, NULL);
  6563. }
  6564. static cpumask_t *doms_cur; /* current sched domains */
  6565. static int ndoms_cur; /* number of sched domains in 'doms_cur' */
  6566. static struct sched_domain_attr *dattr_cur;
  6567. /* attribues of custom domains in 'doms_cur' */
  6568. /*
  6569. * Special case: If a kmalloc of a doms_cur partition (array of
  6570. * cpumask) fails, then fallback to a single sched domain,
  6571. * as determined by the single cpumask fallback_doms.
  6572. */
  6573. static cpumask_var_t fallback_doms;
  6574. void __attribute__((weak)) arch_update_cpu_topology(void)
  6575. {
  6576. }
  6577. /*
  6578. * Set up scheduler domains and groups. Callers must hold the hotplug lock.
  6579. * For now this just excludes isolated cpus, but could be used to
  6580. * exclude other special cases in the future.
  6581. */
  6582. static int arch_init_sched_domains(const cpumask_t *cpu_map)
  6583. {
  6584. int err;
  6585. arch_update_cpu_topology();
  6586. ndoms_cur = 1;
  6587. doms_cur = kmalloc(sizeof(cpumask_t), GFP_KERNEL);
  6588. if (!doms_cur)
  6589. doms_cur = fallback_doms;
  6590. cpumask_andnot(doms_cur, cpu_map, cpu_isolated_map);
  6591. dattr_cur = NULL;
  6592. err = build_sched_domains(doms_cur);
  6593. register_sched_domain_sysctl();
  6594. return err;
  6595. }
  6596. static void arch_destroy_sched_domains(const cpumask_t *cpu_map,
  6597. cpumask_t *tmpmask)
  6598. {
  6599. free_sched_groups(cpu_map, tmpmask);
  6600. }
  6601. /*
  6602. * Detach sched domains from a group of cpus specified in cpu_map
  6603. * These cpus will now be attached to the NULL domain
  6604. */
  6605. static void detach_destroy_domains(const cpumask_t *cpu_map)
  6606. {
  6607. cpumask_t tmpmask;
  6608. int i;
  6609. for_each_cpu(i, cpu_map)
  6610. cpu_attach_domain(NULL, &def_root_domain, i);
  6611. synchronize_sched();
  6612. arch_destroy_sched_domains(cpu_map, &tmpmask);
  6613. }
  6614. /* handle null as "default" */
  6615. static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
  6616. struct sched_domain_attr *new, int idx_new)
  6617. {
  6618. struct sched_domain_attr tmp;
  6619. /* fast path */
  6620. if (!new && !cur)
  6621. return 1;
  6622. tmp = SD_ATTR_INIT;
  6623. return !memcmp(cur ? (cur + idx_cur) : &tmp,
  6624. new ? (new + idx_new) : &tmp,
  6625. sizeof(struct sched_domain_attr));
  6626. }
  6627. /*
  6628. * Partition sched domains as specified by the 'ndoms_new'
  6629. * cpumasks in the array doms_new[] of cpumasks. This compares
  6630. * doms_new[] to the current sched domain partitioning, doms_cur[].
  6631. * It destroys each deleted domain and builds each new domain.
  6632. *
  6633. * 'doms_new' is an array of cpumask_t's of length 'ndoms_new'.
  6634. * The masks don't intersect (don't overlap.) We should setup one
  6635. * sched domain for each mask. CPUs not in any of the cpumasks will
  6636. * not be load balanced. If the same cpumask appears both in the
  6637. * current 'doms_cur' domains and in the new 'doms_new', we can leave
  6638. * it as it is.
  6639. *
  6640. * The passed in 'doms_new' should be kmalloc'd. This routine takes
  6641. * ownership of it and will kfree it when done with it. If the caller
  6642. * failed the kmalloc call, then it can pass in doms_new == NULL &&
  6643. * ndoms_new == 1, and partition_sched_domains() will fallback to
  6644. * the single partition 'fallback_doms', it also forces the domains
  6645. * to be rebuilt.
  6646. *
  6647. * If doms_new == NULL it will be replaced with cpu_online_map.
  6648. * ndoms_new == 0 is a special case for destroying existing domains,
  6649. * and it will not create the default domain.
  6650. *
  6651. * Call with hotplug lock held
  6652. */
  6653. void partition_sched_domains(int ndoms_new, cpumask_t *doms_new,
  6654. struct sched_domain_attr *dattr_new)
  6655. {
  6656. int i, j, n;
  6657. mutex_lock(&sched_domains_mutex);
  6658. /* always unregister in case we don't destroy any domains */
  6659. unregister_sched_domain_sysctl();
  6660. n = doms_new ? ndoms_new : 0;
  6661. /* Destroy deleted domains */
  6662. for (i = 0; i < ndoms_cur; i++) {
  6663. for (j = 0; j < n; j++) {
  6664. if (cpus_equal(doms_cur[i], doms_new[j])
  6665. && dattrs_equal(dattr_cur, i, dattr_new, j))
  6666. goto match1;
  6667. }
  6668. /* no match - a current sched domain not in new doms_new[] */
  6669. detach_destroy_domains(doms_cur + i);
  6670. match1:
  6671. ;
  6672. }
  6673. if (doms_new == NULL) {
  6674. ndoms_cur = 0;
  6675. doms_new = fallback_doms;
  6676. cpumask_andnot(&doms_new[0], cpu_online_mask, cpu_isolated_map);
  6677. WARN_ON_ONCE(dattr_new);
  6678. }
  6679. /* Build new domains */
  6680. for (i = 0; i < ndoms_new; i++) {
  6681. for (j = 0; j < ndoms_cur; j++) {
  6682. if (cpus_equal(doms_new[i], doms_cur[j])
  6683. && dattrs_equal(dattr_new, i, dattr_cur, j))
  6684. goto match2;
  6685. }
  6686. /* no match - add a new doms_new */
  6687. __build_sched_domains(doms_new + i,
  6688. dattr_new ? dattr_new + i : NULL);
  6689. match2:
  6690. ;
  6691. }
  6692. /* Remember the new sched domains */
  6693. if (doms_cur != fallback_doms)
  6694. kfree(doms_cur);
  6695. kfree(dattr_cur); /* kfree(NULL) is safe */
  6696. doms_cur = doms_new;
  6697. dattr_cur = dattr_new;
  6698. ndoms_cur = ndoms_new;
  6699. register_sched_domain_sysctl();
  6700. mutex_unlock(&sched_domains_mutex);
  6701. }
  6702. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  6703. int arch_reinit_sched_domains(void)
  6704. {
  6705. get_online_cpus();
  6706. /* Destroy domains first to force the rebuild */
  6707. partition_sched_domains(0, NULL, NULL);
  6708. rebuild_sched_domains();
  6709. put_online_cpus();
  6710. return 0;
  6711. }
  6712. static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
  6713. {
  6714. int ret;
  6715. if (buf[0] != '0' && buf[0] != '1')
  6716. return -EINVAL;
  6717. if (smt)
  6718. sched_smt_power_savings = (buf[0] == '1');
  6719. else
  6720. sched_mc_power_savings = (buf[0] == '1');
  6721. ret = arch_reinit_sched_domains();
  6722. return ret ? ret : count;
  6723. }
  6724. #ifdef CONFIG_SCHED_MC
  6725. static ssize_t sched_mc_power_savings_show(struct sysdev_class *class,
  6726. char *page)
  6727. {
  6728. return sprintf(page, "%u\n", sched_mc_power_savings);
  6729. }
  6730. static ssize_t sched_mc_power_savings_store(struct sysdev_class *class,
  6731. const char *buf, size_t count)
  6732. {
  6733. return sched_power_savings_store(buf, count, 0);
  6734. }
  6735. static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644,
  6736. sched_mc_power_savings_show,
  6737. sched_mc_power_savings_store);
  6738. #endif
  6739. #ifdef CONFIG_SCHED_SMT
  6740. static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev,
  6741. char *page)
  6742. {
  6743. return sprintf(page, "%u\n", sched_smt_power_savings);
  6744. }
  6745. static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev,
  6746. const char *buf, size_t count)
  6747. {
  6748. return sched_power_savings_store(buf, count, 1);
  6749. }
  6750. static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644,
  6751. sched_smt_power_savings_show,
  6752. sched_smt_power_savings_store);
  6753. #endif
  6754. int sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
  6755. {
  6756. int err = 0;
  6757. #ifdef CONFIG_SCHED_SMT
  6758. if (smt_capable())
  6759. err = sysfs_create_file(&cls->kset.kobj,
  6760. &attr_sched_smt_power_savings.attr);
  6761. #endif
  6762. #ifdef CONFIG_SCHED_MC
  6763. if (!err && mc_capable())
  6764. err = sysfs_create_file(&cls->kset.kobj,
  6765. &attr_sched_mc_power_savings.attr);
  6766. #endif
  6767. return err;
  6768. }
  6769. #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
  6770. #ifndef CONFIG_CPUSETS
  6771. /*
  6772. * Add online and remove offline CPUs from the scheduler domains.
