pdc_adma.c 18 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729
  1. /*
  2. * pdc_adma.c - Pacific Digital Corporation ADMA
  3. *
  4. * Maintained by: Mark Lord <mlord@pobox.com>
  5. *
  6. * Copyright 2005 Mark Lord
  7. *
  8. * This program is free software; you can redistribute it and/or modify
  9. * it under the terms of the GNU General Public License as published by
  10. * the Free Software Foundation; either version 2, or (at your option)
  11. * any later version.
  12. *
  13. * This program is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  16. * GNU General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU General Public License
  19. * along with this program; see the file COPYING. If not, write to
  20. * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
  21. *
  22. *
  23. * libata documentation is available via 'make {ps|pdf}docs',
  24. * as Documentation/DocBook/libata.*
  25. *
  26. *
  27. * Supports ATA disks in single-packet ADMA mode.
  28. * Uses PIO for everything else.
  29. *
  30. * TODO: Use ADMA transfers for ATAPI devices, when possible.
  31. * This requires careful attention to a number of quirks of the chip.
  32. *
  33. */
  34. #include <linux/kernel.h>
  35. #include <linux/module.h>
  36. #include <linux/pci.h>
  37. #include <linux/init.h>
  38. #include <linux/blkdev.h>
  39. #include <linux/delay.h>
  40. #include <linux/interrupt.h>
  41. #include <linux/device.h>
  42. #include <scsi/scsi_host.h>
  43. #include <linux/libata.h>
  44. #define DRV_NAME "pdc_adma"
  45. #define DRV_VERSION "1.0"
  46. /* macro to calculate base address for ATA regs */
  47. #define ADMA_ATA_REGS(base, port_no) ((base) + ((port_no) * 0x40))
  48. /* macro to calculate base address for ADMA regs */
  49. #define ADMA_REGS(base, port_no) ((base) + 0x80 + ((port_no) * 0x20))
  50. /* macro to obtain addresses from ata_port */
  51. #define ADMA_PORT_REGS(ap) \
  52. ADMA_REGS((ap)->host->iomap[ADMA_MMIO_BAR], ap->port_no)
  53. enum {
  54. ADMA_MMIO_BAR = 4,
  55. ADMA_PORTS = 2,
  56. ADMA_CPB_BYTES = 40,
  57. ADMA_PRD_BYTES = LIBATA_MAX_PRD * 16,
  58. ADMA_PKT_BYTES = ADMA_CPB_BYTES + ADMA_PRD_BYTES,
  59. ADMA_DMA_BOUNDARY = 0xffffffff,
  60. /* global register offsets */
  61. ADMA_MODE_LOCK = 0x00c7,
  62. /* per-channel register offsets */
  63. ADMA_CONTROL = 0x0000, /* ADMA control */
  64. ADMA_STATUS = 0x0002, /* ADMA status */
  65. ADMA_CPB_COUNT = 0x0004, /* CPB count */
  66. ADMA_CPB_CURRENT = 0x000c, /* current CPB address */
  67. ADMA_CPB_NEXT = 0x000c, /* next CPB address */
  68. ADMA_CPB_LOOKUP = 0x0010, /* CPB lookup table */
  69. ADMA_FIFO_IN = 0x0014, /* input FIFO threshold */
  70. ADMA_FIFO_OUT = 0x0016, /* output FIFO threshold */
  71. /* ADMA_CONTROL register bits */
  72. aNIEN = (1 << 8), /* irq mask: 1==masked */
  73. aGO = (1 << 7), /* packet trigger ("Go!") */
  74. aRSTADM = (1 << 5), /* ADMA logic reset */
  75. aPIOMD4 = 0x0003, /* PIO mode 4 */
  76. /* ADMA_STATUS register bits */
