gpmc-onenand.c 11 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429
  1. /*
  2. * linux/arch/arm/mach-omap2/gpmc-onenand.c
  3. *
  4. * Copyright (C) 2006 - 2009 Nokia Corporation
  5. * Contacts: Juha Yrjola
  6. * Tony Lindgren
  7. *
  8. * This program is free software; you can redistribute it and/or modify
  9. * it under the terms of the GNU General Public License version 2 as
  10. * published by the Free Software Foundation.
  11. */
  12. #include <linux/string.h>
  13. #include <linux/kernel.h>
  14. #include <linux/platform_device.h>
  15. #include <linux/mtd/onenand_regs.h>
  16. #include <linux/io.h>
  17. #include <asm/mach/flash.h>
  18. #include <plat/cpu.h>
  19. #include <plat/onenand.h>
  20. #include <plat/board.h>
  21. #include <plat/gpmc.h>
  22. #define ONENAND_IO_SIZE SZ_128K
  23. static struct omap_onenand_platform_data *gpmc_onenand_data;
  24. static struct resource gpmc_onenand_resource = {
  25. .flags = IORESOURCE_MEM,
  26. };
  27. static struct platform_device gpmc_onenand_device = {
  28. .name = "omap2-onenand",
  29. .id = -1,
  30. .num_resources = 1,
  31. .resource = &gpmc_onenand_resource,
  32. };
  33. static int omap2_onenand_set_async_mode(int cs, void __iomem *onenand_base)
  34. {
  35. struct gpmc_timings t;
  36. u32 reg;
  37. int err;
  38. const int t_cer = 15;
  39. const int t_avdp = 12;
  40. const int t_aavdh = 7;
  41. const int t_ce = 76;
  42. const int t_aa = 76;
  43. const int t_oe = 20;
  44. const int t_cez = 20; /* max of t_cez, t_oez */
  45. const int t_ds = 30;
  46. const int t_wpl = 40;
  47. const int t_wph = 30;
  48. /* Ensure sync read and sync write are disabled */
  49. reg = readw(onenand_base + ONENAND_REG_SYS_CFG1);
  50. reg &= ~ONENAND_SYS_CFG1_SYNC_READ & ~ONENAND_SYS_CFG1_SYNC_WRITE;
  51. writew(reg, onenand_base + ONENAND_REG_SYS_CFG1);
  52. memset(&t, 0, sizeof(t));
  53. t.sync_clk = 0;
  54. t.cs_on = 0;
  55. t.adv_on = 0;
  56. /* Read */
  57. t.adv_rd_off = gpmc_round_ns_to_ticks(max_t(int, t_avdp, t_cer));
  58. t.oe_on = t.adv_rd_off + gpmc_round_ns_to_ticks(t_aavdh);
  59. t.access = t.adv_on + gpmc_round_ns_to_ticks(t_aa);
  60. t.access = max_t(int, t.access, t.cs_on + gpmc_round_ns_to_ticks(t_ce));
  61. t.access = max_t(int, t.access, t.oe_on + gpmc_round_ns_to_ticks(t_oe));
  62. t.oe_off = t.access + gpmc_round_ns_to_ticks(1);
  63. t.cs_rd_off = t.oe_off;
  64. t.rd_cycle = t.cs_rd_off + gpmc_round_ns_to_ticks(t_cez);
  65. /* Write */
  66. t.adv_wr_off = t.adv_rd_off;
  67. t.we_on = t.oe_on;
  68. if (cpu_is_omap34xx()) {
  69. t.wr_data_mux_bus = t.we_on;