  6773. * When cpusets are enabled they take over this function.
  6774. */
  6775. static int update_sched_domains(struct notifier_block *nfb,
  6776. unsigned long action, void *hcpu)
  6777. {
  6778. switch (action) {
  6779. case CPU_ONLINE:
  6780. case CPU_ONLINE_FROZEN:
  6781. case CPU_DEAD:
  6782. case CPU_DEAD_FROZEN:
  6783. partition_sched_domains(1, NULL, NULL);
  6784. return NOTIFY_OK;
  6785. default:
  6786. return NOTIFY_DONE;
  6787. }
  6788. }
  6789. #endif
  6790. static int update_runtime(struct notifier_block *nfb,
  6791. unsigned long action, void *hcpu)
  6792. {
  6793. int cpu = (int)(long)hcpu;
  6794. switch (action) {
  6795. case CPU_DOWN_PREPARE:
  6796. case CPU_DOWN_PREPARE_FROZEN:
  6797. disable_runtime(cpu_rq(cpu));
  6798. return NOTIFY_OK;
  6799. case CPU_DOWN_FAILED:
  6800. case CPU_DOWN_FAILED_FROZEN:
  6801. case CPU_ONLINE:
  6802. case CPU_ONLINE_FROZEN:
  6803. enable_runtime(cpu_rq(cpu));
  6804. return NOTIFY_OK;
  6805. default:
  6806. return NOTIFY_DONE;
  6807. }
  6808. }
  6809. void __init sched_init_smp(void)
  6810. {
  6811. cpumask_var_t non_isolated_cpus;
  6812. alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
  6813. #if defined(CONFIG_NUMA)
  6814. sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
  6815. GFP_KERNEL);
  6816. BUG_ON(sched_group_nodes_bycpu == NULL);
  6817. #endif
  6818. get_online_cpus();
  6819. mutex_lock(&sched_domains_mutex);
  6820. arch_init_sched_domains(cpu_online_mask);
  6821. cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
  6822. if (cpumask_empty(non_isolated_cpus))
  6823. cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
  6824. mutex_unlock(&sched_domains_mutex);
  6825. put_online_cpus();
  6826. #ifndef CONFIG_CPUSETS
  6827. /* XXX: Theoretical race here - CPU may be hotplugged now */
  6828. hotcpu_notifier(update_sched_domains, 0);
  6829. #endif
  6830. /* RT runtime code needs to handle some hotplug events */
  6831. hotcpu_notifier(update_runtime, 0);
  6832. init_hrtick();
  6833. /* Move init over to a non-isolated CPU */
  6834. if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
  6835. BUG();
  6836. sched_init_granularity();
  6837. free_cpumask_var(non_isolated_cpus);
  6838. alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
  6839. }
  6840. #else
  6841. void __init sched_init_smp(void)
  6842. {
  6843. sched_init_granularity();
  6844. }
  6845. #endif /* CONFIG_SMP */
  6846. int in_sched_functions(unsigned long addr)
  6847. {
  6848. return in_lock_functions(addr) ||
  6849. (addr >= (unsigned long)__sched_text_start
  6850. && addr < (unsigned long)__sched_text_end);
  6851. }
  6852. static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
  6853. {
  6854. cfs_rq->tasks_timeline = RB_ROOT;
  6855. INIT_LIST_HEAD(&cfs_rq->tasks);
  6856. #ifdef CONFIG_FAIR_GROUP_SCHED
  6857. cfs_rq->rq = rq;
  6858. #endif
  6859. cfs_rq->min_vruntime = (u64)(-(1LL << 20));
  6860. }
  6861. static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
  6862. {
  6863. struct rt_prio_array *array;
  6864. int i;
  6865. array = &rt_rq->active;
  6866. for (i = 0; i < MAX_RT_PRIO; i++) {
  6867. INIT_LIST_HEAD(array->queue + i);
  6868. __clear_bit(i, array->bitmap);
  6869. }
  6870. /* delimiter for bitsearch: */
  6871. __set_bit(MAX_RT_PRIO, array->bitmap);
  6872. #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
  6873. rt_rq->highest_prio = MAX_RT_PRIO;
  6874. #endif
  6875. #ifdef CONFIG_SMP
  6876. rt_rq->rt_nr_migratory = 0;
  6877. rt_rq->overloaded = 0;
  6878. #endif
  6879. rt_rq->rt_time = 0;
  6880. rt_rq->rt_throttled = 0;
  6881. rt_rq->rt_runtime = 0;
  6882. spin_lock_init(&rt_rq->rt_runtime_lock);
  6883. #ifdef CONFIG_RT_GROUP_SCHED
  6884. rt_rq->rt_nr_boosted = 0;
  6885. rt_rq->rq = rq;
  6886. #endif
  6887. }
  6888. #ifdef CONFIG_FAIR_GROUP_SCHED
  6889. static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
  6890. struct sched_entity *se, int cpu, int add,
  6891. struct sched_entity *parent)
  6892. {
  6893. struct rq *rq = cpu_rq(cpu);
  6894. tg->cfs_rq[cpu] = cfs_rq;
  6895. init_cfs_rq(cfs_rq, rq);
  6896. cfs_rq->tg = tg;
  6897. if (add)
  6898. list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
  6899. tg->se[cpu] = se;
  6900. /* se could be NULL for init_task_group */
  6901. if (!se)
  6902. return;
  6903. if (!parent)
  6904. se->cfs_rq = &rq->cfs;
  6905. else
  6906. se->cfs_rq = parent->my_q;
  6907. se->my_q = cfs_rq;
  6908. se->load.weight = tg->shares;
  6909. se->load.inv_weight = 0;
  6910. se->parent = parent;
  6911. }
  6912. #endif
  6913. #ifdef CONFIG_RT_GROUP_SCHED
  6914. static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
  6915. struct sched_rt_entity *rt_se, int cpu, int add,
  6916. struct sched_rt_entity *parent)
  6917. {
  6918. struct rq *rq = cpu_rq(cpu);
  6919. tg->rt_rq[cpu] = rt_rq;
  6920. init_rt_rq(rt_rq, rq);
  6921. rt_rq->tg = tg;
  6922. rt_rq->rt_se = rt_se;
  6923. rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
  6924. if (add)
  6925. list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);
  6926. tg->rt_se[cpu] = rt_se;
  6927. if (!rt_se)
  6928. return;
  6929. if (!parent)
  6930. rt_se->rt_rq = &rq->rt;
  6931. else
  6932. rt_se->rt_rq = parent->my_q;
  6933. rt_se->my_q = rt_rq;
  6934. rt_se->parent = parent;
  6935. INIT_LIST_HEAD(&rt_se->run_list);
  6936. }
  6937. #endif
  6938. void __init sched_init(void)
  6939. {
  6940. int i, j;
  6941. unsigned long alloc_size = 0, ptr;
  6942. #ifdef CONFIG_FAIR_GROUP_SCHED
  6943. alloc_size += 2 * nr_cpu_ids * sizeof(void **);
  6944. #endif
  6945. #ifdef CONFIG_RT_GROUP_SCHED
  6946. alloc_size += 2 * nr_cpu_ids * sizeof(void **);
  6947. #endif
  6948. #ifdef CONFIG_USER_SCHED
  6949. alloc_size *= 2;
  6950. #endif
  6951. /*
  6952. * As sched_init() is called before page_alloc is setup,
  6953. * we use alloc_bootmem().