  77. aPSD = (1 << 6),
  78. aUIRQ = (1 << 4),
  79. aPERR = (1 << 0),
  80. /* CPB bits */
  81. cDONE = (1 << 0),
  82. cATERR = (1 << 3),
  83. cVLD = (1 << 0),
  84. cDAT = (1 << 2),
  85. cIEN = (1 << 3),
  86. /* PRD bits */
  87. pORD = (1 << 4),
  88. pDIRO = (1 << 5),
  89. pEND = (1 << 7),
  90. /* ATA register flags */
  91. rIGN = (1 << 5),
  92. rEND = (1 << 7),
  93. /* ATA register addresses */
  94. ADMA_REGS_CONTROL = 0x0e,
  95. ADMA_REGS_SECTOR_COUNT = 0x12,
  96. ADMA_REGS_LBA_LOW = 0x13,
  97. ADMA_REGS_LBA_MID = 0x14,
  98. ADMA_REGS_LBA_HIGH = 0x15,
  99. ADMA_REGS_DEVICE = 0x16,
  100. ADMA_REGS_COMMAND = 0x17,
  101. /* PCI device IDs */
  102. board_1841_idx = 0, /* ADMA 2-port controller */
  103. };
  104. typedef enum { adma_state_idle, adma_state_pkt, adma_state_mmio } adma_state_t;
  105. struct adma_port_priv {
  106. u8 *pkt;
  107. dma_addr_t pkt_dma;
  108. adma_state_t state;
  109. };
  110. static int adma_ata_init_one(struct pci_dev *pdev,
  111. const struct pci_device_id *ent);
  112. static int adma_port_start(struct ata_port *ap);
  113. static void adma_host_stop(struct ata_host *host);
  114. static void adma_port_stop(struct ata_port *ap);
  115. static void adma_qc_prep(struct ata_queued_cmd *qc);
  116. static unsigned int adma_qc_issue(struct ata_queued_cmd *qc);
  117. static int adma_check_atapi_dma(struct ata_queued_cmd *qc);
  118. static void adma_bmdma_stop(struct ata_queued_cmd *qc);
  119. static u8 adma_bmdma_status(struct ata_port *ap);
  120. static void adma_freeze(struct ata_port *ap);
  121. static void adma_thaw(struct ata_port *ap);
  122. static void adma_error_handler(struct ata_port *ap);
  123. static struct scsi_host_template adma_ata_sht = {
  124. ATA_BASE_SHT(DRV_NAME),
  125. .sg_tablesize = LIBATA_MAX_PRD,
  126. .dma_boundary = ADMA_DMA_BOUNDARY,
  127. };
  128. static const struct ata_port_operations adma_ata_ops = {
  129. .tf_load = ata_tf_load,
  130. .tf_read = ata_tf_read,
  131. .exec_command = ata_exec_command,
  132. .check_status = ata_check_status,
  133. .dev_select = ata_std_dev_select,
  134. .check_atapi_dma = adma_check_atapi_dma,
  135. .data_xfer = ata_data_xfer,
  136. .qc_prep = adma_qc_prep,
  137. .qc_issue = adma_qc_issue,
  138. .freeze = adma_freeze,
  139. .thaw = adma_thaw,
  140. .error_handler = adma_error_handler,
  141. .irq_clear = ata_noop_irq_clear,
  142. .irq_on = ata_irq_on,
  143. .port_start = adma_port_start,
  144. .port_stop = adma_port_stop,
  145. .host_stop = adma_host_stop,
  146. .bmdma_stop = adma_bmdma_stop,
  147. .bmdma_status = adma_bmdma_status,
  148. };
  149. static struct ata_port_info adma_port_info[] = {
  150. /* board_1841_idx */
  151. {
  152. .flags = ATA_FLAG_SLAVE_POSS |
  153. ATA_FLAG_NO_LEGACY | ATA_FLAG_MMIO |
  154. ATA_FLAG_PIO_POLLING,
  155. .pio_mask = 0x10, /* pio4 */
  156. .udma_mask = ATA_UDMA4,
  157. .port_ops = &adma_ata_ops,
  158. },
  159. };
  160. static const struct pci_device_id adma_ata_pci_tbl[] = {
