aio.c 36 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514
  1. /*
  2. * An async IO implementation for Linux
  3. * Written by Benjamin LaHaise <bcrl@kvack.org>
  4. *
  5. * Implements an efficient asynchronous io interface.
  6. *
  7. * Copyright 2000, 2001, 2002 Red Hat, Inc. All Rights Reserved.
  8. *
  9. * See ../COPYING for licensing terms.
  10. */
  11. #define pr_fmt(fmt) "%s: " fmt, __func__
  12. #include <linux/kernel.h>
  13. #include <linux/init.h>
  14. #include <linux/errno.h>
  15. #include <linux/time.h>
  16. #include <linux/aio_abi.h>
  17. #include <linux/export.h>
  18. #include <linux/syscalls.h>
  19. #include <linux/backing-dev.h>
  20. #include <linux/uio.h>
  21. #include <linux/sched.h>
  22. #include <linux/fs.h>
  23. #include <linux/file.h>
  24. #include <linux/mm.h>
  25. #include <linux/mman.h>
  26. #include <linux/mmu_context.h>
  27. #include <linux/percpu.h>
  28. #include <linux/slab.h>
  29. #include <linux/timer.h>
  30. #include <linux/aio.h>
  31. #include <linux/highmem.h>
  32. #include <linux/workqueue.h>
  33. #include <linux/security.h>
  34. #include <linux/eventfd.h>
  35. #include <linux/blkdev.h>
  36. #include <linux/compat.h>
  37. #include <linux/anon_inodes.h>
  38. #include <linux/migrate.h>
  39. #include <linux/ramfs.h>
  40. #include <linux/percpu-refcount.h>
  41. #include <asm/kmap_types.h>
  42. #include <asm/uaccess.h>
  43. #include "internal.h"
  44. #define AIO_RING_MAGIC 0xa10a10a1
  45. #define AIO_RING_COMPAT_FEATURES 1
  46. #define AIO_RING_INCOMPAT_FEATURES 0
  47. struct aio_ring {
  48. unsigned id; /* kernel internal index number */
  49. unsigned nr; /* number of io_events */
  50. unsigned head;
  51. unsigned tail;
  52. unsigned magic;
  53. unsigned compat_features;
  54. unsigned incompat_features;
  55. unsigned header_length; /* size of aio_ring */
  56. struct io_event io_events[0];
  57. }; /* 128 bytes + ring size */
  58. #define AIO_RING_PAGES 8
  59. struct kioctx_table {
  60. struct rcu_head rcu;
  61. unsigned nr;
  62. struct kioctx *table[];
  63. };
  64. struct kioctx_cpu {
  65. unsigned reqs_available;
  66. };
  67. struct kioctx {
  68. struct percpu_ref users;
  69. atomic_t dead;
  70. unsigned long user_id;
  71. struct __percpu kioctx_cpu *cpu;
  72. /*
  73. * For percpu reqs_available, number of slots we move to/from global
  74. * counter at a time:
  75. */
  76. unsigned req_batch;
  77. /*
  78. * This is what userspace passed to io_setup(), it's not used for
  79. * anything but counting against the global max_reqs quota.
  80. *
  81. * The real limit is nr_events - 1, which will be larger (see
  82. * aio_setup_ring())
  83. */
  84. unsigned max_reqs;
  85. /* Size of ringbuffer, in units of struct io_event */
  86. unsigned nr_events;
  87. unsigned long mmap_base;
  88. unsigned long mmap_size;
  89. struct page **ring_pages;
  90. long nr_pages;
  91. struct rcu_head rcu_head;
  92. struct work_struct free_work;
  93. struct {
  94. /*
  95. * This counts the number of available slots in the ringbuffer,
  96. * so we avoid overflowing it: it's decremented (if positive)
  97. * when allocating a kiocb and incremented when the resulting
  98. * io_event is pulled off the ringbuffer.
  99. *
  100. * We batch accesses to it with a percpu version.
  101. */
  102. atomic_t reqs_available;
  103. } ____cacheline_aligned_in_smp;
  104. struct {
  105. spinlock_t ctx_lock;
  106. struct list_head active_reqs; /* used for cancellation */
  107. } ____cacheline_aligned_in_smp;
  108. struct {
  109. struct mutex ring_lock;
  110. wait_queue_head_t wait;
  111. } ____cacheline_aligned_in_smp;
  112. struct {
  113. unsigned tail;
  114. spinlock_t completion_lock;
  115. } ____cacheline_aligned_in_smp;
  116. struct page *internal_pages[AIO_RING_PAGES];
  117. struct file *aio_ring_file;
  118. unsigned id;
  119. };
  120. /*------ sysctl variables----*/
  121. static DEFINE_SPINLOCK(aio_nr_lock);
  122. unsigned long aio_nr; /* current system wide number of aio requests */
  123. unsigned long aio_max_nr = 0x10000; /* system wide maximum number of aio requests */
  124. /*----end sysctl variables---*/
  125. static struct kmem_cache *kiocb_cachep;
  126. static struct kmem_cache *kioctx_cachep;
  127. /* aio_setup
  128. * Creates the slab caches used by the aio routines, panic on
  129. * failure as this is done early during the boot sequence.