  6954. */
  6955. if (alloc_size) {
  6956. ptr = (unsigned long)alloc_bootmem(alloc_size);
  6957. #ifdef CONFIG_FAIR_GROUP_SCHED
  6958. init_task_group.se = (struct sched_entity **)ptr;
  6959. ptr += nr_cpu_ids * sizeof(void **);
  6960. init_task_group.cfs_rq = (struct cfs_rq **)ptr;
  6961. ptr += nr_cpu_ids * sizeof(void **);
  6962. #ifdef CONFIG_USER_SCHED
  6963. root_task_group.se = (struct sched_entity **)ptr;
  6964. ptr += nr_cpu_ids * sizeof(void **);
  6965. root_task_group.cfs_rq = (struct cfs_rq **)ptr;
  6966. ptr += nr_cpu_ids * sizeof(void **);
  6967. #endif /* CONFIG_USER_SCHED */
  6968. #endif /* CONFIG_FAIR_GROUP_SCHED */
  6969. #ifdef CONFIG_RT_GROUP_SCHED
  6970. init_task_group.rt_se = (struct sched_rt_entity **)ptr;
  6971. ptr += nr_cpu_ids * sizeof(void **);
  6972. init_task_group.rt_rq = (struct rt_rq **)ptr;
  6973. ptr += nr_cpu_ids * sizeof(void **);
  6974. #ifdef CONFIG_USER_SCHED
  6975. root_task_group.rt_se = (struct sched_rt_entity **)ptr;
  6976. ptr += nr_cpu_ids * sizeof(void **);
  6977. root_task_group.rt_rq = (struct rt_rq **)ptr;
  6978. ptr += nr_cpu_ids * sizeof(void **);
  6979. #endif /* CONFIG_USER_SCHED */
  6980. #endif /* CONFIG_RT_GROUP_SCHED */
  6981. }
  6982. #ifdef CONFIG_SMP
  6983. init_defrootdomain();
  6984. #endif
  6985. init_rt_bandwidth(&def_rt_bandwidth,
  6986. global_rt_period(), global_rt_runtime());
  6987. #ifdef CONFIG_RT_GROUP_SCHED
  6988. init_rt_bandwidth(&init_task_group.rt_bandwidth,
  6989. global_rt_period(), global_rt_runtime());
  6990. #ifdef CONFIG_USER_SCHED
  6991. init_rt_bandwidth(&root_task_group.rt_bandwidth,
  6992. global_rt_period(), RUNTIME_INF);
  6993. #endif /* CONFIG_USER_SCHED */
  6994. #endif /* CONFIG_RT_GROUP_SCHED */
  6995. #ifdef CONFIG_GROUP_SCHED
  6996. list_add(&init_task_group.list, &task_groups);
  6997. INIT_LIST_HEAD(&init_task_group.children);
  6998. #ifdef CONFIG_USER_SCHED
  6999. INIT_LIST_HEAD(&root_task_group.children);
  7000. init_task_group.parent = &root_task_group;
  7001. list_add(&init_task_group.siblings, &root_task_group.children);
  7002. #endif /* CONFIG_USER_SCHED */
  7003. #endif /* CONFIG_GROUP_SCHED */
  7004. for_each_possible_cpu(i) {
  7005. struct rq *rq;
  7006. rq = cpu_rq(i);
  7007. spin_lock_init(&rq->lock);
  7008. rq->nr_running = 0;
  7009. init_cfs_rq(&rq->cfs, rq);
  7010. init_rt_rq(&rq->rt, rq);
  7011. #ifdef CONFIG_FAIR_GROUP_SCHED
  7012. init_task_group.shares = init_task_group_load;
  7013. INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
  7014. #ifdef CONFIG_CGROUP_SCHED
  7015. /*
  7016. * How much cpu bandwidth does init_task_group get?
  7017. *
  7018. * In case of task-groups formed thr' the cgroup filesystem, it
  7019. * gets 100% of the cpu resources in the system. This overall
  7020. * system cpu resource is divided among the tasks of
  7021. * init_task_group and its child task-groups in a fair manner,
  7022. * based on each entity's (task or task-group's) weight
  7023. * (se->load.weight).
  7024. *
  7025. * In other words, if init_task_group has 10 tasks of weight
  7026. * 1024) and two child groups A0 and A1 (of weight 1024 each),
  7027. * then A0's share of the cpu resource is:
  7028. *
  7029. * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
  7030. *
  7031. * We achieve this by letting init_task_group's tasks sit
  7032. * directly in rq->cfs (i.e init_task_group->se[] = NULL).
  7033. */
  7034. init_tg_cfs_entry(&init_task_group, &rq->cfs, NULL, i, 1, NULL);
  7035. #elif defined CONFIG_USER_SCHED
  7036. root_task_group.shares = NICE_0_LOAD;
  7037. init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, 0, NULL);
  7038. /*
  7039. * In case of task-groups formed thr' the user id of tasks,
  7040. * init_task_group represents tasks belonging to root user.
  7041. * Hence it forms a sibling of all subsequent groups formed.
  7042. * In this case, init_task_group gets only a fraction of overall
  7043. * system cpu resource, based on the weight assigned to root
  7044. * user's cpu share (INIT_TASK_GROUP_LOAD). This is accomplished
  7045. * by letting tasks of init_task_group sit in a separate cfs_rq
  7046. * (init_cfs_rq) and having one entity represent this group of
  7047. * tasks in rq->cfs (i.e init_task_group->se[] != NULL).
