sched_fair.c 25 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048
  1. /*
  2. * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
  3. *
  4. * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
  5. *
  6. * Interactivity improvements by Mike Galbraith
  7. * (C) 2007 Mike Galbraith <efault@gmx.de>
  8. *
  9. * Various enhancements by Dmitry Adamushko.
  10. * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
  11. *
  12. * Group scheduling enhancements by Srivatsa Vaddagiri
  13. * Copyright IBM Corporation, 2007
  14. * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
  15. *
  16. * Scaled math optimizations by Thomas Gleixner
  17. * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
  18. *
  19. * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
  20. * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
  21. */
  22. /*
  23. * Targeted preemption latency for CPU-bound tasks:
  24. * (default: 20ms, units: nanoseconds)
  25. *
  26. * NOTE: this latency value is not the same as the concept of
  27. * 'timeslice length' - timeslices in CFS are of variable length.
  28. * (to see the precise effective timeslice length of your workload,
  29. * run vmstat and monitor the context-switches field)
  30. *
  31. * On SMP systems the value of this is multiplied by the log2 of the
  32. * number of CPUs. (i.e. factor 2x on 2-way systems, 3x on 4-way
  33. * systems, 4x on 8-way systems, 5x on 16-way systems, etc.)
  34. * Targeted preemption latency for CPU-bound tasks:
  35. */
  36. const_debug unsigned int sysctl_sched_latency = 20000000ULL;
  37. /*
  38. * After fork, child runs first. (default) If set to 0 then
  39. * parent will (try to) run first.
  40. */
  41. const_debug unsigned int sysctl_sched_child_runs_first = 1;
  42. /*
  43. * Minimal preemption granularity for CPU-bound tasks:
  44. * (default: 2 msec, units: nanoseconds)
  45. */
  46. unsigned int sysctl_sched_min_granularity __read_mostly = 2000000ULL;
  47. /*
  48. * sys_sched_yield() compat mode
  49. *
  50. * This option switches the agressive yield implementation of the
  51. * old scheduler back on.
  52. */
  53. unsigned int __read_mostly sysctl_sched_compat_yield;
  54. /*
  55. * SCHED_BATCH wake-up granularity.
  56. * (default: 25 msec, units: nanoseconds)
  57. *
  58. * This option delays the preemption effects of decoupled workloads
  59. * and reduces their over-scheduling. Synchronous workloads will still
  60. * have immediate wakeup/sleep latencies.
  61. */
  62. const_debug unsigned int sysctl_sched_batch_wakeup_granularity = 25000000UL;
  63. /*
  64. * SCHED_OTHER wake-up granularity.
  65. * (default: 1 msec, units: nanoseconds)
  66. *
  67. * This option delays the preemption effects of decoupled workloads
  68. * and reduces their over-scheduling. Synchronous workloads will still
  69. * have immediate wakeup/sleep latencies.
  70. */
  71. const_debug unsigned int sysctl_sched_wakeup_granularity = 2000000UL;
  72. extern struct sched_class fair_sched_class;
  73. /**************************************************************
  74. * CFS operations on generic schedulable entities:
  75. */
  76. #ifdef CONFIG_FAIR_GROUP_SCHED
  77. /* cpu runqueue to which this cfs_rq is attached */
  78. static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
  79. {
  80. return cfs_rq->rq;
  81. }
  82. /* An entity is a task if it doesn't "own" a runqueue */
  83. #define entity_is_task(se) (!se->my_q)
  84. #else /* CONFIG_FAIR_GROUP_SCHED */
  85. static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
  86. {
  87. return container_of(cfs_rq, struct rq, cfs);
  88. }
  89. #define entity_is_task(se) 1
  90. #endif /* CONFIG_FAIR_GROUP_SCHED */
  91. static inline struct task_struct *task_of(struct sched_entity *se)
  92. {
  93. return container_of(se, struct task_struct, se);
  94. }