  130. */
  131. static int __init aio_setup(void)
  132. {
  133. kiocb_cachep = KMEM_CACHE(kiocb, SLAB_HWCACHE_ALIGN|SLAB_PANIC);
  134. kioctx_cachep = KMEM_CACHE(kioctx,SLAB_HWCACHE_ALIGN|SLAB_PANIC);
  135. pr_debug("sizeof(struct page) = %zu\n", sizeof(struct page));
  136. return 0;
  137. }
  138. __initcall(aio_setup);
  139. static void aio_free_ring(struct kioctx *ctx)
  140. {
  141. int i;
  142. struct file *aio_ring_file = ctx->aio_ring_file;
  143. for (i = 0; i < ctx->nr_pages; i++) {
  144. pr_debug("pid(%d) [%d] page->count=%d\n", current->pid, i,
  145. page_count(ctx->ring_pages[i]));
  146. put_page(ctx->ring_pages[i]);
  147. }
  148. if (ctx->ring_pages && ctx->ring_pages != ctx->internal_pages)
  149. kfree(ctx->ring_pages);
  150. if (aio_ring_file) {
  151. truncate_setsize(aio_ring_file->f_inode, 0);
  152. pr_debug("pid(%d) i_nlink=%u d_count=%d d_unhashed=%d i_count=%d\n",
  153. current->pid, aio_ring_file->f_inode->i_nlink,
  154. aio_ring_file->f_path.dentry->d_count,
  155. d_unhashed(aio_ring_file->f_path.dentry),
  156. atomic_read(&aio_ring_file->f_inode->i_count));
  157. fput(aio_ring_file);
  158. ctx->aio_ring_file = NULL;
  159. }
  160. }
  161. static int aio_ring_mmap(struct file *file, struct vm_area_struct *vma)
  162. {
  163. vma->vm_ops = &generic_file_vm_ops;
  164. return 0;
  165. }
  166. static const struct file_operations aio_ring_fops = {
  167. .mmap = aio_ring_mmap,
  168. };
  169. static int aio_set_page_dirty(struct page *page)
  170. {
  171. return 0;
  172. }
  173. #if IS_ENABLED(CONFIG_MIGRATION)
  174. static int aio_migratepage(struct address_space *mapping, struct page *new,
  175. struct page *old, enum migrate_mode mode)
  176. {
  177. struct kioctx *ctx = mapping->private_data;
  178. unsigned long flags;
  179. unsigned idx = old->index;
  180. int rc;
  181. /* Writeback must be complete */
  182. BUG_ON(PageWriteback(old));
  183. put_page(old);
  184. rc = migrate_page_move_mapping(mapping, new, old, NULL, mode);
  185. if (rc != MIGRATEPAGE_SUCCESS) {
  186. get_page(old);
  187. return rc;
  188. }
  189. get_page(new);
  190. spin_lock_irqsave(&ctx->completion_lock, flags);
  191. migrate_page_copy(new, old);
  192. ctx->ring_pages[idx] = new;
  193. spin_unlock_irqrestore(&ctx->completion_lock, flags);
  194. return rc;
  195. }
  196. #endif
  197. static const struct address_space_operations aio_ctx_aops = {
  198. .set_page_dirty = aio_set_page_dirty,
  199. #if IS_ENABLED(CONFIG_MIGRATION)
  200. .migratepage = aio_migratepage,
  201. #endif
  202. };
  203. static int aio_setup_ring(struct kioctx *ctx)
  204. {
  205. struct aio_ring *ring;
  206. unsigned nr_events = ctx->max_reqs;
  207. struct mm_struct *mm = current->mm;
  208. unsigned long size, populate;
  209. int nr_pages;
  210. int i;
  211. struct file *file;
  212. /* Compensate for the ring buffer's head/tail overlap entry */
  213. nr_events += 2; /* 1 is required, 2 for good luck */
  214. size = sizeof(struct aio_ring);
  215. size += sizeof(struct io_event) * nr_events;
  216. nr_pages = PFN_UP(size);
  217. if (nr_pages < 0)
  218. return -EINVAL;
  219. file = anon_inode_getfile_private("[aio]", &aio_ring_fops, ctx, O_RDWR);
  220. if (IS_ERR(file)) {
  221. ctx->aio_ring_file = NULL;
  222. return -EAGAIN;
  223. }
  224. file->f_inode->i_mapping->a_ops = &aio_ctx_aops;
  225. file->f_inode->i_mapping->private_data = ctx;
  226. file->f_inode->i_size = PAGE_SIZE * (loff_t)nr_pages;
  227. for (i = 0; i < nr_pages; i++) {
  228. struct page *page;
  229. page = find_or_create_page(file->f_inode->i_mapping,
  230. i, GFP_HIGHUSER | __GFP_ZERO);
  231. if (!page)
  232. break;
  233. pr_debug("pid(%d) page[%d]->count=%d\n",
  234. current->pid, i, page_count(page));
  235. SetPageUptodate(page);
  236. SetPageDirty(page);
  237. unlock_page(page);
  238. }
  239. ctx->aio_ring_file = file;
  240. nr_events = (PAGE_SIZE * nr_pages - sizeof(struct aio_ring))
  241. / sizeof(struct io_event);
  242. ctx->ring_pages = ctx->internal_pages;
  243. if (nr_pages > AIO_RING_PAGES) {
  244. ctx->ring_pages = kcalloc(nr_pages, sizeof(struct page *),
  245. GFP_KERNEL);
  246. if (!ctx->ring_pages)
  247. return -ENOMEM;
  248. }
  249. ctx->mmap_size = nr_pages * PAGE_SIZE;
  250. pr_debug("attempting mmap of %lu bytes\n", ctx->mmap_size);
  251. down_write(&mm->mmap_sem);
  252. ctx->mmap_base = do_mmap_pgoff(ctx->aio_ring_file, 0, ctx->mmap_size,
  253. PROT_READ | PROT_WRITE,
  254. MAP_SHARED | MAP_POPULATE, 0, &populate);
  255. if (IS_ERR((void *)ctx->mmap_base)) {
  256. up_write(&mm->mmap_sem);
  257. ctx->mmap_size = 0;
  258. aio_free_ring(ctx);
  259. return -EAGAIN;
  260. }
  261. up_write(&mm->mmap_sem);
  262. mm_populate(ctx->mmap_base, populate);
  263. pr_debug("mmap address: 0x%08lx\n", ctx->mmap_base);
  264. ctx->nr_pages = get_user_pages(current, mm, ctx->mmap_base, nr_pages,
  265. 1, 0, ctx->ring_pages, NULL);
  266. for (i = 0; i < ctx->nr_pages; i++)
  267. put_page(ctx->ring_pages[i]);
  268. if (unlikely(ctx->nr_pages != nr_pages)) {
  269. aio_free_ring(ctx);
  270. return -EAGAIN;
  271. }
  272. ctx->user_id = ctx->mmap_base;
  273. ctx->nr_events = nr_events; /* trusted copy */
  274. ring = kmap_atomic(ctx->ring_pages[0]);
  275. ring->nr = nr_events; /* user copy */
  276. ring->id = ~0U;
  277. ring->head = ring->tail = 0;
  278. ring->magic = AIO_RING_MAGIC;
  279. ring->compat_features = AIO_RING_COMPAT_FEATURES;
  280. ring->incompat_features = AIO_RING_INCOMPAT_FEATURES;
  281. ring->header_length = sizeof(struct aio_ring);
  282. kunmap_atomic(ring);
  283. flush_dcache_page(ctx->ring_pages[0]);
  284. return 0;
  285. }
  286. #define AIO_EVENTS_PER_PAGE (PAGE_SIZE / sizeof(struct io_event))
  287. #define AIO_EVENTS_FIRST_PAGE ((PAGE_SIZE - sizeof(struct aio_ring)) / sizeof(struct io_event))
  288. #define AIO_EVENTS_OFFSET (AIO_EVENTS_PER_PAGE - AIO_EVENTS_FIRST_PAGE)
  289. void kiocb_set_cancel_fn(struct kiocb *req, kiocb_cancel_fn *cancel)
  290. {
  291. struct kioctx *ctx = req->ki_ctx;
  292. unsigned long flags;
  293. spin_lock_irqsave(&ctx->ctx_lock, flags);
  294. if (!req->ki_list.next)
  295. list_add(&req->ki_list, &ctx->active_reqs);
  296. req->ki_cancel = cancel;
  297. spin_unlock_irqrestore(&ctx->ctx_lock, flags);
  298. }
  299. EXPORT_SYMBOL(kiocb_set_cancel_fn);
  300. static int kiocb_cancel(struct kioctx *ctx, struct kiocb *kiocb)
  301. {
  302. kiocb_cancel_fn *old, *cancel;
  303. /*
  304. * Don't want to set kiocb->ki_cancel = KIOCB_CANCELLED unless it
  305. * actually has a cancel function, hence the cmpxchg()
  306. */
  307. cancel = ACCESS_ONCE(kiocb->ki_cancel);
  308. do {
  309. if (!cancel || cancel == KIOCB_CANCELLED)
  310. return -EINVAL;
  311. old = cancel;
  312. cancel = cmpxchg(&kiocb->ki_cancel, old, KIOCB_CANCELLED);
  313. } while (cancel != old);
  314. return cancel(kiocb);
  315. }
  316. static void free_ioctx_rcu(struct rcu_head *head)
  317. {
  318. struct kioctx *ctx = container_of(head, struct kioctx, rcu_head);
  319. free_percpu(ctx->cpu);
  320. kmem_cache_free(kioctx_cachep, ctx);
  321. }
  322. /*
  323. * When this function runs, the kioctx has been removed from the "hash table"
  324. * and ctx->users has dropped to 0, so we know no more kiocbs can be submitted -
  325. * now it's safe to cancel any that need to be.
