sched.c 213 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452545354545455545654575458545954605461546254635464546554665467546854695470547154725473547454755476547754785479548054815482548354845485548654875488548954905491549254935494549554965497549854995500550155025503550455055506550755085509551055115512551355145515551655175518551955205521552255235524552555265527552855295530553155325533553455355536553755385539554055415542554355445545554655475548554955505551555255535554555555565557555855595560556155625563556455655566556755685569557055715572557355745575557655775578557955805581558255835584558555865587558855895590559155925593559455955596559755985599560056015602560356045605560656075608560956105611561256135614561556165617561856195620562156225623562456255626562756285629563056315632563356345635563656375638563956405641564256435644564556465647564856495650565156525653565456555656565756585659566056615662566356645665566656675668566956705671567256735674567556765677567856795680568156825683568456855686568756885689569056915692569356945695569656975698569957005701570257035704570557065707570857095710571157125713571457155716571757185719572057215722572357245725572657275728572957305731573257335734573557365737573857395740574157425743574457455746574757485749575057515752575357545755575657575758575957605761576257635764576557665767576857695770577157725773577457755776577757785779578057815782578357845785578657875788578957905791579257935794579557965797579857995800580158025803580458055806580758085809581058115812581358145815581658175818581958205821582258235824582558265827582858295830583158325833583458355836583758385839584058415842584358445845584658475848584958505851585258535854585558565857585858595860586158625863586458655866586758685869587058715872587358745875587658775878587958805881588258835884588558865887588858895890589158925893589458955896589758985899590059015902590359045905590659075908590959105911591259135914591559165917591859195920592159225923592459255926592759285929593059315932593359345935593659375938593959405941594259435944594559465947594859495950595159525953595459555956595759585959596059615962596359645965596659675968596959705971597259735974597559765977597859795980598159825983598459855986598759885989599059915992599359945995599659975998599960006001600260036004600560066007600860096010601160126013601460156016601760186019602060216022602360246025602660276028602960306031603260336034603560366037603860396040604160426043604460456046604760486049605060516052605360546055605660576058605960606061606260636064606560666067606860696070607160726073607460756076607760786079608060816082608360846085608660876088608960906091609260936094609560966097609860996100610161026103610461056106610761086109611061116112611361146115611661176118611961206121612261236124612561266127612861296130613161326133613461356136613761386139614061416142614361446145614661476148614961506151615261536154615561566157615861596160616161626163616461656166616761686169617061716172617361746175617661776178617961806181618261836184618561866187618861896190619161926193619461956196619761986199620062016202620362046205620662076208620962106211621262136214621562166217621862196220622162226223622462256226622762286229623062316232623362346235623662376238623962406241624262436244624562466247624862496250625162526253625462556256625762586259626062616262626362646265626662676268626962706271627262736274627562766277627862796280628162826283628462856286628762886289629062916292629362946295629662976298629963006301630263036304630563066307630863096310631163126313631463156316631763186319632063216322632363246325632663276328632963306331633263336334633563366337633863396340634163426343634463456346634763486349635063516352635363546355635663576358635963606361636263636364636563666367636863696370637163726373637463756376637763786379638063816382638363846385638663876388638963906391639263936394639563966397639863996400640164026403640464056406640764086409641064116412641364146415641664176418641964206421642264236424642564266427642864296430643164326433643464356436643764386439644064416442644364446445644664476448644964506451645264536454645564566457645864596460646164626463646464656466646764686469647064716472647364746475647664776478647964806481648264836484648564866487648864896490649164926493649464956496649764986499650065016502650365046505650665076508650965106511651265136514651565166517651865196520652165226523652465256526652765286529653065316532653365346535653665376538653965406541654265436544654565466547654865496550655165526553655465556556655765586559656065616562656365646565656665676568656965706571657265736574657565766577657865796580658165826583658465856586658765886589659065916592659365946595659665976598659966006601660266036604660566066607660866096610661166126613661466156616661766186619662066216622662366246625662666276628662966306631663266336634663566366637663866396640664166426643664466456646664766486649665066516652665366546655665666576658665966606661666266636664666566666667666866696670667166726673667466756676667766786679668066816682668366846685668666876688668966906691669266936694669566966697669866996700670167026703670467056706670767086709671067116712671367146715671667176718671967206721672267236724672567266727672867296730673167326733673467356736673767386739674067416742674367446745674667476748674967506751675267536754675567566757675867596760676167626763676467656766676767686769677067716772677367746775677667776778677967806781678267836784678567866787678867896790679167926793679467956796679767986799680068016802680368046805680668076808680968106811681268136814681568166817681868196820682168226823682468256826682768286829683068316832683368346835683668376838683968406841684268436844684568466847684868496850685168526853685468556856685768586859686068616862686368646865686668676868686968706871687268736874687568766877687868796880688168826883688468856886688768886889689068916892689368946895689668976898689969006901690269036904690569066907690869096910691169126913691469156916691769186919692069216922692369246925692669276928692969306931693269336934693569366937693869396940694169426943694469456946694769486949695069516952695369546955695669576958695969606961696269636964696569666967696869696970697169726973697469756976697769786979698069816982698369846985698669876988698969906991699269936994699569966997699869997000700170027003700470057006700770087009701070117012701370147015701670177018701970207021702270237024702570267027702870297030703170327033703470357036703770387039704070417042704370447045704670477048704970507051705270537054705570567057705870597060706170627063706470657066706770687069707070717072707370747075707670777078707970807081708270837084708570867087708870897090709170927093709470957096709770987099710071017102710371047105710671077108710971107111711271137114711571167117711871197120712171227123712471257126712771287129713071317132713371347135713671377138713971407141714271437144714571467147714871497150715171527153715471557156715771587159716071617162716371647165716671677168716971707171717271737174717571767177717871797180718171827183718471857186718771887189719071917192719371947195719671977198719972007201720272037204720572067207720872097210721172127213721472157216721772187219722072217222722372247225722672277228722972307231723272337234723572367237723872397240724172427243724472457246724772487249725072517252725372547255725672577258725972607261726272637264726572667267726872697270727172727273727472757276727772787279728072817282728372847285728672877288728972907291729272937294729572967297729872997300730173027303730473057306730773087309731073117312731373147315731673177318731973207321732273237324732573267327732873297330733173327333733473357336733773387339734073417342734373447345734673477348734973507351735273537354735573567357735873597360736173627363736473657366736773687369737073717372737373747375737673777378737973807381738273837384738573867387738873897390739173927393739473957396739773987399740074017402740374047405740674077408740974107411741274137414741574167417741874197420742174227423742474257426742774287429743074317432743374347435743674377438743974407441744274437444744574467447744874497450745174527453745474557456745774587459746074617462746374647465746674677468746974707471747274737474747574767477747874797480748174827483748474857486748774887489749074917492749374947495749674977498749975007501750275037504750575067507750875097510751175127513751475157516751775187519752075217522752375247525752675277528752975307531753275337534753575367537753875397540754175427543754475457546754775487549755075517552755375547555755675577558755975607561756275637564756575667567756875697570757175727573757475757576757775787579758075817582758375847585758675877588758975907591759275937594759575967597759875997600760176027603760476057606760776087609761076117612761376147615761676177618761976207621762276237624762576267627762876297630763176327633763476357636763776387639764076417642764376447645764676477648764976507651765276537654765576567657765876597660766176627663766476657666766776687669767076717672767376747675767676777678767976807681768276837684768576867687768876897690769176927693769476957696769776987699770077017702770377047705770677077708770977107711771277137714771577167717771877197720772177227723772477257726772777287729773077317732773377347735773677377738773977407741774277437744774577467747774877497750775177527753775477557756775777587759776077617762776377647765776677677768776977707771777277737774777577767777777877797780778177827783778477857786778777887789779077917792779377947795779677977798779978007801780278037804780578067807780878097810781178127813781478157816781778187819782078217822782378247825782678277828782978307831783278337834783578367837783878397840784178427843784478457846784778487849785078517852785378547855785678577858785978607861786278637864786578667867786878697870787178727873787478757876787778787879788078817882788378847885788678877888788978907891789278937894789578967897789878997900790179027903790479057906790779087909791079117912791379147915791679177918791979207921792279237924792579267927792879297930793179327933793479357936793779387939794079417942794379447945794679477948794979507951795279537954795579567957795879597960796179627963796479657966796779687969797079717972797379747975797679777978797979807981798279837984798579867987798879897990799179927993799479957996799779987999800080018002800380048005800680078008800980108011801280138014801580168017801880198020802180228023802480258026802780288029803080318032803380348035803680378038803980408041804280438044804580468047804880498050805180528053805480558056805780588059806080618062806380648065806680678068806980708071807280738074807580768077807880798080808180828083808480858086808780888089809080918092809380948095809680978098809981008101810281038104810581068107810881098110811181128113811481158116811781188119812081218122812381248125812681278128812981308131813281338134813581368137813881398140814181428143814481458146814781488149815081518152815381548155815681578158815981608161816281638164816581668167816881698170817181728173817481758176817781788179818081818182818381848185818681878188818981908191819281938194819581968197819881998200820182028203820482058206820782088209821082118212821382148215821682178218821982208221822282238224822582268227822882298230823182328233823482358236823782388239824082418242824382448245824682478248824982508251825282538254825582568257825882598260826182628263826482658266826782688269827082718272827382748275827682778278827982808281828282838284828582868287828882898290829182928293829482958296829782988299830083018302830383048305830683078308830983108311831283138314831583168317831883198320832183228323832483258326832783288329833083318332833383348335833683378338833983408341834283438344834583468347834883498350835183528353835483558356835783588359836083618362836383648365836683678368836983708371837283738374837583768377837883798380838183828383838483858386838783888389839083918392839383948395839683978398839984008401840284038404840584068407840884098410841184128413841484158416841784188419842084218422842384248425842684278428842984308431843284338434843584368437843884398440844184428443844484458446844784488449845084518452845384548455845684578458845984608461846284638464846584668467846884698470847184728473847484758476847784788479848084818482848384848485848684878488848984908491849284938494849584968497849884998500850185028503850485058506850785088509851085118512851385148515851685178518851985208521852285238524852585268527852885298530853185328533853485358536853785388539854085418542854385448545854685478548854985508551855285538554855585568557855885598560856185628563856485658566856785688569857085718572857385748575857685778578857985808581858285838584858585868587858885898590859185928593859485958596859785988599860086018602860386048605860686078608860986108611861286138614861586168617861886198620862186228623862486258626862786288629863086318632863386348635863686378638863986408641864286438644864586468647864886498650865186528653865486558656865786588659866086618662866386648665866686678668866986708671867286738674867586768677867886798680868186828683868486858686868786888689869086918692869386948695869686978698869987008701870287038704870587068707870887098710871187128713871487158716871787188719872087218722872387248725872687278728872987308731873287338734873587368737873887398740874187428743874487458746874787488749875087518752875387548755875687578758875987608761876287638764876587668767876887698770877187728773877487758776877787788779878087818782878387848785878687878788878987908791879287938794879587968797879887998800880188028803880488058806880788088809881088118812881388148815881688178818881988208821882288238824882588268827882888298830883188328833883488358836883788388839884088418842884388448845884688478848884988508851885288538854885588568857885888598860886188628863886488658866886788688869887088718872887388748875887688778878887988808881888288838884888588868887888888898890889188928893889488958896889788988899890089018902890389048905890689078908890989108911891289138914891589168917891889198920892189228923892489258926892789288929893089318932893389348935893689378938893989408941894289438944894589468947894889498950895189528953895489558956895789588959896089618962896389648965896689678968
  1. /*
  2. * kernel/sched.c
  3. *
  4. * Kernel scheduler and related syscalls
  5. *
  6. * Copyright (C) 1991-2002 Linus Torvalds
  7. *
  8. * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
  9. * make semaphores SMP safe
  10. * 1998-11-19 Implemented schedule_timeout() and related stuff
  11. * by Andrea Arcangeli
  12. * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
  13. * hybrid priority-list and round-robin design with
  14. * an array-switch method of distributing timeslices
  15. * and per-CPU runqueues. Cleanups and useful suggestions
  16. * by Davide Libenzi, preemptible kernel bits by Robert Love.
  17. * 2003-09-03 Interactivity tuning by Con Kolivas.
  18. * 2004-04-02 Scheduler domains code by Nick Piggin
  19. * 2007-04-15 Work begun on replacing all interactivity tuning with a
  20. * fair scheduling design by Con Kolivas.
  21. * 2007-05-05 Load balancing (smp-nice) and other improvements
  22. * by Peter Williams
  23. * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
  24. * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
  25. * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
  26. * Thomas Gleixner, Mike Kravetz
  27. */
  28. #include <linux/mm.h>
  29. #include <linux/module.h>
  30. #include <linux/nmi.h>
  31. #include <linux/init.h>
  32. #include <linux/uaccess.h>
  33. #include <linux/highmem.h>
  34. #include <linux/smp_lock.h>
  35. #include <asm/mmu_context.h>
  36. #include <linux/interrupt.h>
  37. #include <linux/capability.h>
  38. #include <linux/completion.h>
  39. #include <linux/kernel_stat.h>
  40. #include <linux/debug_locks.h>
  41. #include <linux/perf_event.h>
  42. #include <linux/security.h>
  43. #include <linux/notifier.h>
  44. #include <linux/profile.h>
  45. #include <linux/freezer.h>
  46. #include <linux/vmalloc.h>
  47. #include <linux/blkdev.h>
  48. #include <linux/delay.h>
  49. #include <linux/pid_namespace.h>
  50. #include <linux/smp.h>
  51. #include <linux/threads.h>
  52. #include <linux/timer.h>
  53. #include <linux/rcupdate.h>
  54. #include <linux/cpu.h>
  55. #include <linux/cpuset.h>
  56. #include <linux/percpu.h>
  57. #include <linux/proc_fs.h>
  58. #include <linux/seq_file.h>
  59. #include <linux/stop_machine.h>
  60. #include <linux/sysctl.h>
  61. #include <linux/syscalls.h>
  62. #include <linux/times.h>
  63. #include <linux/tsacct_kern.h>
  64. #include <linux/kprobes.h>
  65. #include <linux/delayacct.h>
  66. #include <linux/unistd.h>
  67. #include <linux/pagemap.h>
  68. #include <linux/hrtimer.h>
  69. #include <linux/tick.h>
  70. #include <linux/debugfs.h>
  71. #include <linux/ctype.h>
  72. #include <linux/ftrace.h>
  73. #include <linux/slab.h>
  74. #include <asm/tlb.h>
  75. #include <asm/irq_regs.h>
  76. #include "sched_cpupri.h"
  77. #define CREATE_TRACE_POINTS
  78. #include <trace/events/sched.h>
  79. /*
  80. * Convert user-nice values [ -20 ... 0 ... 19 ]
  81. * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
  82. * and back.
  83. */
  84. #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
  85. #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
  86. #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
  87. /*
  88. * 'User priority' is the nice value converted to something we
  89. * can work with better when scaling various scheduler parameters,
  90. * it's a [ 0 ... 39 ] range.
  91. */
  92. #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
  93. #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
  94. #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
  95. /*
  96. * Helpers for converting nanosecond timing to jiffy resolution
  97. */
  98. #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
  99. #define NICE_0_LOAD SCHED_LOAD_SCALE
  100. #define NICE_0_SHIFT SCHED_LOAD_SHIFT
  101. /*
  102. * These are the 'tuning knobs' of the scheduler:
  103. *
  104. * default timeslice is 100 msecs (used only for SCHED_RR tasks).
  105. * Timeslices get refilled after they expire.
  106. */
  107. #define DEF_TIMESLICE (100 * HZ / 1000)
  108. /*
  109. * single value that denotes runtime == period, ie unlimited time.
  110. */
  111. #define RUNTIME_INF ((u64)~0ULL)
  112. static inline int rt_policy(int policy)
  113. {
  114. if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
  115. return 1;
  116. return 0;
  117. }
  118. static inline int task_has_rt_policy(struct task_struct *p)
  119. {
  120. return rt_policy(p->policy);
  121. }
  122. /*
  123. * This is the priority-queue data structure of the RT scheduling class:
  124. */
  125. struct rt_prio_array {
  126. DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
  127. struct list_head queue[MAX_RT_PRIO];
  128. };
  129. struct rt_bandwidth {
  130. /* nests inside the rq lock: */
  131. raw_spinlock_t rt_runtime_lock;
  132. ktime_t rt_period;
  133. u64 rt_runtime;
  134. struct hrtimer rt_period_timer;
  135. };
  136. static struct rt_bandwidth def_rt_bandwidth;
  137. static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
  138. static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
  139. {
  140. struct rt_bandwidth *rt_b =
  141. container_of(timer, struct rt_bandwidth, rt_period_timer);
  142. ktime_t now;
  143. int overrun;
  144. int idle = 0;
  145. for (;;) {
  146. now = hrtimer_cb_get_time(timer);
  147. overrun = hrtimer_forward(timer, now, rt_b->rt_period);
  148. if (!overrun)
  149. break;
  150. idle = do_sched_rt_period_timer(rt_b, overrun);
  151. }
  152. return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
  153. }
  154. static
  155. void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
  156. {
  157. rt_b->rt_period = ns_to_ktime(period);
  158. rt_b->rt_runtime = runtime;
  159. raw_spin_lock_init(&rt_b->rt_runtime_lock);
  160. hrtimer_init(&rt_b->rt_period_timer,
  161. CLOCK_MONOTONIC, HRTIMER_MODE_REL);
  162. rt_b->rt_period_timer.function = sched_rt_period_timer;
  163. }
  164. static inline int rt_bandwidth_enabled(void)
  165. {
  166. return sysctl_sched_rt_runtime >= 0;
  167. }
  168. static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
  169. {
  170. ktime_t now;
  171. if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
  172. return;
  173. if (hrtimer_active(&rt_b->rt_period_timer))
  174. return;
  175. raw_spin_lock(&rt_b->rt_runtime_lock);
  176. for (;;) {
  177. unsigned long delta;
  178. ktime_t soft, hard;
  179. if (hrtimer_active(&rt_b->rt_period_timer))
  180. break;
  181. now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
  182. hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
  183. soft = hrtimer_get_softexpires(&rt_b->rt_period_timer);
  184. hard = hrtimer_get_expires(&rt_b->rt_period_timer);
  185. delta = ktime_to_ns(ktime_sub(hard, soft));
  186. __hrtimer_start_range_ns(&rt_b->rt_period_timer, soft, delta,
  187. HRTIMER_MODE_ABS_PINNED, 0);
  188. }
  189. raw_spin_unlock(&rt_b->rt_runtime_lock);
  190. }
  191. #ifdef CONFIG_RT_GROUP_SCHED
  192. static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
  193. {
  194. hrtimer_cancel(&rt_b->rt_period_timer);
  195. }
  196. #endif
  197. /*
  198. * sched_domains_mutex serializes calls to arch_init_sched_domains,
  199. * detach_destroy_domains and partition_sched_domains.
  200. */
  201. static DEFINE_MUTEX(sched_domains_mutex);
  202. #ifdef CONFIG_CGROUP_SCHED
  203. #include <linux/cgroup.h>
  204. struct cfs_rq;
  205. static LIST_HEAD(task_groups);
  206. /* task group related information */
  207. struct task_group {
  208. struct cgroup_subsys_state css;
  209. #ifdef CONFIG_FAIR_GROUP_SCHED
  210. /* schedulable entities of this group on each cpu */
  211. struct sched_entity **se;
  212. /* runqueue "owned" by this group on each cpu */
  213. struct cfs_rq **cfs_rq;
  214. unsigned long shares;
  215. #endif
  216. #ifdef CONFIG_RT_GROUP_SCHED
  217. struct sched_rt_entity **rt_se;
  218. struct rt_rq **rt_rq;
  219. struct rt_bandwidth rt_bandwidth;
  220. #endif
  221. struct rcu_head rcu;
  222. struct list_head list;
  223. struct task_group *parent;
  224. struct list_head siblings;
  225. struct list_head children;
  226. };
  227. #define root_task_group init_task_group
  228. /* task_group_lock serializes add/remove of task groups and also changes to
  229. * a task group's cpu shares.
  230. */
  231. static DEFINE_SPINLOCK(task_group_lock);
  232. #ifdef CONFIG_FAIR_GROUP_SCHED
  233. #ifdef CONFIG_SMP
  234. static int root_task_group_empty(void)
  235. {
  236. return list_empty(&root_task_group.children);
  237. }
  238. #endif
  239. # define INIT_TASK_GROUP_LOAD NICE_0_LOAD
  240. /*
  241. * A weight of 0 or 1 can cause arithmetics problems.
  242. * A weight of a cfs_rq is the sum of weights of which entities
  243. * are queued on this cfs_rq, so a weight of a entity should not be
  244. * too large, so as the shares value of a task group.
  245. * (The default weight is 1024 - so there's no practical
  246. * limitation from this.)
  247. */
  248. #define MIN_SHARES 2
  249. #define MAX_SHARES (1UL << 18)
  250. static int init_task_group_load = INIT_TASK_GROUP_LOAD;
  251. #endif
  252. /* Default task group.
  253. * Every task in system belong to this group at bootup.
  254. */
  255. struct task_group init_task_group;
  256. /* return group to which a task belongs */
  257. static inline struct task_group *task_group(struct task_struct *p)
  258. {
  259. struct task_group *tg;
  260. #ifdef CONFIG_CGROUP_SCHED
  261. tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
  262. struct task_group, css);
  263. #else
  264. tg = &init_task_group;
  265. #endif
  266. return tg;
  267. }
  268. /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
  269. static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
  270. {
  271. /*
  272. * Strictly speaking this rcu_read_lock() is not needed since the
  273. * task_group is tied to the cgroup, which in turn can never go away
  274. * as long as there are tasks attached to it.
  275. *
  276. * However since task_group() uses task_subsys_state() which is an
  277. * rcu_dereference() user, this quiets CONFIG_PROVE_RCU.
  278. */
  279. rcu_read_lock();
  280. #ifdef CONFIG_FAIR_GROUP_SCHED
  281. p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
  282. p->se.parent = task_group(p)->se[cpu];
  283. #endif
  284. #ifdef CONFIG_RT_GROUP_SCHED
  285. p->rt.rt_rq = task_group(p)->rt_rq[cpu];
  286. p->rt.parent = task_group(p)->rt_se[cpu];
  287. #endif
  288. rcu_read_unlock();
  289. }
  290. #else
  291. static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
  292. static inline struct task_group *task_group(struct task_struct *p)
  293. {
  294. return NULL;
  295. }
  296. #endif /* CONFIG_CGROUP_SCHED */
  297. /* CFS-related fields in a runqueue */
  298. struct cfs_rq {
  299. struct load_weight load;
  300. unsigned long nr_running;
  301. u64 exec_clock;
  302. u64 min_vruntime;
  303. struct rb_root tasks_timeline;
  304. struct rb_node *rb_leftmost;
  305. struct list_head tasks;
  306. struct list_head *balance_iterator;
  307. /*
  308. * 'curr' points to currently running entity on this cfs_rq.
  309. * It is set to NULL otherwise (i.e when none are currently running).
  310. */
  311. struct sched_entity *curr, *next, *last;
  312. unsigned int nr_spread_over;
  313. #ifdef CONFIG_FAIR_GROUP_SCHED
  314. struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
  315. /*
  316. * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
  317. * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
  318. * (like users, containers etc.)
  319. *
  320. * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
  321. * list is used during load balance.
  322. */
  323. struct list_head leaf_cfs_rq_list;
  324. struct task_group *tg; /* group that "owns" this runqueue */
  325. #ifdef CONFIG_SMP
  326. /*
  327. * the part of load.weight contributed by tasks
  328. */
  329. unsigned long task_weight;
  330. /*
  331. * h_load = weight * f(tg)
  332. *
  333. * Where f(tg) is the recursive weight fraction assigned to
  334. * this group.
  335. */
  336. unsigned long h_load;
  337. /*
  338. * this cpu's part of tg->shares
  339. */
  340. unsigned long shares;
  341. /*
  342. * load.weight at the time we set shares
  343. */
  344. unsigned long rq_weight;
  345. #endif
  346. #endif
  347. };
  348. /* Real-Time classes' related field in a runqueue: */
  349. struct rt_rq {
  350. struct rt_prio_array active;
  351. unsigned long rt_nr_running;
  352. #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
  353. struct {
  354. int curr; /* highest queued rt task prio */
  355. #ifdef CONFIG_SMP
  356. int next; /* next highest */
  357. #endif
  358. } highest_prio;
  359. #endif
  360. #ifdef CONFIG_SMP
  361. unsigned long rt_nr_migratory;
  362. unsigned long rt_nr_total;
  363. int overloaded;
  364. struct plist_head pushable_tasks;
  365. #endif
  366. int rt_throttled;
  367. u64 rt_time;
  368. u64 rt_runtime;
  369. /* Nests inside the rq lock: */
  370. raw_spinlock_t rt_runtime_lock;
  371. #ifdef CONFIG_RT_GROUP_SCHED
  372. unsigned long rt_nr_boosted;
  373. struct rq *rq;
  374. struct list_head leaf_rt_rq_list;
  375. struct task_group *tg;
  376. #endif
  377. };
  378. #ifdef CONFIG_SMP
  379. /*
  380. * We add the notion of a root-domain which will be used to define per-domain
  381. * variables. Each exclusive cpuset essentially defines an island domain by
  382. * fully partitioning the member cpus from any other cpuset. Whenever a new
  383. * exclusive cpuset is created, we also create and attach a new root-domain
  384. * object.
  385. *
  386. */
  387. struct root_domain {
  388. atomic_t refcount;
  389. cpumask_var_t span;
  390. cpumask_var_t online;
  391. /*
  392. * The "RT overload" flag: it gets set if a CPU has more than
  393. * one runnable RT task.
  394. */
  395. cpumask_var_t rto_mask;
  396. atomic_t rto_count;
  397. #ifdef CONFIG_SMP
  398. struct cpupri cpupri;
  399. #endif
  400. };
  401. /*
  402. * By default the system creates a single root-domain with all cpus as
  403. * members (mimicking the global state we have today).
  404. */
  405. static struct root_domain def_root_domain;
  406. #endif
  407. /*
  408. * This is the main, per-CPU runqueue data structure.
  409. *
  410. * Locking rule: those places that want to lock multiple runqueues
  411. * (such as the load balancing or the thread migration code), lock
  412. * acquire operations must be ordered by ascending &runqueue.
  413. */
  414. struct rq {
  415. /* runqueue lock: */
  416. raw_spinlock_t lock;
  417. /*
  418. * nr_running and cpu_load should be in the same cacheline because
  419. * remote CPUs use both these fields when doing load calculation.
  420. */
  421. unsigned long nr_running;
  422. #define CPU_LOAD_IDX_MAX 5
  423. unsigned long cpu_load[CPU_LOAD_IDX_MAX];
  424. #ifdef CONFIG_NO_HZ
  425. u64 nohz_stamp;
  426. unsigned char in_nohz_recently;
  427. #endif
  428. unsigned int skip_clock_update;
  429. /* capture load from *all* tasks on this cpu: */
  430. struct load_weight load;
  431. unsigned long nr_load_updates;
  432. u64 nr_switches;
  433. struct cfs_rq cfs;
  434. struct rt_rq rt;
  435. #ifdef CONFIG_FAIR_GROUP_SCHED
  436. /* list of leaf cfs_rq on this cpu: */
  437. struct list_head leaf_cfs_rq_list;
  438. #endif
  439. #ifdef CONFIG_RT_GROUP_SCHED
  440. struct list_head leaf_rt_rq_list;
  441. #endif
  442. /*
  443. * This is part of a global counter where only the total sum
  444. * over all CPUs matters. A task can increase this counter on
  445. * one CPU and if it got migrated afterwards it may decrease
  446. * it on another CPU. Always updated under the runqueue lock:
  447. */
  448. unsigned long nr_uninterruptible;
  449. struct task_struct *curr, *idle;
  450. unsigned long next_balance;
  451. struct mm_struct *prev_mm;
  452. u64 clock;
  453. atomic_t nr_iowait;
  454. #ifdef CONFIG_SMP
  455. struct root_domain *rd;
  456. struct sched_domain *sd;
  457. unsigned char idle_at_tick;
  458. /* For active balancing */
  459. int post_schedule;
  460. int active_balance;
  461. int push_cpu;
  462. struct cpu_stop_work active_balance_work;
  463. /* cpu of this runqueue: */
  464. int cpu;
  465. int online;
  466. unsigned long avg_load_per_task;
  467. u64 rt_avg;
  468. u64 age_stamp;
  469. u64 idle_stamp;
  470. u64 avg_idle;
  471. #endif
  472. /* calc_load related fields */
  473. unsigned long calc_load_update;
  474. long calc_load_active;
  475. #ifdef CONFIG_SCHED_HRTICK
  476. #ifdef CONFIG_SMP
  477. int hrtick_csd_pending;
  478. struct call_single_data hrtick_csd;
  479. #endif
  480. struct hrtimer hrtick_timer;
  481. #endif
  482. #ifdef CONFIG_SCHEDSTATS
  483. /* latency stats */
  484. struct sched_info rq_sched_info;
  485. unsigned long long rq_cpu_time;
  486. /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
  487. /* sys_sched_yield() stats */
  488. unsigned int yld_count;
  489. /* schedule() stats */
  490. unsigned int sched_switch;
  491. unsigned int sched_count;
  492. unsigned int sched_goidle;
  493. /* try_to_wake_up() stats */
  494. unsigned int ttwu_count;
  495. unsigned int ttwu_local;
  496. /* BKL stats */
  497. unsigned int bkl_count;
  498. #endif
  499. };
  500. static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
  501. static inline
  502. void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
  503. {
  504. rq->curr->sched_class->check_preempt_curr(rq, p, flags);
  505. /*
  506. * A queue event has occurred, and we're going to schedule. In
  507. * this case, we can save a useless back to back clock update.
  508. */
  509. if (test_tsk_need_resched(p))
  510. rq->skip_clock_update = 1;
  511. }
  512. static inline int cpu_of(struct rq *rq)
  513. {
  514. #ifdef CONFIG_SMP
  515. return rq->cpu;
  516. #else
  517. return 0;
  518. #endif
  519. }
  520. #define rcu_dereference_check_sched_domain(p) \
  521. rcu_dereference_check((p), \
  522. rcu_read_lock_sched_held() || \
  523. lockdep_is_held(&sched_domains_mutex))
  524. /*
  525. * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
  526. * See detach_destroy_domains: synchronize_sched for details.
  527. *
  528. * The domain tree of any CPU may only be accessed from within
  529. * preempt-disabled sections.
  530. */
  531. #define for_each_domain(cpu, __sd) \
  532. for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
  533. #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
  534. #define this_rq() (&__get_cpu_var(runqueues))
  535. #define task_rq(p) cpu_rq(task_cpu(p))
  536. #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
  537. #define raw_rq() (&__raw_get_cpu_var(runqueues))
  538. inline void update_rq_clock(struct rq *rq)
  539. {
  540. if (!rq->skip_clock_update)
  541. rq->clock = sched_clock_cpu(cpu_of(rq));
  542. }
  543. /*
  544. * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
  545. */
  546. #ifdef CONFIG_SCHED_DEBUG
  547. # define const_debug __read_mostly
  548. #else
  549. # define const_debug static const
  550. #endif
  551. /**
  552. * runqueue_is_locked
  553. * @cpu: the processor in question.
  554. *
  555. * Returns true if the current cpu runqueue is locked.
  556. * This interface allows printk to be called with the runqueue lock
  557. * held and know whether or not it is OK to wake up the klogd.
  558. */
  559. int runqueue_is_locked(int cpu)
  560. {
  561. return raw_spin_is_locked(&cpu_rq(cpu)->lock);
  562. }
  563. /*
  564. * Debugging: various feature bits
  565. */
  566. #define SCHED_FEAT(name, enabled) \
  567. __SCHED_FEAT_##name ,
  568. enum {
  569. #include "sched_features.h"
  570. };
  571. #undef SCHED_FEAT
  572. #define SCHED_FEAT(name, enabled) \
  573. (1UL << __SCHED_FEAT_##name) * enabled |
  574. const_debug unsigned int sysctl_sched_features =
  575. #include "sched_features.h"
  576. 0;
  577. #undef SCHED_FEAT
  578. #ifdef CONFIG_SCHED_DEBUG
  579. #define SCHED_FEAT(name, enabled) \
  580. #name ,
  581. static __read_mostly char *sched_feat_names[] = {
  582. #include "sched_features.h"
  583. NULL
  584. };
  585. #undef SCHED_FEAT
  586. static int sched_feat_show(struct seq_file *m, void *v)
  587. {
  588. int i;
  589. for (i = 0; sched_feat_names[i]; i++) {
  590. if (!(sysctl_sched_features & (1UL << i)))
  591. seq_puts(m, "NO_");
  592. seq_printf(m, "%s ", sched_feat_names[i]);
  593. }
  594. seq_puts(m, "\n");
  595. return 0;
  596. }
  597. static ssize_t
  598. sched_feat_write(struct file *filp, const char __user *ubuf,
  599. size_t cnt, loff_t *ppos)
  600. {
  601. char buf[64];
  602. char *cmp = buf;
  603. int neg = 0;
  604. int i;
  605. if (cnt > 63)
  606. cnt = 63;
  607. if (copy_from_user(&buf, ubuf, cnt))
  608. return -EFAULT;
  609. buf[cnt] = 0;
  610. if (strncmp(buf, "NO_", 3) == 0) {
  611. neg = 1;
  612. cmp += 3;
  613. }
  614. for (i = 0; sched_feat_names[i]; i++) {
  615. int len = strlen(sched_feat_names[i]);
  616. if (strncmp(cmp, sched_feat_names[i], len) == 0) {
  617. if (neg)
  618. sysctl_sched_features &= ~(1UL << i);
  619. else
  620. sysctl_sched_features |= (1UL << i);
  621. break;
  622. }
  623. }
  624. if (!sched_feat_names[i])
  625. return -EINVAL;
  626. *ppos += cnt;
  627. return cnt;
  628. }
  629. static int sched_feat_open(struct inode *inode, struct file *filp)
  630. {
  631. return single_open(filp, sched_feat_show, NULL);
  632. }
  633. static const struct file_operations sched_feat_fops = {
  634. .open = sched_feat_open,
  635. .write = sched_feat_write,
  636. .read = seq_read,
  637. .llseek = seq_lseek,
  638. .release = single_release,
  639. };
  640. static __init int sched_init_debug(void)
  641. {
  642. debugfs_create_file("sched_features", 0644, NULL, NULL,
  643. &sched_feat_fops);
  644. return 0;
  645. }
  646. late_initcall(sched_init_debug);
  647. #endif
  648. #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
  649. /*
  650. * Number of tasks to iterate in a single balance run.
  651. * Limited because this is done with IRQs disabled.
  652. */
  653. const_debug unsigned int sysctl_sched_nr_migrate = 32;
  654. /*
  655. * ratelimit for updating the group shares.
  656. * default: 0.25ms
  657. */
  658. unsigned int sysctl_sched_shares_ratelimit = 250000;
  659. unsigned int normalized_sysctl_sched_shares_ratelimit = 250000;
  660. /*
  661. * Inject some fuzzyness into changing the per-cpu group shares
  662. * this avoids remote rq-locks at the expense of fairness.
  663. * default: 4
  664. */
  665. unsigned int sysctl_sched_shares_thresh = 4;
  666. /*
  667. * period over which we average the RT time consumption, measured
  668. * in ms.
  669. *
  670. * default: 1s
  671. */
  672. const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
  673. /*
  674. * period over which we measure -rt task cpu usage in us.
  675. * default: 1s
  676. */
  677. unsigned int sysctl_sched_rt_period = 1000000;
  678. static __read_mostly int scheduler_running;
  679. /*
  680. * part of the period that we allow rt tasks to run in us.
  681. * default: 0.95s
  682. */
  683. int sysctl_sched_rt_runtime = 950000;
  684. static inline u64 global_rt_period(void)
  685. {
  686. return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
  687. }
  688. static inline u64 global_rt_runtime(void)
  689. {
  690. if (sysctl_sched_rt_runtime < 0)
  691. return RUNTIME_INF;
  692. return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
  693. }
  694. #ifndef prepare_arch_switch
  695. # define prepare_arch_switch(next) do { } while (0)
  696. #endif
  697. #ifndef finish_arch_switch
  698. # define finish_arch_switch(prev) do { } while (0)
  699. #endif
  700. static inline int task_current(struct rq *rq, struct task_struct *p)
  701. {
  702. return rq->curr == p;
  703. }
  704. #ifndef __ARCH_WANT_UNLOCKED_CTXSW
  705. static inline int task_running(struct rq *rq, struct task_struct *p)
  706. {
  707. return task_current(rq, p);
  708. }
  709. static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
  710. {
  711. }
  712. static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
  713. {
  714. #ifdef CONFIG_DEBUG_SPINLOCK
  715. /* this is a valid case when another task releases the spinlock */
  716. rq->lock.owner = current;
  717. #endif
  718. /*
  719. * If we are tracking spinlock dependencies then we have to
  720. * fix up the runqueue lock - which gets 'carried over' from
  721. * prev into current:
  722. */
  723. spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
  724. raw_spin_unlock_irq(&rq->lock);
  725. }
  726. #else /* __ARCH_WANT_UNLOCKED_CTXSW */
  727. static inline int task_running(struct rq *rq, struct task_struct *p)
  728. {
  729. #ifdef CONFIG_SMP
  730. return p->oncpu;
  731. #else
  732. return task_current(rq, p);
  733. #endif
  734. }
  735. static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
  736. {
  737. #ifdef CONFIG_SMP
  738. /*
  739. * We can optimise this out completely for !SMP, because the
  740. * SMP rebalancing from interrupt is the only thing that cares
  741. * here.
  742. */
  743. next->oncpu = 1;
  744. #endif
  745. #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  746. raw_spin_unlock_irq(&rq->lock);
  747. #else
  748. raw_spin_unlock(&rq->lock);
  749. #endif
  750. }
  751. static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
  752. {
  753. #ifdef CONFIG_SMP
  754. /*
  755. * After ->oncpu is cleared, the task can be moved to a different CPU.