  70. t.wr_access = t.we_on + gpmc_round_ns_to_ticks(t_ds);
  71. }
  72. t.we_off = t.we_on + gpmc_round_ns_to_ticks(t_wpl);
  73. t.cs_wr_off = t.we_off + gpmc_round_ns_to_ticks(t_wph);
  74. t.wr_cycle = t.cs_wr_off + gpmc_round_ns_to_ticks(t_cez);
  75. /* Configure GPMC for asynchronous read */
  76. gpmc_cs_write_reg(cs, GPMC_CS_CONFIG1,
  77. GPMC_CONFIG1_DEVICESIZE_16 |
  78. GPMC_CONFIG1_MUXADDDATA);
  79. err = gpmc_cs_set_timings(cs, &t);
  80. if (err)
  81. return err;
  82. /* Ensure sync read and sync write are disabled */
  83. reg = readw(onenand_base + ONENAND_REG_SYS_CFG1);
  84. reg &= ~ONENAND_SYS_CFG1_SYNC_READ & ~ONENAND_SYS_CFG1_SYNC_WRITE;
  85. writew(reg, onenand_base + ONENAND_REG_SYS_CFG1);
  86. return 0;
  87. }
  88. static void set_onenand_cfg(void __iomem *onenand_base, int latency,
  89. int sync_read, int sync_write, int hf, int vhf)
  90. {
  91. u32 reg;
  92. reg = readw(onenand_base + ONENAND_REG_SYS_CFG1);
  93. reg &= ~((0x7 << ONENAND_SYS_CFG1_BRL_SHIFT) | (0x7 << 9));
  94. reg |= (latency << ONENAND_SYS_CFG1_BRL_SHIFT) |
  95. ONENAND_SYS_CFG1_BL_16;
  96. if (sync_read)
  97. reg |= ONENAND_SYS_CFG1_SYNC_READ;
  98. else
  99. reg &= ~ONENAND_SYS_CFG1_SYNC_READ;
  100. if (sync_write)
  101. reg |= ONENAND_SYS_CFG1_SYNC_WRITE;
  102. else
  103. reg &= ~ONENAND_SYS_CFG1_SYNC_WRITE;
  104. if (hf)
  105. reg |= ONENAND_SYS_CFG1_HF;
  106. else
  107. reg &= ~ONENAND_SYS_CFG1_HF;
  108. if (vhf)
  109. reg |= ONENAND_SYS_CFG1_VHF;
  110. else
  111. reg &= ~ONENAND_SYS_CFG1_VHF;
  112. writew(reg, onenand_base + ONENAND_REG_SYS_CFG1);
  113. }
  114. static int omap2_onenand_get_freq(struct omap_onenand_platform_data *cfg,
  115. void __iomem *onenand_base, bool *clk_dep)
  116. {
  117. u16 ver = readw(onenand_base + ONENAND_REG_VERSION_ID);
  118. int freq = 0;
  119. if (cfg->get_freq) {
  120. struct onenand_freq_info fi;
  121. fi.maf_id = readw(onenand_base + ONENAND_REG_MANUFACTURER_ID);
  122. fi.dev_id = readw(onenand_base + ONENAND_REG_DEVICE_ID);
  123. fi.ver_id = ver;
  124. freq = cfg->get_freq(&fi, clk_dep);
  125. if (freq)
  126. return freq;
  127. }
  128. switch ((ver >> 4) & 0xf) {
  129. case 0:
  130. freq = 40;
  131. break;
  132. case 1:
  133. freq = 54;
  134. break;
  135. case 2:
  136. freq = 66;
  137. break;
  138. case 3:
  139. freq = 83;
  140. break;
  141. case 4:
  142. freq = 104;
  143. break;
  144. default:
  145. freq = 54;
  146. break;
  147. }
  148. return freq;
  149. }
  150. static int omap2_onenand_set_sync_mode(struct omap_onenand_platform_data *cfg,
  151. void __iomem *onenand_base,