  326. */
  327. static void free_ioctx(struct work_struct *work)
  328. {
  329. struct kioctx *ctx = container_of(work, struct kioctx, free_work);
  330. struct aio_ring *ring;
  331. struct kiocb *req;
  332. unsigned cpu, avail;
  333. DEFINE_WAIT(wait);
  334. spin_lock_irq(&ctx->ctx_lock);
  335. while (!list_empty(&ctx->active_reqs)) {
  336. req = list_first_entry(&ctx->active_reqs,
  337. struct kiocb, ki_list);
  338. list_del_init(&req->ki_list);
  339. kiocb_cancel(ctx, req);
  340. }
  341. spin_unlock_irq(&ctx->ctx_lock);
  342. for_each_possible_cpu(cpu) {
  343. struct kioctx_cpu *kcpu = per_cpu_ptr(ctx->cpu, cpu);
  344. atomic_add(kcpu->reqs_available, &ctx->reqs_available);
  345. kcpu->reqs_available = 0;
  346. }
  347. while (1) {
  348. prepare_to_wait(&ctx->wait, &wait, TASK_UNINTERRUPTIBLE);
  349. ring = kmap_atomic(ctx->ring_pages[0]);
  350. avail = (ring->head <= ring->tail)
  351. ? ring->tail - ring->head
  352. : ctx->nr_events - ring->head + ring->tail;
  353. atomic_add(avail, &ctx->reqs_available);
  354. ring->head = ring->tail;
  355. kunmap_atomic(ring);
  356. if (atomic_read(&ctx->reqs_available) >= ctx->nr_events - 1)
  357. break;
  358. schedule();
  359. }
  360. finish_wait(&ctx->wait, &wait);
  361. WARN_ON(atomic_read(&ctx->reqs_available) > ctx->nr_events - 1);
  362. aio_free_ring(ctx);
  363. pr_debug("freeing %p\n", ctx);
  364. /*
  365. * Here the call_rcu() is between the wait_event() for reqs_active to
  366. * hit 0, and freeing the ioctx.
  367. *
  368. * aio_complete() decrements reqs_active, but it has to touch the ioctx
  369. * after to issue a wakeup so we use rcu.
  370. */
  371. call_rcu(&ctx->rcu_head, free_ioctx_rcu);
  372. }
  373. static void free_ioctx_ref(struct percpu_ref *ref)
  374. {
  375. struct kioctx *ctx = container_of(ref, struct kioctx, users);
  376. INIT_WORK(&ctx->free_work, free_ioctx);
  377. schedule_work(&ctx->free_work);
  378. }
  379. static int ioctx_add_table(struct kioctx *ctx, struct mm_struct *mm)
  380. {
  381. unsigned i, new_nr;
  382. struct kioctx_table *table, *old;
  383. struct aio_ring *ring;
  384. spin_lock(&mm->ioctx_lock);
  385. table = rcu_dereference(mm->ioctx_table);
  386. while (1) {
  387. if (table)
  388. for (i = 0; i < table->nr; i++)
  389. if (!table->table[i]) {
  390. ctx->id = i;
  391. table->table[i] = ctx;
  392. spin_unlock(&mm->ioctx_lock);
  393. ring = kmap_atomic(ctx->ring_pages[0]);
  394. ring->id = ctx->id;
  395. kunmap_atomic(ring);
  396. return 0;
  397. }
  398. new_nr = (table ? table->nr : 1) * 4;
  399. spin_unlock(&mm->ioctx_lock);
  400. table = kzalloc(sizeof(*table) + sizeof(struct kioctx *) *
  401. new_nr, GFP_KERNEL);
  402. if (!table)
  403. return -ENOMEM;
  404. table->nr = new_nr;
  405. spin_lock(&mm->ioctx_lock);
  406. old = rcu_dereference(mm->ioctx_table);
  407. if (!old) {
  408. rcu_assign_pointer(mm->ioctx_table, table);
  409. } else if (table->nr > old->nr) {
  410. memcpy(table->table, old->table,
  411. old->nr * sizeof(struct kioctx *));
  412. rcu_assign_pointer(mm->ioctx_table, table);
  413. kfree_rcu(old, rcu);
  414. } else {
  415. kfree(table);
  416. table = old;
  417. }
  418. }
  419. }
  420. /* ioctx_alloc
  421. * Allocates and initializes an ioctx. Returns an ERR_PTR if it failed.
  422. */
  423. static struct kioctx *ioctx_alloc(unsigned nr_events)
  424. {
  425. struct mm_struct *mm = current->mm;
  426. struct kioctx *ctx;
  427. int err = -ENOMEM;
  428. /*
  429. * We keep track of the number of available ringbuffer slots, to prevent
  430. * overflow (reqs_available), and we also use percpu counters for this.
