page_alloc.c 106 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924
  1. /*
  2. * linux/mm/page_alloc.c
  3. *
  4. * Manages the free list, the system allocates free pages here.
  5. * Note that kmalloc() lives in slab.c
  6. *
  7. * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
  8. * Swap reorganised 29.12.95, Stephen Tweedie
  9. * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
  10. * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
  11. * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
  12. * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
  13. * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
  14. * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
  15. */
  16. #include <linux/stddef.h>
  17. #include <linux/mm.h>
  18. #include <linux/swap.h>
  19. #include <linux/interrupt.h>
  20. #include <linux/pagemap.h>
  21. #include <linux/bootmem.h>
  22. #include <linux/compiler.h>
  23. #include <linux/kernel.h>
  24. #include <linux/module.h>
  25. #include <linux/suspend.h>
  26. #include <linux/pagevec.h>
  27. #include <linux/blkdev.h>
  28. #include <linux/slab.h>
  29. #include <linux/notifier.h>
  30. #include <linux/topology.h>
  31. #include <linux/sysctl.h>
  32. #include <linux/cpu.h>
  33. #include <linux/cpuset.h>
  34. #include <linux/memory_hotplug.h>
  35. #include <linux/nodemask.h>
  36. #include <linux/vmalloc.h>
  37. #include <linux/mempolicy.h>
  38. #include <linux/stop_machine.h>
  39. #include <linux/sort.h>
  40. #include <linux/pfn.h>
  41. #include <linux/backing-dev.h>
  42. #include <linux/fault-inject.h>
  43. #include <asm/tlbflush.h>
  44. #include <asm/div64.h>
  45. #include "internal.h"
  46. /*
  47. * MCD - HACK: Find somewhere to initialize this EARLY, or make this
  48. * initializer cleaner
  49. */
  50. nodemask_t node_online_map __read_mostly = { { [0] = 1UL } };
  51. EXPORT_SYMBOL(node_online_map);
  52. nodemask_t node_possible_map __read_mostly = NODE_MASK_ALL;
  53. EXPORT_SYMBOL(node_possible_map);
  54. unsigned long totalram_pages __read_mostly;
  55. unsigned long totalreserve_pages __read_mostly;
  56. long nr_swap_pages;
  57. int percpu_pagelist_fraction;
  58. static void __free_pages_ok(struct page *page, unsigned int order);
  59. /*
  60. * results with 256, 32 in the lowmem_reserve sysctl:
  61. * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
  62. * 1G machine -> (16M dma, 784M normal, 224M high)
  63. * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
  64. * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
  65. * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
  66. *
  67. * TBD: should special case ZONE_DMA32 machines here - in those we normally
  68. * don't need any ZONE_NORMAL reservation
  69. */
  70. int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
  71. #ifdef CONFIG_ZONE_DMA
  72. 256,
  73. #endif
  74. #ifdef CONFIG_ZONE_DMA32
  75. 256,
  76. #endif
  77. #ifdef CONFIG_HIGHMEM
  78. 32,
  79. #endif
  80. 32,
  81. };
  82. EXPORT_SYMBOL(totalram_pages);
  83. static char * const zone_names[MAX_NR_ZONES] = {
  84. #ifdef CONFIG_ZONE_DMA
  85. "DMA",
  86. #endif
  87. #ifdef CONFIG_ZONE_DMA32
  88. "DMA32",
  89. #endif
  90. "Normal",
  91. #ifdef CONFIG_HIGHMEM
  92. "HighMem",
  93. #endif
  94. "Movable",
  95. };
  96. int min_free_kbytes = 1024;
  97. unsigned long __meminitdata nr_kernel_pages;
  98. unsigned long __meminitdata nr_all_pages;
  99. static unsigned long __meminitdata dma_reserve;
  100. #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
  101. /*
  102. * MAX_ACTIVE_REGIONS determines the maxmimum number of distinct
  103. * ranges of memory (RAM) that may be registered with add_active_range().
  104. * Ranges passed to add_active_range() will be merged if possible
  105. * so the number of times add_active_range() can be called is
  106. * related to the number of nodes and the number of holes
  107. */
  108. #ifdef CONFIG_MAX_ACTIVE_REGIONS
  109. /* Allow an architecture to set MAX_ACTIVE_REGIONS to save memory */
  110. #define MAX_ACTIVE_REGIONS CONFIG_MAX_ACTIVE_REGIONS
  111. #else
  112. #if MAX_NUMNODES >= 32
  113. /* If there can be many nodes, allow up to 50 holes per node */
  114. #define MAX_ACTIVE_REGIONS (MAX_NUMNODES*50)
  115. #else
  116. /* By default, allow up to 256 distinct regions */
  117. #define MAX_ACTIVE_REGIONS 256
  118. #endif
  119. #endif
  120. static struct node_active_region __meminitdata early_node_map[MAX_ACTIVE_REGIONS];
  121. static int __meminitdata nr_nodemap_entries;
  122. static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
  123. static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
  124. #ifdef CONFIG_MEMORY_HOTPLUG_RESERVE
  125. static unsigned long __meminitdata node_boundary_start_pfn[MAX_NUMNODES];
  126. static unsigned long __meminitdata node_boundary_end_pfn[MAX_NUMNODES];
  127. #endif /* CONFIG_MEMORY_HOTPLUG_RESERVE */
  128. unsigned long __initdata required_kernelcore;
  129. unsigned long __initdata required_movablecore;
  130. unsigned long __initdata zone_movable_pfn[MAX_NUMNODES];
  131. /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
  132. int movable_zone;
  133. EXPORT_SYMBOL(movable_zone);
  134. #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
  135. #if MAX_NUMNODES > 1
  136. int nr_node_ids __read_mostly = MAX_NUMNODES;
  137. EXPORT_SYMBOL(nr_node_ids);
  138. #endif
  139. #ifdef CONFIG_DEBUG_VM
  140. static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
  141. {
  142. int ret = 0;
  143. unsigned seq;
  144. unsigned long pfn = page_to_pfn(page);
  145. do {
  146. seq = zone_span_seqbegin(zone);
  147. if (pfn >= zone->zone_start_pfn + zone->spanned_pages)
  148. ret = 1;
  149. else if (pfn < zone->zone_start_pfn)
  150. ret = 1;
  151. } while (zone_span_seqretry(zone, seq));
  152. return ret;
  153. }
  154. static int page_is_consistent(struct zone *zone, struct page *page)
  155. {
  156. if (!pfn_valid_within(page_to_pfn(page)))
  157. return 0;
  158. if (zone != page_zone(page))
  159. return 0;
  160. return 1;
  161. }
  162. /*
  163. * Temporary debugging check for pages not lying within a given zone.
  164. */
  165. static int bad_range(struct zone *zone, struct page *page)
  166. {
  167. if (page_outside_zone_boundaries(zone, page))
  168. return 1;
  169. if (!page_is_consistent(zone, page))
  170. return 1;
  171. return 0;
  172. }
  173. #else
  174. static inline int bad_range(struct zone *zone, struct page *page)
  175. {
  176. return 0;
  177. }
  178. #endif
  179. static void bad_page(struct page *page)
  180. {
  181. printk(KERN_EMERG "Bad page state in process '%s'\n"
  182. KERN_EMERG "page:%p flags:0x%0*lx mapping:%p mapcount:%d count:%d\n"
  183. KERN_EMERG "Trying to fix it up, but a reboot is needed\n"
  184. KERN_EMERG "Backtrace:\n",
  185. current->comm, page, (int)(2*sizeof(unsigned long)),
  186. (unsigned long)page->flags, page->mapping,
  187. page_mapcount(page), page_count(page));
  188. dump_stack();
  189. page->flags &= ~(1 << PG_lru |
  190. 1 << PG_private |
  191. 1 << PG_locked |
  192. 1 << PG_active |
  193. 1 << PG_dirty |
  194. 1 << PG_reclaim |
  195. 1 << PG_slab |
  196. 1 << PG_swapcache |
  197. 1 << PG_writeback |
  198. 1 << PG_buddy );
  199. set_page_count(page, 0);
  200. reset_page_mapcount(page);
  201. page->mapping = NULL;
  202. add_taint(TAINT_BAD_PAGE);
  203. }
  204. /*
  205. * Higher-order pages are called "compound pages". They are structured thusly:
  206. *
  207. * The first PAGE_SIZE page is called the "head page".
  208. *
  209. * The remaining PAGE_SIZE pages are called "tail pages".
  210. *
  211. * All pages have PG_compound set. All pages have their ->private pointing at
  212. * the head page (even the head page has this).
  213. *
  214. * The first tail page's ->lru.next holds the address of the compound page's
  215. * put_page() function. Its ->lru.prev holds the order of allocation.
  216. * This usage means that zero-order pages may not be compound.
  217. */
  218. static void free_compound_page(struct page *page)
  219. {
  220. __free_pages_ok(page, compound_order(page));
  221. }
  222. static void prep_compound_page(struct page *page, unsigned long order)
  223. {
  224. int i;
  225. int nr_pages = 1 << order;
  226. set_compound_page_dtor(page, free_compound_page);
  227. set_compound_order(page, order);
  228. __SetPageHead(page);
  229. for (i = 1; i < nr_pages; i++) {
  230. struct page *p = page + i;
  231. __SetPageTail(p);
  232. p->first_page = page;
  233. }
  234. }
  235. static void destroy_compound_page(struct page *page, unsigned long order)
  236. {
  237. int i;
  238. int nr_pages = 1 << order;
  239. if (unlikely(compound_order(page) != order))
  240. bad_page(page);
  241. if (unlikely(!PageHead(page)))
  242. bad_page(page);
  243. __ClearPageHead(page);
  244. for (i = 1; i < nr_pages; i++) {
  245. struct page *p = page + i;
  246. if (unlikely(!PageTail(p) |
  247. (p->first_page != page)))
  248. bad_page(page);
  249. __ClearPageTail(p);
  250. }
  251. }
  252. static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags)
  253. {
  254. int i;
  255. VM_BUG_ON((gfp_flags & (__GFP_WAIT | __GFP_HIGHMEM)) == __GFP_HIGHMEM);
  256. /*
  257. * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
  258. * and __GFP_HIGHMEM from hard or soft interrupt context.
  259. */
  260. VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt());
  261. for (i = 0; i < (1 << order); i++)
  262. clear_highpage(page + i);
  263. }
  264. /*
  265. * function for dealing with page's order in buddy system.
  266. * zone->lock is already acquired when we use these.
  267. * So, we don't need atomic page->flags operations here.
  268. */
  269. static inline unsigned long page_order(struct page *page)
  270. {
  271. return page_private(page);
  272. }
  273. static inline void set_page_order(struct page *page, int order)
  274. {
  275. set_page_private(page, order);
  276. __SetPageBuddy(page);
  277. }
  278. static inline void rmv_page_order(struct page *page)
  279. {
  280. __ClearPageBuddy(page);
  281. set_page_private(page, 0);
  282. }
  283. /*
  284. * Locate the struct page for both the matching buddy in our
  285. * pair (buddy1) and the combined O(n+1) page they form (page).
  286. *
  287. * 1) Any buddy B1 will have an order O twin B2 which satisfies
  288. * the following equation:
  289. * B2 = B1 ^ (1 << O)
  290. * For example, if the starting buddy (buddy2) is #8 its order
  291. * 1 buddy is #10:
  292. * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
  293. *
  294. * 2) Any buddy B will have an order O+1 parent P which
  295. * satisfies the following equation:
  296. * P = B & ~(1 << O)
  297. *
  298. * Assumption: *_mem_map is contiguous at least up to MAX_ORDER
  299. */
  300. static inline struct page *
  301. __page_find_buddy(struct page *page, unsigned long page_idx, unsigned int order)
  302. {
  303. unsigned long buddy_idx = page_idx ^ (1 << order);
  304. return page + (buddy_idx - page_idx);
  305. }
  306. static inline unsigned long
  307. __find_combined_index(unsigned long page_idx, unsigned int order)
  308. {
  309. return (page_idx & ~(1 << order));
  310. }
  311. /*
  312. * This function checks whether a page is free && is the buddy
  313. * we can do coalesce a page and its buddy if
  314. * (a) the buddy is not in a hole &&
  315. * (b) the buddy is in the buddy system &&
  316. * (c) a page and its buddy have the same order &&
  317. * (d) a page and its buddy are in the same zone.
  318. *
  319. * For recording whether a page is in the buddy system, we use PG_buddy.
  320. * Setting, clearing, and testing PG_buddy is serialized by zone->lock.
  321. *
  322. * For recording page's order, we use page_private(page).
  323. */
  324. static inline int page_is_buddy(struct page *page, struct page *buddy,
  325. int order)
  326. {
  327. if (!pfn_valid_within(page_to_pfn(buddy)))
  328. return 0;
  329. if (page_zone_id(page) != page_zone_id(buddy))
  330. return 0;
  331. if (PageBuddy(buddy) && page_order(buddy) == order) {
  332. BUG_ON(page_count(buddy) != 0);
  333. return 1;
  334. }
  335. return 0;
  336. }
  337. /*
  338. * Freeing function for a buddy system allocator.
  339. *
  340. * The concept of a buddy system is to maintain direct-mapped table
  341. * (containing bit values) for memory blocks of various "orders".
  342. * The bottom level table contains the map for the smallest allocatable
  343. * units of memory (here, pages), and each level above it describes
  344. * pairs of units from the levels below, hence, "buddies".
  345. * At a high level, all that happens here is marking the table entry
  346. * at the bottom level available, and propagating the changes upward
  347. * as necessary, plus some accounting needed to play nicely with other
  348. * parts of the VM system.
  349. * At each level, we keep a list of pages, which are heads of continuous
  350. * free pages of length of (1 << order) and marked with PG_buddy. Page's
  351. * order is recorded in page_private(page) field.
  352. * So when we are allocating or freeing one, we can derive the state of the
  353. * other. That is, if we allocate a small block, and both were
  354. * free, the remainder of the region must be split into blocks.
  355. * If a block is freed, and its buddy is also free, then this
  356. * triggers coalescing into a block of larger size.
  357. *
  358. * -- wli
  359. */
  360. static inline void __free_one_page(struct page *page,
  361. struct zone *zone, unsigned int order)
  362. {
  363. unsigned long page_idx;
  364. int order_size = 1 << order;
  365. if (unlikely(PageCompound(page)))
  366. destroy_compound_page(page, order);
  367. page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1);
  368. VM_BUG_ON(page_idx & (order_size - 1));
  369. VM_BUG_ON(bad_range(zone, page));
  370. __mod_zone_page_state(zone, NR_FREE_PAGES, order_size);
  371. while (order < MAX_ORDER-1) {
  372. unsigned long combined_idx;
  373. struct free_area *area;
  374. struct page *buddy;
  375. buddy = __page_find_buddy(page, page_idx, order);
  376. if (!page_is_buddy(page, buddy, order))
  377. break; /* Move the buddy up one level. */
  378. list_del(&buddy->lru);
  379. area = zone->free_area + order;
  380. area->nr_free--;
  381. rmv_page_order(buddy);
  382. combined_idx = __find_combined_index(page_idx, order);
  383. page = page + (combined_idx - page_idx);
  384. page_idx = combined_idx;
  385. order++;
  386. }
  387. set_page_order(page, order);
  388. list_add(&page->lru, &zone->free_area[order].free_list);
  389. zone->free_area[order].nr_free++;
  390. }
  391. static inline int free_pages_check(struct page *page)
  392. {
  393. if (unlikely(page_mapcount(page) |
  394. (page->mapping != NULL) |
  395. (page_count(page) != 0) |
  396. (page->flags & (
  397. 1 << PG_lru |
  398. 1 << PG_private |
  399. 1 << PG_locked |
  400. 1 << PG_active |
  401. 1 << PG_slab |
  402. 1 << PG_swapcache |
  403. 1 << PG_writeback |
  404. 1 << PG_reserved |
  405. 1 << PG_buddy ))))
  406. bad_page(page);
  407. /*
  408. * PageReclaim == PageTail. It is only an error
  409. * for PageReclaim to be set if PageCompound is clear.
  410. */
  411. if (unlikely(!PageCompound(page) && PageReclaim(page)))
  412. bad_page(page);
  413. if (PageDirty(page))
  414. __ClearPageDirty(page);
  415. /*
  416. * For now, we report if PG_reserved was found set, but do not
  417. * clear it, and do not free the page. But we shall soon need
  418. * to do more, for when the ZERO_PAGE count wraps negative.
  419. */
  420. return PageReserved(page);
  421. }
  422. /*
  423. * Frees a list of pages.
  424. * Assumes all pages on list are in same zone, and of same order.
  425. * count is the number of pages to free.
  426. *
  427. * If the zone was previously in an "all pages pinned" state then look to
  428. * see if this freeing clears that state.
  429. *
  430. * And clear the zone's pages_scanned counter, to hold off the "all pages are
  431. * pinned" detection logic.