  756. * We must ensure this doesn't happen until the switch is completely
  757. * finished.
  758. */
  759. smp_wmb();
  760. prev->oncpu = 0;
  761. #endif
  762. #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  763. local_irq_enable();
  764. #endif
  765. }
  766. #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
  767. /*
  768. * Check whether the task is waking, we use this to synchronize ->cpus_allowed
  769. * against ttwu().
  770. */
  771. static inline int task_is_waking(struct task_struct *p)
  772. {
  773. return unlikely(p->state == TASK_WAKING);
  774. }
  775. /*
  776. * __task_rq_lock - lock the runqueue a given task resides on.
  777. * Must be called interrupts disabled.
  778. */
  779. static inline struct rq *__task_rq_lock(struct task_struct *p)
  780. __acquires(rq->lock)
  781. {
  782. struct rq *rq;
  783. for (;;) {
  784. rq = task_rq(p);
  785. raw_spin_lock(&rq->lock);
  786. if (likely(rq == task_rq(p)))
  787. return rq;
  788. raw_spin_unlock(&rq->lock);
  789. }
  790. }
  791. /*
  792. * task_rq_lock - lock the runqueue a given task resides on and disable
  793. * interrupts. Note the ordering: we can safely lookup the task_rq without
  794. * explicitly disabling preemption.
  795. */
  796. static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
  797. __acquires(rq->lock)
  798. {
  799. struct rq *rq;
  800. for (;;) {
  801. local_irq_save(*flags);
  802. rq = task_rq(p);
  803. raw_spin_lock(&rq->lock);
  804. if (likely(rq == task_rq(p)))
  805. return rq;
  806. raw_spin_unlock_irqrestore(&rq->lock, *flags);
  807. }
  808. }
  809. void task_rq_unlock_wait(struct task_struct *p)
  810. {
  811. struct rq *rq = task_rq(p);
  812. smp_mb(); /* spin-unlock-wait is not a full memory barrier */
  813. raw_spin_unlock_wait(&rq->lock);
  814. }
  815. static void __task_rq_unlock(struct rq *rq)
  816. __releases(rq->lock)
  817. {
  818. raw_spin_unlock(&rq->lock);
  819. }
  820. static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
  821. __releases(rq->lock)
  822. {
  823. raw_spin_unlock_irqrestore(&rq->lock, *flags);
  824. }
  825. /*
  826. * this_rq_lock - lock this runqueue and disable interrupts.
  827. */
  828. static struct rq *this_rq_lock(void)
  829. __acquires(rq->lock)
  830. {
  831. struct rq *rq;
  832. local_irq_disable();
  833. rq = this_rq();
  834. raw_spin_lock(&rq->lock);
  835. return rq;
  836. }
  837. #ifdef CONFIG_SCHED_HRTICK
  838. /*
  839. * Use HR-timers to deliver accurate preemption points.
  840. *
  841. * Its all a bit involved since we cannot program an hrt while holding the
  842. * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
  843. * reschedule event.
  844. *
  845. * When we get rescheduled we reprogram the hrtick_timer outside of the
  846. * rq->lock.
  847. */
  848. /*
  849. * Use hrtick when:
  850. * - enabled by features
  851. * - hrtimer is actually high res
  852. */
  853. static inline int hrtick_enabled(struct rq *rq)
  854. {
  855. if (!sched_feat(HRTICK))
  856. return 0;
  857. if (!cpu_active(cpu_of(rq)))
  858. return 0;
  859. return hrtimer_is_hres_active(&rq->hrtick_timer);
  860. }
  861. static void hrtick_clear(struct rq *rq)
  862. {
  863. if (hrtimer_active(&rq->hrtick_timer))
  864. hrtimer_cancel(&rq->hrtick_timer);
  865. }
  866. /*
  867. * High-resolution timer tick.
  868. * Runs from hardirq context with interrupts disabled.
  869. */
  870. static enum hrtimer_restart hrtick(struct hrtimer *timer)
  871. {
  872. struct rq *rq = container_of(timer, struct rq, hrtick_timer);
  873. WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
  874. raw_spin_lock(&rq->lock);
  875. update_rq_clock(rq);
  876. rq->curr->sched_class->task_tick(rq, rq->curr, 1);
  877. raw_spin_unlock(&rq->lock);
  878. return HRTIMER_NORESTART;
  879. }
  880. #ifdef CONFIG_SMP
  881. /*
  882. * called from hardirq (IPI) context
  883. */
  884. static void __hrtick_start(void *arg)
  885. {
  886. struct rq *rq = arg;
  887. raw_spin_lock(&rq->lock);
  888. hrtimer_restart(&rq->hrtick_timer);
  889. rq->hrtick_csd_pending = 0;
  890. raw_spin_unlock(&rq->lock);
  891. }
  892. /*
  893. * Called to set the hrtick timer state.
  894. *
  895. * called with rq->lock held and irqs disabled
  896. */
  897. static void hrtick_start(struct rq *rq, u64 delay)
  898. {
  899. struct hrtimer *timer = &rq->hrtick_timer;
  900. ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
  901. hrtimer_set_expires(timer, time);
  902. if (rq == this_rq()) {
  903. hrtimer_restart(timer);
  904. } else if (!rq->hrtick_csd_pending) {
  905. __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
  906. rq->hrtick_csd_pending = 1;
  907. }
  908. }
  909. static int
  910. hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
  911. {
  912. int cpu = (int)(long)hcpu;
  913. switch (action) {
  914. case CPU_UP_CANCELED:
  915. case CPU_UP_CANCELED_FROZEN:
  916. case CPU_DOWN_PREPARE:
  917. case CPU_DOWN_PREPARE_FROZEN:
  918. case CPU_DEAD:
  919. case CPU_DEAD_FROZEN:
  920. hrtick_clear(cpu_rq(cpu));
  921. return NOTIFY_OK;
  922. }
  923. return NOTIFY_DONE;
  924. }
  925. static __init void init_hrtick(void)
  926. {
  927. hotcpu_notifier(hotplug_hrtick, 0);
  928. }
  929. #else
  930. /*
  931. * Called to set the hrtick timer state.
  932. *
  933. * called with rq->lock held and irqs disabled
  934. */
  935. static void hrtick_start(struct rq *rq, u64 delay)
  936. {
  937. __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
  938. HRTIMER_MODE_REL_PINNED, 0);
  939. }
  940. static inline void init_hrtick(void)
  941. {
  942. }
  943. #endif /* CONFIG_SMP */
  944. static void init_rq_hrtick(struct rq *rq)
  945. {
  946. #ifdef CONFIG_SMP
  947. rq->hrtick_csd_pending = 0;
  948. rq->hrtick_csd.flags = 0;
  949. rq->hrtick_csd.func = __hrtick_start;
  950. rq->hrtick_csd.info = rq;
  951. #endif
  952. hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
  953. rq->hrtick_timer.function = hrtick;
  954. }
  955. #else /* CONFIG_SCHED_HRTICK */
  956. static inline void hrtick_clear(struct rq *rq)
  957. {
  958. }
  959. static inline void init_rq_hrtick(struct rq *rq)
  960. {
  961. }
  962. static inline void init_hrtick(void)
  963. {
  964. }
  965. #endif /* CONFIG_SCHED_HRTICK */
  966. /*
  967. * resched_task - mark a task 'to be rescheduled now'.
  968. *
  969. * On UP this means the setting of the need_resched flag, on SMP it
  970. * might also involve a cross-CPU call to trigger the scheduler on
  971. * the target CPU.
  972. */
  973. #ifdef CONFIG_SMP
  974. #ifndef tsk_is_polling
  975. #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
  976. #endif
  977. static void resched_task(struct task_struct *p)
  978. {
  979. int cpu;
  980. assert_raw_spin_locked(&task_rq(p)->lock);
  981. if (test_tsk_need_resched(p))
  982. return;
  983. set_tsk_need_resched(p);
  984. cpu = task_cpu(p);
  985. if (cpu == smp_processor_id())
  986. return;
  987. /* NEED_RESCHED must be visible before we test polling */
  988. smp_mb();
  989. if (!tsk_is_polling(p))
  990. smp_send_reschedule(cpu);
  991. }
  992. static void resched_cpu(int cpu)
  993. {
  994. struct rq *rq = cpu_rq(cpu);
  995. unsigned long flags;
  996. if (!raw_spin_trylock_irqsave(&rq->lock, flags))
  997. return;
  998. resched_task(cpu_curr(cpu));
  999. raw_spin_unlock_irqrestore(&rq->lock, flags);
  1000. }
  1001. #ifdef CONFIG_NO_HZ
  1002. /*
  1003. * When add_timer_on() enqueues a timer into the timer wheel of an
  1004. * idle CPU then this timer might expire before the next timer event
  1005. * which is scheduled to wake up that CPU. In case of a completely
  1006. * idle system the next event might even be infinite time into the
  1007. * future. wake_up_idle_cpu() ensures that the CPU is woken up and
  1008. * leaves the inner idle loop so the newly added timer is taken into
  1009. * account when the CPU goes back to idle and evaluates the timer
  1010. * wheel for the next timer event.
  1011. */
  1012. void wake_up_idle_cpu(int cpu)
  1013. {
  1014. struct rq *rq = cpu_rq(cpu);
  1015. if (cpu == smp_processor_id())
  1016. return;
  1017. /*
  1018. * This is safe, as this function is called with the timer
  1019. * wheel base lock of (cpu) held. When the CPU is on the way
  1020. * to idle and has not yet set rq->curr to idle then it will
  1021. * be serialized on the timer wheel base lock and take the new
  1022. * timer into account automatically.
  1023. */
  1024. if (rq->curr != rq->idle)
  1025. return;
  1026. /*
  1027. * We can set TIF_RESCHED on the idle task of the other CPU
  1028. * lockless. The worst case is that the other CPU runs the
  1029. * idle task through an additional NOOP schedule()
  1030. */
  1031. set_tsk_need_resched(rq->idle);
  1032. /* NEED_RESCHED must be visible before we test polling */
  1033. smp_mb();
  1034. if (!tsk_is_polling(rq->idle))
  1035. smp_send_reschedule(cpu);
  1036. }
  1037. int nohz_ratelimit(int cpu)
  1038. {
  1039. struct rq *rq = cpu_rq(cpu);
  1040. u64 diff = rq->clock - rq->nohz_stamp;
  1041. rq->nohz_stamp = rq->clock;
  1042. return diff < (NSEC_PER_SEC / HZ) >> 1;
  1043. }
  1044. #endif /* CONFIG_NO_HZ */
  1045. static u64 sched_avg_period(void)
  1046. {
  1047. return (u64)sysctl_sched_time_avg * NSEC_PER_MSEC / 2;
  1048. }
  1049. static void sched_avg_update(struct rq *rq)
  1050. {
  1051. s64 period = sched_avg_period();
  1052. while ((s64)(rq->clock - rq->age_stamp) > period) {
  1053. rq->age_stamp += period;
  1054. rq->rt_avg /= 2;
  1055. }
  1056. }
  1057. static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
  1058. {
  1059. rq->rt_avg += rt_delta;
  1060. sched_avg_update(rq);
  1061. }
  1062. #else /* !CONFIG_SMP */
  1063. static void resched_task(struct task_struct *p)
  1064. {
  1065. assert_raw_spin_locked(&task_rq(p)->lock);
  1066. set_tsk_need_resched(p);
  1067. }
  1068. static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
  1069. {
  1070. }
  1071. #endif /* CONFIG_SMP */
  1072. #if BITS_PER_LONG == 32
  1073. # define WMULT_CONST (~0UL)
  1074. #else
  1075. # define WMULT_CONST (1UL << 32)
  1076. #endif
  1077. #define WMULT_SHIFT 32
  1078. /*
  1079. * Shift right and round:
  1080. */
  1081. #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
  1082. /*
  1083. * delta *= weight / lw
  1084. */
  1085. static unsigned long
  1086. calc_delta_mine(unsigned long delta_exec, unsigned long weight,
  1087. struct load_weight *lw)
  1088. {
  1089. u64 tmp;
  1090. if (!lw->inv_weight) {
  1091. if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST))
  1092. lw->inv_weight = 1;
  1093. else
  1094. lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)
  1095. / (lw->weight+1);
  1096. }
  1097. tmp = (u64)delta_exec * weight;
  1098. /*
  1099. * Check whether we'd overflow the 64-bit multiplication:
  1100. */
  1101. if (unlikely(tmp > WMULT_CONST))
  1102. tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
  1103. WMULT_SHIFT/2);
  1104. else
  1105. tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
  1106. return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
  1107. }
  1108. static inline void update_load_add(struct load_weight *lw, unsigned long inc)
  1109. {
  1110. lw->weight += inc;
  1111. lw->inv_weight = 0;
  1112. }
  1113. static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
  1114. {
  1115. lw->weight -= dec;
  1116. lw->inv_weight = 0;
  1117. }
  1118. /*
  1119. * To aid in avoiding the subversion of "niceness" due to uneven distribution
  1120. * of tasks with abnormal "nice" values across CPUs the contribution that
  1121. * each task makes to its run queue's load is weighted according to its
  1122. * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
  1123. * scaled version of the new time slice allocation that they receive on time
  1124. * slice expiry etc.
  1125. */
  1126. #define WEIGHT_IDLEPRIO 3
  1127. #define WMULT_IDLEPRIO 1431655765
  1128. /*
  1129. * Nice levels are multiplicative, with a gentle 10% change for every
  1130. * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
  1131. * nice 1, it will get ~10% less CPU time than another CPU-bound task
  1132. * that remained on nice 0.
  1133. *
  1134. * The "10% effect" is relative and cumulative: from _any_ nice level,
  1135. * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
  1136. * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
  1137. * If a task goes up by ~10% and another task goes down by ~10% then
  1138. * the relative distance between them is ~25%.)
  1139. */
  1140. static const int prio_to_weight[40] = {
  1141. /* -20 */ 88761, 71755, 56483, 46273, 36291,
  1142. /* -15 */ 29154, 23254, 18705, 14949, 11916,
  1143. /* -10 */ 9548, 7620, 6100, 4904, 3906,
  1144. /* -5 */ 3121, 2501, 1991, 1586, 1277,
  1145. /* 0 */ 1024, 820, 655, 526, 423,
  1146. /* 5 */ 335, 272, 215, 172, 137,
  1147. /* 10 */ 110, 87, 70, 56, 45,
  1148. /* 15 */ 36, 29, 23, 18, 15,
  1149. };
  1150. /*
  1151. * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
  1152. *
  1153. * In cases where the weight does not change often, we can use the
  1154. * precalculated inverse to speed up arithmetics by turning divisions
  1155. * into multiplications:
  1156. */
  1157. static const u32 prio_to_wmult[40] = {
  1158. /* -20 */ 48388, 59856, 76040, 92818, 118348,
  1159. /* -15 */ 147320, 184698, 229616, 287308, 360437,
  1160. /* -10 */ 449829, 563644, 704093, 875809, 1099582,
  1161. /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
  1162. /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
  1163. /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
  1164. /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
  1165. /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
  1166. };
  1167. /* Time spent by the tasks of the cpu accounting group executing in ... */
  1168. enum cpuacct_stat_index {
  1169. CPUACCT_STAT_USER, /* ... user mode */
  1170. CPUACCT_STAT_SYSTEM, /* ... kernel mode */
  1171. CPUACCT_STAT_NSTATS,
  1172. };
  1173. #ifdef CONFIG_CGROUP_CPUACCT
  1174. static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
  1175. static void cpuacct_update_stats(struct task_struct *tsk,
  1176. enum cpuacct_stat_index idx, cputime_t val);
  1177. #else
  1178. static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
  1179. static inline void cpuacct_update_stats(struct task_struct *tsk,
  1180. enum cpuacct_stat_index idx, cputime_t val) {}
  1181. #endif
  1182. static inline void inc_cpu_load(struct rq *rq, unsigned long load)
  1183. {
  1184. update_load_add(&rq->load, load);
  1185. }
  1186. static inline void dec_cpu_load(struct rq *rq, unsigned long load)
  1187. {
  1188. update_load_sub(&rq->load, load);
  1189. }
  1190. #if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED)
  1191. typedef int (*tg_visitor)(struct task_group *, void *);
  1192. /*
  1193. * Iterate the full tree, calling @down when first entering a node and @up when
  1194. * leaving it for the final time.
  1195. */
  1196. static int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
  1197. {
  1198. struct task_group *parent, *child;
  1199. int ret;
  1200. rcu_read_lock();
  1201. parent = &root_task_group;
  1202. down:
  1203. ret = (*down)(parent, data);
  1204. if (ret)
  1205. goto out_unlock;
  1206. list_for_each_entry_rcu(child, &parent->children, siblings) {
  1207. parent = child;
  1208. goto down;
  1209. up:
  1210. continue;
  1211. }
  1212. ret = (*up)(parent, data);
  1213. if (ret)
  1214. goto out_unlock;
  1215. child = parent;
  1216. parent = parent->parent;
  1217. if (parent)
  1218. goto up;
  1219. out_unlock:
  1220. rcu_read_unlock();
  1221. return ret;
  1222. }
  1223. static int tg_nop(struct task_group *tg, void *data)
  1224. {
  1225. return 0;
  1226. }
  1227. #endif
  1228. #ifdef CONFIG_SMP
  1229. /* Used instead of source_load when we know the type == 0 */
  1230. static unsigned long weighted_cpuload(const int cpu)
  1231. {
  1232. return cpu_rq(cpu)->load.weight;
  1233. }
  1234. /*
  1235. * Return a low guess at the load of a migration-source cpu weighted
  1236. * according to the scheduling class and "nice" value.
  1237. *
  1238. * We want to under-estimate the load of migration sources, to
  1239. * balance conservatively.
  1240. */
  1241. static unsigned long source_load(int cpu, int type)
  1242. {
  1243. struct rq *rq = cpu_rq(cpu);
  1244. unsigned long total = weighted_cpuload(cpu);
  1245. if (type == 0 || !sched_feat(LB_BIAS))
  1246. return total;
  1247. return min(rq->cpu_load[type-1], total);
  1248. }
  1249. /*
  1250. * Return a high guess at the load of a migration-target cpu weighted
  1251. * according to the scheduling class and "nice" value.
  1252. */
  1253. static unsigned long target_load(int cpu, int type)
  1254. {
  1255. struct rq *rq = cpu_rq(cpu);
  1256. unsigned long total = weighted_cpuload(cpu);
  1257. if (type == 0 || !sched_feat(LB_BIAS))
  1258. return total;
  1259. return max(rq->cpu_load[type-1], total);
  1260. }
  1261. static struct sched_group *group_of(int cpu)
  1262. {
  1263. struct sched_domain *sd = rcu_dereference_sched(cpu_rq(cpu)->sd);
  1264. if (!sd)
  1265. return NULL;
  1266. return sd->groups;
  1267. }
  1268. static unsigned long power_of(int cpu)
  1269. {
  1270. struct sched_group *group = group_of(cpu);
  1271. if (!group)
  1272. return SCHED_LOAD_SCALE;
  1273. return group->cpu_power;
  1274. }
  1275. static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
  1276. static unsigned long cpu_avg_load_per_task(int cpu)
  1277. {
  1278. struct rq *rq = cpu_rq(cpu);
  1279. unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
  1280. if (nr_running)
  1281. rq->avg_load_per_task = rq->load.weight / nr_running;
  1282. else
  1283. rq->avg_load_per_task = 0;
  1284. return rq->avg_load_per_task;
  1285. }
  1286. #ifdef CONFIG_FAIR_GROUP_SCHED
  1287. static __read_mostly unsigned long __percpu *update_shares_data;
  1288. static void __set_se_shares(struct sched_entity *se, unsigned long shares);
  1289. /*
  1290. * Calculate and set the cpu's group shares.
  1291. */
  1292. static void update_group_shares_cpu(struct task_group *tg, int cpu,
  1293. unsigned long sd_shares,
  1294. unsigned long sd_rq_weight,
  1295. unsigned long *usd_rq_weight)
  1296. {
  1297. unsigned long shares, rq_weight;
  1298. int boost = 0;
  1299. rq_weight = usd_rq_weight[cpu];
  1300. if (!rq_weight) {
  1301. boost = 1;
  1302. rq_weight = NICE_0_LOAD;
  1303. }
  1304. /*
  1305. * \Sum_j shares_j * rq_weight_i
  1306. * shares_i = -----------------------------
  1307. * \Sum_j rq_weight_j
  1308. */
  1309. shares = (sd_shares * rq_weight) / sd_rq_weight;
  1310. shares = clamp_t(unsigned long, shares, MIN_SHARES, MAX_SHARES);
  1311. if (abs(shares - tg->se[cpu]->load.weight) >
  1312. sysctl_sched_shares_thresh) {
  1313. struct rq *rq = cpu_rq(cpu);
  1314. unsigned long flags;
  1315. raw_spin_lock_irqsave(&rq->lock, flags);
  1316. tg->cfs_rq[cpu]->rq_weight = boost ? 0 : rq_weight;
  1317. tg->cfs_rq[cpu]->shares = boost ? 0 : shares;
  1318. __set_se_shares(tg->se[cpu], shares);
  1319. raw_spin_unlock_irqrestore(&rq->lock, flags);
  1320. }
  1321. }
  1322. /*
  1323. * Re-compute the task group their per cpu shares over the given domain.
  1324. * This needs to be done in a bottom-up fashion because the rq weight of a
  1325. * parent group depends on the shares of its child groups.
  1326. */
  1327. static int tg_shares_up(struct task_group *tg, void *data)
  1328. {
  1329. unsigned long weight, rq_weight = 0, sum_weight = 0, shares = 0;
  1330. unsigned long *usd_rq_weight;
  1331. struct sched_domain *sd = data;
  1332. unsigned long flags;
  1333. int i;
  1334. if (!tg->se[0])
  1335. return 0;
  1336. local_irq_save(flags);
  1337. usd_rq_weight = per_cpu_ptr(update_shares_data, smp_processor_id());
  1338. for_each_cpu(i, sched_domain_span(sd)) {
  1339. weight = tg->cfs_rq[i]->load.weight;
  1340. usd_rq_weight[i] = weight;
  1341. rq_weight += weight;
  1342. /*
  1343. * If there are currently no tasks on the cpu pretend there
  1344. * is one of average load so that when a new task gets to
  1345. * run here it will not get delayed by group starvation.
  1346. */
  1347. if (!weight)
  1348. weight = NICE_0_LOAD;
  1349. sum_weight += weight;
  1350. shares += tg->cfs_rq[i]->shares;
  1351. }
  1352. if (!rq_weight)
  1353. rq_weight = sum_weight;
  1354. if ((!shares && rq_weight) || shares > tg->shares)
  1355. shares = tg->shares;
  1356. if (!sd->parent || !(sd->parent->flags & SD_LOAD_BALANCE))
  1357. shares = tg->shares;
  1358. for_each_cpu(i, sched_domain_span(sd))
  1359. update_group_shares_cpu(tg, i, shares, rq_weight, usd_rq_weight);
  1360. local_irq_restore(flags);
  1361. return 0;
  1362. }
  1363. /*
  1364. * Compute the cpu's hierarchical load factor for each task group.
  1365. * This needs to be done in a top-down fashion because the load of a child
  1366. * group is a fraction of its parents load.
  1367. */
  1368. static int tg_load_down(struct task_group *tg, void *data)
  1369. {
  1370. unsigned long load;
  1371. long cpu = (long)data;
  1372. if (!tg->parent) {
  1373. load = cpu_rq(cpu)->load.weight;
  1374. } else {
  1375. load = tg->parent->cfs_rq[cpu]->h_load;
  1376. load *= tg->cfs_rq[cpu]->shares;
  1377. load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
  1378. }
  1379. tg->cfs_rq[cpu]->h_load = load;
  1380. return 0;
  1381. }
  1382. static void update_shares(struct sched_domain *sd)
  1383. {
  1384. s64 elapsed;
  1385. u64 now;
  1386. if (root_task_group_empty())
  1387. return;
  1388. now = cpu_clock(raw_smp_processor_id());
  1389. elapsed = now - sd->last_update;
  1390. if (elapsed >= (s64)(u64)sysctl_sched_shares_ratelimit) {
  1391. sd->last_update = now;
  1392. walk_tg_tree(tg_nop, tg_shares_up, sd);
  1393. }
  1394. }
  1395. static void update_h_load(long cpu)
  1396. {
  1397. if (root_task_group_empty())
  1398. return;
  1399. walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
  1400. }
  1401. #else
  1402. static inline void update_shares(struct sched_domain *sd)
  1403. {
  1404. }
  1405. #endif
  1406. #ifdef CONFIG_PREEMPT
  1407. static void double_rq_lock(struct rq *rq1, struct rq *rq2);
  1408. /*
  1409. * fair double_lock_balance: Safely acquires both rq->locks in a fair
  1410. * way at the expense of forcing extra atomic operations in all
  1411. * invocations. This assures that the double_lock is acquired using the
  1412. * same underlying policy as the spinlock_t on this architecture, which
  1413. * reduces latency compared to the unfair variant below. However, it
  1414. * also adds more overhead and therefore may reduce throughput.
  1415. */
  1416. static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
  1417. __releases(this_rq->lock)
  1418. __acquires(busiest->lock)
  1419. __acquires(this_rq->lock)
  1420. {
  1421. raw_spin_unlock(&this_rq->lock);
  1422. double_rq_lock(this_rq, busiest);
  1423. return 1;
  1424. }
  1425. #else
  1426. /*
  1427. * Unfair double_lock_balance: Optimizes throughput at the expense of
  1428. * latency by eliminating extra atomic operations when the locks are
  1429. * already in proper order on entry. This favors lower cpu-ids and will
  1430. * grant the double lock to lower cpus over higher ids under contention,
  1431. * regardless of entry order into the function.
  1432. */
  1433. static int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
  1434. __releases(this_rq->lock)
  1435. __acquires(busiest->lock)
  1436. __acquires(this_rq->lock)
  1437. {
  1438. int ret = 0;
  1439. if (unlikely(!raw_spin_trylock(&busiest->lock))) {
  1440. if (busiest < this_rq) {
  1441. raw_spin_unlock(&this_rq->lock);
  1442. raw_spin_lock(&busiest->lock);
  1443. raw_spin_lock_nested(&this_rq->lock,
  1444. SINGLE_DEPTH_NESTING);
  1445. ret = 1;
  1446. } else
  1447. raw_spin_lock_nested(&busiest->lock,
  1448. SINGLE_DEPTH_NESTING);
  1449. }
  1450. return ret;
  1451. }
  1452. #endif /* CONFIG_PREEMPT */
  1453. /*
  1454. * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
  1455. */
  1456. static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
  1457. {
  1458. if (unlikely(!irqs_disabled())) {
  1459. /* printk() doesn't work good under rq->lock */
  1460. raw_spin_unlock(&this_rq->lock);
  1461. BUG_ON(1);
  1462. }
  1463. return _double_lock_balance(this_rq, busiest);
  1464. }
  1465. static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
  1466. __releases(busiest->lock)
  1467. {
  1468. raw_spin_unlock(&busiest->lock);
  1469. lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
  1470. }
  1471. /*
  1472. * double_rq_lock - safely lock two runqueues
  1473. *
  1474. * Note this does not disable interrupts like task_rq_lock,
  1475. * you need to do so manually before calling.
  1476. */
  1477. static void double_rq_lock(struct rq *rq1, struct rq *rq2)
  1478. __acquires(rq1->lock)
  1479. __acquires(rq2->lock)
  1480. {
  1481. BUG_ON(!irqs_disabled());
  1482. if (rq1 == rq2) {
  1483. raw_spin_lock(&rq1->lock);
  1484. __acquire(rq2->lock); /* Fake it out ;) */
  1485. } else {
  1486. if (rq1 < rq2) {
  1487. raw_spin_lock(&rq1->lock);
  1488. raw_spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
  1489. } else {
  1490. raw_spin_lock(&rq2->lock);
  1491. raw_spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
  1492. }
  1493. }
  1494. }
  1495. /*
  1496. * double_rq_unlock - safely unlock two runqueues
  1497. *
  1498. * Note this does not restore interrupts like task_rq_unlock,
  1499. * you need to do so manually after calling.
  1500. */
  1501. static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
  1502. __releases(rq1->lock)
  1503. __releases(rq2->lock)
  1504. {
  1505. raw_spin_unlock(&rq1->lock);
  1506. if (rq1 != rq2)
  1507. raw_spin_unlock(&rq2->lock);
  1508. else
  1509. __release(rq2->lock);
  1510. }
  1511. #endif
  1512. #ifdef CONFIG_FAIR_GROUP_SCHED
  1513. static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares)
  1514. {
  1515. #ifdef CONFIG_SMP
  1516. cfs_rq->shares = shares;
  1517. #endif
  1518. }
  1519. #endif
  1520. static void calc_load_account_idle(struct rq *this_rq);
  1521. static void update_sysctl(void);
  1522. static int get_update_sysctl_factor(void);
  1523. static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
  1524. {
  1525. set_task_rq(p, cpu);
  1526. #ifdef CONFIG_SMP
  1527. /*
  1528. * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
  1529. * successfuly executed on another CPU. We must ensure that updates of
  1530. * per-task data have been completed by this moment.
  1531. */
  1532. smp_wmb();
  1533. task_thread_info(p)->cpu = cpu;
  1534. #endif
  1535. }
  1536. static const struct sched_class rt_sched_class;
  1537. #define sched_class_highest (&rt_sched_class)
  1538. #define for_each_class(class) \
  1539. for (class = sched_class_highest; class; class = class->next)
  1540. #include "sched_stats.h"
  1541. static void inc_nr_running(struct rq *rq)
  1542. {
  1543. rq->nr_running++;
  1544. }
  1545. static void dec_nr_running(struct rq *rq)
  1546. {
  1547. rq->nr_running--;
  1548. }
  1549. static void set_load_weight(struct task_struct *p)
  1550. {
  1551. if (task_has_rt_policy(p)) {
  1552. p->se.load.weight = prio_to_weight[0] * 2;
  1553. p->se.load.inv_weight = prio_to_wmult[0] >> 1;
  1554. return;
  1555. }
  1556. /*
  1557. * SCHED_IDLE tasks get minimal weight:
  1558. */
  1559. if (p->policy == SCHED_IDLE) {
  1560. p->se.load.weight = WEIGHT_IDLEPRIO;
  1561. p->se.load.inv_weight = WMULT_IDLEPRIO;
  1562. return;
  1563. }
  1564. p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
  1565. p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
  1566. }
  1567. static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
  1568. {
  1569. update_rq_clock(rq);
  1570. sched_info_queued(p);
  1571. p->sched_class->enqueue_task(rq, p, flags);
  1572. p->se.on_rq = 1;
  1573. }
  1574. static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
  1575. {
  1576. update_rq_clock(rq);
  1577. sched_info_dequeued(p);
  1578. p->sched_class->dequeue_task(rq, p, flags);
  1579. p->se.on_rq = 0;
  1580. }
  1581. /*
  1582. * activate_task - move a task to the runqueue.
  1583. */
  1584. static void activate_task(struct rq *rq, struct task_struct *p, int flags)
  1585. {
  1586. if (task_contributes_to_load(p))
  1587. rq->nr_uninterruptible--;
  1588. enqueue_task(rq, p, flags);
  1589. inc_nr_running(rq);
  1590. }
  1591. /*
  1592. * deactivate_task - remove a task from the runqueue.
  1593. */
  1594. static void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
  1595. {
  1596. if (task_contributes_to_load(p))
  1597. rq->nr_uninterruptible++;
  1598. dequeue_task(rq, p, flags);
  1599. dec_nr_running(rq);
  1600. }
  1601. #include "sched_idletask.c"
  1602. #include "sched_fair.c"
  1603. #include "sched_rt.c"
  1604. #ifdef CONFIG_SCHED_DEBUG
  1605. # include "sched_debug.c"
  1606. #endif
  1607. /*
  1608. * __normal_prio - return the priority that is based on the static prio
  1609. */
  1610. static inline int __normal_prio(struct task_struct *p)
  1611. {
  1612. return p->static_prio;
  1613. }
  1614. /*
  1615. * Calculate the expected normal priority: i.e. priority
  1616. * without taking RT-inheritance into account. Might be
  1617. * boosted by interactivity modifiers. Changes upon fork,
  1618. * setprio syscalls, and whenever the interactivity
  1619. * estimator recalculates.
  1620. */
  1621. static inline int normal_prio(struct task_struct *p)
  1622. {
  1623. int prio;
  1624. if (task_has_rt_policy(p))
  1625. prio = MAX_RT_PRIO-1 - p->rt_priority;
  1626. else
  1627. prio = __normal_prio(p);
  1628. return prio;
  1629. }
  1630. /*
  1631. * Calculate the current priority, i.e. the priority
  1632. * taken into account by the scheduler. This value might
  1633. * be boosted by RT tasks, or might be boosted by
  1634. * interactivity modifiers. Will be RT if the task got
  1635. * RT-boosted. If not then it returns p->normal_prio.
  1636. */
  1637. static int effective_prio(struct task_struct *p)
  1638. {
  1639. p->normal_prio = normal_prio(p);
  1640. /*
  1641. * If we are RT tasks or we were boosted to RT priority,
  1642. * keep the priority unchanged. Otherwise, update priority
  1643. * to the normal priority:
  1644. */
  1645. if (!rt_prio(p->prio))
  1646. return p->normal_prio;
  1647. return p->prio;
  1648. }
  1649. /**
  1650. * task_curr - is this task currently executing on a CPU?
  1651. * @p: the task in question.
  1652. */
  1653. inline int task_curr(const struct task_struct *p)
  1654. {
  1655. return cpu_curr(task_cpu(p)) == p;
  1656. }
  1657. static inline void check_class_changed(struct rq *rq, struct task_struct *p,
  1658. const struct sched_class *prev_class,
  1659. int oldprio, int running)
  1660. {
  1661. if (prev_class != p->sched_class) {
  1662. if (prev_class->switched_from)
  1663. prev_class->switched_from(rq, p, running);
  1664. p->sched_class->switched_to(rq, p, running);
  1665. } else
  1666. p->sched_class->prio_changed(rq, p, oldprio, running);
  1667. }
  1668. #ifdef CONFIG_SMP
  1669. /*
  1670. * Is this task likely cache-hot:
  1671. */
  1672. static int
  1673. task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
  1674. {
  1675. s64 delta;
  1676. if (p->sched_class != &fair_sched_class)
  1677. return 0;
  1678. /*
  1679. * Buddy candidates are cache hot:
  1680. */
  1681. if (sched_feat(CACHE_HOT_BUDDY) && this_rq()->nr_running &&
  1682. (&p->se == cfs_rq_of(&p->se)->next ||
  1683. &p->se == cfs_rq_of(&p->se)->last))
  1684. return 1;
  1685. if (sysctl_sched_migration_cost == -1)
  1686. return 1;
  1687. if (sysctl_sched_migration_cost == 0)
  1688. return 0;
  1689. delta = now - p->se.exec_start;
  1690. return delta < (s64)sysctl_sched_migration_cost;
  1691. }
  1692. void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
  1693. {
  1694. #ifdef CONFIG_SCHED_DEBUG
  1695. /*
  1696. * We should never call set_task_cpu() on a blocked task,
  1697. * ttwu() will sort out the placement.
  1698. */
  1699. WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
  1700. !(task_thread_info(p)->preempt_count & PREEMPT_ACTIVE));
  1701. #endif
  1702. trace_sched_migrate_task(p, new_cpu);
  1703. if (task_cpu(p) != new_cpu) {
  1704. p->se.nr_migrations++;
  1705. perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, 1, NULL, 0);
  1706. }
  1707. __set_task_cpu(p, new_cpu);
  1708. }
  1709. struct migration_arg {
  1710. struct task_struct *task;
  1711. int dest_cpu;
  1712. };
  1713. static int migration_cpu_stop(void *data);
  1714. /*
  1715. * The task's runqueue lock must be held.
  1716. * Returns true if you have to wait for migration thread.
  1717. */
  1718. static bool migrate_task(struct task_struct *p, int dest_cpu)
  1719. {
  1720. struct rq *rq = task_rq(p);
  1721. /*
  1722. * If the task is not on a runqueue (and not running), then
  1723. * the next wake-up will properly place the task.
  1724. */
  1725. return p->se.on_rq || task_running(rq, p);
  1726. }
  1727. /*
  1728. * wait_task_inactive - wait for a thread to unschedule.
  1729. *
  1730. * If @match_state is nonzero, it's the @p->state value just checked and
  1731. * not expected to change. If it changes, i.e. @p might have woken up,
  1732. * then return zero. When we succeed in waiting for @p to be off its CPU,
  1733. * we return a positive number (its total switch count). If a second call
  1734. * a short while later returns the same number, the caller can be sure that
  1735. * @p has remained unscheduled the whole time.
  1736. *
  1737. * The caller must ensure that the task *will* unschedule sometime soon,
  1738. * else this function might spin for a *long* time. This function can't
  1739. * be called with interrupts off, or it may introduce deadlock with
  1740. * smp_call_function() if an IPI is sent by the same process we are
  1741. * waiting to become inactive.
  1742. */
  1743. unsigned long wait_task_inactive(struct task_struct *p, long match_state)
  1744. {
  1745. unsigned long flags;
  1746. int running, on_rq;
  1747. unsigned long ncsw;
  1748. struct rq *rq;
  1749. for (;;) {
  1750. /*
  1751. * We do the initial early heuristics without holding
  1752. * any task-queue locks at all. We'll only try to get
  1753. * the runqueue lock when things look like they will
  1754. * work out!
  1755. */
  1756. rq = task_rq(p);
  1757. /*
  1758. * If the task is actively running on another CPU
  1759. * still, just relax and busy-wait without holding
  1760. * any locks.
  1761. *
  1762. * NOTE! Since we don't hold any locks, it's not
  1763. * even sure that "rq" stays as the right runqueue!
  1764. * But we don't care, since "task_running()" will
  1765. * return false if the runqueue has changed and p
  1766. * is actually now running somewhere else!