  161. { PCI_VDEVICE(PDC, 0x1841), board_1841_idx },
  162. { } /* terminate list */
  163. };
  164. static struct pci_driver adma_ata_pci_driver = {
  165. .name = DRV_NAME,
  166. .id_table = adma_ata_pci_tbl,
  167. .probe = adma_ata_init_one,
  168. .remove = ata_pci_remove_one,
  169. };
  170. static int adma_check_atapi_dma(struct ata_queued_cmd *qc)
  171. {
  172. return 1; /* ATAPI DMA not yet supported */
  173. }
  174. static void adma_bmdma_stop(struct ata_queued_cmd *qc)
  175. {
  176. /* nothing */
  177. }
  178. static u8 adma_bmdma_status(struct ata_port *ap)
  179. {
  180. return 0;
  181. }
  182. static void adma_reset_engine(struct ata_port *ap)
  183. {
  184. void __iomem *chan = ADMA_PORT_REGS(ap);
  185. /* reset ADMA to idle state */
  186. writew(aPIOMD4 | aNIEN | aRSTADM, chan + ADMA_CONTROL);
  187. udelay(2);
  188. writew(aPIOMD4, chan + ADMA_CONTROL);
  189. udelay(2);
  190. }
  191. static void adma_reinit_engine(struct ata_port *ap)
  192. {
  193. struct adma_port_priv *pp = ap->private_data;
  194. void __iomem *chan = ADMA_PORT_REGS(ap);
  195. /* mask/clear ATA interrupts */
  196. writeb(ATA_NIEN, ap->ioaddr.ctl_addr);
  197. ata_check_status(ap);
  198. /* reset the ADMA engine */
  199. adma_reset_engine(ap);
  200. /* set in-FIFO threshold to 0x100 */
  201. writew(0x100, chan + ADMA_FIFO_IN);
  202. /* set CPB pointer */
  203. writel((u32)pp->pkt_dma, chan + ADMA_CPB_NEXT);
  204. /* set out-FIFO threshold to 0x100 */
  205. writew(0x100, chan + ADMA_FIFO_OUT);
  206. /* set CPB count */
  207. writew(1, chan + ADMA_CPB_COUNT);
  208. /* read/discard ADMA status */
  209. readb(chan + ADMA_STATUS);
  210. }
  211. static inline void adma_enter_reg_mode(struct ata_port *ap)
  212. {
  213. void __iomem *chan = ADMA_PORT_REGS(ap);
  214. writew(aPIOMD4, chan + ADMA_CONTROL);
  215. readb(chan + ADMA_STATUS); /* flush */
  216. }
  217. static void adma_freeze(struct ata_port *ap)
  218. {
  219. void __iomem *chan = ADMA_PORT_REGS(ap);
  220. /* mask/clear ATA interrupts */
  221. writeb(ATA_NIEN, ap->ioaddr.ctl_addr);
  222. ata_check_status(ap);
  223. /* reset ADMA to idle state */
  224. writew(aPIOMD4 | aNIEN | aRSTADM, chan + ADMA_CONTROL);
  225. udelay(2);
  226. writew(aPIOMD4 | aNIEN, chan + ADMA_CONTROL);
  227. udelay(2);
  228. }
  229. static void adma_thaw(struct ata_port *ap)
  230. {
  231. adma_reinit_engine(ap);
  232. }
  233. static int adma_prereset(struct ata_link *link, unsigned long deadline)
  234. {
  235. struct ata_port *ap = link->ap;
  236. struct adma_port_priv *pp = ap->private_data;
  237. if (pp->state != adma_state_idle) /* healthy paranoia */
  238. pp->state = adma_state_mmio;
  239. adma_reinit_engine(ap);
  240. return ata_std_prereset(link, deadline);
  241. }
  242. static void adma_error_handler(struct ata_port *ap)
  243. {
  244. ata_do_eh(ap, adma_prereset, ata_std_softreset, NULL,
  245. ata_std_postreset);
  246. }
  247. static int adma_fill_sg(struct ata_queued_cmd *qc)