  7048. */
  7049. init_tg_cfs_entry(&init_task_group,
  7050. &per_cpu(init_cfs_rq, i),
  7051. &per_cpu(init_sched_entity, i), i, 1,
  7052. root_task_group.se[i]);
  7053. #endif
  7054. #endif /* CONFIG_FAIR_GROUP_SCHED */
  7055. rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
  7056. #ifdef CONFIG_RT_GROUP_SCHED
  7057. INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
  7058. #ifdef CONFIG_CGROUP_SCHED
  7059. init_tg_rt_entry(&init_task_group, &rq->rt, NULL, i, 1, NULL);
  7060. #elif defined CONFIG_USER_SCHED
  7061. init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, 0, NULL);
  7062. init_tg_rt_entry(&init_task_group,
  7063. &per_cpu(init_rt_rq, i),
  7064. &per_cpu(init_sched_rt_entity, i), i, 1,
  7065. root_task_group.rt_se[i]);
  7066. #endif
  7067. #endif
  7068. for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
  7069. rq->cpu_load[j] = 0;
  7070. #ifdef CONFIG_SMP
  7071. rq->sd = NULL;
  7072. rq->rd = NULL;
  7073. rq->active_balance = 0;
  7074. rq->next_balance = jiffies;
  7075. rq->push_cpu = 0;
  7076. rq->cpu = i;
  7077. rq->online = 0;
  7078. rq->migration_thread = NULL;
  7079. INIT_LIST_HEAD(&rq->migration_queue);
  7080. rq_attach_root(rq, &def_root_domain);
  7081. #endif
  7082. init_rq_hrtick(rq);
  7083. atomic_set(&rq->nr_iowait, 0);
  7084. }
  7085. set_load_weight(&init_task);
  7086. #ifdef CONFIG_PREEMPT_NOTIFIERS
  7087. INIT_HLIST_HEAD(&init_task.preempt_notifiers);
  7088. #endif
  7089. #ifdef CONFIG_SMP
  7090. open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
  7091. #endif
  7092. #ifdef CONFIG_RT_MUTEXES
  7093. plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
  7094. #endif
  7095. /*
  7096. * The boot idle thread does lazy MMU switching as well:
  7097. */
  7098. atomic_inc(&init_mm.mm_count);
  7099. enter_lazy_tlb(&init_mm, current);
  7100. /*
  7101. * Make us the idle thread. Technically, schedule() should not be
  7102. * called from this thread, however somewhere below it might be,
  7103. * but because we are the idle thread, we just pick up running again
  7104. * when this runqueue becomes "idle".
  7105. */
  7106. init_idle(current, smp_processor_id());
  7107. /*
  7108. * During early bootup we pretend to be a normal task:
  7109. */
  7110. current->sched_class = &fair_sched_class;
  7111. /* Allocate the nohz_cpu_mask if CONFIG_CPUMASK_OFFSTACK */
  7112. alloc_bootmem_cpumask_var(&nohz_cpu_mask);
  7113. #ifdef CONFIG_NO_HZ
  7114. alloc_bootmem_cpumask_var(&nohz.cpu_mask);
  7115. #endif
  7116. alloc_bootmem_cpumask_var(&cpu_isolated_map);
  7117. scheduler_running = 1;
  7118. }
  7119. #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
  7120. void __might_sleep(char *file, int line)
  7121. {
  7122. #ifdef in_atomic
  7123. static unsigned long prev_jiffy; /* ratelimiting */
  7124. if ((!in_atomic() && !irqs_disabled()) ||
  7125. system_state != SYSTEM_RUNNING || oops_in_progress)
  7126. return;
  7127. if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
  7128. return;
  7129. prev_jiffy = jiffies;
  7130. printk(KERN_ERR
  7131. "BUG: sleeping function called from invalid context at %s:%d\n",
  7132. file, line);
  7133. printk(KERN_ERR
  7134. "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
  7135. in_atomic(), irqs_disabled(),
  7136. current->pid, current->comm);
  7137. debug_show_held_locks(current);
  7138. if (irqs_disabled())
  7139. print_irqtrace_events(current);
  7140. dump_stack();
  7141. #endif
  7142. }
  7143. EXPORT_SYMBOL(__might_sleep);
  7144. #endif
  7145. #ifdef CONFIG_MAGIC_SYSRQ
  7146. static void normalize_task(struct rq *rq, struct task_struct *p)
  7147. {
  7148. int on_rq;
  7149. update_rq_clock(rq);
  7150. on_rq = p->se.on_rq;
  7151. if (on_rq)
  7152. deactivate_task(rq, p, 0);
  7153. __setscheduler(rq, p, SCHED_NORMAL, 0);
  7154. if (on_rq) {
  7155. activate_task(rq, p, 0);
  7156. resched_task(rq->curr);
  7157. }
  7158. }
  7159. void normalize_rt_tasks(void)
  7160. {
  7161. struct task_struct *g, *p;
  7162. unsigned long flags;
  7163. struct rq *rq;
  7164. read_lock_irqsave(&tasklist_lock, flags);
  7165. do_each_thread(g, p) {
  7166. /*
  7167. * Only normalize user tasks:
  7168. */
  7169. if (!p->mm)
  7170. continue;
  7171. p->se.exec_start = 0;
  7172. #ifdef CONFIG_SCHEDSTATS
  7173. p->se.wait_start = 0;
  7174. p->se.sleep_start = 0;
  7175. p->se.block_start = 0;
  7176. #endif
  7177. if (!rt_task(p)) {
  7178. /*
  7179. * Renice negative nice level userspace
  7180. * tasks back to 0:
  7181. */
  7182. if (TASK_NICE(p) < 0 && p->mm)
  7183. set_user_nice(p, 0);
  7184. continue;
  7185. }
  7186. spin_lock(&p->pi_lock);
  7187. rq = __task_rq_lock(p);
  7188. normalize_task(rq, p);
  7189. __task_rq_unlock(rq);
  7190. spin_unlock(&p->pi_lock);
  7191. } while_each_thread(g, p);
  7192. read_unlock_irqrestore(&tasklist_lock, flags);
  7193. }
  7194. #endif /* CONFIG_MAGIC_SYSRQ */
  7195. #ifdef CONFIG_IA64
  7196. /*
  7197. * These functions are only useful for the IA64 MCA handling.
  7198. *
  7199. * They can only be called when the whole system has been
  7200. * stopped - every CPU needs to be quiescent, and no scheduling
  7201. * activity can take place. Using them for anything else would
  7202. * be a serious bug, and as a result, they aren't even visible
  7203. * under any other configuration.
  7204. */
  7205. /**
  7206. * curr_task - return the current task for a given cpu.
  7207. * @cpu: the processor in question.
  7208. *
  7209. * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
  7210. */
  7211. struct task_struct *curr_task(int cpu)
  7212. {
  7213. return cpu_curr(cpu);
  7214. }
  7215. /**
  7216. * set_curr_task - set the current task for a given cpu.
  7217. * @cpu: the processor in question.
  7218. * @p: the task pointer to set.
  7219. *
  7220. * Description: This function must only be used when non-maskable interrupts
  7221. * are serviced on a separate stack. It allows the architecture to switch the
  7222. * notion of the current task on a cpu in a non-blocking manner. This function
  7223. * must be called with all CPU's synchronized, and interrupts disabled, the
  7224. * and caller must save the original value of the current task (see
  7225. * curr_task() above) and restore that value before reenabling interrupts and
  7226. * re-starting the system.