  432. */
  433. static void free_pages_bulk(struct zone *zone, int count,
  434. struct list_head *list, int order)
  435. {
  436. spin_lock(&zone->lock);
  437. zone->all_unreclaimable = 0;
  438. zone->pages_scanned = 0;
  439. while (count--) {
  440. struct page *page;
  441. VM_BUG_ON(list_empty(list));
  442. page = list_entry(list->prev, struct page, lru);
  443. /* have to delete it as __free_one_page list manipulates */
  444. list_del(&page->lru);
  445. __free_one_page(page, zone, order);
  446. }
  447. spin_unlock(&zone->lock);
  448. }
  449. static void free_one_page(struct zone *zone, struct page *page, int order)
  450. {
  451. spin_lock(&zone->lock);
  452. zone->all_unreclaimable = 0;
  453. zone->pages_scanned = 0;
  454. __free_one_page(page, zone, order);
  455. spin_unlock(&zone->lock);
  456. }
  457. static void __free_pages_ok(struct page *page, unsigned int order)
  458. {
  459. unsigned long flags;
  460. int i;
  461. int reserved = 0;
  462. for (i = 0 ; i < (1 << order) ; ++i)
  463. reserved += free_pages_check(page + i);
  464. if (reserved)
  465. return;
  466. if (!PageHighMem(page))
  467. debug_check_no_locks_freed(page_address(page),PAGE_SIZE<<order);
  468. arch_free_page(page, order);
  469. kernel_map_pages(page, 1 << order, 0);
  470. local_irq_save(flags);
  471. __count_vm_events(PGFREE, 1 << order);
  472. free_one_page(page_zone(page), page, order);
  473. local_irq_restore(flags);
  474. }
  475. /*
  476. * permit the bootmem allocator to evade page validation on high-order frees
  477. */
  478. void fastcall __init __free_pages_bootmem(struct page *page, unsigned int order)
  479. {
  480. if (order == 0) {
  481. __ClearPageReserved(page);
  482. set_page_count(page, 0);
  483. set_page_refcounted(page);
  484. __free_page(page);
  485. } else {
  486. int loop;
  487. prefetchw(page);
  488. for (loop = 0; loop < BITS_PER_LONG; loop++) {
  489. struct page *p = &page[loop];
  490. if (loop + 1 < BITS_PER_LONG)
  491. prefetchw(p + 1);
  492. __ClearPageReserved(p);
  493. set_page_count(p, 0);
  494. }
  495. set_page_refcounted(page);
  496. __free_pages(page, order);
  497. }
  498. }
  499. /*
  500. * The order of subdivision here is critical for the IO subsystem.
  501. * Please do not alter this order without good reasons and regression
  502. * testing. Specifically, as large blocks of memory are subdivided,
  503. * the order in which smaller blocks are delivered depends on the order
  504. * they're subdivided in this function. This is the primary factor
  505. * influencing the order in which pages are delivered to the IO
  506. * subsystem according to empirical testing, and this is also justified
  507. * by considering the behavior of a buddy system containing a single
  508. * large block of memory acted on by a series of small allocations.
  509. * This behavior is a critical factor in sglist merging's success.
  510. *
  511. * -- wli
  512. */
  513. static inline void expand(struct zone *zone, struct page *page,
  514. int low, int high, struct free_area *area)
  515. {
  516. unsigned long size = 1 << high;
  517. while (high > low) {
  518. area--;
  519. high--;
  520. size >>= 1;
  521. VM_BUG_ON(bad_range(zone, &page[size]));
  522. list_add(&page[size].lru, &area->free_list);
  523. area->nr_free++;
  524. set_page_order(&page[size], high);
  525. }
  526. }
  527. /*
  528. * This page is about to be returned from the page allocator
  529. */
  530. static int prep_new_page(struct page *page, int order, gfp_t gfp_flags)
  531. {
  532. if (unlikely(page_mapcount(page) |
  533. (page->mapping != NULL) |
  534. (page_count(page) != 0) |
  535. (page->flags & (
  536. 1 << PG_lru |
  537. 1 << PG_private |
  538. 1 << PG_locked |
  539. 1 << PG_active |
  540. 1 << PG_dirty |
  541. 1 << PG_reclaim |
  542. 1 << PG_slab |
  543. 1 << PG_swapcache |
  544. 1 << PG_writeback |
  545. 1 << PG_reserved |
  546. 1 << PG_buddy ))))
  547. bad_page(page);
  548. /*
  549. * For now, we report if PG_reserved was found set, but do not
  550. * clear it, and do not allocate the page: as a safety net.
  551. */
  552. if (PageReserved(page))
  553. return 1;
  554. page->flags &= ~(1 << PG_uptodate | 1 << PG_error |
  555. 1 << PG_referenced | 1 << PG_arch_1 |
  556. 1 << PG_owner_priv_1 | 1 << PG_mappedtodisk);
  557. set_page_private(page, 0);
  558. set_page_refcounted(page);
  559. arch_alloc_page(page, order);
  560. kernel_map_pages(page, 1 << order, 1);
  561. if (gfp_flags & __GFP_ZERO)
  562. prep_zero_page(page, order, gfp_flags);
  563. if (order && (gfp_flags & __GFP_COMP))
  564. prep_compound_page(page, order);
  565. return 0;
  566. }
  567. /*
  568. * Do the hard work of removing an element from the buddy allocator.
  569. * Call me with the zone->lock already held.
  570. */
  571. static struct page *__rmqueue(struct zone *zone, unsigned int order)
  572. {
  573. struct free_area * area;
  574. unsigned int current_order;
  575. struct page *page;
  576. for (current_order = order; current_order < MAX_ORDER; ++current_order) {
  577. area = zone->free_area + current_order;
  578. if (list_empty(&area->free_list))
  579. continue;
  580. page = list_entry(area->free_list.next, struct page, lru);
  581. list_del(&page->lru);
  582. rmv_page_order(page);
  583. area->nr_free--;
  584. __mod_zone_page_state(zone, NR_FREE_PAGES, - (1UL << order));
  585. expand(zone, page, order, current_order, area);
  586. return page;
  587. }
  588. return NULL;
  589. }
  590. /*
  591. * Obtain a specified number of elements from the buddy allocator, all under
  592. * a single hold of the lock, for efficiency. Add them to the supplied list.
  593. * Returns the number of new pages which were placed at *list.
  594. */
  595. static int rmqueue_bulk(struct zone *zone, unsigned int order,
  596. unsigned long count, struct list_head *list)
  597. {
  598. int i;
  599. spin_lock(&zone->lock);
  600. for (i = 0; i < count; ++i) {
  601. struct page *page = __rmqueue(zone, order);
  602. if (unlikely(page == NULL))
  603. break;
  604. list_add_tail(&page->lru, list);
  605. }
  606. spin_unlock(&zone->lock);
  607. return i;
  608. }
  609. #ifdef CONFIG_NUMA
  610. /*
  611. * Called from the vmstat counter updater to drain pagesets of this
  612. * currently executing processor on remote nodes after they have
  613. * expired.
  614. *
  615. * Note that this function must be called with the thread pinned to
  616. * a single processor.
  617. */
  618. void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
  619. {
  620. unsigned long flags;
  621. int to_drain;
  622. local_irq_save(flags);
  623. if (pcp->count >= pcp->batch)
  624. to_drain = pcp->batch;
  625. else
  626. to_drain = pcp->count;
  627. free_pages_bulk(zone, to_drain, &pcp->list, 0);
  628. pcp->count -= to_drain;
  629. local_irq_restore(flags);
  630. }
  631. #endif
  632. static void __drain_pages(unsigned int cpu)
  633. {
  634. unsigned long flags;
  635. struct zone *zone;
  636. int i;
  637. for_each_zone(zone) {
  638. struct per_cpu_pageset *pset;
  639. if (!populated_zone(zone))
  640. continue;
  641. pset = zone_pcp(zone, cpu);
  642. for (i = 0; i < ARRAY_SIZE(pset->pcp); i++) {
  643. struct per_cpu_pages *pcp;
  644. pcp = &pset->pcp[i];
  645. local_irq_save(flags);
  646. free_pages_bulk(zone, pcp->count, &pcp->list, 0);
  647. pcp->count = 0;
  648. local_irq_restore(flags);
  649. }
  650. }
  651. }
  652. #ifdef CONFIG_PM
  653. void mark_free_pages(struct zone *zone)
  654. {
  655. unsigned long pfn, max_zone_pfn;
  656. unsigned long flags;
  657. int order;
  658. struct list_head *curr;
  659. if (!zone->spanned_pages)
  660. return;
  661. spin_lock_irqsave(&zone->lock, flags);
  662. max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
  663. for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
  664. if (pfn_valid(pfn)) {
  665. struct page *page = pfn_to_page(pfn);
  666. if (!swsusp_page_is_forbidden(page))
  667. swsusp_unset_page_free(page);
  668. }
  669. for (order = MAX_ORDER - 1; order >= 0; --order)
  670. list_for_each(curr, &zone->free_area[order].free_list) {
  671. unsigned long i;
  672. pfn = page_to_pfn(list_entry(curr, struct page, lru));
  673. for (i = 0; i < (1UL << order); i++)
  674. swsusp_set_page_free(pfn_to_page(pfn + i));
  675. }
  676. spin_unlock_irqrestore(&zone->lock, flags);
  677. }
  678. /*
  679. * Spill all of this CPU's per-cpu pages back into the buddy allocator.
  680. */
  681. void drain_local_pages(void)
  682. {
  683. unsigned long flags;
  684. local_irq_save(flags);
  685. __drain_pages(smp_processor_id());
  686. local_irq_restore(flags);
  687. }
  688. #endif /* CONFIG_PM */
  689. /*
  690. * Free a 0-order page
  691. */
  692. static void fastcall free_hot_cold_page(struct page *page, int cold)
  693. {
  694. struct zone *zone = page_zone(page);
  695. struct per_cpu_pages *pcp;
  696. unsigned long flags;
  697. if (PageAnon(page))
  698. page->mapping = NULL;
  699. if (free_pages_check(page))
  700. return;
  701. if (!PageHighMem(page))
  702. debug_check_no_locks_freed(page_address(page), PAGE_SIZE);
  703. arch_free_page(page, 0);
  704. kernel_map_pages(page, 1, 0);
  705. pcp = &zone_pcp(zone, get_cpu())->pcp[cold];
  706. local_irq_save(flags);
  707. __count_vm_event(PGFREE);
  708. list_add(&page->lru, &pcp->list);
  709. pcp->count++;
  710. if (pcp->count >= pcp->high) {
  711. free_pages_bulk(zone, pcp->batch, &pcp->list, 0);
  712. pcp->count -= pcp->batch;
  713. }
  714. local_irq_restore(flags);
  715. put_cpu();
  716. }
  717. void fastcall free_hot_page(struct page *page)
  718. {
  719. free_hot_cold_page(page, 0);
  720. }
  721. void fastcall free_cold_page(struct page *page)
  722. {
  723. free_hot_cold_page(page, 1);
  724. }
  725. /*
  726. * split_page takes a non-compound higher-order page, and splits it into
  727. * n (1<<order) sub-pages: page[0..n]
  728. * Each sub-page must be freed individually.
  729. *
  730. * Note: this is probably too low level an operation for use in drivers.
  731. * Please consult with lkml before using this in your driver.
  732. */
  733. void split_page(struct page *page, unsigned int order)
  734. {
  735. int i;
  736. VM_BUG_ON(PageCompound(page));
  737. VM_BUG_ON(!page_count(page));
  738. for (i = 1; i < (1 << order); i++)
  739. set_page_refcounted(page + i);
  740. }
  741. /*
  742. * Really, prep_compound_page() should be called from __rmqueue_bulk(). But
  743. * we cheat by calling it from here, in the order > 0 path. Saves a branch
  744. * or two.
  745. */
  746. static struct page *buffered_rmqueue(struct zonelist *zonelist,
  747. struct zone *zone, int order, gfp_t gfp_flags)
  748. {
  749. unsigned long flags;
  750. struct page *page;
  751. int cold = !!(gfp_flags & __GFP_COLD);
  752. int cpu;
  753. again:
  754. cpu = get_cpu();
  755. if (likely(order == 0)) {
  756. struct per_cpu_pages *pcp;
  757. pcp = &zone_pcp(zone, cpu)->pcp[cold];
  758. local_irq_save(flags);
  759. if (!pcp->count) {
  760. pcp->count = rmqueue_bulk(zone, 0,
  761. pcp->batch, &pcp->list);
  762. if (unlikely(!pcp->count))
  763. goto failed;
  764. }
  765. page = list_entry(pcp->list.next, struct page, lru);
  766. list_del(&page->lru);
  767. pcp->count--;
  768. } else {
  769. spin_lock_irqsave(&zone->lock, flags);
  770. page = __rmqueue(zone, order);
  771. spin_unlock(&zone->lock);
  772. if (!page)
  773. goto failed;
  774. }
  775. __count_zone_vm_events(PGALLOC, zone, 1 << order);
  776. zone_statistics(zonelist, zone);
  777. local_irq_restore(flags);
  778. put_cpu();
  779. VM_BUG_ON(bad_range(zone, page));
  780. if (prep_new_page(page, order, gfp_flags))
  781. goto again;
  782. return page;
  783. failed:
  784. local_irq_restore(flags);
  785. put_cpu();
  786. return NULL;
  787. }
  788. #define ALLOC_NO_WATERMARKS 0x01 /* don't check watermarks at all */
  789. #define ALLOC_WMARK_MIN 0x02 /* use pages_min watermark */
  790. #define ALLOC_WMARK_LOW 0x04 /* use pages_low watermark */
  791. #define ALLOC_WMARK_HIGH 0x08 /* use pages_high watermark */
  792. #define ALLOC_HARDER 0x10 /* try to alloc harder */
  793. #define ALLOC_HIGH 0x20 /* __GFP_HIGH set */
  794. #define ALLOC_CPUSET 0x40 /* check for correct cpuset */
  795. #ifdef CONFIG_FAIL_PAGE_ALLOC
  796. static struct fail_page_alloc_attr {
  797. struct fault_attr attr;
  798. u32 ignore_gfp_highmem;
  799. u32 ignore_gfp_wait;
  800. u32 min_order;
  801. #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
  802. struct dentry *ignore_gfp_highmem_file;
  803. struct dentry *ignore_gfp_wait_file;
  804. struct dentry *min_order_file;
  805. #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
  806. } fail_page_alloc = {
  807. .attr = FAULT_ATTR_INITIALIZER,
  808. .ignore_gfp_wait = 1,
  809. .ignore_gfp_highmem = 1,
  810. .min_order = 1,
  811. };
  812. static int __init setup_fail_page_alloc(char *str)
  813. {
  814. return setup_fault_attr(&fail_page_alloc.attr, str);
  815. }
  816. __setup("fail_page_alloc=", setup_fail_page_alloc);
  817. static int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
  818. {
  819. if (order < fail_page_alloc.min_order)
  820. return 0;
  821. if (gfp_mask & __GFP_NOFAIL)
  822. return 0;
  823. if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
  824. return 0;
  825. if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT))
  826. return 0;
  827. return should_fail(&fail_page_alloc.attr, 1 << order);
  828. }
  829. #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
  830. static int __init fail_page_alloc_debugfs(void)
  831. {
  832. mode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
  833. struct dentry *dir;
  834. int err;
  835. err = init_fault_attr_dentries(&fail_page_alloc.attr,
  836. "fail_page_alloc");
  837. if (err)
  838. return err;
  839. dir = fail_page_alloc.attr.dentries.dir;
  840. fail_page_alloc.ignore_gfp_wait_file =
  841. debugfs_create_bool("ignore-gfp-wait", mode, dir,
  842. &fail_page_alloc.ignore_gfp_wait);
  843. fail_page_alloc.ignore_gfp_highmem_file =
  844. debugfs_create_bool("ignore-gfp-highmem", mode, dir,
  845. &fail_page_alloc.ignore_gfp_highmem);
  846. fail_page_alloc.min_order_file =
  847. debugfs_create_u32("min-order", mode, dir,
  848. &fail_page_alloc.min_order);
  849. if (!fail_page_alloc.ignore_gfp_wait_file ||
  850. !fail_page_alloc.ignore_gfp_highmem_file ||
  851. !fail_page_alloc.min_order_file) {
  852. err = -ENOMEM;
  853. debugfs_remove(fail_page_alloc.ignore_gfp_wait_file);
  854. debugfs_remove(fail_page_alloc.ignore_gfp_highmem_file);
  855. debugfs_remove(fail_page_alloc.min_order_file);
  856. cleanup_fault_attr_dentries(&fail_page_alloc.attr);
  857. }
  858. return err;
  859. }
  860. late_initcall(fail_page_alloc_debugfs);
  861. #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
  862. #else /* CONFIG_FAIL_PAGE_ALLOC */
  863. static inline int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
  864. {
  865. return 0;
  866. }
  867. #endif /* CONFIG_FAIL_PAGE_ALLOC */
  868. /*
  869. * Return 1 if free pages are above 'mark'. This takes into account the order
  870. * of the allocation.
  871. */
  872. int zone_watermark_ok(struct zone *z, int order, unsigned long mark,
  873. int classzone_idx, int alloc_flags)
  874. {
  875. /* free_pages my go negative - that's OK */
  876. long min = mark;
  877. long free_pages = zone_page_state(z, NR_FREE_PAGES) - (1 << order) + 1;
  878. int o;
  879. if (alloc_flags & ALLOC_HIGH)
  880. min -= min / 2;
  881. if (alloc_flags & ALLOC_HARDER)
  882. min -= min / 4;
  883. if (free_pages <= min + z->lowmem_reserve[classzone_idx])
  884. return 0;
  885. for (o = 0; o < order; o++) {
  886. /* At the next order, this order's pages become unavailable */
  887. free_pages -= z->free_area[o].nr_free << o;
  888. /* Require fewer higher order pages to be free */
  889. min >>= 1;
  890. if (free_pages <= min)
  891. return 0;
  892. }
  893. return 1;
  894. }
  895. #ifdef CONFIG_NUMA
  896. /*
  897. * zlc_setup - Setup for "zonelist cache". Uses cached zone data to
  898. * skip over zones that are not allowed by the cpuset, or that have
  899. * been recently (in last second) found to be nearly full. See further
  900. * comments in mmzone.h. Reduces cache footprint of zonelist scans
  901. * that have to skip over alot of full or unallowed zones.