  248. {
  249. struct scatterlist *sg;
  250. struct ata_port *ap = qc->ap;
  251. struct adma_port_priv *pp = ap->private_data;
  252. u8 *buf = pp->pkt, *last_buf = NULL;
  253. int i = (2 + buf[3]) * 8;
  254. u8 pFLAGS = pORD | ((qc->tf.flags & ATA_TFLAG_WRITE) ? pDIRO : 0);
  255. unsigned int si;
  256. for_each_sg(qc->sg, sg, qc->n_elem, si) {
  257. u32 addr;
  258. u32 len;
  259. addr = (u32)sg_dma_address(sg);
  260. *(__le32 *)(buf + i) = cpu_to_le32(addr);
  261. i += 4;
  262. len = sg_dma_len(sg) >> 3;
  263. *(__le32 *)(buf + i) = cpu_to_le32(len);
  264. i += 4;
  265. last_buf = &buf[i];
  266. buf[i++] = pFLAGS;
  267. buf[i++] = qc->dev->dma_mode & 0xf;
  268. buf[i++] = 0; /* pPKLW */
  269. buf[i++] = 0; /* reserved */
  270. *(__le32 *)(buf + i) =
  271. (pFLAGS & pEND) ? 0 : cpu_to_le32(pp->pkt_dma + i + 4);
  272. i += 4;
  273. VPRINTK("PRD[%u] = (0x%lX, 0x%X)\n", i/4,
  274. (unsigned long)addr, len);
  275. }
  276. if (likely(last_buf))
  277. *last_buf |= pEND;
  278. return i;
  279. }
  280. static void adma_qc_prep(struct ata_queued_cmd *qc)
  281. {
  282. struct adma_port_priv *pp = qc->ap->private_data;
  283. u8 *buf = pp->pkt;
  284. u32 pkt_dma = (u32)pp->pkt_dma;
  285. int i = 0;
  286. VPRINTK("ENTER\n");
  287. adma_enter_reg_mode(qc->ap);
  288. if (qc->tf.protocol != ATA_PROT_DMA) {
  289. ata_qc_prep(qc);
  290. return;
  291. }
  292. buf[i++] = 0; /* Response flags */
  293. buf[i++] = 0; /* reserved */
  294. buf[i++] = cVLD | cDAT | cIEN;
  295. i++; /* cLEN, gets filled in below */
  296. *(__le32 *)(buf+i) = cpu_to_le32(pkt_dma); /* cNCPB */
  297. i += 4; /* cNCPB */
  298. i += 4; /* cPRD, gets filled in below */
  299. buf[i++] = 0; /* reserved */
  300. buf[i++] = 0; /* reserved */
  301. buf[i++] = 0; /* reserved */
  302. buf[i++] = 0; /* reserved */
  303. /* ATA registers; must be a multiple of 4 */
  304. buf[i++] = qc->tf.device;
  305. buf[i++] = ADMA_REGS_DEVICE;
  306. if ((qc->tf.flags & ATA_TFLAG_LBA48)) {
  307. buf[i++] = qc->tf.hob_nsect;
  308. buf[i++] = ADMA_REGS_SECTOR_COUNT;
  309. buf[i++] = qc->tf.hob_lbal;
  310. buf[i++] = ADMA_REGS_LBA_LOW;
  311. buf[i++] = qc->tf.hob_lbam;
  312. buf[i++] = ADMA_REGS_LBA_MID;
  313. buf[i++] = qc->tf.hob_lbah;
  314. buf[i++] = ADMA_REGS_LBA_HIGH;
  315. }
  316. buf[i++] = qc->tf.nsect;
  317. buf[i++] = ADMA_REGS_SECTOR_COUNT;
  318. buf[i++] = qc->tf.lbal;
  319. buf[i++] = ADMA_REGS_LBA_LOW;
  320. buf[i++] = qc->tf.lbam;
  321. buf[i++] = ADMA_REGS_LBA_MID;
  322. buf[i++] = qc->tf.lbah;
  323. buf[i++] = ADMA_REGS_LBA_HIGH;
  324. buf[i++] = 0;
  325. buf[i++] = ADMA_REGS_CONTROL;
  326. buf[i++] = rIGN;
  327. buf[i++] = 0;
  328. buf[i++] = qc->tf.command;
  329. buf[i++] = ADMA_REGS_COMMAND | rEND;
  330. buf[3] = (i >> 3) - 2; /* cLEN */
  331. *(__le32 *)(buf+8) = cpu_to_le32(pkt_dma + i); /* cPRD */
  332. i = adma_fill_sg(qc);
  333. wmb(); /* flush PRDs and pkt to memory */
  334. #if 0
  335. /* dump out CPB + PRDs for debug */
  336. {