  95. /**************************************************************
  96. * Scheduling class tree data structure manipulation methods:
  97. */
  98. static inline u64
  99. max_vruntime(u64 min_vruntime, u64 vruntime)
  100. {
  101. if ((vruntime > min_vruntime) ||
  102. (min_vruntime > (1ULL << 61) && vruntime < (1ULL << 50)))
  103. min_vruntime = vruntime;
  104. return min_vruntime;
  105. }
  106. static inline void
  107. set_leftmost(struct cfs_rq *cfs_rq, struct rb_node *leftmost)
  108. {
  109. struct sched_entity *se;
  110. cfs_rq->rb_leftmost = leftmost;
  111. if (leftmost)
  112. se = rb_entry(leftmost, struct sched_entity, run_node);
  113. }
  114. static inline s64
  115. entity_key(struct cfs_rq *cfs_rq, struct sched_entity *se)
  116. {
  117. return se->vruntime - cfs_rq->min_vruntime;
  118. }
  119. /*
  120. * Enqueue an entity into the rb-tree:
  121. */
  122. static void
  123. __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
  124. {
  125. struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
  126. struct rb_node *parent = NULL;
  127. struct sched_entity *entry;
  128. s64 key = entity_key(cfs_rq, se);
  129. int leftmost = 1;
  130. /*
  131. * Find the right place in the rbtree:
  132. */
  133. while (*link) {
  134. parent = *link;
  135. entry = rb_entry(parent, struct sched_entity, run_node);
  136. /*
  137. * We dont care about collisions. Nodes with
  138. * the same key stay together.
  139. */
  140. if (key < entity_key(cfs_rq, entry)) {
  141. link = &parent->rb_left;
  142. } else {
  143. link = &parent->rb_right;
  144. leftmost = 0;
  145. }
  146. }
  147. /*
  148. * Maintain a cache of leftmost tree entries (it is frequently
  149. * used):
  150. */
  151. if (leftmost)
  152. set_leftmost(cfs_rq, &se->run_node);
  153. rb_link_node(&se->run_node, parent, link);
  154. rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
  155. }
  156. static void
  157. __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
  158. {
  159. if (cfs_rq->rb_leftmost == &se->run_node)
  160. set_leftmost(cfs_rq, rb_next(&se->run_node));
  161. rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
  162. }
  163. static inline struct rb_node *first_fair(struct cfs_rq *cfs_rq)
  164. {
  165. return cfs_rq->rb_leftmost;
  166. }
  167. static struct sched_entity *__pick_next_entity(struct cfs_rq *cfs_rq)
  168. {
  169. return rb_entry(first_fair(cfs_rq), struct sched_entity, run_node);
  170. }
  171. static inline struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
  172. {
  173. struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
  174. struct sched_entity *se = NULL;
  175. struct rb_node *parent;
  176. while (*link) {
  177. parent = *link;
  178. se = rb_entry(parent, struct sched_entity, run_node);
  179. link = &parent->rb_right;
  180. }
  181. return se;
  182. }
  183. /**************************************************************
  184. * Scheduling class statistics methods:
  185. */
  186. static u64 __sched_period(unsigned long nr_running)
  187. {
  188. u64 period = sysctl_sched_latency;
  189. unsigned long nr_latency =
  190. sysctl_sched_latency / sysctl_sched_min_granularity;
  191. if (unlikely(nr_running > nr_latency)) {
  192. period *= nr_running;
  193. do_div(period, nr_latency);
  194. }
  195. return period;
  196. }
  197. static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
  198. {
  199. u64 period = __sched_period(cfs_rq->nr_running);
  200. period *= se->load.weight;
  201. do_div(period, cfs_rq->load.weight);
  202. return period;
  203. }
  204. static u64 __sched_vslice(unsigned long nr_running)
  205. {
  206. u64 period = __sched_period(nr_running);
  207. do_div(period, nr_running);
  208. return period;
  209. }
  210. /*
  211. * Update the current task's runtime statistics. Skip current tasks that
  212. * are not in our scheduling class.