  1767. */
  1768. while (task_running(rq, p)) {
  1769. if (match_state && unlikely(p->state != match_state))
  1770. return 0;
  1771. cpu_relax();
  1772. }
  1773. /*
  1774. * Ok, time to look more closely! We need the rq
  1775. * lock now, to be *sure*. If we're wrong, we'll
  1776. * just go back and repeat.
  1777. */
  1778. rq = task_rq_lock(p, &flags);
  1779. trace_sched_wait_task(p);
  1780. running = task_running(rq, p);
  1781. on_rq = p->se.on_rq;
  1782. ncsw = 0;
  1783. if (!match_state || p->state == match_state)
  1784. ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
  1785. task_rq_unlock(rq, &flags);
  1786. /*
  1787. * If it changed from the expected state, bail out now.
  1788. */
  1789. if (unlikely(!ncsw))
  1790. break;
  1791. /*
  1792. * Was it really running after all now that we
  1793. * checked with the proper locks actually held?
  1794. *
  1795. * Oops. Go back and try again..
  1796. */
  1797. if (unlikely(running)) {
  1798. cpu_relax();
  1799. continue;
  1800. }
  1801. /*
  1802. * It's not enough that it's not actively running,
  1803. * it must be off the runqueue _entirely_, and not
  1804. * preempted!
  1805. *
  1806. * So if it was still runnable (but just not actively
  1807. * running right now), it's preempted, and we should
  1808. * yield - it could be a while.
  1809. */
  1810. if (unlikely(on_rq)) {
  1811. schedule_timeout_uninterruptible(1);
  1812. continue;
  1813. }
  1814. /*
  1815. * Ahh, all good. It wasn't running, and it wasn't
  1816. * runnable, which means that it will never become
  1817. * running in the future either. We're all done!
  1818. */
  1819. break;
  1820. }
  1821. return ncsw;
  1822. }
  1823. /***
  1824. * kick_process - kick a running thread to enter/exit the kernel
  1825. * @p: the to-be-kicked thread
  1826. *
  1827. * Cause a process which is running on another CPU to enter
  1828. * kernel-mode, without any delay. (to get signals handled.)
  1829. *
  1830. * NOTE: this function doesnt have to take the runqueue lock,
  1831. * because all it wants to ensure is that the remote task enters
  1832. * the kernel. If the IPI races and the task has been migrated
  1833. * to another CPU then no harm is done and the purpose has been
  1834. * achieved as well.
  1835. */
  1836. void kick_process(struct task_struct *p)
  1837. {
  1838. int cpu;
  1839. preempt_disable();
  1840. cpu = task_cpu(p);
  1841. if ((cpu != smp_processor_id()) && task_curr(p))
  1842. smp_send_reschedule(cpu);
  1843. preempt_enable();
  1844. }
  1845. EXPORT_SYMBOL_GPL(kick_process);
  1846. #endif /* CONFIG_SMP */
  1847. /**
  1848. * task_oncpu_function_call - call a function on the cpu on which a task runs
  1849. * @p: the task to evaluate
  1850. * @func: the function to be called
  1851. * @info: the function call argument
  1852. *
  1853. * Calls the function @func when the task is currently running. This might
  1854. * be on the current CPU, which just calls the function directly
  1855. */
  1856. void task_oncpu_function_call(struct task_struct *p,
  1857. void (*func) (void *info), void *info)
  1858. {
  1859. int cpu;
  1860. preempt_disable();
  1861. cpu = task_cpu(p);
  1862. if (task_curr(p))
  1863. smp_call_function_single(cpu, func, info, 1);
  1864. preempt_enable();
  1865. }
  1866. #ifdef CONFIG_SMP
  1867. /*
  1868. * ->cpus_allowed is protected by either TASK_WAKING or rq->lock held.
  1869. */
  1870. static int select_fallback_rq(int cpu, struct task_struct *p)
  1871. {
  1872. int dest_cpu;
  1873. const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(cpu));
  1874. /* Look for allowed, online CPU in same node. */
  1875. for_each_cpu_and(dest_cpu, nodemask, cpu_active_mask)
  1876. if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
  1877. return dest_cpu;
  1878. /* Any allowed, online CPU? */
  1879. dest_cpu = cpumask_any_and(&p->cpus_allowed, cpu_active_mask);
  1880. if (dest_cpu < nr_cpu_ids)
  1881. return dest_cpu;
  1882. /* No more Mr. Nice Guy. */
  1883. if (unlikely(dest_cpu >= nr_cpu_ids)) {
  1884. dest_cpu = cpuset_cpus_allowed_fallback(p);
  1885. /*
  1886. * Don't tell them about moving exiting tasks or
  1887. * kernel threads (both mm NULL), since they never
  1888. * leave kernel.
  1889. */
  1890. if (p->mm && printk_ratelimit()) {
  1891. printk(KERN_INFO "process %d (%s) no "
  1892. "longer affine to cpu%d\n",
  1893. task_pid_nr(p), p->comm, cpu);
  1894. }
  1895. }
  1896. return dest_cpu;
  1897. }
  1898. /*
  1899. * The caller (fork, wakeup) owns TASK_WAKING, ->cpus_allowed is stable.
  1900. */
  1901. static inline
  1902. int select_task_rq(struct rq *rq, struct task_struct *p, int sd_flags, int wake_flags)
  1903. {
  1904. int cpu = p->sched_class->select_task_rq(rq, p, sd_flags, wake_flags);
  1905. /*
  1906. * In order not to call set_task_cpu() on a blocking task we need
  1907. * to rely on ttwu() to place the task on a valid ->cpus_allowed
  1908. * cpu.
  1909. *
  1910. * Since this is common to all placement strategies, this lives here.
  1911. *
  1912. * [ this allows ->select_task() to simply return task_cpu(p) and
  1913. * not worry about this generic constraint ]
  1914. */
  1915. if (unlikely(!cpumask_test_cpu(cpu, &p->cpus_allowed) ||
  1916. !cpu_online(cpu)))
  1917. cpu = select_fallback_rq(task_cpu(p), p);
  1918. return cpu;
  1919. }
  1920. static void update_avg(u64 *avg, u64 sample)
  1921. {
  1922. s64 diff = sample - *avg;
  1923. *avg += diff >> 3;
  1924. }
  1925. #endif
  1926. /***
  1927. * try_to_wake_up - wake up a thread
  1928. * @p: the to-be-woken-up thread
  1929. * @state: the mask of task states that can be woken
  1930. * @sync: do a synchronous wakeup?
  1931. *
  1932. * Put it on the run-queue if it's not already there. The "current"
  1933. * thread is always on the run-queue (except when the actual
  1934. * re-schedule is in progress), and as such you're allowed to do
  1935. * the simpler "current->state = TASK_RUNNING" to mark yourself
  1936. * runnable without the overhead of this.
  1937. *
  1938. * returns failure only if the task is already active.
  1939. */
  1940. static int try_to_wake_up(struct task_struct *p, unsigned int state,
  1941. int wake_flags)
  1942. {
  1943. int cpu, orig_cpu, this_cpu, success = 0;
  1944. unsigned long flags;
  1945. unsigned long en_flags = ENQUEUE_WAKEUP;
  1946. struct rq *rq;
  1947. this_cpu = get_cpu();
  1948. smp_wmb();
  1949. rq = task_rq_lock(p, &flags);
  1950. if (!(p->state & state))
  1951. goto out;
  1952. if (p->se.on_rq)
  1953. goto out_running;
  1954. cpu = task_cpu(p);
  1955. orig_cpu = cpu;
  1956. #ifdef CONFIG_SMP
  1957. if (unlikely(task_running(rq, p)))
  1958. goto out_activate;
  1959. /*
  1960. * In order to handle concurrent wakeups and release the rq->lock
  1961. * we put the task in TASK_WAKING state.
  1962. *
  1963. * First fix up the nr_uninterruptible count:
  1964. */
  1965. if (task_contributes_to_load(p)) {
  1966. if (likely(cpu_online(orig_cpu)))
  1967. rq->nr_uninterruptible--;
  1968. else
  1969. this_rq()->nr_uninterruptible--;
  1970. }
  1971. p->state = TASK_WAKING;
  1972. if (p->sched_class->task_waking) {
  1973. p->sched_class->task_waking(rq, p);
  1974. en_flags |= ENQUEUE_WAKING;
  1975. }
  1976. cpu = select_task_rq(rq, p, SD_BALANCE_WAKE, wake_flags);
  1977. if (cpu != orig_cpu)
  1978. set_task_cpu(p, cpu);
  1979. __task_rq_unlock(rq);
  1980. rq = cpu_rq(cpu);
  1981. raw_spin_lock(&rq->lock);
  1982. /*
  1983. * We migrated the task without holding either rq->lock, however
  1984. * since the task is not on the task list itself, nobody else
  1985. * will try and migrate the task, hence the rq should match the
  1986. * cpu we just moved it to.
  1987. */
  1988. WARN_ON(task_cpu(p) != cpu);
  1989. WARN_ON(p->state != TASK_WAKING);
  1990. #ifdef CONFIG_SCHEDSTATS
  1991. schedstat_inc(rq, ttwu_count);
  1992. if (cpu == this_cpu)
  1993. schedstat_inc(rq, ttwu_local);
  1994. else {
  1995. struct sched_domain *sd;
  1996. for_each_domain(this_cpu, sd) {
  1997. if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
  1998. schedstat_inc(sd, ttwu_wake_remote);
  1999. break;
  2000. }
  2001. }
  2002. }
  2003. #endif /* CONFIG_SCHEDSTATS */
  2004. out_activate:
  2005. #endif /* CONFIG_SMP */
  2006. schedstat_inc(p, se.statistics.nr_wakeups);
  2007. if (wake_flags & WF_SYNC)
  2008. schedstat_inc(p, se.statistics.nr_wakeups_sync);
  2009. if (orig_cpu != cpu)
  2010. schedstat_inc(p, se.statistics.nr_wakeups_migrate);
  2011. if (cpu == this_cpu)
  2012. schedstat_inc(p, se.statistics.nr_wakeups_local);
  2013. else
  2014. schedstat_inc(p, se.statistics.nr_wakeups_remote);
  2015. activate_task(rq, p, en_flags);
  2016. success = 1;
  2017. out_running:
  2018. trace_sched_wakeup(p, success);
  2019. check_preempt_curr(rq, p, wake_flags);
  2020. p->state = TASK_RUNNING;
  2021. #ifdef CONFIG_SMP
  2022. if (p->sched_class->task_woken)
  2023. p->sched_class->task_woken(rq, p);
  2024. if (unlikely(rq->idle_stamp)) {
  2025. u64 delta = rq->clock - rq->idle_stamp;
  2026. u64 max = 2*sysctl_sched_migration_cost;
  2027. if (delta > max)
  2028. rq->avg_idle = max;
  2029. else
  2030. update_avg(&rq->avg_idle, delta);
  2031. rq->idle_stamp = 0;
  2032. }
  2033. #endif
  2034. out:
  2035. task_rq_unlock(rq, &flags);
  2036. put_cpu();
  2037. return success;
  2038. }
  2039. /**
  2040. * wake_up_process - Wake up a specific process
  2041. * @p: The process to be woken up.
  2042. *
  2043. * Attempt to wake up the nominated process and move it to the set of runnable
  2044. * processes. Returns 1 if the process was woken up, 0 if it was already
  2045. * running.
  2046. *
  2047. * It may be assumed that this function implies a write memory barrier before
  2048. * changing the task state if and only if any tasks are woken up.
  2049. */
  2050. int wake_up_process(struct task_struct *p)
  2051. {
  2052. return try_to_wake_up(p, TASK_ALL, 0);
  2053. }
  2054. EXPORT_SYMBOL(wake_up_process);
  2055. int wake_up_state(struct task_struct *p, unsigned int state)
  2056. {
  2057. return try_to_wake_up(p, state, 0);
  2058. }
  2059. /*
  2060. * Perform scheduler related setup for a newly forked process p.
  2061. * p is forked by current.
  2062. *
  2063. * __sched_fork() is basic setup used by init_idle() too:
  2064. */
  2065. static void __sched_fork(struct task_struct *p)
  2066. {
  2067. p->se.exec_start = 0;
  2068. p->se.sum_exec_runtime = 0;
  2069. p->se.prev_sum_exec_runtime = 0;
  2070. p->se.nr_migrations = 0;
  2071. #ifdef CONFIG_SCHEDSTATS
  2072. memset(&p->se.statistics, 0, sizeof(p->se.statistics));
  2073. #endif
  2074. INIT_LIST_HEAD(&p->rt.run_list);
  2075. p->se.on_rq = 0;
  2076. INIT_LIST_HEAD(&p->se.group_node);
  2077. #ifdef CONFIG_PREEMPT_NOTIFIERS
  2078. INIT_HLIST_HEAD(&p->preempt_notifiers);
  2079. #endif
  2080. }
  2081. /*
  2082. * fork()/clone()-time setup:
  2083. */
  2084. void sched_fork(struct task_struct *p, int clone_flags)
  2085. {
  2086. int cpu = get_cpu();
  2087. __sched_fork(p);
  2088. /*
  2089. * We mark the process as running here. This guarantees that
  2090. * nobody will actually run it, and a signal or other external
  2091. * event cannot wake it up and insert it on the runqueue either.
  2092. */
  2093. p->state = TASK_RUNNING;
  2094. /*
  2095. * Revert to default priority/policy on fork if requested.
  2096. */
  2097. if (unlikely(p->sched_reset_on_fork)) {
  2098. if (p->policy == SCHED_FIFO || p->policy == SCHED_RR) {
  2099. p->policy = SCHED_NORMAL;
  2100. p->normal_prio = p->static_prio;
  2101. }
  2102. if (PRIO_TO_NICE(p->static_prio) < 0) {
  2103. p->static_prio = NICE_TO_PRIO(0);
  2104. p->normal_prio = p->static_prio;
  2105. set_load_weight(p);
  2106. }
  2107. /*
  2108. * We don't need the reset flag anymore after the fork. It has
  2109. * fulfilled its duty:
  2110. */
  2111. p->sched_reset_on_fork = 0;
  2112. }
  2113. /*
  2114. * Make sure we do not leak PI boosting priority to the child.
  2115. */
  2116. p->prio = current->normal_prio;
  2117. if (!rt_prio(p->prio))
  2118. p->sched_class = &fair_sched_class;
  2119. if (p->sched_class->task_fork)
  2120. p->sched_class->task_fork(p);
  2121. set_task_cpu(p, cpu);
  2122. #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
  2123. if (likely(sched_info_on()))
  2124. memset(&p->sched_info, 0, sizeof(p->sched_info));
  2125. #endif
  2126. #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
  2127. p->oncpu = 0;
  2128. #endif
  2129. #ifdef CONFIG_PREEMPT
  2130. /* Want to start with kernel preemption disabled. */
  2131. task_thread_info(p)->preempt_count = 1;
  2132. #endif
  2133. plist_node_init(&p->pushable_tasks, MAX_PRIO);
  2134. put_cpu();
  2135. }
  2136. /*
  2137. * wake_up_new_task - wake up a newly created task for the first time.
  2138. *
  2139. * This function will do some initial scheduler statistics housekeeping
  2140. * that must be done for every newly created context, then puts the task
  2141. * on the runqueue and wakes it.
  2142. */
  2143. void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
  2144. {
  2145. unsigned long flags;
  2146. struct rq *rq;
  2147. int cpu __maybe_unused = get_cpu();
  2148. #ifdef CONFIG_SMP
  2149. rq = task_rq_lock(p, &flags);
  2150. p->state = TASK_WAKING;
  2151. /*
  2152. * Fork balancing, do it here and not earlier because:
  2153. * - cpus_allowed can change in the fork path
  2154. * - any previously selected cpu might disappear through hotplug
  2155. *
  2156. * We set TASK_WAKING so that select_task_rq() can drop rq->lock
  2157. * without people poking at ->cpus_allowed.
  2158. */
  2159. cpu = select_task_rq(rq, p, SD_BALANCE_FORK, 0);
  2160. set_task_cpu(p, cpu);
  2161. p->state = TASK_RUNNING;
  2162. task_rq_unlock(rq, &flags);
  2163. #endif
  2164. rq = task_rq_lock(p, &flags);
  2165. activate_task(rq, p, 0);
  2166. trace_sched_wakeup_new(p, 1);
  2167. check_preempt_curr(rq, p, WF_FORK);
  2168. #ifdef CONFIG_SMP
  2169. if (p->sched_class->task_woken)
  2170. p->sched_class->task_woken(rq, p);
  2171. #endif
  2172. task_rq_unlock(rq, &flags);
  2173. put_cpu();
  2174. }
  2175. #ifdef CONFIG_PREEMPT_NOTIFIERS
  2176. /**
  2177. * preempt_notifier_register - tell me when current is being preempted & rescheduled
  2178. * @notifier: notifier struct to register
  2179. */
  2180. void preempt_notifier_register(struct preempt_notifier *notifier)
  2181. {
  2182. hlist_add_head(&notifier->link, &current->preempt_notifiers);
  2183. }
  2184. EXPORT_SYMBOL_GPL(preempt_notifier_register);
  2185. /**
  2186. * preempt_notifier_unregister - no longer interested in preemption notifications
  2187. * @notifier: notifier struct to unregister
  2188. *
  2189. * This is safe to call from within a preemption notifier.
  2190. */
  2191. void preempt_notifier_unregister(struct preempt_notifier *notifier)
  2192. {
  2193. hlist_del(&notifier->link);
  2194. }
  2195. EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
  2196. static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
  2197. {
  2198. struct preempt_notifier *notifier;
  2199. struct hlist_node *node;
  2200. hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
  2201. notifier->ops->sched_in(notifier, raw_smp_processor_id());
  2202. }
  2203. static void
  2204. fire_sched_out_preempt_notifiers(struct task_struct *curr,
  2205. struct task_struct *next)
  2206. {
  2207. struct preempt_notifier *notifier;
  2208. struct hlist_node *node;
  2209. hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
  2210. notifier->ops->sched_out(notifier, next);
  2211. }
  2212. #else /* !CONFIG_PREEMPT_NOTIFIERS */
  2213. static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
  2214. {
  2215. }
  2216. static void
  2217. fire_sched_out_preempt_notifiers(struct task_struct *curr,
  2218. struct task_struct *next)
  2219. {
  2220. }
  2221. #endif /* CONFIG_PREEMPT_NOTIFIERS */
  2222. /**
  2223. * prepare_task_switch - prepare to switch tasks
  2224. * @rq: the runqueue preparing to switch
  2225. * @prev: the current task that is being switched out
  2226. * @next: the task we are going to switch to.
  2227. *
  2228. * This is called with the rq lock held and interrupts off. It must
  2229. * be paired with a subsequent finish_task_switch after the context
  2230. * switch.
  2231. *
  2232. * prepare_task_switch sets up locking and calls architecture specific
  2233. * hooks.
  2234. */
  2235. static inline void
  2236. prepare_task_switch(struct rq *rq, struct task_struct *prev,
  2237. struct task_struct *next)
  2238. {
  2239. fire_sched_out_preempt_notifiers(prev, next);
  2240. prepare_lock_switch(rq, next);
  2241. prepare_arch_switch(next);
  2242. }
  2243. /**
  2244. * finish_task_switch - clean up after a task-switch
  2245. * @rq: runqueue associated with task-switch
  2246. * @prev: the thread we just switched away from.
  2247. *
  2248. * finish_task_switch must be called after the context switch, paired
  2249. * with a prepare_task_switch call before the context switch.
  2250. * finish_task_switch will reconcile locking set up by prepare_task_switch,
  2251. * and do any other architecture-specific cleanup actions.
  2252. *
  2253. * Note that we may have delayed dropping an mm in context_switch(). If
  2254. * so, we finish that here outside of the runqueue lock. (Doing it
  2255. * with the lock held can cause deadlocks; see schedule() for
  2256. * details.)
  2257. */
  2258. static void finish_task_switch(struct rq *rq, struct task_struct *prev)
  2259. __releases(rq->lock)
  2260. {
  2261. struct mm_struct *mm = rq->prev_mm;
  2262. long prev_state;
  2263. rq->prev_mm = NULL;
  2264. /*
  2265. * A task struct has one reference for the use as "current".
  2266. * If a task dies, then it sets TASK_DEAD in tsk->state and calls
  2267. * schedule one last time. The schedule call will never return, and
  2268. * the scheduled task must drop that reference.
  2269. * The test for TASK_DEAD must occur while the runqueue locks are
  2270. * still held, otherwise prev could be scheduled on another cpu, die
  2271. * there before we look at prev->state, and then the reference would
  2272. * be dropped twice.
  2273. * Manfred Spraul <manfred@colorfullife.com>
  2274. */
  2275. prev_state = prev->state;
  2276. finish_arch_switch(prev);
  2277. #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  2278. local_irq_disable();
  2279. #endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
  2280. perf_event_task_sched_in(current);
  2281. #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  2282. local_irq_enable();
  2283. #endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
  2284. finish_lock_switch(rq, prev);
  2285. fire_sched_in_preempt_notifiers(current);
  2286. if (mm)
  2287. mmdrop(mm);
  2288. if (unlikely(prev_state == TASK_DEAD)) {
  2289. /*
  2290. * Remove function-return probe instances associated with this
  2291. * task and put them back on the free list.
  2292. */
  2293. kprobe_flush_task(prev);
  2294. put_task_struct(prev);
  2295. }
  2296. }
  2297. #ifdef CONFIG_SMP
  2298. /* assumes rq->lock is held */
  2299. static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
  2300. {
  2301. if (prev->sched_class->pre_schedule)
  2302. prev->sched_class->pre_schedule(rq, prev);
  2303. }
  2304. /* rq->lock is NOT held, but preemption is disabled */
  2305. static inline void post_schedule(struct rq *rq)
  2306. {
  2307. if (rq->post_schedule) {
  2308. unsigned long flags;
  2309. raw_spin_lock_irqsave(&rq->lock, flags);
  2310. if (rq->curr->sched_class->post_schedule)
  2311. rq->curr->sched_class->post_schedule(rq);
  2312. raw_spin_unlock_irqrestore(&rq->lock, flags);
  2313. rq->post_schedule = 0;
  2314. }
  2315. }
  2316. #else
  2317. static inline void pre_schedule(struct rq *rq, struct task_struct *p)
  2318. {
  2319. }
  2320. static inline void post_schedule(struct rq *rq)
  2321. {
  2322. }
  2323. #endif
  2324. /**
  2325. * schedule_tail - first thing a freshly forked thread must call.
  2326. * @prev: the thread we just switched away from.
  2327. */
  2328. asmlinkage void schedule_tail(struct task_struct *prev)
  2329. __releases(rq->lock)
  2330. {
  2331. struct rq *rq = this_rq();
  2332. finish_task_switch(rq, prev);
  2333. /*
  2334. * FIXME: do we need to worry about rq being invalidated by the
  2335. * task_switch?
  2336. */
  2337. post_schedule(rq);
  2338. #ifdef __ARCH_WANT_UNLOCKED_CTXSW
  2339. /* In this case, finish_task_switch does not reenable preemption */
  2340. preempt_enable();
  2341. #endif
  2342. if (current->set_child_tid)
  2343. put_user(task_pid_vnr(current), current->set_child_tid);
  2344. }
  2345. /*
  2346. * context_switch - switch to the new MM and the new
  2347. * thread's register state.
  2348. */
  2349. static inline void
  2350. context_switch(struct rq *rq, struct task_struct *prev,
  2351. struct task_struct *next)
  2352. {
  2353. struct mm_struct *mm, *oldmm;
  2354. prepare_task_switch(rq, prev, next);
  2355. trace_sched_switch(prev, next);
  2356. mm = next->mm;
  2357. oldmm = prev->active_mm;
  2358. /*
  2359. * For paravirt, this is coupled with an exit in switch_to to
  2360. * combine the page table reload and the switch backend into
  2361. * one hypercall.
  2362. */
  2363. arch_start_context_switch(prev);
  2364. if (likely(!mm)) {
  2365. next->active_mm = oldmm;
  2366. atomic_inc(&oldmm->mm_count);
  2367. enter_lazy_tlb(oldmm, next);
  2368. } else
  2369. switch_mm(oldmm, mm, next);
  2370. if (likely(!prev->mm)) {
  2371. prev->active_mm = NULL;
  2372. rq->prev_mm = oldmm;
  2373. }
  2374. /*
  2375. * Since the runqueue lock will be released by the next
  2376. * task (which is an invalid locking op but in the case
  2377. * of the scheduler it's an obvious special-case), so we
  2378. * do an early lockdep release here:
  2379. */
  2380. #ifndef __ARCH_WANT_UNLOCKED_CTXSW
  2381. spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
  2382. #endif
  2383. /* Here we just switch the register state and the stack. */
  2384. switch_to(prev, next, prev);
  2385. barrier();
  2386. /*
  2387. * this_rq must be evaluated again because prev may have moved
  2388. * CPUs since it called schedule(), thus the 'rq' on its stack
  2389. * frame will be invalid.
  2390. */
  2391. finish_task_switch(this_rq(), prev);
  2392. }
  2393. /*
  2394. * nr_running, nr_uninterruptible and nr_context_switches:
  2395. *
  2396. * externally visible scheduler statistics: current number of runnable
  2397. * threads, current number of uninterruptible-sleeping threads, total
  2398. * number of context switches performed since bootup.
  2399. */
  2400. unsigned long nr_running(void)
  2401. {
  2402. unsigned long i, sum = 0;
  2403. for_each_online_cpu(i)
  2404. sum += cpu_rq(i)->nr_running;
  2405. return sum;
  2406. }
  2407. unsigned long nr_uninterruptible(void)
  2408. {
  2409. unsigned long i, sum = 0;
  2410. for_each_possible_cpu(i)
  2411. sum += cpu_rq(i)->nr_uninterruptible;
  2412. /*
  2413. * Since we read the counters lockless, it might be slightly
  2414. * inaccurate. Do not allow it to go below zero though:
  2415. */
  2416. if (unlikely((long)sum < 0))
  2417. sum = 0;
  2418. return sum;
  2419. }
  2420. unsigned long long nr_context_switches(void)
  2421. {
  2422. int i;
  2423. unsigned long long sum = 0;
  2424. for_each_possible_cpu(i)
  2425. sum += cpu_rq(i)->nr_switches;
  2426. return sum;
  2427. }
  2428. unsigned long nr_iowait(void)
  2429. {
  2430. unsigned long i, sum = 0;
  2431. for_each_possible_cpu(i)
  2432. sum += atomic_read(&cpu_rq(i)->nr_iowait);
  2433. return sum;
  2434. }
  2435. unsigned long nr_iowait_cpu(void)
  2436. {
  2437. struct rq *this = this_rq();
  2438. return atomic_read(&this->nr_iowait);
  2439. }
  2440. unsigned long this_cpu_load(void)
  2441. {
  2442. struct rq *this = this_rq();
  2443. return this->cpu_load[0];
  2444. }
  2445. /* Variables and functions for calc_load */
  2446. static atomic_long_t calc_load_tasks;
  2447. static unsigned long calc_load_update;
  2448. unsigned long avenrun[3];
  2449. EXPORT_SYMBOL(avenrun);
  2450. static long calc_load_fold_active(struct rq *this_rq)
  2451. {
  2452. long nr_active, delta = 0;
  2453. nr_active = this_rq->nr_running;
  2454. nr_active += (long) this_rq->nr_uninterruptible;
  2455. if (nr_active != this_rq->calc_load_active) {
  2456. delta = nr_active - this_rq->calc_load_active;
  2457. this_rq->calc_load_active = nr_active;
  2458. }
  2459. return delta;
  2460. }
  2461. #ifdef CONFIG_NO_HZ
  2462. /*
  2463. * For NO_HZ we delay the active fold to the next LOAD_FREQ update.
  2464. *
  2465. * When making the ILB scale, we should try to pull this in as well.
  2466. */
  2467. static atomic_long_t calc_load_tasks_idle;
  2468. static void calc_load_account_idle(struct rq *this_rq)
  2469. {
  2470. long delta;
  2471. delta = calc_load_fold_active(this_rq);
  2472. if (delta)
  2473. atomic_long_add(delta, &calc_load_tasks_idle);
  2474. }
  2475. static long calc_load_fold_idle(void)
  2476. {
  2477. long delta = 0;
  2478. /*
  2479. * Its got a race, we don't care...
  2480. */
  2481. if (atomic_long_read(&calc_load_tasks_idle))
  2482. delta = atomic_long_xchg(&calc_load_tasks_idle, 0);
  2483. return delta;
  2484. }
  2485. #else
  2486. static void calc_load_account_idle(struct rq *this_rq)
  2487. {
  2488. }
  2489. static inline long calc_load_fold_idle(void)
  2490. {
  2491. return 0;
  2492. }
  2493. #endif
  2494. /**
  2495. * get_avenrun - get the load average array
  2496. * @loads: pointer to dest load array
  2497. * @offset: offset to add
  2498. * @shift: shift count to shift the result left
  2499. *
  2500. * These values are estimates at best, so no need for locking.
  2501. */
  2502. void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
  2503. {
  2504. loads[0] = (avenrun[0] + offset) << shift;
  2505. loads[1] = (avenrun[1] + offset) << shift;
  2506. loads[2] = (avenrun[2] + offset) << shift;
  2507. }
  2508. static unsigned long
  2509. calc_load(unsigned long load, unsigned long exp, unsigned long active)
  2510. {
  2511. load *= exp;
  2512. load += active * (FIXED_1 - exp);
  2513. return load >> FSHIFT;
  2514. }
  2515. /*
  2516. * calc_load - update the avenrun load estimates 10 ticks after the
  2517. * CPUs have updated calc_load_tasks.
  2518. */
  2519. void calc_global_load(void)
  2520. {
  2521. unsigned long upd = calc_load_update + 10;
  2522. long active;
  2523. if (time_before(jiffies, upd))
  2524. return;
  2525. active = atomic_long_read(&calc_load_tasks);
  2526. active = active > 0 ? active * FIXED_1 : 0;
  2527. avenrun[0] = calc_load(avenrun[0], EXP_1, active);
  2528. avenrun[1] = calc_load(avenrun[1], EXP_5, active);
  2529. avenrun[2] = calc_load(avenrun[2], EXP_15, active);
  2530. calc_load_update += LOAD_FREQ;
  2531. }
  2532. /*
  2533. * Called from update_cpu_load() to periodically update this CPU's
  2534. * active count.
  2535. */
  2536. static void calc_load_account_active(struct rq *this_rq)
  2537. {
  2538. long delta;
  2539. if (time_before(jiffies, this_rq->calc_load_update))
  2540. return;
  2541. delta = calc_load_fold_active(this_rq);
  2542. delta += calc_load_fold_idle();
  2543. if (delta)
  2544. atomic_long_add(delta, &calc_load_tasks);
  2545. this_rq->calc_load_update += LOAD_FREQ;
  2546. }
  2547. /*
  2548. * Update rq->cpu_load[] statistics. This function is usually called every
  2549. * scheduler tick (TICK_NSEC).
  2550. */
  2551. static void update_cpu_load(struct rq *this_rq)
  2552. {
  2553. unsigned long this_load = this_rq->load.weight;
  2554. int i, scale;
  2555. this_rq->nr_load_updates++;
  2556. /* Update our load: */
  2557. for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
  2558. unsigned long old_load, new_load;
  2559. /* scale is effectively 1 << i now, and >> i divides by scale */
  2560. old_load = this_rq->cpu_load[i];
  2561. new_load = this_load;
  2562. /*
  2563. * Round up the averaging division if load is increasing. This
  2564. * prevents us from getting stuck on 9 if the load is 10, for
  2565. * example.
  2566. */
  2567. if (new_load > old_load)
  2568. new_load += scale-1;
  2569. this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
  2570. }
  2571. calc_load_account_active(this_rq);
  2572. }
  2573. #ifdef CONFIG_SMP
  2574. /*
  2575. * sched_exec - execve() is a valuable balancing opportunity, because at
  2576. * this point the task has the smallest effective memory and cache footprint.
  2577. */
  2578. void sched_exec(void)
  2579. {
  2580. struct task_struct *p = current;
  2581. unsigned long flags;
  2582. struct rq *rq;
  2583. int dest_cpu;
  2584. rq = task_rq_lock(p, &flags);
  2585. dest_cpu = p->sched_class->select_task_rq(rq, p, SD_BALANCE_EXEC, 0);
  2586. if (dest_cpu == smp_processor_id())
  2587. goto unlock;
  2588. /*
  2589. * select_task_rq() can race against ->cpus_allowed
  2590. */
  2591. if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed) &&
  2592. likely(cpu_active(dest_cpu)) && migrate_task(p, dest_cpu)) {
  2593. struct migration_arg arg = { p, dest_cpu };
  2594. task_rq_unlock(rq, &flags);
  2595. stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
  2596. return;
  2597. }
  2598. unlock:
  2599. task_rq_unlock(rq, &flags);
  2600. }
  2601. #endif
  2602. DEFINE_PER_CPU(struct kernel_stat, kstat);
  2603. EXPORT_PER_CPU_SYMBOL(kstat);
  2604. /*
  2605. * Return any ns on the sched_clock that have not yet been accounted in
  2606. * @p in case that task is currently running.
  2607. *
  2608. * Called with task_rq_lock() held on @rq.
  2609. */
  2610. static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
  2611. {
  2612. u64 ns = 0;
  2613. if (task_current(rq, p)) {
  2614. update_rq_clock(rq);
  2615. ns = rq->clock - p->se.exec_start;
  2616. if ((s64)ns < 0)
  2617. ns = 0;
  2618. }
  2619. return ns;
  2620. }
  2621. unsigned long long task_delta_exec(struct task_struct *p)
  2622. {
  2623. unsigned long flags;
  2624. struct rq *rq;
  2625. u64 ns = 0;
  2626. rq = task_rq_lock(p, &flags);
  2627. ns = do_task_delta_exec(p, rq);
  2628. task_rq_unlock(rq, &flags);
  2629. return ns;
  2630. }
  2631. /*
  2632. * Return accounted runtime for the task.
  2633. * In case the task is currently running, return the runtime plus current's
  2634. * pending runtime that have not been accounted yet.
  2635. */
  2636. unsigned long long task_sched_runtime(struct task_struct *p)
  2637. {
  2638. unsigned long flags;
  2639. struct rq *rq;
  2640. u64 ns = 0;
  2641. rq = task_rq_lock(p, &flags);
  2642. ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
  2643. task_rq_unlock(rq, &flags);
  2644. return ns;
  2645. }
  2646. /*
  2647. * Return sum_exec_runtime for the thread group.
  2648. * In case the task is currently running, return the sum plus current's
  2649. * pending runtime that have not been accounted yet.
  2650. *
  2651. * Note that the thread group might have other running tasks as well,
  2652. * so the return value not includes other pending runtime that other
  2653. * running tasks might have.
  2654. */
  2655. unsigned long long thread_group_sched_runtime(struct task_struct *p)
  2656. {
  2657. struct task_cputime totals;
  2658. unsigned long flags;
  2659. struct rq *rq;
  2660. u64 ns;
  2661. rq = task_rq_lock(p, &flags);
  2662. thread_group_cputime(p, &totals);
  2663. ns = totals.sum_exec_runtime + do_task_delta_exec(p, rq);
  2664. task_rq_unlock(rq, &flags);
  2665. return ns;
  2666. }
  2667. /*
  2668. * Account user cpu time to a process.
  2669. * @p: the process that the cpu time gets accounted to
  2670. * @cputime: the cpu time spent in user space since the last update
  2671. * @cputime_scaled: cputime scaled by cpu frequency
  2672. */
  2673. void account_user_time(struct task_struct *p, cputime_t cputime,
  2674. cputime_t cputime_scaled)
  2675. {
  2676. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  2677. cputime64_t tmp;
  2678. /* Add user time to process. */
  2679. p->utime = cputime_add(p->utime, cputime);
  2680. p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
  2681. account_group_user_time(p, cputime);
  2682. /* Add user time to cpustat. */
  2683. tmp = cputime_to_cputime64(cputime);
  2684. if (TASK_NICE(p) > 0)
  2685. cpustat->nice = cputime64_add(cpustat->nice, tmp);
  2686. else
  2687. cpustat->user = cputime64_add(cpustat->user, tmp);
  2688. cpuacct_update_stats(p, CPUACCT_STAT_USER, cputime);
  2689. /* Account for user time used */
  2690. acct_update_integrals(p);
  2691. }
  2692. /*
  2693. * Account guest cpu time to a process.
  2694. * @p: the process that the cpu time gets accounted to
  2695. * @cputime: the cpu time spent in virtual machine since the last update
  2696. * @cputime_scaled: cputime scaled by cpu frequency
  2697. */
  2698. static void account_guest_time(struct task_struct *p, cputime_t cputime,
  2699. cputime_t cputime_scaled)
  2700. {
  2701. cputime64_t tmp;
  2702. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  2703. tmp = cputime_to_cputime64(cputime);
  2704. /* Add guest time to process. */
  2705. p->utime = cputime_add(p->utime, cputime);
  2706. p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
  2707. account_group_user_time(p, cputime);
  2708. p->gtime = cputime_add(p->gtime, cputime);
  2709. /* Add guest time to cpustat. */
  2710. if (TASK_NICE(p) > 0) {
  2711. cpustat->nice = cputime64_add(cpustat->nice, tmp);
  2712. cpustat->guest_nice = cputime64_add(cpustat->guest_nice, tmp);
  2713. } else {
  2714. cpustat->user = cputime64_add(cpustat->user, tmp);
  2715. cpustat->guest = cputime64_add(cpustat->guest, tmp);
  2716. }
  2717. }
  2718. /*
  2719. * Account system cpu time to a process.
