sched_fair.c 105 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114
  1. /*
  2. * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
  3. *
  4. * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
  5. *
  6. * Interactivity improvements by Mike Galbraith
  7. * (C) 2007 Mike Galbraith <efault@gmx.de>
  8. *
  9. * Various enhancements by Dmitry Adamushko.
  10. * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
  11. *
  12. * Group scheduling enhancements by Srivatsa Vaddagiri
  13. * Copyright IBM Corporation, 2007
  14. * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
  15. *
  16. * Scaled math optimizations by Thomas Gleixner
  17. * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
  18. *
  19. * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
  20. * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
  21. */
  22. #include <linux/latencytop.h>
  23. #include <linux/sched.h>
  24. /*
  25. * Targeted preemption latency for CPU-bound tasks:
  26. * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
  27. *
  28. * NOTE: this latency value is not the same as the concept of
  29. * 'timeslice length' - timeslices in CFS are of variable length
  30. * and have no persistent notion like in traditional, time-slice
  31. * based scheduling concepts.
  32. *
  33. * (to see the precise effective timeslice length of your workload,
  34. * run vmstat and monitor the context-switches (cs) field)
  35. */
  36. unsigned int sysctl_sched_latency = 6000000ULL;
  37. unsigned int normalized_sysctl_sched_latency = 6000000ULL;
  38. /*
  39. * The initial- and re-scaling of tunables is configurable
  40. * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
  41. *
  42. * Options are:
  43. * SCHED_TUNABLESCALING_NONE - unscaled, always *1
  44. * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
  45. * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
  46. */
  47. enum sched_tunable_scaling sysctl_sched_tunable_scaling
  48. = SCHED_TUNABLESCALING_LOG;
  49. /*
  50. * Minimal preemption granularity for CPU-bound tasks:
  51. * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
  52. */
  53. unsigned int sysctl_sched_min_granularity = 750000ULL;
  54. unsigned int normalized_sysctl_sched_min_granularity = 750000ULL;
  55. /*
  56. * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
  57. */
  58. static unsigned int sched_nr_latency = 8;
  59. /*
  60. * After fork, child runs first. If set to 0 (default) then
  61. * parent will (try to) run first.
  62. */
  63. unsigned int sysctl_sched_child_runs_first __read_mostly;
  64. /*
  65. * sys_sched_yield() compat mode
  66. *
  67. * This option switches the agressive yield implementation of the
  68. * old scheduler back on.
  69. */
  70. unsigned int __read_mostly sysctl_sched_compat_yield;
  71. /*
  72. * SCHED_OTHER wake-up granularity.
  73. * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
  74. *
  75. * This option delays the preemption effects of decoupled workloads
  76. * and reduces their over-scheduling. Synchronous workloads will still
  77. * have immediate wakeup/sleep latencies.
  78. */
  79. unsigned int sysctl_sched_wakeup_granularity = 1000000UL;
  80. unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL;
  81. const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
  82. static const struct sched_class fair_sched_class;
  83. /**************************************************************
  84. * CFS operations on generic schedulable entities:
  85. */
  86. #ifdef CONFIG_FAIR_GROUP_SCHED
  87. /* cpu runqueue to which this cfs_rq is attached */
  88. static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
  89. {
  90. return cfs_rq->rq;
  91. }
  92. /* An entity is a task if it doesn't "own" a runqueue */
  93. #define entity_is_task(se) (!se->my_q)
  94. static inline struct task_struct *task_of(struct sched_entity *se)
  95. {
  96. #ifdef CONFIG_SCHED_DEBUG
  97. WARN_ON_ONCE(!entity_is_task(se));
  98. #endif
  99. return container_of(se, struct task_struct, se);
  100. }
  101. /* Walk up scheduling entities hierarchy */
  102. #define for_each_sched_entity(se) \
  103. for (; se; se = se->parent)
  104. static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
  105. {
  106. return p->se.cfs_rq;
  107. }
  108. /* runqueue on which this entity is (to be) queued */
  109. static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
  110. {
  111. return se->cfs_rq;
  112. }
  113. /* runqueue "owned" by this group */
  114. static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
  115. {
  116. return grp->my_q;
  117. }
  118. /* Given a group's cfs_rq on one cpu, return its corresponding cfs_rq on
  119. * another cpu ('this_cpu')
  120. */
  121. static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
  122. {
  123. return cfs_rq->tg->cfs_rq[this_cpu];
  124. }
  125. static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
  126. {
  127. if (!cfs_rq->on_list) {
  128. /*
  129. * Ensure we either appear before our parent (if already
  130. * enqueued) or force our parent to appear after us when it is
  131. * enqueued. The fact that we always enqueue bottom-up
  132. * reduces this to two cases.
  133. */
  134. if (cfs_rq->tg->parent &&
  135. cfs_rq->tg->parent->cfs_rq[cpu_of(rq_of(cfs_rq))]->on_list) {
  136. list_add_rcu(&cfs_rq->leaf_cfs_rq_list,
  137. &rq_of(cfs_rq)->leaf_cfs_rq_list);
  138. } else {
  139. list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
  140. &rq_of(cfs_rq)->leaf_cfs_rq_list);
  141. }
  142. cfs_rq->on_list = 1;
  143. }
  144. }
  145. static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
  146. {
  147. if (cfs_rq->on_list) {
  148. list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
  149. cfs_rq->on_list = 0;
  150. }
  151. }
  152. /* Iterate thr' all leaf cfs_rq's on a runqueue */
  153. #define for_each_leaf_cfs_rq(rq, cfs_rq) \
  154. list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
  155. /* Do the two (enqueued) entities belong to the same group ? */
  156. static inline int
  157. is_same_group(struct sched_entity *se, struct sched_entity *pse)
  158. {
  159. if (se->cfs_rq == pse->cfs_rq)
  160. return 1;
  161. return 0;
  162. }
  163. static inline struct sched_entity *parent_entity(struct sched_entity *se)
  164. {
  165. return se->parent;
  166. }
  167. /* return depth at which a sched entity is present in the hierarchy */
  168. static inline int depth_se(struct sched_entity *se)
  169. {
  170. int depth = 0;
  171. for_each_sched_entity(se)
  172. depth++;
  173. return depth;
  174. }
  175. static void
  176. find_matching_se(struct sched_entity **se, struct sched_entity **pse)
  177. {
  178. int se_depth, pse_depth;
  179. /*
  180. * preemption test can be made between sibling entities who are in the
  181. * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
  182. * both tasks until we find their ancestors who are siblings of common
  183. * parent.
  184. */
  185. /* First walk up until both entities are at same depth */
  186. se_depth = depth_se(*se);
  187. pse_depth = depth_se(*pse);
  188. while (se_depth > pse_depth) {
  189. se_depth--;
  190. *se = parent_entity(*se);
  191. }
  192. while (pse_depth > se_depth) {
  193. pse_depth--;
  194. *pse = parent_entity(*pse);
  195. }
  196. while (!is_same_group(*se, *pse)) {
  197. *se = parent_entity(*se);
  198. *pse = parent_entity(*pse);
  199. }
  200. }
  201. #else /* !CONFIG_FAIR_GROUP_SCHED */
  202. static inline struct task_struct *task_of(struct sched_entity *se)
  203. {
  204. return container_of(se, struct task_struct, se);
  205. }
  206. static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
  207. {
  208. return container_of(cfs_rq, struct rq, cfs);
  209. }
  210. #define entity_is_task(se) 1
  211. #define for_each_sched_entity(se) \
  212. for (; se; se = NULL)
  213. static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
  214. {
  215. return &task_rq(p)->cfs;
  216. }
  217. static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
  218. {
  219. struct task_struct *p = task_of(se);
  220. struct rq *rq = task_rq(p);
  221. return &rq->cfs;
  222. }
  223. /* runqueue "owned" by this group */
  224. static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
  225. {
  226. return NULL;
  227. }
  228. static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
  229. {
  230. return &cpu_rq(this_cpu)->cfs;
  231. }
  232. static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
  233. {
  234. }
  235. static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
  236. {
  237. }
  238. #define for_each_leaf_cfs_rq(rq, cfs_rq) \
  239. for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
  240. static inline int
  241. is_same_group(struct sched_entity *se, struct sched_entity *pse)
  242. {
  243. return 1;
  244. }
  245. static inline struct sched_entity *parent_entity(struct sched_entity *se)
  246. {
  247. return NULL;
  248. }
  249. static inline void
  250. find_matching_se(struct sched_entity **se, struct sched_entity **pse)
  251. {
  252. }
  253. #endif /* CONFIG_FAIR_GROUP_SCHED */
  254. /**************************************************************
  255. * Scheduling class tree data structure manipulation methods:
  256. */
  257. static inline u64 max_vruntime(u64 min_vruntime, u64 vruntime)
  258. {
  259. s64 delta = (s64)(vruntime - min_vruntime);
  260. if (delta > 0)
  261. min_vruntime = vruntime;
  262. return min_vruntime;
  263. }
  264. static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
  265. {
  266. s64 delta = (s64)(vruntime - min_vruntime);
  267. if (delta < 0)
  268. min_vruntime = vruntime;
  269. return min_vruntime;
  270. }
  271. static inline int entity_before(struct sched_entity *a,
  272. struct sched_entity *b)
  273. {
  274. return (s64)(a->vruntime - b->vruntime) < 0;
  275. }
  276. static inline s64 entity_key(struct cfs_rq *cfs_rq, struct sched_entity *se)
  277. {
  278. return se->vruntime - cfs_rq->min_vruntime;
  279. }
  280. static void update_min_vruntime(struct cfs_rq *cfs_rq)
  281. {
  282. u64 vruntime = cfs_rq->min_vruntime;
  283. if (cfs_rq->curr)
  284. vruntime = cfs_rq->curr->vruntime;
  285. if (cfs_rq->rb_leftmost) {
  286. struct sched_entity *se = rb_entry(cfs_rq->rb_leftmost,
  287. struct sched_entity,
  288. run_node);
  289. if (!cfs_rq->curr)
  290. vruntime = se->vruntime;
  291. else
  292. vruntime = min_vruntime(vruntime, se->vruntime);
  293. }
  294. cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
  295. }
  296. /*
  297. * Enqueue an entity into the rb-tree:
  298. */
  299. static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
  300. {
  301. struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
  302. struct rb_node *parent = NULL;
  303. struct sched_entity *entry;
  304. s64 key = entity_key(cfs_rq, se);
  305. int leftmost = 1;
  306. /*
  307. * Find the right place in the rbtree:
  308. */
  309. while (*link) {
  310. parent = *link;
  311. entry = rb_entry(parent, struct sched_entity, run_node);
  312. /*
  313. * We dont care about collisions. Nodes with
  314. * the same key stay together.