  902. *
  903. * If the zonelist cache is present in the passed in zonelist, then
  904. * returns a pointer to the allowed node mask (either the current
  905. * tasks mems_allowed, or node_online_map.)
  906. *
  907. * If the zonelist cache is not available for this zonelist, does
  908. * nothing and returns NULL.
  909. *
  910. * If the fullzones BITMAP in the zonelist cache is stale (more than
  911. * a second since last zap'd) then we zap it out (clear its bits.)
  912. *
  913. * We hold off even calling zlc_setup, until after we've checked the
  914. * first zone in the zonelist, on the theory that most allocations will
  915. * be satisfied from that first zone, so best to examine that zone as
  916. * quickly as we can.
  917. */
  918. static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
  919. {
  920. struct zonelist_cache *zlc; /* cached zonelist speedup info */
  921. nodemask_t *allowednodes; /* zonelist_cache approximation */
  922. zlc = zonelist->zlcache_ptr;
  923. if (!zlc)
  924. return NULL;
  925. if (jiffies - zlc->last_full_zap > 1 * HZ) {
  926. bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
  927. zlc->last_full_zap = jiffies;
  928. }
  929. allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ?
  930. &cpuset_current_mems_allowed :
  931. &node_online_map;
  932. return allowednodes;
  933. }
  934. /*
  935. * Given 'z' scanning a zonelist, run a couple of quick checks to see
  936. * if it is worth looking at further for free memory:
  937. * 1) Check that the zone isn't thought to be full (doesn't have its
  938. * bit set in the zonelist_cache fullzones BITMAP).
  939. * 2) Check that the zones node (obtained from the zonelist_cache
  940. * z_to_n[] mapping) is allowed in the passed in allowednodes mask.
  941. * Return true (non-zero) if zone is worth looking at further, or
  942. * else return false (zero) if it is not.
  943. *
  944. * This check -ignores- the distinction between various watermarks,
  945. * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ... If a zone is
  946. * found to be full for any variation of these watermarks, it will
  947. * be considered full for up to one second by all requests, unless
  948. * we are so low on memory on all allowed nodes that we are forced
  949. * into the second scan of the zonelist.
  950. *
  951. * In the second scan we ignore this zonelist cache and exactly
  952. * apply the watermarks to all zones, even it is slower to do so.
  953. * We are low on memory in the second scan, and should leave no stone
  954. * unturned looking for a free page.
  955. */
  956. static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zone **z,
  957. nodemask_t *allowednodes)
  958. {
  959. struct zonelist_cache *zlc; /* cached zonelist speedup info */
  960. int i; /* index of *z in zonelist zones */
  961. int n; /* node that zone *z is on */
  962. zlc = zonelist->zlcache_ptr;
  963. if (!zlc)
  964. return 1;
  965. i = z - zonelist->zones;
  966. n = zlc->z_to_n[i];
  967. /* This zone is worth trying if it is allowed but not full */
  968. return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones);
  969. }
  970. /*
  971. * Given 'z' scanning a zonelist, set the corresponding bit in
  972. * zlc->fullzones, so that subsequent attempts to allocate a page
  973. * from that zone don't waste time re-examining it.
  974. */
  975. static void zlc_mark_zone_full(struct zonelist *zonelist, struct zone **z)
  976. {
  977. struct zonelist_cache *zlc; /* cached zonelist speedup info */
  978. int i; /* index of *z in zonelist zones */
  979. zlc = zonelist->zlcache_ptr;
  980. if (!zlc)
  981. return;
  982. i = z - zonelist->zones;
  983. set_bit(i, zlc->fullzones);
  984. }
  985. #else /* CONFIG_NUMA */
  986. static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
  987. {
  988. return NULL;
  989. }
  990. static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zone **z,
  991. nodemask_t *allowednodes)
  992. {
  993. return 1;
  994. }
  995. static void zlc_mark_zone_full(struct zonelist *zonelist, struct zone **z)
  996. {
  997. }
  998. #endif /* CONFIG_NUMA */
  999. /*
  1000. * get_page_from_freelist goes through the zonelist trying to allocate
  1001. * a page.
  1002. */
  1003. static struct page *
  1004. get_page_from_freelist(gfp_t gfp_mask, unsigned int order,
  1005. struct zonelist *zonelist, int alloc_flags)
  1006. {
  1007. struct zone **z;
  1008. struct page *page = NULL;
  1009. int classzone_idx = zone_idx(zonelist->zones[0]);
  1010. struct zone *zone;
  1011. nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */
  1012. int zlc_active = 0; /* set if using zonelist_cache */
  1013. int did_zlc_setup = 0; /* just call zlc_setup() one time */
  1014. zonelist_scan:
  1015. /*
  1016. * Scan zonelist, looking for a zone with enough free.
  1017. * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
  1018. */
  1019. z = zonelist->zones;
  1020. do {
  1021. if (NUMA_BUILD && zlc_active &&
  1022. !zlc_zone_worth_trying(zonelist, z, allowednodes))
  1023. continue;
  1024. zone = *z;
  1025. if (unlikely(NUMA_BUILD && (gfp_mask & __GFP_THISNODE) &&
  1026. zone->zone_pgdat != zonelist->zones[0]->zone_pgdat))
  1027. break;
  1028. if ((alloc_flags & ALLOC_CPUSET) &&
  1029. !cpuset_zone_allowed_softwall(zone, gfp_mask))
  1030. goto try_next_zone;
  1031. if (!(alloc_flags & ALLOC_NO_WATERMARKS)) {
  1032. unsigned long mark;
  1033. if (alloc_flags & ALLOC_WMARK_MIN)
  1034. mark = zone->pages_min;
  1035. else if (alloc_flags & ALLOC_WMARK_LOW)
  1036. mark = zone->pages_low;
  1037. else
  1038. mark = zone->pages_high;
  1039. if (!zone_watermark_ok(zone, order, mark,
  1040. classzone_idx, alloc_flags)) {
  1041. if (!zone_reclaim_mode ||
  1042. !zone_reclaim(zone, gfp_mask, order))
  1043. goto this_zone_full;
  1044. }
  1045. }
  1046. page = buffered_rmqueue(zonelist, zone, order, gfp_mask);
  1047. if (page)
  1048. break;
  1049. this_zone_full:
  1050. if (NUMA_BUILD)
  1051. zlc_mark_zone_full(zonelist, z);
  1052. try_next_zone:
  1053. if (NUMA_BUILD && !did_zlc_setup) {
  1054. /* we do zlc_setup after the first zone is tried */
  1055. allowednodes = zlc_setup(zonelist, alloc_flags);
  1056. zlc_active = 1;
  1057. did_zlc_setup = 1;
  1058. }
  1059. } while (*(++z) != NULL);
  1060. if (unlikely(NUMA_BUILD && page == NULL && zlc_active)) {
  1061. /* Disable zlc cache for second zonelist scan */
  1062. zlc_active = 0;
  1063. goto zonelist_scan;
  1064. }
  1065. return page;
  1066. }
  1067. /*
  1068. * This is the 'heart' of the zoned buddy allocator.
  1069. */
  1070. struct page * fastcall
  1071. __alloc_pages(gfp_t gfp_mask, unsigned int order,
  1072. struct zonelist *zonelist)
  1073. {
  1074. const gfp_t wait = gfp_mask & __GFP_WAIT;
  1075. struct zone **z;
  1076. struct page *page;
  1077. struct reclaim_state reclaim_state;
  1078. struct task_struct *p = current;
  1079. int do_retry;
  1080. int alloc_flags;
  1081. int did_some_progress;
  1082. might_sleep_if(wait);
  1083. if (should_fail_alloc_page(gfp_mask, order))
  1084. return NULL;
  1085. restart:
  1086. z = zonelist->zones; /* the list of zones suitable for gfp_mask */
  1087. if (unlikely(*z == NULL)) {
  1088. /* Should this ever happen?? */
  1089. return NULL;
  1090. }
  1091. page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, order,
  1092. zonelist, ALLOC_WMARK_LOW|ALLOC_CPUSET);
  1093. if (page)
  1094. goto got_pg;
  1095. /*
  1096. * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and
  1097. * __GFP_NOWARN set) should not cause reclaim since the subsystem
  1098. * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim
  1099. * using a larger set of nodes after it has established that the
  1100. * allowed per node queues are empty and that nodes are
  1101. * over allocated.
  1102. */
  1103. if (NUMA_BUILD && (gfp_mask & GFP_THISNODE) == GFP_THISNODE)
  1104. goto nopage;
  1105. for (z = zonelist->zones; *z; z++)
  1106. wakeup_kswapd(*z, order);
  1107. /*
  1108. * OK, we're below the kswapd watermark and have kicked background
  1109. * reclaim. Now things get more complex, so set up alloc_flags according
  1110. * to how we want to proceed.
  1111. *
  1112. * The caller may dip into page reserves a bit more if the caller
  1113. * cannot run direct reclaim, or if the caller has realtime scheduling
  1114. * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
  1115. * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH).
  1116. */
  1117. alloc_flags = ALLOC_WMARK_MIN;
  1118. if ((unlikely(rt_task(p)) && !in_interrupt()) || !wait)
  1119. alloc_flags |= ALLOC_HARDER;
  1120. if (gfp_mask & __GFP_HIGH)
  1121. alloc_flags |= ALLOC_HIGH;
  1122. if (wait)
  1123. alloc_flags |= ALLOC_CPUSET;
  1124. /*
  1125. * Go through the zonelist again. Let __GFP_HIGH and allocations
  1126. * coming from realtime tasks go deeper into reserves.
  1127. *
  1128. * This is the last chance, in general, before the goto nopage.
  1129. * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
  1130. * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
  1131. */
  1132. page = get_page_from_freelist(gfp_mask, order, zonelist, alloc_flags);
  1133. if (page)
  1134. goto got_pg;
  1135. /* This allocation should allow future memory freeing. */
  1136. rebalance:
  1137. if (((p->flags & PF_MEMALLOC) || unlikely(test_thread_flag(TIF_MEMDIE)))
  1138. && !in_interrupt()) {
  1139. if (!(gfp_mask & __GFP_NOMEMALLOC)) {
  1140. nofail_alloc:
  1141. /* go through the zonelist yet again, ignoring mins */
  1142. page = get_page_from_freelist(gfp_mask, order,
  1143. zonelist, ALLOC_NO_WATERMARKS);
  1144. if (page)
  1145. goto got_pg;
  1146. if (gfp_mask & __GFP_NOFAIL) {
  1147. congestion_wait(WRITE, HZ/50);
  1148. goto nofail_alloc;
  1149. }
  1150. }
  1151. goto nopage;
  1152. }
  1153. /* Atomic allocations - we can't balance anything */
  1154. if (!wait)
  1155. goto nopage;
  1156. cond_resched();
  1157. /* We now go into synchronous reclaim */
  1158. cpuset_memory_pressure_bump();
  1159. p->flags |= PF_MEMALLOC;
  1160. reclaim_state.reclaimed_slab = 0;
  1161. p->reclaim_state = &reclaim_state;
  1162. did_some_progress = try_to_free_pages(zonelist->zones, order, gfp_mask);
  1163. p->reclaim_state = NULL;
  1164. p->flags &= ~PF_MEMALLOC;
  1165. cond_resched();
  1166. if (likely(did_some_progress)) {
  1167. page = get_page_from_freelist(gfp_mask, order,
  1168. zonelist, alloc_flags);
  1169. if (page)
  1170. goto got_pg;
  1171. } else if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) {
  1172. /*
  1173. * Go through the zonelist yet one more time, keep
  1174. * very high watermark here, this is only to catch
  1175. * a parallel oom killing, we must fail if we're still
  1176. * under heavy pressure.
  1177. */
  1178. page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, order,
  1179. zonelist, ALLOC_WMARK_HIGH|ALLOC_CPUSET);
  1180. if (page)
  1181. goto got_pg;
  1182. out_of_memory(zonelist, gfp_mask, order);
  1183. goto restart;
  1184. }
  1185. /*
  1186. * Don't let big-order allocations loop unless the caller explicitly
  1187. * requests that. Wait for some write requests to complete then retry.
  1188. *
  1189. * In this implementation, __GFP_REPEAT means __GFP_NOFAIL for order
  1190. * <= 3, but that may not be true in other implementations.
  1191. */
  1192. do_retry = 0;
  1193. if (!(gfp_mask & __GFP_NORETRY)) {
  1194. if ((order <= PAGE_ALLOC_COSTLY_ORDER) ||
  1195. (gfp_mask & __GFP_REPEAT))
  1196. do_retry = 1;
  1197. if (gfp_mask & __GFP_NOFAIL)
  1198. do_retry = 1;
  1199. }
  1200. if (do_retry) {
  1201. congestion_wait(WRITE, HZ/50);
  1202. goto rebalance;
  1203. }
  1204. nopage:
  1205. if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit()) {
  1206. printk(KERN_WARNING "%s: page allocation failure."
  1207. " order:%d, mode:0x%x\n",
  1208. p->comm, order, gfp_mask);
  1209. dump_stack();
  1210. show_mem();
  1211. }
  1212. got_pg:
  1213. return page;
  1214. }
  1215. EXPORT_SYMBOL(__alloc_pages);
  1216. /*
  1217. * Common helper functions.
  1218. */
  1219. fastcall unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
  1220. {
  1221. struct page * page;
  1222. page = alloc_pages(gfp_mask, order);
  1223. if (!page)
  1224. return 0;
  1225. return (unsigned long) page_address(page);
  1226. }
  1227. EXPORT_SYMBOL(__get_free_pages);
  1228. fastcall unsigned long get_zeroed_page(gfp_t gfp_mask)
  1229. {
  1230. struct page * page;
  1231. /*
  1232. * get_zeroed_page() returns a 32-bit address, which cannot represent
  1233. * a highmem page
  1234. */
  1235. VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
  1236. page = alloc_pages(gfp_mask | __GFP_ZERO, 0);
  1237. if (page)
  1238. return (unsigned long) page_address(page);
  1239. return 0;
  1240. }
  1241. EXPORT_SYMBOL(get_zeroed_page);
  1242. void __pagevec_free(struct pagevec *pvec)
  1243. {
  1244. int i = pagevec_count(pvec);
  1245. while (--i >= 0)
  1246. free_hot_cold_page(pvec->pages[i], pvec->cold);
  1247. }
  1248. fastcall void __free_pages(struct page *page, unsigned int order)
  1249. {
  1250. if (put_page_testzero(page)) {
  1251. if (order == 0)
  1252. free_hot_page(page);
  1253. else
  1254. __free_pages_ok(page, order);
  1255. }
  1256. }
  1257. EXPORT_SYMBOL(__free_pages);
  1258. fastcall void free_pages(unsigned long addr, unsigned int order)
  1259. {
  1260. if (addr != 0) {
  1261. VM_BUG_ON(!virt_addr_valid((void *)addr));
  1262. __free_pages(virt_to_page((void *)addr), order);
  1263. }
  1264. }
  1265. EXPORT_SYMBOL(free_pages);
  1266. static unsigned int nr_free_zone_pages(int offset)
  1267. {
  1268. /* Just pick one node, since fallback list is circular */
  1269. pg_data_t *pgdat = NODE_DATA(numa_node_id());
  1270. unsigned int sum = 0;
  1271. struct zonelist *zonelist = pgdat->node_zonelists + offset;
  1272. struct zone **zonep = zonelist->zones;
  1273. struct zone *zone;
  1274. for (zone = *zonep++; zone; zone = *zonep++) {
  1275. unsigned long size = zone->present_pages;
  1276. unsigned long high = zone->pages_high;
  1277. if (size > high)
  1278. sum += size - high;
  1279. }
  1280. return sum;
  1281. }
  1282. /*
  1283. * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL
  1284. */
  1285. unsigned int nr_free_buffer_pages(void)
  1286. {
  1287. return nr_free_zone_pages(gfp_zone(GFP_USER));
  1288. }
  1289. /*
  1290. * Amount of free RAM allocatable within all zones
  1291. */
  1292. unsigned int nr_free_pagecache_pages(void)
  1293. {
  1294. return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
  1295. }
  1296. static inline void show_node(struct zone *zone)
  1297. {
  1298. if (NUMA_BUILD)
  1299. printk("Node %d ", zone_to_nid(zone));
  1300. }
  1301. void si_meminfo(struct sysinfo *val)
  1302. {
  1303. val->totalram = totalram_pages;
  1304. val->sharedram = 0;
  1305. val->freeram = global_page_state(NR_FREE_PAGES);
  1306. val->bufferram = nr_blockdev_pages();
  1307. val->totalhigh = totalhigh_pages;
  1308. val->freehigh = nr_free_highpages();
  1309. val->mem_unit = PAGE_SIZE;
  1310. }
  1311. EXPORT_SYMBOL(si_meminfo);
  1312. #ifdef CONFIG_NUMA
  1313. void si_meminfo_node(struct sysinfo *val, int nid)
  1314. {
  1315. pg_data_t *pgdat = NODE_DATA(nid);
  1316. val->totalram = pgdat->node_present_pages;
  1317. val->freeram = node_page_state(nid, NR_FREE_PAGES);
  1318. #ifdef CONFIG_HIGHMEM
  1319. val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].present_pages;
  1320. val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM],
  1321. NR_FREE_PAGES);
  1322. #else
  1323. val->totalhigh = 0;
  1324. val->freehigh = 0;
  1325. #endif
  1326. val->mem_unit = PAGE_SIZE;
  1327. }
  1328. #endif
  1329. #define K(x) ((x) << (PAGE_SHIFT-10))
  1330. /*
  1331. * Show free area list (used inside shift_scroll-lock stuff)
  1332. * We also calculate the percentage fragmentation. We do this by counting the
  1333. * memory on each free list with the exception of the first item on the list.