  152. int *freq_ptr)
  153. {
  154. struct gpmc_timings t;
  155. const int t_cer = 15;
  156. const int t_avdp = 12;
  157. const int t_cez = 20; /* max of t_cez, t_oez */
  158. const int t_ds = 30;
  159. const int t_wpl = 40;
  160. const int t_wph = 30;
  161. int min_gpmc_clk_period, t_ces, t_avds, t_avdh, t_ach, t_aavdh, t_rdyo;
  162. int div, fclk_offset_ns, fclk_offset, gpmc_clk_ns, latency;
  163. int first_time = 0, hf = 0, vhf = 0, sync_read = 0, sync_write = 0;
  164. int err, ticks_cez;
  165. int cs = cfg->cs, freq = *freq_ptr;
  166. u32 reg;
  167. bool clk_dep = false;
  168. if (cfg->flags & ONENAND_SYNC_READ) {
  169. sync_read = 1;
  170. } else if (cfg->flags & ONENAND_SYNC_READWRITE) {
  171. sync_read = 1;
  172. sync_write = 1;
  173. } else
  174. return omap2_onenand_set_async_mode(cs, onenand_base);
  175. if (!freq) {
  176. /* Very first call freq is not known */
  177. err = omap2_onenand_set_async_mode(cs, onenand_base);
  178. if (err)
  179. return err;
  180. freq = omap2_onenand_get_freq(cfg, onenand_base, &clk_dep);
  181. first_time = 1;
  182. }
  183. switch (freq) {
  184. case 104:
  185. min_gpmc_clk_period = 9600; /* 104 MHz */
  186. t_ces = 3;
  187. t_avds = 4;
  188. t_avdh = 2;
  189. t_ach = 3;
  190. t_aavdh = 6;
  191. t_rdyo = 6;
  192. break;
  193. case 83:
  194. min_gpmc_clk_period = 12000; /* 83 MHz */
  195. t_ces = 5;
  196. t_avds = 4;
  197. t_avdh = 2;
  198. t_ach = 6;
  199. t_aavdh = 6;
  200. t_rdyo = 9;
  201. break;
  202. case 66:
  203. min_gpmc_clk_period = 15000; /* 66 MHz */
  204. t_ces = 6;
  205. t_avds = 5;
  206. t_avdh = 2;
  207. t_ach = 6;
  208. t_aavdh = 6;
  209. t_rdyo = 11;
  210. break;
  211. default:
  212. min_gpmc_clk_period = 18500; /* 54 MHz */
  213. t_ces = 7;
  214. t_avds = 7;
  215. t_avdh = 7;
  216. t_ach = 9;
  217. t_aavdh = 7;
  218. t_rdyo = 15;
  219. sync_write = 0;
  220. break;
  221. }
  222. div = gpmc_cs_calc_divider(cs, min_gpmc_clk_period);
  223. gpmc_clk_ns = gpmc_ticks_to_ns(div);
  224. if (gpmc_clk_ns < 15) /* >66Mhz */
  225. hf = 1;
  226. if (gpmc_clk_ns < 12) /* >83Mhz */
  227. vhf = 1;
  228. if (vhf)
  229. latency = 8;
  230. else if (hf)
  231. latency = 6;
  232. else if (gpmc_clk_ns >= 25) /* 40 MHz*/
  233. latency = 3;
  234. else
  235. latency = 4;
  236. if (clk_dep) {
  237. if (gpmc_clk_ns < 12) { /* >83Mhz */
  238. t_ces = 3;
  239. t_avds = 4;
  240. } else if (gpmc_clk_ns < 15) { /* >66Mhz */
  241. t_ces = 5;
  242. t_avds = 4;
  243. } else if (gpmc_clk_ns < 25) { /* >40Mhz */
  244. t_ces = 6;
  245. t_avds = 5;
  246. } else {