  315. */
  316. if (key < entity_key(cfs_rq, entry)) {
  317. link = &parent->rb_left;
  318. } else {
  319. link = &parent->rb_right;
  320. leftmost = 0;
  321. }
  322. }
  323. /*
  324. * Maintain a cache of leftmost tree entries (it is frequently
  325. * used):
  326. */
  327. if (leftmost)
  328. cfs_rq->rb_leftmost = &se->run_node;
  329. rb_link_node(&se->run_node, parent, link);
  330. rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
  331. }
  332. static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
  333. {
  334. if (cfs_rq->rb_leftmost == &se->run_node) {
  335. struct rb_node *next_node;
  336. next_node = rb_next(&se->run_node);
  337. cfs_rq->rb_leftmost = next_node;
  338. }
  339. rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
  340. }
  341. static struct sched_entity *__pick_next_entity(struct cfs_rq *cfs_rq)
  342. {
  343. struct rb_node *left = cfs_rq->rb_leftmost;
  344. if (!left)
  345. return NULL;
  346. return rb_entry(left, struct sched_entity, run_node);
  347. }
  348. static struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
  349. {
  350. struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
  351. if (!last)
  352. return NULL;
  353. return rb_entry(last, struct sched_entity, run_node);
  354. }
  355. /**************************************************************
  356. * Scheduling class statistics methods:
  357. */
  358. #ifdef CONFIG_SCHED_DEBUG
  359. int sched_proc_update_handler(struct ctl_table *table, int write,
  360. void __user *buffer, size_t *lenp,
  361. loff_t *ppos)
  362. {
  363. int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
  364. int factor = get_update_sysctl_factor();
  365. if (ret || !write)
  366. return ret;
  367. sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
  368. sysctl_sched_min_granularity);
  369. #define WRT_SYSCTL(name) \
  370. (normalized_sysctl_##name = sysctl_##name / (factor))
  371. WRT_SYSCTL(sched_min_granularity);
  372. WRT_SYSCTL(sched_latency);
  373. WRT_SYSCTL(sched_wakeup_granularity);
  374. #undef WRT_SYSCTL
  375. return 0;
  376. }
  377. #endif
  378. /*
  379. * delta /= w
  380. */
  381. static inline unsigned long
  382. calc_delta_fair(unsigned long delta, struct sched_entity *se)
  383. {
  384. if (unlikely(se->load.weight != NICE_0_LOAD))
  385. delta = calc_delta_mine(delta, NICE_0_LOAD, &se->load);
  386. return delta;
  387. }
  388. /*
  389. * The idea is to set a period in which each task runs once.
  390. *
  391. * When there are too many tasks (sysctl_sched_nr_latency) we have to stretch
  392. * this period because otherwise the slices get too small.
  393. *
  394. * p = (nr <= nl) ? l : l*nr/nl
  395. */
  396. static u64 __sched_period(unsigned long nr_running)
  397. {
  398. u64 period = sysctl_sched_latency;
  399. unsigned long nr_latency = sched_nr_latency;
  400. if (unlikely(nr_running > nr_latency)) {
  401. period = sysctl_sched_min_granularity;
  402. period *= nr_running;
  403. }
  404. return period;
  405. }
  406. /*
  407. * We calculate the wall-time slice from the period by taking a part
  408. * proportional to the weight.
  409. *
  410. * s = p*P[w/rw]
  411. */
  412. static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
  413. {
  414. u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
  415. for_each_sched_entity(se) {
  416. struct load_weight *load;
  417. struct load_weight lw;
  418. cfs_rq = cfs_rq_of(se);
  419. load = &cfs_rq->load;
  420. if (unlikely(!se->on_rq)) {
  421. lw = cfs_rq->load;
  422. update_load_add(&lw, se->load.weight);
  423. load = &lw;
  424. }
  425. slice = calc_delta_mine(slice, se->load.weight, load);
  426. }
  427. return slice;
  428. }
  429. /*
  430. * We calculate the vruntime slice of a to be inserted task
  431. *
  432. * vs = s/w
  433. */
  434. static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
  435. {
  436. return calc_delta_fair(sched_slice(cfs_rq, se), se);
  437. }
  438. /*
  439. * Update the current task's runtime statistics. Skip current tasks that
  440. * are not in our scheduling class.
  441. */
  442. static inline void
  443. __update_curr(struct cfs_rq *cfs_rq, struct sched_entity *curr,
  444. unsigned long delta_exec)
  445. {
  446. unsigned long delta_exec_weighted;
  447. schedstat_set(curr->statistics.exec_max,
  448. max((u64)delta_exec, curr->statistics.exec_max));
  449. curr->sum_exec_runtime += delta_exec;
  450. schedstat_add(cfs_rq, exec_clock, delta_exec);
  451. delta_exec_weighted = calc_delta_fair(delta_exec, curr);
  452. curr->vruntime += delta_exec_weighted;
  453. update_min_vruntime(cfs_rq);
  454. }
  455. static void update_curr(struct cfs_rq *cfs_rq)
  456. {
  457. struct sched_entity *curr = cfs_rq->curr;
  458. u64 now = rq_of(cfs_rq)->clock_task;
  459. unsigned long delta_exec;
  460. if (unlikely(!curr))
  461. return;
  462. /*
  463. * Get the amount of time the current task was running
  464. * since the last time we changed load (this cannot
  465. * overflow on 32 bits):
  466. */
  467. delta_exec = (unsigned long)(now - curr->exec_start);
  468. if (!delta_exec)
  469. return;
  470. __update_curr(cfs_rq, curr, delta_exec);
  471. curr->exec_start = now;
  472. if (entity_is_task(curr)) {
  473. struct task_struct *curtask = task_of(curr);
  474. trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
  475. cpuacct_charge(curtask, delta_exec);
  476. account_group_exec_runtime(curtask, delta_exec);
  477. }
  478. }
  479. static inline void
  480. update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
  481. {
  482. schedstat_set(se->statistics.wait_start, rq_of(cfs_rq)->clock);
  483. }
  484. /*
  485. * Task is being enqueued - update stats:
  486. */
  487. static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
  488. {
  489. /*
  490. * Are we enqueueing a waiting task? (for current tasks
  491. * a dequeue/enqueue event is a NOP)
  492. */
  493. if (se != cfs_rq->curr)
  494. update_stats_wait_start(cfs_rq, se);
  495. }
  496. static void
  497. update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
  498. {
  499. schedstat_set(se->statistics.wait_max, max(se->statistics.wait_max,
  500. rq_of(cfs_rq)->clock - se->statistics.wait_start));
  501. schedstat_set(se->statistics.wait_count, se->statistics.wait_count + 1);
  502. schedstat_set(se->statistics.wait_sum, se->statistics.wait_sum +
  503. rq_of(cfs_rq)->clock - se->statistics.wait_start);
  504. #ifdef CONFIG_SCHEDSTATS
  505. if (entity_is_task(se)) {
  506. trace_sched_stat_wait(task_of(se),
  507. rq_of(cfs_rq)->clock - se->statistics.wait_start);
  508. }
  509. #endif
  510. schedstat_set(se->statistics.wait_start, 0);
  511. }
  512. static inline void
  513. update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
  514. {
  515. /*
  516. * Mark the end of the wait period if dequeueing a
  517. * waiting task:
  518. */
  519. if (se != cfs_rq->curr)
  520. update_stats_wait_end(cfs_rq, se);
  521. }
  522. /*
  523. * We are picking a new current task - update its stats:
  524. */
  525. static inline void
  526. update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
  527. {
  528. /*
  529. * We are starting a new run period:
  530. */
  531. se->exec_start = rq_of(cfs_rq)->clock_task;
  532. }
  533. /**************************************************
  534. * Scheduling class queueing methods:
  535. */
  536. #if defined CONFIG_SMP && defined CONFIG_FAIR_GROUP_SCHED
  537. static void
  538. add_cfs_task_weight(struct cfs_rq *cfs_rq, unsigned long weight)
  539. {
  540. cfs_rq->task_weight += weight;
  541. }
  542. #else
  543. static inline void
  544. add_cfs_task_weight(struct cfs_rq *cfs_rq, unsigned long weight)
  545. {
  546. }
  547. #endif
  548. static void
  549. account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
  550. {
  551. update_load_add(&cfs_rq->load, se->load.weight);
  552. if (!parent_entity(se))
  553. inc_cpu_load(rq_of(cfs_rq), se->load.weight);
  554. if (entity_is_task(se)) {
  555. add_cfs_task_weight(cfs_rq, se->load.weight);
  556. list_add(&se->group_node, &cfs_rq->tasks);
  557. }
  558. cfs_rq->nr_running++;
  559. }
  560. static void
  561. account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
  562. {
  563. update_load_sub(&cfs_rq->load, se->load.weight);
  564. if (!parent_entity(se))
  565. dec_cpu_load(rq_of(cfs_rq), se->load.weight);
  566. if (entity_is_task(se)) {
  567. add_cfs_task_weight(cfs_rq, -se->load.weight);
  568. list_del_init(&se->group_node);
  569. }
  570. cfs_rq->nr_running--;
  571. }
  572. #if defined CONFIG_SMP && defined CONFIG_FAIR_GROUP_SCHED
  573. static void update_cfs_load(struct cfs_rq *cfs_rq)
  574. {
  575. u64 period = sched_avg_period();
  576. u64 now, delta;
  577. unsigned long load = cfs_rq->load.weight;
  578. if (!cfs_rq)
  579. return;
  580. now = rq_of(cfs_rq)->clock;
  581. delta = now - cfs_rq->load_stamp;
  582. /* truncate load history at 4 idle periods */
  583. if (cfs_rq->load_stamp > cfs_rq->load_last &&
  584. now - cfs_rq->load_last > 4 * period) {
  585. cfs_rq->load_period = 0;
  586. cfs_rq->load_avg = 0;
  587. }
  588. cfs_rq->load_stamp = now;
  589. cfs_rq->load_period += delta;
  590. if (load) {
  591. cfs_rq->load_last = now;
  592. cfs_rq->load_avg += delta * load;
  593. }
  594. while (cfs_rq->load_period > period) {
  595. /*
  596. * Inline assembly required to prevent the compiler
  597. * optimising this loop into a divmod call.
  598. * See __iter_div_u64_rem() for another example of this.