  431. *
  432. * So since up to half the slots might be on other cpu's percpu counters
  433. * and unavailable, double nr_events so userspace sees what they
  434. * expected: additionally, we move req_batch slots to/from percpu
  435. * counters at a time, so make sure that isn't 0:
  436. */
  437. nr_events = max(nr_events, num_possible_cpus() * 4);
  438. nr_events *= 2;
  439. /* Prevent overflows */
  440. if ((nr_events > (0x10000000U / sizeof(struct io_event))) ||
  441. (nr_events > (0x10000000U / sizeof(struct kiocb)))) {
  442. pr_debug("ENOMEM: nr_events too high\n");
  443. return ERR_PTR(-EINVAL);
  444. }
  445. if (!nr_events || (unsigned long)nr_events > (aio_max_nr * 2UL))
  446. return ERR_PTR(-EAGAIN);
  447. ctx = kmem_cache_zalloc(kioctx_cachep, GFP_KERNEL);
  448. if (!ctx)
  449. return ERR_PTR(-ENOMEM);
  450. ctx->max_reqs = nr_events;
  451. if (percpu_ref_init(&ctx->users, free_ioctx_ref))
  452. goto out_freectx;
  453. spin_lock_init(&ctx->ctx_lock);
  454. spin_lock_init(&ctx->completion_lock);
  455. mutex_init(&ctx->ring_lock);
  456. init_waitqueue_head(&ctx->wait);
  457. INIT_LIST_HEAD(&ctx->active_reqs);
  458. ctx->cpu = alloc_percpu(struct kioctx_cpu);
  459. if (!ctx->cpu)
  460. goto out_freeref;
  461. if (aio_setup_ring(ctx) < 0)
  462. goto out_freepcpu;
  463. atomic_set(&ctx->reqs_available, ctx->nr_events - 1);
  464. ctx->req_batch = (ctx->nr_events - 1) / (num_possible_cpus() * 4);
  465. if (ctx->req_batch < 1)
  466. ctx->req_batch = 1;
  467. err = ioctx_add_table(ctx, mm);
  468. if (err)
  469. goto out_cleanup_noerr;
  470. /* limit the number of system wide aios */
  471. spin_lock(&aio_nr_lock);
  472. if (aio_nr + nr_events > (aio_max_nr * 2UL) ||
  473. aio_nr + nr_events < aio_nr) {
  474. spin_unlock(&aio_nr_lock);
  475. goto out_cleanup;
  476. }
  477. aio_nr += ctx->max_reqs;
  478. spin_unlock(&aio_nr_lock);
  479. percpu_ref_get(&ctx->users); /* io_setup() will drop this ref */
  480. pr_debug("allocated ioctx %p[%ld]: mm=%p mask=0x%x\n",
  481. ctx, ctx->user_id, mm, ctx->nr_events);
  482. return ctx;
  483. out_cleanup:
  484. err = -EAGAIN;
  485. out_cleanup_noerr:
  486. aio_free_ring(ctx);
  487. out_freepcpu:
  488. free_percpu(ctx->cpu);
  489. out_freeref:
  490. free_percpu(ctx->users.pcpu_count);
  491. out_freectx:
  492. if (ctx->aio_ring_file)
  493. fput(ctx->aio_ring_file);
  494. kmem_cache_free(kioctx_cachep, ctx);
  495. pr_debug("error allocating ioctx %d\n", err);
  496. return ERR_PTR(err);
  497. }
  498. /* kill_ioctx
  499. * Cancels all outstanding aio requests on an aio context. Used
  500. * when the processes owning a context have all exited to encourage
  501. * the rapid destruction of the kioctx.
  502. */
  503. static void kill_ioctx(struct mm_struct *mm, struct kioctx *ctx)
  504. {
  505. if (!atomic_xchg(&ctx->dead, 1)) {
  506. struct kioctx_table *table;
  507. spin_lock(&mm->ioctx_lock);
  508. table = rcu_dereference(mm->ioctx_table);
  509. WARN_ON(ctx != table->table[ctx->id]);
  510. table->table[ctx->id] = NULL;
  511. spin_unlock(&mm->ioctx_lock);
  512. /* percpu_ref_kill() will do the necessary call_rcu() */
  513. wake_up_all(&ctx->wait);
  514. /*
  515. * It'd be more correct to do this in free_ioctx(), after all
  516. * the outstanding kiocbs have finished - but by then io_destroy
  517. * has already returned, so io_setup() could potentially return
  518. * -EAGAIN with no ioctxs actually in use (as far as userspace
  519. * could tell).
  520. */
  521. spin_lock(&aio_nr_lock);
  522. BUG_ON(aio_nr - ctx->max_reqs > aio_nr);
  523. aio_nr -= ctx->max_reqs;
  524. spin_unlock(&aio_nr_lock);
  525. if (ctx->mmap_size)
  526. vm_munmap(ctx->mmap_base, ctx->mmap_size);
  527. percpu_ref_kill(&ctx->users);
  528. }
  529. }
  530. /* wait_on_sync_kiocb:
  531. * Waits on the given sync kiocb to complete.
  532. */
  533. ssize_t wait_on_sync_kiocb(struct kiocb *req)
  534. {
  535. while (!req->ki_ctx) {
  536. set_current_state(TASK_UNINTERRUPTIBLE);
  537. if (req->ki_ctx)
  538. break;
  539. io_schedule();
  540. }
  541. __set_current_state(TASK_RUNNING);
  542. return req->ki_user_data;
  543. }
  544. EXPORT_SYMBOL(wait_on_sync_kiocb);
  545. /*
  546. * exit_aio: called when the last user of mm goes away. At this point, there is
  547. * no way for any new requests to be submited or any of the io_* syscalls to be
  548. * called on the context.
  549. *
  550. * There may be outstanding kiocbs, but free_ioctx() will explicitly wait on
  551. * them.
  552. */
  553. void exit_aio(struct mm_struct *mm)
  554. {
  555. struct kioctx_table *table;
  556. struct kioctx *ctx;
  557. unsigned i = 0;
  558. while (1) {
  559. rcu_read_lock();
  560. table = rcu_dereference(mm->ioctx_table);
  561. do {
  562. if (!table || i >= table->nr) {
  563. rcu_read_unlock();
  564. rcu_assign_pointer(mm->ioctx_table, NULL);
  565. if (table)
  566. kfree(table);
  567. return;
  568. }
  569. ctx = table->table[i++];
  570. } while (!ctx);
  571. rcu_read_unlock();
  572. /*
  573. * We don't need to bother with munmap() here -
  574. * exit_mmap(mm) is coming and it'll unmap everything.
  575. * Since aio_free_ring() uses non-zero ->mmap_size
  576. * as indicator that it needs to unmap the area,
  577. * just set it to 0; aio_free_ring() is the only
  578. * place that uses ->mmap_size, so it's safe.
  579. */
  580. ctx->mmap_size = 0;
  581. kill_ioctx(mm, ctx);
  582. }
  583. }
  584. static void put_reqs_available(struct kioctx *ctx, unsigned nr)
  585. {
  586. struct kioctx_cpu *kcpu;
  587. preempt_disable();
  588. kcpu = this_cpu_ptr(ctx->cpu);
  589. kcpu->reqs_available += nr;
  590. while (kcpu->reqs_available >= ctx->req_batch * 2) {
  591. kcpu->reqs_available -= ctx->req_batch;
  592. atomic_add(ctx->req_batch, &ctx->reqs_available);
  593. }
  594. preempt_enable();
  595. }
  596. static bool get_reqs_available(struct kioctx *ctx)
  597. {
  598. struct kioctx_cpu *kcpu;
  599. bool ret = false;
  600. preempt_disable();
  601. kcpu = this_cpu_ptr(ctx->cpu);
  602. if (!kcpu->reqs_available) {
  603. int old, avail = atomic_read(&ctx->reqs_available);
  604. do {
  605. if (avail < ctx->req_batch)
  606. goto out;
  607. old = avail;
  608. avail = atomic_cmpxchg(&ctx->reqs_available,
  609. avail, avail - ctx->req_batch);
  610. } while (avail != old);
  611. kcpu->reqs_available += ctx->req_batch;
  612. }
  613. ret = true;
  614. kcpu->reqs_available--;
  615. out:
  616. preempt_enable();
  617. return ret;
  618. }
  619. /* aio_get_req
  620. * Allocate a slot for an aio request.