  337. int j, len = 0;
  338. static char obuf[2048];
  339. for (j = 0; j < i; ++j) {
  340. len += sprintf(obuf+len, "%02x ", buf[j]);
  341. if ((j & 7) == 7) {
  342. printk("%s\n", obuf);
  343. len = 0;
  344. }
  345. }
  346. if (len)
  347. printk("%s\n", obuf);
  348. }
  349. #endif
  350. }
  351. static inline void adma_packet_start(struct ata_queued_cmd *qc)
  352. {
  353. struct ata_port *ap = qc->ap;
  354. void __iomem *chan = ADMA_PORT_REGS(ap);
  355. VPRINTK("ENTER, ap %p\n", ap);
  356. /* fire up the ADMA engine */
  357. writew(aPIOMD4 | aGO, chan + ADMA_CONTROL);
  358. }
  359. static unsigned int adma_qc_issue(struct ata_queued_cmd *qc)
  360. {
  361. struct adma_port_priv *pp = qc->ap->private_data;
  362. switch (qc->tf.protocol) {
  363. case ATA_PROT_DMA:
  364. pp->state = adma_state_pkt;
  365. adma_packet_start(qc);
  366. return 0;
  367. case ATAPI_PROT_DMA:
  368. BUG();
  369. break;
  370. default:
  371. break;
  372. }
  373. pp->state = adma_state_mmio;
  374. return ata_qc_issue_prot(qc);
  375. }
  376. static inline unsigned int adma_intr_pkt(struct ata_host *host)
  377. {
  378. unsigned int handled = 0, port_no;
  379. for (port_no = 0; port_no < host->n_ports; ++port_no) {
  380. struct ata_port *ap = host->ports[port_no];
  381. struct adma_port_priv *pp;
  382. struct ata_queued_cmd *qc;
  383. void __iomem *chan = ADMA_PORT_REGS(ap);
  384. u8 status = readb(chan + ADMA_STATUS);
  385. if (status == 0)
  386. continue;
  387. handled = 1;
  388. adma_enter_reg_mode(ap);
  389. if (ap->flags & ATA_FLAG_DISABLED)
  390. continue;
  391. pp = ap->private_data;
  392. if (!pp || pp->state != adma_state_pkt)
  393. continue;
  394. qc = ata_qc_from_tag(ap, ap->link.active_tag);
  395. if (qc && (!(qc->tf.flags & ATA_TFLAG_POLLING))) {
  396. if (status & aPERR)
  397. qc->err_mask |= AC_ERR_HOST_BUS;
  398. else if ((status & (aPSD | aUIRQ)))
  399. qc->err_mask |= AC_ERR_OTHER;
  400. if (pp->pkt[0] & cATERR)
  401. qc->err_mask |= AC_ERR_DEV;
  402. else if (pp->pkt[0] != cDONE)
  403. qc->err_mask |= AC_ERR_OTHER;
  404. if (!qc->err_mask)
  405. ata_qc_complete(qc);
  406. else {
  407. struct ata_eh_info *ehi = &ap->link.eh_info;
  408. ata_ehi_clear_desc(ehi);
  409. ata_ehi_push_desc(ehi,
  410. "ADMA-status 0x%02X", status);
  411. ata_ehi_push_desc(ehi,
  412. "pkt[0] 0x%02X", pp->pkt[0]);
  413. if (qc->err_mask == AC_ERR_DEV)
  414. ata_port_abort(ap);
  415. else
  416. ata_port_freeze(ap);
  417. }
  418. }
  419. }
  420. return handled;
  421. }
  422. static inline unsigned int adma_intr_mmio(struct ata_host *host)
  423. {
  424. unsigned int handled = 0, port_no;
  425. for (port_no = 0; port_no < host->n_ports; ++port_no) {
  426. struct ata_port *ap;
  427. ap = host->ports[port_no];
  428. if (ap && (!(ap->flags & ATA_FLAG_DISABLED))) {
  429. struct ata_queued_cmd *qc;
  430. struct adma_port_priv *pp = ap->private_data;
  431. if (!pp || pp->state != adma_state_mmio)
  432. continue;