  599. */
  600. asm("" : "+rm" (cfs_rq->load_period));
  601. cfs_rq->load_period /= 2;
  602. cfs_rq->load_avg /= 2;
  603. }
  604. if (!cfs_rq->curr && !cfs_rq->nr_running && !cfs_rq->load_avg)
  605. list_del_leaf_cfs_rq(cfs_rq);
  606. }
  607. static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
  608. unsigned long weight)
  609. {
  610. if (se->on_rq)
  611. account_entity_dequeue(cfs_rq, se);
  612. update_load_set(&se->load, weight);
  613. if (se->on_rq)
  614. account_entity_enqueue(cfs_rq, se);
  615. }
  616. static void update_cfs_shares(struct cfs_rq *cfs_rq, long weight_delta)
  617. {
  618. struct task_group *tg;
  619. struct sched_entity *se;
  620. long load_weight, load, shares;
  621. if (!cfs_rq)
  622. return;
  623. tg = cfs_rq->tg;
  624. se = tg->se[cpu_of(rq_of(cfs_rq))];
  625. if (!se)
  626. return;
  627. load = cfs_rq->load.weight + weight_delta;
  628. load_weight = atomic_read(&tg->load_weight);
  629. load_weight -= cfs_rq->load_contribution;
  630. load_weight += load;
  631. shares = (tg->shares * load);
  632. if (load_weight)
  633. shares /= load_weight;
  634. if (shares < MIN_SHARES)
  635. shares = MIN_SHARES;
  636. if (shares > tg->shares)
  637. shares = tg->shares;
  638. reweight_entity(cfs_rq_of(se), se, shares);
  639. }
  640. #else /* CONFIG_FAIR_GROUP_SCHED */
  641. static inline void update_cfs_load(struct cfs_rq *cfs_rq)
  642. {
  643. }
  644. static inline void update_cfs_shares(struct cfs_rq *cfs_rq, long weight_delta)
  645. {
  646. }
  647. #endif /* CONFIG_FAIR_GROUP_SCHED */
  648. static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
  649. {
  650. #ifdef CONFIG_SCHEDSTATS
  651. struct task_struct *tsk = NULL;
  652. if (entity_is_task(se))
  653. tsk = task_of(se);
  654. if (se->statistics.sleep_start) {
  655. u64 delta = rq_of(cfs_rq)->clock - se->statistics.sleep_start;
  656. if ((s64)delta < 0)
  657. delta = 0;
  658. if (unlikely(delta > se->statistics.sleep_max))
  659. se->statistics.sleep_max = delta;
  660. se->statistics.sleep_start = 0;
  661. se->statistics.sum_sleep_runtime += delta;
  662. if (tsk) {
  663. account_scheduler_latency(tsk, delta >> 10, 1);
  664. trace_sched_stat_sleep(tsk, delta);
  665. }
  666. }
  667. if (se->statistics.block_start) {
  668. u64 delta = rq_of(cfs_rq)->clock - se->statistics.block_start;
  669. if ((s64)delta < 0)
  670. delta = 0;
  671. if (unlikely(delta > se->statistics.block_max))
  672. se->statistics.block_max = delta;
  673. se->statistics.block_start = 0;
  674. se->statistics.sum_sleep_runtime += delta;
  675. if (tsk) {
  676. if (tsk->in_iowait) {
  677. se->statistics.iowait_sum += delta;
  678. se->statistics.iowait_count++;
  679. trace_sched_stat_iowait(tsk, delta);
  680. }
  681. /*
  682. * Blocking time is in units of nanosecs, so shift by
  683. * 20 to get a milliseconds-range estimation of the
  684. * amount of time that the task spent sleeping:
  685. */
  686. if (unlikely(prof_on == SLEEP_PROFILING)) {
  687. profile_hits(SLEEP_PROFILING,
  688. (void *)get_wchan(tsk),
  689. delta >> 20);
  690. }
  691. account_scheduler_latency(tsk, delta >> 10, 0);
  692. }
  693. }
  694. #endif
  695. }
  696. static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
  697. {
  698. #ifdef CONFIG_SCHED_DEBUG
  699. s64 d = se->vruntime - cfs_rq->min_vruntime;
  700. if (d < 0)
  701. d = -d;
  702. if (d > 3*sysctl_sched_latency)
  703. schedstat_inc(cfs_rq, nr_spread_over);
  704. #endif
  705. }
  706. static void
  707. place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
  708. {
  709. u64 vruntime = cfs_rq->min_vruntime;
  710. /*
  711. * The 'current' period is already promised to the current tasks,
  712. * however the extra weight of the new task will slow them down a
  713. * little, place the new task so that it fits in the slot that
  714. * stays open at the end.
  715. */
  716. if (initial && sched_feat(START_DEBIT))
  717. vruntime += sched_vslice(cfs_rq, se);
  718. /* sleeps up to a single latency don't count. */
  719. if (!initial) {
  720. unsigned long thresh = sysctl_sched_latency;
  721. /*
  722. * Halve their sleep time's effect, to allow
  723. * for a gentler effect of sleepers:
  724. */
  725. if (sched_feat(GENTLE_FAIR_SLEEPERS))
  726. thresh >>= 1;
  727. vruntime -= thresh;
  728. }
  729. /* ensure we never gain time by being placed backwards. */
  730. vruntime = max_vruntime(se->vruntime, vruntime);
  731. se->vruntime = vruntime;
  732. }
  733. static void
  734. enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
  735. {
  736. /*
  737. * Update the normalized vruntime before updating min_vruntime
  738. * through callig update_curr().
  739. */
  740. if (!(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_WAKING))
  741. se->vruntime += cfs_rq->min_vruntime;
  742. /*
  743. * Update run-time statistics of the 'current'.
  744. */
  745. update_curr(cfs_rq);
  746. update_cfs_load(cfs_rq);
  747. update_cfs_shares(cfs_rq, se->load.weight);
  748. account_entity_enqueue(cfs_rq, se);
  749. if (flags & ENQUEUE_WAKEUP) {
  750. place_entity(cfs_rq, se, 0);
  751. enqueue_sleeper(cfs_rq, se);
  752. }
  753. update_stats_enqueue(cfs_rq, se);
  754. check_spread(cfs_rq, se);
  755. if (se != cfs_rq->curr)
  756. __enqueue_entity(cfs_rq, se);
  757. se->on_rq = 1;
  758. if (cfs_rq->nr_running == 1)
  759. list_add_leaf_cfs_rq(cfs_rq);
  760. }
  761. static void __clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
  762. {
  763. if (!se || cfs_rq->last == se)
  764. cfs_rq->last = NULL;
  765. if (!se || cfs_rq->next == se)
  766. cfs_rq->next = NULL;
  767. }
  768. static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
  769. {
  770. for_each_sched_entity(se)
  771. __clear_buddies(cfs_rq_of(se), se);
  772. }
  773. static void
  774. dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
  775. {
  776. /*
  777. * Update run-time statistics of the 'current'.
  778. */
  779. update_curr(cfs_rq);
  780. update_stats_dequeue(cfs_rq, se);
  781. if (flags & DEQUEUE_SLEEP) {
  782. #ifdef CONFIG_SCHEDSTATS
  783. if (entity_is_task(se)) {
  784. struct task_struct *tsk = task_of(se);
  785. if (tsk->state & TASK_INTERRUPTIBLE)
  786. se->statistics.sleep_start = rq_of(cfs_rq)->clock;
  787. if (tsk->state & TASK_UNINTERRUPTIBLE)
  788. se->statistics.block_start = rq_of(cfs_rq)->clock;
  789. }
  790. #endif
  791. }
  792. clear_buddies(cfs_rq, se);
  793. if (se != cfs_rq->curr)
  794. __dequeue_entity(cfs_rq, se);
  795. se->on_rq = 0;
  796. update_cfs_load(cfs_rq);
  797. account_entity_dequeue(cfs_rq, se);
  798. update_min_vruntime(cfs_rq);
  799. update_cfs_shares(cfs_rq, 0);
  800. /*
  801. * Normalize the entity after updating the min_vruntime because the
  802. * update can refer to the ->curr item and we need to reflect this
  803. * movement in our normalized position.
  804. */
  805. if (!(flags & DEQUEUE_SLEEP))
  806. se->vruntime -= cfs_rq->min_vruntime;
  807. }
  808. /*
  809. * Preempt the current task with a newly woken task if needed:
  810. */
  811. static void
  812. check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
  813. {
  814. unsigned long ideal_runtime, delta_exec;
  815. ideal_runtime = sched_slice(cfs_rq, curr);
  816. delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
  817. if (delta_exec > ideal_runtime) {
  818. resched_task(rq_of(cfs_rq)->curr);
  819. /*
  820. * The current task ran long enough, ensure it doesn't get
  821. * re-elected due to buddy favours.
  822. */
  823. clear_buddies(cfs_rq, curr);
  824. return;
  825. }
  826. /*
  827. * Ensure that a task that missed wakeup preemption by a
  828. * narrow margin doesn't have to wait for a full slice.
  829. * This also mitigates buddy induced latencies under load.
  830. */
  831. if (!sched_feat(WAKEUP_PREEMPT))
  832. return;
  833. if (delta_exec < sysctl_sched_min_granularity)
  834. return;
  835. if (cfs_rq->nr_running > 1) {
  836. struct sched_entity *se = __pick_next_entity(cfs_rq);
  837. s64 delta = curr->vruntime - se->vruntime;
  838. if (delta > ideal_runtime)
  839. resched_task(rq_of(cfs_rq)->curr);
  840. }
  841. }
  842. static void
  843. set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
  844. {
  845. /* 'current' is not kept within the tree. */
  846. if (se->on_rq) {
  847. /*
  848. * Any task has to be enqueued before it get to execute on
  849. * a CPU. So account for the time it spent waiting on the
  850. * runqueue.
  851. */
  852. update_stats_wait_end(cfs_rq, se);
  853. __dequeue_entity(cfs_rq, se);
  854. }
  855. update_stats_curr_start(cfs_rq, se);
  856. cfs_rq->curr = se;
  857. #ifdef CONFIG_SCHEDSTATS
  858. /*
  859. * Track our maximum slice length, if the CPU's load is at
  860. * least twice that of our own weight (i.e. dont track it
  861. * when there are only lesser-weight tasks around):
  862. */
  863. if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
  864. se->statistics.slice_max = max(se->statistics.slice_max,
  865. se->sum_exec_runtime - se->prev_sum_exec_runtime);
  866. }
  867. #endif
  868. se->prev_sum_exec_runtime = se->sum_exec_runtime;
  869. }
  870. static int
  871. wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
  872. static struct sched_entity *pick_next_entity(struct cfs_rq *cfs_rq)
  873. {
  874. struct sched_entity *se = __pick_next_entity(cfs_rq);
  875. struct sched_entity *left = se;
  876. if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1)
  877. se = cfs_rq->next;
  878. /*
  879. * Prefer last buddy, try to return the CPU to a preempted task.
  880. */
  881. if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1)
  882. se = cfs_rq->last;
  883. clear_buddies(cfs_rq, se);
  884. return se;
  885. }
  886. static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
  887. {
  888. /*
  889. * If still on the runqueue then deactivate_task()
  890. * was not called and update_curr() has to be done:
  891. */
  892. if (prev->on_rq)
  893. update_curr(cfs_rq);
  894. check_spread(cfs_rq, prev);
  895. if (prev->on_rq) {
  896. update_stats_wait_start(cfs_rq, prev);
  897. /* Put 'current' back into the tree. */
  898. __enqueue_entity(cfs_rq, prev);
  899. }
  900. cfs_rq->curr = NULL;
  901. }
  902. static void
  903. entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
  904. {
  905. /*
  906. * Update run-time statistics of the 'current'.
  907. */
  908. update_curr(cfs_rq);
  909. #ifdef CONFIG_SCHED_HRTICK
  910. /*
  911. * queued ticks are scheduled to match the slice, so don't bother
  912. * validating it and just reschedule.