  1334. */
  1335. void show_free_areas(void)
  1336. {
  1337. int cpu;
  1338. struct zone *zone;
  1339. for_each_zone(zone) {
  1340. if (!populated_zone(zone))
  1341. continue;
  1342. show_node(zone);
  1343. printk("%s per-cpu:\n", zone->name);
  1344. for_each_online_cpu(cpu) {
  1345. struct per_cpu_pageset *pageset;
  1346. pageset = zone_pcp(zone, cpu);
  1347. printk("CPU %4d: Hot: hi:%5d, btch:%4d usd:%4d "
  1348. "Cold: hi:%5d, btch:%4d usd:%4d\n",
  1349. cpu, pageset->pcp[0].high,
  1350. pageset->pcp[0].batch, pageset->pcp[0].count,
  1351. pageset->pcp[1].high, pageset->pcp[1].batch,
  1352. pageset->pcp[1].count);
  1353. }
  1354. }
  1355. printk("Active:%lu inactive:%lu dirty:%lu writeback:%lu unstable:%lu\n"
  1356. " free:%lu slab:%lu mapped:%lu pagetables:%lu bounce:%lu\n",
  1357. global_page_state(NR_ACTIVE),
  1358. global_page_state(NR_INACTIVE),
  1359. global_page_state(NR_FILE_DIRTY),
  1360. global_page_state(NR_WRITEBACK),
  1361. global_page_state(NR_UNSTABLE_NFS),
  1362. global_page_state(NR_FREE_PAGES),
  1363. global_page_state(NR_SLAB_RECLAIMABLE) +
  1364. global_page_state(NR_SLAB_UNRECLAIMABLE),
  1365. global_page_state(NR_FILE_MAPPED),
  1366. global_page_state(NR_PAGETABLE),
  1367. global_page_state(NR_BOUNCE));
  1368. for_each_zone(zone) {
  1369. int i;
  1370. if (!populated_zone(zone))
  1371. continue;
  1372. show_node(zone);
  1373. printk("%s"
  1374. " free:%lukB"
  1375. " min:%lukB"
  1376. " low:%lukB"
  1377. " high:%lukB"
  1378. " active:%lukB"
  1379. " inactive:%lukB"
  1380. " present:%lukB"
  1381. " pages_scanned:%lu"
  1382. " all_unreclaimable? %s"
  1383. "\n",
  1384. zone->name,
  1385. K(zone_page_state(zone, NR_FREE_PAGES)),
  1386. K(zone->pages_min),
  1387. K(zone->pages_low),
  1388. K(zone->pages_high),
  1389. K(zone_page_state(zone, NR_ACTIVE)),
  1390. K(zone_page_state(zone, NR_INACTIVE)),
  1391. K(zone->present_pages),
  1392. zone->pages_scanned,
  1393. (zone->all_unreclaimable ? "yes" : "no")
  1394. );
  1395. printk("lowmem_reserve[]:");
  1396. for (i = 0; i < MAX_NR_ZONES; i++)
  1397. printk(" %lu", zone->lowmem_reserve[i]);
  1398. printk("\n");
  1399. }
  1400. for_each_zone(zone) {
  1401. unsigned long nr[MAX_ORDER], flags, order, total = 0;
  1402. if (!populated_zone(zone))
  1403. continue;
  1404. show_node(zone);
  1405. printk("%s: ", zone->name);
  1406. spin_lock_irqsave(&zone->lock, flags);
  1407. for (order = 0; order < MAX_ORDER; order++) {
  1408. nr[order] = zone->free_area[order].nr_free;
  1409. total += nr[order] << order;
  1410. }
  1411. spin_unlock_irqrestore(&zone->lock, flags);
  1412. for (order = 0; order < MAX_ORDER; order++)
  1413. printk("%lu*%lukB ", nr[order], K(1UL) << order);
  1414. printk("= %lukB\n", K(total));
  1415. }
  1416. show_swap_cache_info();
  1417. }
  1418. /*
  1419. * Builds allocation fallback zone lists.
  1420. *
  1421. * Add all populated zones of a node to the zonelist.
  1422. */
  1423. static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
  1424. int nr_zones, enum zone_type zone_type)
  1425. {
  1426. struct zone *zone;
  1427. BUG_ON(zone_type >= MAX_NR_ZONES);
  1428. zone_type++;
  1429. do {
  1430. zone_type--;
  1431. zone = pgdat->node_zones + zone_type;
  1432. if (populated_zone(zone)) {
  1433. zonelist->zones[nr_zones++] = zone;
  1434. check_highest_zone(zone_type);
  1435. }
  1436. } while (zone_type);
  1437. return nr_zones;
  1438. }
  1439. /*
  1440. * zonelist_order:
  1441. * 0 = automatic detection of better ordering.
  1442. * 1 = order by ([node] distance, -zonetype)
  1443. * 2 = order by (-zonetype, [node] distance)
  1444. *
  1445. * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
  1446. * the same zonelist. So only NUMA can configure this param.
  1447. */
  1448. #define ZONELIST_ORDER_DEFAULT 0
  1449. #define ZONELIST_ORDER_NODE 1
  1450. #define ZONELIST_ORDER_ZONE 2
  1451. /* zonelist order in the kernel.
  1452. * set_zonelist_order() will set this to NODE or ZONE.
  1453. */
  1454. static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
  1455. static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
  1456. #ifdef CONFIG_NUMA
  1457. /* The value user specified ....changed by config */
  1458. static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
  1459. /* string for sysctl */
  1460. #define NUMA_ZONELIST_ORDER_LEN 16
  1461. char numa_zonelist_order[16] = "default";
  1462. /*
  1463. * interface for configure zonelist ordering.
  1464. * command line option "numa_zonelist_order"
  1465. * = "[dD]efault - default, automatic configuration.
  1466. * = "[nN]ode - order by node locality, then by zone within node
  1467. * = "[zZ]one - order by zone, then by locality within zone
  1468. */
  1469. static int __parse_numa_zonelist_order(char *s)
  1470. {
  1471. if (*s == 'd' || *s == 'D') {
  1472. user_zonelist_order = ZONELIST_ORDER_DEFAULT;
  1473. } else if (*s == 'n' || *s == 'N') {
  1474. user_zonelist_order = ZONELIST_ORDER_NODE;
  1475. } else if (*s == 'z' || *s == 'Z') {
  1476. user_zonelist_order = ZONELIST_ORDER_ZONE;
  1477. } else {
  1478. printk(KERN_WARNING
  1479. "Ignoring invalid numa_zonelist_order value: "
  1480. "%s\n", s);
  1481. return -EINVAL;
  1482. }
  1483. return 0;
  1484. }
  1485. static __init int setup_numa_zonelist_order(char *s)
  1486. {
  1487. if (s)
  1488. return __parse_numa_zonelist_order(s);
  1489. return 0;
  1490. }
  1491. early_param("numa_zonelist_order", setup_numa_zonelist_order);
  1492. /*
  1493. * sysctl handler for numa_zonelist_order
  1494. */
  1495. int numa_zonelist_order_handler(ctl_table *table, int write,
  1496. struct file *file, void __user *buffer, size_t *length,
  1497. loff_t *ppos)
  1498. {
  1499. char saved_string[NUMA_ZONELIST_ORDER_LEN];
  1500. int ret;
  1501. if (write)
  1502. strncpy(saved_string, (char*)table->data,
  1503. NUMA_ZONELIST_ORDER_LEN);
  1504. ret = proc_dostring(table, write, file, buffer, length, ppos);
  1505. if (ret)
  1506. return ret;
  1507. if (write) {
  1508. int oldval = user_zonelist_order;
  1509. if (__parse_numa_zonelist_order((char*)table->data)) {
  1510. /*
  1511. * bogus value. restore saved string
  1512. */
  1513. strncpy((char*)table->data, saved_string,
  1514. NUMA_ZONELIST_ORDER_LEN);
  1515. user_zonelist_order = oldval;
  1516. } else if (oldval != user_zonelist_order)
  1517. build_all_zonelists();
  1518. }
  1519. return 0;
  1520. }
  1521. #define MAX_NODE_LOAD (num_online_nodes())
  1522. static int node_load[MAX_NUMNODES];
  1523. /**
  1524. * find_next_best_node - find the next node that should appear in a given node's fallback list
  1525. * @node: node whose fallback list we're appending
  1526. * @used_node_mask: nodemask_t of already used nodes
  1527. *
  1528. * We use a number of factors to determine which is the next node that should
  1529. * appear on a given node's fallback list. The node should not have appeared
  1530. * already in @node's fallback list, and it should be the next closest node
  1531. * according to the distance array (which contains arbitrary distance values
  1532. * from each node to each node in the system), and should also prefer nodes
  1533. * with no CPUs, since presumably they'll have very little allocation pressure
  1534. * on them otherwise.
  1535. * It returns -1 if no node is found.
  1536. */
  1537. static int find_next_best_node(int node, nodemask_t *used_node_mask)
  1538. {
  1539. int n, val;
  1540. int min_val = INT_MAX;
  1541. int best_node = -1;
  1542. /* Use the local node if we haven't already */
  1543. if (!node_isset(node, *used_node_mask)) {
  1544. node_set(node, *used_node_mask);
  1545. return node;
  1546. }
  1547. for_each_online_node(n) {
  1548. cpumask_t tmp;
  1549. /* Don't want a node to appear more than once */
  1550. if (node_isset(n, *used_node_mask))
  1551. continue;
  1552. /* Use the distance array to find the distance */
  1553. val = node_distance(node, n);
  1554. /* Penalize nodes under us ("prefer the next node") */
  1555. val += (n < node);
  1556. /* Give preference to headless and unused nodes */
  1557. tmp = node_to_cpumask(n);
  1558. if (!cpus_empty(tmp))
  1559. val += PENALTY_FOR_NODE_WITH_CPUS;
  1560. /* Slight preference for less loaded node */
  1561. val *= (MAX_NODE_LOAD*MAX_NUMNODES);
  1562. val += node_load[n];
  1563. if (val < min_val) {
  1564. min_val = val;
  1565. best_node = n;
  1566. }
  1567. }
  1568. if (best_node >= 0)
  1569. node_set(best_node, *used_node_mask);
  1570. return best_node;
  1571. }
  1572. /*
  1573. * Build zonelists ordered by node and zones within node.
  1574. * This results in maximum locality--normal zone overflows into local
  1575. * DMA zone, if any--but risks exhausting DMA zone.
  1576. */
  1577. static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
  1578. {
  1579. enum zone_type i;
  1580. int j;
  1581. struct zonelist *zonelist;
  1582. for (i = 0; i < MAX_NR_ZONES; i++) {
  1583. zonelist = pgdat->node_zonelists + i;
  1584. for (j = 0; zonelist->zones[j] != NULL; j++)
  1585. ;
  1586. j = build_zonelists_node(NODE_DATA(node), zonelist, j, i);
  1587. zonelist->zones[j] = NULL;
  1588. }
  1589. }
  1590. /*
  1591. * Build zonelists ordered by zone and nodes within zones.
  1592. * This results in conserving DMA zone[s] until all Normal memory is
  1593. * exhausted, but results in overflowing to remote node while memory
  1594. * may still exist in local DMA zone.
  1595. */
  1596. static int node_order[MAX_NUMNODES];
  1597. static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
  1598. {
  1599. enum zone_type i;
  1600. int pos, j, node;
  1601. int zone_type; /* needs to be signed */
  1602. struct zone *z;
  1603. struct zonelist *zonelist;
  1604. for (i = 0; i < MAX_NR_ZONES; i++) {
  1605. zonelist = pgdat->node_zonelists + i;
  1606. pos = 0;
  1607. for (zone_type = i; zone_type >= 0; zone_type--) {
  1608. for (j = 0; j < nr_nodes; j++) {
  1609. node = node_order[j];
  1610. z = &NODE_DATA(node)->node_zones[zone_type];
  1611. if (populated_zone(z)) {
  1612. zonelist->zones[pos++] = z;
  1613. check_highest_zone(zone_type);
  1614. }
  1615. }
  1616. }
  1617. zonelist->zones[pos] = NULL;
  1618. }
  1619. }
  1620. static int default_zonelist_order(void)
  1621. {
  1622. int nid, zone_type;
  1623. unsigned long low_kmem_size,total_size;
  1624. struct zone *z;
  1625. int average_size;
  1626. /*
  1627. * ZONE_DMA and ZONE_DMA32 can be very small area in the sytem.
  1628. * If they are really small and used heavily, the system can fall
  1629. * into OOM very easily.
  1630. * This function detect ZONE_DMA/DMA32 size and confgigures zone order.
  1631. */
  1632. /* Is there ZONE_NORMAL ? (ex. ppc has only DMA zone..) */
  1633. low_kmem_size = 0;
  1634. total_size = 0;
  1635. for_each_online_node(nid) {
  1636. for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
  1637. z = &NODE_DATA(nid)->node_zones[zone_type];
  1638. if (populated_zone(z)) {
  1639. if (zone_type < ZONE_NORMAL)
  1640. low_kmem_size += z->present_pages;
  1641. total_size += z->present_pages;
  1642. }
  1643. }
  1644. }
  1645. if (!low_kmem_size || /* there are no DMA area. */
  1646. low_kmem_size > total_size/2) /* DMA/DMA32 is big. */
  1647. return ZONELIST_ORDER_NODE;
  1648. /*
  1649. * look into each node's config.
  1650. * If there is a node whose DMA/DMA32 memory is very big area on
  1651. * local memory, NODE_ORDER may be suitable.
  1652. */
  1653. average_size = total_size / (num_online_nodes() + 1);
  1654. for_each_online_node(nid) {
  1655. low_kmem_size = 0;
  1656. total_size = 0;
  1657. for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
  1658. z = &NODE_DATA(nid)->node_zones[zone_type];
  1659. if (populated_zone(z)) {
  1660. if (zone_type < ZONE_NORMAL)
  1661. low_kmem_size += z->present_pages;
  1662. total_size += z->present_pages;
  1663. }
  1664. }
  1665. if (low_kmem_size &&
  1666. total_size > average_size && /* ignore small node */
  1667. low_kmem_size > total_size * 70/100)
  1668. return ZONELIST_ORDER_NODE;
  1669. }
  1670. return ZONELIST_ORDER_ZONE;
  1671. }
  1672. static void set_zonelist_order(void)
  1673. {
  1674. if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
  1675. current_zonelist_order = default_zonelist_order();
  1676. else
  1677. current_zonelist_order = user_zonelist_order;
  1678. }
  1679. static void build_zonelists(pg_data_t *pgdat)
  1680. {
  1681. int j, node, load;
  1682. enum zone_type i;
  1683. nodemask_t used_mask;
  1684. int local_node, prev_node;
  1685. struct zonelist *zonelist;
  1686. int order = current_zonelist_order;
  1687. /* initialize zonelists */
  1688. for (i = 0; i < MAX_NR_ZONES; i++) {
  1689. zonelist = pgdat->node_zonelists + i;
  1690. zonelist->zones[0] = NULL;
  1691. }
  1692. /* NUMA-aware ordering of nodes */
  1693. local_node = pgdat->node_id;
  1694. load = num_online_nodes();
  1695. prev_node = local_node;
  1696. nodes_clear(used_mask);
  1697. memset(node_load, 0, sizeof(node_load));
  1698. memset(node_order, 0, sizeof(node_order));
  1699. j = 0;
  1700. while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
  1701. int distance = node_distance(local_node, node);
  1702. /*
  1703. * If another node is sufficiently far away then it is better
  1704. * to reclaim pages in a zone before going off node.
  1705. */
  1706. if (distance > RECLAIM_DISTANCE)
  1707. zone_reclaim_mode = 1;
  1708. /*
  1709. * We don't want to pressure a particular node.
  1710. * So adding penalty to the first node in same
  1711. * distance group to make it round-robin.
  1712. */
  1713. if (distance != node_distance(local_node, prev_node))
  1714. node_load[node] = load;
  1715. prev_node = node;
  1716. load--;
  1717. if (order == ZONELIST_ORDER_NODE)
  1718. build_zonelists_in_node_order(pgdat, node);
  1719. else
  1720. node_order[j++] = node; /* remember order */
  1721. }
  1722. if (order == ZONELIST_ORDER_ZONE) {
  1723. /* calculate node order -- i.e., DMA last! */
  1724. build_zonelists_in_zone_order(pgdat, j);
  1725. }
  1726. }
  1727. /* Construct the zonelist performance cache - see further mmzone.h */
  1728. static void build_zonelist_cache(pg_data_t *pgdat)
  1729. {
  1730. int i;
  1731. for (i = 0; i < MAX_NR_ZONES; i++) {
  1732. struct zonelist *zonelist;
  1733. struct zonelist_cache *zlc;
  1734. struct zone **z;
  1735. zonelist = pgdat->node_zonelists + i;
  1736. zonelist->zlcache_ptr = zlc = &zonelist->zlcache;
  1737. bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
  1738. for (z = zonelist->zones; *z; z++)
  1739. zlc->z_to_n[z - zonelist->zones] = zone_to_nid(*z);
  1740. }
  1741. }
  1742. #else /* CONFIG_NUMA */
  1743. static void set_zonelist_order(void)
  1744. {
  1745. current_zonelist_order = ZONELIST_ORDER_ZONE;
  1746. }
  1747. static void build_zonelists(pg_data_t *pgdat)
  1748. {
  1749. int node, local_node;
  1750. enum zone_type i,j;
  1751. local_node = pgdat->node_id;
  1752. for (i = 0; i < MAX_NR_ZONES; i++) {
  1753. struct zonelist *zonelist;
  1754. zonelist = pgdat->node_zonelists + i;
  1755. j = build_zonelists_node(pgdat, zonelist, 0, i);
  1756. /*
  1757. * Now we build the zonelist so that it contains the zones
  1758. * of all the other nodes.