  213. */
  214. static inline void
  215. __update_curr(struct cfs_rq *cfs_rq, struct sched_entity *curr,
  216. unsigned long delta_exec)
  217. {
  218. unsigned long delta_exec_weighted;
  219. u64 next_vruntime, min_vruntime;
  220. schedstat_set(curr->exec_max, max((u64)delta_exec, curr->exec_max));
  221. curr->sum_exec_runtime += delta_exec;
  222. schedstat_add(cfs_rq, exec_clock, delta_exec);
  223. delta_exec_weighted = delta_exec;
  224. if (unlikely(curr->load.weight != NICE_0_LOAD)) {
  225. delta_exec_weighted = calc_delta_fair(delta_exec_weighted,
  226. &curr->load);
  227. }
  228. curr->vruntime += delta_exec_weighted;
  229. /*
  230. * maintain cfs_rq->min_vruntime to be a monotonic increasing
  231. * value tracking the leftmost vruntime in the tree.
  232. */
  233. if (first_fair(cfs_rq)) {
  234. next_vruntime = __pick_next_entity(cfs_rq)->vruntime;
  235. /* min_vruntime() := !max_vruntime() */
  236. min_vruntime = max_vruntime(curr->vruntime, next_vruntime);
  237. if (min_vruntime == next_vruntime)
  238. min_vruntime = curr->vruntime;
  239. else
  240. min_vruntime = next_vruntime;
  241. } else
  242. min_vruntime = curr->vruntime;
  243. cfs_rq->min_vruntime =
  244. max_vruntime(cfs_rq->min_vruntime, min_vruntime);
  245. }
  246. static void update_curr(struct cfs_rq *cfs_rq)
  247. {
  248. struct sched_entity *curr = cfs_rq->curr;
  249. u64 now = rq_of(cfs_rq)->clock;
  250. unsigned long delta_exec;
  251. if (unlikely(!curr))
  252. return;
  253. /*
  254. * Get the amount of time the current task was running
  255. * since the last time we changed load (this cannot
  256. * overflow on 32 bits):
  257. */
  258. delta_exec = (unsigned long)(now - curr->exec_start);
  259. __update_curr(cfs_rq, curr, delta_exec);
  260. curr->exec_start = now;
  261. }
  262. static inline void
  263. update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
  264. {
  265. schedstat_set(se->wait_start, rq_of(cfs_rq)->clock);
  266. }
  267. static inline unsigned long
  268. calc_weighted(unsigned long delta, struct sched_entity *se)
  269. {
  270. unsigned long weight = se->load.weight;
  271. if (unlikely(weight != NICE_0_LOAD))
  272. return (u64)delta * se->load.weight >> NICE_0_SHIFT;
  273. else
  274. return delta;
  275. }
  276. /*
  277. * Task is being enqueued - update stats:
  278. */
  279. static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
  280. {
  281. /*
  282. * Are we enqueueing a waiting task? (for current tasks
  283. * a dequeue/enqueue event is a NOP)
  284. */
  285. if (se != cfs_rq->curr)
  286. update_stats_wait_start(cfs_rq, se);
  287. }
  288. static void
  289. update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
  290. {
  291. schedstat_set(se->wait_max, max(se->wait_max,
  292. rq_of(cfs_rq)->clock - se->wait_start));
  293. schedstat_set(se->wait_start, 0);
  294. }
  295. static inline void
  296. update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
  297. {
  298. update_curr(cfs_rq);
  299. /*
  300. * Mark the end of the wait period if dequeueing a
  301. * waiting task:
  302. */
  303. if (se != cfs_rq->curr)
  304. update_stats_wait_end(cfs_rq, se);
  305. }
  306. /*
  307. * We are picking a new current task - update its stats:
  308. */
  309. static inline void
  310. update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
  311. {
  312. /*
  313. * We are starting a new run period:
  314. */
  315. se->exec_start = rq_of(cfs_rq)->clock;
  316. }
  317. /*
  318. * We are descheduling a task - update its stats:
  319. */
  320. static inline void
  321. update_stats_curr_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
  322. {
  323. se->exec_start = 0;
  324. }
  325. /**************************************************
  326. * Scheduling class queueing methods:
  327. */
  328. static void
  329. account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
  330. {
  331. update_load_add(&cfs_rq->load, se->load.weight);
  332. cfs_rq->nr_running++;
  333. se->on_rq = 1;
  334. }
  335. static void
  336. account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