  913. */
  914. if (queued) {
  915. resched_task(rq_of(cfs_rq)->curr);
  916. return;
  917. }
  918. /*
  919. * don't let the period tick interfere with the hrtick preemption
  920. */
  921. if (!sched_feat(DOUBLE_TICK) &&
  922. hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
  923. return;
  924. #endif
  925. if (cfs_rq->nr_running > 1 || !sched_feat(WAKEUP_PREEMPT))
  926. check_preempt_tick(cfs_rq, curr);
  927. }
  928. /**************************************************
  929. * CFS operations on tasks:
  930. */
  931. #ifdef CONFIG_SCHED_HRTICK
  932. static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
  933. {
  934. struct sched_entity *se = &p->se;
  935. struct cfs_rq *cfs_rq = cfs_rq_of(se);
  936. WARN_ON(task_rq(p) != rq);
  937. if (hrtick_enabled(rq) && cfs_rq->nr_running > 1) {
  938. u64 slice = sched_slice(cfs_rq, se);
  939. u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
  940. s64 delta = slice - ran;
  941. if (delta < 0) {
  942. if (rq->curr == p)
  943. resched_task(p);
  944. return;
  945. }
  946. /*
  947. * Don't schedule slices shorter than 10000ns, that just
  948. * doesn't make sense. Rely on vruntime for fairness.
  949. */
  950. if (rq->curr != p)
  951. delta = max_t(s64, 10000LL, delta);
  952. hrtick_start(rq, delta);
  953. }
  954. }
  955. /*
  956. * called from enqueue/dequeue and updates the hrtick when the
  957. * current task is from our class and nr_running is low enough
  958. * to matter.
  959. */
  960. static void hrtick_update(struct rq *rq)
  961. {
  962. struct task_struct *curr = rq->curr;
  963. if (curr->sched_class != &fair_sched_class)
  964. return;
  965. if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
  966. hrtick_start_fair(rq, curr);
  967. }
  968. #else /* !CONFIG_SCHED_HRTICK */
  969. static inline void
  970. hrtick_start_fair(struct rq *rq, struct task_struct *p)
  971. {
  972. }
  973. static inline void hrtick_update(struct rq *rq)
  974. {
  975. }
  976. #endif
  977. /*
  978. * The enqueue_task method is called before nr_running is
  979. * increased. Here we update the fair scheduling stats and
  980. * then put the task into the rbtree:
  981. */
  982. static void
  983. enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
  984. {
  985. struct cfs_rq *cfs_rq;
  986. struct sched_entity *se = &p->se;
  987. for_each_sched_entity(se) {
  988. if (se->on_rq)
  989. break;
  990. cfs_rq = cfs_rq_of(se);
  991. enqueue_entity(cfs_rq, se, flags);
  992. flags = ENQUEUE_WAKEUP;
  993. }
  994. for_each_sched_entity(se) {
  995. struct cfs_rq *cfs_rq = cfs_rq_of(se);
  996. update_cfs_load(cfs_rq);
  997. update_cfs_shares(cfs_rq, 0);
  998. }
  999. hrtick_update(rq);
  1000. }
  1001. /*
  1002. * The dequeue_task method is called before nr_running is
  1003. * decreased. We remove the task from the rbtree and
  1004. * update the fair scheduling stats:
  1005. */
  1006. static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
  1007. {
  1008. struct cfs_rq *cfs_rq;
  1009. struct sched_entity *se = &p->se;
  1010. for_each_sched_entity(se) {
  1011. cfs_rq = cfs_rq_of(se);
  1012. dequeue_entity(cfs_rq, se, flags);
  1013. /* Don't dequeue parent if it has other entities besides us */
  1014. if (cfs_rq->load.weight)
  1015. break;
  1016. flags |= DEQUEUE_SLEEP;
  1017. }
  1018. for_each_sched_entity(se) {
  1019. struct cfs_rq *cfs_rq = cfs_rq_of(se);
  1020. update_cfs_load(cfs_rq);
  1021. update_cfs_shares(cfs_rq, 0);
  1022. }
  1023. hrtick_update(rq);
  1024. }
  1025. /*
  1026. * sched_yield() support is very simple - we dequeue and enqueue.
  1027. *
  1028. * If compat_yield is turned on then we requeue to the end of the tree.
  1029. */
  1030. static void yield_task_fair(struct rq *rq)
  1031. {
  1032. struct task_struct *curr = rq->curr;
  1033. struct cfs_rq *cfs_rq = task_cfs_rq(curr);
  1034. struct sched_entity *rightmost, *se = &curr->se;
  1035. /*
  1036. * Are we the only task in the tree?
  1037. */
  1038. if (unlikely(cfs_rq->nr_running == 1))
  1039. return;
  1040. clear_buddies(cfs_rq, se);
  1041. if (likely(!sysctl_sched_compat_yield) && curr->policy != SCHED_BATCH) {
  1042. update_rq_clock(rq);
  1043. /*
  1044. * Update run-time statistics of the 'current'.
  1045. */
  1046. update_curr(cfs_rq);
  1047. return;
  1048. }
  1049. /*
  1050. * Find the rightmost entry in the rbtree:
  1051. */
  1052. rightmost = __pick_last_entity(cfs_rq);
  1053. /*
  1054. * Already in the rightmost position?
  1055. */
  1056. if (unlikely(!rightmost || entity_before(rightmost, se)))
  1057. return;
  1058. /*
  1059. * Minimally necessary key value to be last in the tree:
  1060. * Upon rescheduling, sched_class::put_prev_task() will place
  1061. * 'current' within the tree based on its new key value.
  1062. */
  1063. se->vruntime = rightmost->vruntime + 1;
  1064. }
  1065. #ifdef CONFIG_SMP
  1066. static void task_waking_fair(struct rq *rq, struct task_struct *p)
  1067. {
  1068. struct sched_entity *se = &p->se;
  1069. struct cfs_rq *cfs_rq = cfs_rq_of(se);
  1070. se->vruntime -= cfs_rq->min_vruntime;
  1071. }
  1072. #ifdef CONFIG_FAIR_GROUP_SCHED
  1073. /*
  1074. * effective_load() calculates the load change as seen from the root_task_group
  1075. *
  1076. * Adding load to a group doesn't make a group heavier, but can cause movement
  1077. * of group shares between cpus. Assuming the shares were perfectly aligned one
  1078. * can calculate the shift in shares.
  1079. */
  1080. static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
  1081. {
  1082. struct sched_entity *se = tg->se[cpu];
  1083. if (!tg->parent)
  1084. return wl;
  1085. for_each_sched_entity(se) {
  1086. long S, rw, s, a, b;
  1087. S = se->my_q->tg->shares;
  1088. s = se->load.weight;
  1089. rw = se->my_q->load.weight;
  1090. a = S*(rw + wl);
  1091. b = S*rw + s*wg;
  1092. wl = s*(a-b);
  1093. if (likely(b))
  1094. wl /= b;
  1095. /*
  1096. * Assume the group is already running and will
  1097. * thus already be accounted for in the weight.
  1098. *
  1099. * That is, moving shares between CPUs, does not
  1100. * alter the group weight.
  1101. */
  1102. wg = 0;
  1103. }
  1104. return wl;
  1105. }
  1106. #else
  1107. static inline unsigned long effective_load(struct task_group *tg, int cpu,
  1108. unsigned long wl, unsigned long wg)
  1109. {
  1110. return wl;
  1111. }
  1112. #endif
  1113. static int wake_affine(struct sched_domain *sd, struct task_struct *p, int sync)
  1114. {
  1115. unsigned long this_load, load;
  1116. int idx, this_cpu, prev_cpu;
  1117. unsigned long tl_per_task;
  1118. struct task_group *tg;
  1119. unsigned long weight;
  1120. int balanced;
  1121. idx = sd->wake_idx;
  1122. this_cpu = smp_processor_id();
  1123. prev_cpu = task_cpu(p);
  1124. load = source_load(prev_cpu, idx);
  1125. this_load = target_load(this_cpu, idx);
  1126. /*
  1127. * If sync wakeup then subtract the (maximum possible)
  1128. * effect of the currently running task from the load
  1129. * of the current CPU:
  1130. */
  1131. rcu_read_lock();
  1132. if (sync) {
  1133. tg = task_group(current);
  1134. weight = current->se.load.weight;
  1135. this_load += effective_load(tg, this_cpu, -weight, -weight);
  1136. load += effective_load(tg, prev_cpu, 0, -weight);
  1137. }
  1138. tg = task_group(p);
  1139. weight = p->se.load.weight;
  1140. /*
  1141. * In low-load situations, where prev_cpu is idle and this_cpu is idle
  1142. * due to the sync cause above having dropped this_load to 0, we'll
  1143. * always have an imbalance, but there's really nothing you can do
  1144. * about that, so that's good too.
  1145. *
  1146. * Otherwise check if either cpus are near enough in load to allow this
  1147. * task to be woken on this_cpu.
  1148. */
  1149. if (this_load) {
  1150. unsigned long this_eff_load, prev_eff_load;
  1151. this_eff_load = 100;
  1152. this_eff_load *= power_of(prev_cpu);
  1153. this_eff_load *= this_load +
  1154. effective_load(tg, this_cpu, weight, weight);
  1155. prev_eff_load = 100 + (sd->imbalance_pct - 100) / 2;
  1156. prev_eff_load *= power_of(this_cpu);
  1157. prev_eff_load *= load + effective_load(tg, prev_cpu, 0, weight);
  1158. balanced = this_eff_load <= prev_eff_load;
  1159. } else
  1160. balanced = true;
  1161. rcu_read_unlock();
  1162. /*
  1163. * If the currently running task will sleep within
  1164. * a reasonable amount of time then attract this newly
  1165. * woken task:
  1166. */
  1167. if (sync && balanced)
  1168. return 1;
  1169. schedstat_inc(p, se.statistics.nr_wakeups_affine_attempts);
  1170. tl_per_task = cpu_avg_load_per_task(this_cpu);
  1171. if (balanced ||
  1172. (this_load <= load &&
  1173. this_load + target_load(prev_cpu, idx) <= tl_per_task)) {
  1174. /*
  1175. * This domain has SD_WAKE_AFFINE and
  1176. * p is cache cold in this domain, and
  1177. * there is no bad imbalance.
  1178. */
  1179. schedstat_inc(sd, ttwu_move_affine);
  1180. schedstat_inc(p, se.statistics.nr_wakeups_affine);
  1181. return 1;
  1182. }
  1183. return 0;
  1184. }
  1185. /*
  1186. * find_idlest_group finds and returns the least busy CPU group within the
  1187. * domain.