  1759. * We don't want to pressure a particular node, so when
  1760. * building the zones for node N, we make sure that the
  1761. * zones coming right after the local ones are those from
  1762. * node N+1 (modulo N)
  1763. */
  1764. for (node = local_node + 1; node < MAX_NUMNODES; node++) {
  1765. if (!node_online(node))
  1766. continue;
  1767. j = build_zonelists_node(NODE_DATA(node), zonelist, j, i);
  1768. }
  1769. for (node = 0; node < local_node; node++) {
  1770. if (!node_online(node))
  1771. continue;
  1772. j = build_zonelists_node(NODE_DATA(node), zonelist, j, i);
  1773. }
  1774. zonelist->zones[j] = NULL;
  1775. }
  1776. }
  1777. /* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */
  1778. static void build_zonelist_cache(pg_data_t *pgdat)
  1779. {
  1780. int i;
  1781. for (i = 0; i < MAX_NR_ZONES; i++)
  1782. pgdat->node_zonelists[i].zlcache_ptr = NULL;
  1783. }
  1784. #endif /* CONFIG_NUMA */
  1785. /* return values int ....just for stop_machine_run() */
  1786. static int __build_all_zonelists(void *dummy)
  1787. {
  1788. int nid;
  1789. for_each_online_node(nid) {
  1790. build_zonelists(NODE_DATA(nid));
  1791. build_zonelist_cache(NODE_DATA(nid));
  1792. }
  1793. return 0;
  1794. }
  1795. void build_all_zonelists(void)
  1796. {
  1797. set_zonelist_order();
  1798. if (system_state == SYSTEM_BOOTING) {
  1799. __build_all_zonelists(NULL);
  1800. cpuset_init_current_mems_allowed();
  1801. } else {
  1802. /* we have to stop all cpus to guaranntee there is no user
  1803. of zonelist */
  1804. stop_machine_run(__build_all_zonelists, NULL, NR_CPUS);
  1805. /* cpuset refresh routine should be here */
  1806. }
  1807. vm_total_pages = nr_free_pagecache_pages();
  1808. printk("Built %i zonelists in %s order. Total pages: %ld\n",
  1809. num_online_nodes(),
  1810. zonelist_order_name[current_zonelist_order],
  1811. vm_total_pages);
  1812. #ifdef CONFIG_NUMA
  1813. printk("Policy zone: %s\n", zone_names[policy_zone]);
  1814. #endif
  1815. }
  1816. /*
  1817. * Helper functions to size the waitqueue hash table.
  1818. * Essentially these want to choose hash table sizes sufficiently
  1819. * large so that collisions trying to wait on pages are rare.
  1820. * But in fact, the number of active page waitqueues on typical
  1821. * systems is ridiculously low, less than 200. So this is even
  1822. * conservative, even though it seems large.
  1823. *
  1824. * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
  1825. * waitqueues, i.e. the size of the waitq table given the number of pages.
  1826. */
  1827. #define PAGES_PER_WAITQUEUE 256
  1828. #ifndef CONFIG_MEMORY_HOTPLUG
  1829. static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
  1830. {
  1831. unsigned long size = 1;
  1832. pages /= PAGES_PER_WAITQUEUE;
  1833. while (size < pages)
  1834. size <<= 1;
  1835. /*
  1836. * Once we have dozens or even hundreds of threads sleeping
  1837. * on IO we've got bigger problems than wait queue collision.
  1838. * Limit the size of the wait table to a reasonable size.
  1839. */
  1840. size = min(size, 4096UL);
  1841. return max(size, 4UL);
  1842. }
  1843. #else
  1844. /*
  1845. * A zone's size might be changed by hot-add, so it is not possible to determine
  1846. * a suitable size for its wait_table. So we use the maximum size now.
  1847. *
  1848. * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie:
  1849. *
  1850. * i386 (preemption config) : 4096 x 16 = 64Kbyte.
  1851. * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
  1852. * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte.
  1853. *
  1854. * The maximum entries are prepared when a zone's memory is (512K + 256) pages
  1855. * or more by the traditional way. (See above). It equals:
  1856. *
  1857. * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte.
  1858. * ia64(16K page size) : = ( 8G + 4M)byte.
  1859. * powerpc (64K page size) : = (32G +16M)byte.
  1860. */
  1861. static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
  1862. {
  1863. return 4096UL;
  1864. }
  1865. #endif
  1866. /*
  1867. * This is an integer logarithm so that shifts can be used later
  1868. * to extract the more random high bits from the multiplicative
  1869. * hash function before the remainder is taken.
  1870. */
  1871. static inline unsigned long wait_table_bits(unsigned long size)
  1872. {
  1873. return ffz(~size);
  1874. }
  1875. #define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))
  1876. /*
  1877. * Initially all pages are reserved - free ones are freed
  1878. * up by free_all_bootmem() once the early boot process is
  1879. * done. Non-atomic initialization, single-pass.
  1880. */
  1881. void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
  1882. unsigned long start_pfn, enum memmap_context context)
  1883. {
  1884. struct page *page;
  1885. unsigned long end_pfn = start_pfn + size;
  1886. unsigned long pfn;
  1887. for (pfn = start_pfn; pfn < end_pfn; pfn++) {
  1888. /*
  1889. * There can be holes in boot-time mem_map[]s
  1890. * handed to this function. They do not
  1891. * exist on hotplugged memory.
  1892. */
  1893. if (context == MEMMAP_EARLY) {
  1894. if (!early_pfn_valid(pfn))
  1895. continue;
  1896. if (!early_pfn_in_nid(pfn, nid))
  1897. continue;
  1898. }
  1899. page = pfn_to_page(pfn);
  1900. set_page_links(page, zone, nid, pfn);
  1901. init_page_count(page);
  1902. reset_page_mapcount(page);
  1903. SetPageReserved(page);
  1904. INIT_LIST_HEAD(&page->lru);
  1905. #ifdef WANT_PAGE_VIRTUAL
  1906. /* The shift won't overflow because ZONE_NORMAL is below 4G. */
  1907. if (!is_highmem_idx(zone))
  1908. set_page_address(page, __va(pfn << PAGE_SHIFT));
  1909. #endif
  1910. }
  1911. }
  1912. static void __meminit zone_init_free_lists(struct pglist_data *pgdat,
  1913. struct zone *zone, unsigned long size)
  1914. {
  1915. int order;
  1916. for (order = 0; order < MAX_ORDER ; order++) {
  1917. INIT_LIST_HEAD(&zone->free_area[order].free_list);
  1918. zone->free_area[order].nr_free = 0;
  1919. }
  1920. }
  1921. #ifndef __HAVE_ARCH_MEMMAP_INIT
  1922. #define memmap_init(size, nid, zone, start_pfn) \
  1923. memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
  1924. #endif
  1925. static int __devinit zone_batchsize(struct zone *zone)
  1926. {
  1927. int batch;
  1928. /*
  1929. * The per-cpu-pages pools are set to around 1000th of the
  1930. * size of the zone. But no more than 1/2 of a meg.
  1931. *
  1932. * OK, so we don't know how big the cache is. So guess.
  1933. */
  1934. batch = zone->present_pages / 1024;
  1935. if (batch * PAGE_SIZE > 512 * 1024)
  1936. batch = (512 * 1024) / PAGE_SIZE;
  1937. batch /= 4; /* We effectively *= 4 below */
  1938. if (batch < 1)
  1939. batch = 1;
  1940. /*
  1941. * Clamp the batch to a 2^n - 1 value. Having a power
  1942. * of 2 value was found to be more likely to have
  1943. * suboptimal cache aliasing properties in some cases.
  1944. *
  1945. * For example if 2 tasks are alternately allocating
  1946. * batches of pages, one task can end up with a lot
  1947. * of pages of one half of the possible page colors
  1948. * and the other with pages of the other colors.
  1949. */
  1950. batch = (1 << (fls(batch + batch/2)-1)) - 1;
  1951. return batch;
  1952. }
  1953. inline void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
  1954. {
  1955. struct per_cpu_pages *pcp;
  1956. memset(p, 0, sizeof(*p));
  1957. pcp = &p->pcp[0]; /* hot */
  1958. pcp->count = 0;
  1959. pcp->high = 6 * batch;
  1960. pcp->batch = max(1UL, 1 * batch);
  1961. INIT_LIST_HEAD(&pcp->list);
  1962. pcp = &p->pcp[1]; /* cold*/
  1963. pcp->count = 0;
  1964. pcp->high = 2 * batch;
  1965. pcp->batch = max(1UL, batch/2);
  1966. INIT_LIST_HEAD(&pcp->list);
  1967. }
  1968. /*
  1969. * setup_pagelist_highmark() sets the high water mark for hot per_cpu_pagelist
  1970. * to the value high for the pageset p.
  1971. */
  1972. static void setup_pagelist_highmark(struct per_cpu_pageset *p,
  1973. unsigned long high)
  1974. {
  1975. struct per_cpu_pages *pcp;
  1976. pcp = &p->pcp[0]; /* hot list */
  1977. pcp->high = high;
  1978. pcp->batch = max(1UL, high/4);
  1979. if ((high/4) > (PAGE_SHIFT * 8))
  1980. pcp->batch = PAGE_SHIFT * 8;
  1981. }
  1982. #ifdef CONFIG_NUMA
  1983. /*
  1984. * Boot pageset table. One per cpu which is going to be used for all
  1985. * zones and all nodes. The parameters will be set in such a way
  1986. * that an item put on a list will immediately be handed over to
  1987. * the buddy list. This is safe since pageset manipulation is done
  1988. * with interrupts disabled.
  1989. *
  1990. * Some NUMA counter updates may also be caught by the boot pagesets.
  1991. *
  1992. * The boot_pagesets must be kept even after bootup is complete for
  1993. * unused processors and/or zones. They do play a role for bootstrapping
  1994. * hotplugged processors.
  1995. *
  1996. * zoneinfo_show() and maybe other functions do
  1997. * not check if the processor is online before following the pageset pointer.
  1998. * Other parts of the kernel may not check if the zone is available.
  1999. */
  2000. static struct per_cpu_pageset boot_pageset[NR_CPUS];
  2001. /*
  2002. * Dynamically allocate memory for the
  2003. * per cpu pageset array in struct zone.
  2004. */
  2005. static int __cpuinit process_zones(int cpu)
  2006. {
  2007. struct zone *zone, *dzone;
  2008. for_each_zone(zone) {
  2009. if (!populated_zone(zone))
  2010. continue;
  2011. zone_pcp(zone, cpu) = kmalloc_node(sizeof(struct per_cpu_pageset),
  2012. GFP_KERNEL, cpu_to_node(cpu));
  2013. if (!zone_pcp(zone, cpu))
  2014. goto bad;
  2015. setup_pageset(zone_pcp(zone, cpu), zone_batchsize(zone));
  2016. if (percpu_pagelist_fraction)
  2017. setup_pagelist_highmark(zone_pcp(zone, cpu),
  2018. (zone->present_pages / percpu_pagelist_fraction));
  2019. }
  2020. return 0;
  2021. bad:
  2022. for_each_zone(dzone) {
  2023. if (dzone == zone)
  2024. break;
  2025. kfree(zone_pcp(dzone, cpu));
  2026. zone_pcp(dzone, cpu) = NULL;
  2027. }
  2028. return -ENOMEM;
  2029. }
  2030. static inline void free_zone_pagesets(int cpu)
  2031. {
  2032. struct zone *zone;
  2033. for_each_zone(zone) {
  2034. struct per_cpu_pageset *pset = zone_pcp(zone, cpu);
  2035. /* Free per_cpu_pageset if it is slab allocated */
  2036. if (pset != &boot_pageset[cpu])
  2037. kfree(pset);
  2038. zone_pcp(zone, cpu) = NULL;
  2039. }
  2040. }
  2041. static int __cpuinit pageset_cpuup_callback(struct notifier_block *nfb,
  2042. unsigned long action,
  2043. void *hcpu)
  2044. {
  2045. int cpu = (long)hcpu;
  2046. int ret = NOTIFY_OK;
  2047. switch (action) {
  2048. case CPU_UP_PREPARE:
  2049. case CPU_UP_PREPARE_FROZEN:
  2050. if (process_zones(cpu))
  2051. ret = NOTIFY_BAD;
  2052. break;
  2053. case CPU_UP_CANCELED:
  2054. case CPU_UP_CANCELED_FROZEN:
  2055. case CPU_DEAD:
  2056. case CPU_DEAD_FROZEN:
  2057. free_zone_pagesets(cpu);
  2058. break;
  2059. default:
  2060. break;
  2061. }
  2062. return ret;
  2063. }
  2064. static struct notifier_block __cpuinitdata pageset_notifier =
  2065. { &pageset_cpuup_callback, NULL, 0 };
  2066. void __init setup_per_cpu_pageset(void)
  2067. {
  2068. int err;
  2069. /* Initialize per_cpu_pageset for cpu 0.
  2070. * A cpuup callback will do this for every cpu
  2071. * as it comes online
  2072. */
  2073. err = process_zones(smp_processor_id());
  2074. BUG_ON(err);
  2075. register_cpu_notifier(&pageset_notifier);
  2076. }
  2077. #endif
  2078. static noinline __init_refok
  2079. int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
  2080. {
  2081. int i;
  2082. struct pglist_data *pgdat = zone->zone_pgdat;
  2083. size_t alloc_size;
  2084. /*
  2085. * The per-page waitqueue mechanism uses hashed waitqueues
  2086. * per zone.
  2087. */
  2088. zone->wait_table_hash_nr_entries =
  2089. wait_table_hash_nr_entries(zone_size_pages);
  2090. zone->wait_table_bits =
  2091. wait_table_bits(zone->wait_table_hash_nr_entries);
  2092. alloc_size = zone->wait_table_hash_nr_entries
  2093. * sizeof(wait_queue_head_t);
  2094. if (system_state == SYSTEM_BOOTING) {
  2095. zone->wait_table = (wait_queue_head_t *)
  2096. alloc_bootmem_node(pgdat, alloc_size);
  2097. } else {
  2098. /*
  2099. * This case means that a zone whose size was 0 gets new memory
  2100. * via memory hot-add.
  2101. * But it may be the case that a new node was hot-added. In
  2102. * this case vmalloc() will not be able to use this new node's
  2103. * memory - this wait_table must be initialized to use this new
  2104. * node itself as well.
  2105. * To use this new node's memory, further consideration will be
  2106. * necessary.
  2107. */
  2108. zone->wait_table = (wait_queue_head_t *)vmalloc(alloc_size);
  2109. }
  2110. if (!zone->wait_table)
  2111. return -ENOMEM;
  2112. for(i = 0; i < zone->wait_table_hash_nr_entries; ++i)
  2113. init_waitqueue_head(zone->wait_table + i);
  2114. return 0;
  2115. }
  2116. static __meminit void zone_pcp_init(struct zone *zone)
  2117. {
  2118. int cpu;
  2119. unsigned long batch = zone_batchsize(zone);
  2120. for (cpu = 0; cpu < NR_CPUS; cpu++) {
  2121. #ifdef CONFIG_NUMA
  2122. /* Early boot. Slab allocator not functional yet */
  2123. zone_pcp(zone, cpu) = &boot_pageset[cpu];
  2124. setup_pageset(&boot_pageset[cpu],0);
  2125. #else
  2126. setup_pageset(zone_pcp(zone,cpu), batch);
  2127. #endif
  2128. }
  2129. if (zone->present_pages)
  2130. printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%lu\n",
  2131. zone->name, zone->present_pages, batch);
  2132. }
  2133. __meminit int init_currently_empty_zone(struct zone *zone,
  2134. unsigned long zone_start_pfn,
  2135. unsigned long size,
  2136. enum memmap_context context)
  2137. {
  2138. struct pglist_data *pgdat = zone->zone_pgdat;
  2139. int ret;
  2140. ret = zone_wait_table_init(zone, size);
  2141. if (ret)
  2142. return ret;
  2143. pgdat->nr_zones = zone_idx(zone) + 1;
  2144. zone->zone_start_pfn = zone_start_pfn;
  2145. memmap_init(size, pgdat->node_id, zone_idx(zone), zone_start_pfn);
  2146. zone_init_free_lists(pgdat, zone, zone->spanned_pages);
  2147. return 0;
  2148. }
  2149. #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
  2150. /*
  2151. * Basic iterator support. Return the first range of PFNs for a node
  2152. * Note: nid == MAX_NUMNODES returns first region regardless of node
  2153. */
  2154. static int __meminit first_active_region_index_in_nid(int nid)
  2155. {
  2156. int i;
  2157. for (i = 0; i < nr_nodemap_entries; i++)
  2158. if (nid == MAX_NUMNODES || early_node_map[i].nid == nid)
  2159. return i;
  2160. return -1;
  2161. }
  2162. /*
  2163. * Basic iterator support. Return the next active range of PFNs for a node
  2164. * Note: nid == MAX_NUMNODES returns next region regardles of node
  2165. */
  2166. static int __meminit next_active_region_index_in_nid(int index, int nid)
  2167. {
  2168. for (index = index + 1; index < nr_nodemap_entries; index++)
  2169. if (nid == MAX_NUMNODES || early_node_map[index].nid == nid)
  2170. return index;
  2171. return -1;
  2172. }
  2173. #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
  2174. /*
  2175. * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
  2176. * Architectures may implement their own version but if add_active_range()
  2177. * was used and there are no special requirements, this is a convenient
  2178. * alternative
  2179. */
  2180. int __meminit early_pfn_to_nid(unsigned long pfn)
  2181. {
  2182. int i;
  2183. for (i = 0; i < nr_nodemap_entries; i++) {
  2184. unsigned long start_pfn = early_node_map[i].start_pfn;
  2185. unsigned long end_pfn = early_node_map[i].end_pfn;
  2186. if (start_pfn <= pfn && pfn < end_pfn)
  2187. return early_node_map[i].nid;
  2188. }
  2189. return 0;
  2190. }
  2191. #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
  2192. /* Basic iterator support to walk early_node_map[] */
  2193. #define for_each_active_range_index_in_nid(i, nid) \
  2194. for (i = first_active_region_index_in_nid(nid); i != -1; \
  2195. i = next_active_region_index_in_nid(i, nid))
  2196. /**
  2197. * free_bootmem_with_active_regions - Call free_bootmem_node for each active range
  2198. * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
  2199. * @max_low_pfn: The highest PFN that will be passed to free_bootmem_node
  2200. *
  2201. * If an architecture guarantees that all ranges registered with
  2202. * add_active_ranges() contain no holes and may be freed, this
  2203. * this function may be used instead of calling free_bootmem() manually.