  621. * Returns NULL if no requests are free.
  622. */
  623. static inline struct kiocb *aio_get_req(struct kioctx *ctx)
  624. {
  625. struct kiocb *req;
  626. if (!get_reqs_available(ctx))
  627. return NULL;
  628. req = kmem_cache_alloc(kiocb_cachep, GFP_KERNEL|__GFP_ZERO);
  629. if (unlikely(!req))
  630. goto out_put;
  631. req->ki_ctx = ctx;
  632. return req;
  633. out_put:
  634. put_reqs_available(ctx, 1);
  635. return NULL;
  636. }
  637. static void kiocb_free(struct kiocb *req)
  638. {
  639. if (req->ki_filp)
  640. fput(req->ki_filp);
  641. if (req->ki_eventfd != NULL)
  642. eventfd_ctx_put(req->ki_eventfd);
  643. kmem_cache_free(kiocb_cachep, req);
  644. }
  645. static struct kioctx *lookup_ioctx(unsigned long ctx_id)
  646. {
  647. struct aio_ring __user *ring = (void __user *)ctx_id;
  648. struct mm_struct *mm = current->mm;
  649. struct kioctx *ctx, *ret = NULL;
  650. struct kioctx_table *table;
  651. unsigned id;
  652. if (get_user(id, &ring->id))
  653. return NULL;
  654. rcu_read_lock();
  655. table = rcu_dereference(mm->ioctx_table);
  656. if (!table || id >= table->nr)
  657. goto out;
  658. ctx = table->table[id];
  659. if (ctx->user_id == ctx_id) {
  660. percpu_ref_get(&ctx->users);
  661. ret = ctx;
  662. }
  663. out:
  664. rcu_read_unlock();
  665. return ret;
  666. }
  667. /* aio_complete
  668. * Called when the io request on the given iocb is complete.
  669. */
  670. void aio_complete(struct kiocb *iocb, long res, long res2)
  671. {
  672. struct kioctx *ctx = iocb->ki_ctx;
  673. struct aio_ring *ring;
  674. struct io_event *ev_page, *event;
  675. unsigned long flags;
  676. unsigned tail, pos;
  677. /*
  678. * Special case handling for sync iocbs:
  679. * - events go directly into the iocb for fast handling
  680. * - the sync task with the iocb in its stack holds the single iocb
  681. * ref, no other paths have a way to get another ref
  682. * - the sync task helpfully left a reference to itself in the iocb
  683. */
  684. if (is_sync_kiocb(iocb)) {
  685. iocb->ki_user_data = res;
  686. smp_wmb();
  687. iocb->ki_ctx = ERR_PTR(-EXDEV);
  688. wake_up_process(iocb->ki_obj.tsk);
  689. return;
  690. }
  691. /*
  692. * Take rcu_read_lock() in case the kioctx is being destroyed, as we
  693. * need to issue a wakeup after incrementing reqs_available.
  694. */
  695. rcu_read_lock();
  696. if (iocb->ki_list.next) {
  697. unsigned long flags;
  698. spin_lock_irqsave(&ctx->ctx_lock, flags);
  699. list_del(&iocb->ki_list);
  700. spin_unlock_irqrestore(&ctx->ctx_lock, flags);
  701. }
  702. /*
  703. * Add a completion event to the ring buffer. Must be done holding
  704. * ctx->completion_lock to prevent other code from messing with the tail
  705. * pointer since we might be called from irq context.
  706. */
  707. spin_lock_irqsave(&ctx->completion_lock, flags);
  708. tail = ctx->tail;
  709. pos = tail + AIO_EVENTS_OFFSET;
  710. if (++tail >= ctx->nr_events)
  711. tail = 0;
  712. ev_page = kmap_atomic(ctx->ring_pages[pos / AIO_EVENTS_PER_PAGE]);
  713. event = ev_page + pos % AIO_EVENTS_PER_PAGE;
  714. event->obj = (u64)(unsigned long)iocb->ki_obj.user;
  715. event->data = iocb->ki_user_data;
  716. event->res = res;
  717. event->res2 = res2;
  718. kunmap_atomic(ev_page);
  719. flush_dcache_page(ctx->ring_pages[pos / AIO_EVENTS_PER_PAGE]);
  720. pr_debug("%p[%u]: %p: %p %Lx %lx %lx\n",
  721. ctx, tail, iocb, iocb->ki_obj.user, iocb->ki_user_data,
  722. res, res2);
  723. /* after flagging the request as done, we
  724. * must never even look at it again
  725. */
  726. smp_wmb(); /* make event visible before updating tail */
  727. ctx->tail = tail;
  728. ring = kmap_atomic(ctx->ring_pages[0]);
  729. ring->tail = tail;
  730. kunmap_atomic(ring);
  731. flush_dcache_page(ctx->ring_pages[0]);
  732. spin_unlock_irqrestore(&ctx->completion_lock, flags);
  733. pr_debug("added to ring %p at [%u]\n", iocb, tail);
  734. /*
  735. * Check if the user asked us to deliver the result through an
  736. * eventfd. The eventfd_signal() function is safe to be called
  737. * from IRQ context.
  738. */
  739. if (iocb->ki_eventfd != NULL)
  740. eventfd_signal(iocb->ki_eventfd, 1);
  741. /* everything turned out well, dispose of the aiocb. */
  742. kiocb_free(iocb);
  743. /*
  744. * We have to order our ring_info tail store above and test
  745. * of the wait list below outside the wait lock. This is
  746. * like in wake_up_bit() where clearing a bit has to be
  747. * ordered with the unlocked test.