  1188. */
  1189. static struct sched_group *
  1190. find_idlest_group(struct sched_domain *sd, struct task_struct *p,
  1191. int this_cpu, int load_idx)
  1192. {
  1193. struct sched_group *idlest = NULL, *group = sd->groups;
  1194. unsigned long min_load = ULONG_MAX, this_load = 0;
  1195. int imbalance = 100 + (sd->imbalance_pct-100)/2;
  1196. do {
  1197. unsigned long load, avg_load;
  1198. int local_group;
  1199. int i;
  1200. /* Skip over this group if it has no CPUs allowed */
  1201. if (!cpumask_intersects(sched_group_cpus(group),
  1202. &p->cpus_allowed))
  1203. continue;
  1204. local_group = cpumask_test_cpu(this_cpu,
  1205. sched_group_cpus(group));
  1206. /* Tally up the load of all CPUs in the group */
  1207. avg_load = 0;
  1208. for_each_cpu(i, sched_group_cpus(group)) {
  1209. /* Bias balancing toward cpus of our domain */
  1210. if (local_group)
  1211. load = source_load(i, load_idx);
  1212. else
  1213. load = target_load(i, load_idx);
  1214. avg_load += load;
  1215. }
  1216. /* Adjust by relative CPU power of the group */
  1217. avg_load = (avg_load * SCHED_LOAD_SCALE) / group->cpu_power;
  1218. if (local_group) {
  1219. this_load = avg_load;
  1220. } else if (avg_load < min_load) {
  1221. min_load = avg_load;
  1222. idlest = group;
  1223. }
  1224. } while (group = group->next, group != sd->groups);
  1225. if (!idlest || 100*this_load < imbalance*min_load)
  1226. return NULL;
  1227. return idlest;
  1228. }
  1229. /*
  1230. * find_idlest_cpu - find the idlest cpu among the cpus in group.
  1231. */
  1232. static int
  1233. find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
  1234. {
  1235. unsigned long load, min_load = ULONG_MAX;
  1236. int idlest = -1;
  1237. int i;
  1238. /* Traverse only the allowed CPUs */
  1239. for_each_cpu_and(i, sched_group_cpus(group), &p->cpus_allowed) {
  1240. load = weighted_cpuload(i);
  1241. if (load < min_load || (load == min_load && i == this_cpu)) {
  1242. min_load = load;
  1243. idlest = i;
  1244. }
  1245. }
  1246. return idlest;
  1247. }
  1248. /*
  1249. * Try and locate an idle CPU in the sched_domain.
  1250. */
  1251. static int select_idle_sibling(struct task_struct *p, int target)
  1252. {
  1253. int cpu = smp_processor_id();
  1254. int prev_cpu = task_cpu(p);
  1255. struct sched_domain *sd;
  1256. int i;
  1257. /*
  1258. * If the task is going to be woken-up on this cpu and if it is
  1259. * already idle, then it is the right target.
  1260. */
  1261. if (target == cpu && idle_cpu(cpu))
  1262. return cpu;
  1263. /*
  1264. * If the task is going to be woken-up on the cpu where it previously
  1265. * ran and if it is currently idle, then it the right target.
  1266. */
  1267. if (target == prev_cpu && idle_cpu(prev_cpu))
  1268. return prev_cpu;
  1269. /*
  1270. * Otherwise, iterate the domains and find an elegible idle cpu.
  1271. */
  1272. for_each_domain(target, sd) {
  1273. if (!(sd->flags & SD_SHARE_PKG_RESOURCES))
  1274. break;
  1275. for_each_cpu_and(i, sched_domain_span(sd), &p->cpus_allowed) {
  1276. if (idle_cpu(i)) {
  1277. target = i;
  1278. break;
  1279. }
  1280. }
  1281. /*
  1282. * Lets stop looking for an idle sibling when we reached
  1283. * the domain that spans the current cpu and prev_cpu.
  1284. */
  1285. if (cpumask_test_cpu(cpu, sched_domain_span(sd)) &&
  1286. cpumask_test_cpu(prev_cpu, sched_domain_span(sd)))
  1287. break;
  1288. }
  1289. return target;
  1290. }
  1291. /*
  1292. * sched_balance_self: balance the current task (running on cpu) in domains
  1293. * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
  1294. * SD_BALANCE_EXEC.
  1295. *
  1296. * Balance, ie. select the least loaded group.
  1297. *
  1298. * Returns the target CPU number, or the same CPU if no balancing is needed.
  1299. *
  1300. * preempt must be disabled.
  1301. */
  1302. static int
  1303. select_task_rq_fair(struct rq *rq, struct task_struct *p, int sd_flag, int wake_flags)
  1304. {
  1305. struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL;
  1306. int cpu = smp_processor_id();
  1307. int prev_cpu = task_cpu(p);
  1308. int new_cpu = cpu;
  1309. int want_affine = 0;
  1310. int want_sd = 1;
  1311. int sync = wake_flags & WF_SYNC;
  1312. if (sd_flag & SD_BALANCE_WAKE) {
  1313. if (cpumask_test_cpu(cpu, &p->cpus_allowed))
  1314. want_affine = 1;
  1315. new_cpu = prev_cpu;
  1316. }
  1317. for_each_domain(cpu, tmp) {
  1318. if (!(tmp->flags & SD_LOAD_BALANCE))
  1319. continue;
  1320. /*
  1321. * If power savings logic is enabled for a domain, see if we
  1322. * are not overloaded, if so, don't balance wider.
  1323. */
  1324. if (tmp->flags & (SD_POWERSAVINGS_BALANCE|SD_PREFER_LOCAL)) {
  1325. unsigned long power = 0;
  1326. unsigned long nr_running = 0;
  1327. unsigned long capacity;
  1328. int i;
  1329. for_each_cpu(i, sched_domain_span(tmp)) {
  1330. power += power_of(i);
  1331. nr_running += cpu_rq(i)->cfs.nr_running;
  1332. }
  1333. capacity = DIV_ROUND_CLOSEST(power, SCHED_LOAD_SCALE);
  1334. if (tmp->flags & SD_POWERSAVINGS_BALANCE)
  1335. nr_running /= 2;
  1336. if (nr_running < capacity)
  1337. want_sd = 0;
  1338. }
  1339. /*
  1340. * If both cpu and prev_cpu are part of this domain,
  1341. * cpu is a valid SD_WAKE_AFFINE target.
  1342. */
  1343. if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
  1344. cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
  1345. affine_sd = tmp;
  1346. want_affine = 0;
  1347. }
  1348. if (!want_sd && !want_affine)
  1349. break;
  1350. if (!(tmp->flags & sd_flag))
  1351. continue;
  1352. if (want_sd)
  1353. sd = tmp;
  1354. }
  1355. if (affine_sd) {
  1356. if (cpu == prev_cpu || wake_affine(affine_sd, p, sync))
  1357. return select_idle_sibling(p, cpu);
  1358. else
  1359. return select_idle_sibling(p, prev_cpu);
  1360. }
  1361. while (sd) {
  1362. int load_idx = sd->forkexec_idx;
  1363. struct sched_group *group;
  1364. int weight;
  1365. if (!(sd->flags & sd_flag)) {
  1366. sd = sd->child;
  1367. continue;
  1368. }
  1369. if (sd_flag & SD_BALANCE_WAKE)
  1370. load_idx = sd->wake_idx;
  1371. group = find_idlest_group(sd, p, cpu, load_idx);
  1372. if (!group) {
  1373. sd = sd->child;
  1374. continue;
  1375. }
  1376. new_cpu = find_idlest_cpu(group, p, cpu);
  1377. if (new_cpu == -1 || new_cpu == cpu) {
  1378. /* Now try balancing at a lower domain level of cpu */
  1379. sd = sd->child;
  1380. continue;
  1381. }
  1382. /* Now try balancing at a lower domain level of new_cpu */
  1383. cpu = new_cpu;
  1384. weight = sd->span_weight;
  1385. sd = NULL;
  1386. for_each_domain(cpu, tmp) {
  1387. if (weight <= tmp->span_weight)
  1388. break;
  1389. if (tmp->flags & sd_flag)
  1390. sd = tmp;
  1391. }
  1392. /* while loop will break here if sd == NULL */
  1393. }
  1394. return new_cpu;
  1395. }
  1396. #endif /* CONFIG_SMP */
  1397. static unsigned long
  1398. wakeup_gran(struct sched_entity *curr, struct sched_entity *se)
  1399. {
  1400. unsigned long gran = sysctl_sched_wakeup_granularity;
  1401. /*
  1402. * Since its curr running now, convert the gran from real-time
  1403. * to virtual-time in his units.
  1404. *
  1405. * By using 'se' instead of 'curr' we penalize light tasks, so
  1406. * they get preempted easier. That is, if 'se' < 'curr' then
  1407. * the resulting gran will be larger, therefore penalizing the
  1408. * lighter, if otoh 'se' > 'curr' then the resulting gran will
  1409. * be smaller, again penalizing the lighter task.
  1410. *
  1411. * This is especially important for buddies when the leftmost
  1412. * task is higher priority than the buddy.
  1413. */
  1414. if (unlikely(se->load.weight != NICE_0_LOAD))
  1415. gran = calc_delta_fair(gran, se);
  1416. return gran;
  1417. }
  1418. /*
  1419. * Should 'se' preempt 'curr'.
  1420. *
  1421. * |s1
  1422. * |s2
  1423. * |s3
  1424. * g
  1425. * |<--->|c
  1426. *
  1427. * w(c, s1) = -1
  1428. * w(c, s2) = 0
  1429. * w(c, s3) = 1
  1430. *
  1431. */
  1432. static int
  1433. wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
  1434. {
  1435. s64 gran, vdiff = curr->vruntime - se->vruntime;
  1436. if (vdiff <= 0)
  1437. return -1;
  1438. gran = wakeup_gran(curr, se);
  1439. if (vdiff > gran)
  1440. return 1;
  1441. return 0;
  1442. }
  1443. static void set_last_buddy(struct sched_entity *se)
  1444. {
  1445. if (likely(task_of(se)->policy != SCHED_IDLE)) {
  1446. for_each_sched_entity(se)
  1447. cfs_rq_of(se)->last = se;
  1448. }
  1449. }
  1450. static void set_next_buddy(struct sched_entity *se)
  1451. {
  1452. if (likely(task_of(se)->policy != SCHED_IDLE)) {
  1453. for_each_sched_entity(se)
  1454. cfs_rq_of(se)->next = se;
  1455. }
  1456. }
  1457. /*
  1458. * Preempt the current task with a newly woken task if needed:
  1459. */
  1460. static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
  1461. {
  1462. struct task_struct *curr = rq->curr;
  1463. struct sched_entity *se = &curr->se, *pse = &p->se;
  1464. struct cfs_rq *cfs_rq = task_cfs_rq(curr);
  1465. int scale = cfs_rq->nr_running >= sched_nr_latency;
  1466. if (unlikely(rt_prio(p->prio)))
  1467. goto preempt;
  1468. if (unlikely(p->sched_class != &fair_sched_class))
  1469. return;
  1470. if (unlikely(se == pse))
  1471. return;
  1472. if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK))
  1473. set_next_buddy(pse);
  1474. /*
  1475. * We can come here with TIF_NEED_RESCHED already set from new task
  1476. * wake up path.