  2204. */
  2205. void __init free_bootmem_with_active_regions(int nid,
  2206. unsigned long max_low_pfn)
  2207. {
  2208. int i;
  2209. for_each_active_range_index_in_nid(i, nid) {
  2210. unsigned long size_pages = 0;
  2211. unsigned long end_pfn = early_node_map[i].end_pfn;
  2212. if (early_node_map[i].start_pfn >= max_low_pfn)
  2213. continue;
  2214. if (end_pfn > max_low_pfn)
  2215. end_pfn = max_low_pfn;
  2216. size_pages = end_pfn - early_node_map[i].start_pfn;
  2217. free_bootmem_node(NODE_DATA(early_node_map[i].nid),
  2218. PFN_PHYS(early_node_map[i].start_pfn),
  2219. size_pages << PAGE_SHIFT);
  2220. }
  2221. }
  2222. /**
  2223. * sparse_memory_present_with_active_regions - Call memory_present for each active range
  2224. * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
  2225. *
  2226. * If an architecture guarantees that all ranges registered with
  2227. * add_active_ranges() contain no holes and may be freed, this
  2228. * function may be used instead of calling memory_present() manually.
  2229. */
  2230. void __init sparse_memory_present_with_active_regions(int nid)
  2231. {
  2232. int i;
  2233. for_each_active_range_index_in_nid(i, nid)
  2234. memory_present(early_node_map[i].nid,
  2235. early_node_map[i].start_pfn,
  2236. early_node_map[i].end_pfn);
  2237. }
  2238. /**
  2239. * push_node_boundaries - Push node boundaries to at least the requested boundary
  2240. * @nid: The nid of the node to push the boundary for
  2241. * @start_pfn: The start pfn of the node
  2242. * @end_pfn: The end pfn of the node
  2243. *
  2244. * In reserve-based hot-add, mem_map is allocated that is unused until hotadd
  2245. * time. Specifically, on x86_64, SRAT will report ranges that can potentially
  2246. * be hotplugged even though no physical memory exists. This function allows
  2247. * an arch to push out the node boundaries so mem_map is allocated that can
  2248. * be used later.
  2249. */
  2250. #ifdef CONFIG_MEMORY_HOTPLUG_RESERVE
  2251. void __init push_node_boundaries(unsigned int nid,
  2252. unsigned long start_pfn, unsigned long end_pfn)
  2253. {
  2254. printk(KERN_DEBUG "Entering push_node_boundaries(%u, %lu, %lu)\n",
  2255. nid, start_pfn, end_pfn);
  2256. /* Initialise the boundary for this node if necessary */
  2257. if (node_boundary_end_pfn[nid] == 0)
  2258. node_boundary_start_pfn[nid] = -1UL;
  2259. /* Update the boundaries */
  2260. if (node_boundary_start_pfn[nid] > start_pfn)
  2261. node_boundary_start_pfn[nid] = start_pfn;
  2262. if (node_boundary_end_pfn[nid] < end_pfn)
  2263. node_boundary_end_pfn[nid] = end_pfn;
  2264. }
  2265. /* If necessary, push the node boundary out for reserve hotadd */
  2266. static void __meminit account_node_boundary(unsigned int nid,
  2267. unsigned long *start_pfn, unsigned long *end_pfn)
  2268. {
  2269. printk(KERN_DEBUG "Entering account_node_boundary(%u, %lu, %lu)\n",
  2270. nid, *start_pfn, *end_pfn);
  2271. /* Return if boundary information has not been provided */
  2272. if (node_boundary_end_pfn[nid] == 0)
  2273. return;
  2274. /* Check the boundaries and update if necessary */
  2275. if (node_boundary_start_pfn[nid] < *start_pfn)
  2276. *start_pfn = node_boundary_start_pfn[nid];
  2277. if (node_boundary_end_pfn[nid] > *end_pfn)
  2278. *end_pfn = node_boundary_end_pfn[nid];
  2279. }
  2280. #else
  2281. void __init push_node_boundaries(unsigned int nid,
  2282. unsigned long start_pfn, unsigned long end_pfn) {}
  2283. static void __meminit account_node_boundary(unsigned int nid,
  2284. unsigned long *start_pfn, unsigned long *end_pfn) {}
  2285. #endif
  2286. /**
  2287. * get_pfn_range_for_nid - Return the start and end page frames for a node
  2288. * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
  2289. * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
  2290. * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
  2291. *
  2292. * It returns the start and end page frame of a node based on information
  2293. * provided by an arch calling add_active_range(). If called for a node
  2294. * with no available memory, a warning is printed and the start and end
  2295. * PFNs will be 0.
  2296. */
  2297. void __meminit get_pfn_range_for_nid(unsigned int nid,
  2298. unsigned long *start_pfn, unsigned long *end_pfn)
  2299. {
  2300. int i;
  2301. *start_pfn = -1UL;
  2302. *end_pfn = 0;
  2303. for_each_active_range_index_in_nid(i, nid) {
  2304. *start_pfn = min(*start_pfn, early_node_map[i].start_pfn);
  2305. *end_pfn = max(*end_pfn, early_node_map[i].end_pfn);
  2306. }
  2307. if (*start_pfn == -1UL) {
  2308. printk(KERN_WARNING "Node %u active with no memory\n", nid);
  2309. *start_pfn = 0;
  2310. }
  2311. /* Push the node boundaries out if requested */
  2312. account_node_boundary(nid, start_pfn, end_pfn);
  2313. }
  2314. /*
  2315. * This finds a zone that can be used for ZONE_MOVABLE pages. The
  2316. * assumption is made that zones within a node are ordered in monotonic
  2317. * increasing memory addresses so that the "highest" populated zone is used
  2318. */
  2319. void __init find_usable_zone_for_movable(void)
  2320. {
  2321. int zone_index;
  2322. for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
  2323. if (zone_index == ZONE_MOVABLE)
  2324. continue;
  2325. if (arch_zone_highest_possible_pfn[zone_index] >
  2326. arch_zone_lowest_possible_pfn[zone_index])
  2327. break;
  2328. }
  2329. VM_BUG_ON(zone_index == -1);
  2330. movable_zone = zone_index;
  2331. }
  2332. /*
  2333. * The zone ranges provided by the architecture do not include ZONE_MOVABLE
  2334. * because it is sized independant of architecture. Unlike the other zones,
  2335. * the starting point for ZONE_MOVABLE is not fixed. It may be different
  2336. * in each node depending on the size of each node and how evenly kernelcore
  2337. * is distributed. This helper function adjusts the zone ranges
  2338. * provided by the architecture for a given node by using the end of the
  2339. * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
  2340. * zones within a node are in order of monotonic increases memory addresses
  2341. */
  2342. void __meminit adjust_zone_range_for_zone_movable(int nid,
  2343. unsigned long zone_type,
  2344. unsigned long node_start_pfn,
  2345. unsigned long node_end_pfn,
  2346. unsigned long *zone_start_pfn,
  2347. unsigned long *zone_end_pfn)
  2348. {
  2349. /* Only adjust if ZONE_MOVABLE is on this node */
  2350. if (zone_movable_pfn[nid]) {
  2351. /* Size ZONE_MOVABLE */
  2352. if (zone_type == ZONE_MOVABLE) {
  2353. *zone_start_pfn = zone_movable_pfn[nid];
  2354. *zone_end_pfn = min(node_end_pfn,
  2355. arch_zone_highest_possible_pfn[movable_zone]);
  2356. /* Adjust for ZONE_MOVABLE starting within this range */
  2357. } else if (*zone_start_pfn < zone_movable_pfn[nid] &&
  2358. *zone_end_pfn > zone_movable_pfn[nid]) {
  2359. *zone_end_pfn = zone_movable_pfn[nid];
  2360. /* Check if this whole range is within ZONE_MOVABLE */
  2361. } else if (*zone_start_pfn >= zone_movable_pfn[nid])
  2362. *zone_start_pfn = *zone_end_pfn;
  2363. }
  2364. }
  2365. /*
  2366. * Return the number of pages a zone spans in a node, including holes
  2367. * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
  2368. */
  2369. static unsigned long __meminit zone_spanned_pages_in_node(int nid,
  2370. unsigned long zone_type,
  2371. unsigned long *ignored)
  2372. {
  2373. unsigned long node_start_pfn, node_end_pfn;
  2374. unsigned long zone_start_pfn, zone_end_pfn;
  2375. /* Get the start and end of the node and zone */
  2376. get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
  2377. zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
  2378. zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
  2379. adjust_zone_range_for_zone_movable(nid, zone_type,
  2380. node_start_pfn, node_end_pfn,
  2381. &zone_start_pfn, &zone_end_pfn);
  2382. /* Check that this node has pages within the zone's required range */
  2383. if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn)
  2384. return 0;
  2385. /* Move the zone boundaries inside the node if necessary */
  2386. zone_end_pfn = min(zone_end_pfn, node_end_pfn);
  2387. zone_start_pfn = max(zone_start_pfn, node_start_pfn);
  2388. /* Return the spanned pages */
  2389. return zone_end_pfn - zone_start_pfn;
  2390. }
  2391. /*
  2392. * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
  2393. * then all holes in the requested range will be accounted for.
  2394. */
  2395. unsigned long __meminit __absent_pages_in_range(int nid,
  2396. unsigned long range_start_pfn,
  2397. unsigned long range_end_pfn)
  2398. {
  2399. int i = 0;
  2400. unsigned long prev_end_pfn = 0, hole_pages = 0;
  2401. unsigned long start_pfn;
  2402. /* Find the end_pfn of the first active range of pfns in the node */
  2403. i = first_active_region_index_in_nid(nid);
  2404. if (i == -1)
  2405. return 0;
  2406. /* Account for ranges before physical memory on this node */
  2407. if (early_node_map[i].start_pfn > range_start_pfn)
  2408. hole_pages = early_node_map[i].start_pfn - range_start_pfn;
  2409. prev_end_pfn = early_node_map[i].start_pfn;
  2410. /* Find all holes for the zone within the node */
  2411. for (; i != -1; i = next_active_region_index_in_nid(i, nid)) {
  2412. /* No need to continue if prev_end_pfn is outside the zone */
  2413. if (prev_end_pfn >= range_end_pfn)
  2414. break;
  2415. /* Make sure the end of the zone is not within the hole */
  2416. start_pfn = min(early_node_map[i].start_pfn, range_end_pfn);
  2417. prev_end_pfn = max(prev_end_pfn, range_start_pfn);
  2418. /* Update the hole size cound and move on */
  2419. if (start_pfn > range_start_pfn) {
  2420. BUG_ON(prev_end_pfn > start_pfn);
  2421. hole_pages += start_pfn - prev_end_pfn;
  2422. }
  2423. prev_end_pfn = early_node_map[i].end_pfn;
  2424. }
  2425. /* Account for ranges past physical memory on this node */
  2426. if (range_end_pfn > prev_end_pfn)
  2427. hole_pages += range_end_pfn -
  2428. max(range_start_pfn, prev_end_pfn);
  2429. return hole_pages;
  2430. }
  2431. /**
  2432. * absent_pages_in_range - Return number of page frames in holes within a range
  2433. * @start_pfn: The start PFN to start searching for holes
  2434. * @end_pfn: The end PFN to stop searching for holes
  2435. *
  2436. * It returns the number of pages frames in memory holes within a range.
  2437. */
  2438. unsigned long __init absent_pages_in_range(unsigned long start_pfn,
  2439. unsigned long end_pfn)
  2440. {
  2441. return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
  2442. }
  2443. /* Return the number of page frames in holes in a zone on a node */
  2444. static unsigned long __meminit zone_absent_pages_in_node(int nid,
  2445. unsigned long zone_type,
  2446. unsigned long *ignored)
  2447. {
  2448. unsigned long node_start_pfn, node_end_pfn;
  2449. unsigned long zone_start_pfn, zone_end_pfn;
  2450. get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
  2451. zone_start_pfn = max(arch_zone_lowest_possible_pfn[zone_type],
  2452. node_start_pfn);
  2453. zone_end_pfn = min(arch_zone_highest_possible_pfn[zone_type],
  2454. node_end_pfn);
  2455. adjust_zone_range_for_zone_movable(nid, zone_type,
  2456. node_start_pfn, node_end_pfn,
  2457. &zone_start_pfn, &zone_end_pfn);
  2458. return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
  2459. }
  2460. #else
  2461. static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
  2462. unsigned long zone_type,
  2463. unsigned long *zones_size)
  2464. {
  2465. return zones_size[zone_type];
  2466. }
  2467. static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
  2468. unsigned long zone_type,
  2469. unsigned long *zholes_size)
  2470. {
  2471. if (!zholes_size)
  2472. return 0;
  2473. return zholes_size[zone_type];
  2474. }
  2475. #endif
  2476. static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
  2477. unsigned long *zones_size, unsigned long *zholes_size)
  2478. {
  2479. unsigned long realtotalpages, totalpages = 0;
  2480. enum zone_type i;
  2481. for (i = 0; i < MAX_NR_ZONES; i++)
  2482. totalpages += zone_spanned_pages_in_node(pgdat->node_id, i,
  2483. zones_size);
  2484. pgdat->node_spanned_pages = totalpages;
  2485. realtotalpages = totalpages;
  2486. for (i = 0; i < MAX_NR_ZONES; i++)
  2487. realtotalpages -=
  2488. zone_absent_pages_in_node(pgdat->node_id, i,
  2489. zholes_size);
  2490. pgdat->node_present_pages = realtotalpages;
  2491. printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
  2492. realtotalpages);
  2493. }
  2494. /*
  2495. * Set up the zone data structures:
  2496. * - mark all pages reserved
  2497. * - mark all memory queues empty
  2498. * - clear the memory bitmaps
  2499. */
  2500. static void __meminit free_area_init_core(struct pglist_data *pgdat,
  2501. unsigned long *zones_size, unsigned long *zholes_size)
  2502. {
  2503. enum zone_type j;
  2504. int nid = pgdat->node_id;
  2505. unsigned long zone_start_pfn = pgdat->node_start_pfn;
  2506. int ret;
  2507. pgdat_resize_init(pgdat);
  2508. pgdat->nr_zones = 0;
  2509. init_waitqueue_head(&pgdat->kswapd_wait);
  2510. pgdat->kswapd_max_order = 0;
  2511. for (j = 0; j < MAX_NR_ZONES; j++) {
  2512. struct zone *zone = pgdat->node_zones + j;
  2513. unsigned long size, realsize, memmap_pages;
  2514. size = zone_spanned_pages_in_node(nid, j, zones_size);
  2515. realsize = size - zone_absent_pages_in_node(nid, j,
  2516. zholes_size);
  2517. /*
  2518. * Adjust realsize so that it accounts for how much memory
  2519. * is used by this zone for memmap. This affects the watermark
  2520. * and per-cpu initialisations
  2521. */
  2522. memmap_pages = (size * sizeof(struct page)) >> PAGE_SHIFT;
  2523. if (realsize >= memmap_pages) {
  2524. realsize -= memmap_pages;
  2525. printk(KERN_DEBUG
  2526. " %s zone: %lu pages used for memmap\n",
  2527. zone_names[j], memmap_pages);
  2528. } else
  2529. printk(KERN_WARNING
  2530. " %s zone: %lu pages exceeds realsize %lu\n",
  2531. zone_names[j], memmap_pages, realsize);
  2532. /* Account for reserved pages */
  2533. if (j == 0 && realsize > dma_reserve) {
  2534. realsize -= dma_reserve;
  2535. printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
  2536. zone_names[0], dma_reserve);
  2537. }
  2538. if (!is_highmem_idx(j))
  2539. nr_kernel_pages += realsize;
  2540. nr_all_pages += realsize;
  2541. zone->spanned_pages = size;
  2542. zone->present_pages = realsize;
  2543. #ifdef CONFIG_NUMA
  2544. zone->node = nid;
  2545. zone->min_unmapped_pages = (realsize*sysctl_min_unmapped_ratio)
  2546. / 100;
  2547. zone->min_slab_pages = (realsize * sysctl_min_slab_ratio) / 100;
  2548. #endif
  2549. zone->name = zone_names[j];
  2550. spin_lock_init(&zone->lock);
  2551. spin_lock_init(&zone->lru_lock);
  2552. zone_seqlock_init(zone);
  2553. zone->zone_pgdat = pgdat;
  2554. zone->prev_priority = DEF_PRIORITY;
  2555. zone_pcp_init(zone);
  2556. INIT_LIST_HEAD(&zone->active_list);
  2557. INIT_LIST_HEAD(&zone->inactive_list);
  2558. zone->nr_scan_active = 0;
  2559. zone->nr_scan_inactive = 0;
  2560. zap_zone_vm_stats(zone);
  2561. atomic_set(&zone->reclaim_in_progress, 0);
  2562. if (!size)
  2563. continue;
  2564. ret = init_currently_empty_zone(zone, zone_start_pfn,
  2565. size, MEMMAP_EARLY);
  2566. BUG_ON(ret);
  2567. zone_start_pfn += size;
  2568. }
  2569. }
  2570. static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
  2571. {
  2572. /* Skip empty nodes */
  2573. if (!pgdat->node_spanned_pages)
  2574. return;
  2575. #ifdef CONFIG_FLAT_NODE_MEM_MAP
  2576. /* ia64 gets its own node_mem_map, before this, without bootmem */
  2577. if (!pgdat->node_mem_map) {
  2578. unsigned long size, start, end;
  2579. struct page *map;
  2580. /*
  2581. * The zone's endpoints aren't required to be MAX_ORDER
  2582. * aligned but the node_mem_map endpoints must be in order
  2583. * for the buddy allocator to function correctly.