  7227. *
  7228. * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
  7229. */
  7230. void set_curr_task(int cpu, struct task_struct *p)
  7231. {
  7232. cpu_curr(cpu) = p;
  7233. }
  7234. #endif
  7235. #ifdef CONFIG_FAIR_GROUP_SCHED
  7236. static void free_fair_sched_group(struct task_group *tg)
  7237. {
  7238. int i;
  7239. for_each_possible_cpu(i) {
  7240. if (tg->cfs_rq)
  7241. kfree(tg->cfs_rq[i]);
  7242. if (tg->se)
  7243. kfree(tg->se[i]);
  7244. }
  7245. kfree(tg->cfs_rq);
  7246. kfree(tg->se);
  7247. }
  7248. static
  7249. int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
  7250. {
  7251. struct cfs_rq *cfs_rq;
  7252. struct sched_entity *se;
  7253. struct rq *rq;
  7254. int i;
  7255. tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
  7256. if (!tg->cfs_rq)
  7257. goto err;
  7258. tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
  7259. if (!tg->se)
  7260. goto err;
  7261. tg->shares = NICE_0_LOAD;
  7262. for_each_possible_cpu(i) {
  7263. rq = cpu_rq(i);
  7264. cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
  7265. GFP_KERNEL, cpu_to_node(i));
  7266. if (!cfs_rq)
  7267. goto err;
  7268. se = kzalloc_node(sizeof(struct sched_entity),
  7269. GFP_KERNEL, cpu_to_node(i));
  7270. if (!se)
  7271. goto err;
  7272. init_tg_cfs_entry(tg, cfs_rq, se, i, 0, parent->se[i]);
  7273. }
  7274. return 1;
  7275. err:
  7276. return 0;
  7277. }
  7278. static inline void register_fair_sched_group(struct task_group *tg, int cpu)
  7279. {
  7280. list_add_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list,
  7281. &cpu_rq(cpu)->leaf_cfs_rq_list);
  7282. }
  7283. static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
  7284. {
  7285. list_del_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list);
  7286. }
  7287. #else /* !CONFG_FAIR_GROUP_SCHED */
  7288. static inline void free_fair_sched_group(struct task_group *tg)
  7289. {
  7290. }
  7291. static inline
  7292. int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
  7293. {
  7294. return 1;
  7295. }
  7296. static inline void register_fair_sched_group(struct task_group *tg, int cpu)
  7297. {
  7298. }
  7299. static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
  7300. {
  7301. }
  7302. #endif /* CONFIG_FAIR_GROUP_SCHED */
  7303. #ifdef CONFIG_RT_GROUP_SCHED
  7304. static void free_rt_sched_group(struct task_group *tg)
  7305. {
  7306. int i;
  7307. destroy_rt_bandwidth(&tg->rt_bandwidth);
  7308. for_each_possible_cpu(i) {
  7309. if (tg->rt_rq)
  7310. kfree(tg->rt_rq[i]);
  7311. if (tg->rt_se)
  7312. kfree(tg->rt_se[i]);
  7313. }
  7314. kfree(tg->rt_rq);
  7315. kfree(tg->rt_se);
  7316. }
  7317. static
  7318. int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
  7319. {
  7320. struct rt_rq *rt_rq;
  7321. struct sched_rt_entity *rt_se;
  7322. struct rq *rq;
  7323. int i;
  7324. tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
  7325. if (!tg->rt_rq)
  7326. goto err;
  7327. tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
  7328. if (!tg->rt_se)
  7329. goto err;
  7330. init_rt_bandwidth(&tg->rt_bandwidth,
  7331. ktime_to_ns(def_rt_bandwidth.rt_period), 0);
  7332. for_each_possible_cpu(i) {
  7333. rq = cpu_rq(i);
  7334. rt_rq = kzalloc_node(sizeof(struct rt_rq),
  7335. GFP_KERNEL, cpu_to_node(i));
  7336. if (!rt_rq)
  7337. goto err;
  7338. rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
  7339. GFP_KERNEL, cpu_to_node(i));
  7340. if (!rt_se)
  7341. goto err;
  7342. init_tg_rt_entry(tg, rt_rq, rt_se, i, 0, parent->rt_se[i]);
  7343. }
  7344. return 1;
  7345. err:
  7346. return 0;
  7347. }
  7348. static inline void register_rt_sched_group(struct task_group *tg, int cpu)
  7349. {
  7350. list_add_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list,
  7351. &cpu_rq(cpu)->leaf_rt_rq_list);
  7352. }
  7353. static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
  7354. {
  7355. list_del_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list);
  7356. }
  7357. #else /* !CONFIG_RT_GROUP_SCHED */
  7358. static inline void free_rt_sched_group(struct task_group *tg)
  7359. {
  7360. }
  7361. static inline
  7362. int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
  7363. {
  7364. return 1;
  7365. }
  7366. static inline void register_rt_sched_group(struct task_group *tg, int cpu)
  7367. {
  7368. }
  7369. static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
  7370. {
  7371. }
  7372. #endif /* CONFIG_RT_GROUP_SCHED */
  7373. #ifdef CONFIG_GROUP_SCHED
  7374. static void free_sched_group(struct task_group *tg)
  7375. {
  7376. free_fair_sched_group(tg);
  7377. free_rt_sched_group(tg);
  7378. kfree(tg);
  7379. }
  7380. /* allocate runqueue etc for a new task group */
  7381. struct task_group *sched_create_group(struct task_group *parent)
  7382. {
  7383. struct task_group *tg;
  7384. unsigned long flags;
  7385. int i;
  7386. tg = kzalloc(sizeof(*tg), GFP_KERNEL);
  7387. if (!tg)
  7388. return ERR_PTR(-ENOMEM);
  7389. if (!alloc_fair_sched_group(tg, parent))
  7390. goto err;
  7391. if (!alloc_rt_sched_group(tg, parent))
  7392. goto err;
  7393. spin_lock_irqsave(&task_group_lock, flags);
  7394. for_each_possible_cpu(i) {
  7395. register_fair_sched_group(tg, i);
  7396. register_rt_sched_group(tg, i);
  7397. }
  7398. list_add_rcu(&tg->list, &task_groups);
  7399. WARN_ON(!parent); /* root should already exist */
  7400. tg->parent = parent;
  7401. INIT_LIST_HEAD(&tg->children);
  7402. list_add_rcu(&tg->siblings, &parent->children);
  7403. spin_unlock_irqrestore(&task_group_lock, flags);
  7404. return tg;
  7405. err:
  7406. free_sched_group(tg);
  7407. return ERR_PTR(-ENOMEM);
  7408. }
  7409. /* rcu callback to free various structures associated with a task group */
  7410. static void free_sched_group_rcu(struct rcu_head *rhp)
  7411. {
  7412. /* now it should be safe to free those cfs_rqs */
  7413. free_sched_group(container_of(rhp, struct task_group, rcu));
  7414. }
  7415. /* Destroy runqueue etc associated with a task group */
  7416. void sched_destroy_group(struct task_group *tg)
  7417. {
  7418. unsigned long flags;
  7419. int i;
  7420. spin_lock_irqsave(&task_group_lock, flags);
  7421. for_each_possible_cpu(i) {
  7422. unregister_fair_sched_group(tg, i);
  7423. unregister_rt_sched_group(tg, i);
  7424. }
  7425. list_del_rcu(&tg->list);
  7426. list_del_rcu(&tg->siblings);
  7427. spin_unlock_irqrestore(&task_group_lock, flags);
  7428. /* wait for possible concurrent references to cfs_rqs complete */
  7429. call_rcu(&tg->rcu, free_sched_group_rcu);
  7430. }
  7431. /* change task's runqueue when it moves between groups.