  1477. */
  1478. if (test_tsk_need_resched(curr))
  1479. return;
  1480. /*
  1481. * Batch and idle tasks do not preempt (their preemption is driven by
  1482. * the tick):
  1483. */
  1484. if (unlikely(p->policy != SCHED_NORMAL))
  1485. return;
  1486. /* Idle tasks are by definition preempted by everybody. */
  1487. if (unlikely(curr->policy == SCHED_IDLE))
  1488. goto preempt;
  1489. if (!sched_feat(WAKEUP_PREEMPT))
  1490. return;
  1491. update_curr(cfs_rq);
  1492. find_matching_se(&se, &pse);
  1493. BUG_ON(!pse);
  1494. if (wakeup_preempt_entity(se, pse) == 1)
  1495. goto preempt;
  1496. return;
  1497. preempt:
  1498. resched_task(curr);
  1499. /*
  1500. * Only set the backward buddy when the current task is still
  1501. * on the rq. This can happen when a wakeup gets interleaved
  1502. * with schedule on the ->pre_schedule() or idle_balance()
  1503. * point, either of which can * drop the rq lock.
  1504. *
  1505. * Also, during early boot the idle thread is in the fair class,
  1506. * for obvious reasons its a bad idea to schedule back to it.
  1507. */
  1508. if (unlikely(!se->on_rq || curr == rq->idle))
  1509. return;
  1510. if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
  1511. set_last_buddy(se);
  1512. }
  1513. static struct task_struct *pick_next_task_fair(struct rq *rq)
  1514. {
  1515. struct task_struct *p;
  1516. struct cfs_rq *cfs_rq = &rq->cfs;
  1517. struct sched_entity *se;
  1518. if (!cfs_rq->nr_running)
  1519. return NULL;
  1520. do {
  1521. se = pick_next_entity(cfs_rq);
  1522. set_next_entity(cfs_rq, se);
  1523. cfs_rq = group_cfs_rq(se);
  1524. } while (cfs_rq);
  1525. p = task_of(se);
  1526. hrtick_start_fair(rq, p);
  1527. return p;
  1528. }
  1529. /*
  1530. * Account for a descheduled task:
  1531. */
  1532. static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
  1533. {
  1534. struct sched_entity *se = &prev->se;
  1535. struct cfs_rq *cfs_rq;
  1536. for_each_sched_entity(se) {
  1537. cfs_rq = cfs_rq_of(se);
  1538. put_prev_entity(cfs_rq, se);
  1539. }
  1540. }
  1541. #ifdef CONFIG_SMP
  1542. /**************************************************
  1543. * Fair scheduling class load-balancing methods:
  1544. */
  1545. /*
  1546. * pull_task - move a task from a remote runqueue to the local runqueue.
  1547. * Both runqueues must be locked.
  1548. */
  1549. static void pull_task(struct rq *src_rq, struct task_struct *p,
  1550. struct rq *this_rq, int this_cpu)
  1551. {
  1552. deactivate_task(src_rq, p, 0);
  1553. set_task_cpu(p, this_cpu);
  1554. activate_task(this_rq, p, 0);
  1555. check_preempt_curr(this_rq, p, 0);
  1556. /* re-arm NEWIDLE balancing when moving tasks */
  1557. src_rq->avg_idle = this_rq->avg_idle = 2*sysctl_sched_migration_cost;
  1558. this_rq->idle_stamp = 0;
  1559. }
  1560. /*
  1561. * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
  1562. */
  1563. static
  1564. int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
  1565. struct sched_domain *sd, enum cpu_idle_type idle,
  1566. int *all_pinned)
  1567. {
  1568. int tsk_cache_hot = 0;
  1569. /*
  1570. * We do not migrate tasks that are:
  1571. * 1) running (obviously), or
  1572. * 2) cannot be migrated to this CPU due to cpus_allowed, or
  1573. * 3) are cache-hot on their current CPU.
  1574. */
  1575. if (!cpumask_test_cpu(this_cpu, &p->cpus_allowed)) {
  1576. schedstat_inc(p, se.statistics.nr_failed_migrations_affine);
  1577. return 0;
  1578. }
  1579. *all_pinned = 0;
  1580. if (task_running(rq, p)) {
  1581. schedstat_inc(p, se.statistics.nr_failed_migrations_running);
  1582. return 0;
  1583. }
  1584. /*
  1585. * Aggressive migration if:
  1586. * 1) task is cache cold, or
  1587. * 2) too many balance attempts have failed.
  1588. */
  1589. tsk_cache_hot = task_hot(p, rq->clock_task, sd);
  1590. if (!tsk_cache_hot ||
  1591. sd->nr_balance_failed > sd->cache_nice_tries) {
  1592. #ifdef CONFIG_SCHEDSTATS
  1593. if (tsk_cache_hot) {
  1594. schedstat_inc(sd, lb_hot_gained[idle]);
  1595. schedstat_inc(p, se.statistics.nr_forced_migrations);
  1596. }
  1597. #endif
  1598. return 1;
  1599. }
  1600. if (tsk_cache_hot) {
  1601. schedstat_inc(p, se.statistics.nr_failed_migrations_hot);
  1602. return 0;
  1603. }
  1604. return 1;
  1605. }
  1606. /*
  1607. * move_one_task tries to move exactly one task from busiest to this_rq, as
  1608. * part of active balancing operations within "domain".
  1609. * Returns 1 if successful and 0 otherwise.
  1610. *
  1611. * Called with both runqueues locked.
  1612. */
  1613. static int
  1614. move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
  1615. struct sched_domain *sd, enum cpu_idle_type idle)
  1616. {
  1617. struct task_struct *p, *n;
  1618. struct cfs_rq *cfs_rq;
  1619. int pinned = 0;
  1620. for_each_leaf_cfs_rq(busiest, cfs_rq) {
  1621. list_for_each_entry_safe(p, n, &cfs_rq->tasks, se.group_node) {
  1622. if (!can_migrate_task(p, busiest, this_cpu,
  1623. sd, idle, &pinned))
  1624. continue;
  1625. pull_task(busiest, p, this_rq, this_cpu);
  1626. /*
  1627. * Right now, this is only the second place pull_task()
  1628. * is called, so we can safely collect pull_task()
  1629. * stats here rather than inside pull_task().
  1630. */
  1631. schedstat_inc(sd, lb_gained[idle]);
  1632. return 1;
  1633. }
  1634. }
  1635. return 0;
  1636. }
  1637. static unsigned long
  1638. balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
  1639. unsigned long max_load_move, struct sched_domain *sd,
  1640. enum cpu_idle_type idle, int *all_pinned,
  1641. int *this_best_prio, struct cfs_rq *busiest_cfs_rq)
  1642. {
  1643. int loops = 0, pulled = 0, pinned = 0;
  1644. long rem_load_move = max_load_move;
  1645. struct task_struct *p, *n;
  1646. if (max_load_move == 0)
  1647. goto out;
  1648. pinned = 1;
  1649. list_for_each_entry_safe(p, n, &busiest_cfs_rq->tasks, se.group_node) {
  1650. if (loops++ > sysctl_sched_nr_migrate)
  1651. break;
  1652. if ((p->se.load.weight >> 1) > rem_load_move ||
  1653. !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned))
  1654. continue;
  1655. pull_task(busiest, p, this_rq, this_cpu);
  1656. pulled++;
  1657. rem_load_move -= p->se.load.weight;
  1658. #ifdef CONFIG_PREEMPT
  1659. /*
  1660. * NEWIDLE balancing is a source of latency, so preemptible
  1661. * kernels will stop after the first task is pulled to minimize
  1662. * the critical section.
  1663. */
  1664. if (idle == CPU_NEWLY_IDLE)
  1665. break;
  1666. #endif
  1667. /*
  1668. * We only want to steal up to the prescribed amount of
  1669. * weighted load.
  1670. */
  1671. if (rem_load_move <= 0)
  1672. break;
  1673. if (p->prio < *this_best_prio)
  1674. *this_best_prio = p->prio;
  1675. }
  1676. out:
  1677. /*
  1678. * Right now, this is one of only two places pull_task() is called,
  1679. * so we can safely collect pull_task() stats here rather than
  1680. * inside pull_task().
  1681. */
  1682. schedstat_add(sd, lb_gained[idle], pulled);
  1683. if (all_pinned)
  1684. *all_pinned = pinned;
  1685. return max_load_move - rem_load_move;
  1686. }
  1687. #ifdef CONFIG_FAIR_GROUP_SCHED
  1688. /*
  1689. * update tg->load_weight by folding this cpu's load_avg
  1690. */
  1691. static int update_shares_cpu(struct task_group *tg, int cpu)
  1692. {
  1693. struct cfs_rq *cfs_rq;
  1694. unsigned long flags;
  1695. struct rq *rq;
  1696. long load_avg;
  1697. if (!tg->se[cpu])
  1698. return 0;
  1699. rq = cpu_rq(cpu);
  1700. cfs_rq = tg->cfs_rq[cpu];
  1701. raw_spin_lock_irqsave(&rq->lock, flags);
  1702. update_rq_clock(rq);
  1703. update_cfs_load(cfs_rq);
  1704. load_avg = div64_u64(cfs_rq->load_avg, cfs_rq->load_period+1);
  1705. load_avg -= cfs_rq->load_contribution;
  1706. atomic_add(load_avg, &tg->load_weight);
  1707. cfs_rq->load_contribution += load_avg;
  1708. /*
  1709. * We need to update shares after updating tg->load_weight in
  1710. * order to adjust the weight of groups with long running tasks.