  2584. */
  2585. start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
  2586. end = pgdat->node_start_pfn + pgdat->node_spanned_pages;
  2587. end = ALIGN(end, MAX_ORDER_NR_PAGES);
  2588. size = (end - start) * sizeof(struct page);
  2589. map = alloc_remap(pgdat->node_id, size);
  2590. if (!map)
  2591. map = alloc_bootmem_node(pgdat, size);
  2592. pgdat->node_mem_map = map + (pgdat->node_start_pfn - start);
  2593. }
  2594. #ifndef CONFIG_NEED_MULTIPLE_NODES
  2595. /*
  2596. * With no DISCONTIG, the global mem_map is just set as node 0's
  2597. */
  2598. if (pgdat == NODE_DATA(0)) {
  2599. mem_map = NODE_DATA(0)->node_mem_map;
  2600. #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
  2601. if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
  2602. mem_map -= pgdat->node_start_pfn;
  2603. #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
  2604. }
  2605. #endif
  2606. #endif /* CONFIG_FLAT_NODE_MEM_MAP */
  2607. }
  2608. void __meminit free_area_init_node(int nid, struct pglist_data *pgdat,
  2609. unsigned long *zones_size, unsigned long node_start_pfn,
  2610. unsigned long *zholes_size)
  2611. {
  2612. pgdat->node_id = nid;
  2613. pgdat->node_start_pfn = node_start_pfn;
  2614. calculate_node_totalpages(pgdat, zones_size, zholes_size);
  2615. alloc_node_mem_map(pgdat);
  2616. free_area_init_core(pgdat, zones_size, zholes_size);
  2617. }
  2618. #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
  2619. #if MAX_NUMNODES > 1
  2620. /*
  2621. * Figure out the number of possible node ids.
  2622. */
  2623. static void __init setup_nr_node_ids(void)
  2624. {
  2625. unsigned int node;
  2626. unsigned int highest = 0;
  2627. for_each_node_mask(node, node_possible_map)
  2628. highest = node;
  2629. nr_node_ids = highest + 1;
  2630. }
  2631. #else
  2632. static inline void setup_nr_node_ids(void)
  2633. {
  2634. }
  2635. #endif
  2636. /**
  2637. * add_active_range - Register a range of PFNs backed by physical memory
  2638. * @nid: The node ID the range resides on
  2639. * @start_pfn: The start PFN of the available physical memory
  2640. * @end_pfn: The end PFN of the available physical memory
  2641. *
  2642. * These ranges are stored in an early_node_map[] and later used by
  2643. * free_area_init_nodes() to calculate zone sizes and holes. If the
  2644. * range spans a memory hole, it is up to the architecture to ensure
  2645. * the memory is not freed by the bootmem allocator. If possible
  2646. * the range being registered will be merged with existing ranges.
  2647. */
  2648. void __init add_active_range(unsigned int nid, unsigned long start_pfn,
  2649. unsigned long end_pfn)
  2650. {
  2651. int i;
  2652. printk(KERN_DEBUG "Entering add_active_range(%d, %lu, %lu) "
  2653. "%d entries of %d used\n",
  2654. nid, start_pfn, end_pfn,
  2655. nr_nodemap_entries, MAX_ACTIVE_REGIONS);
  2656. /* Merge with existing active regions if possible */
  2657. for (i = 0; i < nr_nodemap_entries; i++) {
  2658. if (early_node_map[i].nid != nid)
  2659. continue;
  2660. /* Skip if an existing region covers this new one */
  2661. if (start_pfn >= early_node_map[i].start_pfn &&
  2662. end_pfn <= early_node_map[i].end_pfn)
  2663. return;
  2664. /* Merge forward if suitable */
  2665. if (start_pfn <= early_node_map[i].end_pfn &&
  2666. end_pfn > early_node_map[i].end_pfn) {
  2667. early_node_map[i].end_pfn = end_pfn;
  2668. return;
  2669. }
  2670. /* Merge backward if suitable */
  2671. if (start_pfn < early_node_map[i].end_pfn &&
  2672. end_pfn >= early_node_map[i].start_pfn) {
  2673. early_node_map[i].start_pfn = start_pfn;
  2674. return;
  2675. }
  2676. }
  2677. /* Check that early_node_map is large enough */
  2678. if (i >= MAX_ACTIVE_REGIONS) {
  2679. printk(KERN_CRIT "More than %d memory regions, truncating\n",
  2680. MAX_ACTIVE_REGIONS);
  2681. return;
  2682. }
  2683. early_node_map[i].nid = nid;
  2684. early_node_map[i].start_pfn = start_pfn;
  2685. early_node_map[i].end_pfn = end_pfn;
  2686. nr_nodemap_entries = i + 1;
  2687. }
  2688. /**
  2689. * shrink_active_range - Shrink an existing registered range of PFNs
  2690. * @nid: The node id the range is on that should be shrunk
  2691. * @old_end_pfn: The old end PFN of the range
  2692. * @new_end_pfn: The new PFN of the range
  2693. *
  2694. * i386 with NUMA use alloc_remap() to store a node_mem_map on a local node.
  2695. * The map is kept at the end physical page range that has already been
  2696. * registered with add_active_range(). This function allows an arch to shrink
  2697. * an existing registered range.
  2698. */
  2699. void __init shrink_active_range(unsigned int nid, unsigned long old_end_pfn,
  2700. unsigned long new_end_pfn)
  2701. {
  2702. int i;
  2703. /* Find the old active region end and shrink */
  2704. for_each_active_range_index_in_nid(i, nid)
  2705. if (early_node_map[i].end_pfn == old_end_pfn) {
  2706. early_node_map[i].end_pfn = new_end_pfn;
  2707. break;
  2708. }
  2709. }
  2710. /**
  2711. * remove_all_active_ranges - Remove all currently registered regions
  2712. *
  2713. * During discovery, it may be found that a table like SRAT is invalid
  2714. * and an alternative discovery method must be used. This function removes
  2715. * all currently registered regions.
  2716. */
  2717. void __init remove_all_active_ranges(void)
  2718. {
  2719. memset(early_node_map, 0, sizeof(early_node_map));
  2720. nr_nodemap_entries = 0;
  2721. #ifdef CONFIG_MEMORY_HOTPLUG_RESERVE
  2722. memset(node_boundary_start_pfn, 0, sizeof(node_boundary_start_pfn));
  2723. memset(node_boundary_end_pfn, 0, sizeof(node_boundary_end_pfn));
  2724. #endif /* CONFIG_MEMORY_HOTPLUG_RESERVE */
  2725. }
  2726. /* Compare two active node_active_regions */
  2727. static int __init cmp_node_active_region(const void *a, const void *b)
  2728. {
  2729. struct node_active_region *arange = (struct node_active_region *)a;
  2730. struct node_active_region *brange = (struct node_active_region *)b;
  2731. /* Done this way to avoid overflows */
  2732. if (arange->start_pfn > brange->start_pfn)
  2733. return 1;
  2734. if (arange->start_pfn < brange->start_pfn)
  2735. return -1;
  2736. return 0;
  2737. }
  2738. /* sort the node_map by start_pfn */
  2739. static void __init sort_node_map(void)
  2740. {
  2741. sort(early_node_map, (size_t)nr_nodemap_entries,
  2742. sizeof(struct node_active_region),
  2743. cmp_node_active_region, NULL);
  2744. }
  2745. /* Find the lowest pfn for a node */
  2746. unsigned long __init find_min_pfn_for_node(unsigned long nid)
  2747. {
  2748. int i;
  2749. unsigned long min_pfn = ULONG_MAX;
  2750. /* Assuming a sorted map, the first range found has the starting pfn */
  2751. for_each_active_range_index_in_nid(i, nid)
  2752. min_pfn = min(min_pfn, early_node_map[i].start_pfn);
  2753. if (min_pfn == ULONG_MAX) {
  2754. printk(KERN_WARNING
  2755. "Could not find start_pfn for node %lu\n", nid);
  2756. return 0;
  2757. }
  2758. return min_pfn;
  2759. }
  2760. /**
  2761. * find_min_pfn_with_active_regions - Find the minimum PFN registered
  2762. *
  2763. * It returns the minimum PFN based on information provided via
  2764. * add_active_range().
  2765. */
  2766. unsigned long __init find_min_pfn_with_active_regions(void)
  2767. {
  2768. return find_min_pfn_for_node(MAX_NUMNODES);
  2769. }
  2770. /**
  2771. * find_max_pfn_with_active_regions - Find the maximum PFN registered
  2772. *
  2773. * It returns the maximum PFN based on information provided via
  2774. * add_active_range().
  2775. */
  2776. unsigned long __init find_max_pfn_with_active_regions(void)
  2777. {
  2778. int i;
  2779. unsigned long max_pfn = 0;
  2780. for (i = 0; i < nr_nodemap_entries; i++)
  2781. max_pfn = max(max_pfn, early_node_map[i].end_pfn);
  2782. return max_pfn;
  2783. }
  2784. unsigned long __init early_calculate_totalpages(void)
  2785. {
  2786. int i;
  2787. unsigned long totalpages = 0;
  2788. for (i = 0; i < nr_nodemap_entries; i++)
  2789. totalpages += early_node_map[i].end_pfn -
  2790. early_node_map[i].start_pfn;
  2791. return totalpages;
  2792. }
  2793. /*
  2794. * Find the PFN the Movable zone begins in each node. Kernel memory
  2795. * is spread evenly between nodes as long as the nodes have enough
  2796. * memory. When they don't, some nodes will have more kernelcore than
  2797. * others
  2798. */
  2799. void __init find_zone_movable_pfns_for_nodes(unsigned long *movable_pfn)
  2800. {
  2801. int i, nid;
  2802. unsigned long usable_startpfn;
  2803. unsigned long kernelcore_node, kernelcore_remaining;
  2804. int usable_nodes = num_online_nodes();
  2805. /*
  2806. * If movablecore was specified, calculate what size of
  2807. * kernelcore that corresponds so that memory usable for
  2808. * any allocation type is evenly spread. If both kernelcore
  2809. * and movablecore are specified, then the value of kernelcore
  2810. * will be used for required_kernelcore if it's greater than
  2811. * what movablecore would have allowed.
  2812. */
  2813. if (required_movablecore) {
  2814. unsigned long totalpages = early_calculate_totalpages();
  2815. unsigned long corepages;
  2816. /*
  2817. * Round-up so that ZONE_MOVABLE is at least as large as what
  2818. * was requested by the user
  2819. */
  2820. required_movablecore =
  2821. roundup(required_movablecore, MAX_ORDER_NR_PAGES);
  2822. corepages = totalpages - required_movablecore;
  2823. required_kernelcore = max(required_kernelcore, corepages);
  2824. }
  2825. /* If kernelcore was not specified, there is no ZONE_MOVABLE */
  2826. if (!required_kernelcore)
  2827. return;
  2828. /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
  2829. find_usable_zone_for_movable();
  2830. usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
  2831. restart:
  2832. /* Spread kernelcore memory as evenly as possible throughout nodes */
  2833. kernelcore_node = required_kernelcore / usable_nodes;
  2834. for_each_online_node(nid) {
  2835. /*
  2836. * Recalculate kernelcore_node if the division per node
  2837. * now exceeds what is necessary to satisfy the requested
  2838. * amount of memory for the kernel
  2839. */
  2840. if (required_kernelcore < kernelcore_node)
  2841. kernelcore_node = required_kernelcore / usable_nodes;
  2842. /*
  2843. * As the map is walked, we track how much memory is usable
  2844. * by the kernel using kernelcore_remaining. When it is
  2845. * 0, the rest of the node is usable by ZONE_MOVABLE
  2846. */
  2847. kernelcore_remaining = kernelcore_node;
  2848. /* Go through each range of PFNs within this node */
  2849. for_each_active_range_index_in_nid(i, nid) {
  2850. unsigned long start_pfn, end_pfn;
  2851. unsigned long size_pages;
  2852. start_pfn = max(early_node_map[i].start_pfn,
  2853. zone_movable_pfn[nid]);
  2854. end_pfn = early_node_map[i].end_pfn;
  2855. if (start_pfn >= end_pfn)
  2856. continue;
  2857. /* Account for what is only usable for kernelcore */
  2858. if (start_pfn < usable_startpfn) {
  2859. unsigned long kernel_pages;
  2860. kernel_pages = min(end_pfn, usable_startpfn)
  2861. - start_pfn;
  2862. kernelcore_remaining -= min(kernel_pages,
  2863. kernelcore_remaining);
  2864. required_kernelcore -= min(kernel_pages,
  2865. required_kernelcore);
  2866. /* Continue if range is now fully accounted */
  2867. if (end_pfn <= usable_startpfn) {
  2868. /*
  2869. * Push zone_movable_pfn to the end so
  2870. * that if we have to rebalance
  2871. * kernelcore across nodes, we will
  2872. * not double account here
  2873. */
  2874. zone_movable_pfn[nid] = end_pfn;
  2875. continue;
  2876. }
  2877. start_pfn = usable_startpfn;
  2878. }
  2879. /*
  2880. * The usable PFN range for ZONE_MOVABLE is from
  2881. * start_pfn->end_pfn. Calculate size_pages as the
  2882. * number of pages used as kernelcore
  2883. */
  2884. size_pages = end_pfn - start_pfn;
  2885. if (size_pages > kernelcore_remaining)
  2886. size_pages = kernelcore_remaining;
  2887. zone_movable_pfn[nid] = start_pfn + size_pages;
  2888. /*
  2889. * Some kernelcore has been met, update counts and
  2890. * break if the kernelcore for this node has been
  2891. * satisified
  2892. */
  2893. required_kernelcore -= min(required_kernelcore,
  2894. size_pages);
  2895. kernelcore_remaining -= size_pages;
  2896. if (!kernelcore_remaining)
  2897. break;
  2898. }
  2899. }
  2900. /*
  2901. * If there is still required_kernelcore, we do another pass with one
  2902. * less node in the count. This will push zone_movable_pfn[nid] further
  2903. * along on the nodes that still have memory until kernelcore is
  2904. * satisified
  2905. */
  2906. usable_nodes--;
  2907. if (usable_nodes && required_kernelcore > usable_nodes)
  2908. goto restart;
  2909. /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
  2910. for (nid = 0; nid < MAX_NUMNODES; nid++)
  2911. zone_movable_pfn[nid] =
  2912. roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
  2913. }
  2914. /**
  2915. * free_area_init_nodes - Initialise all pg_data_t and zone data
  2916. * @max_zone_pfn: an array of max PFNs for each zone
  2917. *
  2918. * This will call free_area_init_node() for each active node in the system.
  2919. * Using the page ranges provided by add_active_range(), the size of each
  2920. * zone in each node and their holes is calculated. If the maximum PFN
  2921. * between two adjacent zones match, it is assumed that the zone is empty.
  2922. * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
  2923. * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
  2924. * starts where the previous one ended. For example, ZONE_DMA32 starts
  2925. * at arch_max_dma_pfn.