  748. */
  749. smp_mb();
  750. if (waitqueue_active(&ctx->wait))
  751. wake_up(&ctx->wait);
  752. rcu_read_unlock();
  753. }
  754. EXPORT_SYMBOL(aio_complete);
  755. /* aio_read_events
  756. * Pull an event off of the ioctx's event ring. Returns the number of
  757. * events fetched
  758. */
  759. static long aio_read_events_ring(struct kioctx *ctx,
  760. struct io_event __user *event, long nr)
  761. {
  762. struct aio_ring *ring;
  763. unsigned head, tail, pos;
  764. long ret = 0;
  765. int copy_ret;
  766. mutex_lock(&ctx->ring_lock);
  767. ring = kmap_atomic(ctx->ring_pages[0]);
  768. head = ring->head;
  769. tail = ring->tail;
  770. kunmap_atomic(ring);
  771. pr_debug("h%u t%u m%u\n", head, tail, ctx->nr_events);
  772. if (head == tail)
  773. goto out;
  774. while (ret < nr) {
  775. long avail;
  776. struct io_event *ev;
  777. struct page *page;
  778. avail = (head <= tail ? tail : ctx->nr_events) - head;
  779. if (head == tail)
  780. break;
  781. avail = min(avail, nr - ret);
  782. avail = min_t(long, avail, AIO_EVENTS_PER_PAGE -
  783. ((head + AIO_EVENTS_OFFSET) % AIO_EVENTS_PER_PAGE));
  784. pos = head + AIO_EVENTS_OFFSET;
  785. page = ctx->ring_pages[pos / AIO_EVENTS_PER_PAGE];
  786. pos %= AIO_EVENTS_PER_PAGE;
  787. ev = kmap(page);
  788. copy_ret = copy_to_user(event + ret, ev + pos,
  789. sizeof(*ev) * avail);
  790. kunmap(page);
  791. if (unlikely(copy_ret)) {
  792. ret = -EFAULT;
  793. goto out;
  794. }
  795. ret += avail;
  796. head += avail;
  797. head %= ctx->nr_events;
  798. }
  799. ring = kmap_atomic(ctx->ring_pages[0]);
  800. ring->head = head;
  801. kunmap_atomic(ring);
  802. flush_dcache_page(ctx->ring_pages[0]);
  803. pr_debug("%li h%u t%u\n", ret, head, tail);
  804. put_reqs_available(ctx, ret);
  805. out:
  806. mutex_unlock(&ctx->ring_lock);
  807. return ret;
  808. }
  809. static bool aio_read_events(struct kioctx *ctx, long min_nr, long nr,
  810. struct io_event __user *event, long *i)
  811. {
  812. long ret = aio_read_events_ring(ctx, event + *i, nr - *i);
  813. if (ret > 0)
  814. *i += ret;
  815. if (unlikely(atomic_read(&ctx->dead)))
  816. ret = -EINVAL;
  817. if (!*i)
  818. *i = ret;
  819. return ret < 0 || *i >= min_nr;
  820. }
  821. static long read_events(struct kioctx *ctx, long min_nr, long nr,
  822. struct io_event __user *event,
  823. struct timespec __user *timeout)
  824. {
  825. ktime_t until = { .tv64 = KTIME_MAX };
  826. long ret = 0;
  827. if (timeout) {
  828. struct timespec ts;
  829. if (unlikely(copy_from_user(&ts, timeout, sizeof(ts))))
  830. return -EFAULT;
  831. until = timespec_to_ktime(ts);
  832. }
  833. /*
  834. * Note that aio_read_events() is being called as the conditional - i.e.
  835. * we're calling it after prepare_to_wait() has set task state to
  836. * TASK_INTERRUPTIBLE.
  837. *
  838. * But aio_read_events() can block, and if it blocks it's going to flip
  839. * the task state back to TASK_RUNNING.
  840. *
  841. * This should be ok, provided it doesn't flip the state back to
  842. * TASK_RUNNING and return 0 too much - that causes us to spin. That
  843. * will only happen if the mutex_lock() call blocks, and we then find
  844. * the ringbuffer empty. So in practice we should be ok, but it's
  845. * something to be aware of when touching this code.
  846. */
  847. wait_event_interruptible_hrtimeout(ctx->wait,
  848. aio_read_events(ctx, min_nr, nr, event, &ret), until);
  849. if (!ret && signal_pending(current))
  850. ret = -EINTR;
  851. return ret;
  852. }
  853. /* sys_io_setup:
  854. * Create an aio_context capable of receiving at least nr_events.
  855. * ctxp must not point to an aio_context that already exists, and
  856. * must be initialized to 0 prior to the call. On successful
  857. * creation of the aio_context, *ctxp is filled in with the resulting
  858. * handle. May fail with -EINVAL if *ctxp is not initialized,
  859. * if the specified nr_events exceeds internal limits. May fail
  860. * with -EAGAIN if the specified nr_events exceeds the user's limit
  861. * of available events. May fail with -ENOMEM if insufficient kernel
  862. * resources are available. May fail with -EFAULT if an invalid
  863. * pointer is passed for ctxp. Will fail with -ENOSYS if not
  864. * implemented.
  865. */
  866. SYSCALL_DEFINE2(io_setup, unsigned, nr_events, aio_context_t __user *, ctxp)
  867. {
  868. struct kioctx *ioctx = NULL;
  869. unsigned long ctx;
  870. long ret;
  871. ret = get_user(ctx, ctxp);
  872. if (unlikely(ret))
  873. goto out;
  874. ret = -EINVAL;
  875. if (unlikely(ctx || nr_events == 0)) {
  876. pr_debug("EINVAL: io_setup: ctx %lu nr_events %u\n",
  877. ctx, nr_events);
  878. goto out;
  879. }
  880. ioctx = ioctx_alloc(nr_events);
  881. ret = PTR_ERR(ioctx);
  882. if (!IS_ERR(ioctx)) {
  883. ret = put_user(ioctx->user_id, ctxp);
  884. if (ret)
  885. kill_ioctx(current->mm, ioctx);
  886. percpu_ref_put(&ioctx->users);
  887. }
  888. out:
  889. return ret;
  890. }
  891. /* sys_io_destroy:
  892. * Destroy the aio_context specified. May cancel any outstanding
  893. * AIOs and block on completion. Will fail with -ENOSYS if not
  894. * implemented. May fail with -EINVAL if the context pointed to
  895. * is invalid.
  896. */
  897. SYSCALL_DEFINE1(io_destroy, aio_context_t, ctx)
  898. {
  899. struct kioctx *ioctx = lookup_ioctx(ctx);
  900. if (likely(NULL != ioctx)) {
  901. kill_ioctx(current->mm, ioctx);
  902. percpu_ref_put(&ioctx->users);
  903. return 0;
  904. }
  905. pr_debug("EINVAL: io_destroy: invalid context id\n");
  906. return -EINVAL;
  907. }
  908. typedef ssize_t (aio_rw_op)(struct kiocb *, const struct iovec *,
  909. unsigned long, loff_t);
  910. static ssize_t aio_setup_vectored_rw(struct kiocb *kiocb,
  911. int rw, char __user *buf,
  912. unsigned long *nr_segs,
  913. struct iovec **iovec,
  914. bool compat)
  915. {
  916. ssize_t ret;
  917. *nr_segs = kiocb->ki_nbytes;
  918. #ifdef CONFIG_COMPAT
  919. if (compat)
  920. ret = compat_rw_copy_check_uvector(rw,
  921. (struct compat_iovec __user *)buf,
  922. *nr_segs, 1, *iovec, iovec);
  923. else
  924. #endif
  925. ret = rw_copy_check_uvector(rw,
  926. (struct iovec __user *)buf,
  927. *nr_segs, 1, *iovec, iovec);
  928. if (ret < 0)
  929. return ret;
  930. /* ki_nbytes now reflect bytes instead of segs */
  931. kiocb->ki_nbytes = ret;
  932. return 0;
  933. }
  934. static ssize_t aio_setup_single_vector(struct kiocb *kiocb,
  935. int rw, char __user *buf,
  936. unsigned long *nr_segs,
  937. struct iovec *iovec)
  938. {
  939. if (unlikely(!access_ok(!rw, buf, kiocb->ki_nbytes)))
  940. return -EFAULT;
  941. iovec->iov_base = buf;
  942. iovec->iov_len = kiocb->ki_nbytes;
  943. *nr_segs = 1;
  944. return 0;
  945. }
  946. /*
  947. * aio_setup_iocb:
  948. * Performs the initial checks and aio retry method
  949. * setup for the kiocb at the time of io submission.