  1711. */
  1712. update_cfs_shares(cfs_rq, 0);
  1713. raw_spin_unlock_irqrestore(&rq->lock, flags);
  1714. return 0;
  1715. }
  1716. static void update_shares(int cpu)
  1717. {
  1718. struct cfs_rq *cfs_rq;
  1719. struct rq *rq = cpu_rq(cpu);
  1720. rcu_read_lock();
  1721. for_each_leaf_cfs_rq(rq, cfs_rq)
  1722. update_shares_cpu(cfs_rq->tg, cpu);
  1723. rcu_read_unlock();
  1724. }
  1725. static unsigned long
  1726. load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
  1727. unsigned long max_load_move,
  1728. struct sched_domain *sd, enum cpu_idle_type idle,
  1729. int *all_pinned, int *this_best_prio)
  1730. {
  1731. long rem_load_move = max_load_move;
  1732. int busiest_cpu = cpu_of(busiest);
  1733. struct task_group *tg;
  1734. rcu_read_lock();
  1735. update_h_load(busiest_cpu);
  1736. list_for_each_entry_rcu(tg, &task_groups, list) {
  1737. struct cfs_rq *busiest_cfs_rq = tg->cfs_rq[busiest_cpu];
  1738. unsigned long busiest_h_load = busiest_cfs_rq->h_load;
  1739. unsigned long busiest_weight = busiest_cfs_rq->load.weight;
  1740. u64 rem_load, moved_load;
  1741. /*
  1742. * empty group
  1743. */
  1744. if (!busiest_cfs_rq->task_weight)
  1745. continue;
  1746. rem_load = (u64)rem_load_move * busiest_weight;
  1747. rem_load = div_u64(rem_load, busiest_h_load + 1);
  1748. moved_load = balance_tasks(this_rq, this_cpu, busiest,
  1749. rem_load, sd, idle, all_pinned, this_best_prio,
  1750. busiest_cfs_rq);
  1751. if (!moved_load)
  1752. continue;
  1753. moved_load *= busiest_h_load;
  1754. moved_load = div_u64(moved_load, busiest_weight + 1);
  1755. rem_load_move -= moved_load;
  1756. if (rem_load_move < 0)
  1757. break;
  1758. }
  1759. rcu_read_unlock();
  1760. return max_load_move - rem_load_move;
  1761. }
  1762. #else
  1763. static inline void update_shares(int cpu)
  1764. {
  1765. }
  1766. static unsigned long
  1767. load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
  1768. unsigned long max_load_move,
  1769. struct sched_domain *sd, enum cpu_idle_type idle,
  1770. int *all_pinned, int *this_best_prio)
  1771. {
  1772. return balance_tasks(this_rq, this_cpu, busiest,
  1773. max_load_move, sd, idle, all_pinned,
  1774. this_best_prio, &busiest->cfs);
  1775. }
  1776. #endif
  1777. /*
  1778. * move_tasks tries to move up to max_load_move weighted load from busiest to
  1779. * this_rq, as part of a balancing operation within domain "sd".
  1780. * Returns 1 if successful and 0 otherwise.
  1781. *
  1782. * Called with both runqueues locked.
  1783. */
  1784. static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
  1785. unsigned long max_load_move,
  1786. struct sched_domain *sd, enum cpu_idle_type idle,
  1787. int *all_pinned)
  1788. {
  1789. unsigned long total_load_moved = 0, load_moved;
  1790. int this_best_prio = this_rq->curr->prio;
  1791. do {
  1792. load_moved = load_balance_fair(this_rq, this_cpu, busiest,
  1793. max_load_move - total_load_moved,
  1794. sd, idle, all_pinned, &this_best_prio);
  1795. total_load_moved += load_moved;
  1796. #ifdef CONFIG_PREEMPT
  1797. /*
  1798. * NEWIDLE balancing is a source of latency, so preemptible
  1799. * kernels will stop after the first task is pulled to minimize
  1800. * the critical section.
  1801. */
  1802. if (idle == CPU_NEWLY_IDLE && this_rq->nr_running)
  1803. break;
  1804. if (raw_spin_is_contended(&this_rq->lock) ||
  1805. raw_spin_is_contended(&busiest->lock))
  1806. break;
  1807. #endif
  1808. } while (load_moved && max_load_move > total_load_moved);
  1809. return total_load_moved > 0;
  1810. }
  1811. /********** Helpers for find_busiest_group ************************/
  1812. /*
  1813. * sd_lb_stats - Structure to store the statistics of a sched_domain
  1814. * during load balancing.
  1815. */
  1816. struct sd_lb_stats {
  1817. struct sched_group *busiest; /* Busiest group in this sd */
  1818. struct sched_group *this; /* Local group in this sd */
  1819. unsigned long total_load; /* Total load of all groups in sd */
  1820. unsigned long total_pwr; /* Total power of all groups in sd */
  1821. unsigned long avg_load; /* Average load across all groups in sd */
  1822. /** Statistics of this group */
  1823. unsigned long this_load;
  1824. unsigned long this_load_per_task;
  1825. unsigned long this_nr_running;
  1826. unsigned long this_has_capacity;
  1827. /* Statistics of the busiest group */
  1828. unsigned long max_load;
  1829. unsigned long busiest_load_per_task;
  1830. unsigned long busiest_nr_running;
  1831. unsigned long busiest_group_capacity;
  1832. unsigned long busiest_has_capacity;
  1833. int group_imb; /* Is there imbalance in this sd */
  1834. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  1835. int power_savings_balance; /* Is powersave balance needed for this sd */
  1836. struct sched_group *group_min; /* Least loaded group in sd */
  1837. struct sched_group *group_leader; /* Group which relieves group_min */
  1838. unsigned long min_load_per_task; /* load_per_task in group_min */
  1839. unsigned long leader_nr_running; /* Nr running of group_leader */
  1840. unsigned long min_nr_running; /* Nr running of group_min */
  1841. #endif
  1842. };
  1843. /*
  1844. * sg_lb_stats - stats of a sched_group required for load_balancing
  1845. */
  1846. struct sg_lb_stats {
  1847. unsigned long avg_load; /*Avg load across the CPUs of the group */
  1848. unsigned long group_load; /* Total load over the CPUs of the group */
  1849. unsigned long sum_nr_running; /* Nr tasks running in the group */
  1850. unsigned long sum_weighted_load; /* Weighted load of group's tasks */
  1851. unsigned long group_capacity;
  1852. int group_imb; /* Is there an imbalance in the group ? */
  1853. int group_has_capacity; /* Is there extra capacity in the group? */
  1854. };
  1855. /**
  1856. * group_first_cpu - Returns the first cpu in the cpumask of a sched_group.
  1857. * @group: The group whose first cpu is to be returned.
  1858. */
  1859. static inline unsigned int group_first_cpu(struct sched_group *group)
  1860. {
  1861. return cpumask_first(sched_group_cpus(group));
  1862. }
  1863. /**
  1864. * get_sd_load_idx - Obtain the load index for a given sched domain.
  1865. * @sd: The sched_domain whose load_idx is to be obtained.
  1866. * @idle: The Idle status of the CPU for whose sd load_icx is obtained.
  1867. */
  1868. static inline int get_sd_load_idx(struct sched_domain *sd,
  1869. enum cpu_idle_type idle)
  1870. {
  1871. int load_idx;
  1872. switch (idle) {
  1873. case CPU_NOT_IDLE:
  1874. load_idx = sd->busy_idx;
  1875. break;
  1876. case CPU_NEWLY_IDLE:
  1877. load_idx = sd->newidle_idx;
  1878. break;
  1879. default:
  1880. load_idx = sd->idle_idx;
  1881. break;
  1882. }
  1883. return load_idx;
  1884. }
  1885. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  1886. /**
  1887. * init_sd_power_savings_stats - Initialize power savings statistics for
  1888. * the given sched_domain, during load balancing.
  1889. *
  1890. * @sd: Sched domain whose power-savings statistics are to be initialized.
  1891. * @sds: Variable containing the statistics for sd.
  1892. * @idle: Idle status of the CPU at which we're performing load-balancing.
  1893. */
  1894. static inline void init_sd_power_savings_stats(struct sched_domain *sd,
  1895. struct sd_lb_stats *sds, enum cpu_idle_type idle)
  1896. {
  1897. /*
  1898. * Busy processors will not participate in power savings
  1899. * balance.
  1900. */
  1901. if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
  1902. sds->power_savings_balance = 0;
  1903. else {
  1904. sds->power_savings_balance = 1;
  1905. sds->min_nr_running = ULONG_MAX;
  1906. sds->leader_nr_running = 0;
  1907. }
  1908. }
  1909. /**
  1910. * update_sd_power_savings_stats - Update the power saving stats for a
  1911. * sched_domain while performing load balancing.
  1912. *
  1913. * @group: sched_group belonging to the sched_domain under consideration.
  1914. * @sds: Variable containing the statistics of the sched_domain
  1915. * @local_group: Does group contain the CPU for which we're performing
  1916. * load balancing ?
  1917. * @sgs: Variable containing the statistics of the group.
  1918. */
  1919. static inline void update_sd_power_savings_stats(struct sched_group *group,
  1920. struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
  1921. {
  1922. if (!sds->power_savings_balance)
  1923. return;
  1924. /*
  1925. * If the local group is idle or completely loaded
  1926. * no need to do power savings balance at this domain
  1927. */
  1928. if (local_group && (sds->this_nr_running >= sgs->group_capacity ||
  1929. !sds->this_nr_running))
  1930. sds->power_savings_balance = 0;
  1931. /*
  1932. * If a group is already running at full capacity or idle,
  1933. * don't include that group in power savings calculations
  1934. */
  1935. if (!sds->power_savings_balance ||
  1936. sgs->sum_nr_running >= sgs->group_capacity ||
  1937. !sgs->sum_nr_running)
  1938. return;
  1939. /*
  1940. * Calculate the group which has the least non-idle load.
  1941. * This is the group from where we need to pick up the load
  1942. * for saving power
  1943. */
  1944. if ((sgs->sum_nr_running < sds->min_nr_running) ||
  1945. (sgs->sum_nr_running == sds->min_nr_running &&
  1946. group_first_cpu(group) > group_first_cpu(sds->group_min))) {
  1947. sds->group_min = group;
  1948. sds->min_nr_running = sgs->sum_nr_running;
  1949. sds->min_load_per_task = sgs->sum_weighted_load /
  1950. sgs->sum_nr_running;
  1951. }
  1952. /*
  1953. * Calculate the group which is almost near its
  1954. * capacity but still has some space to pick up some load
  1955. * from other group and save more power
  1956. */
  1957. if (sgs->sum_nr_running + 1 > sgs->group_capacity)
  1958. return;
  1959. if (sgs->sum_nr_running > sds->leader_nr_running ||
  1960. (sgs->sum_nr_running == sds->leader_nr_running &&
  1961. group_first_cpu(group) < group_first_cpu(sds->group_leader))) {
  1962. sds->group_leader = group;
  1963. sds->leader_nr_running = sgs->sum_nr_running;
  1964. }
  1965. }
  1966. /**
  1967. * check_power_save_busiest_group - see if there is potential for some power-savings balance
  1968. * @sds: Variable containing the statistics of the sched_domain
  1969. * under consideration.
  1970. * @this_cpu: Cpu at which we're currently performing load-balancing.
  1971. * @imbalance: Variable to store the imbalance.
  1972. *
  1973. * Description:
  1974. * Check if we have potential to perform some power-savings balance.
  1975. * If yes, set the busiest group to be the least loaded group in the
  1976. * sched_domain, so that it's CPUs can be put to idle.
  1977. *
  1978. * Returns 1 if there is potential to perform power-savings balance.
  1979. * Else returns 0.