  2720. * @p: the process that the cpu time gets accounted to
  2721. * @hardirq_offset: the offset to subtract from hardirq_count()
  2722. * @cputime: the cpu time spent in kernel space since the last update
  2723. * @cputime_scaled: cputime scaled by cpu frequency
  2724. */
  2725. void account_system_time(struct task_struct *p, int hardirq_offset,
  2726. cputime_t cputime, cputime_t cputime_scaled)
  2727. {
  2728. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  2729. cputime64_t tmp;
  2730. if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
  2731. account_guest_time(p, cputime, cputime_scaled);
  2732. return;
  2733. }
  2734. /* Add system time to process. */
  2735. p->stime = cputime_add(p->stime, cputime);
  2736. p->stimescaled = cputime_add(p->stimescaled, cputime_scaled);
  2737. account_group_system_time(p, cputime);
  2738. /* Add system time to cpustat. */
  2739. tmp = cputime_to_cputime64(cputime);
  2740. if (hardirq_count() - hardirq_offset)
  2741. cpustat->irq = cputime64_add(cpustat->irq, tmp);
  2742. else if (softirq_count())
  2743. cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
  2744. else
  2745. cpustat->system = cputime64_add(cpustat->system, tmp);
  2746. cpuacct_update_stats(p, CPUACCT_STAT_SYSTEM, cputime);
  2747. /* Account for system time used */
  2748. acct_update_integrals(p);
  2749. }
  2750. /*
  2751. * Account for involuntary wait time.
  2752. * @steal: the cpu time spent in involuntary wait
  2753. */
  2754. void account_steal_time(cputime_t cputime)
  2755. {
  2756. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  2757. cputime64_t cputime64 = cputime_to_cputime64(cputime);
  2758. cpustat->steal = cputime64_add(cpustat->steal, cputime64);
  2759. }
  2760. /*
  2761. * Account for idle time.
  2762. * @cputime: the cpu time spent in idle wait
  2763. */
  2764. void account_idle_time(cputime_t cputime)
  2765. {
  2766. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  2767. cputime64_t cputime64 = cputime_to_cputime64(cputime);
  2768. struct rq *rq = this_rq();
  2769. if (atomic_read(&rq->nr_iowait) > 0)
  2770. cpustat->iowait = cputime64_add(cpustat->iowait, cputime64);
  2771. else
  2772. cpustat->idle = cputime64_add(cpustat->idle, cputime64);
  2773. }
  2774. #ifndef CONFIG_VIRT_CPU_ACCOUNTING
  2775. /*
  2776. * Account a single tick of cpu time.
  2777. * @p: the process that the cpu time gets accounted to
  2778. * @user_tick: indicates if the tick is a user or a system tick
  2779. */
  2780. void account_process_tick(struct task_struct *p, int user_tick)
  2781. {
  2782. cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
  2783. struct rq *rq = this_rq();
  2784. if (user_tick)
  2785. account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
  2786. else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET))
  2787. account_system_time(p, HARDIRQ_OFFSET, cputime_one_jiffy,
  2788. one_jiffy_scaled);
  2789. else
  2790. account_idle_time(cputime_one_jiffy);
  2791. }
  2792. /*
  2793. * Account multiple ticks of steal time.
  2794. * @p: the process from which the cpu time has been stolen
  2795. * @ticks: number of stolen ticks
  2796. */
  2797. void account_steal_ticks(unsigned long ticks)
  2798. {
  2799. account_steal_time(jiffies_to_cputime(ticks));
  2800. }
  2801. /*
  2802. * Account multiple ticks of idle time.
  2803. * @ticks: number of stolen ticks
  2804. */
  2805. void account_idle_ticks(unsigned long ticks)
  2806. {
  2807. account_idle_time(jiffies_to_cputime(ticks));
  2808. }
  2809. #endif
  2810. /*
  2811. * Use precise platform statistics if available:
  2812. */
  2813. #ifdef CONFIG_VIRT_CPU_ACCOUNTING
  2814. void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
  2815. {
  2816. *ut = p->utime;
  2817. *st = p->stime;
  2818. }
  2819. void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
  2820. {
  2821. struct task_cputime cputime;
  2822. thread_group_cputime(p, &cputime);
  2823. *ut = cputime.utime;
  2824. *st = cputime.stime;
  2825. }
  2826. #else
  2827. #ifndef nsecs_to_cputime
  2828. # define nsecs_to_cputime(__nsecs) nsecs_to_jiffies(__nsecs)
  2829. #endif
  2830. void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
  2831. {
  2832. cputime_t rtime, utime = p->utime, total = cputime_add(utime, p->stime);
  2833. /*
  2834. * Use CFS's precise accounting:
  2835. */
  2836. rtime = nsecs_to_cputime(p->se.sum_exec_runtime);
  2837. if (total) {
  2838. u64 temp;
  2839. temp = (u64)(rtime * utime);
  2840. do_div(temp, total);
  2841. utime = (cputime_t)temp;
  2842. } else
  2843. utime = rtime;
  2844. /*
  2845. * Compare with previous values, to keep monotonicity:
  2846. */
  2847. p->prev_utime = max(p->prev_utime, utime);
  2848. p->prev_stime = max(p->prev_stime, cputime_sub(rtime, p->prev_utime));
  2849. *ut = p->prev_utime;
  2850. *st = p->prev_stime;
  2851. }
  2852. /*
  2853. * Must be called with siglock held.
  2854. */
  2855. void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
  2856. {
  2857. struct signal_struct *sig = p->signal;
  2858. struct task_cputime cputime;
  2859. cputime_t rtime, utime, total;
  2860. thread_group_cputime(p, &cputime);
  2861. total = cputime_add(cputime.utime, cputime.stime);
  2862. rtime = nsecs_to_cputime(cputime.sum_exec_runtime);
  2863. if (total) {
  2864. u64 temp;
  2865. temp = (u64)(rtime * cputime.utime);
  2866. do_div(temp, total);
  2867. utime = (cputime_t)temp;
  2868. } else
  2869. utime = rtime;
  2870. sig->prev_utime = max(sig->prev_utime, utime);
  2871. sig->prev_stime = max(sig->prev_stime,
  2872. cputime_sub(rtime, sig->prev_utime));
  2873. *ut = sig->prev_utime;
  2874. *st = sig->prev_stime;
  2875. }
  2876. #endif
  2877. /*
  2878. * This function gets called by the timer code, with HZ frequency.
  2879. * We call it with interrupts disabled.
  2880. *
  2881. * It also gets called by the fork code, when changing the parent's
  2882. * timeslices.
  2883. */
  2884. void scheduler_tick(void)
  2885. {
  2886. int cpu = smp_processor_id();
  2887. struct rq *rq = cpu_rq(cpu);
  2888. struct task_struct *curr = rq->curr;
  2889. sched_clock_tick();
  2890. raw_spin_lock(&rq->lock);
  2891. update_rq_clock(rq);
  2892. update_cpu_load(rq);
  2893. curr->sched_class->task_tick(rq, curr, 0);
  2894. raw_spin_unlock(&rq->lock);
  2895. perf_event_task_tick(curr);
  2896. #ifdef CONFIG_SMP
  2897. rq->idle_at_tick = idle_cpu(cpu);
  2898. trigger_load_balance(rq, cpu);
  2899. #endif
  2900. }
  2901. notrace unsigned long get_parent_ip(unsigned long addr)
  2902. {
  2903. if (in_lock_functions(addr)) {
  2904. addr = CALLER_ADDR2;
  2905. if (in_lock_functions(addr))
  2906. addr = CALLER_ADDR3;
  2907. }
  2908. return addr;
  2909. }
  2910. #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
  2911. defined(CONFIG_PREEMPT_TRACER))
  2912. void __kprobes add_preempt_count(int val)
  2913. {
  2914. #ifdef CONFIG_DEBUG_PREEMPT
  2915. /*
  2916. * Underflow?
  2917. */
  2918. if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
  2919. return;
  2920. #endif
  2921. preempt_count() += val;
  2922. #ifdef CONFIG_DEBUG_PREEMPT
  2923. /*
  2924. * Spinlock count overflowing soon?
  2925. */
  2926. DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
  2927. PREEMPT_MASK - 10);
  2928. #endif
  2929. if (preempt_count() == val)
  2930. trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
  2931. }
  2932. EXPORT_SYMBOL(add_preempt_count);
  2933. void __kprobes sub_preempt_count(int val)
  2934. {
  2935. #ifdef CONFIG_DEBUG_PREEMPT
  2936. /*
  2937. * Underflow?
  2938. */
  2939. if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
  2940. return;
  2941. /*
  2942. * Is the spinlock portion underflowing?
  2943. */
  2944. if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
  2945. !(preempt_count() & PREEMPT_MASK)))
  2946. return;
  2947. #endif
  2948. if (preempt_count() == val)
  2949. trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
  2950. preempt_count() -= val;
  2951. }
  2952. EXPORT_SYMBOL(sub_preempt_count);
  2953. #endif
  2954. /*
  2955. * Print scheduling while atomic bug:
  2956. */
  2957. static noinline void __schedule_bug(struct task_struct *prev)
  2958. {
  2959. struct pt_regs *regs = get_irq_regs();
  2960. printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
  2961. prev->comm, prev->pid, preempt_count());
  2962. debug_show_held_locks(prev);
  2963. print_modules();
  2964. if (irqs_disabled())
  2965. print_irqtrace_events(prev);
  2966. if (regs)
  2967. show_regs(regs);
  2968. else
  2969. dump_stack();
  2970. }
  2971. /*
  2972. * Various schedule()-time debugging checks and statistics:
  2973. */
  2974. static inline void schedule_debug(struct task_struct *prev)
  2975. {
  2976. /*
  2977. * Test if we are atomic. Since do_exit() needs to call into
  2978. * schedule() atomically, we ignore that path for now.
  2979. * Otherwise, whine if we are scheduling when we should not be.
  2980. */
  2981. if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
  2982. __schedule_bug(prev);
  2983. profile_hit(SCHED_PROFILING, __builtin_return_address(0));
  2984. schedstat_inc(this_rq(), sched_count);
  2985. #ifdef CONFIG_SCHEDSTATS
  2986. if (unlikely(prev->lock_depth >= 0)) {
  2987. schedstat_inc(this_rq(), bkl_count);
  2988. schedstat_inc(prev, sched_info.bkl_count);
  2989. }
  2990. #endif
  2991. }
  2992. static void put_prev_task(struct rq *rq, struct task_struct *prev)
  2993. {
  2994. if (prev->se.on_rq)
  2995. update_rq_clock(rq);
  2996. rq->skip_clock_update = 0;
  2997. prev->sched_class->put_prev_task(rq, prev);
  2998. }
  2999. /*
  3000. * Pick up the highest-prio task:
  3001. */
  3002. static inline struct task_struct *
  3003. pick_next_task(struct rq *rq)
  3004. {
  3005. const struct sched_class *class;
  3006. struct task_struct *p;
  3007. /*
  3008. * Optimization: we know that if all tasks are in
  3009. * the fair class we can call that function directly:
  3010. */
  3011. if (likely(rq->nr_running == rq->cfs.nr_running)) {
  3012. p = fair_sched_class.pick_next_task(rq);
  3013. if (likely(p))
  3014. return p;
  3015. }
  3016. class = sched_class_highest;
  3017. for ( ; ; ) {
  3018. p = class->pick_next_task(rq);
  3019. if (p)
  3020. return p;
  3021. /*
  3022. * Will never be NULL as the idle class always
  3023. * returns a non-NULL p:
  3024. */
  3025. class = class->next;
  3026. }
  3027. }
  3028. /*
  3029. * schedule() is the main scheduler function.
  3030. */
  3031. asmlinkage void __sched schedule(void)
  3032. {
  3033. struct task_struct *prev, *next;
  3034. unsigned long *switch_count;
  3035. struct rq *rq;
  3036. int cpu;
  3037. need_resched:
  3038. preempt_disable();
  3039. cpu = smp_processor_id();
  3040. rq = cpu_rq(cpu);
  3041. rcu_note_context_switch(cpu);
  3042. prev = rq->curr;
  3043. switch_count = &prev->nivcsw;
  3044. release_kernel_lock(prev);
  3045. need_resched_nonpreemptible:
  3046. schedule_debug(prev);
  3047. if (sched_feat(HRTICK))
  3048. hrtick_clear(rq);
  3049. raw_spin_lock_irq(&rq->lock);
  3050. clear_tsk_need_resched(prev);
  3051. if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
  3052. if (unlikely(signal_pending_state(prev->state, prev)))
  3053. prev->state = TASK_RUNNING;
  3054. else
  3055. deactivate_task(rq, prev, DEQUEUE_SLEEP);
  3056. switch_count = &prev->nvcsw;
  3057. }
  3058. pre_schedule(rq, prev);
  3059. if (unlikely(!rq->nr_running))
  3060. idle_balance(cpu, rq);
  3061. put_prev_task(rq, prev);
  3062. next = pick_next_task(rq);
  3063. if (likely(prev != next)) {
  3064. sched_info_switch(prev, next);
  3065. perf_event_task_sched_out(prev, next);
  3066. rq->nr_switches++;
  3067. rq->curr = next;
  3068. ++*switch_count;
  3069. context_switch(rq, prev, next); /* unlocks the rq */
  3070. /*
  3071. * the context switch might have flipped the stack from under
  3072. * us, hence refresh the local variables.
  3073. */
  3074. cpu = smp_processor_id();
  3075. rq = cpu_rq(cpu);
  3076. } else
  3077. raw_spin_unlock_irq(&rq->lock);
  3078. post_schedule(rq);
  3079. if (unlikely(reacquire_kernel_lock(current) < 0)) {
  3080. prev = rq->curr;
  3081. switch_count = &prev->nivcsw;
  3082. goto need_resched_nonpreemptible;
  3083. }
  3084. preempt_enable_no_resched();
  3085. if (need_resched())
  3086. goto need_resched;
  3087. }
  3088. EXPORT_SYMBOL(schedule);
  3089. #ifdef CONFIG_MUTEX_SPIN_ON_OWNER
  3090. /*
  3091. * Look out! "owner" is an entirely speculative pointer
  3092. * access and not reliable.
  3093. */
  3094. int mutex_spin_on_owner(struct mutex *lock, struct thread_info *owner)
  3095. {
  3096. unsigned int cpu;
  3097. struct rq *rq;
  3098. if (!sched_feat(OWNER_SPIN))
  3099. return 0;
  3100. #ifdef CONFIG_DEBUG_PAGEALLOC
  3101. /*
  3102. * Need to access the cpu field knowing that
  3103. * DEBUG_PAGEALLOC could have unmapped it if
  3104. * the mutex owner just released it and exited.
  3105. */
  3106. if (probe_kernel_address(&owner->cpu, cpu))
  3107. return 0;
  3108. #else
  3109. cpu = owner->cpu;
  3110. #endif
  3111. /*
  3112. * Even if the access succeeded (likely case),
  3113. * the cpu field may no longer be valid.
  3114. */
  3115. if (cpu >= nr_cpumask_bits)
  3116. return 0;
  3117. /*
  3118. * We need to validate that we can do a
  3119. * get_cpu() and that we have the percpu area.
  3120. */
  3121. if (!cpu_online(cpu))
  3122. return 0;
  3123. rq = cpu_rq(cpu);
  3124. for (;;) {
  3125. /*
  3126. * Owner changed, break to re-assess state.
  3127. */
  3128. if (lock->owner != owner)
  3129. break;
  3130. /*
  3131. * Is that owner really running on that cpu?
  3132. */
  3133. if (task_thread_info(rq->curr) != owner || need_resched())
  3134. return 0;
  3135. cpu_relax();
  3136. }
  3137. return 1;
  3138. }
  3139. #endif
  3140. #ifdef CONFIG_PREEMPT
  3141. /*
  3142. * this is the entry point to schedule() from in-kernel preemption
  3143. * off of preempt_enable. Kernel preemptions off return from interrupt
  3144. * occur there and call schedule directly.
  3145. */
  3146. asmlinkage void __sched preempt_schedule(void)
  3147. {
  3148. struct thread_info *ti = current_thread_info();
  3149. /*
  3150. * If there is a non-zero preempt_count or interrupts are disabled,
  3151. * we do not want to preempt the current task. Just return..
  3152. */
  3153. if (likely(ti->preempt_count || irqs_disabled()))
  3154. return;
  3155. do {
  3156. add_preempt_count(PREEMPT_ACTIVE);
  3157. schedule();
  3158. sub_preempt_count(PREEMPT_ACTIVE);
  3159. /*
  3160. * Check again in case we missed a preemption opportunity
  3161. * between schedule and now.
  3162. */
  3163. barrier();
  3164. } while (need_resched());
  3165. }
  3166. EXPORT_SYMBOL(preempt_schedule);
  3167. /*
  3168. * this is the entry point to schedule() from kernel preemption
  3169. * off of irq context.
  3170. * Note, that this is called and return with irqs disabled. This will
  3171. * protect us against recursive calling from irq.
  3172. */
  3173. asmlinkage void __sched preempt_schedule_irq(void)
  3174. {
  3175. struct thread_info *ti = current_thread_info();
  3176. /* Catch callers which need to be fixed */
  3177. BUG_ON(ti->preempt_count || !irqs_disabled());
  3178. do {
  3179. add_preempt_count(PREEMPT_ACTIVE);
  3180. local_irq_enable();
  3181. schedule();
  3182. local_irq_disable();
  3183. sub_preempt_count(PREEMPT_ACTIVE);
  3184. /*
  3185. * Check again in case we missed a preemption opportunity
  3186. * between schedule and now.
  3187. */
  3188. barrier();
  3189. } while (need_resched());
  3190. }
  3191. #endif /* CONFIG_PREEMPT */
  3192. int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
  3193. void *key)
  3194. {
  3195. return try_to_wake_up(curr->private, mode, wake_flags);
  3196. }
  3197. EXPORT_SYMBOL(default_wake_function);
  3198. /*
  3199. * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
  3200. * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
  3201. * number) then we wake all the non-exclusive tasks and one exclusive task.
  3202. *
  3203. * There are circumstances in which we can try to wake a task which has already
  3204. * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
  3205. * zero in this (rare) case, and we handle it by continuing to scan the queue.
  3206. */
  3207. static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
  3208. int nr_exclusive, int wake_flags, void *key)
  3209. {
  3210. wait_queue_t *curr, *next;
  3211. list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
  3212. unsigned flags = curr->flags;
  3213. if (curr->func(curr, mode, wake_flags, key) &&
  3214. (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
  3215. break;
  3216. }
  3217. }
  3218. /**
  3219. * __wake_up - wake up threads blocked on a waitqueue.
  3220. * @q: the waitqueue
  3221. * @mode: which threads
  3222. * @nr_exclusive: how many wake-one or wake-many threads to wake up
  3223. * @key: is directly passed to the wakeup function
  3224. *
  3225. * It may be assumed that this function implies a write memory barrier before
  3226. * changing the task state if and only if any tasks are woken up.
  3227. */
  3228. void __wake_up(wait_queue_head_t *q, unsigned int mode,
  3229. int nr_exclusive, void *key)
  3230. {
  3231. unsigned long flags;
  3232. spin_lock_irqsave(&q->lock, flags);
  3233. __wake_up_common(q, mode, nr_exclusive, 0, key);
  3234. spin_unlock_irqrestore(&q->lock, flags);
  3235. }
  3236. EXPORT_SYMBOL(__wake_up);
  3237. /*
  3238. * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
  3239. */
  3240. void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
  3241. {
  3242. __wake_up_common(q, mode, 1, 0, NULL);
  3243. }
  3244. void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
  3245. {
  3246. __wake_up_common(q, mode, 1, 0, key);
  3247. }
  3248. /**
  3249. * __wake_up_sync_key - wake up threads blocked on a waitqueue.
  3250. * @q: the waitqueue
  3251. * @mode: which threads
  3252. * @nr_exclusive: how many wake-one or wake-many threads to wake up
  3253. * @key: opaque value to be passed to wakeup targets
  3254. *
  3255. * The sync wakeup differs that the waker knows that it will schedule
  3256. * away soon, so while the target thread will be woken up, it will not
  3257. * be migrated to another CPU - ie. the two threads are 'synchronized'
  3258. * with each other. This can prevent needless bouncing between CPUs.
  3259. *
  3260. * On UP it can prevent extra preemption.
  3261. *
  3262. * It may be assumed that this function implies a write memory barrier before
  3263. * changing the task state if and only if any tasks are woken up.
  3264. */
  3265. void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
  3266. int nr_exclusive, void *key)
  3267. {
  3268. unsigned long flags;
  3269. int wake_flags = WF_SYNC;
  3270. if (unlikely(!q))
  3271. return;
  3272. if (unlikely(!nr_exclusive))
  3273. wake_flags = 0;
  3274. spin_lock_irqsave(&q->lock, flags);
  3275. __wake_up_common(q, mode, nr_exclusive, wake_flags, key);
  3276. spin_unlock_irqrestore(&q->lock, flags);
  3277. }
  3278. EXPORT_SYMBOL_GPL(__wake_up_sync_key);
  3279. /*
  3280. * __wake_up_sync - see __wake_up_sync_key()
  3281. */
  3282. void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
  3283. {
  3284. __wake_up_sync_key(q, mode, nr_exclusive, NULL);
  3285. }
  3286. EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
  3287. /**
  3288. * complete: - signals a single thread waiting on this completion
  3289. * @x: holds the state of this particular completion
  3290. *
  3291. * This will wake up a single thread waiting on this completion. Threads will be
  3292. * awakened in the same order in which they were queued.
  3293. *
  3294. * See also complete_all(), wait_for_completion() and related routines.
  3295. *
  3296. * It may be assumed that this function implies a write memory barrier before
  3297. * changing the task state if and only if any tasks are woken up.
  3298. */
  3299. void complete(struct completion *x)
  3300. {
  3301. unsigned long flags;
  3302. spin_lock_irqsave(&x->wait.lock, flags);
  3303. x->done++;
  3304. __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
  3305. spin_unlock_irqrestore(&x->wait.lock, flags);
  3306. }
  3307. EXPORT_SYMBOL(complete);
  3308. /**
  3309. * complete_all: - signals all threads waiting on this completion
  3310. * @x: holds the state of this particular completion
  3311. *
  3312. * This will wake up all threads waiting on this particular completion event.
  3313. *
  3314. * It may be assumed that this function implies a write memory barrier before
  3315. * changing the task state if and only if any tasks are woken up.
  3316. */
  3317. void complete_all(struct completion *x)
  3318. {
  3319. unsigned long flags;
  3320. spin_lock_irqsave(&x->wait.lock, flags);
  3321. x->done += UINT_MAX/2;
  3322. __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
  3323. spin_unlock_irqrestore(&x->wait.lock, flags);
  3324. }
  3325. EXPORT_SYMBOL(complete_all);
  3326. static inline long __sched
  3327. do_wait_for_common(struct completion *x, long timeout, int state)
  3328. {
  3329. if (!x->done) {
  3330. DECLARE_WAITQUEUE(wait, current);
  3331. __add_wait_queue_tail_exclusive(&x->wait, &wait);
  3332. do {
  3333. if (signal_pending_state(state, current)) {
  3334. timeout = -ERESTARTSYS;
  3335. break;
  3336. }
  3337. __set_current_state(state);
  3338. spin_unlock_irq(&x->wait.lock);
  3339. timeout = schedule_timeout(timeout);
  3340. spin_lock_irq(&x->wait.lock);
  3341. } while (!x->done && timeout);
  3342. __remove_wait_queue(&x->wait, &wait);
  3343. if (!x->done)
  3344. return timeout;
  3345. }
  3346. x->done--;
  3347. return timeout ?: 1;
  3348. }
  3349. static long __sched
  3350. wait_for_common(struct completion *x, long timeout, int state)
  3351. {
  3352. might_sleep();
  3353. spin_lock_irq(&x->wait.lock);
  3354. timeout = do_wait_for_common(x, timeout, state);
  3355. spin_unlock_irq(&x->wait.lock);
  3356. return timeout;
  3357. }
  3358. /**
  3359. * wait_for_completion: - waits for completion of a task
  3360. * @x: holds the state of this particular completion
  3361. *
  3362. * This waits to be signaled for completion of a specific task. It is NOT
  3363. * interruptible and there is no timeout.
  3364. *
  3365. * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
  3366. * and interrupt capability. Also see complete().
  3367. */
  3368. void __sched wait_for_completion(struct completion *x)
  3369. {
  3370. wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
  3371. }
  3372. EXPORT_SYMBOL(wait_for_completion);
  3373. /**
  3374. * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
  3375. * @x: holds the state of this particular completion
  3376. * @timeout: timeout value in jiffies
  3377. *
  3378. * This waits for either a completion of a specific task to be signaled or for a
  3379. * specified timeout to expire. The timeout is in jiffies. It is not
  3380. * interruptible.
  3381. */
  3382. unsigned long __sched
  3383. wait_for_completion_timeout(struct completion *x, unsigned long timeout)
  3384. {
  3385. return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
  3386. }
  3387. EXPORT_SYMBOL(wait_for_completion_timeout);
  3388. /**
  3389. * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
  3390. * @x: holds the state of this particular completion
  3391. *
  3392. * This waits for completion of a specific task to be signaled. It is
  3393. * interruptible.
  3394. */
  3395. int __sched wait_for_completion_interruptible(struct completion *x)
  3396. {
  3397. long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
  3398. if (t == -ERESTARTSYS)
  3399. return t;
  3400. return 0;
  3401. }
  3402. EXPORT_SYMBOL(wait_for_completion_interruptible);
  3403. /**
  3404. * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
  3405. * @x: holds the state of this particular completion
  3406. * @timeout: timeout value in jiffies
  3407. *
  3408. * This waits for either a completion of a specific task to be signaled or for a
  3409. * specified timeout to expire. It is interruptible. The timeout is in jiffies.
  3410. */
  3411. unsigned long __sched
  3412. wait_for_completion_interruptible_timeout(struct completion *x,
  3413. unsigned long timeout)
  3414. {
  3415. return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
  3416. }
  3417. EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
  3418. /**
  3419. * wait_for_completion_killable: - waits for completion of a task (killable)
  3420. * @x: holds the state of this particular completion
  3421. *
  3422. * This waits to be signaled for completion of a specific task. It can be
  3423. * interrupted by a kill signal.
  3424. */
  3425. int __sched wait_for_completion_killable(struct completion *x)
  3426. {
  3427. long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
  3428. if (t == -ERESTARTSYS)
  3429. return t;
  3430. return 0;
  3431. }
  3432. EXPORT_SYMBOL(wait_for_completion_killable);
  3433. /**
  3434. * try_wait_for_completion - try to decrement a completion without blocking
  3435. * @x: completion structure
  3436. *
  3437. * Returns: 0 if a decrement cannot be done without blocking
  3438. * 1 if a decrement succeeded.
  3439. *
  3440. * If a completion is being used as a counting completion,
  3441. * attempt to decrement the counter without blocking. This
  3442. * enables us to avoid waiting if the resource the completion
  3443. * is protecting is not available.
  3444. */
  3445. bool try_wait_for_completion(struct completion *x)
  3446. {
  3447. unsigned long flags;
  3448. int ret = 1;
  3449. spin_lock_irqsave(&x->wait.lock, flags);
  3450. if (!x->done)
  3451. ret = 0;
  3452. else
  3453. x->done--;
  3454. spin_unlock_irqrestore(&x->wait.lock, flags);
  3455. return ret;
  3456. }
  3457. EXPORT_SYMBOL(try_wait_for_completion);
  3458. /**
  3459. * completion_done - Test to see if a completion has any waiters
  3460. * @x: completion structure
  3461. *
  3462. * Returns: 0 if there are waiters (wait_for_completion() in progress)
  3463. * 1 if there are no waiters.
  3464. *
  3465. */
  3466. bool completion_done(struct completion *x)
  3467. {
  3468. unsigned long flags;
  3469. int ret = 1;
  3470. spin_lock_irqsave(&x->wait.lock, flags);
  3471. if (!x->done)
  3472. ret = 0;
  3473. spin_unlock_irqrestore(&x->wait.lock, flags);
  3474. return ret;
  3475. }
  3476. EXPORT_SYMBOL(completion_done);
  3477. static long __sched
  3478. sleep_on_common(wait_queue_head_t *q, int state, long timeout)
  3479. {
  3480. unsigned long flags;
  3481. wait_queue_t wait;
  3482. init_waitqueue_entry(&wait, current);
  3483. __set_current_state(state);
  3484. spin_lock_irqsave(&q->lock, flags);
  3485. __add_wait_queue(q, &wait);
  3486. spin_unlock(&q->lock);
  3487. timeout = schedule_timeout(timeout);
  3488. spin_lock_irq(&q->lock);
  3489. __remove_wait_queue(q, &wait);
  3490. spin_unlock_irqrestore(&q->lock, flags);
  3491. return timeout;
  3492. }
  3493. void __sched interruptible_sleep_on(wait_queue_head_t *q)
  3494. {
  3495. sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
  3496. }
  3497. EXPORT_SYMBOL(interruptible_sleep_on);
  3498. long __sched
  3499. interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
  3500. {
  3501. return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
  3502. }
  3503. EXPORT_SYMBOL(interruptible_sleep_on_timeout);
  3504. void __sched sleep_on(wait_queue_head_t *q)
  3505. {
  3506. sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
  3507. }
  3508. EXPORT_SYMBOL(sleep_on);
  3509. long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
  3510. {
  3511. return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
  3512. }
  3513. EXPORT_SYMBOL(sleep_on_timeout);
  3514. #ifdef CONFIG_RT_MUTEXES
  3515. /*
  3516. * rt_mutex_setprio - set the current priority of a task
  3517. * @p: task
  3518. * @prio: prio value (kernel-internal form)
  3519. *
  3520. * This function changes the 'effective' priority of a task. It does
  3521. * not touch ->normal_prio like __setscheduler().
  3522. *
  3523. * Used by the rt_mutex code to implement priority inheritance logic.
  3524. */
  3525. void rt_mutex_setprio(struct task_struct *p, int prio)
  3526. {
  3527. unsigned long flags;
  3528. int oldprio, on_rq, running;
  3529. struct rq *rq;
  3530. const struct sched_class *prev_class;
  3531. BUG_ON(prio < 0 || prio > MAX_PRIO);
  3532. rq = task_rq_lock(p, &flags);
  3533. oldprio = p->prio;
  3534. prev_class = p->sched_class;
  3535. on_rq = p->se.on_rq;
  3536. running = task_current(rq, p);
  3537. if (on_rq)
  3538. dequeue_task(rq, p, 0);
  3539. if (running)
  3540. p->sched_class->put_prev_task(rq, p);
  3541. if (rt_prio(prio))
  3542. p->sched_class = &rt_sched_class;
  3543. else
  3544. p->sched_class = &fair_sched_class;
  3545. p->prio = prio;
  3546. if (running)
  3547. p->sched_class->set_curr_task(rq);
  3548. if (on_rq) {
  3549. enqueue_task(rq, p, oldprio < prio ? ENQUEUE_HEAD : 0);
  3550. check_class_changed(rq, p, prev_class, oldprio, running);
  3551. }
  3552. task_rq_unlock(rq, &flags);
  3553. }
  3554. #endif
  3555. void set_user_nice(struct task_struct *p, long nice)
  3556. {
  3557. int old_prio, delta, on_rq;
  3558. unsigned long flags;
  3559. struct rq *rq;
  3560. if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
  3561. return;
  3562. /*
  3563. * We have to be careful, if called from sys_setpriority(),
  3564. * the task might be in the middle of scheduling on another CPU.
  3565. */
  3566. rq = task_rq_lock(p, &flags);
  3567. /*
  3568. * The RT priorities are set via sched_setscheduler(), but we still
  3569. * allow the 'normal' nice value to be set - but as expected
  3570. * it wont have any effect on scheduling until the task is
  3571. * SCHED_FIFO/SCHED_RR:
  3572. */
  3573. if (task_has_rt_policy(p)) {
  3574. p->static_prio = NICE_TO_PRIO(nice);
  3575. goto out_unlock;
  3576. }
  3577. on_rq = p->se.on_rq;
  3578. if (on_rq)
  3579. dequeue_task(rq, p, 0);
  3580. p->static_prio = NICE_TO_PRIO(nice);
  3581. set_load_weight(p);
  3582. old_prio = p->prio;
  3583. p->prio = effective_prio(p);
  3584. delta = p->prio - old_prio;
  3585. if (on_rq) {
  3586. enqueue_task(rq, p, 0);
  3587. /*
  3588. * If the task increased its priority or is running and
  3589. * lowered its priority, then reschedule its CPU:
  3590. */
  3591. if (delta < 0 || (delta > 0 && task_running(rq, p)))
  3592. resched_task(rq->curr);
  3593. }
  3594. out_unlock:
  3595. task_rq_unlock(rq, &flags);
  3596. }
  3597. EXPORT_SYMBOL(set_user_nice);
  3598. /*
  3599. * can_nice - check if a task can reduce its nice value
  3600. * @p: task
  3601. * @nice: nice value
  3602. */
  3603. int can_nice(const struct task_struct *p, const int nice)
  3604. {
  3605. /* convert nice value [19,-20] to rlimit style value [1,40] */
  3606. int nice_rlim = 20 - nice;
  3607. return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
  3608. capable(CAP_SYS_NICE));
  3609. }
  3610. #ifdef __ARCH_WANT_SYS_NICE
  3611. /*
  3612. * sys_nice - change the priority of the current process.
  3613. * @increment: priority increment
  3614. *
  3615. * sys_setpriority is a more generic, but much slower function that
  3616. * does similar things.
  3617. */
  3618. SYSCALL_DEFINE1(nice, int, increment)
  3619. {
  3620. long nice, retval;
  3621. /*
  3622. * Setpriority might change our priority at the same moment.
  3623. * We don't have to worry. Conceptually one call occurs first
  3624. * and we have a single winner.
  3625. */
  3626. if (increment < -40)
  3627. increment = -40;
  3628. if (increment > 40)
  3629. increment = 40;
  3630. nice = TASK_NICE(current) + increment;
  3631. if (nice < -20)
  3632. nice = -20;
  3633. if (nice > 19)
  3634. nice = 19;
  3635. if (increment < 0 && !can_nice(current, nice))
  3636. return -EPERM;
  3637. retval = security_task_setnice(current, nice);
  3638. if (retval)
  3639. return retval;
  3640. set_user_nice(current, nice);
  3641. return 0;
  3642. }
  3643. #endif
  3644. /**
  3645. * task_prio - return the priority value of a given task.
  3646. * @p: the task in question.
  3647. *
  3648. * This is the priority value as seen by users in /proc.
  3649. * RT tasks are offset by -200. Normal tasks are centered
  3650. * around 0, value goes from -16 to +15.
  3651. */
  3652. int task_prio(const struct task_struct *p)
  3653. {
  3654. return p->prio - MAX_RT_PRIO;
  3655. }
  3656. /**
  3657. * task_nice - return the nice value of a given task.
  3658. * @p: the task in question.
  3659. */
  3660. int task_nice(const struct task_struct *p)
  3661. {
  3662. return TASK_NICE(p);
  3663. }
  3664. EXPORT_SYMBOL(task_nice);
  3665. /**
  3666. * idle_cpu - is a given cpu idle currently?
  3667. * @cpu: the processor in question.
  3668. */
  3669. int idle_cpu(int cpu)
  3670. {
  3671. return cpu_curr(cpu) == cpu_rq(cpu)->idle;
  3672. }
  3673. /**
  3674. * idle_task - return the idle task for a given cpu.
  3675. * @cpu: the processor in question.
  3676. */
  3677. struct task_struct *idle_task(int cpu)
  3678. {
  3679. return cpu_rq(cpu)->idle;
  3680. }
  3681. /**
  3682. * find_process_by_pid - find a process with a matching PID value.
  3683. * @pid: the pid in question.
  3684. */
  3685. static struct task_struct *find_process_by_pid(pid_t pid)
  3686. {
  3687. return pid ? find_task_by_vpid(pid) : current;
  3688. }
  3689. /* Actually do priority change: must hold rq lock. */
  3690. static void
  3691. __setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
  3692. {
  3693. BUG_ON(p->se.on_rq);
  3694. p->policy = policy;
  3695. p->rt_priority = prio;
  3696. p->normal_prio = normal_prio(p);
  3697. /* we are holding p->pi_lock already */
  3698. p->prio = rt_mutex_getprio(p);
  3699. if (rt_prio(p->prio))
  3700. p->sched_class = &rt_sched_class;
  3701. else
  3702. p->sched_class = &fair_sched_class;
  3703. set_load_weight(p);
  3704. }
  3705. /*
  3706. * check the target process has a UID that matches the current process's
  3707. */
  3708. static bool check_same_owner(struct task_struct *p)
  3709. {
  3710. const struct cred *cred = current_cred(), *pcred;
  3711. bool match;
  3712. rcu_read_lock();
  3713. pcred = __task_cred(p);
  3714. match = (cred->euid == pcred->euid ||
  3715. cred->euid == pcred->uid);
  3716. rcu_read_unlock();
  3717. return match;
  3718. }
  3719. static int __sched_setscheduler(struct task_struct *p, int policy,
  3720. struct sched_param *param, bool user)
  3721. {
  3722. int retval, oldprio, oldpolicy = -1, on_rq, running;
  3723. unsigned long flags;
  3724. const struct sched_class *prev_class;
  3725. struct rq *rq;
  3726. int reset_on_fork;
  3727. /* may grab non-irq protected spin_locks */
  3728. BUG_ON(in_interrupt());
  3729. recheck:
  3730. /* double check policy once rq lock held */
  3731. if (policy < 0) {
  3732. reset_on_fork = p->sched_reset_on_fork;
  3733. policy = oldpolicy = p->policy;
  3734. } else {
  3735. reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
  3736. policy &= ~SCHED_RESET_ON_FORK;
  3737. if (policy != SCHED_FIFO && policy != SCHED_RR &&
  3738. policy != SCHED_NORMAL && policy != SCHED_BATCH &&
  3739. policy != SCHED_IDLE)
  3740. return -EINVAL;
  3741. }
  3742. /*
  3743. * Valid priorities for SCHED_FIFO and SCHED_RR are
  3744. * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
  3745. * SCHED_BATCH and SCHED_IDLE is 0.