  337. {
  338. update_load_sub(&cfs_rq->load, se->load.weight);
  339. cfs_rq->nr_running--;
  340. se->on_rq = 0;
  341. }
  342. static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
  343. {
  344. #ifdef CONFIG_SCHEDSTATS
  345. if (se->sleep_start) {
  346. u64 delta = rq_of(cfs_rq)->clock - se->sleep_start;
  347. if ((s64)delta < 0)
  348. delta = 0;
  349. if (unlikely(delta > se->sleep_max))
  350. se->sleep_max = delta;
  351. se->sleep_start = 0;
  352. se->sum_sleep_runtime += delta;
  353. }
  354. if (se->block_start) {
  355. u64 delta = rq_of(cfs_rq)->clock - se->block_start;
  356. if ((s64)delta < 0)
  357. delta = 0;
  358. if (unlikely(delta > se->block_max))
  359. se->block_max = delta;
  360. se->block_start = 0;
  361. se->sum_sleep_runtime += delta;
  362. /*
  363. * Blocking time is in units of nanosecs, so shift by 20 to
  364. * get a milliseconds-range estimation of the amount of
  365. * time that the task spent sleeping:
  366. */
  367. if (unlikely(prof_on == SLEEP_PROFILING)) {
  368. struct task_struct *tsk = task_of(se);
  369. profile_hits(SLEEP_PROFILING, (void *)get_wchan(tsk),
  370. delta >> 20);
  371. }
  372. }
  373. #endif
  374. }
  375. static void
  376. place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
  377. {
  378. u64 vruntime;
  379. vruntime = cfs_rq->min_vruntime;
  380. if (sched_feat(USE_TREE_AVG)) {
  381. struct sched_entity *last = __pick_last_entity(cfs_rq);
  382. if (last) {
  383. vruntime += last->vruntime;
  384. vruntime >>= 1;
  385. }
  386. } else if (sched_feat(APPROX_AVG) && cfs_rq->nr_running)
  387. vruntime += __sched_vslice(cfs_rq->nr_running)/2;
  388. if (initial && sched_feat(START_DEBIT))
  389. vruntime += __sched_vslice(cfs_rq->nr_running + 1);
  390. if (!initial && sched_feat(NEW_FAIR_SLEEPERS)) {
  391. s64 latency = cfs_rq->min_vruntime - se->last_min_vruntime;
  392. if (latency < 0 || !cfs_rq->nr_running)
  393. latency = 0;
  394. else
  395. latency = min_t(s64, latency, sysctl_sched_latency);
  396. vruntime -= latency;
  397. }
  398. se->vruntime = vruntime;
  399. }
  400. static void
  401. enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int wakeup)
  402. {
  403. /*
  404. * Update the fair clock.
  405. */
  406. update_curr(cfs_rq);
  407. if (wakeup) {
  408. /* se->vruntime += cfs_rq->min_vruntime; */
  409. place_entity(cfs_rq, se, 0);
  410. enqueue_sleeper(cfs_rq, se);
  411. }
  412. update_stats_enqueue(cfs_rq, se);
  413. if (se != cfs_rq->curr)
  414. __enqueue_entity(cfs_rq, se);
  415. account_entity_enqueue(cfs_rq, se);
  416. }
  417. static void
  418. dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int sleep)
  419. {
  420. update_stats_dequeue(cfs_rq, se);
  421. if (sleep) {
  422. #ifdef CONFIG_SCHEDSTATS
  423. if (entity_is_task(se)) {
  424. struct task_struct *tsk = task_of(se);
  425. if (tsk->state & TASK_INTERRUPTIBLE)
  426. se->sleep_start = rq_of(cfs_rq)->clock;
  427. if (tsk->state & TASK_UNINTERRUPTIBLE)
  428. se->block_start = rq_of(cfs_rq)->clock;
  429. }
  430. #endif
  431. /* se->vruntime = entity_key(cfs_rq, se); */
  432. se->last_min_vruntime = cfs_rq->min_vruntime;
  433. }
  434. if (se != cfs_rq->curr)
  435. __dequeue_entity(cfs_rq, se);
  436. account_entity_dequeue(cfs_rq, se);
  437. }
  438. /*
  439. * Preempt the current task with a newly woken task if needed:
  440. */
  441. static void
  442. check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
  443. {
  444. unsigned long ideal_runtime, delta_exec;
  445. ideal_runtime = sched_slice(cfs_rq, curr);
  446. delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
  447. if (delta_exec > ideal_runtime)
  448. resched_task(rq_of(cfs_rq)->curr);
  449. }
  450. static void
  451. set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
  452. {
  453. /* 'current' is not kept within the tree. */
  454. if (se->on_rq) {
  455. /*
  456. * Any task has to be enqueued before it get to execute on
  457. * a CPU. So account for the time it spent waiting on the
  458. * runqueue.