  2926. */
  2927. void __init free_area_init_nodes(unsigned long *max_zone_pfn)
  2928. {
  2929. unsigned long nid;
  2930. enum zone_type i;
  2931. /* Sort early_node_map as initialisation assumes it is sorted */
  2932. sort_node_map();
  2933. /* Record where the zone boundaries are */
  2934. memset(arch_zone_lowest_possible_pfn, 0,
  2935. sizeof(arch_zone_lowest_possible_pfn));
  2936. memset(arch_zone_highest_possible_pfn, 0,
  2937. sizeof(arch_zone_highest_possible_pfn));
  2938. arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
  2939. arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
  2940. for (i = 1; i < MAX_NR_ZONES; i++) {
  2941. if (i == ZONE_MOVABLE)
  2942. continue;
  2943. arch_zone_lowest_possible_pfn[i] =
  2944. arch_zone_highest_possible_pfn[i-1];
  2945. arch_zone_highest_possible_pfn[i] =
  2946. max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
  2947. }
  2948. arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
  2949. arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
  2950. /* Find the PFNs that ZONE_MOVABLE begins at in each node */
  2951. memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
  2952. find_zone_movable_pfns_for_nodes(zone_movable_pfn);
  2953. /* Print out the zone ranges */
  2954. printk("Zone PFN ranges:\n");
  2955. for (i = 0; i < MAX_NR_ZONES; i++) {
  2956. if (i == ZONE_MOVABLE)
  2957. continue;
  2958. printk(" %-8s %8lu -> %8lu\n",
  2959. zone_names[i],
  2960. arch_zone_lowest_possible_pfn[i],
  2961. arch_zone_highest_possible_pfn[i]);
  2962. }
  2963. /* Print out the PFNs ZONE_MOVABLE begins at in each node */
  2964. printk("Movable zone start PFN for each node\n");
  2965. for (i = 0; i < MAX_NUMNODES; i++) {
  2966. if (zone_movable_pfn[i])
  2967. printk(" Node %d: %lu\n", i, zone_movable_pfn[i]);
  2968. }
  2969. /* Print out the early_node_map[] */
  2970. printk("early_node_map[%d] active PFN ranges\n", nr_nodemap_entries);
  2971. for (i = 0; i < nr_nodemap_entries; i++)
  2972. printk(" %3d: %8lu -> %8lu\n", early_node_map[i].nid,
  2973. early_node_map[i].start_pfn,
  2974. early_node_map[i].end_pfn);
  2975. /* Initialise every node */
  2976. setup_nr_node_ids();
  2977. for_each_online_node(nid) {
  2978. pg_data_t *pgdat = NODE_DATA(nid);
  2979. free_area_init_node(nid, pgdat, NULL,
  2980. find_min_pfn_for_node(nid), NULL);
  2981. }
  2982. }
  2983. static int __init cmdline_parse_core(char *p, unsigned long *core)
  2984. {
  2985. unsigned long long coremem;
  2986. if (!p)
  2987. return -EINVAL;
  2988. coremem = memparse(p, &p);
  2989. *core = coremem >> PAGE_SHIFT;
  2990. /* Paranoid check that UL is enough for the coremem value */
  2991. WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
  2992. return 0;
  2993. }
  2994. /*
  2995. * kernelcore=size sets the amount of memory for use for allocations that
  2996. * cannot be reclaimed or migrated.
  2997. */
  2998. static int __init cmdline_parse_kernelcore(char *p)
  2999. {
  3000. return cmdline_parse_core(p, &required_kernelcore);
  3001. }
  3002. /*
  3003. * movablecore=size sets the amount of memory for use for allocations that
  3004. * can be reclaimed or migrated.
  3005. */
  3006. static int __init cmdline_parse_movablecore(char *p)
  3007. {
  3008. return cmdline_parse_core(p, &required_movablecore);
  3009. }
  3010. early_param("kernelcore", cmdline_parse_kernelcore);
  3011. early_param("movablecore", cmdline_parse_movablecore);
  3012. #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
  3013. /**
  3014. * set_dma_reserve - set the specified number of pages reserved in the first zone
  3015. * @new_dma_reserve: The number of pages to mark reserved
  3016. *
  3017. * The per-cpu batchsize and zone watermarks are determined by present_pages.
  3018. * In the DMA zone, a significant percentage may be consumed by kernel image
  3019. * and other unfreeable allocations which can skew the watermarks badly. This
  3020. * function may optionally be used to account for unfreeable pages in the
  3021. * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
  3022. * smaller per-cpu batchsize.
  3023. */
  3024. void __init set_dma_reserve(unsigned long new_dma_reserve)
  3025. {
  3026. dma_reserve = new_dma_reserve;
  3027. }
  3028. #ifndef CONFIG_NEED_MULTIPLE_NODES
  3029. static bootmem_data_t contig_bootmem_data;
  3030. struct pglist_data contig_page_data = { .bdata = &contig_bootmem_data };
  3031. EXPORT_SYMBOL(contig_page_data);
  3032. #endif
  3033. void __init free_area_init(unsigned long *zones_size)
  3034. {
  3035. free_area_init_node(0, NODE_DATA(0), zones_size,
  3036. __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
  3037. }
  3038. static int page_alloc_cpu_notify(struct notifier_block *self,
  3039. unsigned long action, void *hcpu)
  3040. {
  3041. int cpu = (unsigned long)hcpu;
  3042. if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
  3043. local_irq_disable();
  3044. __drain_pages(cpu);
  3045. vm_events_fold_cpu(cpu);
  3046. local_irq_enable();
  3047. refresh_cpu_vm_stats(cpu);
  3048. }
  3049. return NOTIFY_OK;
  3050. }
  3051. void __init page_alloc_init(void)
  3052. {
  3053. hotcpu_notifier(page_alloc_cpu_notify, 0);
  3054. }
  3055. /*
  3056. * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
  3057. * or min_free_kbytes changes.
  3058. */
  3059. static void calculate_totalreserve_pages(void)
  3060. {
  3061. struct pglist_data *pgdat;
  3062. unsigned long reserve_pages = 0;
  3063. enum zone_type i, j;
  3064. for_each_online_pgdat(pgdat) {
  3065. for (i = 0; i < MAX_NR_ZONES; i++) {
  3066. struct zone *zone = pgdat->node_zones + i;
  3067. unsigned long max = 0;
  3068. /* Find valid and maximum lowmem_reserve in the zone */
  3069. for (j = i; j < MAX_NR_ZONES; j++) {
  3070. if (zone->lowmem_reserve[j] > max)
  3071. max = zone->lowmem_reserve[j];
  3072. }
  3073. /* we treat pages_high as reserved pages. */
  3074. max += zone->pages_high;
  3075. if (max > zone->present_pages)
  3076. max = zone->present_pages;
  3077. reserve_pages += max;
  3078. }
  3079. }
  3080. totalreserve_pages = reserve_pages;
  3081. }
  3082. /*
  3083. * setup_per_zone_lowmem_reserve - called whenever
  3084. * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone
  3085. * has a correct pages reserved value, so an adequate number of
  3086. * pages are left in the zone after a successful __alloc_pages().
  3087. */
  3088. static void setup_per_zone_lowmem_reserve(void)
  3089. {
  3090. struct pglist_data *pgdat;
  3091. enum zone_type j, idx;
  3092. for_each_online_pgdat(pgdat) {
  3093. for (j = 0; j < MAX_NR_ZONES; j++) {
  3094. struct zone *zone = pgdat->node_zones + j;
  3095. unsigned long present_pages = zone->present_pages;
  3096. zone->lowmem_reserve[j] = 0;
  3097. idx = j;
  3098. while (idx) {
  3099. struct zone *lower_zone;
  3100. idx--;
  3101. if (sysctl_lowmem_reserve_ratio[idx] < 1)
  3102. sysctl_lowmem_reserve_ratio[idx] = 1;
  3103. lower_zone = pgdat->node_zones + idx;
  3104. lower_zone->lowmem_reserve[j] = present_pages /
  3105. sysctl_lowmem_reserve_ratio[idx];
  3106. present_pages += lower_zone->present_pages;
  3107. }
  3108. }
  3109. }
  3110. /* update totalreserve_pages */
  3111. calculate_totalreserve_pages();
  3112. }
  3113. /**
  3114. * setup_per_zone_pages_min - called when min_free_kbytes changes.
  3115. *
  3116. * Ensures that the pages_{min,low,high} values for each zone are set correctly
  3117. * with respect to min_free_kbytes.
  3118. */
  3119. void setup_per_zone_pages_min(void)
  3120. {
  3121. unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
  3122. unsigned long lowmem_pages = 0;
  3123. struct zone *zone;
  3124. unsigned long flags;
  3125. /* Calculate total number of !ZONE_HIGHMEM pages */
  3126. for_each_zone(zone) {
  3127. if (!is_highmem(zone))
  3128. lowmem_pages += zone->present_pages;
  3129. }
  3130. for_each_zone(zone) {
  3131. u64 tmp;
  3132. spin_lock_irqsave(&zone->lru_lock, flags);
  3133. tmp = (u64)pages_min * zone->present_pages;
  3134. do_div(tmp, lowmem_pages);
  3135. if (is_highmem(zone)) {
  3136. /*
  3137. * __GFP_HIGH and PF_MEMALLOC allocations usually don't
  3138. * need highmem pages, so cap pages_min to a small
  3139. * value here.
  3140. *
  3141. * The (pages_high-pages_low) and (pages_low-pages_min)
  3142. * deltas controls asynch page reclaim, and so should
  3143. * not be capped for highmem.
  3144. */
  3145. int min_pages;
  3146. min_pages = zone->present_pages / 1024;
  3147. if (min_pages < SWAP_CLUSTER_MAX)
  3148. min_pages = SWAP_CLUSTER_MAX;
  3149. if (min_pages > 128)
  3150. min_pages = 128;
  3151. zone->pages_min = min_pages;
  3152. } else {
  3153. /*
  3154. * If it's a lowmem zone, reserve a number of pages
  3155. * proportionate to the zone's size.
  3156. */
  3157. zone->pages_min = tmp;
  3158. }
  3159. zone->pages_low = zone->pages_min + (tmp >> 2);
  3160. zone->pages_high = zone->pages_min + (tmp >> 1);
  3161. spin_unlock_irqrestore(&zone->lru_lock, flags);
  3162. }
  3163. /* update totalreserve_pages */
  3164. calculate_totalreserve_pages();
  3165. }
  3166. /*
  3167. * Initialise min_free_kbytes.
  3168. *
  3169. * For small machines we want it small (128k min). For large machines
  3170. * we want it large (64MB max). But it is not linear, because network
  3171. * bandwidth does not increase linearly with machine size. We use
  3172. *
  3173. * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
  3174. * min_free_kbytes = sqrt(lowmem_kbytes * 16)
  3175. *
  3176. * which yields
  3177. *
  3178. * 16MB: 512k
  3179. * 32MB: 724k
  3180. * 64MB: 1024k
  3181. * 128MB: 1448k
  3182. * 256MB: 2048k
  3183. * 512MB: 2896k
  3184. * 1024MB: 4096k
  3185. * 2048MB: 5792k
  3186. * 4096MB: 8192k
  3187. * 8192MB: 11584k
  3188. * 16384MB: 16384k
  3189. */
  3190. static int __init init_per_zone_pages_min(void)
  3191. {
  3192. unsigned long lowmem_kbytes;
  3193. lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
  3194. min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
  3195. if (min_free_kbytes < 128)
  3196. min_free_kbytes = 128;
  3197. if (min_free_kbytes > 65536)
  3198. min_free_kbytes = 65536;
  3199. setup_per_zone_pages_min();
  3200. setup_per_zone_lowmem_reserve();
  3201. return 0;
  3202. }
  3203. module_init(init_per_zone_pages_min)
  3204. /*
  3205. * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
  3206. * that we can call two helper functions whenever min_free_kbytes
  3207. * changes.
  3208. */
  3209. int min_free_kbytes_sysctl_handler(ctl_table *table, int write,
  3210. struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
  3211. {
  3212. proc_dointvec(table, write, file, buffer, length, ppos);
  3213. if (write)
  3214. setup_per_zone_pages_min();
  3215. return 0;
  3216. }
  3217. #ifdef CONFIG_NUMA
  3218. int sysctl_min_unmapped_ratio_sysctl_handler(ctl_table *table, int write,
  3219. struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
  3220. {
  3221. struct zone *zone;
  3222. int rc;
  3223. rc = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
  3224. if (rc)
  3225. return rc;
  3226. for_each_zone(zone)
  3227. zone->min_unmapped_pages = (zone->present_pages *
  3228. sysctl_min_unmapped_ratio) / 100;
  3229. return 0;
  3230. }
  3231. int sysctl_min_slab_ratio_sysctl_handler(ctl_table *table, int write,
  3232. struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
  3233. {
  3234. struct zone *zone;
  3235. int rc;
  3236. rc = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
  3237. if (rc)
  3238. return rc;
  3239. for_each_zone(zone)
  3240. zone->min_slab_pages = (zone->present_pages *
  3241. sysctl_min_slab_ratio) / 100;
  3242. return 0;
  3243. }
  3244. #endif
  3245. /*
  3246. * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
  3247. * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
  3248. * whenever sysctl_lowmem_reserve_ratio changes.
  3249. *
  3250. * The reserve ratio obviously has absolutely no relation with the
  3251. * pages_min watermarks. The lowmem reserve ratio can only make sense
  3252. * if in function of the boot time zone sizes.
  3253. */
  3254. int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write,
  3255. struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
  3256. {
  3257. proc_dointvec_minmax(table, write, file, buffer, length, ppos);
  3258. setup_per_zone_lowmem_reserve();
  3259. return 0;
  3260. }
  3261. /*
  3262. * percpu_pagelist_fraction - changes the pcp->high for each zone on each
  3263. * cpu. It is the fraction of total pages in each zone that a hot per cpu pagelist
  3264. * can have before it gets flushed back to buddy allocator.
  3265. */
  3266. int percpu_pagelist_fraction_sysctl_handler(ctl_table *table, int write,
  3267. struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
  3268. {
  3269. struct zone *zone;
  3270. unsigned int cpu;
  3271. int ret;
  3272. ret = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
  3273. if (!write || (ret == -EINVAL))
  3274. return ret;
  3275. for_each_zone(zone) {
  3276. for_each_online_cpu(cpu) {
  3277. unsigned long high;
  3278. high = zone->present_pages / percpu_pagelist_fraction;
  3279. setup_pagelist_highmark(zone_pcp(zone, cpu), high);
  3280. }
  3281. }
  3282. return 0;
  3283. }
  3284. int hashdist = HASHDIST_DEFAULT;
  3285. #ifdef CONFIG_NUMA
  3286. static int __init set_hashdist(char *str)
  3287. {
  3288. if (!str)
  3289. return 0;
  3290. hashdist = simple_strtoul(str, &str, 0);
  3291. return 1;
  3292. }
  3293. __setup("hashdist=", set_hashdist);
  3294. #endif
  3295. /*
  3296. * allocate a large system hash table from bootmem
  3297. * - it is assumed that the hash table must contain an exact power-of-2
  3298. * quantity of entries
  3299. * - limit is the number of hash buckets, not the total allocation size
  3300. */
  3301. void *__init alloc_large_system_hash(const char *tablename,
  3302. unsigned long bucketsize,
  3303. unsigned long numentries,
  3304. int scale,
  3305. int flags,
  3306. unsigned int *_hash_shift,
  3307. unsigned int *_hash_mask,
  3308. unsigned long limit)
  3309. {
  3310. unsigned long long max = limit;
  3311. unsigned long log2qty, size;
  3312. void *table = NULL;
  3313. /* allow the kernel cmdline to have a say */
  3314. if (!numentries) {
  3315. /* round applicable memory size up to nearest megabyte */
  3316. numentries = nr_kernel_pages;
  3317. numentries += (1UL << (20 - PAGE_SHIFT)) - 1;
  3318. numentries >>= 20 - PAGE_SHIFT;
  3319. numentries <<= 20 - PAGE_SHIFT;
  3320. /* limit to 1 bucket per 2^scale bytes of low memory */
  3321. if (scale > PAGE_SHIFT)
  3322. numentries >>= (scale - PAGE_SHIFT);
  3323. else
  3324. numentries <<= (PAGE_SHIFT - scale);
  3325. /* Make sure we've got at least a 0-order allocation.. */
  3326. if (unlikely((numentries * bucketsize) < PAGE_SIZE))
  3327. numentries = PAGE_SIZE / bucketsize;
  3328. }
  3329. numentries = roundup_pow_of_two(numentries);
  3330. /* limit allocation size to 1/16 total memory by default */
  3331. if (max == 0) {
  3332. max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
  3333. do_div(max, bucketsize);
  3334. }
  3335. if (numentries > max)
  3336. numentries = max;
  3337. log2qty = ilog2(numentries);
  3338. do {
  3339. size = bucketsize << log2qty;
  3340. if (flags & HASH_EARLY)
  3341. table = alloc_bootmem(size);
  3342. else if (hashdist)
  3343. table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
  3344. else {
  3345. unsigned long order;
  3346. for (order = 0; ((1UL << order) << PAGE_SHIFT) < size; order++)
  3347. ;
  3348. table = (void*) __get_free_pages(GFP_ATOMIC, order);
  3349. /*
  3350. * If bucketsize is not a power-of-two, we may free
  3351. * some pages at the end of hash table.
  3352. */
  3353. if (table) {
  3354. unsigned long alloc_end = (unsigned long)table +
  3355. (PAGE_SIZE << order);
  3356. unsigned long used = (unsigned long)table +
  3357. PAGE_ALIGN(size);
  3358. split_page(virt_to_page(table), order);
  3359. while (used < alloc_end) {
  3360. free_page(used);
  3361. used += PAGE_SIZE;
  3362. }
  3363. }
  3364. }
  3365. } while (!table && size > PAGE_SIZE && --log2qty);
  3366. if (!table)
  3367. panic("Failed to allocate %s hash table\n", tablename);
  3368. printk(KERN_INFO "%s hash table entries: %d (order: %d, %lu bytes)\n",
  3369. tablename,
  3370. (1U << log2qty),
  3371. ilog2(size) - PAGE_SHIFT,
  3372. size);
  3373. if (_hash_shift)
  3374. *_hash_shift = log2qty;
  3375. if (_hash_mask)
  3376. *_hash_mask = (1 << log2qty) - 1;
  3377. return table;
  3378. }
  3379. #ifdef CONFIG_OUT_OF_LINE_PFN_TO_PAGE
  3380. struct page *pfn_to_page(unsigned long pfn)
  3381. {
  3382. return __pfn_to_page(pfn);
  3383. }
  3384. unsigned long page_to_pfn(struct page *page)
  3385. {
  3386. return __page_to_pfn(page);
  3387. }
  3388. EXPORT_SYMBOL(pfn_to_page);
  3389. EXPORT_SYMBOL(page_to_pfn);
  3390. #endif /* CONFIG_OUT_OF_LINE_PFN_TO_PAGE */