  3746. */
  3747. if (param->sched_priority < 0 ||
  3748. (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
  3749. (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
  3750. return -EINVAL;
  3751. if (rt_policy(policy) != (param->sched_priority != 0))
  3752. return -EINVAL;
  3753. /*
  3754. * Allow unprivileged RT tasks to decrease priority:
  3755. */
  3756. if (user && !capable(CAP_SYS_NICE)) {
  3757. if (rt_policy(policy)) {
  3758. unsigned long rlim_rtprio;
  3759. if (!lock_task_sighand(p, &flags))
  3760. return -ESRCH;
  3761. rlim_rtprio = task_rlimit(p, RLIMIT_RTPRIO);
  3762. unlock_task_sighand(p, &flags);
  3763. /* can't set/change the rt policy */
  3764. if (policy != p->policy && !rlim_rtprio)
  3765. return -EPERM;
  3766. /* can't increase priority */
  3767. if (param->sched_priority > p->rt_priority &&
  3768. param->sched_priority > rlim_rtprio)
  3769. return -EPERM;
  3770. }
  3771. /*
  3772. * Like positive nice levels, dont allow tasks to
  3773. * move out of SCHED_IDLE either:
  3774. */
  3775. if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
  3776. return -EPERM;
  3777. /* can't change other user's priorities */
  3778. if (!check_same_owner(p))
  3779. return -EPERM;
  3780. /* Normal users shall not reset the sched_reset_on_fork flag */
  3781. if (p->sched_reset_on_fork && !reset_on_fork)
  3782. return -EPERM;
  3783. }
  3784. if (user) {
  3785. #ifdef CONFIG_RT_GROUP_SCHED
  3786. /*
  3787. * Do not allow realtime tasks into groups that have no runtime
  3788. * assigned.
  3789. */
  3790. if (rt_bandwidth_enabled() && rt_policy(policy) &&
  3791. task_group(p)->rt_bandwidth.rt_runtime == 0)
  3792. return -EPERM;
  3793. #endif
  3794. retval = security_task_setscheduler(p, policy, param);
  3795. if (retval)
  3796. return retval;
  3797. }
  3798. /*
  3799. * make sure no PI-waiters arrive (or leave) while we are
  3800. * changing the priority of the task:
  3801. */
  3802. raw_spin_lock_irqsave(&p->pi_lock, flags);
  3803. /*
  3804. * To be able to change p->policy safely, the apropriate
  3805. * runqueue lock must be held.
  3806. */
  3807. rq = __task_rq_lock(p);
  3808. /* recheck policy now with rq lock held */
  3809. if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
  3810. policy = oldpolicy = -1;
  3811. __task_rq_unlock(rq);
  3812. raw_spin_unlock_irqrestore(&p->pi_lock, flags);
  3813. goto recheck;
  3814. }
  3815. on_rq = p->se.on_rq;
  3816. running = task_current(rq, p);
  3817. if (on_rq)
  3818. deactivate_task(rq, p, 0);
  3819. if (running)
  3820. p->sched_class->put_prev_task(rq, p);
  3821. p->sched_reset_on_fork = reset_on_fork;
  3822. oldprio = p->prio;
  3823. prev_class = p->sched_class;
  3824. __setscheduler(rq, p, policy, param->sched_priority);
  3825. if (running)
  3826. p->sched_class->set_curr_task(rq);
  3827. if (on_rq) {
  3828. activate_task(rq, p, 0);
  3829. check_class_changed(rq, p, prev_class, oldprio, running);
  3830. }
  3831. __task_rq_unlock(rq);
  3832. raw_spin_unlock_irqrestore(&p->pi_lock, flags);
  3833. rt_mutex_adjust_pi(p);
  3834. return 0;
  3835. }
  3836. /**
  3837. * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
  3838. * @p: the task in question.
  3839. * @policy: new policy.
  3840. * @param: structure containing the new RT priority.
  3841. *
  3842. * NOTE that the task may be already dead.
  3843. */
  3844. int sched_setscheduler(struct task_struct *p, int policy,
  3845. struct sched_param *param)
  3846. {
  3847. return __sched_setscheduler(p, policy, param, true);
  3848. }
  3849. EXPORT_SYMBOL_GPL(sched_setscheduler);
  3850. /**
  3851. * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
  3852. * @p: the task in question.
  3853. * @policy: new policy.
  3854. * @param: structure containing the new RT priority.
  3855. *
  3856. * Just like sched_setscheduler, only don't bother checking if the
  3857. * current context has permission. For example, this is needed in
  3858. * stop_machine(): we create temporary high priority worker threads,
  3859. * but our caller might not have that capability.
  3860. */
  3861. int sched_setscheduler_nocheck(struct task_struct *p, int policy,
  3862. struct sched_param *param)
  3863. {
  3864. return __sched_setscheduler(p, policy, param, false);
  3865. }
  3866. static int
  3867. do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
  3868. {
  3869. struct sched_param lparam;
  3870. struct task_struct *p;
  3871. int retval;
  3872. if (!param || pid < 0)
  3873. return -EINVAL;
  3874. if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
  3875. return -EFAULT;
  3876. rcu_read_lock();
  3877. retval = -ESRCH;
  3878. p = find_process_by_pid(pid);
  3879. if (p != NULL)
  3880. retval = sched_setscheduler(p, policy, &lparam);
  3881. rcu_read_unlock();
  3882. return retval;
  3883. }
  3884. /**
  3885. * sys_sched_setscheduler - set/change the scheduler policy and RT priority
  3886. * @pid: the pid in question.
  3887. * @policy: new policy.
  3888. * @param: structure containing the new RT priority.
  3889. */
  3890. SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
  3891. struct sched_param __user *, param)
  3892. {
  3893. /* negative values for policy are not valid */
  3894. if (policy < 0)
  3895. return -EINVAL;
  3896. return do_sched_setscheduler(pid, policy, param);
  3897. }
  3898. /**
  3899. * sys_sched_setparam - set/change the RT priority of a thread
  3900. * @pid: the pid in question.
  3901. * @param: structure containing the new RT priority.
  3902. */
  3903. SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
  3904. {
  3905. return do_sched_setscheduler(pid, -1, param);
  3906. }
  3907. /**
  3908. * sys_sched_getscheduler - get the policy (scheduling class) of a thread
  3909. * @pid: the pid in question.
  3910. */
  3911. SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
  3912. {
  3913. struct task_struct *p;
  3914. int retval;
  3915. if (pid < 0)
  3916. return -EINVAL;
  3917. retval = -ESRCH;
  3918. rcu_read_lock();
  3919. p = find_process_by_pid(pid);
  3920. if (p) {
  3921. retval = security_task_getscheduler(p);
  3922. if (!retval)
  3923. retval = p->policy
  3924. | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
  3925. }
  3926. rcu_read_unlock();
  3927. return retval;
  3928. }
  3929. /**
  3930. * sys_sched_getparam - get the RT priority of a thread
  3931. * @pid: the pid in question.
  3932. * @param: structure containing the RT priority.
  3933. */
  3934. SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
  3935. {
  3936. struct sched_param lp;
  3937. struct task_struct *p;
  3938. int retval;
  3939. if (!param || pid < 0)
  3940. return -EINVAL;
  3941. rcu_read_lock();
  3942. p = find_process_by_pid(pid);
  3943. retval = -ESRCH;
  3944. if (!p)
  3945. goto out_unlock;
  3946. retval = security_task_getscheduler(p);
  3947. if (retval)
  3948. goto out_unlock;
  3949. lp.sched_priority = p->rt_priority;
  3950. rcu_read_unlock();
  3951. /*
  3952. * This one might sleep, we cannot do it with a spinlock held ...
  3953. */
  3954. retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
  3955. return retval;
  3956. out_unlock:
  3957. rcu_read_unlock();
  3958. return retval;
  3959. }
  3960. long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
  3961. {
  3962. cpumask_var_t cpus_allowed, new_mask;
  3963. struct task_struct *p;
  3964. int retval;
  3965. get_online_cpus();
  3966. rcu_read_lock();
  3967. p = find_process_by_pid(pid);
  3968. if (!p) {
  3969. rcu_read_unlock();
  3970. put_online_cpus();
  3971. return -ESRCH;
  3972. }
  3973. /* Prevent p going away */
  3974. get_task_struct(p);
  3975. rcu_read_unlock();
  3976. if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
  3977. retval = -ENOMEM;
  3978. goto out_put_task;
  3979. }
  3980. if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
  3981. retval = -ENOMEM;
  3982. goto out_free_cpus_allowed;
  3983. }
  3984. retval = -EPERM;
  3985. if (!check_same_owner(p) && !capable(CAP_SYS_NICE))
  3986. goto out_unlock;
  3987. retval = security_task_setscheduler(p, 0, NULL);
  3988. if (retval)
  3989. goto out_unlock;
  3990. cpuset_cpus_allowed(p, cpus_allowed);
  3991. cpumask_and(new_mask, in_mask, cpus_allowed);
  3992. again:
  3993. retval = set_cpus_allowed_ptr(p, new_mask);
  3994. if (!retval) {
  3995. cpuset_cpus_allowed(p, cpus_allowed);
  3996. if (!cpumask_subset(new_mask, cpus_allowed)) {
  3997. /*
  3998. * We must have raced with a concurrent cpuset
  3999. * update. Just reset the cpus_allowed to the
  4000. * cpuset's cpus_allowed
  4001. */
  4002. cpumask_copy(new_mask, cpus_allowed);
  4003. goto again;
  4004. }
  4005. }
  4006. out_unlock:
  4007. free_cpumask_var(new_mask);
  4008. out_free_cpus_allowed:
  4009. free_cpumask_var(cpus_allowed);
  4010. out_put_task:
  4011. put_task_struct(p);
  4012. put_online_cpus();
  4013. return retval;
  4014. }
  4015. static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
  4016. struct cpumask *new_mask)
  4017. {
  4018. if (len < cpumask_size())
  4019. cpumask_clear(new_mask);
  4020. else if (len > cpumask_size())
  4021. len = cpumask_size();
  4022. return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
  4023. }
  4024. /**
  4025. * sys_sched_setaffinity - set the cpu affinity of a process
  4026. * @pid: pid of the process
  4027. * @len: length in bytes of the bitmask pointed to by user_mask_ptr
  4028. * @user_mask_ptr: user-space pointer to the new cpu mask
  4029. */
  4030. SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
  4031. unsigned long __user *, user_mask_ptr)
  4032. {
  4033. cpumask_var_t new_mask;
  4034. int retval;
  4035. if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
  4036. return -ENOMEM;
  4037. retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
  4038. if (retval == 0)
  4039. retval = sched_setaffinity(pid, new_mask);
  4040. free_cpumask_var(new_mask);
  4041. return retval;
  4042. }
  4043. long sched_getaffinity(pid_t pid, struct cpumask *mask)
  4044. {
  4045. struct task_struct *p;
  4046. unsigned long flags;
  4047. struct rq *rq;
  4048. int retval;
  4049. get_online_cpus();
  4050. rcu_read_lock();
  4051. retval = -ESRCH;
  4052. p = find_process_by_pid(pid);
  4053. if (!p)
  4054. goto out_unlock;
  4055. retval = security_task_getscheduler(p);
  4056. if (retval)
  4057. goto out_unlock;
  4058. rq = task_rq_lock(p, &flags);
  4059. cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
  4060. task_rq_unlock(rq, &flags);
  4061. out_unlock:
  4062. rcu_read_unlock();
  4063. put_online_cpus();
  4064. return retval;
  4065. }
  4066. /**
  4067. * sys_sched_getaffinity - get the cpu affinity of a process
  4068. * @pid: pid of the process
  4069. * @len: length in bytes of the bitmask pointed to by user_mask_ptr
  4070. * @user_mask_ptr: user-space pointer to hold the current cpu mask
  4071. */
  4072. SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
  4073. unsigned long __user *, user_mask_ptr)
  4074. {
  4075. int ret;
  4076. cpumask_var_t mask;
  4077. if ((len * BITS_PER_BYTE) < nr_cpu_ids)
  4078. return -EINVAL;
  4079. if (len & (sizeof(unsigned long)-1))
  4080. return -EINVAL;
  4081. if (!alloc_cpumask_var(&mask, GFP_KERNEL))
  4082. return -ENOMEM;
  4083. ret = sched_getaffinity(pid, mask);
  4084. if (ret == 0) {
  4085. size_t retlen = min_t(size_t, len, cpumask_size());
  4086. if (copy_to_user(user_mask_ptr, mask, retlen))
  4087. ret = -EFAULT;
  4088. else
  4089. ret = retlen;
  4090. }
  4091. free_cpumask_var(mask);
  4092. return ret;
  4093. }
  4094. /**
  4095. * sys_sched_yield - yield the current processor to other threads.
  4096. *
  4097. * This function yields the current CPU to other tasks. If there are no
  4098. * other threads running on this CPU then this function will return.
  4099. */
  4100. SYSCALL_DEFINE0(sched_yield)
  4101. {
  4102. struct rq *rq = this_rq_lock();
  4103. schedstat_inc(rq, yld_count);
  4104. current->sched_class->yield_task(rq);
  4105. /*
  4106. * Since we are going to call schedule() anyway, there's
  4107. * no need to preempt or enable interrupts:
  4108. */
  4109. __release(rq->lock);
  4110. spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
  4111. do_raw_spin_unlock(&rq->lock);
  4112. preempt_enable_no_resched();
  4113. schedule();
  4114. return 0;
  4115. }
  4116. static inline int should_resched(void)
  4117. {
  4118. return need_resched() && !(preempt_count() & PREEMPT_ACTIVE);
  4119. }
  4120. static void __cond_resched(void)
  4121. {
  4122. add_preempt_count(PREEMPT_ACTIVE);
  4123. schedule();
  4124. sub_preempt_count(PREEMPT_ACTIVE);
  4125. }
  4126. int __sched _cond_resched(void)
  4127. {
  4128. if (should_resched()) {
  4129. __cond_resched();
  4130. return 1;
  4131. }
  4132. return 0;
  4133. }
  4134. EXPORT_SYMBOL(_cond_resched);
  4135. /*
  4136. * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
  4137. * call schedule, and on return reacquire the lock.
  4138. *
  4139. * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
  4140. * operations here to prevent schedule() from being called twice (once via
  4141. * spin_unlock(), once by hand).
  4142. */
  4143. int __cond_resched_lock(spinlock_t *lock)
  4144. {
  4145. int resched = should_resched();
  4146. int ret = 0;
  4147. lockdep_assert_held(lock);
  4148. if (spin_needbreak(lock) || resched) {
  4149. spin_unlock(lock);
  4150. if (resched)
  4151. __cond_resched();
  4152. else
  4153. cpu_relax();
  4154. ret = 1;
  4155. spin_lock(lock);
  4156. }
  4157. return ret;
  4158. }
  4159. EXPORT_SYMBOL(__cond_resched_lock);
  4160. int __sched __cond_resched_softirq(void)
  4161. {
  4162. BUG_ON(!in_softirq());
  4163. if (should_resched()) {
  4164. local_bh_enable();
  4165. __cond_resched();
  4166. local_bh_disable();
  4167. return 1;
  4168. }
  4169. return 0;
  4170. }
  4171. EXPORT_SYMBOL(__cond_resched_softirq);
  4172. /**
  4173. * yield - yield the current processor to other threads.
  4174. *
  4175. * This is a shortcut for kernel-space yielding - it marks the
  4176. * thread runnable and calls sys_sched_yield().
  4177. */
  4178. void __sched yield(void)
  4179. {
  4180. set_current_state(TASK_RUNNING);
  4181. sys_sched_yield();
  4182. }
  4183. EXPORT_SYMBOL(yield);
  4184. /*
  4185. * This task is about to go to sleep on IO. Increment rq->nr_iowait so
  4186. * that process accounting knows that this is a task in IO wait state.
  4187. */
  4188. void __sched io_schedule(void)
  4189. {
  4190. struct rq *rq = raw_rq();
  4191. delayacct_blkio_start();
  4192. atomic_inc(&rq->nr_iowait);
  4193. current->in_iowait = 1;
  4194. schedule();
  4195. current->in_iowait = 0;
  4196. atomic_dec(&rq->nr_iowait);
  4197. delayacct_blkio_end();
  4198. }
  4199. EXPORT_SYMBOL(io_schedule);
  4200. long __sched io_schedule_timeout(long timeout)
  4201. {
  4202. struct rq *rq = raw_rq();
  4203. long ret;
  4204. delayacct_blkio_start();
  4205. atomic_inc(&rq->nr_iowait);
  4206. current->in_iowait = 1;
  4207. ret = schedule_timeout(timeout);
  4208. current->in_iowait = 0;
  4209. atomic_dec(&rq->nr_iowait);
  4210. delayacct_blkio_end();
  4211. return ret;
  4212. }
  4213. /**
  4214. * sys_sched_get_priority_max - return maximum RT priority.
  4215. * @policy: scheduling class.
  4216. *
  4217. * this syscall returns the maximum rt_priority that can be used
  4218. * by a given scheduling class.
  4219. */
  4220. SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
  4221. {
  4222. int ret = -EINVAL;
  4223. switch (policy) {
  4224. case SCHED_FIFO:
  4225. case SCHED_RR:
  4226. ret = MAX_USER_RT_PRIO-1;
  4227. break;
  4228. case SCHED_NORMAL:
  4229. case SCHED_BATCH:
  4230. case SCHED_IDLE:
  4231. ret = 0;
  4232. break;
  4233. }
  4234. return ret;
  4235. }
  4236. /**
  4237. * sys_sched_get_priority_min - return minimum RT priority.
  4238. * @policy: scheduling class.
  4239. *
  4240. * this syscall returns the minimum rt_priority that can be used
  4241. * by a given scheduling class.
  4242. */
  4243. SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
  4244. {
  4245. int ret = -EINVAL;
  4246. switch (policy) {
  4247. case SCHED_FIFO:
  4248. case SCHED_RR:
  4249. ret = 1;
  4250. break;
  4251. case SCHED_NORMAL:
  4252. case SCHED_BATCH:
  4253. case SCHED_IDLE:
  4254. ret = 0;
  4255. }
  4256. return ret;
  4257. }
  4258. /**
  4259. * sys_sched_rr_get_interval - return the default timeslice of a process.
  4260. * @pid: pid of the process.
  4261. * @interval: userspace pointer to the timeslice value.
  4262. *
  4263. * this syscall writes the default timeslice value of a given process
  4264. * into the user-space timespec buffer. A value of '0' means infinity.
  4265. */
  4266. SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
  4267. struct timespec __user *, interval)
  4268. {
  4269. struct task_struct *p;
  4270. unsigned int time_slice;
  4271. unsigned long flags;
  4272. struct rq *rq;
  4273. int retval;
  4274. struct timespec t;
  4275. if (pid < 0)
  4276. return -EINVAL;
  4277. retval = -ESRCH;
  4278. rcu_read_lock();
  4279. p = find_process_by_pid(pid);
  4280. if (!p)
  4281. goto out_unlock;
  4282. retval = security_task_getscheduler(p);
  4283. if (retval)
  4284. goto out_unlock;
  4285. rq = task_rq_lock(p, &flags);
  4286. time_slice = p->sched_class->get_rr_interval(rq, p);
  4287. task_rq_unlock(rq, &flags);
  4288. rcu_read_unlock();
  4289. jiffies_to_timespec(time_slice, &t);
  4290. retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
  4291. return retval;
  4292. out_unlock:
  4293. rcu_read_unlock();
  4294. return retval;
  4295. }
  4296. static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
  4297. void sched_show_task(struct task_struct *p)
  4298. {
  4299. unsigned long free = 0;
  4300. unsigned state;
  4301. state = p->state ? __ffs(p->state) + 1 : 0;
  4302. printk(KERN_INFO "%-13.13s %c", p->comm,
  4303. state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
  4304. #if BITS_PER_LONG == 32
  4305. if (state == TASK_RUNNING)
  4306. printk(KERN_CONT " running ");
  4307. else
  4308. printk(KERN_CONT " %08lx ", thread_saved_pc(p));
  4309. #else
  4310. if (state == TASK_RUNNING)
  4311. printk(KERN_CONT " running task ");
  4312. else
  4313. printk(KERN_CONT " %016lx ", thread_saved_pc(p));
  4314. #endif
  4315. #ifdef CONFIG_DEBUG_STACK_USAGE
  4316. free = stack_not_used(p);
  4317. #endif
  4318. printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
  4319. task_pid_nr(p), task_pid_nr(p->real_parent),
  4320. (unsigned long)task_thread_info(p)->flags);
  4321. show_stack(p, NULL);
  4322. }
  4323. void show_state_filter(unsigned long state_filter)
  4324. {
  4325. struct task_struct *g, *p;
  4326. #if BITS_PER_LONG == 32
  4327. printk(KERN_INFO
  4328. " task PC stack pid father\n");
  4329. #else
  4330. printk(KERN_INFO
  4331. " task PC stack pid father\n");
  4332. #endif
  4333. read_lock(&tasklist_lock);
  4334. do_each_thread(g, p) {
  4335. /*
  4336. * reset the NMI-timeout, listing all files on a slow
  4337. * console might take alot of time:
  4338. */
  4339. touch_nmi_watchdog();
  4340. if (!state_filter || (p->state & state_filter))
  4341. sched_show_task(p);
  4342. } while_each_thread(g, p);
  4343. touch_all_softlockup_watchdogs();
  4344. #ifdef CONFIG_SCHED_DEBUG
  4345. sysrq_sched_debug_show();
  4346. #endif
  4347. read_unlock(&tasklist_lock);
  4348. /*
  4349. * Only show locks if all tasks are dumped:
  4350. */
  4351. if (!state_filter)
  4352. debug_show_all_locks();
  4353. }
  4354. void __cpuinit init_idle_bootup_task(struct task_struct *idle)
  4355. {
  4356. idle->sched_class = &idle_sched_class;
  4357. }
  4358. /**
  4359. * init_idle - set up an idle thread for a given CPU
  4360. * @idle: task in question
  4361. * @cpu: cpu the idle task belongs to
  4362. *
  4363. * NOTE: this function does not set the idle thread's NEED_RESCHED
  4364. * flag, to make booting more robust.
  4365. */
  4366. void __cpuinit init_idle(struct task_struct *idle, int cpu)
  4367. {
  4368. struct rq *rq = cpu_rq(cpu);
  4369. unsigned long flags;
  4370. raw_spin_lock_irqsave(&rq->lock, flags);
  4371. __sched_fork(idle);
  4372. idle->state = TASK_RUNNING;
  4373. idle->se.exec_start = sched_clock();
  4374. cpumask_copy(&idle->cpus_allowed, cpumask_of(cpu));
  4375. __set_task_cpu(idle, cpu);
  4376. rq->curr = rq->idle = idle;
  4377. #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
  4378. idle->oncpu = 1;
  4379. #endif
  4380. raw_spin_unlock_irqrestore(&rq->lock, flags);
  4381. /* Set the preempt count _outside_ the spinlocks! */
  4382. #if defined(CONFIG_PREEMPT)
  4383. task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
  4384. #else
  4385. task_thread_info(idle)->preempt_count = 0;
  4386. #endif
  4387. /*
  4388. * The idle tasks have their own, simple scheduling class:
  4389. */
  4390. idle->sched_class = &idle_sched_class;
  4391. ftrace_graph_init_task(idle);
  4392. }
  4393. /*
  4394. * In a system that switches off the HZ timer nohz_cpu_mask
  4395. * indicates which cpus entered this state. This is used
  4396. * in the rcu update to wait only for active cpus. For system
  4397. * which do not switch off the HZ timer nohz_cpu_mask should
  4398. * always be CPU_BITS_NONE.
  4399. */
  4400. cpumask_var_t nohz_cpu_mask;
  4401. /*
  4402. * Increase the granularity value when there are more CPUs,
  4403. * because with more CPUs the 'effective latency' as visible
  4404. * to users decreases. But the relationship is not linear,
  4405. * so pick a second-best guess by going with the log2 of the
  4406. * number of CPUs.
  4407. *
  4408. * This idea comes from the SD scheduler of Con Kolivas:
  4409. */
  4410. static int get_update_sysctl_factor(void)
  4411. {
  4412. unsigned int cpus = min_t(int, num_online_cpus(), 8);
  4413. unsigned int factor;
  4414. switch (sysctl_sched_tunable_scaling) {
  4415. case SCHED_TUNABLESCALING_NONE:
  4416. factor = 1;
  4417. break;
  4418. case SCHED_TUNABLESCALING_LINEAR:
  4419. factor = cpus;
  4420. break;
  4421. case SCHED_TUNABLESCALING_LOG:
  4422. default:
  4423. factor = 1 + ilog2(cpus);
  4424. break;
  4425. }
  4426. return factor;
  4427. }
  4428. static void update_sysctl(void)
  4429. {
  4430. unsigned int factor = get_update_sysctl_factor();
  4431. #define SET_SYSCTL(name) \
  4432. (sysctl_##name = (factor) * normalized_sysctl_##name)
  4433. SET_SYSCTL(sched_min_granularity);
  4434. SET_SYSCTL(sched_latency);
  4435. SET_SYSCTL(sched_wakeup_granularity);
  4436. SET_SYSCTL(sched_shares_ratelimit);
  4437. #undef SET_SYSCTL
  4438. }
  4439. static inline void sched_init_granularity(void)
  4440. {
  4441. update_sysctl();
  4442. }
  4443. #ifdef CONFIG_SMP
  4444. /*
  4445. * This is how migration works:
  4446. *
  4447. * 1) we invoke migration_cpu_stop() on the target CPU using
  4448. * stop_one_cpu().
  4449. * 2) stopper starts to run (implicitly forcing the migrated thread
  4450. * off the CPU)
  4451. * 3) it checks whether the migrated task is still in the wrong runqueue.
  4452. * 4) if it's in the wrong runqueue then the migration thread removes
  4453. * it and puts it into the right queue.
  4454. * 5) stopper completes and stop_one_cpu() returns and the migration
  4455. * is done.
  4456. */
  4457. /*
  4458. * Change a given task's CPU affinity. Migrate the thread to a
  4459. * proper CPU and schedule it away if the CPU it's executing on
  4460. * is removed from the allowed bitmask.
  4461. *
  4462. * NOTE: the caller must have a valid reference to the task, the
  4463. * task must not exit() & deallocate itself prematurely. The
  4464. * call is not atomic; no spinlocks may be held.
  4465. */
  4466. int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
  4467. {
  4468. unsigned long flags;
  4469. struct rq *rq;
  4470. unsigned int dest_cpu;
  4471. int ret = 0;
  4472. /*
  4473. * Serialize against TASK_WAKING so that ttwu() and wunt() can
  4474. * drop the rq->lock and still rely on ->cpus_allowed.
  4475. */
  4476. again:
  4477. while (task_is_waking(p))
  4478. cpu_relax();
  4479. rq = task_rq_lock(p, &flags);
  4480. if (task_is_waking(p)) {
  4481. task_rq_unlock(rq, &flags);
  4482. goto again;
  4483. }
  4484. if (!cpumask_intersects(new_mask, cpu_active_mask)) {
  4485. ret = -EINVAL;
  4486. goto out;
  4487. }
  4488. if (unlikely((p->flags & PF_THREAD_BOUND) && p != current &&
  4489. !cpumask_equal(&p->cpus_allowed, new_mask))) {
  4490. ret = -EINVAL;
  4491. goto out;
  4492. }
  4493. if (p->sched_class->set_cpus_allowed)
  4494. p->sched_class->set_cpus_allowed(p, new_mask);
  4495. else {
  4496. cpumask_copy(&p->cpus_allowed, new_mask);
  4497. p->rt.nr_cpus_allowed = cpumask_weight(new_mask);
  4498. }
  4499. /* Can the task run on the task's current CPU? If so, we're done */
  4500. if (cpumask_test_cpu(task_cpu(p), new_mask))
  4501. goto out;
  4502. dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
  4503. if (migrate_task(p, dest_cpu)) {
  4504. struct migration_arg arg = { p, dest_cpu };
  4505. /* Need help from migration thread: drop lock and wait. */
  4506. task_rq_unlock(rq, &flags);
  4507. stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
  4508. tlb_migrate_finish(p->mm);
  4509. return 0;
  4510. }
  4511. out:
  4512. task_rq_unlock(rq, &flags);
  4513. return ret;
  4514. }
  4515. EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
  4516. /*
  4517. * Move (not current) task off this cpu, onto dest cpu. We're doing
  4518. * this because either it can't run here any more (set_cpus_allowed()
  4519. * away from this CPU, or CPU going down), or because we're
  4520. * attempting to rebalance this task on exec (sched_exec).
  4521. *
  4522. * So we race with normal scheduler movements, but that's OK, as long
  4523. * as the task is no longer on this CPU.
  4524. *
  4525. * Returns non-zero if task was successfully migrated.
  4526. */
  4527. static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
  4528. {
  4529. struct rq *rq_dest, *rq_src;
  4530. int ret = 0;
  4531. if (unlikely(!cpu_active(dest_cpu)))
  4532. return ret;
  4533. rq_src = cpu_rq(src_cpu);
  4534. rq_dest = cpu_rq(dest_cpu);
  4535. double_rq_lock(rq_src, rq_dest);
  4536. /* Already moved. */
  4537. if (task_cpu(p) != src_cpu)
  4538. goto done;
  4539. /* Affinity changed (again). */
  4540. if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
  4541. goto fail;
  4542. /*
  4543. * If we're not on a rq, the next wake-up will ensure we're
  4544. * placed properly.
  4545. */
  4546. if (p->se.on_rq) {
  4547. deactivate_task(rq_src, p, 0);
  4548. set_task_cpu(p, dest_cpu);
  4549. activate_task(rq_dest, p, 0);
  4550. check_preempt_curr(rq_dest, p, 0);
  4551. }
  4552. done:
  4553. ret = 1;
  4554. fail:
  4555. double_rq_unlock(rq_src, rq_dest);
  4556. return ret;
  4557. }
  4558. /*
  4559. * migration_cpu_stop - this will be executed by a highprio stopper thread
  4560. * and performs thread migration by bumping thread off CPU then
  4561. * 'pushing' onto another runqueue.
  4562. */
  4563. static int migration_cpu_stop(void *data)
  4564. {
  4565. struct migration_arg *arg = data;
  4566. /*
  4567. * The original target cpu might have gone down and we might
  4568. * be on another cpu but it doesn't matter.
  4569. */
  4570. local_irq_disable();
  4571. __migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu);
  4572. local_irq_enable();
  4573. return 0;
  4574. }
  4575. #ifdef CONFIG_HOTPLUG_CPU
  4576. /*
  4577. * Figure out where task on dead CPU should go, use force if necessary.
  4578. */
  4579. void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
  4580. {
  4581. struct rq *rq = cpu_rq(dead_cpu);
  4582. int needs_cpu, uninitialized_var(dest_cpu);
  4583. unsigned long flags;
  4584. local_irq_save(flags);
  4585. raw_spin_lock(&rq->lock);
  4586. needs_cpu = (task_cpu(p) == dead_cpu) && (p->state != TASK_WAKING);
  4587. if (needs_cpu)
  4588. dest_cpu = select_fallback_rq(dead_cpu, p);
  4589. raw_spin_unlock(&rq->lock);
  4590. /*
  4591. * It can only fail if we race with set_cpus_allowed(),
  4592. * in the racer should migrate the task anyway.
  4593. */
  4594. if (needs_cpu)
  4595. __migrate_task(p, dead_cpu, dest_cpu);
  4596. local_irq_restore(flags);
  4597. }
  4598. /*
  4599. * While a dead CPU has no uninterruptible tasks queued at this point,
  4600. * it might still have a nonzero ->nr_uninterruptible counter, because
  4601. * for performance reasons the counter is not stricly tracking tasks to
  4602. * their home CPUs. So we just add the counter to another CPU's counter,
  4603. * to keep the global sum constant after CPU-down:
  4604. */
  4605. static void migrate_nr_uninterruptible(struct rq *rq_src)
  4606. {
  4607. struct rq *rq_dest = cpu_rq(cpumask_any(cpu_active_mask));
  4608. unsigned long flags;
  4609. local_irq_save(flags);
  4610. double_rq_lock(rq_src, rq_dest);
  4611. rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
  4612. rq_src->nr_uninterruptible = 0;
  4613. double_rq_unlock(rq_src, rq_dest);
  4614. local_irq_restore(flags);
  4615. }
  4616. /* Run through task list and migrate tasks from the dead cpu. */
  4617. static void migrate_live_tasks(int src_cpu)
  4618. {
  4619. struct task_struct *p, *t;
  4620. read_lock(&tasklist_lock);
  4621. do_each_thread(t, p) {
  4622. if (p == current)
  4623. continue;
  4624. if (task_cpu(p) == src_cpu)
  4625. move_task_off_dead_cpu(src_cpu, p);
  4626. } while_each_thread(t, p);
  4627. read_unlock(&tasklist_lock);
  4628. }
  4629. /*
  4630. * Schedules idle task to be the next runnable task on current CPU.
  4631. * It does so by boosting its priority to highest possible.
  4632. * Used by CPU offline code.
  4633. */
  4634. void sched_idle_next(void)
  4635. {
  4636. int this_cpu = smp_processor_id();
  4637. struct rq *rq = cpu_rq(this_cpu);
  4638. struct task_struct *p = rq->idle;
  4639. unsigned long flags;
  4640. /* cpu has to be offline */
  4641. BUG_ON(cpu_online(this_cpu));
  4642. /*
  4643. * Strictly not necessary since rest of the CPUs are stopped by now
  4644. * and interrupts disabled on the current cpu.
  4645. */
  4646. raw_spin_lock_irqsave(&rq->lock, flags);
  4647. __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
  4648. activate_task(rq, p, 0);
  4649. raw_spin_unlock_irqrestore(&rq->lock, flags);
  4650. }
  4651. /*
  4652. * Ensures that the idle task is using init_mm right before its cpu goes
  4653. * offline.
  4654. */
  4655. void idle_task_exit(void)
  4656. {
  4657. struct mm_struct *mm = current->active_mm;
  4658. BUG_ON(cpu_online(smp_processor_id()));
  4659. if (mm != &init_mm)
  4660. switch_mm(mm, &init_mm, current);
  4661. mmdrop(mm);
  4662. }
  4663. /* called under rq->lock with disabled interrupts */
  4664. static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
  4665. {
  4666. struct rq *rq = cpu_rq(dead_cpu);
  4667. /* Must be exiting, otherwise would be on tasklist. */
  4668. BUG_ON(!p->exit_state);
  4669. /* Cannot have done final schedule yet: would have vanished. */
  4670. BUG_ON(p->state == TASK_DEAD);
  4671. get_task_struct(p);
  4672. /*
  4673. * Drop lock around migration; if someone else moves it,
  4674. * that's OK. No task can be added to this CPU, so iteration is
  4675. * fine.
  4676. */
  4677. raw_spin_unlock_irq(&rq->lock);
  4678. move_task_off_dead_cpu(dead_cpu, p);
  4679. raw_spin_lock_irq(&rq->lock);
  4680. put_task_struct(p);
  4681. }
  4682. /* release_task() removes task from tasklist, so we won't find dead tasks. */
  4683. static void migrate_dead_tasks(unsigned int dead_cpu)
  4684. {
  4685. struct rq *rq = cpu_rq(dead_cpu);
  4686. struct task_struct *next;
  4687. for ( ; ; ) {
  4688. if (!rq->nr_running)
  4689. break;
  4690. next = pick_next_task(rq);
  4691. if (!next)
  4692. break;
  4693. next->sched_class->put_prev_task(rq, next);
  4694. migrate_dead(dead_cpu, next);
  4695. }
  4696. }
  4697. /*
  4698. * remove the tasks which were accounted by rq from calc_load_tasks.
  4699. */
  4700. static void calc_global_load_remove(struct rq *rq)
  4701. {
  4702. atomic_long_sub(rq->calc_load_active, &calc_load_tasks);
  4703. rq->calc_load_active = 0;
  4704. }
  4705. #endif /* CONFIG_HOTPLUG_CPU */
  4706. #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
  4707. static struct ctl_table sd_ctl_dir[] = {
  4708. {
  4709. .procname = "sched_domain",
  4710. .mode = 0555,
  4711. },
  4712. {}
  4713. };
  4714. static struct ctl_table sd_ctl_root[] = {
  4715. {
  4716. .procname = "kernel",
  4717. .mode = 0555,
  4718. .child = sd_ctl_dir,
  4719. },
  4720. {}
  4721. };
  4722. static struct ctl_table *sd_alloc_ctl_entry(int n)
  4723. {
  4724. struct ctl_table *entry =
  4725. kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
  4726. return entry;
  4727. }
  4728. static void sd_free_ctl_entry(struct ctl_table **tablep)
  4729. {
  4730. struct ctl_table *entry;
  4731. /*
  4732. * In the intermediate directories, both the child directory and
  4733. * procname are dynamically allocated and could fail but the mode
  4734. * will always be set. In the lowest directory the names are
  4735. * static strings and all have proc handlers.