  433. qc = ata_qc_from_tag(ap, ap->link.active_tag);
  434. if (qc && (!(qc->tf.flags & ATA_TFLAG_POLLING))) {
  435. /* check main status, clearing INTRQ */
  436. u8 status = ata_check_status(ap);
  437. if ((status & ATA_BUSY))
  438. continue;
  439. DPRINTK("ata%u: protocol %d (dev_stat 0x%X)\n",
  440. ap->print_id, qc->tf.protocol, status);
  441. /* complete taskfile transaction */
  442. pp->state = adma_state_idle;
  443. qc->err_mask |= ac_err_mask(status);
  444. if (!qc->err_mask)
  445. ata_qc_complete(qc);
  446. else {
  447. struct ata_eh_info *ehi =
  448. &ap->link.eh_info;
  449. ata_ehi_clear_desc(ehi);
  450. ata_ehi_push_desc(ehi,
  451. "status 0x%02X", status);
  452. if (qc->err_mask == AC_ERR_DEV)
  453. ata_port_abort(ap);
  454. else
  455. ata_port_freeze(ap);
  456. }
  457. handled = 1;
  458. }
  459. }
  460. }
  461. return handled;
  462. }
  463. static irqreturn_t adma_intr(int irq, void *dev_instance)
  464. {
  465. struct ata_host *host = dev_instance;
  466. unsigned int handled = 0;
  467. VPRINTK("ENTER\n");
  468. spin_lock(&host->lock);
  469. handled = adma_intr_pkt(host) | adma_intr_mmio(host);
  470. spin_unlock(&host->lock);
  471. VPRINTK("EXIT\n");
  472. return IRQ_RETVAL(handled);
  473. }
  474. static void adma_ata_setup_port(struct ata_ioports *port, void __iomem *base)
  475. {
  476. port->cmd_addr =
  477. port->data_addr = base + 0x000;
  478. port->error_addr =
  479. port->feature_addr = base + 0x004;
  480. port->nsect_addr = base + 0x008;
  481. port->lbal_addr = base + 0x00c;
  482. port->lbam_addr = base + 0x010;
  483. port->lbah_addr = base + 0x014;
  484. port->device_addr = base + 0x018;
  485. port->status_addr =
  486. port->command_addr = base + 0x01c;
  487. port->altstatus_addr =
  488. port->ctl_addr = base + 0x038;
  489. }
  490. static int adma_port_start(struct ata_port *ap)
  491. {
  492. struct device *dev = ap->host->dev;
  493. struct adma_port_priv *pp;
  494. int rc;
  495. rc = ata_port_start(ap);
  496. if (rc)
  497. return rc;
  498. adma_enter_reg_mode(ap);
  499. pp = devm_kzalloc(dev, sizeof(*pp), GFP_KERNEL);
  500. if (!pp)
  501. return -ENOMEM;
  502. pp->pkt = dmam_alloc_coherent(dev, ADMA_PKT_BYTES, &pp->pkt_dma,
  503. GFP_KERNEL);
  504. if (!pp->pkt)
  505. return -ENOMEM;
  506. /* paranoia? */
  507. if ((pp->pkt_dma & 7) != 0) {
  508. printk(KERN_ERR "bad alignment for pp->pkt_dma: %08x\n",
  509. (u32)pp->pkt_dma);
  510. return -ENOMEM;
  511. }
  512. memset(pp->pkt, 0, ADMA_PKT_BYTES);
  513. ap->private_data = pp;
  514. adma_reinit_engine(ap);
  515. return 0;
  516. }
  517. static void adma_port_stop(struct ata_port *ap)
  518. {
  519. adma_reset_engine(ap);
  520. }
  521. static void adma_host_stop(struct ata_host *host)
  522. {
  523. unsigned int port_no;
  524. for (port_no = 0; port_no < ADMA_PORTS; ++port_no)
  525. adma_reset_engine(host->ports[port_no]);
  526. }
  527. static void adma_host_init(struct ata_host *host, unsigned int chip_id)
  528. {