  950. */
  951. static ssize_t aio_run_iocb(struct kiocb *req, unsigned opcode,
  952. char __user *buf, bool compat)
  953. {
  954. struct file *file = req->ki_filp;
  955. ssize_t ret;
  956. unsigned long nr_segs;
  957. int rw;
  958. fmode_t mode;
  959. aio_rw_op *rw_op;
  960. struct iovec inline_vec, *iovec = &inline_vec;
  961. switch (opcode) {
  962. case IOCB_CMD_PREAD:
  963. case IOCB_CMD_PREADV:
  964. mode = FMODE_READ;
  965. rw = READ;
  966. rw_op = file->f_op->aio_read;
  967. goto rw_common;
  968. case IOCB_CMD_PWRITE:
  969. case IOCB_CMD_PWRITEV:
  970. mode = FMODE_WRITE;
  971. rw = WRITE;
  972. rw_op = file->f_op->aio_write;
  973. goto rw_common;
  974. rw_common:
  975. if (unlikely(!(file->f_mode & mode)))
  976. return -EBADF;
  977. if (!rw_op)
  978. return -EINVAL;
  979. ret = (opcode == IOCB_CMD_PREADV ||
  980. opcode == IOCB_CMD_PWRITEV)
  981. ? aio_setup_vectored_rw(req, rw, buf, &nr_segs,
  982. &iovec, compat)
  983. : aio_setup_single_vector(req, rw, buf, &nr_segs,
  984. iovec);
  985. if (ret)
  986. return ret;
  987. ret = rw_verify_area(rw, file, &req->ki_pos, req->ki_nbytes);
  988. if (ret < 0) {
  989. if (iovec != &inline_vec)
  990. kfree(iovec);
  991. return ret;
  992. }
  993. req->ki_nbytes = ret;
  994. /* XXX: move/kill - rw_verify_area()? */
  995. /* This matches the pread()/pwrite() logic */
  996. if (req->ki_pos < 0) {
  997. ret = -EINVAL;
  998. break;
  999. }
  1000. if (rw == WRITE)
  1001. file_start_write(file);
  1002. ret = rw_op(req, iovec, nr_segs, req->ki_pos);
  1003. if (rw == WRITE)
  1004. file_end_write(file);
  1005. break;
  1006. case IOCB_CMD_FDSYNC:
  1007. if (!file->f_op->aio_fsync)
  1008. return -EINVAL;
  1009. ret = file->f_op->aio_fsync(req, 1);
  1010. break;
  1011. case IOCB_CMD_FSYNC:
  1012. if (!file->f_op->aio_fsync)
  1013. return -EINVAL;
  1014. ret = file->f_op->aio_fsync(req, 0);
  1015. break;
  1016. default:
  1017. pr_debug("EINVAL: no operation provided\n");
  1018. return -EINVAL;
  1019. }
  1020. if (iovec != &inline_vec)
  1021. kfree(iovec);
  1022. if (ret != -EIOCBQUEUED) {
  1023. /*
  1024. * There's no easy way to restart the syscall since other AIO's
  1025. * may be already running. Just fail this IO with EINTR.
  1026. */
  1027. if (unlikely(ret == -ERESTARTSYS || ret == -ERESTARTNOINTR ||
  1028. ret == -ERESTARTNOHAND ||
  1029. ret == -ERESTART_RESTARTBLOCK))
  1030. ret = -EINTR;
  1031. aio_complete(req, ret, 0);
  1032. }
  1033. return 0;
  1034. }
  1035. static int io_submit_one(struct kioctx *ctx, struct iocb __user *user_iocb,
  1036. struct iocb *iocb, bool compat)
  1037. {
  1038. struct kiocb *req;
  1039. ssize_t ret;
  1040. /* enforce forwards compatibility on users */
  1041. if (unlikely(iocb->aio_reserved1 || iocb->aio_reserved2)) {
  1042. pr_debug("EINVAL: reserve field set\n");
  1043. return -EINVAL;
  1044. }
  1045. /* prevent overflows */
  1046. if (unlikely(
  1047. (iocb->aio_buf != (unsigned long)iocb->aio_buf) ||
  1048. (iocb->aio_nbytes != (size_t)iocb->aio_nbytes) ||
  1049. ((ssize_t)iocb->aio_nbytes < 0)
  1050. )) {
  1051. pr_debug("EINVAL: io_submit: overflow check\n");
  1052. return -EINVAL;
  1053. }
  1054. req = aio_get_req(ctx);
  1055. if (unlikely(!req))
  1056. return -EAGAIN;
  1057. req->ki_filp = fget(iocb->aio_fildes);
  1058. if (unlikely(!req->ki_filp)) {
  1059. ret = -EBADF;
  1060. goto out_put_req;
  1061. }
  1062. if (iocb->aio_flags & IOCB_FLAG_RESFD) {
  1063. /*
  1064. * If the IOCB_FLAG_RESFD flag of aio_flags is set, get an
  1065. * instance of the file* now. The file descriptor must be
  1066. * an eventfd() fd, and will be signaled for each completed
  1067. * event using the eventfd_signal() function.
  1068. */
  1069. req->ki_eventfd = eventfd_ctx_fdget((int) iocb->aio_resfd);
  1070. if (IS_ERR(req->ki_eventfd)) {
  1071. ret = PTR_ERR(req->ki_eventfd);
  1072. req->ki_eventfd = NULL;
  1073. goto out_put_req;
  1074. }
  1075. }
  1076. ret = put_user(KIOCB_KEY, &user_iocb->aio_key);
  1077. if (unlikely(ret)) {
  1078. pr_debug("EFAULT: aio_key\n");
  1079. goto out_put_req;
  1080. }
  1081. req->ki_obj.user = user_iocb;
  1082. req->ki_user_data = iocb->aio_data;
  1083. req->ki_pos = iocb->aio_offset;
  1084. req->ki_nbytes = iocb->aio_nbytes;
  1085. ret = aio_run_iocb(req, iocb->aio_lio_opcode,
  1086. (char __user *)(unsigned long)iocb->aio_buf,
  1087. compat);
  1088. if (ret)
  1089. goto out_put_req;
  1090. return 0;
  1091. out_put_req:
  1092. put_reqs_available(ctx, 1);
  1093. kiocb_free(req);
  1094. return ret;
  1095. }
  1096. long do_io_submit(aio_context_t ctx_id, long nr,
  1097. struct iocb __user *__user *iocbpp, bool compat)
  1098. {
  1099. struct kioctx *ctx;
  1100. long ret = 0;
  1101. int i = 0;
  1102. struct blk_plug plug;
  1103. if (unlikely(nr < 0))
  1104. return -EINVAL;
  1105. if (unlikely(nr > LONG_MAX/sizeof(*iocbpp)))
  1106. nr = LONG_MAX/sizeof(*iocbpp);
  1107. if (unlikely(!access_ok(VERIFY_READ, iocbpp, (nr*sizeof(*iocbpp)))))
  1108. return -EFAULT;
  1109. ctx = lookup_ioctx(ctx_id);
  1110. if (unlikely(!ctx)) {
  1111. pr_debug("EINVAL: invalid context id\n");
  1112. return -EINVAL;
  1113. }
  1114. blk_start_plug(&plug);
  1115. /*
  1116. * AKPM: should this return a partial result if some of the IOs were
  1117. * successfully submitted?