  4736. */
  4737. for (entry = *tablep; entry->mode; entry++) {
  4738. if (entry->child)
  4739. sd_free_ctl_entry(&entry->child);
  4740. if (entry->proc_handler == NULL)
  4741. kfree(entry->procname);
  4742. }
  4743. kfree(*tablep);
  4744. *tablep = NULL;
  4745. }
  4746. static void
  4747. set_table_entry(struct ctl_table *entry,
  4748. const char *procname, void *data, int maxlen,
  4749. mode_t mode, proc_handler *proc_handler)
  4750. {
  4751. entry->procname = procname;
  4752. entry->data = data;
  4753. entry->maxlen = maxlen;
  4754. entry->mode = mode;
  4755. entry->proc_handler = proc_handler;
  4756. }
  4757. static struct ctl_table *
  4758. sd_alloc_ctl_domain_table(struct sched_domain *sd)
  4759. {
  4760. struct ctl_table *table = sd_alloc_ctl_entry(13);
  4761. if (table == NULL)
  4762. return NULL;
  4763. set_table_entry(&table[0], "min_interval", &sd->min_interval,
  4764. sizeof(long), 0644, proc_doulongvec_minmax);
  4765. set_table_entry(&table[1], "max_interval", &sd->max_interval,
  4766. sizeof(long), 0644, proc_doulongvec_minmax);
  4767. set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
  4768. sizeof(int), 0644, proc_dointvec_minmax);
  4769. set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
  4770. sizeof(int), 0644, proc_dointvec_minmax);
  4771. set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
  4772. sizeof(int), 0644, proc_dointvec_minmax);
  4773. set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
  4774. sizeof(int), 0644, proc_dointvec_minmax);
  4775. set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
  4776. sizeof(int), 0644, proc_dointvec_minmax);
  4777. set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
  4778. sizeof(int), 0644, proc_dointvec_minmax);
  4779. set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
  4780. sizeof(int), 0644, proc_dointvec_minmax);
  4781. set_table_entry(&table[9], "cache_nice_tries",
  4782. &sd->cache_nice_tries,
  4783. sizeof(int), 0644, proc_dointvec_minmax);
  4784. set_table_entry(&table[10], "flags", &sd->flags,
  4785. sizeof(int), 0644, proc_dointvec_minmax);
  4786. set_table_entry(&table[11], "name", sd->name,
  4787. CORENAME_MAX_SIZE, 0444, proc_dostring);
  4788. /* &table[12] is terminator */
  4789. return table;
  4790. }
  4791. static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
  4792. {
  4793. struct ctl_table *entry, *table;
  4794. struct sched_domain *sd;
  4795. int domain_num = 0, i;
  4796. char buf[32];
  4797. for_each_domain(cpu, sd)
  4798. domain_num++;
  4799. entry = table = sd_alloc_ctl_entry(domain_num + 1);
  4800. if (table == NULL)
  4801. return NULL;
  4802. i = 0;
  4803. for_each_domain(cpu, sd) {
  4804. snprintf(buf, 32, "domain%d", i);
  4805. entry->procname = kstrdup(buf, GFP_KERNEL);
  4806. entry->mode = 0555;
  4807. entry->child = sd_alloc_ctl_domain_table(sd);
  4808. entry++;
  4809. i++;
  4810. }
  4811. return table;
  4812. }
  4813. static struct ctl_table_header *sd_sysctl_header;
  4814. static void register_sched_domain_sysctl(void)
  4815. {
  4816. int i, cpu_num = num_possible_cpus();
  4817. struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
  4818. char buf[32];
  4819. WARN_ON(sd_ctl_dir[0].child);
  4820. sd_ctl_dir[0].child = entry;
  4821. if (entry == NULL)
  4822. return;
  4823. for_each_possible_cpu(i) {
  4824. snprintf(buf, 32, "cpu%d", i);
  4825. entry->procname = kstrdup(buf, GFP_KERNEL);
  4826. entry->mode = 0555;
  4827. entry->child = sd_alloc_ctl_cpu_table(i);
  4828. entry++;
  4829. }
  4830. WARN_ON(sd_sysctl_header);
  4831. sd_sysctl_header = register_sysctl_table(sd_ctl_root);
  4832. }
  4833. /* may be called multiple times per register */
  4834. static void unregister_sched_domain_sysctl(void)
  4835. {
  4836. if (sd_sysctl_header)
  4837. unregister_sysctl_table(sd_sysctl_header);
  4838. sd_sysctl_header = NULL;
  4839. if (sd_ctl_dir[0].child)
  4840. sd_free_ctl_entry(&sd_ctl_dir[0].child);
  4841. }
  4842. #else
  4843. static void register_sched_domain_sysctl(void)
  4844. {
  4845. }
  4846. static void unregister_sched_domain_sysctl(void)
  4847. {
  4848. }
  4849. #endif
  4850. static void set_rq_online(struct rq *rq)
  4851. {
  4852. if (!rq->online) {
  4853. const struct sched_class *class;
  4854. cpumask_set_cpu(rq->cpu, rq->rd->online);
  4855. rq->online = 1;
  4856. for_each_class(class) {
  4857. if (class->rq_online)
  4858. class->rq_online(rq);
  4859. }
  4860. }
  4861. }
  4862. static void set_rq_offline(struct rq *rq)
  4863. {
  4864. if (rq->online) {
  4865. const struct sched_class *class;
  4866. for_each_class(class) {
  4867. if (class->rq_offline)
  4868. class->rq_offline(rq);
  4869. }
  4870. cpumask_clear_cpu(rq->cpu, rq->rd->online);
  4871. rq->online = 0;
  4872. }
  4873. }
  4874. /*
  4875. * migration_call - callback that gets triggered when a CPU is added.
  4876. * Here we can start up the necessary migration thread for the new CPU.
  4877. */
  4878. static int __cpuinit
  4879. migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
  4880. {
  4881. int cpu = (long)hcpu;
  4882. unsigned long flags;
  4883. struct rq *rq = cpu_rq(cpu);
  4884. switch (action) {
  4885. case CPU_UP_PREPARE:
  4886. case CPU_UP_PREPARE_FROZEN:
  4887. rq->calc_load_update = calc_load_update;
  4888. break;
  4889. case CPU_ONLINE:
  4890. case CPU_ONLINE_FROZEN:
  4891. /* Update our root-domain */
  4892. raw_spin_lock_irqsave(&rq->lock, flags);
  4893. if (rq->rd) {
  4894. BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
  4895. set_rq_online(rq);
  4896. }
  4897. raw_spin_unlock_irqrestore(&rq->lock, flags);
  4898. break;
  4899. #ifdef CONFIG_HOTPLUG_CPU
  4900. case CPU_DEAD:
  4901. case CPU_DEAD_FROZEN:
  4902. migrate_live_tasks(cpu);
  4903. /* Idle task back to normal (off runqueue, low prio) */
  4904. raw_spin_lock_irq(&rq->lock);
  4905. deactivate_task(rq, rq->idle, 0);
  4906. __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
  4907. rq->idle->sched_class = &idle_sched_class;
  4908. migrate_dead_tasks(cpu);
  4909. raw_spin_unlock_irq(&rq->lock);
  4910. migrate_nr_uninterruptible(rq);
  4911. BUG_ON(rq->nr_running != 0);
  4912. calc_global_load_remove(rq);
  4913. break;
  4914. case CPU_DYING:
  4915. case CPU_DYING_FROZEN:
  4916. /* Update our root-domain */
  4917. raw_spin_lock_irqsave(&rq->lock, flags);
  4918. if (rq->rd) {
  4919. BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
  4920. set_rq_offline(rq);
  4921. }
  4922. raw_spin_unlock_irqrestore(&rq->lock, flags);
  4923. break;
  4924. #endif
  4925. }
  4926. return NOTIFY_OK;
  4927. }
  4928. /*
  4929. * Register at high priority so that task migration (migrate_all_tasks)
  4930. * happens before everything else. This has to be lower priority than
  4931. * the notifier in the perf_event subsystem, though.
  4932. */
  4933. static struct notifier_block __cpuinitdata migration_notifier = {
  4934. .notifier_call = migration_call,
  4935. .priority = 10
  4936. };
  4937. static int __init migration_init(void)
  4938. {
  4939. void *cpu = (void *)(long)smp_processor_id();
  4940. int err;
  4941. /* Start one for the boot CPU: */
  4942. err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
  4943. BUG_ON(err == NOTIFY_BAD);
  4944. migration_call(&migration_notifier, CPU_ONLINE, cpu);
  4945. register_cpu_notifier(&migration_notifier);
  4946. return 0;
  4947. }
  4948. early_initcall(migration_init);
  4949. #endif
  4950. #ifdef CONFIG_SMP
  4951. #ifdef CONFIG_SCHED_DEBUG
  4952. static __read_mostly int sched_domain_debug_enabled;
  4953. static int __init sched_domain_debug_setup(char *str)
  4954. {
  4955. sched_domain_debug_enabled = 1;
  4956. return 0;
  4957. }
  4958. early_param("sched_debug", sched_domain_debug_setup);
  4959. static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
  4960. struct cpumask *groupmask)
  4961. {
  4962. struct sched_group *group = sd->groups;
  4963. char str[256];
  4964. cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
  4965. cpumask_clear(groupmask);
  4966. printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
  4967. if (!(sd->flags & SD_LOAD_BALANCE)) {
  4968. printk("does not load-balance\n");
  4969. if (sd->parent)
  4970. printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
  4971. " has parent");
  4972. return -1;
  4973. }
  4974. printk(KERN_CONT "span %s level %s\n", str, sd->name);
  4975. if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
  4976. printk(KERN_ERR "ERROR: domain->span does not contain "
  4977. "CPU%d\n", cpu);
  4978. }
  4979. if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
  4980. printk(KERN_ERR "ERROR: domain->groups does not contain"
  4981. " CPU%d\n", cpu);
  4982. }
  4983. printk(KERN_DEBUG "%*s groups:", level + 1, "");
  4984. do {
  4985. if (!group) {
  4986. printk("\n");
  4987. printk(KERN_ERR "ERROR: group is NULL\n");
  4988. break;
  4989. }
  4990. if (!group->cpu_power) {
  4991. printk(KERN_CONT "\n");
  4992. printk(KERN_ERR "ERROR: domain->cpu_power not "
  4993. "set\n");
  4994. break;
  4995. }
  4996. if (!cpumask_weight(sched_group_cpus(group))) {
  4997. printk(KERN_CONT "\n");
  4998. printk(KERN_ERR "ERROR: empty group\n");
  4999. break;
  5000. }
  5001. if (cpumask_intersects(groupmask, sched_group_cpus(group))) {
  5002. printk(KERN_CONT "\n");
  5003. printk(KERN_ERR "ERROR: repeated CPUs\n");
  5004. break;
  5005. }
  5006. cpumask_or(groupmask, groupmask, sched_group_cpus(group));
  5007. cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
  5008. printk(KERN_CONT " %s", str);
  5009. if (group->cpu_power != SCHED_LOAD_SCALE) {
  5010. printk(KERN_CONT " (cpu_power = %d)",
  5011. group->cpu_power);
  5012. }
  5013. group = group->next;
  5014. } while (group != sd->groups);
  5015. printk(KERN_CONT "\n");
  5016. if (!cpumask_equal(sched_domain_span(sd), groupmask))
  5017. printk(KERN_ERR "ERROR: groups don't span domain->span\n");
  5018. if (sd->parent &&
  5019. !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
  5020. printk(KERN_ERR "ERROR: parent span is not a superset "
  5021. "of domain->span\n");
  5022. return 0;
  5023. }
  5024. static void sched_domain_debug(struct sched_domain *sd, int cpu)
  5025. {
  5026. cpumask_var_t groupmask;
  5027. int level = 0;
  5028. if (!sched_domain_debug_enabled)
  5029. return;
  5030. if (!sd) {
  5031. printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
  5032. return;
  5033. }
  5034. printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
  5035. if (!alloc_cpumask_var(&groupmask, GFP_KERNEL)) {
  5036. printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
  5037. return;
  5038. }
  5039. for (;;) {
  5040. if (sched_domain_debug_one(sd, cpu, level, groupmask))
  5041. break;
  5042. level++;
  5043. sd = sd->parent;
  5044. if (!sd)
  5045. break;
  5046. }
  5047. free_cpumask_var(groupmask);
  5048. }
  5049. #else /* !CONFIG_SCHED_DEBUG */
  5050. # define sched_domain_debug(sd, cpu) do { } while (0)
  5051. #endif /* CONFIG_SCHED_DEBUG */
  5052. static int sd_degenerate(struct sched_domain *sd)
  5053. {
  5054. if (cpumask_weight(sched_domain_span(sd)) == 1)
  5055. return 1;
  5056. /* Following flags need at least 2 groups */
  5057. if (sd->flags & (SD_LOAD_BALANCE |
  5058. SD_BALANCE_NEWIDLE |
  5059. SD_BALANCE_FORK |
  5060. SD_BALANCE_EXEC |
  5061. SD_SHARE_CPUPOWER |
  5062. SD_SHARE_PKG_RESOURCES)) {
  5063. if (sd->groups != sd->groups->next)
  5064. return 0;
  5065. }
  5066. /* Following flags don't use groups */
  5067. if (sd->flags & (SD_WAKE_AFFINE))
  5068. return 0;
  5069. return 1;
  5070. }
  5071. static int
  5072. sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
  5073. {
  5074. unsigned long cflags = sd->flags, pflags = parent->flags;
  5075. if (sd_degenerate(parent))
  5076. return 1;
  5077. if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
  5078. return 0;
  5079. /* Flags needing groups don't count if only 1 group in parent */
  5080. if (parent->groups == parent->groups->next) {
  5081. pflags &= ~(SD_LOAD_BALANCE |
  5082. SD_BALANCE_NEWIDLE |
  5083. SD_BALANCE_FORK |
  5084. SD_BALANCE_EXEC |
  5085. SD_SHARE_CPUPOWER |
  5086. SD_SHARE_PKG_RESOURCES);
  5087. if (nr_node_ids == 1)
  5088. pflags &= ~SD_SERIALIZE;
  5089. }
  5090. if (~cflags & pflags)
  5091. return 0;
  5092. return 1;
  5093. }
  5094. static void free_rootdomain(struct root_domain *rd)
  5095. {
  5096. synchronize_sched();
  5097. cpupri_cleanup(&rd->cpupri);
  5098. free_cpumask_var(rd->rto_mask);
  5099. free_cpumask_var(rd->online);
  5100. free_cpumask_var(rd->span);
  5101. kfree(rd);
  5102. }
  5103. static void rq_attach_root(struct rq *rq, struct root_domain *rd)
  5104. {
  5105. struct root_domain *old_rd = NULL;
  5106. unsigned long flags;
  5107. raw_spin_lock_irqsave(&rq->lock, flags);
  5108. if (rq->rd) {
  5109. old_rd = rq->rd;
  5110. if (cpumask_test_cpu(rq->cpu, old_rd->online))
  5111. set_rq_offline(rq);
  5112. cpumask_clear_cpu(rq->cpu, old_rd->span);
  5113. /*
  5114. * If we dont want to free the old_rt yet then
  5115. * set old_rd to NULL to skip the freeing later
  5116. * in this function:
  5117. */
  5118. if (!atomic_dec_and_test(&old_rd->refcount))
  5119. old_rd = NULL;
  5120. }
  5121. atomic_inc(&rd->refcount);
  5122. rq->rd = rd;
  5123. cpumask_set_cpu(rq->cpu, rd->span);
  5124. if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
  5125. set_rq_online(rq);
  5126. raw_spin_unlock_irqrestore(&rq->lock, flags);
  5127. if (old_rd)
  5128. free_rootdomain(old_rd);
  5129. }
  5130. static int init_rootdomain(struct root_domain *rd, bool bootmem)
  5131. {
  5132. gfp_t gfp = GFP_KERNEL;
  5133. memset(rd, 0, sizeof(*rd));
  5134. if (bootmem)
  5135. gfp = GFP_NOWAIT;
  5136. if (!alloc_cpumask_var(&rd->span, gfp))
  5137. goto out;
  5138. if (!alloc_cpumask_var(&rd->online, gfp))
  5139. goto free_span;
  5140. if (!alloc_cpumask_var(&rd->rto_mask, gfp))
  5141. goto free_online;
  5142. if (cpupri_init(&rd->cpupri, bootmem) != 0)
  5143. goto free_rto_mask;
  5144. return 0;
  5145. free_rto_mask:
  5146. free_cpumask_var(rd->rto_mask);
  5147. free_online:
  5148. free_cpumask_var(rd->online);
  5149. free_span:
  5150. free_cpumask_var(rd->span);
  5151. out:
  5152. return -ENOMEM;
  5153. }
  5154. static void init_defrootdomain(void)
  5155. {
  5156. init_rootdomain(&def_root_domain, true);
  5157. atomic_set(&def_root_domain.refcount, 1);
  5158. }
  5159. static struct root_domain *alloc_rootdomain(void)
  5160. {
  5161. struct root_domain *rd;
  5162. rd = kmalloc(sizeof(*rd), GFP_KERNEL);
  5163. if (!rd)
  5164. return NULL;
  5165. if (init_rootdomain(rd, false) != 0) {
  5166. kfree(rd);
  5167. return NULL;
  5168. }
  5169. return rd;
  5170. }
  5171. /*
  5172. * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
  5173. * hold the hotplug lock.
  5174. */
  5175. static void
  5176. cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
  5177. {
  5178. struct rq *rq = cpu_rq(cpu);
  5179. struct sched_domain *tmp;
  5180. for (tmp = sd; tmp; tmp = tmp->parent)
  5181. tmp->span_weight = cpumask_weight(sched_domain_span(tmp));
  5182. /* Remove the sched domains which do not contribute to scheduling. */
  5183. for (tmp = sd; tmp; ) {
  5184. struct sched_domain *parent = tmp->parent;
  5185. if (!parent)
  5186. break;
  5187. if (sd_parent_degenerate(tmp, parent)) {
  5188. tmp->parent = parent->parent;
  5189. if (parent->parent)
  5190. parent->parent->child = tmp;
  5191. } else
  5192. tmp = tmp->parent;
  5193. }
  5194. if (sd && sd_degenerate(sd)) {
  5195. sd = sd->parent;
  5196. if (sd)
  5197. sd->child = NULL;
  5198. }
  5199. sched_domain_debug(sd, cpu);
  5200. rq_attach_root(rq, rd);
  5201. rcu_assign_pointer(rq->sd, sd);
  5202. }
  5203. /* cpus with isolated domains */
  5204. static cpumask_var_t cpu_isolated_map;
  5205. /* Setup the mask of cpus configured for isolated domains */
  5206. static int __init isolated_cpu_setup(char *str)
  5207. {
  5208. alloc_bootmem_cpumask_var(&cpu_isolated_map);
  5209. cpulist_parse(str, cpu_isolated_map);
  5210. return 1;
  5211. }
  5212. __setup("isolcpus=", isolated_cpu_setup);
  5213. /*
  5214. * init_sched_build_groups takes the cpumask we wish to span, and a pointer
  5215. * to a function which identifies what group(along with sched group) a CPU
  5216. * belongs to. The return value of group_fn must be a >= 0 and < nr_cpu_ids
  5217. * (due to the fact that we keep track of groups covered with a struct cpumask).
  5218. *
  5219. * init_sched_build_groups will build a circular linked list of the groups
  5220. * covered by the given span, and will set each group's ->cpumask correctly,
  5221. * and ->cpu_power to 0.
  5222. */
  5223. static void
  5224. init_sched_build_groups(const struct cpumask *span,
  5225. const struct cpumask *cpu_map,
  5226. int (*group_fn)(int cpu, const struct cpumask *cpu_map,
  5227. struct sched_group **sg,
  5228. struct cpumask *tmpmask),
  5229. struct cpumask *covered, struct cpumask *tmpmask)
  5230. {
  5231. struct sched_group *first = NULL, *last = NULL;
  5232. int i;
  5233. cpumask_clear(covered);
  5234. for_each_cpu(i, span) {
  5235. struct sched_group *sg;
  5236. int group = group_fn(i, cpu_map, &sg, tmpmask);
  5237. int j;
  5238. if (cpumask_test_cpu(i, covered))
  5239. continue;
  5240. cpumask_clear(sched_group_cpus(sg));
  5241. sg->cpu_power = 0;
  5242. for_each_cpu(j, span) {
  5243. if (group_fn(j, cpu_map, NULL, tmpmask) != group)
  5244. continue;
  5245. cpumask_set_cpu(j, covered);
  5246. cpumask_set_cpu(j, sched_group_cpus(sg));
  5247. }
  5248. if (!first)
  5249. first = sg;
  5250. if (last)
  5251. last->next = sg;
  5252. last = sg;
  5253. }
  5254. last->next = first;
  5255. }
  5256. #define SD_NODES_PER_DOMAIN 16
  5257. #ifdef CONFIG_NUMA
  5258. /**
  5259. * find_next_best_node - find the next node to include in a sched_domain
  5260. * @node: node whose sched_domain we're building
  5261. * @used_nodes: nodes already in the sched_domain
  5262. *
  5263. * Find the next node to include in a given scheduling domain. Simply
  5264. * finds the closest node not already in the @used_nodes map.
  5265. *
  5266. * Should use nodemask_t.
  5267. */
  5268. static int find_next_best_node(int node, nodemask_t *used_nodes)
  5269. {
  5270. int i, n, val, min_val, best_node = 0;
  5271. min_val = INT_MAX;
  5272. for (i = 0; i < nr_node_ids; i++) {
  5273. /* Start at @node */
  5274. n = (node + i) % nr_node_ids;
  5275. if (!nr_cpus_node(n))
  5276. continue;
  5277. /* Skip already used nodes */
  5278. if (node_isset(n, *used_nodes))
  5279. continue;
  5280. /* Simple min distance search */
  5281. val = node_distance(node, n);
  5282. if (val < min_val) {
  5283. min_val = val;
  5284. best_node = n;
  5285. }
  5286. }
  5287. node_set(best_node, *used_nodes);
  5288. return best_node;
  5289. }
  5290. /**
  5291. * sched_domain_node_span - get a cpumask for a node's sched_domain
  5292. * @node: node whose cpumask we're constructing
  5293. * @span: resulting cpumask
  5294. *
  5295. * Given a node, construct a good cpumask for its sched_domain to span. It
  5296. * should be one that prevents unnecessary balancing, but also spreads tasks
  5297. * out optimally.
  5298. */
  5299. static void sched_domain_node_span(int node, struct cpumask *span)
  5300. {
  5301. nodemask_t used_nodes;
  5302. int i;
  5303. cpumask_clear(span);
  5304. nodes_clear(used_nodes);
  5305. cpumask_or(span, span, cpumask_of_node(node));
  5306. node_set(node, used_nodes);
  5307. for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
  5308. int next_node = find_next_best_node(node, &used_nodes);
  5309. cpumask_or(span, span, cpumask_of_node(next_node));
  5310. }
  5311. }
  5312. #endif /* CONFIG_NUMA */
  5313. int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
  5314. /*
  5315. * The cpus mask in sched_group and sched_domain hangs off the end.
  5316. *
  5317. * ( See the the comments in include/linux/sched.h:struct sched_group
  5318. * and struct sched_domain. )
  5319. */
  5320. struct static_sched_group {
  5321. struct sched_group sg;
  5322. DECLARE_BITMAP(cpus, CONFIG_NR_CPUS);
  5323. };
  5324. struct static_sched_domain {
  5325. struct sched_domain sd;
  5326. DECLARE_BITMAP(span, CONFIG_NR_CPUS);
  5327. };
  5328. struct s_data {
  5329. #ifdef CONFIG_NUMA
  5330. int sd_allnodes;
  5331. cpumask_var_t domainspan;
  5332. cpumask_var_t covered;
  5333. cpumask_var_t notcovered;
  5334. #endif
  5335. cpumask_var_t nodemask;
  5336. cpumask_var_t this_sibling_map;
  5337. cpumask_var_t this_core_map;
  5338. cpumask_var_t send_covered;
  5339. cpumask_var_t tmpmask;
  5340. struct sched_group **sched_group_nodes;
  5341. struct root_domain *rd;
  5342. };
  5343. enum s_alloc {
  5344. sa_sched_groups = 0,
  5345. sa_rootdomain,
  5346. sa_tmpmask,
  5347. sa_send_covered,
  5348. sa_this_core_map,
  5349. sa_this_sibling_map,
  5350. sa_nodemask,
  5351. sa_sched_group_nodes,
  5352. #ifdef CONFIG_NUMA
  5353. sa_notcovered,
  5354. sa_covered,
  5355. sa_domainspan,
  5356. #endif
  5357. sa_none,
  5358. };
  5359. /*
  5360. * SMT sched-domains:
  5361. */
  5362. #ifdef CONFIG_SCHED_SMT
  5363. static DEFINE_PER_CPU(struct static_sched_domain, cpu_domains);
  5364. static DEFINE_PER_CPU(struct static_sched_group, sched_groups);
  5365. static int
  5366. cpu_to_cpu_group(int cpu, const struct cpumask *cpu_map,
  5367. struct sched_group **sg, struct cpumask *unused)
  5368. {
  5369. if (sg)
  5370. *sg = &per_cpu(sched_groups, cpu).sg;
  5371. return cpu;
  5372. }
  5373. #endif /* CONFIG_SCHED_SMT */
  5374. /*
  5375. * multi-core sched-domains:
  5376. */
  5377. #ifdef CONFIG_SCHED_MC
  5378. static DEFINE_PER_CPU(struct static_sched_domain, core_domains);
  5379. static DEFINE_PER_CPU(struct static_sched_group, sched_group_core);
  5380. #endif /* CONFIG_SCHED_MC */
  5381. #if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
  5382. static int
  5383. cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
  5384. struct sched_group **sg, struct cpumask *mask)
  5385. {
  5386. int group;
  5387. cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
  5388. group = cpumask_first(mask);
  5389. if (sg)
  5390. *sg = &per_cpu(sched_group_core, group).sg;
  5391. return group;
  5392. }
  5393. #elif defined(CONFIG_SCHED_MC)
  5394. static int
  5395. cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
  5396. struct sched_group **sg, struct cpumask *unused)
  5397. {
  5398. if (sg)
  5399. *sg = &per_cpu(sched_group_core, cpu).sg;
  5400. return cpu;
  5401. }
  5402. #endif
  5403. static DEFINE_PER_CPU(struct static_sched_domain, phys_domains);
  5404. static DEFINE_PER_CPU(struct static_sched_group, sched_group_phys);
  5405. static int
  5406. cpu_to_phys_group(int cpu, const struct cpumask *cpu_map,
  5407. struct sched_group **sg, struct cpumask *mask)
  5408. {
  5409. int group;
  5410. #ifdef CONFIG_SCHED_MC
  5411. cpumask_and(mask, cpu_coregroup_mask(cpu), cpu_map);
  5412. group = cpumask_first(mask);
  5413. #elif defined(CONFIG_SCHED_SMT)
  5414. cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
  5415. group = cpumask_first(mask);
  5416. #else
  5417. group = cpu;
  5418. #endif
  5419. if (sg)
  5420. *sg = &per_cpu(sched_group_phys, group).sg;
  5421. return group;
  5422. }
  5423. #ifdef CONFIG_NUMA
  5424. /*
  5425. * The init_sched_build_groups can't handle what we want to do with node
  5426. * groups, so roll our own. Now each node has its own list of groups which
  5427. * gets dynamically allocated.
  5428. */
  5429. static DEFINE_PER_CPU(struct static_sched_domain, node_domains);
  5430. static struct sched_group ***sched_group_nodes_bycpu;
  5431. static DEFINE_PER_CPU(struct static_sched_domain, allnodes_domains);
  5432. static DEFINE_PER_CPU(struct static_sched_group, sched_group_allnodes);
  5433. static int cpu_to_allnodes_group(int cpu, const struct cpumask *cpu_map,
  5434. struct sched_group **sg,
  5435. struct cpumask *nodemask)
  5436. {
  5437. int group;
  5438. cpumask_and(nodemask, cpumask_of_node(cpu_to_node(cpu)), cpu_map);
  5439. group = cpumask_first(nodemask);
  5440. if (sg)
  5441. *sg = &per_cpu(sched_group_allnodes, group).sg;
  5442. return group;
  5443. }
  5444. static void init_numa_sched_groups_power(struct sched_group *group_head)
  5445. {
  5446. struct sched_group *sg = group_head;
  5447. int j;
  5448. if (!sg)
  5449. return;
  5450. do {
  5451. for_each_cpu(j, sched_group_cpus(sg)) {
  5452. struct sched_domain *sd;
  5453. sd = &per_cpu(phys_domains, j).sd;
  5454. if (j != group_first_cpu(sd->groups)) {
  5455. /*
  5456. * Only add "power" once for each
  5457. * physical package.
  5458. */
  5459. continue;
  5460. }
  5461. sg->cpu_power += sd->groups->cpu_power;
  5462. }
  5463. sg = sg->next;
  5464. } while (sg != group_head);
  5465. }
  5466. static int build_numa_sched_groups(struct s_data *d,
  5467. const struct cpumask *cpu_map, int num)
  5468. {
  5469. struct sched_domain *sd;
  5470. struct sched_group *sg, *prev;
  5471. int n, j;
  5472. cpumask_clear(d->covered);
  5473. cpumask_and(d->nodemask, cpumask_of_node(num), cpu_map);
  5474. if (cpumask_empty(d->nodemask)) {
  5475. d->sched_group_nodes[num] = NULL;
  5476. goto out;
  5477. }
  5478. sched_domain_node_span(num, d->domainspan);
  5479. cpumask_and(d->domainspan, d->domainspan, cpu_map);
  5480. sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
  5481. GFP_KERNEL, num);
  5482. if (!sg) {
  5483. printk(KERN_WARNING "Can not alloc domain group for node %d\n",
  5484. num);
  5485. return -ENOMEM;
  5486. }
  5487. d->sched_group_nodes[num] = sg;
  5488. for_each_cpu(j, d->nodemask) {
  5489. sd = &per_cpu(node_domains, j).sd;
  5490. sd->groups = sg;
  5491. }
  5492. sg->cpu_power = 0;
  5493. cpumask_copy(sched_group_cpus(sg), d->nodemask);
  5494. sg->next = sg;
  5495. cpumask_or(d->covered, d->covered, d->nodemask);
  5496. prev = sg;
  5497. for (j = 0; j < nr_node_ids; j++) {
  5498. n = (num + j) % nr_node_ids;
  5499. cpumask_complement(d->notcovered, d->covered);
  5500. cpumask_and(d->tmpmask, d->notcovered, cpu_map);
  5501. cpumask_and(d->tmpmask, d->tmpmask, d->domainspan);
  5502. if (cpumask_empty(d->tmpmask))
  5503. break;
  5504. cpumask_and(d->tmpmask, d->tmpmask, cpumask_of_node(n));
  5505. if (cpumask_empty(d->tmpmask))
  5506. continue;
  5507. sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
  5508. GFP_KERNEL, num);
  5509. if (!sg) {
  5510. printk(KERN_WARNING
  5511. "Can not alloc domain group for node %d\n", j);
  5512. return -ENOMEM;
  5513. }
  5514. sg->cpu_power = 0;
  5515. cpumask_copy(sched_group_cpus(sg), d->tmpmask);
  5516. sg->next = prev->next;
  5517. cpumask_or(d->covered, d->covered, d->tmpmask);
  5518. prev->next = sg;
  5519. prev = sg;
  5520. }
  5521. out:
  5522. return 0;
  5523. }
  5524. #endif /* CONFIG_NUMA */
  5525. #ifdef CONFIG_NUMA
  5526. /* Free memory allocated for various sched_group structures */
  5527. static void free_sched_groups(const struct cpumask *cpu_map,
  5528. struct cpumask *nodemask)
  5529. {
  5530. int cpu, i;
  5531. for_each_cpu(cpu, cpu_map) {
  5532. struct sched_group **sched_group_nodes
  5533. = sched_group_nodes_bycpu[cpu];
  5534. if (!sched_group_nodes)
  5535. continue;
  5536. for (i = 0; i < nr_node_ids; i++) {
  5537. struct sched_group *oldsg, *sg = sched_group_nodes[i];
  5538. cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
  5539. if (cpumask_empty(nodemask))
  5540. continue;
  5541. if (sg == NULL)
  5542. continue;
  5543. sg = sg->next;
  5544. next_sg:
  5545. oldsg = sg;
  5546. sg = sg->next;
  5547. kfree(oldsg);
  5548. if (oldsg != sched_group_nodes[i])
  5549. goto next_sg;
  5550. }
  5551. kfree(sched_group_nodes);
  5552. sched_group_nodes_bycpu[cpu] = NULL;
  5553. }
  5554. }
  5555. #else /* !CONFIG_NUMA */
  5556. static void free_sched_groups(const struct cpumask *cpu_map,
  5557. struct cpumask *nodemask)
  5558. {
  5559. }
  5560. #endif /* CONFIG_NUMA */
  5561. /*
  5562. * Initialize sched groups cpu_power.
  5563. *
  5564. * cpu_power indicates the capacity of sched group, which is used while
  5565. * distributing the load between different sched groups in a sched domain.
  5566. * Typically cpu_power for all the groups in a sched domain will be same unless
  5567. * there are asymmetries in the topology. If there are asymmetries, group
  5568. * having more cpu_power will pickup more load compared to the group having
  5569. * less cpu_power.
  5570. */
  5571. static void init_sched_groups_power(int cpu, struct sched_domain *sd)
  5572. {
  5573. struct sched_domain *child;
  5574. struct sched_group *group;
  5575. long power;
  5576. int weight;
  5577. WARN_ON(!sd || !sd->groups);
  5578. if (cpu != group_first_cpu(sd->groups))
  5579. return;
  5580. child = sd->child;
  5581. sd->groups->cpu_power = 0;
  5582. if (!child) {
  5583. power = SCHED_LOAD_SCALE;
  5584. weight = cpumask_weight(sched_domain_span(sd));
  5585. /*
  5586. * SMT siblings share the power of a single core.
  5587. * Usually multiple threads get a better yield out of
  5588. * that one core than a single thread would have,
  5589. * reflect that in sd->smt_gain.
  5590. */
  5591. if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
  5592. power *= sd->smt_gain;
  5593. power /= weight;
  5594. power >>= SCHED_LOAD_SHIFT;
  5595. }
  5596. sd->groups->cpu_power += power;
  5597. return;
  5598. }
  5599. /*
  5600. * Add cpu_power of each child group to this groups cpu_power.