  247. t_ces = 7;
  248. t_avds = 7;
  249. }
  250. }
  251. if (first_time)
  252. set_onenand_cfg(onenand_base, latency,
  253. sync_read, sync_write, hf, vhf);
  254. if (div == 1) {
  255. reg = gpmc_cs_read_reg(cs, GPMC_CS_CONFIG2);
  256. reg |= (1 << 7);
  257. gpmc_cs_write_reg(cs, GPMC_CS_CONFIG2, reg);
  258. reg = gpmc_cs_read_reg(cs, GPMC_CS_CONFIG3);
  259. reg |= (1 << 7);
  260. gpmc_cs_write_reg(cs, GPMC_CS_CONFIG3, reg);
  261. reg = gpmc_cs_read_reg(cs, GPMC_CS_CONFIG4);
  262. reg |= (1 << 7);
  263. reg |= (1 << 23);
  264. gpmc_cs_write_reg(cs, GPMC_CS_CONFIG4, reg);
  265. } else {
  266. reg = gpmc_cs_read_reg(cs, GPMC_CS_CONFIG2);
  267. reg &= ~(1 << 7);
  268. gpmc_cs_write_reg(cs, GPMC_CS_CONFIG2, reg);
  269. reg = gpmc_cs_read_reg(cs, GPMC_CS_CONFIG3);
  270. reg &= ~(1 << 7);
  271. gpmc_cs_write_reg(cs, GPMC_CS_CONFIG3, reg);
  272. reg = gpmc_cs_read_reg(cs, GPMC_CS_CONFIG4);
  273. reg &= ~(1 << 7);
  274. reg &= ~(1 << 23);
  275. gpmc_cs_write_reg(cs, GPMC_CS_CONFIG4, reg);
  276. }
  277. /* Set synchronous read timings */
  278. memset(&t, 0, sizeof(t));
  279. t.sync_clk = min_gpmc_clk_period;
  280. t.cs_on = 0;
  281. t.adv_on = 0;
  282. fclk_offset_ns = gpmc_round_ns_to_ticks(max_t(int, t_ces, t_avds));
  283. fclk_offset = gpmc_ns_to_ticks(fclk_offset_ns);
  284. t.page_burst_access = gpmc_clk_ns;
  285. /* Read */
  286. t.adv_rd_off = gpmc_ticks_to_ns(fclk_offset + gpmc_ns_to_ticks(t_avdh));
  287. t.oe_on = gpmc_ticks_to_ns(fclk_offset + gpmc_ns_to_ticks(t_ach));
  288. /* Force at least 1 clk between AVD High to OE Low */
  289. if (t.oe_on <= t.adv_rd_off)
  290. t.oe_on = t.adv_rd_off + gpmc_round_ns_to_ticks(1);
  291. t.access = gpmc_ticks_to_ns(fclk_offset + (latency + 1) * div);
  292. t.oe_off = t.access + gpmc_round_ns_to_ticks(1);
  293. t.cs_rd_off = t.oe_off;
  294. ticks_cez = ((gpmc_ns_to_ticks(t_cez) + div - 1) / div) * div;
  295. t.rd_cycle = gpmc_ticks_to_ns(fclk_offset + (latency + 1) * div +
  296. ticks_cez);
  297. /* Write */
  298. if (sync_write) {
  299. t.adv_wr_off = t.adv_rd_off;
  300. t.we_on = 0;
  301. t.we_off = t.cs_rd_off;
  302. t.cs_wr_off = t.cs_rd_off;
  303. t.wr_cycle = t.rd_cycle;
  304. if (cpu_is_omap34xx()) {
  305. t.wr_data_mux_bus = gpmc_ticks_to_ns(fclk_offset +
  306. gpmc_ps_to_ticks(min_gpmc_clk_period +
  307. t_rdyo * 1000));
  308. t.wr_access = t.access;
  309. }
  310. } else {
  311. t.adv_wr_off = gpmc_round_ns_to_ticks(max_t(int,
  312. t_avdp, t_cer));
  313. t.we_on = t.adv_wr_off + gpmc_round_ns_to_ticks(t_aavdh);
  314. t.we_off = t.we_on + gpmc_round_ns_to_ticks(t_wpl);