  7432. * The caller of this function should have put the task in its new group
  7433. * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
  7434. * reflect its new group.
  7435. */
  7436. void sched_move_task(struct task_struct *tsk)
  7437. {
  7438. int on_rq, running;
  7439. unsigned long flags;
  7440. struct rq *rq;
  7441. rq = task_rq_lock(tsk, &flags);
  7442. update_rq_clock(rq);
  7443. running = task_current(rq, tsk);
  7444. on_rq = tsk->se.on_rq;
  7445. if (on_rq)
  7446. dequeue_task(rq, tsk, 0);
  7447. if (unlikely(running))
  7448. tsk->sched_class->put_prev_task(rq, tsk);
  7449. set_task_rq(tsk, task_cpu(tsk));
  7450. #ifdef CONFIG_FAIR_GROUP_SCHED
  7451. if (tsk->sched_class->moved_group)
  7452. tsk->sched_class->moved_group(tsk);
  7453. #endif
  7454. if (unlikely(running))
  7455. tsk->sched_class->set_curr_task(rq);
  7456. if (on_rq)
  7457. enqueue_task(rq, tsk, 0);
  7458. task_rq_unlock(rq, &flags);
  7459. }
  7460. #endif /* CONFIG_GROUP_SCHED */
  7461. #ifdef CONFIG_FAIR_GROUP_SCHED
  7462. static void __set_se_shares(struct sched_entity *se, unsigned long shares)
  7463. {
  7464. struct cfs_rq *cfs_rq = se->cfs_rq;
  7465. int on_rq;
  7466. on_rq = se->on_rq;
  7467. if (on_rq)
  7468. dequeue_entity(cfs_rq, se, 0);
  7469. se->load.weight = shares;
  7470. se->load.inv_weight = 0;
  7471. if (on_rq)
  7472. enqueue_entity(cfs_rq, se, 0);
  7473. }
  7474. static void set_se_shares(struct sched_entity *se, unsigned long shares)
  7475. {
  7476. struct cfs_rq *cfs_rq = se->cfs_rq;
  7477. struct rq *rq = cfs_rq->rq;
  7478. unsigned long flags;
  7479. spin_lock_irqsave(&rq->lock, flags);
  7480. __set_se_shares(se, shares);
  7481. spin_unlock_irqrestore(&rq->lock, flags);
  7482. }
  7483. static DEFINE_MUTEX(shares_mutex);
  7484. int sched_group_set_shares(struct task_group *tg, unsigned long shares)
  7485. {
  7486. int i;
  7487. unsigned long flags;
  7488. /*
  7489. * We can't change the weight of the root cgroup.
  7490. */
  7491. if (!tg->se[0])
  7492. return -EINVAL;
  7493. if (shares < MIN_SHARES)
  7494. shares = MIN_SHARES;
  7495. else if (shares > MAX_SHARES)
  7496. shares = MAX_SHARES;
  7497. mutex_lock(&shares_mutex);
  7498. if (tg->shares == shares)
  7499. goto done;
  7500. spin_lock_irqsave(&task_group_lock, flags);
  7501. for_each_possible_cpu(i)
  7502. unregister_fair_sched_group(tg, i);
  7503. list_del_rcu(&tg->siblings);
  7504. spin_unlock_irqrestore(&task_group_lock, flags);
  7505. /* wait for any ongoing reference to this group to finish */
  7506. synchronize_sched();
  7507. /*
  7508. * Now we are free to modify the group's share on each cpu
  7509. * w/o tripping rebalance_share or load_balance_fair.
  7510. */
  7511. tg->shares = shares;
  7512. for_each_possible_cpu(i) {
  7513. /*
  7514. * force a rebalance
  7515. */
  7516. cfs_rq_set_shares(tg->cfs_rq[i], 0);
  7517. set_se_shares(tg->se[i], shares);
  7518. }
  7519. /*
  7520. * Enable load balance activity on this group, by inserting it back on
  7521. * each cpu's rq->leaf_cfs_rq_list.
  7522. */
  7523. spin_lock_irqsave(&task_group_lock, flags);
  7524. for_each_possible_cpu(i)
  7525. register_fair_sched_group(tg, i);
  7526. list_add_rcu(&tg->siblings, &tg->parent->children);
  7527. spin_unlock_irqrestore(&task_group_lock, flags);
  7528. done:
  7529. mutex_unlock(&shares_mutex);
  7530. return 0;
  7531. }
  7532. unsigned long sched_group_shares(struct task_group *tg)
  7533. {
  7534. return tg->shares;
  7535. }
  7536. #endif
  7537. #ifdef CONFIG_RT_GROUP_SCHED
  7538. /*
  7539. * Ensure that the real time constraints are schedulable.
  7540. */
  7541. static DEFINE_MUTEX(rt_constraints_mutex);
  7542. static unsigned long to_ratio(u64 period, u64 runtime)
  7543. {
  7544. if (runtime == RUNTIME_INF)
  7545. return 1ULL << 20;
  7546. return div64_u64(runtime << 20, period);
  7547. }
  7548. /* Must be called with tasklist_lock held */
  7549. static inline int tg_has_rt_tasks(struct task_group *tg)
  7550. {
  7551. struct task_struct *g, *p;
  7552. do_each_thread(g, p) {
  7553. if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
  7554. return 1;
  7555. } while_each_thread(g, p);
  7556. return 0;
  7557. }
  7558. struct rt_schedulable_data {
  7559. struct task_group *tg;
  7560. u64 rt_period;
  7561. u64 rt_runtime;
  7562. };
  7563. static int tg_schedulable(struct task_group *tg, void *data)
  7564. {
  7565. struct rt_schedulable_data *d = data;
  7566. struct task_group *child;
  7567. unsigned long total, sum = 0;
  7568. u64 period, runtime;
  7569. period = ktime_to_ns(tg->rt_bandwidth.rt_period);
  7570. runtime = tg->rt_bandwidth.rt_runtime;
  7571. if (tg == d->tg) {
  7572. period = d->rt_period;
  7573. runtime = d->rt_runtime;
  7574. }
  7575. /*
  7576. * Cannot have more runtime than the period.
  7577. */
  7578. if (runtime > period && runtime != RUNTIME_INF)
  7579. return -EINVAL;
  7580. /*
  7581. * Ensure we don't starve existing RT tasks.
  7582. */
  7583. if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
  7584. return -EBUSY;
  7585. total = to_ratio(period, runtime);
  7586. /*
  7587. * Nobody can have more than the global setting allows.
  7588. */
  7589. if (total > to_ratio(global_rt_period(), global_rt_runtime()))
  7590. return -EINVAL;
  7591. /*
  7592. * The sum of our children's runtime should not exceed our own.