  1118. */
  1119. for (i=0; i<nr; i++) {
  1120. struct iocb __user *user_iocb;
  1121. struct iocb tmp;
  1122. if (unlikely(__get_user(user_iocb, iocbpp + i))) {
  1123. ret = -EFAULT;
  1124. break;
  1125. }
  1126. if (unlikely(copy_from_user(&tmp, user_iocb, sizeof(tmp)))) {
  1127. ret = -EFAULT;
  1128. break;
  1129. }
  1130. ret = io_submit_one(ctx, user_iocb, &tmp, compat);
  1131. if (ret)
  1132. break;
  1133. }
  1134. blk_finish_plug(&plug);
  1135. percpu_ref_put(&ctx->users);
  1136. return i ? i : ret;
  1137. }
  1138. /* sys_io_submit:
  1139. * Queue the nr iocbs pointed to by iocbpp for processing. Returns
  1140. * the number of iocbs queued. May return -EINVAL if the aio_context
  1141. * specified by ctx_id is invalid, if nr is < 0, if the iocb at
  1142. * *iocbpp[0] is not properly initialized, if the operation specified
  1143. * is invalid for the file descriptor in the iocb. May fail with
  1144. * -EFAULT if any of the data structures point to invalid data. May
  1145. * fail with -EBADF if the file descriptor specified in the first
  1146. * iocb is invalid. May fail with -EAGAIN if insufficient resources
  1147. * are available to queue any iocbs. Will return 0 if nr is 0. Will
  1148. * fail with -ENOSYS if not implemented.
  1149. */
  1150. SYSCALL_DEFINE3(io_submit, aio_context_t, ctx_id, long, nr,
  1151. struct iocb __user * __user *, iocbpp)
  1152. {
  1153. return do_io_submit(ctx_id, nr, iocbpp, 0);
  1154. }
  1155. /* lookup_kiocb
  1156. * Finds a given iocb for cancellation.
  1157. */
  1158. static struct kiocb *lookup_kiocb(struct kioctx *ctx, struct iocb __user *iocb,
  1159. u32 key)
  1160. {
  1161. struct list_head *pos;
  1162. assert_spin_locked(&ctx->ctx_lock);
  1163. if (key != KIOCB_KEY)
  1164. return NULL;
  1165. /* TODO: use a hash or array, this sucks. */
  1166. list_for_each(pos, &ctx->active_reqs) {
  1167. struct kiocb *kiocb = list_kiocb(pos);
  1168. if (kiocb->ki_obj.user == iocb)
  1169. return kiocb;
  1170. }
  1171. return NULL;
  1172. }
  1173. /* sys_io_cancel:
  1174. * Attempts to cancel an iocb previously passed to io_submit. If
  1175. * the operation is successfully cancelled, the resulting event is
  1176. * copied into the memory pointed to by result without being placed
  1177. * into the completion queue and 0 is returned. May fail with
  1178. * -EFAULT if any of the data structures pointed to are invalid.
  1179. * May fail with -EINVAL if aio_context specified by ctx_id is
  1180. * invalid. May fail with -EAGAIN if the iocb specified was not
  1181. * cancelled. Will fail with -ENOSYS if not implemented.
  1182. */
  1183. SYSCALL_DEFINE3(io_cancel, aio_context_t, ctx_id, struct iocb __user *, iocb,
  1184. struct io_event __user *, result)
  1185. {
  1186. struct kioctx *ctx;
  1187. struct kiocb *kiocb;
  1188. u32 key;
  1189. int ret;
  1190. ret = get_user(key, &iocb->aio_key);
  1191. if (unlikely(ret))
  1192. return -EFAULT;
  1193. ctx = lookup_ioctx(ctx_id);
  1194. if (unlikely(!ctx))
  1195. return -EINVAL;
  1196. spin_lock_irq(&ctx->ctx_lock);
  1197. kiocb = lookup_kiocb(ctx, iocb, key);
  1198. if (kiocb)
  1199. ret = kiocb_cancel(ctx, kiocb);
  1200. else
  1201. ret = -EINVAL;
  1202. spin_unlock_irq(&ctx->ctx_lock);
  1203. if (!ret) {
  1204. /*
  1205. * The result argument is no longer used - the io_event is
  1206. * always delivered via the ring buffer. -EINPROGRESS indicates
  1207. * cancellation is progress:
  1208. */
  1209. ret = -EINPROGRESS;
  1210. }
  1211. percpu_ref_put(&ctx->users);
  1212. return ret;
  1213. }
  1214. /* io_getevents:
  1215. * Attempts to read at least min_nr events and up to nr events from
  1216. * the completion queue for the aio_context specified by ctx_id. If
  1217. * it succeeds, the number of read events is returned. May fail with
  1218. * -EINVAL if ctx_id is invalid, if min_nr is out of range, if nr is
  1219. * out of range, if timeout is out of range. May fail with -EFAULT
  1220. * if any of the memory specified is invalid. May return 0 or
  1221. * < min_nr if the timeout specified by timeout has elapsed
  1222. * before sufficient events are available, where timeout == NULL
  1223. * specifies an infinite timeout. Note that the timeout pointed to by
  1224. * timeout is relative. Will fail with -ENOSYS if not implemented.
  1225. */
  1226. SYSCALL_DEFINE5(io_getevents, aio_context_t, ctx_id,
  1227. long, min_nr,
  1228. long, nr,
  1229. struct io_event __user *, events,
  1230. struct timespec __user *, timeout)
  1231. {
  1232. struct kioctx *ioctx = lookup_ioctx(ctx_id);
  1233. long ret = -EINVAL;
  1234. if (likely(ioctx)) {
  1235. if (likely(min_nr <= nr && min_nr >= 0))
  1236. ret = read_events(ioctx, min_nr, nr, events, timeout);
  1237. percpu_ref_put(&ioctx->users);
  1238. }
  1239. return ret;
  1240. }