  459. */
  460. update_stats_wait_end(cfs_rq, se);
  461. __dequeue_entity(cfs_rq, se);
  462. }
  463. update_stats_curr_start(cfs_rq, se);
  464. cfs_rq->curr = se;
  465. #ifdef CONFIG_SCHEDSTATS
  466. /*
  467. * Track our maximum slice length, if the CPU's load is at
  468. * least twice that of our own weight (i.e. dont track it
  469. * when there are only lesser-weight tasks around):
  470. */
  471. if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
  472. se->slice_max = max(se->slice_max,
  473. se->sum_exec_runtime - se->prev_sum_exec_runtime);
  474. }
  475. #endif
  476. se->prev_sum_exec_runtime = se->sum_exec_runtime;
  477. }
  478. static struct sched_entity *pick_next_entity(struct cfs_rq *cfs_rq)
  479. {
  480. struct sched_entity *se = __pick_next_entity(cfs_rq);
  481. set_next_entity(cfs_rq, se);
  482. return se;
  483. }
  484. static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
  485. {
  486. /*
  487. * If still on the runqueue then deactivate_task()
  488. * was not called and update_curr() has to be done:
  489. */
  490. if (prev->on_rq)
  491. update_curr(cfs_rq);
  492. update_stats_curr_end(cfs_rq, prev);
  493. if (prev->on_rq) {
  494. update_stats_wait_start(cfs_rq, prev);
  495. /* Put 'current' back into the tree. */
  496. __enqueue_entity(cfs_rq, prev);
  497. }
  498. cfs_rq->curr = NULL;
  499. }
  500. static void entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
  501. {
  502. /*
  503. * Update run-time statistics of the 'current'.
  504. */
  505. update_curr(cfs_rq);
  506. if (cfs_rq->nr_running > 1)
  507. check_preempt_tick(cfs_rq, curr);
  508. }
  509. /**************************************************
  510. * CFS operations on tasks:
  511. */
  512. #ifdef CONFIG_FAIR_GROUP_SCHED
  513. /* Walk up scheduling entities hierarchy */
  514. #define for_each_sched_entity(se) \
  515. for (; se; se = se->parent)
  516. static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
  517. {
  518. return p->se.cfs_rq;
  519. }
  520. /* runqueue on which this entity is (to be) queued */
  521. static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
  522. {
  523. return se->cfs_rq;
  524. }
  525. /* runqueue "owned" by this group */
  526. static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
  527. {
  528. return grp->my_q;
  529. }
  530. /* Given a group's cfs_rq on one cpu, return its corresponding cfs_rq on
  531. * another cpu ('this_cpu')
  532. */
  533. static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
  534. {
  535. return cfs_rq->tg->cfs_rq[this_cpu];
  536. }
  537. /* Iterate thr' all leaf cfs_rq's on a runqueue */
  538. #define for_each_leaf_cfs_rq(rq, cfs_rq) \
  539. list_for_each_entry(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
  540. /* Do the two (enqueued) tasks belong to the same group ? */
  541. static inline int is_same_group(struct task_struct *curr, struct task_struct *p)
  542. {
  543. if (curr->se.cfs_rq == p->se.cfs_rq)
  544. return 1;
  545. return 0;
  546. }
  547. #else /* CONFIG_FAIR_GROUP_SCHED */
  548. #define for_each_sched_entity(se) \