  5601. */
  5602. group = child->groups;
  5603. do {
  5604. sd->groups->cpu_power += group->cpu_power;
  5605. group = group->next;
  5606. } while (group != child->groups);
  5607. }
  5608. /*
  5609. * Initializers for schedule domains
  5610. * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
  5611. */
  5612. #ifdef CONFIG_SCHED_DEBUG
  5613. # define SD_INIT_NAME(sd, type) sd->name = #type
  5614. #else
  5615. # define SD_INIT_NAME(sd, type) do { } while (0)
  5616. #endif
  5617. #define SD_INIT(sd, type) sd_init_##type(sd)
  5618. #define SD_INIT_FUNC(type) \
  5619. static noinline void sd_init_##type(struct sched_domain *sd) \
  5620. { \
  5621. memset(sd, 0, sizeof(*sd)); \
  5622. *sd = SD_##type##_INIT; \
  5623. sd->level = SD_LV_##type; \
  5624. SD_INIT_NAME(sd, type); \
  5625. }
  5626. SD_INIT_FUNC(CPU)
  5627. #ifdef CONFIG_NUMA
  5628. SD_INIT_FUNC(ALLNODES)
  5629. SD_INIT_FUNC(NODE)
  5630. #endif
  5631. #ifdef CONFIG_SCHED_SMT
  5632. SD_INIT_FUNC(SIBLING)
  5633. #endif
  5634. #ifdef CONFIG_SCHED_MC
  5635. SD_INIT_FUNC(MC)
  5636. #endif
  5637. static int default_relax_domain_level = -1;
  5638. static int __init setup_relax_domain_level(char *str)
  5639. {
  5640. unsigned long val;
  5641. val = simple_strtoul(str, NULL, 0);
  5642. if (val < SD_LV_MAX)
  5643. default_relax_domain_level = val;
  5644. return 1;
  5645. }
  5646. __setup("relax_domain_level=", setup_relax_domain_level);
  5647. static void set_domain_attribute(struct sched_domain *sd,
  5648. struct sched_domain_attr *attr)
  5649. {
  5650. int request;
  5651. if (!attr || attr->relax_domain_level < 0) {
  5652. if (default_relax_domain_level < 0)
  5653. return;
  5654. else
  5655. request = default_relax_domain_level;
  5656. } else
  5657. request = attr->relax_domain_level;
  5658. if (request < sd->level) {
  5659. /* turn off idle balance on this domain */
  5660. sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
  5661. } else {
  5662. /* turn on idle balance on this domain */
  5663. sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
  5664. }
  5665. }
  5666. static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
  5667. const struct cpumask *cpu_map)
  5668. {
  5669. switch (what) {
  5670. case sa_sched_groups:
  5671. free_sched_groups(cpu_map, d->tmpmask); /* fall through */
  5672. d->sched_group_nodes = NULL;
  5673. case sa_rootdomain:
  5674. free_rootdomain(d->rd); /* fall through */
  5675. case sa_tmpmask:
  5676. free_cpumask_var(d->tmpmask); /* fall through */
  5677. case sa_send_covered:
  5678. free_cpumask_var(d->send_covered); /* fall through */
  5679. case sa_this_core_map:
  5680. free_cpumask_var(d->this_core_map); /* fall through */
  5681. case sa_this_sibling_map:
  5682. free_cpumask_var(d->this_sibling_map); /* fall through */
  5683. case sa_nodemask:
  5684. free_cpumask_var(d->nodemask); /* fall through */
  5685. case sa_sched_group_nodes:
  5686. #ifdef CONFIG_NUMA
  5687. kfree(d->sched_group_nodes); /* fall through */
  5688. case sa_notcovered:
  5689. free_cpumask_var(d->notcovered); /* fall through */
  5690. case sa_covered:
  5691. free_cpumask_var(d->covered); /* fall through */
  5692. case sa_domainspan:
  5693. free_cpumask_var(d->domainspan); /* fall through */
  5694. #endif
  5695. case sa_none:
  5696. break;
  5697. }
  5698. }
  5699. static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
  5700. const struct cpumask *cpu_map)
  5701. {
  5702. #ifdef CONFIG_NUMA
  5703. if (!alloc_cpumask_var(&d->domainspan, GFP_KERNEL))
  5704. return sa_none;
  5705. if (!alloc_cpumask_var(&d->covered, GFP_KERNEL))
  5706. return sa_domainspan;
  5707. if (!alloc_cpumask_var(&d->notcovered, GFP_KERNEL))
  5708. return sa_covered;
  5709. /* Allocate the per-node list of sched groups */
  5710. d->sched_group_nodes = kcalloc(nr_node_ids,
  5711. sizeof(struct sched_group *), GFP_KERNEL);
  5712. if (!d->sched_group_nodes) {
  5713. printk(KERN_WARNING "Can not alloc sched group node list\n");
  5714. return sa_notcovered;
  5715. }
  5716. sched_group_nodes_bycpu[cpumask_first(cpu_map)] = d->sched_group_nodes;
  5717. #endif
  5718. if (!alloc_cpumask_var(&d->nodemask, GFP_KERNEL))
  5719. return sa_sched_group_nodes;
  5720. if (!alloc_cpumask_var(&d->this_sibling_map, GFP_KERNEL))
  5721. return sa_nodemask;
  5722. if (!alloc_cpumask_var(&d->this_core_map, GFP_KERNEL))
  5723. return sa_this_sibling_map;
  5724. if (!alloc_cpumask_var(&d->send_covered, GFP_KERNEL))
  5725. return sa_this_core_map;
  5726. if (!alloc_cpumask_var(&d->tmpmask, GFP_KERNEL))
  5727. return sa_send_covered;
  5728. d->rd = alloc_rootdomain();
  5729. if (!d->rd) {
  5730. printk(KERN_WARNING "Cannot alloc root domain\n");
  5731. return sa_tmpmask;
  5732. }
  5733. return sa_rootdomain;
  5734. }
  5735. static struct sched_domain *__build_numa_sched_domains(struct s_data *d,
  5736. const struct cpumask *cpu_map, struct sched_domain_attr *attr, int i)
  5737. {
  5738. struct sched_domain *sd = NULL;
  5739. #ifdef CONFIG_NUMA
  5740. struct sched_domain *parent;
  5741. d->sd_allnodes = 0;
  5742. if (cpumask_weight(cpu_map) >
  5743. SD_NODES_PER_DOMAIN * cpumask_weight(d->nodemask)) {
  5744. sd = &per_cpu(allnodes_domains, i).sd;
  5745. SD_INIT(sd, ALLNODES);
  5746. set_domain_attribute(sd, attr);
  5747. cpumask_copy(sched_domain_span(sd), cpu_map);
  5748. cpu_to_allnodes_group(i, cpu_map, &sd->groups, d->tmpmask);
  5749. d->sd_allnodes = 1;
  5750. }
  5751. parent = sd;
  5752. sd = &per_cpu(node_domains, i).sd;
  5753. SD_INIT(sd, NODE);
  5754. set_domain_attribute(sd, attr);
  5755. sched_domain_node_span(cpu_to_node(i), sched_domain_span(sd));
  5756. sd->parent = parent;
  5757. if (parent)
  5758. parent->child = sd;
  5759. cpumask_and(sched_domain_span(sd), sched_domain_span(sd), cpu_map);
  5760. #endif
  5761. return sd;
  5762. }
  5763. static struct sched_domain *__build_cpu_sched_domain(struct s_data *d,
  5764. const struct cpumask *cpu_map, struct sched_domain_attr *attr,
  5765. struct sched_domain *parent, int i)
  5766. {
  5767. struct sched_domain *sd;
  5768. sd = &per_cpu(phys_domains, i).sd;
  5769. SD_INIT(sd, CPU);
  5770. set_domain_attribute(sd, attr);
  5771. cpumask_copy(sched_domain_span(sd), d->nodemask);
  5772. sd->parent = parent;
  5773. if (parent)
  5774. parent->child = sd;
  5775. cpu_to_phys_group(i, cpu_map, &sd->groups, d->tmpmask);
  5776. return sd;
  5777. }
  5778. static struct sched_domain *__build_mc_sched_domain(struct s_data *d,
  5779. const struct cpumask *cpu_map, struct sched_domain_attr *attr,
  5780. struct sched_domain *parent, int i)
  5781. {
  5782. struct sched_domain *sd = parent;
  5783. #ifdef CONFIG_SCHED_MC
  5784. sd = &per_cpu(core_domains, i).sd;
  5785. SD_INIT(sd, MC);
  5786. set_domain_attribute(sd, attr);
  5787. cpumask_and(sched_domain_span(sd), cpu_map, cpu_coregroup_mask(i));
  5788. sd->parent = parent;
  5789. parent->child = sd;
  5790. cpu_to_core_group(i, cpu_map, &sd->groups, d->tmpmask);
  5791. #endif
  5792. return sd;
  5793. }
  5794. static struct sched_domain *__build_smt_sched_domain(struct s_data *d,
  5795. const struct cpumask *cpu_map, struct sched_domain_attr *attr,
  5796. struct sched_domain *parent, int i)
  5797. {
  5798. struct sched_domain *sd = parent;
  5799. #ifdef CONFIG_SCHED_SMT
  5800. sd = &per_cpu(cpu_domains, i).sd;
  5801. SD_INIT(sd, SIBLING);
  5802. set_domain_attribute(sd, attr);
  5803. cpumask_and(sched_domain_span(sd), cpu_map, topology_thread_cpumask(i));
  5804. sd->parent = parent;
  5805. parent->child = sd;
  5806. cpu_to_cpu_group(i, cpu_map, &sd->groups, d->tmpmask);
  5807. #endif
  5808. return sd;
  5809. }
  5810. static void build_sched_groups(struct s_data *d, enum sched_domain_level l,
  5811. const struct cpumask *cpu_map, int cpu)
  5812. {
  5813. switch (l) {
  5814. #ifdef CONFIG_SCHED_SMT
  5815. case SD_LV_SIBLING: /* set up CPU (sibling) groups */
  5816. cpumask_and(d->this_sibling_map, cpu_map,
  5817. topology_thread_cpumask(cpu));
  5818. if (cpu == cpumask_first(d->this_sibling_map))
  5819. init_sched_build_groups(d->this_sibling_map, cpu_map,
  5820. &cpu_to_cpu_group,
  5821. d->send_covered, d->tmpmask);
  5822. break;
  5823. #endif
  5824. #ifdef CONFIG_SCHED_MC
  5825. case SD_LV_MC: /* set up multi-core groups */
  5826. cpumask_and(d->this_core_map, cpu_map, cpu_coregroup_mask(cpu));
  5827. if (cpu == cpumask_first(d->this_core_map))
  5828. init_sched_build_groups(d->this_core_map, cpu_map,
  5829. &cpu_to_core_group,
  5830. d->send_covered, d->tmpmask);
  5831. break;
  5832. #endif
  5833. case SD_LV_CPU: /* set up physical groups */
  5834. cpumask_and(d->nodemask, cpumask_of_node(cpu), cpu_map);
  5835. if (!cpumask_empty(d->nodemask))
  5836. init_sched_build_groups(d->nodemask, cpu_map,
  5837. &cpu_to_phys_group,
  5838. d->send_covered, d->tmpmask);
  5839. break;
  5840. #ifdef CONFIG_NUMA
  5841. case SD_LV_ALLNODES:
  5842. init_sched_build_groups(cpu_map, cpu_map, &cpu_to_allnodes_group,
  5843. d->send_covered, d->tmpmask);
  5844. break;
  5845. #endif
  5846. default:
  5847. break;
  5848. }
  5849. }
  5850. /*
  5851. * Build sched domains for a given set of cpus and attach the sched domains
  5852. * to the individual cpus
  5853. */
  5854. static int __build_sched_domains(const struct cpumask *cpu_map,
  5855. struct sched_domain_attr *attr)
  5856. {
  5857. enum s_alloc alloc_state = sa_none;
  5858. struct s_data d;
  5859. struct sched_domain *sd;
  5860. int i;
  5861. #ifdef CONFIG_NUMA
  5862. d.sd_allnodes = 0;
  5863. #endif
  5864. alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
  5865. if (alloc_state != sa_rootdomain)
  5866. goto error;
  5867. alloc_state = sa_sched_groups;
  5868. /*
  5869. * Set up domains for cpus specified by the cpu_map.
  5870. */
  5871. for_each_cpu(i, cpu_map) {
  5872. cpumask_and(d.nodemask, cpumask_of_node(cpu_to_node(i)),
  5873. cpu_map);
  5874. sd = __build_numa_sched_domains(&d, cpu_map, attr, i);
  5875. sd = __build_cpu_sched_domain(&d, cpu_map, attr, sd, i);
  5876. sd = __build_mc_sched_domain(&d, cpu_map, attr, sd, i);
  5877. sd = __build_smt_sched_domain(&d, cpu_map, attr, sd, i);
  5878. }
  5879. for_each_cpu(i, cpu_map) {
  5880. build_sched_groups(&d, SD_LV_SIBLING, cpu_map, i);
  5881. build_sched_groups(&d, SD_LV_MC, cpu_map, i);
  5882. }
  5883. /* Set up physical groups */
  5884. for (i = 0; i < nr_node_ids; i++)
  5885. build_sched_groups(&d, SD_LV_CPU, cpu_map, i);
  5886. #ifdef CONFIG_NUMA
  5887. /* Set up node groups */
  5888. if (d.sd_allnodes)
  5889. build_sched_groups(&d, SD_LV_ALLNODES, cpu_map, 0);
  5890. for (i = 0; i < nr_node_ids; i++)
  5891. if (build_numa_sched_groups(&d, cpu_map, i))
  5892. goto error;
  5893. #endif
  5894. /* Calculate CPU power for physical packages and nodes */
  5895. #ifdef CONFIG_SCHED_SMT
  5896. for_each_cpu(i, cpu_map) {
  5897. sd = &per_cpu(cpu_domains, i).sd;
  5898. init_sched_groups_power(i, sd);
  5899. }
  5900. #endif
  5901. #ifdef CONFIG_SCHED_MC
  5902. for_each_cpu(i, cpu_map) {
  5903. sd = &per_cpu(core_domains, i).sd;
  5904. init_sched_groups_power(i, sd);
  5905. }
  5906. #endif
  5907. for_each_cpu(i, cpu_map) {
  5908. sd = &per_cpu(phys_domains, i).sd;
  5909. init_sched_groups_power(i, sd);
  5910. }
  5911. #ifdef CONFIG_NUMA
  5912. for (i = 0; i < nr_node_ids; i++)
  5913. init_numa_sched_groups_power(d.sched_group_nodes[i]);
  5914. if (d.sd_allnodes) {
  5915. struct sched_group *sg;
  5916. cpu_to_allnodes_group(cpumask_first(cpu_map), cpu_map, &sg,
  5917. d.tmpmask);
  5918. init_numa_sched_groups_power(sg);
  5919. }
  5920. #endif
  5921. /* Attach the domains */
  5922. for_each_cpu(i, cpu_map) {
  5923. #ifdef CONFIG_SCHED_SMT
  5924. sd = &per_cpu(cpu_domains, i).sd;
  5925. #elif defined(CONFIG_SCHED_MC)
  5926. sd = &per_cpu(core_domains, i).sd;
  5927. #else
  5928. sd = &per_cpu(phys_domains, i).sd;
  5929. #endif
  5930. cpu_attach_domain(sd, d.rd, i);
  5931. }
  5932. d.sched_group_nodes = NULL; /* don't free this we still need it */
  5933. __free_domain_allocs(&d, sa_tmpmask, cpu_map);
  5934. return 0;
  5935. error:
  5936. __free_domain_allocs(&d, alloc_state, cpu_map);
  5937. return -ENOMEM;
  5938. }
  5939. static int build_sched_domains(const struct cpumask *cpu_map)
  5940. {
  5941. return __build_sched_domains(cpu_map, NULL);
  5942. }
  5943. static cpumask_var_t *doms_cur; /* current sched domains */
  5944. static int ndoms_cur; /* number of sched domains in 'doms_cur' */
  5945. static struct sched_domain_attr *dattr_cur;
  5946. /* attribues of custom domains in 'doms_cur' */
  5947. /*
  5948. * Special case: If a kmalloc of a doms_cur partition (array of
  5949. * cpumask) fails, then fallback to a single sched domain,
  5950. * as determined by the single cpumask fallback_doms.
  5951. */
  5952. static cpumask_var_t fallback_doms;
  5953. /*
  5954. * arch_update_cpu_topology lets virtualized architectures update the
  5955. * cpu core maps. It is supposed to return 1 if the topology changed
  5956. * or 0 if it stayed the same.
  5957. */
  5958. int __attribute__((weak)) arch_update_cpu_topology(void)
  5959. {
  5960. return 0;
  5961. }
  5962. cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
  5963. {
  5964. int i;
  5965. cpumask_var_t *doms;
  5966. doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
  5967. if (!doms)
  5968. return NULL;
  5969. for (i = 0; i < ndoms; i++) {
  5970. if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
  5971. free_sched_domains(doms, i);
  5972. return NULL;
  5973. }
  5974. }
  5975. return doms;
  5976. }
  5977. void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
  5978. {
  5979. unsigned int i;
  5980. for (i = 0; i < ndoms; i++)
  5981. free_cpumask_var(doms[i]);
  5982. kfree(doms);
  5983. }
  5984. /*
  5985. * Set up scheduler domains and groups. Callers must hold the hotplug lock.
  5986. * For now this just excludes isolated cpus, but could be used to
  5987. * exclude other special cases in the future.
  5988. */
  5989. static int arch_init_sched_domains(const struct cpumask *cpu_map)
  5990. {
  5991. int err;
  5992. arch_update_cpu_topology();
  5993. ndoms_cur = 1;
  5994. doms_cur = alloc_sched_domains(ndoms_cur);
  5995. if (!doms_cur)
  5996. doms_cur = &fallback_doms;
  5997. cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
  5998. dattr_cur = NULL;
  5999. err = build_sched_domains(doms_cur[0]);
  6000. register_sched_domain_sysctl();
  6001. return err;
  6002. }
  6003. static void arch_destroy_sched_domains(const struct cpumask *cpu_map,
  6004. struct cpumask *tmpmask)
  6005. {
  6006. free_sched_groups(cpu_map, tmpmask);
  6007. }
  6008. /*
  6009. * Detach sched domains from a group of cpus specified in cpu_map
  6010. * These cpus will now be attached to the NULL domain
  6011. */
  6012. static void detach_destroy_domains(const struct cpumask *cpu_map)
  6013. {
  6014. /* Save because hotplug lock held. */
  6015. static DECLARE_BITMAP(tmpmask, CONFIG_NR_CPUS);
  6016. int i;
  6017. for_each_cpu(i, cpu_map)
  6018. cpu_attach_domain(NULL, &def_root_domain, i);
  6019. synchronize_sched();
  6020. arch_destroy_sched_domains(cpu_map, to_cpumask(tmpmask));
  6021. }
  6022. /* handle null as "default" */
  6023. static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
  6024. struct sched_domain_attr *new, int idx_new)
  6025. {
  6026. struct sched_domain_attr tmp;
  6027. /* fast path */
  6028. if (!new && !cur)
  6029. return 1;
  6030. tmp = SD_ATTR_INIT;
  6031. return !memcmp(cur ? (cur + idx_cur) : &tmp,
  6032. new ? (new + idx_new) : &tmp,
  6033. sizeof(struct sched_domain_attr));
  6034. }
  6035. /*
  6036. * Partition sched domains as specified by the 'ndoms_new'
  6037. * cpumasks in the array doms_new[] of cpumasks. This compares
  6038. * doms_new[] to the current sched domain partitioning, doms_cur[].
  6039. * It destroys each deleted domain and builds each new domain.
  6040. *
  6041. * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
  6042. * The masks don't intersect (don't overlap.) We should setup one
  6043. * sched domain for each mask. CPUs not in any of the cpumasks will
  6044. * not be load balanced. If the same cpumask appears both in the
  6045. * current 'doms_cur' domains and in the new 'doms_new', we can leave
  6046. * it as it is.
  6047. *
  6048. * The passed in 'doms_new' should be allocated using
  6049. * alloc_sched_domains. This routine takes ownership of it and will
  6050. * free_sched_domains it when done with it. If the caller failed the
  6051. * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
  6052. * and partition_sched_domains() will fallback to the single partition
  6053. * 'fallback_doms', it also forces the domains to be rebuilt.
  6054. *
  6055. * If doms_new == NULL it will be replaced with cpu_online_mask.
  6056. * ndoms_new == 0 is a special case for destroying existing domains,
  6057. * and it will not create the default domain.
  6058. *
  6059. * Call with hotplug lock held
  6060. */
  6061. void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
  6062. struct sched_domain_attr *dattr_new)
  6063. {
  6064. int i, j, n;
  6065. int new_topology;
  6066. mutex_lock(&sched_domains_mutex);
  6067. /* always unregister in case we don't destroy any domains */
  6068. unregister_sched_domain_sysctl();
  6069. /* Let architecture update cpu core mappings. */
  6070. new_topology = arch_update_cpu_topology();
  6071. n = doms_new ? ndoms_new : 0;
  6072. /* Destroy deleted domains */
  6073. for (i = 0; i < ndoms_cur; i++) {
  6074. for (j = 0; j < n && !new_topology; j++) {
  6075. if (cpumask_equal(doms_cur[i], doms_new[j])
  6076. && dattrs_equal(dattr_cur, i, dattr_new, j))
  6077. goto match1;
  6078. }
  6079. /* no match - a current sched domain not in new doms_new[] */
  6080. detach_destroy_domains(doms_cur[i]);
  6081. match1:
  6082. ;
  6083. }
  6084. if (doms_new == NULL) {
  6085. ndoms_cur = 0;
  6086. doms_new = &fallback_doms;
  6087. cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
  6088. WARN_ON_ONCE(dattr_new);
  6089. }
  6090. /* Build new domains */
  6091. for (i = 0; i < ndoms_new; i++) {
  6092. for (j = 0; j < ndoms_cur && !new_topology; j++) {
  6093. if (cpumask_equal(doms_new[i], doms_cur[j])
  6094. && dattrs_equal(dattr_new, i, dattr_cur, j))
  6095. goto match2;
  6096. }
  6097. /* no match - add a new doms_new */
  6098. __build_sched_domains(doms_new[i],
  6099. dattr_new ? dattr_new + i : NULL);
  6100. match2:
  6101. ;
  6102. }
  6103. /* Remember the new sched domains */
  6104. if (doms_cur != &fallback_doms)
  6105. free_sched_domains(doms_cur, ndoms_cur);
  6106. kfree(dattr_cur); /* kfree(NULL) is safe */
  6107. doms_cur = doms_new;
  6108. dattr_cur = dattr_new;
  6109. ndoms_cur = ndoms_new;
  6110. register_sched_domain_sysctl();
  6111. mutex_unlock(&sched_domains_mutex);
  6112. }
  6113. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  6114. static void arch_reinit_sched_domains(void)
  6115. {
  6116. get_online_cpus();
  6117. /* Destroy domains first to force the rebuild */
  6118. partition_sched_domains(0, NULL, NULL);
  6119. rebuild_sched_domains();
  6120. put_online_cpus();
  6121. }
  6122. static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
  6123. {
  6124. unsigned int level = 0;
  6125. if (sscanf(buf, "%u", &level) != 1)
  6126. return -EINVAL;
  6127. /*
  6128. * level is always be positive so don't check for
  6129. * level < POWERSAVINGS_BALANCE_NONE which is 0
  6130. * What happens on 0 or 1 byte write,
  6131. * need to check for count as well?
  6132. */
  6133. if (level >= MAX_POWERSAVINGS_BALANCE_LEVELS)
  6134. return -EINVAL;
  6135. if (smt)
  6136. sched_smt_power_savings = level;
  6137. else
  6138. sched_mc_power_savings = level;
  6139. arch_reinit_sched_domains();
  6140. return count;
  6141. }
  6142. #ifdef CONFIG_SCHED_MC
  6143. static ssize_t sched_mc_power_savings_show(struct sysdev_class *class,
  6144. struct sysdev_class_attribute *attr,
  6145. char *page)
  6146. {
  6147. return sprintf(page, "%u\n", sched_mc_power_savings);
  6148. }
  6149. static ssize_t sched_mc_power_savings_store(struct sysdev_class *class,
  6150. struct sysdev_class_attribute *attr,
  6151. const char *buf, size_t count)
  6152. {
  6153. return sched_power_savings_store(buf, count, 0);
  6154. }
  6155. static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644,
  6156. sched_mc_power_savings_show,
  6157. sched_mc_power_savings_store);
  6158. #endif
  6159. #ifdef CONFIG_SCHED_SMT
  6160. static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev,
  6161. struct sysdev_class_attribute *attr,
  6162. char *page)
  6163. {
  6164. return sprintf(page, "%u\n", sched_smt_power_savings);
  6165. }
  6166. static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev,
  6167. struct sysdev_class_attribute *attr,
  6168. const char *buf, size_t count)
  6169. {
  6170. return sched_power_savings_store(buf, count, 1);
  6171. }
  6172. static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644,
  6173. sched_smt_power_savings_show,
  6174. sched_smt_power_savings_store);
  6175. #endif
  6176. int __init sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
  6177. {
  6178. int err = 0;
  6179. #ifdef CONFIG_SCHED_SMT
  6180. if (smt_capable())
  6181. err = sysfs_create_file(&cls->kset.kobj,
  6182. &attr_sched_smt_power_savings.attr);
  6183. #endif
  6184. #ifdef CONFIG_SCHED_MC
  6185. if (!err && mc_capable())
  6186. err = sysfs_create_file(&cls->kset.kobj,
  6187. &attr_sched_mc_power_savings.attr);
  6188. #endif
  6189. return err;
  6190. }
  6191. #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
  6192. #ifndef CONFIG_CPUSETS
  6193. /*
  6194. * Add online and remove offline CPUs from the scheduler domains.
  6195. * When cpusets are enabled they take over this function.
  6196. */
  6197. static int update_sched_domains(struct notifier_block *nfb,
  6198. unsigned long action, void *hcpu)
  6199. {
  6200. switch (action) {
  6201. case CPU_ONLINE:
  6202. case CPU_ONLINE_FROZEN:
  6203. case CPU_DOWN_PREPARE:
  6204. case CPU_DOWN_PREPARE_FROZEN:
  6205. case CPU_DOWN_FAILED:
  6206. case CPU_DOWN_FAILED_FROZEN:
  6207. partition_sched_domains(1, NULL, NULL);
  6208. return NOTIFY_OK;
  6209. default:
  6210. return NOTIFY_DONE;
  6211. }
  6212. }
  6213. #endif
  6214. static int update_runtime(struct notifier_block *nfb,
  6215. unsigned long action, void *hcpu)
  6216. {
  6217. int cpu = (int)(long)hcpu;
  6218. switch (action) {
  6219. case CPU_DOWN_PREPARE:
  6220. case CPU_DOWN_PREPARE_FROZEN:
  6221. disable_runtime(cpu_rq(cpu));
  6222. return NOTIFY_OK;
  6223. case CPU_DOWN_FAILED:
  6224. case CPU_DOWN_FAILED_FROZEN:
  6225. case CPU_ONLINE:
  6226. case CPU_ONLINE_FROZEN:
  6227. enable_runtime(cpu_rq(cpu));
  6228. return NOTIFY_OK;
  6229. default:
  6230. return NOTIFY_DONE;
  6231. }
  6232. }
  6233. void __init sched_init_smp(void)
  6234. {
  6235. cpumask_var_t non_isolated_cpus;
  6236. alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
  6237. alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
  6238. #if defined(CONFIG_NUMA)
  6239. sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
  6240. GFP_KERNEL);
  6241. BUG_ON(sched_group_nodes_bycpu == NULL);
  6242. #endif
  6243. get_online_cpus();
  6244. mutex_lock(&sched_domains_mutex);
  6245. arch_init_sched_domains(cpu_active_mask);
  6246. cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
  6247. if (cpumask_empty(non_isolated_cpus))
  6248. cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
  6249. mutex_unlock(&sched_domains_mutex);
  6250. put_online_cpus();
  6251. #ifndef CONFIG_CPUSETS
  6252. /* XXX: Theoretical race here - CPU may be hotplugged now */
  6253. hotcpu_notifier(update_sched_domains, 0);
  6254. #endif
  6255. /* RT runtime code needs to handle some hotplug events */
  6256. hotcpu_notifier(update_runtime, 0);
  6257. init_hrtick();
  6258. /* Move init over to a non-isolated CPU */
  6259. if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
  6260. BUG();
  6261. sched_init_granularity();
  6262. free_cpumask_var(non_isolated_cpus);
  6263. init_sched_rt_class();
  6264. }
  6265. #else
  6266. void __init sched_init_smp(void)
  6267. {
  6268. sched_init_granularity();
  6269. }
  6270. #endif /* CONFIG_SMP */
  6271. const_debug unsigned int sysctl_timer_migration = 1;
  6272. int in_sched_functions(unsigned long addr)
  6273. {
  6274. return in_lock_functions(addr) ||
  6275. (addr >= (unsigned long)__sched_text_start
  6276. && addr < (unsigned long)__sched_text_end);
  6277. }
  6278. static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
  6279. {
  6280. cfs_rq->tasks_timeline = RB_ROOT;
  6281. INIT_LIST_HEAD(&cfs_rq->tasks);
  6282. #ifdef CONFIG_FAIR_GROUP_SCHED
  6283. cfs_rq->rq = rq;
  6284. #endif
  6285. cfs_rq->min_vruntime = (u64)(-(1LL << 20));
  6286. }
  6287. static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
  6288. {
  6289. struct rt_prio_array *array;
  6290. int i;
  6291. array = &rt_rq->active;
  6292. for (i = 0; i < MAX_RT_PRIO; i++) {
  6293. INIT_LIST_HEAD(array->queue + i);
  6294. __clear_bit(i, array->bitmap);
  6295. }
  6296. /* delimiter for bitsearch: */
  6297. __set_bit(MAX_RT_PRIO, array->bitmap);
  6298. #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
  6299. rt_rq->highest_prio.curr = MAX_RT_PRIO;
  6300. #ifdef CONFIG_SMP
  6301. rt_rq->highest_prio.next = MAX_RT_PRIO;
  6302. #endif
  6303. #endif
  6304. #ifdef CONFIG_SMP
  6305. rt_rq->rt_nr_migratory = 0;
  6306. rt_rq->overloaded = 0;
  6307. plist_head_init_raw(&rt_rq->pushable_tasks, &rq->lock);
  6308. #endif
  6309. rt_rq->rt_time = 0;
  6310. rt_rq->rt_throttled = 0;
  6311. rt_rq->rt_runtime = 0;
  6312. raw_spin_lock_init(&rt_rq->rt_runtime_lock);
  6313. #ifdef CONFIG_RT_GROUP_SCHED
  6314. rt_rq->rt_nr_boosted = 0;
  6315. rt_rq->rq = rq;
  6316. #endif
  6317. }
  6318. #ifdef CONFIG_FAIR_GROUP_SCHED
  6319. static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
  6320. struct sched_entity *se, int cpu, int add,
  6321. struct sched_entity *parent)
  6322. {
  6323. struct rq *rq = cpu_rq(cpu);
  6324. tg->cfs_rq[cpu] = cfs_rq;
  6325. init_cfs_rq(cfs_rq, rq);
  6326. cfs_rq->tg = tg;
  6327. if (add)
  6328. list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
  6329. tg->se[cpu] = se;
  6330. /* se could be NULL for init_task_group */
  6331. if (!se)
  6332. return;
  6333. if (!parent)
  6334. se->cfs_rq = &rq->cfs;
  6335. else
  6336. se->cfs_rq = parent->my_q;
  6337. se->my_q = cfs_rq;
  6338. se->load.weight = tg->shares;
  6339. se->load.inv_weight = 0;
  6340. se->parent = parent;
  6341. }
  6342. #endif
  6343. #ifdef CONFIG_RT_GROUP_SCHED
  6344. static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
  6345. struct sched_rt_entity *rt_se, int cpu, int add,
  6346. struct sched_rt_entity *parent)
  6347. {
  6348. struct rq *rq = cpu_rq(cpu);
  6349. tg->rt_rq[cpu] = rt_rq;
  6350. init_rt_rq(rt_rq, rq);
  6351. rt_rq->tg = tg;
  6352. rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
  6353. if (add)
  6354. list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);
  6355. tg->rt_se[cpu] = rt_se;
  6356. if (!rt_se)
  6357. return;
  6358. if (!parent)
  6359. rt_se->rt_rq = &rq->rt;
  6360. else
  6361. rt_se->rt_rq = parent->my_q;
  6362. rt_se->my_q = rt_rq;
  6363. rt_se->parent = parent;
  6364. INIT_LIST_HEAD(&rt_se->run_list);
  6365. }
  6366. #endif
  6367. void __init sched_init(void)
  6368. {
  6369. int i, j;
  6370. unsigned long alloc_size = 0, ptr;
  6371. #ifdef CONFIG_FAIR_GROUP_SCHED
  6372. alloc_size += 2 * nr_cpu_ids * sizeof(void **);
  6373. #endif
  6374. #ifdef CONFIG_RT_GROUP_SCHED
  6375. alloc_size += 2 * nr_cpu_ids * sizeof(void **);
  6376. #endif
  6377. #ifdef CONFIG_CPUMASK_OFFSTACK
  6378. alloc_size += num_possible_cpus() * cpumask_size();
  6379. #endif
  6380. if (alloc_size) {
  6381. ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
  6382. #ifdef CONFIG_FAIR_GROUP_SCHED
  6383. init_task_group.se = (struct sched_entity **)ptr;
  6384. ptr += nr_cpu_ids * sizeof(void **);
  6385. init_task_group.cfs_rq = (struct cfs_rq **)ptr;
  6386. ptr += nr_cpu_ids * sizeof(void **);
  6387. #endif /* CONFIG_FAIR_GROUP_SCHED */
  6388. #ifdef CONFIG_RT_GROUP_SCHED
  6389. init_task_group.rt_se = (struct sched_rt_entity **)ptr;
  6390. ptr += nr_cpu_ids * sizeof(void **);
  6391. init_task_group.rt_rq = (struct rt_rq **)ptr;
  6392. ptr += nr_cpu_ids * sizeof(void **);
  6393. #endif /* CONFIG_RT_GROUP_SCHED */
  6394. #ifdef CONFIG_CPUMASK_OFFSTACK
  6395. for_each_possible_cpu(i) {
  6396. per_cpu(load_balance_tmpmask, i) = (void *)ptr;
  6397. ptr += cpumask_size();
  6398. }
  6399. #endif /* CONFIG_CPUMASK_OFFSTACK */
  6400. }
  6401. #ifdef CONFIG_SMP
  6402. init_defrootdomain();
  6403. #endif
  6404. init_rt_bandwidth(&def_rt_bandwidth,
  6405. global_rt_period(), global_rt_runtime());
  6406. #ifdef CONFIG_RT_GROUP_SCHED
  6407. init_rt_bandwidth(&init_task_group.rt_bandwidth,
  6408. global_rt_period(), global_rt_runtime());
  6409. #endif /* CONFIG_RT_GROUP_SCHED */
  6410. #ifdef CONFIG_CGROUP_SCHED
  6411. list_add(&init_task_group.list, &task_groups);
  6412. INIT_LIST_HEAD(&init_task_group.children);
  6413. #endif /* CONFIG_CGROUP_SCHED */
  6414. #if defined CONFIG_FAIR_GROUP_SCHED && defined CONFIG_SMP
  6415. update_shares_data = __alloc_percpu(nr_cpu_ids * sizeof(unsigned long),
  6416. __alignof__(unsigned long));
  6417. #endif
  6418. for_each_possible_cpu(i) {
  6419. struct rq *rq;
  6420. rq = cpu_rq(i);
  6421. raw_spin_lock_init(&rq->lock);
  6422. rq->nr_running = 0;
  6423. rq->calc_load_active = 0;
  6424. rq->calc_load_update = jiffies + LOAD_FREQ;
  6425. init_cfs_rq(&rq->cfs, rq);
  6426. init_rt_rq(&rq->rt, rq);
  6427. #ifdef CONFIG_FAIR_GROUP_SCHED
  6428. init_task_group.shares = init_task_group_load;
  6429. INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
  6430. #ifdef CONFIG_CGROUP_SCHED
  6431. /*
  6432. * How much cpu bandwidth does init_task_group get?
  6433. *
  6434. * In case of task-groups formed thr' the cgroup filesystem, it
  6435. * gets 100% of the cpu resources in the system. This overall
  6436. * system cpu resource is divided among the tasks of
  6437. * init_task_group and its child task-groups in a fair manner,
  6438. * based on each entity's (task or task-group's) weight
  6439. * (se->load.weight).
  6440. *
  6441. * In other words, if init_task_group has 10 tasks of weight
  6442. * 1024) and two child groups A0 and A1 (of weight 1024 each),
  6443. * then A0's share of the cpu resource is:
  6444. *
  6445. * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
  6446. *
  6447. * We achieve this by letting init_task_group's tasks sit
  6448. * directly in rq->cfs (i.e init_task_group->se[] = NULL).
  6449. */
  6450. init_tg_cfs_entry(&init_task_group, &rq->cfs, NULL, i, 1, NULL);
  6451. #endif
  6452. #endif /* CONFIG_FAIR_GROUP_SCHED */
  6453. rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
  6454. #ifdef CONFIG_RT_GROUP_SCHED
  6455. INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
  6456. #ifdef CONFIG_CGROUP_SCHED
  6457. init_tg_rt_entry(&init_task_group, &rq->rt, NULL, i, 1, NULL);
  6458. #endif
  6459. #endif
  6460. for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
  6461. rq->cpu_load[j] = 0;
  6462. #ifdef CONFIG_SMP
  6463. rq->sd = NULL;
  6464. rq->rd = NULL;
  6465. rq->post_schedule = 0;
  6466. rq->active_balance = 0;
  6467. rq->next_balance = jiffies;
  6468. rq->push_cpu = 0;
  6469. rq->cpu = i;
  6470. rq->online = 0;
  6471. rq->idle_stamp = 0;
  6472. rq->avg_idle = 2*sysctl_sched_migration_cost;
  6473. rq_attach_root(rq, &def_root_domain);
  6474. #endif
  6475. init_rq_hrtick(rq);
  6476. atomic_set(&rq->nr_iowait, 0);
  6477. }
  6478. set_load_weight(&init_task);
  6479. #ifdef CONFIG_PREEMPT_NOTIFIERS
  6480. INIT_HLIST_HEAD(&init_task.preempt_notifiers);
  6481. #endif
  6482. #ifdef CONFIG_SMP
  6483. open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
  6484. #endif
  6485. #ifdef CONFIG_RT_MUTEXES
  6486. plist_head_init_raw(&init_task.pi_waiters, &init_task.pi_lock);
  6487. #endif
  6488. /*
  6489. * The boot idle thread does lazy MMU switching as well:
  6490. */
  6491. atomic_inc(&init_mm.mm_count);
  6492. enter_lazy_tlb(&init_mm, current);
  6493. /*
  6494. * Make us the idle thread. Technically, schedule() should not be
  6495. * called from this thread, however somewhere below it might be,
  6496. * but because we are the idle thread, we just pick up running again
  6497. * when this runqueue becomes "idle".
  6498. */
  6499. init_idle(current, smp_processor_id());
  6500. calc_load_update = jiffies + LOAD_FREQ;
  6501. /*
  6502. * During early bootup we pretend to be a normal task:
  6503. */
  6504. current->sched_class = &fair_sched_class;
  6505. /* Allocate the nohz_cpu_mask if CONFIG_CPUMASK_OFFSTACK */
  6506. zalloc_cpumask_var(&nohz_cpu_mask, GFP_NOWAIT);
  6507. #ifdef CONFIG_SMP
  6508. #ifdef CONFIG_NO_HZ
  6509. zalloc_cpumask_var(&nohz.cpu_mask, GFP_NOWAIT);
  6510. alloc_cpumask_var(&nohz.ilb_grp_nohz_mask, GFP_NOWAIT);
  6511. #endif
  6512. /* May be allocated at isolcpus cmdline parse time */
  6513. if (cpu_isolated_map == NULL)
  6514. zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
  6515. #endif /* SMP */
  6516. perf_event_init();
  6517. scheduler_running = 1;
  6518. }
  6519. #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
  6520. static inline int preempt_count_equals(int preempt_offset)
  6521. {
  6522. int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
  6523. return (nested == PREEMPT_INATOMIC_BASE + preempt_offset);
  6524. }
  6525. void __might_sleep(const char *file, int line, int preempt_offset)
  6526. {
  6527. #ifdef in_atomic
  6528. static unsigned long prev_jiffy; /* ratelimiting */
  6529. if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
  6530. system_state != SYSTEM_RUNNING || oops_in_progress)
  6531. return;
  6532. if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
  6533. return;
  6534. prev_jiffy = jiffies;
  6535. printk(KERN_ERR
  6536. "BUG: sleeping function called from invalid context at %s:%d\n",
  6537. file, line);
  6538. printk(KERN_ERR
  6539. "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
  6540. in_atomic(), irqs_disabled(),
  6541. current->pid, current->comm);
  6542. debug_show_held_locks(current);
  6543. if (irqs_disabled())
  6544. print_irqtrace_events(current);
  6545. dump_stack();
  6546. #endif
  6547. }
  6548. EXPORT_SYMBOL(__might_sleep);
  6549. #endif
  6550. #ifdef CONFIG_MAGIC_SYSRQ
  6551. static void normalize_task(struct rq *rq, struct task_struct *p)
  6552. {
  6553. int on_rq;
  6554. on_rq = p->se.on_rq;
  6555. if (on_rq)
  6556. deactivate_task(rq, p, 0);
  6557. __setscheduler(rq, p, SCHED_NORMAL, 0);
  6558. if (on_rq) {
  6559. activate_task(rq, p, 0);
  6560. resched_task(rq->curr);
  6561. }
  6562. }
  6563. void normalize_rt_tasks(void)
  6564. {
  6565. struct task_struct *g, *p;
  6566. unsigned long flags;
  6567. struct rq *rq;
  6568. read_lock_irqsave(&tasklist_lock, flags);
  6569. do_each_thread(g, p) {
  6570. /*
  6571. * Only normalize user tasks:
  6572. */
  6573. if (!p->mm)
  6574. continue;
  6575. p->se.exec_start = 0;
  6576. #ifdef CONFIG_SCHEDSTATS
  6577. p->se.statistics.wait_start = 0;
  6578. p->se.statistics.sleep_start = 0;
  6579. p->se.statistics.block_start = 0;
  6580. #endif
  6581. if (!rt_task(p)) {
  6582. /*
  6583. * Renice negative nice level userspace
  6584. * tasks back to 0:
  6585. */
  6586. if (TASK_NICE(p) < 0 && p->mm)
  6587. set_user_nice(p, 0);
  6588. continue;
  6589. }
  6590. raw_spin_lock(&p->pi_lock);
  6591. rq = __task_rq_lock(p);
  6592. normalize_task(rq, p);
  6593. __task_rq_unlock(rq);
  6594. raw_spin_unlock(&p->pi_lock);
  6595. } while_each_thread(g, p);
  6596. read_unlock_irqrestore(&tasklist_lock, flags);
  6597. }
  6598. #endif /* CONFIG_MAGIC_SYSRQ */
  6599. #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
  6600. /*
  6601. * These functions are only useful for the IA64 MCA handling, or kdb.