  529. unsigned int port_no;
  530. /* enable/lock aGO operation */
  531. writeb(7, host->iomap[ADMA_MMIO_BAR] + ADMA_MODE_LOCK);
  532. /* reset the ADMA logic */
  533. for (port_no = 0; port_no < ADMA_PORTS; ++port_no)
  534. adma_reset_engine(host->ports[port_no]);
  535. }
  536. static int adma_set_dma_masks(struct pci_dev *pdev, void __iomem *mmio_base)
  537. {
  538. int rc;
  539. rc = pci_set_dma_mask(pdev, DMA_32BIT_MASK);
  540. if (rc) {
  541. dev_printk(KERN_ERR, &pdev->dev,
  542. "32-bit DMA enable failed\n");
  543. return rc;
  544. }
  545. rc = pci_set_consistent_dma_mask(pdev, DMA_32BIT_MASK);
  546. if (rc) {
  547. dev_printk(KERN_ERR, &pdev->dev,
  548. "32-bit consistent DMA enable failed\n");
  549. return rc;
  550. }
  551. return 0;
  552. }
  553. static int adma_ata_init_one(struct pci_dev *pdev,
  554. const struct pci_device_id *ent)
  555. {
  556. static int printed_version;
  557. unsigned int board_idx = (unsigned int) ent->driver_data;
  558. const struct ata_port_info *ppi[] = { &adma_port_info[board_idx], NULL };
  559. struct ata_host *host;
  560. void __iomem *mmio_base;
  561. int rc, port_no;
  562. if (!printed_version++)
  563. dev_printk(KERN_DEBUG, &pdev->dev, "version " DRV_VERSION "\n");
  564. /* alloc host */
  565. host = ata_host_alloc_pinfo(&pdev->dev, ppi, ADMA_PORTS);
  566. if (!host)
  567. return -ENOMEM;
  568. /* acquire resources and fill host */
  569. rc = pcim_enable_device(pdev);
  570. if (rc)
  571. return rc;
  572. if ((pci_resource_flags(pdev, 4) & IORESOURCE_MEM) == 0)
  573. return -ENODEV;
  574. rc = pcim_iomap_regions(pdev, 1 << ADMA_MMIO_BAR, DRV_NAME);
  575. if (rc)
  576. return rc;
  577. host->iomap = pcim_iomap_table(pdev);
  578. mmio_base = host->iomap[ADMA_MMIO_BAR];
  579. rc = adma_set_dma_masks(pdev, mmio_base);
  580. if (rc)
  581. return rc;
  582. for (port_no = 0; port_no < ADMA_PORTS; ++port_no) {
  583. struct ata_port *ap = host->ports[port_no];
  584. void __iomem *port_base = ADMA_ATA_REGS(mmio_base, port_no);
  585. unsigned int offset = port_base - mmio_base;
  586. adma_ata_setup_port(&ap->ioaddr, port_base);
  587. ata_port_pbar_desc(ap, ADMA_MMIO_BAR, -1, "mmio");
  588. ata_port_pbar_desc(ap, ADMA_MMIO_BAR, offset, "port");
  589. }
  590. /* initialize adapter */
  591. adma_host_init(host, board_idx);
  592. pci_set_master(pdev);
  593. return ata_host_activate(host, pdev->irq, adma_intr, IRQF_SHARED,
  594. &adma_ata_sht);
  595. }
  596. static int __init adma_ata_init(void)
  597. {
  598. return pci_register_driver(&adma_ata_pci_driver);
  599. }
  600. static void __exit adma_ata_exit(void)
  601. {
  602. pci_unregister_driver(&adma_ata_pci_driver);
  603. }
  604. MODULE_AUTHOR("Mark Lord");
  605. MODULE_DESCRIPTION("Pacific Digital Corporation ADMA low-level driver");
  606. MODULE_LICENSE("GPL");
  607. MODULE_DEVICE_TABLE(pci, adma_ata_pci_tbl);
  608. MODULE_VERSION(DRV_VERSION);
  609. module_init(adma_ata_init);
  610. module_exit(adma_ata_exit);