  7593. */
  7594. list_for_each_entry_rcu(child, &tg->children, siblings) {
  7595. period = ktime_to_ns(child->rt_bandwidth.rt_period);
  7596. runtime = child->rt_bandwidth.rt_runtime;
  7597. if (child == d->tg) {
  7598. period = d->rt_period;
  7599. runtime = d->rt_runtime;
  7600. }
  7601. sum += to_ratio(period, runtime);
  7602. }
  7603. if (sum > total)
  7604. return -EINVAL;
  7605. return 0;
  7606. }
  7607. static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
  7608. {
  7609. struct rt_schedulable_data data = {
  7610. .tg = tg,
  7611. .rt_period = period,
  7612. .rt_runtime = runtime,
  7613. };
  7614. return walk_tg_tree(tg_schedulable, tg_nop, &data);
  7615. }
  7616. static int tg_set_bandwidth(struct task_group *tg,
  7617. u64 rt_period, u64 rt_runtime)
  7618. {
  7619. int i, err = 0;
  7620. mutex_lock(&rt_constraints_mutex);
  7621. read_lock(&tasklist_lock);
  7622. err = __rt_schedulable(tg, rt_period, rt_runtime);
  7623. if (err)
  7624. goto unlock;
  7625. spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
  7626. tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
  7627. tg->rt_bandwidth.rt_runtime = rt_runtime;
  7628. for_each_possible_cpu(i) {
  7629. struct rt_rq *rt_rq = tg->rt_rq[i];
  7630. spin_lock(&rt_rq->rt_runtime_lock);
  7631. rt_rq->rt_runtime = rt_runtime;
  7632. spin_unlock(&rt_rq->rt_runtime_lock);
  7633. }
  7634. spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
  7635. unlock:
  7636. read_unlock(&tasklist_lock);
  7637. mutex_unlock(&rt_constraints_mutex);
  7638. return err;
  7639. }
  7640. int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
  7641. {
  7642. u64 rt_runtime, rt_period;
  7643. rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
  7644. rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
  7645. if (rt_runtime_us < 0)
  7646. rt_runtime = RUNTIME_INF;
  7647. return tg_set_bandwidth(tg, rt_period, rt_runtime);
  7648. }
  7649. long sched_group_rt_runtime(struct task_group *tg)
  7650. {
  7651. u64 rt_runtime_us;
  7652. if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
  7653. return -1;
  7654. rt_runtime_us = tg->rt_bandwidth.rt_runtime;
  7655. do_div(rt_runtime_us, NSEC_PER_USEC);
  7656. return rt_runtime_us;
  7657. }
  7658. int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
  7659. {
  7660. u64 rt_runtime, rt_period;
  7661. rt_period = (u64)rt_period_us * NSEC_PER_USEC;
  7662. rt_runtime = tg->rt_bandwidth.rt_runtime;
  7663. if (rt_period == 0)
  7664. return -EINVAL;
  7665. return tg_set_bandwidth(tg, rt_period, rt_runtime);
  7666. }
  7667. long sched_group_rt_period(struct task_group *tg)
  7668. {
  7669. u64 rt_period_us;
  7670. rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
  7671. do_div(rt_period_us, NSEC_PER_USEC);
  7672. return rt_period_us;
  7673. }
  7674. static int sched_rt_global_constraints(void)
  7675. {
  7676. u64 runtime, period;
  7677. int ret = 0;
  7678. if (sysctl_sched_rt_period <= 0)
  7679. return -EINVAL;
  7680. runtime = global_rt_runtime();
  7681. period = global_rt_period();
  7682. /*
  7683. * Sanity check on the sysctl variables.
  7684. */
  7685. if (runtime > period && runtime != RUNTIME_INF)
  7686. return -EINVAL;
  7687. mutex_lock(&rt_constraints_mutex);
  7688. read_lock(&tasklist_lock);
  7689. ret = __rt_schedulable(NULL, 0, 0);
  7690. read_unlock(&tasklist_lock);
  7691. mutex_unlock(&rt_constraints_mutex);
  7692. return ret;
  7693. }
  7694. #else /* !CONFIG_RT_GROUP_SCHED */
  7695. static int sched_rt_global_constraints(void)
  7696. {
  7697. unsigned long flags;
  7698. int i;
  7699. if (sysctl_sched_rt_period <= 0)
  7700. return -EINVAL;
  7701. spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
  7702. for_each_possible_cpu(i) {
  7703. struct rt_rq *rt_rq = &cpu_rq(i)->rt;
  7704. spin_lock(&rt_rq->rt_runtime_lock);
  7705. rt_rq->rt_runtime = global_rt_runtime();
  7706. spin_unlock(&rt_rq->rt_runtime_lock);
  7707. }
  7708. spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
  7709. return 0;
  7710. }
  7711. #endif /* CONFIG_RT_GROUP_SCHED */
  7712. int sched_rt_handler(struct ctl_table *table, int write,
  7713. struct file *filp, void __user *buffer, size_t *lenp,
  7714. loff_t *ppos)
  7715. {
  7716. int ret;
  7717. int old_period, old_runtime;
  7718. static DEFINE_MUTEX(mutex);
  7719. mutex_lock(&mutex);
  7720. old_period = sysctl_sched_rt_period;
  7721. old_runtime = sysctl_sched_rt_runtime;
  7722. ret = proc_dointvec(table, write, filp, buffer, lenp, ppos);
  7723. if (!ret && write) {
  7724. ret = sched_rt_global_constraints();
  7725. if (ret) {
  7726. sysctl_sched_rt_period = old_period;
  7727. sysctl_sched_rt_runtime = old_runtime;
  7728. } else {
  7729. def_rt_bandwidth.rt_runtime = global_rt_runtime();
  7730. def_rt_bandwidth.rt_period =
  7731. ns_to_ktime(global_rt_period());
  7732. }
  7733. }
  7734. mutex_unlock(&mutex);
  7735. return ret;
  7736. }
  7737. #ifdef CONFIG_CGROUP_SCHED
  7738. /* return corresponding task_group object of a cgroup */
  7739. static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
  7740. {
  7741. return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
  7742. struct task_group, css);
  7743. }
  7744. static struct cgroup_subsys_state *
  7745. cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
  7746. {
  7747. struct task_group *tg, *parent;
  7748. if (!cgrp->parent) {
  7749. /* This is early initialization for the top cgroup */
  7750. return &init_task_group.css;
  7751. }
  7752. parent = cgroup_tg(cgrp->parent);
  7753. tg = sched_create_group(parent);
  7754. if (IS_ERR(tg))
  7755. return ERR_PTR(-ENOMEM);
  7756. return &tg->css;
  7757. }
  7758. static void
  7759. cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
  7760. {
  7761. struct task_group *tg = cgroup_tg(cgrp);
  7762. sched_destroy_group(tg);
  7763. }
  7764. static int
  7765. cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
  7766. struct task_struct *tsk)
  7767. {
  7768. #ifdef CONFIG_RT_GROUP_SCHED
  7769. /* Don't accept realtime tasks when there is no way for them to run */
  7770. if (rt_task(tsk) && cgroup_tg(cgrp)->rt_bandwidth.rt_runtime == 0)
  7771. return -EINVAL;
  7772. #else
  7773. /* We don't support RT-tasks being in separate groups */
  7774. if (tsk->sched_class != &fair_sched_class)
  7775. return -EINVAL;
  7776. #endif
  7777. return 0;
  7778. }
  7779. static void