  6602. *
  6603. * They can only be called when the whole system has been
  6604. * stopped - every CPU needs to be quiescent, and no scheduling
  6605. * activity can take place. Using them for anything else would
  6606. * be a serious bug, and as a result, they aren't even visible
  6607. * under any other configuration.
  6608. */
  6609. /**
  6610. * curr_task - return the current task for a given cpu.
  6611. * @cpu: the processor in question.
  6612. *
  6613. * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
  6614. */
  6615. struct task_struct *curr_task(int cpu)
  6616. {
  6617. return cpu_curr(cpu);
  6618. }
  6619. #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
  6620. #ifdef CONFIG_IA64
  6621. /**
  6622. * set_curr_task - set the current task for a given cpu.
  6623. * @cpu: the processor in question.
  6624. * @p: the task pointer to set.
  6625. *
  6626. * Description: This function must only be used when non-maskable interrupts
  6627. * are serviced on a separate stack. It allows the architecture to switch the
  6628. * notion of the current task on a cpu in a non-blocking manner. This function
  6629. * must be called with all CPU's synchronized, and interrupts disabled, the
  6630. * and caller must save the original value of the current task (see
  6631. * curr_task() above) and restore that value before reenabling interrupts and
  6632. * re-starting the system.
  6633. *
  6634. * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
  6635. */
  6636. void set_curr_task(int cpu, struct task_struct *p)
  6637. {
  6638. cpu_curr(cpu) = p;
  6639. }
  6640. #endif
  6641. #ifdef CONFIG_FAIR_GROUP_SCHED
  6642. static void free_fair_sched_group(struct task_group *tg)
  6643. {
  6644. int i;
  6645. for_each_possible_cpu(i) {
  6646. if (tg->cfs_rq)
  6647. kfree(tg->cfs_rq[i]);
  6648. if (tg->se)
  6649. kfree(tg->se[i]);
  6650. }
  6651. kfree(tg->cfs_rq);
  6652. kfree(tg->se);
  6653. }
  6654. static
  6655. int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
  6656. {
  6657. struct cfs_rq *cfs_rq;
  6658. struct sched_entity *se;
  6659. struct rq *rq;
  6660. int i;
  6661. tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
  6662. if (!tg->cfs_rq)
  6663. goto err;
  6664. tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
  6665. if (!tg->se)
  6666. goto err;
  6667. tg->shares = NICE_0_LOAD;
  6668. for_each_possible_cpu(i) {
  6669. rq = cpu_rq(i);
  6670. cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
  6671. GFP_KERNEL, cpu_to_node(i));
  6672. if (!cfs_rq)
  6673. goto err;
  6674. se = kzalloc_node(sizeof(struct sched_entity),
  6675. GFP_KERNEL, cpu_to_node(i));
  6676. if (!se)
  6677. goto err_free_rq;
  6678. init_tg_cfs_entry(tg, cfs_rq, se, i, 0, parent->se[i]);
  6679. }
  6680. return 1;
  6681. err_free_rq:
  6682. kfree(cfs_rq);
  6683. err:
  6684. return 0;
  6685. }
  6686. static inline void register_fair_sched_group(struct task_group *tg, int cpu)
  6687. {
  6688. list_add_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list,
  6689. &cpu_rq(cpu)->leaf_cfs_rq_list);
  6690. }
  6691. static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
  6692. {
  6693. list_del_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list);
  6694. }
  6695. #else /* !CONFG_FAIR_GROUP_SCHED */
  6696. static inline void free_fair_sched_group(struct task_group *tg)
  6697. {
  6698. }
  6699. static inline
  6700. int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
  6701. {
  6702. return 1;
  6703. }
  6704. static inline void register_fair_sched_group(struct task_group *tg, int cpu)
  6705. {
  6706. }
  6707. static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
  6708. {
  6709. }
  6710. #endif /* CONFIG_FAIR_GROUP_SCHED */
  6711. #ifdef CONFIG_RT_GROUP_SCHED
  6712. static void free_rt_sched_group(struct task_group *tg)
  6713. {
  6714. int i;
  6715. destroy_rt_bandwidth(&tg->rt_bandwidth);
  6716. for_each_possible_cpu(i) {
  6717. if (tg->rt_rq)
  6718. kfree(tg->rt_rq[i]);
  6719. if (tg->rt_se)
  6720. kfree(tg->rt_se[i]);
  6721. }
  6722. kfree(tg->rt_rq);
  6723. kfree(tg->rt_se);
  6724. }
  6725. static
  6726. int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
  6727. {
  6728. struct rt_rq *rt_rq;
  6729. struct sched_rt_entity *rt_se;
  6730. struct rq *rq;
  6731. int i;
  6732. tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
  6733. if (!tg->rt_rq)
  6734. goto err;
  6735. tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
  6736. if (!tg->rt_se)
  6737. goto err;
  6738. init_rt_bandwidth(&tg->rt_bandwidth,
  6739. ktime_to_ns(def_rt_bandwidth.rt_period), 0);
  6740. for_each_possible_cpu(i) {
  6741. rq = cpu_rq(i);
  6742. rt_rq = kzalloc_node(sizeof(struct rt_rq),
  6743. GFP_KERNEL, cpu_to_node(i));
  6744. if (!rt_rq)
  6745. goto err;
  6746. rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
  6747. GFP_KERNEL, cpu_to_node(i));
  6748. if (!rt_se)
  6749. goto err_free_rq;
  6750. init_tg_rt_entry(tg, rt_rq, rt_se, i, 0, parent->rt_se[i]);
  6751. }
  6752. return 1;
  6753. err_free_rq:
  6754. kfree(rt_rq);
  6755. err:
  6756. return 0;
  6757. }
  6758. static inline void register_rt_sched_group(struct task_group *tg, int cpu)
  6759. {
  6760. list_add_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list,
  6761. &cpu_rq(cpu)->leaf_rt_rq_list);
  6762. }
  6763. static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
  6764. {
  6765. list_del_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list);
  6766. }
  6767. #else /* !CONFIG_RT_GROUP_SCHED */
  6768. static inline void free_rt_sched_group(struct task_group *tg)
  6769. {
  6770. }
  6771. static inline
  6772. int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
  6773. {
  6774. return 1;
  6775. }
  6776. static inline void register_rt_sched_group(struct task_group *tg, int cpu)
  6777. {
  6778. }
  6779. static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
  6780. {
  6781. }
  6782. #endif /* CONFIG_RT_GROUP_SCHED */
  6783. #ifdef CONFIG_CGROUP_SCHED
  6784. static void free_sched_group(struct task_group *tg)
  6785. {
  6786. free_fair_sched_group(tg);
  6787. free_rt_sched_group(tg);
  6788. kfree(tg);
  6789. }
  6790. /* allocate runqueue etc for a new task group */
  6791. struct task_group *sched_create_group(struct task_group *parent)
  6792. {
  6793. struct task_group *tg;
  6794. unsigned long flags;
  6795. int i;
  6796. tg = kzalloc(sizeof(*tg), GFP_KERNEL);
  6797. if (!tg)
  6798. return ERR_PTR(-ENOMEM);
  6799. if (!alloc_fair_sched_group(tg, parent))
  6800. goto err;
  6801. if (!alloc_rt_sched_group(tg, parent))
  6802. goto err;
  6803. spin_lock_irqsave(&task_group_lock, flags);
  6804. for_each_possible_cpu(i) {
  6805. register_fair_sched_group(tg, i);
  6806. register_rt_sched_group(tg, i);
  6807. }
  6808. list_add_rcu(&tg->list, &task_groups);
  6809. WARN_ON(!parent); /* root should already exist */
  6810. tg->parent = parent;
  6811. INIT_LIST_HEAD(&tg->children);
  6812. list_add_rcu(&tg->siblings, &parent->children);
  6813. spin_unlock_irqrestore(&task_group_lock, flags);
  6814. return tg;
  6815. err:
  6816. free_sched_group(tg);
  6817. return ERR_PTR(-ENOMEM);
  6818. }
  6819. /* rcu callback to free various structures associated with a task group */
  6820. static void free_sched_group_rcu(struct rcu_head *rhp)
  6821. {
  6822. /* now it should be safe to free those cfs_rqs */
  6823. free_sched_group(container_of(rhp, struct task_group, rcu));
  6824. }
  6825. /* Destroy runqueue etc associated with a task group */
  6826. void sched_destroy_group(struct task_group *tg)
  6827. {
  6828. unsigned long flags;
  6829. int i;
  6830. spin_lock_irqsave(&task_group_lock, flags);
  6831. for_each_possible_cpu(i) {
  6832. unregister_fair_sched_group(tg, i);
  6833. unregister_rt_sched_group(tg, i);
  6834. }
  6835. list_del_rcu(&tg->list);
  6836. list_del_rcu(&tg->siblings);
  6837. spin_unlock_irqrestore(&task_group_lock, flags);
  6838. /* wait for possible concurrent references to cfs_rqs complete */
  6839. call_rcu(&tg->rcu, free_sched_group_rcu);
  6840. }
  6841. /* change task's runqueue when it moves between groups.
  6842. * The caller of this function should have put the task in its new group
  6843. * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
  6844. * reflect its new group.
  6845. */
  6846. void sched_move_task(struct task_struct *tsk)
  6847. {
  6848. int on_rq, running;
  6849. unsigned long flags;
  6850. struct rq *rq;
  6851. rq = task_rq_lock(tsk, &flags);
  6852. running = task_current(rq, tsk);
  6853. on_rq = tsk->se.on_rq;
  6854. if (on_rq)
  6855. dequeue_task(rq, tsk, 0);
  6856. if (unlikely(running))
  6857. tsk->sched_class->put_prev_task(rq, tsk);
  6858. set_task_rq(tsk, task_cpu(tsk));
  6859. #ifdef CONFIG_FAIR_GROUP_SCHED
  6860. if (tsk->sched_class->moved_group)
  6861. tsk->sched_class->moved_group(tsk, on_rq);
  6862. #endif
  6863. if (unlikely(running))
  6864. tsk->sched_class->set_curr_task(rq);
  6865. if (on_rq)
  6866. enqueue_task(rq, tsk, 0);
  6867. task_rq_unlock(rq, &flags);
  6868. }
  6869. #endif /* CONFIG_CGROUP_SCHED */
  6870. #ifdef CONFIG_FAIR_GROUP_SCHED
  6871. static void __set_se_shares(struct sched_entity *se, unsigned long shares)
  6872. {
  6873. struct cfs_rq *cfs_rq = se->cfs_rq;
  6874. int on_rq;
  6875. on_rq = se->on_rq;
  6876. if (on_rq)
  6877. dequeue_entity(cfs_rq, se, 0);
  6878. se->load.weight = shares;
  6879. se->load.inv_weight = 0;
  6880. if (on_rq)
  6881. enqueue_entity(cfs_rq, se, 0);
  6882. }
  6883. static void set_se_shares(struct sched_entity *se, unsigned long shares)
  6884. {
  6885. struct cfs_rq *cfs_rq = se->cfs_rq;
  6886. struct rq *rq = cfs_rq->rq;
  6887. unsigned long flags;
  6888. raw_spin_lock_irqsave(&rq->lock, flags);
  6889. __set_se_shares(se, shares);
  6890. raw_spin_unlock_irqrestore(&rq->lock, flags);
  6891. }
  6892. static DEFINE_MUTEX(shares_mutex);
  6893. int sched_group_set_shares(struct task_group *tg, unsigned long shares)
  6894. {
  6895. int i;
  6896. unsigned long flags;
  6897. /*
  6898. * We can't change the weight of the root cgroup.
  6899. */
  6900. if (!tg->se[0])
  6901. return -EINVAL;
  6902. if (shares < MIN_SHARES)
  6903. shares = MIN_SHARES;
  6904. else if (shares > MAX_SHARES)
  6905. shares = MAX_SHARES;
  6906. mutex_lock(&shares_mutex);
  6907. if (tg->shares == shares)
  6908. goto done;
  6909. spin_lock_irqsave(&task_group_lock, flags);
  6910. for_each_possible_cpu(i)
  6911. unregister_fair_sched_group(tg, i);
  6912. list_del_rcu(&tg->siblings);
  6913. spin_unlock_irqrestore(&task_group_lock, flags);
  6914. /* wait for any ongoing reference to this group to finish */
  6915. synchronize_sched();
  6916. /*
  6917. * Now we are free to modify the group's share on each cpu
  6918. * w/o tripping rebalance_share or load_balance_fair.
  6919. */
  6920. tg->shares = shares;
  6921. for_each_possible_cpu(i) {
  6922. /*
  6923. * force a rebalance
  6924. */
  6925. cfs_rq_set_shares(tg->cfs_rq[i], 0);
  6926. set_se_shares(tg->se[i], shares);
  6927. }
  6928. /*
  6929. * Enable load balance activity on this group, by inserting it back on
  6930. * each cpu's rq->leaf_cfs_rq_list.
  6931. */
  6932. spin_lock_irqsave(&task_group_lock, flags);
  6933. for_each_possible_cpu(i)
  6934. register_fair_sched_group(tg, i);
  6935. list_add_rcu(&tg->siblings, &tg->parent->children);
  6936. spin_unlock_irqrestore(&task_group_lock, flags);
  6937. done:
  6938. mutex_unlock(&shares_mutex);
  6939. return 0;
  6940. }
  6941. unsigned long sched_group_shares(struct task_group *tg)
  6942. {
  6943. return tg->shares;
  6944. }
  6945. #endif
  6946. #ifdef CONFIG_RT_GROUP_SCHED
  6947. /*
  6948. * Ensure that the real time constraints are schedulable.
  6949. */
  6950. static DEFINE_MUTEX(rt_constraints_mutex);
  6951. static unsigned long to_ratio(u64 period, u64 runtime)
  6952. {
  6953. if (runtime == RUNTIME_INF)
  6954. return 1ULL << 20;
  6955. return div64_u64(runtime << 20, period);
  6956. }
  6957. /* Must be called with tasklist_lock held */
  6958. static inline int tg_has_rt_tasks(struct task_group *tg)
  6959. {
  6960. struct task_struct *g, *p;
  6961. do_each_thread(g, p) {
  6962. if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
  6963. return 1;
  6964. } while_each_thread(g, p);
  6965. return 0;
  6966. }
  6967. struct rt_schedulable_data {
  6968. struct task_group *tg;
  6969. u64 rt_period;
  6970. u64 rt_runtime;
  6971. };
  6972. static int tg_schedulable(struct task_group *tg, void *data)
  6973. {
  6974. struct rt_schedulable_data *d = data;
  6975. struct task_group *child;
  6976. unsigned long total, sum = 0;
  6977. u64 period, runtime;
  6978. period = ktime_to_ns(tg->rt_bandwidth.rt_period);
  6979. runtime = tg->rt_bandwidth.rt_runtime;
  6980. if (tg == d->tg) {
  6981. period = d->rt_period;
  6982. runtime = d->rt_runtime;
  6983. }
  6984. /*
  6985. * Cannot have more runtime than the period.
  6986. */
  6987. if (runtime > period && runtime != RUNTIME_INF)
  6988. return -EINVAL;
  6989. /*
  6990. * Ensure we don't starve existing RT tasks.
  6991. */
  6992. if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
  6993. return -EBUSY;
  6994. total = to_ratio(period, runtime);
  6995. /*
  6996. * Nobody can have more than the global setting allows.
  6997. */
  6998. if (total > to_ratio(global_rt_period(), global_rt_runtime()))
  6999. return -EINVAL;
  7000. /*
  7001. * The sum of our children's runtime should not exceed our own.
  7002. */
  7003. list_for_each_entry_rcu(child, &tg->children, siblings) {
  7004. period = ktime_to_ns(child->rt_bandwidth.rt_period);
  7005. runtime = child->rt_bandwidth.rt_runtime;
  7006. if (child == d->tg) {
  7007. period = d->rt_period;
  7008. runtime = d->rt_runtime;
  7009. }
  7010. sum += to_ratio(period, runtime);
  7011. }
  7012. if (sum > total)
  7013. return -EINVAL;
  7014. return 0;
  7015. }
  7016. static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
  7017. {
  7018. struct rt_schedulable_data data = {
  7019. .tg = tg,
  7020. .rt_period = period,
  7021. .rt_runtime = runtime,
  7022. };
  7023. return walk_tg_tree(tg_schedulable, tg_nop, &data);
  7024. }
  7025. static int tg_set_bandwidth(struct task_group *tg,
  7026. u64 rt_period, u64 rt_runtime)
  7027. {
  7028. int i, err = 0;
  7029. mutex_lock(&rt_constraints_mutex);
  7030. read_lock(&tasklist_lock);
  7031. err = __rt_schedulable(tg, rt_period, rt_runtime);
  7032. if (err)
  7033. goto unlock;
  7034. raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
  7035. tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
  7036. tg->rt_bandwidth.rt_runtime = rt_runtime;
  7037. for_each_possible_cpu(i) {
  7038. struct rt_rq *rt_rq = tg->rt_rq[i];
  7039. raw_spin_lock(&rt_rq->rt_runtime_lock);
  7040. rt_rq->rt_runtime = rt_runtime;
  7041. raw_spin_unlock(&rt_rq->rt_runtime_lock);
  7042. }
  7043. raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
  7044. unlock:
  7045. read_unlock(&tasklist_lock);
  7046. mutex_unlock(&rt_constraints_mutex);
  7047. return err;
  7048. }
  7049. int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
  7050. {
  7051. u64 rt_runtime, rt_period;
  7052. rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
  7053. rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
  7054. if (rt_runtime_us < 0)
  7055. rt_runtime = RUNTIME_INF;
  7056. return tg_set_bandwidth(tg, rt_period, rt_runtime);
  7057. }
  7058. long sched_group_rt_runtime(struct task_group *tg)
  7059. {
  7060. u64 rt_runtime_us;
  7061. if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
  7062. return -1;
  7063. rt_runtime_us = tg->rt_bandwidth.rt_runtime;
  7064. do_div(rt_runtime_us, NSEC_PER_USEC);
  7065. return rt_runtime_us;
  7066. }
  7067. int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
  7068. {
  7069. u64 rt_runtime, rt_period;
  7070. rt_period = (u64)rt_period_us * NSEC_PER_USEC;
  7071. rt_runtime = tg->rt_bandwidth.rt_runtime;
  7072. if (rt_period == 0)
  7073. return -EINVAL;
  7074. return tg_set_bandwidth(tg, rt_period, rt_runtime);
  7075. }
  7076. long sched_group_rt_period(struct task_group *tg)
  7077. {
  7078. u64 rt_period_us;
  7079. rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
  7080. do_div(rt_period_us, NSEC_PER_USEC);
  7081. return rt_period_us;
  7082. }
  7083. static int sched_rt_global_constraints(void)
  7084. {
  7085. u64 runtime, period;
  7086. int ret = 0;
  7087. if (sysctl_sched_rt_period <= 0)
  7088. return -EINVAL;
  7089. runtime = global_rt_runtime();
  7090. period = global_rt_period();
  7091. /*
  7092. * Sanity check on the sysctl variables.
  7093. */
  7094. if (runtime > period && runtime != RUNTIME_INF)
  7095. return -EINVAL;
  7096. mutex_lock(&rt_constraints_mutex);
  7097. read_lock(&tasklist_lock);
  7098. ret = __rt_schedulable(NULL, 0, 0);
  7099. read_unlock(&tasklist_lock);
  7100. mutex_unlock(&rt_constraints_mutex);
  7101. return ret;
  7102. }
  7103. int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
  7104. {
  7105. /* Don't accept realtime tasks when there is no way for them to run */
  7106. if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
  7107. return 0;
  7108. return 1;
  7109. }
  7110. #else /* !CONFIG_RT_GROUP_SCHED */
  7111. static int sched_rt_global_constraints(void)
  7112. {
  7113. unsigned long flags;
  7114. int i;
  7115. if (sysctl_sched_rt_period <= 0)
  7116. return -EINVAL;
  7117. /*
  7118. * There's always some RT tasks in the root group
  7119. * -- migration, kstopmachine etc..
  7120. */
  7121. if (sysctl_sched_rt_runtime == 0)
  7122. return -EBUSY;
  7123. raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
  7124. for_each_possible_cpu(i) {
  7125. struct rt_rq *rt_rq = &cpu_rq(i)->rt;
  7126. raw_spin_lock(&rt_rq->rt_runtime_lock);
  7127. rt_rq->rt_runtime = global_rt_runtime();
  7128. raw_spin_unlock(&rt_rq->rt_runtime_lock);
  7129. }
  7130. raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
  7131. return 0;
  7132. }
  7133. #endif /* CONFIG_RT_GROUP_SCHED */
  7134. int sched_rt_handler(struct ctl_table *table, int write,
  7135. void __user *buffer, size_t *lenp,
  7136. loff_t *ppos)
  7137. {
  7138. int ret;
  7139. int old_period, old_runtime;
  7140. static DEFINE_MUTEX(mutex);
  7141. mutex_lock(&mutex);
  7142. old_period = sysctl_sched_rt_period;
  7143. old_runtime = sysctl_sched_rt_runtime;
  7144. ret = proc_dointvec(table, write, buffer, lenp, ppos);
  7145. if (!ret && write) {
  7146. ret = sched_rt_global_constraints();
  7147. if (ret) {
  7148. sysctl_sched_rt_period = old_period;
  7149. sysctl_sched_rt_runtime = old_runtime;
  7150. } else {
  7151. def_rt_bandwidth.rt_runtime = global_rt_runtime();
  7152. def_rt_bandwidth.rt_period =
  7153. ns_to_ktime(global_rt_period());
  7154. }
  7155. }
  7156. mutex_unlock(&mutex);
  7157. return ret;
  7158. }
  7159. #ifdef CONFIG_CGROUP_SCHED
  7160. /* return corresponding task_group object of a cgroup */
  7161. static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
  7162. {
  7163. return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
  7164. struct task_group, css);
  7165. }
  7166. static struct cgroup_subsys_state *
  7167. cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
  7168. {
  7169. struct task_group *tg, *parent;
  7170. if (!cgrp->parent) {
  7171. /* This is early initialization for the top cgroup */
  7172. return &init_task_group.css;
  7173. }
  7174. parent = cgroup_tg(cgrp->parent);
  7175. tg = sched_create_group(parent);
  7176. if (IS_ERR(tg))
  7177. return ERR_PTR(-ENOMEM);
  7178. return &tg->css;
  7179. }
  7180. static void
  7181. cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
  7182. {
  7183. struct task_group *tg = cgroup_tg(cgrp);
  7184. sched_destroy_group(tg);
  7185. }
  7186. static int
  7187. cpu_cgroup_can_attach_task(struct cgroup *cgrp, struct task_struct *tsk)
  7188. {
  7189. #ifdef CONFIG_RT_GROUP_SCHED
  7190. if (!sched_rt_can_attach(cgroup_tg(cgrp), tsk))
  7191. return -EINVAL;
  7192. #else
  7193. /* We don't support RT-tasks being in separate groups */
  7194. if (tsk->sched_class != &fair_sched_class)
  7195. return -EINVAL;
  7196. #endif
  7197. return 0;
  7198. }
  7199. static int
  7200. cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
  7201. struct task_struct *tsk, bool threadgroup)
  7202. {
  7203. int retval = cpu_cgroup_can_attach_task(cgrp, tsk);
  7204. if (retval)
  7205. return retval;
  7206. if (threadgroup) {
  7207. struct task_struct *c;
  7208. rcu_read_lock();
  7209. list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) {
  7210. retval = cpu_cgroup_can_attach_task(cgrp, c);
  7211. if (retval) {
  7212. rcu_read_unlock();
  7213. return retval;
  7214. }
  7215. }
  7216. rcu_read_unlock();
  7217. }
  7218. return 0;
  7219. }
  7220. static void
  7221. cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
  7222. struct cgroup *old_cont, struct task_struct *tsk,
  7223. bool threadgroup)
  7224. {
  7225. sched_move_task(tsk);
  7226. if (threadgroup) {
  7227. struct task_struct *c;
  7228. rcu_read_lock();
  7229. list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) {
  7230. sched_move_task(c);
  7231. }
  7232. rcu_read_unlock();
  7233. }
  7234. }
  7235. #ifdef CONFIG_FAIR_GROUP_SCHED
  7236. static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
  7237. u64 shareval)
  7238. {
  7239. return sched_group_set_shares(cgroup_tg(cgrp), shareval);
  7240. }
  7241. static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
  7242. {
  7243. struct task_group *tg = cgroup_tg(cgrp);
  7244. return (u64) tg->shares;
  7245. }
  7246. #endif /* CONFIG_FAIR_GROUP_SCHED */
  7247. #ifdef CONFIG_RT_GROUP_SCHED
  7248. static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
  7249. s64 val)
  7250. {
  7251. return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
  7252. }
  7253. static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
  7254. {
  7255. return sched_group_rt_runtime(cgroup_tg(cgrp));
  7256. }
  7257. static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
  7258. u64 rt_period_us)
  7259. {
  7260. return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
  7261. }
  7262. static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
  7263. {
  7264. return sched_group_rt_period(cgroup_tg(cgrp));
  7265. }
  7266. #endif /* CONFIG_RT_GROUP_SCHED */
  7267. static struct cftype cpu_files[] = {
  7268. #ifdef CONFIG_FAIR_GROUP_SCHED
  7269. {
  7270. .name = "shares",
  7271. .read_u64 = cpu_shares_read_u64,
  7272. .write_u64 = cpu_shares_write_u64,
  7273. },
  7274. #endif
  7275. #ifdef CONFIG_RT_GROUP_SCHED
  7276. {
  7277. .name = "rt_runtime_us",
  7278. .read_s64 = cpu_rt_runtime_read,
  7279. .write_s64 = cpu_rt_runtime_write,
  7280. },
  7281. {
  7282. .name = "rt_period_us",
  7283. .read_u64 = cpu_rt_period_read_uint,
  7284. .write_u64 = cpu_rt_period_write_uint,
  7285. },
  7286. #endif
  7287. };
  7288. static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
  7289. {
  7290. return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
  7291. }
  7292. struct cgroup_subsys cpu_cgroup_subsys = {
  7293. .name = "cpu",
  7294. .create = cpu_cgroup_create,
  7295. .destroy = cpu_cgroup_destroy,
  7296. .can_attach = cpu_cgroup_can_attach,
  7297. .attach = cpu_cgroup_attach,
  7298. .populate = cpu_cgroup_populate,
  7299. .subsys_id = cpu_cgroup_subsys_id,
  7300. .early_init = 1,
  7301. };
  7302. #endif /* CONFIG_CGROUP_SCHED */
  7303. #ifdef CONFIG_CGROUP_CPUACCT
  7304. /*
  7305. * CPU accounting code for task groups.
  7306. *
  7307. * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
  7308. * (balbir@in.ibm.com).
  7309. */
  7310. /* track cpu usage of a group of tasks and its child groups */
  7311. struct cpuacct {
  7312. struct cgroup_subsys_state css;
  7313. /* cpuusage holds pointer to a u64-type object on every cpu */
  7314. u64 __percpu *cpuusage;
  7315. struct percpu_counter cpustat[CPUACCT_STAT_NSTATS];
  7316. struct cpuacct *parent;
  7317. };
  7318. struct cgroup_subsys cpuacct_subsys;
  7319. /* return cpu accounting group corresponding to this container */
  7320. static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
  7321. {
  7322. return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
  7323. struct cpuacct, css);
  7324. }
  7325. /* return cpu accounting group to which this task belongs */
  7326. static inline struct cpuacct *task_ca(struct task_struct *tsk)
  7327. {
  7328. return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
  7329. struct cpuacct, css);
  7330. }
  7331. /* create a new cpu accounting group */
  7332. static struct cgroup_subsys_state *cpuacct_create(
  7333. struct cgroup_subsys *ss, struct cgroup *cgrp)
  7334. {
  7335. struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
  7336. int i;
  7337. if (!ca)
  7338. goto out;
  7339. ca->cpuusage = alloc_percpu(u64);
  7340. if (!ca->cpuusage)
  7341. goto out_free_ca;
  7342. for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
  7343. if (percpu_counter_init(&ca->cpustat[i], 0))
  7344. goto out_free_counters;
  7345. if (cgrp->parent)
  7346. ca->parent = cgroup_ca(cgrp->parent);
  7347. return &ca->css;
  7348. out_free_counters:
  7349. while (--i >= 0)
  7350. percpu_counter_destroy(&ca->cpustat[i]);
  7351. free_percpu(ca->cpuusage);
  7352. out_free_ca:
  7353. kfree(ca);
  7354. out:
  7355. return ERR_PTR(-ENOMEM);
  7356. }
  7357. /* destroy an existing cpu accounting group */
  7358. static void
  7359. cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
  7360. {
  7361. struct cpuacct *ca = cgroup_ca(cgrp);
  7362. int i;
  7363. for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
  7364. percpu_counter_destroy(&ca->cpustat[i]);
  7365. free_percpu(ca->cpuusage);
  7366. kfree(ca);
  7367. }
  7368. static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
  7369. {
  7370. u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
  7371. u64 data;
  7372. #ifndef CONFIG_64BIT
  7373. /*
  7374. * Take rq->lock to make 64-bit read safe on 32-bit platforms.
  7375. */
  7376. raw_spin_lock_irq(&cpu_rq(cpu)->lock);
  7377. data = *cpuusage;
  7378. raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
  7379. #else
  7380. data = *cpuusage;
  7381. #endif
  7382. return data;
  7383. }
  7384. static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
  7385. {
  7386. u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
  7387. #ifndef CONFIG_64BIT
  7388. /*
  7389. * Take rq->lock to make 64-bit write safe on 32-bit platforms.
  7390. */
  7391. raw_spin_lock_irq(&cpu_rq(cpu)->lock);
  7392. *cpuusage = val;
  7393. raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
  7394. #else
  7395. *cpuusage = val;
  7396. #endif
  7397. }
  7398. /* return total cpu usage (in nanoseconds) of a group */
  7399. static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
  7400. {
  7401. struct cpuacct *ca = cgroup_ca(cgrp);
  7402. u64 totalcpuusage = 0;
  7403. int i;
  7404. for_each_present_cpu(i)
  7405. totalcpuusage += cpuacct_cpuusage_read(ca, i);
  7406. return totalcpuusage;
  7407. }
  7408. static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
  7409. u64 reset)
  7410. {
  7411. struct cpuacct *ca = cgroup_ca(cgrp);
  7412. int err = 0;
  7413. int i;
  7414. if (reset) {
  7415. err = -EINVAL;
  7416. goto out;
  7417. }
  7418. for_each_present_cpu(i)
  7419. cpuacct_cpuusage_write(ca, i, 0);
  7420. out:
  7421. return err;
  7422. }
  7423. static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
  7424. struct seq_file *m)
  7425. {
  7426. struct cpuacct *ca = cgroup_ca(cgroup);
  7427. u64 percpu;
  7428. int i;
  7429. for_each_present_cpu(i) {
  7430. percpu = cpuacct_cpuusage_read(ca, i);
  7431. seq_printf(m, "%llu ", (unsigned long long) percpu);
  7432. }
  7433. seq_printf(m, "\n");
  7434. return 0;
  7435. }
  7436. static const char *cpuacct_stat_desc[] = {
  7437. [CPUACCT_STAT_USER] = "user",
  7438. [CPUACCT_STAT_SYSTEM] = "system",
  7439. };
  7440. static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft,
  7441. struct cgroup_map_cb *cb)
  7442. {
  7443. struct cpuacct *ca = cgroup_ca(cgrp);
  7444. int i;
  7445. for (i = 0; i < CPUACCT_STAT_NSTATS; i++) {
  7446. s64 val = percpu_counter_read(&ca->cpustat[i]);
  7447. val = cputime64_to_clock_t(val);
  7448. cb->fill(cb, cpuacct_stat_desc[i], val);
  7449. }
  7450. return 0;
  7451. }
  7452. static struct cftype files[] = {
  7453. {
  7454. .name = "usage",
  7455. .read_u64 = cpuusage_read,
  7456. .write_u64 = cpuusage_write,
  7457. },
  7458. {
  7459. .name = "usage_percpu",
  7460. .read_seq_string = cpuacct_percpu_seq_read,
  7461. },
  7462. {
  7463. .name = "stat",
  7464. .read_map = cpuacct_stats_show,
  7465. },
  7466. };
  7467. static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
  7468. {
  7469. return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
  7470. }
  7471. /*
  7472. * charge this task's execution time to its accounting group.
  7473. *
  7474. * called with rq->lock held.
  7475. */
  7476. static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
  7477. {
  7478. struct cpuacct *ca;
  7479. int cpu;
  7480. if (unlikely(!cpuacct_subsys.active))
  7481. return;
  7482. cpu = task_cpu(tsk);
  7483. rcu_read_lock();
  7484. ca = task_ca(tsk);
  7485. for (; ca; ca = ca->parent) {
  7486. u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
  7487. *cpuusage += cputime;
  7488. }
  7489. rcu_read_unlock();
  7490. }
  7491. /*
  7492. * When CONFIG_VIRT_CPU_ACCOUNTING is enabled one jiffy can be very large
  7493. * in cputime_t units. As a result, cpuacct_update_stats calls
  7494. * percpu_counter_add with values large enough to always overflow the
  7495. * per cpu batch limit causing bad SMP scalability.
  7496. *
  7497. * To fix this we scale percpu_counter_batch by cputime_one_jiffy so we
  7498. * batch the same amount of time with CONFIG_VIRT_CPU_ACCOUNTING disabled
  7499. * and enabled. We cap it at INT_MAX which is the largest allowed batch value.
  7500. */
  7501. #ifdef CONFIG_SMP
  7502. #define CPUACCT_BATCH \
  7503. min_t(long, percpu_counter_batch * cputime_one_jiffy, INT_MAX)
  7504. #else
  7505. #define CPUACCT_BATCH 0
  7506. #endif
  7507. /*
  7508. * Charge the system/user time to the task's accounting group.
  7509. */
  7510. static void cpuacct_update_stats(struct task_struct *tsk,
  7511. enum cpuacct_stat_index idx, cputime_t val)
  7512. {
  7513. struct cpuacct *ca;
  7514. int batch = CPUACCT_BATCH;
  7515. if (unlikely(!cpuacct_subsys.active))
  7516. return;
  7517. rcu_read_lock();
  7518. ca = task_ca(tsk);
  7519. do {
  7520. __percpu_counter_add(&ca->cpustat[idx], val, batch);
  7521. ca = ca->parent;
  7522. } while (ca);
  7523. rcu_read_unlock();
  7524. }
  7525. struct cgroup_subsys cpuacct_subsys = {
  7526. .name = "cpuacct",
  7527. .create = cpuacct_create,
  7528. .destroy = cpuacct_destroy,
  7529. .populate = cpuacct_populate,
  7530. .subsys_id = cpuacct_subsys_id,
  7531. };
  7532. #endif /* CONFIG_CGROUP_CPUACCT */
  7533. #ifndef CONFIG_SMP
  7534. void synchronize_sched_expedited(void)
  7535. {
  7536. barrier();
  7537. }
  7538. EXPORT_SYMBOL_GPL(synchronize_sched_expedited);
  7539. #else /* #ifndef CONFIG_SMP */
  7540. static atomic_t synchronize_sched_expedited_count = ATOMIC_INIT(0);
  7541. static int synchronize_sched_expedited_cpu_stop(void *data)
  7542. {
  7543. /*
  7544. * There must be a full memory barrier on each affected CPU
  7545. * between the time that try_stop_cpus() is called and the
  7546. * time that it returns.
  7547. *
  7548. * In the current initial implementation of cpu_stop, the
  7549. * above condition is already met when the control reaches
  7550. * this point and the following smp_mb() is not strictly
  7551. * necessary. Do smp_mb() anyway for documentation and
  7552. * robustness against future implementation changes.
  7553. */
  7554. smp_mb(); /* See above comment block. */
  7555. return 0;
  7556. }
  7557. /*
  7558. * Wait for an rcu-sched grace period to elapse, but use "big hammer"
  7559. * approach to force grace period to end quickly. This consumes
  7560. * significant time on all CPUs, and is thus not recommended for
  7561. * any sort of common-case code.
  7562. *
  7563. * Note that it is illegal to call this function while holding any
  7564. * lock that is acquired by a CPU-hotplug notifier. Failing to
  7565. * observe this restriction will result in deadlock.
  7566. */
  7567. void synchronize_sched_expedited(void)
  7568. {
  7569. int snap, trycount = 0;
  7570. smp_mb(); /* ensure prior mod happens before capturing snap. */
  7571. snap = atomic_read(&synchronize_sched_expedited_count) + 1;
  7572. get_online_cpus();
  7573. while (try_stop_cpus(cpu_online_mask,
  7574. synchronize_sched_expedited_cpu_stop,
  7575. NULL) == -EAGAIN) {
  7576. put_online_cpus();
  7577. if (trycount++ < 10)
  7578. udelay(trycount * num_online_cpus());
  7579. else {
  7580. synchronize_sched();
  7581. return;
  7582. }
  7583. if (atomic_read(&synchronize_sched_expedited_count) - snap > 0) {
  7584. smp_mb(); /* ensure test happens before caller kfree */
  7585. return;
  7586. }
  7587. get_online_cpus();
  7588. }
  7589. atomic_inc(&synchronize_sched_expedited_count);
  7590. smp_mb__after_atomic_inc(); /* ensure post-GP actions seen after GP. */
  7591. put_online_cpus();
  7592. }
  7593. EXPORT_SYMBOL_GPL(synchronize_sched_expedited);
  7594. #endif /* #else #ifndef CONFIG_SMP */