  549. for (; se; se = NULL)
  550. static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
  551. {
  552. return &task_rq(p)->cfs;
  553. }
  554. static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
  555. {
  556. struct task_struct *p = task_of(se);
  557. struct rq *rq = task_rq(p);
  558. return &rq->cfs;
  559. }
  560. /* runqueue "owned" by this group */
  561. static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
  562. {
  563. return NULL;
  564. }
  565. static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
  566. {
  567. return &cpu_rq(this_cpu)->cfs;
  568. }
  569. #define for_each_leaf_cfs_rq(rq, cfs_rq) \
  570. for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
  571. static inline int is_same_group(struct task_struct *curr, struct task_struct *p)
  572. {
  573. return 1;
  574. }
  575. #endif /* CONFIG_FAIR_GROUP_SCHED */
  576. /*
  577. * The enqueue_task method is called before nr_running is
  578. * increased. Here we update the fair scheduling stats and
  579. * then put the task into the rbtree:
  580. */
  581. static void enqueue_task_fair(struct rq *rq, struct task_struct *p, int wakeup)
  582. {
  583. struct cfs_rq *cfs_rq;
  584. struct sched_entity *se = &p->se;
  585. for_each_sched_entity(se) {
  586. if (se->on_rq)
  587. break;
  588. cfs_rq = cfs_rq_of(se);
  589. enqueue_entity(cfs_rq, se, wakeup);
  590. }
  591. }
  592. /*
  593. * The dequeue_task method is called before nr_running is
  594. * decreased. We remove the task from the rbtree and
  595. * update the fair scheduling stats:
  596. */
  597. static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int sleep)
  598. {
  599. struct cfs_rq *cfs_rq;
  600. struct sched_entity *se = &p->se;
  601. for_each_sched_entity(se) {
  602. cfs_rq = cfs_rq_of(se);
  603. dequeue_entity(cfs_rq, se, sleep);
  604. /* Don't dequeue parent if it has other entities besides us */
  605. if (cfs_rq->load.weight)
  606. break;
  607. }
  608. }
  609. /*
  610. * sched_yield() support is very simple - we dequeue and enqueue.
  611. *
  612. * If compat_yield is turned on then we requeue to the end of the tree.
  613. */
  614. static void yield_task_fair(struct rq *rq)
  615. {
  616. struct cfs_rq *cfs_rq = task_cfs_rq(rq->curr);
  617. struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
  618. struct sched_entity *rightmost, *se = &rq->curr->se;
  619. struct rb_node *parent;
  620. /*
  621. * Are we the only task in the tree?
  622. */
  623. if (unlikely(cfs_rq->nr_running == 1))
  624. return;
  625. if (likely(!sysctl_sched_compat_yield)) {
  626. __update_rq_clock(rq);
  627. /*
  628. * Dequeue and enqueue the task to update its
  629. * position within the tree:
  630. */
  631. dequeue_entity(cfs_rq, se, 0);
  632. enqueue_entity(cfs_rq, se, 0);
  633. return;
  634. }
  635. /*
  636. * Find the rightmost entry in the rbtree:
  637. */
  638. do {
  639. parent = *link;
  640. link = &parent->rb_right;
  641. } while (*link);
  642. rightmost = rb_entry(parent, struct sched_entity, run_node);
  643. /*
  644. * Already in the rightmost position?