  315. t.cs_wr_off = t.we_off + gpmc_round_ns_to_ticks(t_wph);
  316. t.wr_cycle = t.cs_wr_off + gpmc_round_ns_to_ticks(t_cez);
  317. if (cpu_is_omap34xx()) {
  318. t.wr_data_mux_bus = t.we_on;
  319. t.wr_access = t.we_on + gpmc_round_ns_to_ticks(t_ds);
  320. }
  321. }
  322. /* Configure GPMC for synchronous read */
  323. gpmc_cs_write_reg(cs, GPMC_CS_CONFIG1,
  324. GPMC_CONFIG1_WRAPBURST_SUPP |
  325. GPMC_CONFIG1_READMULTIPLE_SUPP |
  326. (sync_read ? GPMC_CONFIG1_READTYPE_SYNC : 0) |
  327. (sync_write ? GPMC_CONFIG1_WRITEMULTIPLE_SUPP : 0) |
  328. (sync_write ? GPMC_CONFIG1_WRITETYPE_SYNC : 0) |
  329. GPMC_CONFIG1_CLKACTIVATIONTIME(fclk_offset) |
  330. GPMC_CONFIG1_PAGE_LEN(2) |
  331. (cpu_is_omap34xx() ? 0 :
  332. (GPMC_CONFIG1_WAIT_READ_MON |
  333. GPMC_CONFIG1_WAIT_PIN_SEL(0))) |
  334. GPMC_CONFIG1_DEVICESIZE_16 |
  335. GPMC_CONFIG1_DEVICETYPE_NOR |
  336. GPMC_CONFIG1_MUXADDDATA);
  337. err = gpmc_cs_set_timings(cs, &t);
  338. if (err)
  339. return err;
  340. set_onenand_cfg(onenand_base, latency, sync_read, sync_write, hf, vhf);
  341. *freq_ptr = freq;
  342. return 0;
  343. }
  344. static int gpmc_onenand_setup(void __iomem *onenand_base, int *freq_ptr)
  345. {
  346. struct device *dev = &gpmc_onenand_device.dev;
  347. /* Set sync timings in GPMC */
  348. if (omap2_onenand_set_sync_mode(gpmc_onenand_data, onenand_base,
  349. freq_ptr) < 0) {
  350. dev_err(dev, "Unable to set synchronous mode\n");
  351. return -EINVAL;
  352. }
  353. return 0;
  354. }
  355. void __init gpmc_onenand_init(struct omap_onenand_platform_data *_onenand_data)
  356. {
  357. int err;
  358. gpmc_onenand_data = _onenand_data;
  359. gpmc_onenand_data->onenand_setup = gpmc_onenand_setup;
  360. gpmc_onenand_device.dev.platform_data = gpmc_onenand_data;
  361. if (cpu_is_omap24xx() &&
  362. (gpmc_onenand_data->flags & ONENAND_SYNC_READWRITE)) {
  363. printk(KERN_ERR "Onenand using only SYNC_READ on 24xx\n");
  364. gpmc_onenand_data->flags &= ~ONENAND_SYNC_READWRITE;
  365. gpmc_onenand_data->flags |= ONENAND_SYNC_READ;
  366. }
  367. err = gpmc_cs_request(gpmc_onenand_data->cs, ONENAND_IO_SIZE,
  368. (unsigned long *)&gpmc_onenand_resource.start);
  369. if (err < 0) {
  370. pr_err("%s: Cannot request GPMC CS\n", __func__);
  371. return;
  372. }
  373. gpmc_onenand_resource.end = gpmc_onenand_resource.start +
  374. ONENAND_IO_SIZE - 1;
  375. if (platform_device_register(&gpmc_onenand_device) < 0) {
  376. pr_err("%s: Unable to register OneNAND device\n", __func__);
  377. gpmc_cs_free(gpmc_onenand_data->cs);
  378. return;
  379. }
  380. }