  7780. cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
  7781. struct cgroup *old_cont, struct task_struct *tsk)
  7782. {
  7783. sched_move_task(tsk);
  7784. }
  7785. #ifdef CONFIG_FAIR_GROUP_SCHED
  7786. static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
  7787. u64 shareval)
  7788. {
  7789. return sched_group_set_shares(cgroup_tg(cgrp), shareval);
  7790. }
  7791. static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
  7792. {
  7793. struct task_group *tg = cgroup_tg(cgrp);
  7794. return (u64) tg->shares;
  7795. }
  7796. #endif /* CONFIG_FAIR_GROUP_SCHED */
  7797. #ifdef CONFIG_RT_GROUP_SCHED
  7798. static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
  7799. s64 val)
  7800. {
  7801. return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
  7802. }
  7803. static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
  7804. {
  7805. return sched_group_rt_runtime(cgroup_tg(cgrp));
  7806. }
  7807. static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
  7808. u64 rt_period_us)
  7809. {
  7810. return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
  7811. }
  7812. static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
  7813. {
  7814. return sched_group_rt_period(cgroup_tg(cgrp));
  7815. }
  7816. #endif /* CONFIG_RT_GROUP_SCHED */
  7817. static struct cftype cpu_files[] = {
  7818. #ifdef CONFIG_FAIR_GROUP_SCHED
  7819. {
  7820. .name = "shares",
  7821. .read_u64 = cpu_shares_read_u64,
  7822. .write_u64 = cpu_shares_write_u64,
  7823. },
  7824. #endif
  7825. #ifdef CONFIG_RT_GROUP_SCHED
  7826. {
  7827. .name = "rt_runtime_us",
  7828. .read_s64 = cpu_rt_runtime_read,
  7829. .write_s64 = cpu_rt_runtime_write,
  7830. },
  7831. {
  7832. .name = "rt_period_us",
  7833. .read_u64 = cpu_rt_period_read_uint,
  7834. .write_u64 = cpu_rt_period_write_uint,
  7835. },
  7836. #endif
  7837. };
  7838. static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
  7839. {
  7840. return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
  7841. }
  7842. struct cgroup_subsys cpu_cgroup_subsys = {
  7843. .name = "cpu",
  7844. .create = cpu_cgroup_create,
  7845. .destroy = cpu_cgroup_destroy,
  7846. .can_attach = cpu_cgroup_can_attach,
  7847. .attach = cpu_cgroup_attach,
  7848. .populate = cpu_cgroup_populate,
  7849. .subsys_id = cpu_cgroup_subsys_id,
  7850. .early_init = 1,
  7851. };
  7852. #endif /* CONFIG_CGROUP_SCHED */
  7853. #ifdef CONFIG_CGROUP_CPUACCT
  7854. /*
  7855. * CPU accounting code for task groups.
  7856. *
  7857. * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
  7858. * (balbir@in.ibm.com).
  7859. */
  7860. /* track cpu usage of a group of tasks and its child groups */
  7861. struct cpuacct {
  7862. struct cgroup_subsys_state css;
  7863. /* cpuusage holds pointer to a u64-type object on every cpu */
  7864. u64 *cpuusage;
  7865. struct cpuacct *parent;
  7866. };
  7867. struct cgroup_subsys cpuacct_subsys;
  7868. /* return cpu accounting group corresponding to this container */
  7869. static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
  7870. {
  7871. return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
  7872. struct cpuacct, css);
  7873. }
  7874. /* return cpu accounting group to which this task belongs */
  7875. static inline struct cpuacct *task_ca(struct task_struct *tsk)
  7876. {
  7877. return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
  7878. struct cpuacct, css);
  7879. }
  7880. /* create a new cpu accounting group */
  7881. static struct cgroup_subsys_state *cpuacct_create(
  7882. struct cgroup_subsys *ss, struct cgroup *cgrp)
  7883. {
  7884. struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
  7885. if (!ca)
  7886. return ERR_PTR(-ENOMEM);
  7887. ca->cpuusage = alloc_percpu(u64);
  7888. if (!ca->cpuusage) {
  7889. kfree(ca);
  7890. return ERR_PTR(-ENOMEM);
  7891. }
  7892. if (cgrp->parent)
  7893. ca->parent = cgroup_ca(cgrp->parent);
  7894. return &ca->css;
  7895. }
  7896. /* destroy an existing cpu accounting group */
  7897. static void
  7898. cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
  7899. {
  7900. struct cpuacct *ca = cgroup_ca(cgrp);
  7901. free_percpu(ca->cpuusage);
  7902. kfree(ca);
  7903. }
  7904. /* return total cpu usage (in nanoseconds) of a group */
  7905. static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
  7906. {
  7907. struct cpuacct *ca = cgroup_ca(cgrp);
  7908. u64 totalcpuusage = 0;
  7909. int i;
  7910. for_each_possible_cpu(i) {
  7911. u64 *cpuusage = percpu_ptr(ca->cpuusage, i);
  7912. /*
  7913. * Take rq->lock to make 64-bit addition safe on 32-bit
  7914. * platforms.
  7915. */
  7916. spin_lock_irq(&cpu_rq(i)->lock);
  7917. totalcpuusage += *cpuusage;
  7918. spin_unlock_irq(&cpu_rq(i)->lock);
  7919. }
  7920. return totalcpuusage;
  7921. }
  7922. static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
  7923. u64 reset)
  7924. {
  7925. struct cpuacct *ca = cgroup_ca(cgrp);
  7926. int err = 0;
  7927. int i;
  7928. if (reset) {
  7929. err = -EINVAL;
  7930. goto out;
  7931. }
  7932. for_each_possible_cpu(i) {
  7933. u64 *cpuusage = percpu_ptr(ca->cpuusage, i);
  7934. spin_lock_irq(&cpu_rq(i)->lock);
  7935. *cpuusage = 0;
  7936. spin_unlock_irq(&cpu_rq(i)->lock);
  7937. }
  7938. out:
  7939. return err;
  7940. }
  7941. static struct cftype files[] = {
  7942. {
  7943. .name = "usage",
  7944. .read_u64 = cpuusage_read,
  7945. .write_u64 = cpuusage_write,
  7946. },
  7947. };
  7948. static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
  7949. {
  7950. return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
  7951. }
  7952. /*
  7953. * charge this task's execution time to its accounting group.
  7954. *
  7955. * called with rq->lock held.
  7956. */
  7957. static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
  7958. {
  7959. struct cpuacct *ca;
  7960. int cpu;
  7961. if (!cpuacct_subsys.active)
  7962. return;
  7963. cpu = task_cpu(tsk);
  7964. ca = task_ca(tsk);
  7965. for (; ca; ca = ca->parent) {
  7966. u64 *cpuusage = percpu_ptr(ca->cpuusage, cpu);
  7967. *cpuusage += cputime;
  7968. }
  7969. }
  7970. struct cgroup_subsys cpuacct_subsys = {
  7971. .name = "cpuacct",
  7972. .create = cpuacct_create,
  7973. .destroy = cpuacct_destroy,
  7974. .populate = cpuacct_populate,
  7975. .subsys_id = cpuacct_subsys_id,
  7976. };
  7977. #endif /* CONFIG_CGROUP_CPUACCT */