  645. */
  646. if (unlikely(rightmost == se))
  647. return;
  648. /*
  649. * Minimally necessary key value to be last in the tree:
  650. */
  651. se->vruntime = rightmost->vruntime + 1;
  652. if (cfs_rq->rb_leftmost == &se->run_node)
  653. cfs_rq->rb_leftmost = rb_next(&se->run_node);
  654. /*
  655. * Relink the task to the rightmost position:
  656. */
  657. rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
  658. rb_link_node(&se->run_node, parent, link);
  659. rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
  660. }
  661. /*
  662. * Preempt the current task with a newly woken task if needed:
  663. */
  664. static void check_preempt_wakeup(struct rq *rq, struct task_struct *p)
  665. {
  666. struct task_struct *curr = rq->curr;
  667. struct cfs_rq *cfs_rq = task_cfs_rq(curr);
  668. if (unlikely(rt_prio(p->prio))) {
  669. update_rq_clock(rq);
  670. update_curr(cfs_rq);
  671. resched_task(curr);
  672. return;
  673. }
  674. if (is_same_group(curr, p)) {
  675. s64 delta = curr->se.vruntime - p->se.vruntime;
  676. if (delta > (s64)sysctl_sched_wakeup_granularity)
  677. resched_task(curr);
  678. }
  679. }
  680. static struct task_struct *pick_next_task_fair(struct rq *rq)
  681. {
  682. struct cfs_rq *cfs_rq = &rq->cfs;
  683. struct sched_entity *se;
  684. if (unlikely(!cfs_rq->nr_running))
  685. return NULL;
  686. do {
  687. se = pick_next_entity(cfs_rq);
  688. cfs_rq = group_cfs_rq(se);
  689. } while (cfs_rq);
  690. return task_of(se);
  691. }
  692. /*
  693. * Account for a descheduled task:
  694. */
  695. static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
  696. {
  697. struct sched_entity *se = &prev->se;
  698. struct cfs_rq *cfs_rq;
  699. for_each_sched_entity(se) {
  700. cfs_rq = cfs_rq_of(se);
  701. put_prev_entity(cfs_rq, se);
  702. }
  703. }
  704. /**************************************************
  705. * Fair scheduling class load-balancing methods:
  706. */
  707. /*
  708. * Load-balancing iterator. Note: while the runqueue stays locked
  709. * during the whole iteration, the current task might be
  710. * dequeued so the iterator has to be dequeue-safe. Here we
  711. * achieve that by always pre-iterating before returning
  712. * the current task:
  713. */
  714. static inline struct task_struct *
  715. __load_balance_iterator(struct cfs_rq *cfs_rq, struct rb_node *curr)
  716. {
  717. struct task_struct *p;
  718. if (!curr)
  719. return NULL;
  720. p = rb_entry(curr, struct task_struct, se.run_node);
  721. cfs_rq->rb_load_balance_curr = rb_next(curr);
  722. return p;
  723. }
  724. static struct task_struct *load_balance_start_fair(void *arg)
  725. {
  726. struct cfs_rq *cfs_rq = arg;
  727. return __load_balance_iterator(cfs_rq, first_fair(cfs_rq));
  728. }
  729. static struct task_struct *load_balance_next_fair(void *arg)
  730. {
  731. struct cfs_rq *cfs_rq = arg;
  732. return __load_balance_iterator(cfs_rq, cfs_rq->rb_load_balance_curr);
  733. }
  734. #ifdef CONFIG_FAIR_GROUP_SCHED
  735. static int cfs_rq_best_prio(struct cfs_rq *cfs_rq)
  736. {
  737. struct sched_entity *curr;
  738. struct task_struct *p;
  739. if (!cfs_rq->nr_running)
  740. return MAX_PRIO;
  741. curr = cfs_rq->curr;
  742. if (!curr)
  743. curr = __pick_next_entity(cfs_rq);
  744. p = task_of(curr);
  745. return p->prio;
  746. }
  747. #endif
  748. static unsigned long
  749. load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
  750. unsigned long max_nr_move, unsigned long max_load_move,
  751. struct sched_domain *sd, enum cpu_idle_type idle,
  752. int *all_pinned, int *this_best_prio)
  753. {
  754. struct cfs_rq *busy_cfs_rq;
  755. unsigned long load_moved, total_nr_moved = 0, nr_moved;
  756. long rem_load_move = max_load_move;
  757. struct rq_iterator cfs_rq_iterator;
  758. cfs_rq_iterator.start = load_balance_start_fair;
  759. cfs_rq_iterator.next = load_balance_next_fair;
  760. for_each_leaf_cfs_rq(busiest, busy_cfs_rq) {
  761. #ifdef CONFIG_FAIR_GROUP_SCHED
  762. struct cfs_rq *this_cfs_rq;
  763. long imbalance;
  764. unsigned long maxload;
  765. this_cfs_rq = cpu_cfs_rq(busy_cfs_rq, this_cpu);
  766. imbalance = busy_cfs_rq->load.weight - this_cfs_rq->load.weight;
  767. /* Don't pull if this_cfs_rq has more load than busy_cfs_rq */
  768. if (imbalance <= 0)
  769. continue;
  770. /* Don't pull more than imbalance/2 */
  771. imbalance /= 2;
  772. maxload = min(rem_load_move, imbalance);
  773. *this_best_prio = cfs_rq_best_prio(this_cfs_rq);
  774. #else
  775. # define maxload rem_load_move
  776. #endif
  777. /* pass busy_cfs_rq argument into
  778. * load_balance_[start|next]_fair iterators
  779. */
  780. cfs_rq_iterator.arg = busy_cfs_rq;
  781. nr_moved = balance_tasks(this_rq, this_cpu, busiest,
  782. max_nr_move, maxload, sd, idle, all_pinned,
  783. &load_moved, this_best_prio, &cfs_rq_iterator);
  784. total_nr_moved += nr_moved;
  785. max_nr_move -= nr_moved;
  786. rem_load_move -= load_moved;
  787. if (max_nr_move <= 0 || rem_load_move <= 0)
  788. break;
  789. }
  790. return max_load_move - rem_load_move;
  791. }
  792. /*
  793. * scheduler tick hitting a task of our scheduling class:
  794. */
  795. static void task_tick_fair(struct rq *rq, struct task_struct *curr)
  796. {
  797. struct cfs_rq *cfs_rq;
  798. struct sched_entity *se = &curr->se;
  799. for_each_sched_entity(se) {
  800. cfs_rq = cfs_rq_of(se);
  801. entity_tick(cfs_rq, se);
  802. }
  803. }
  804. #define swap(a,b) do { typeof(a) tmp = (a); (a) = (b); (b) = tmp; } while (0)
  805. /*
  806. * Share the fairness runtime between parent and child, thus the
  807. * total amount of pressure for CPU stays equal - new tasks
  808. * get a chance to run but frequent forkers are not allowed to
  809. * monopolize the CPU. Note: the parent runqueue is locked,
  810. * the child is not running yet.
  811. */
  812. static void task_new_fair(struct rq *rq, struct task_struct *p)
  813. {
  814. struct cfs_rq *cfs_rq = task_cfs_rq(p);
  815. struct sched_entity *se = &p->se, *curr = cfs_rq->curr;
  816. sched_info_queued(p);
  817. update_curr(cfs_rq);
  818. place_entity(cfs_rq, se, 1);
  819. if (sysctl_sched_child_runs_first &&
  820. curr->vruntime < se->vruntime) {
  821. /*
  822. * Upon rescheduling, sched_class::put_prev_task() will place
  823. * 'current' within the tree based on its new key value.
  824. */
  825. swap(curr->vruntime, se->vruntime);
  826. }
  827. update_stats_enqueue(cfs_rq, se);
  828. __enqueue_entity(cfs_rq, se);
  829. account_entity_enqueue(cfs_rq, se);
  830. resched_task(rq->curr);
  831. }
  832. /* Account for a task changing its policy or group.
  833. *
  834. * This routine is mostly called to set cfs_rq->curr field when a task
  835. * migrates between groups/classes.
  836. */
  837. static void set_curr_task_fair(struct rq *rq)
  838. {
  839. struct sched_entity *se = &rq->curr->se;
  840. for_each_sched_entity(se)
  841. set_next_entity(cfs_rq_of(se), se);
  842. }
  843. /*
  844. * All the scheduling class methods:
  845. */
  846. struct sched_class fair_sched_class __read_mostly = {
  847. .enqueue_task = enqueue_task_fair,
  848. .dequeue_task = dequeue_task_fair,
  849. .yield_task = yield_task_fair,
  850. .check_preempt_curr = check_preempt_wakeup,
  851. .pick_next_task = pick_next_task_fair,
  852. .put_prev_task = put_prev_task_fair,
  853. .load_balance = load_balance_fair,
  854. .set_curr_task = set_curr_task_fair,
  855. .task_tick = task_tick_fair,
  856. .task_new = task_new_fair,
  857. };
  858. #ifdef CONFIG_SCHED_DEBUG
  859. static void print_cfs_stats(struct seq_file *m, int cpu)
  860. {
  861. struct cfs_rq *cfs_rq;
  862. #ifdef CONFIG_FAIR_GROUP_SCHED
  863. print_cfs_rq(m, cpu, &cpu_rq(cpu)->cfs);
  864. #endif
  865. for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
  866. print_cfs_rq(m, cpu, cfs_rq);
  867. }
  868. #endif