  1980. */
  1981. static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
  1982. int this_cpu, unsigned long *imbalance)
  1983. {
  1984. if (!sds->power_savings_balance)
  1985. return 0;
  1986. if (sds->this != sds->group_leader ||
  1987. sds->group_leader == sds->group_min)
  1988. return 0;
  1989. *imbalance = sds->min_load_per_task;
  1990. sds->busiest = sds->group_min;
  1991. return 1;
  1992. }
  1993. #else /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
  1994. static inline void init_sd_power_savings_stats(struct sched_domain *sd,
  1995. struct sd_lb_stats *sds, enum cpu_idle_type idle)
  1996. {
  1997. return;
  1998. }
  1999. static inline void update_sd_power_savings_stats(struct sched_group *group,
  2000. struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
  2001. {
  2002. return;
  2003. }
  2004. static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
  2005. int this_cpu, unsigned long *imbalance)
  2006. {
  2007. return 0;
  2008. }
  2009. #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
  2010. unsigned long default_scale_freq_power(struct sched_domain *sd, int cpu)
  2011. {
  2012. return SCHED_LOAD_SCALE;
  2013. }
  2014. unsigned long __weak arch_scale_freq_power(struct sched_domain *sd, int cpu)
  2015. {
  2016. return default_scale_freq_power(sd, cpu);
  2017. }
  2018. unsigned long default_scale_smt_power(struct sched_domain *sd, int cpu)
  2019. {
  2020. unsigned long weight = sd->span_weight;
  2021. unsigned long smt_gain = sd->smt_gain;
  2022. smt_gain /= weight;
  2023. return smt_gain;
  2024. }
  2025. unsigned long __weak arch_scale_smt_power(struct sched_domain *sd, int cpu)
  2026. {
  2027. return default_scale_smt_power(sd, cpu);
  2028. }
  2029. unsigned long scale_rt_power(int cpu)
  2030. {
  2031. struct rq *rq = cpu_rq(cpu);
  2032. u64 total, available;
  2033. total = sched_avg_period() + (rq->clock - rq->age_stamp);
  2034. if (unlikely(total < rq->rt_avg)) {
  2035. /* Ensures that power won't end up being negative */
  2036. available = 0;
  2037. } else {
  2038. available = total - rq->rt_avg;
  2039. }
  2040. if (unlikely((s64)total < SCHED_LOAD_SCALE))
  2041. total = SCHED_LOAD_SCALE;
  2042. total >>= SCHED_LOAD_SHIFT;
  2043. return div_u64(available, total);
  2044. }
  2045. static void update_cpu_power(struct sched_domain *sd, int cpu)
  2046. {
  2047. unsigned long weight = sd->span_weight;
  2048. unsigned long power = SCHED_LOAD_SCALE;
  2049. struct sched_group *sdg = sd->groups;
  2050. if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
  2051. if (sched_feat(ARCH_POWER))
  2052. power *= arch_scale_smt_power(sd, cpu);
  2053. else
  2054. power *= default_scale_smt_power(sd, cpu);
  2055. power >>= SCHED_LOAD_SHIFT;
  2056. }
  2057. sdg->cpu_power_orig = power;
  2058. if (sched_feat(ARCH_POWER))
  2059. power *= arch_scale_freq_power(sd, cpu);
  2060. else
  2061. power *= default_scale_freq_power(sd, cpu);
  2062. power >>= SCHED_LOAD_SHIFT;
  2063. power *= scale_rt_power(cpu);
  2064. power >>= SCHED_LOAD_SHIFT;
  2065. if (!power)
  2066. power = 1;
  2067. cpu_rq(cpu)->cpu_power = power;
  2068. sdg->cpu_power = power;
  2069. }
  2070. static void update_group_power(struct sched_domain *sd, int cpu)
  2071. {
  2072. struct sched_domain *child = sd->child;
  2073. struct sched_group *group, *sdg = sd->groups;
  2074. unsigned long power;
  2075. if (!child) {
  2076. update_cpu_power(sd, cpu);
  2077. return;
  2078. }
  2079. power = 0;
  2080. group = child->groups;
  2081. do {
  2082. power += group->cpu_power;
  2083. group = group->next;
  2084. } while (group != child->groups);
  2085. sdg->cpu_power = power;
  2086. }
  2087. /*
  2088. * Try and fix up capacity for tiny siblings, this is needed when
  2089. * things like SD_ASYM_PACKING need f_b_g to select another sibling
  2090. * which on its own isn't powerful enough.
  2091. *
  2092. * See update_sd_pick_busiest() and check_asym_packing().
  2093. */
  2094. static inline int
  2095. fix_small_capacity(struct sched_domain *sd, struct sched_group *group)
  2096. {
  2097. /*
  2098. * Only siblings can have significantly less than SCHED_LOAD_SCALE
  2099. */
  2100. if (sd->level != SD_LV_SIBLING)
  2101. return 0;
  2102. /*
  2103. * If ~90% of the cpu_power is still there, we're good.
  2104. */
  2105. if (group->cpu_power * 32 > group->cpu_power_orig * 29)
  2106. return 1;
  2107. return 0;
  2108. }
  2109. /**
  2110. * update_sg_lb_stats - Update sched_group's statistics for load balancing.
  2111. * @sd: The sched_domain whose statistics are to be updated.
  2112. * @group: sched_group whose statistics are to be updated.
  2113. * @this_cpu: Cpu for which load balance is currently performed.
  2114. * @idle: Idle status of this_cpu
  2115. * @load_idx: Load index of sched_domain of this_cpu for load calc.
  2116. * @sd_idle: Idle status of the sched_domain containing group.
  2117. * @local_group: Does group contain this_cpu.
  2118. * @cpus: Set of cpus considered for load balancing.
  2119. * @balance: Should we balance.
  2120. * @sgs: variable to hold the statistics for this group.
  2121. */
  2122. static inline void update_sg_lb_stats(struct sched_domain *sd,
  2123. struct sched_group *group, int this_cpu,
  2124. enum cpu_idle_type idle, int load_idx, int *sd_idle,
  2125. int local_group, const struct cpumask *cpus,
  2126. int *balance, struct sg_lb_stats *sgs)
  2127. {
  2128. unsigned long load, max_cpu_load, min_cpu_load, max_nr_running;
  2129. int i;
  2130. unsigned int balance_cpu = -1, first_idle_cpu = 0;
  2131. unsigned long avg_load_per_task = 0;
  2132. if (local_group)
  2133. balance_cpu = group_first_cpu(group);
  2134. /* Tally up the load of all CPUs in the group */
  2135. max_cpu_load = 0;
  2136. min_cpu_load = ~0UL;
  2137. max_nr_running = 0;
  2138. for_each_cpu_and(i, sched_group_cpus(group), cpus) {
  2139. struct rq *rq = cpu_rq(i);
  2140. if (*sd_idle && rq->nr_running)
  2141. *sd_idle = 0;
  2142. /* Bias balancing toward cpus of our domain */
  2143. if (local_group) {
  2144. if (idle_cpu(i) && !first_idle_cpu) {
  2145. first_idle_cpu = 1;
  2146. balance_cpu = i;
  2147. }
  2148. load = target_load(i, load_idx);
  2149. } else {
  2150. load = source_load(i, load_idx);
  2151. if (load > max_cpu_load) {
  2152. max_cpu_load = load;
  2153. max_nr_running = rq->nr_running;
  2154. }
  2155. if (min_cpu_load > load)
  2156. min_cpu_load = load;
  2157. }
  2158. sgs->group_load += load;
  2159. sgs->sum_nr_running += rq->nr_running;
  2160. sgs->sum_weighted_load += weighted_cpuload(i);
  2161. }
  2162. /*
  2163. * First idle cpu or the first cpu(busiest) in this sched group
  2164. * is eligible for doing load balancing at this and above
  2165. * domains. In the newly idle case, we will allow all the cpu's
  2166. * to do the newly idle load balance.
  2167. */
  2168. if (idle != CPU_NEWLY_IDLE && local_group) {
  2169. if (balance_cpu != this_cpu) {
  2170. *balance = 0;
  2171. return;
  2172. }
  2173. update_group_power(sd, this_cpu);
  2174. }
  2175. /* Adjust by relative CPU power of the group */
  2176. sgs->avg_load = (sgs->group_load * SCHED_LOAD_SCALE) / group->cpu_power;
  2177. /*
  2178. * Consider the group unbalanced when the imbalance is larger
  2179. * than the average weight of two tasks.
  2180. *
  2181. * APZ: with cgroup the avg task weight can vary wildly and
  2182. * might not be a suitable number - should we keep a
  2183. * normalized nr_running number somewhere that negates
  2184. * the hierarchy?
  2185. */
  2186. if (sgs->sum_nr_running)
  2187. avg_load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running;
  2188. if ((max_cpu_load - min_cpu_load) > 2*avg_load_per_task && max_nr_running > 1)
  2189. sgs->group_imb = 1;
  2190. sgs->group_capacity = DIV_ROUND_CLOSEST(group->cpu_power, SCHED_LOAD_SCALE);
  2191. if (!sgs->group_capacity)
  2192. sgs->group_capacity = fix_small_capacity(sd, group);
  2193. if (sgs->group_capacity > sgs->sum_nr_running)
  2194. sgs->group_has_capacity = 1;
  2195. }
  2196. /**
  2197. * update_sd_pick_busiest - return 1 on busiest group
  2198. * @sd: sched_domain whose statistics are to be checked
  2199. * @sds: sched_domain statistics
  2200. * @sg: sched_group candidate to be checked for being the busiest
  2201. * @sgs: sched_group statistics
  2202. * @this_cpu: the current cpu
  2203. *
  2204. * Determine if @sg is a busier group than the previously selected
  2205. * busiest group.
  2206. */
  2207. static bool update_sd_pick_busiest(struct sched_domain *sd,
  2208. struct sd_lb_stats *sds,
  2209. struct sched_group *sg,
  2210. struct sg_lb_stats *sgs,
  2211. int this_cpu)
  2212. {
  2213. if (sgs->avg_load <= sds->max_load)
  2214. return false;
  2215. if (sgs->sum_nr_running > sgs->group_capacity)
  2216. return true;
  2217. if (sgs->group_imb)
  2218. return true;
  2219. /*
  2220. * ASYM_PACKING needs to move all the work to the lowest
  2221. * numbered CPUs in the group, therefore mark all groups
  2222. * higher than ourself as busy.
  2223. */
  2224. if ((sd->flags & SD_ASYM_PACKING) && sgs->sum_nr_running &&
  2225. this_cpu < group_first_cpu(sg)) {
  2226. if (!sds->busiest)
  2227. return true;
  2228. if (group_first_cpu(sds->busiest) > group_first_cpu(sg))
  2229. return true;
  2230. }
  2231. return false;
  2232. }
  2233. /**
  2234. * update_sd_lb_stats - Update sched_group's statistics for load balancing.
  2235. * @sd: sched_domain whose statistics are to be updated.
  2236. * @this_cpu: Cpu for which load balance is currently performed.
  2237. * @idle: Idle status of this_cpu
  2238. * @sd_idle: Idle status of the sched_domain containing sg.
  2239. * @cpus: Set of cpus considered for load balancing.
  2240. * @balance: Should we balance.
  2241. * @sds: variable to hold the statistics for this sched_domain.
  2242. */
  2243. static inline void update_sd_lb_stats(struct sched_domain *sd, int this_cpu,
  2244. enum cpu_idle_type idle, int *sd_idle,
  2245. const struct cpumask *cpus, int *balance,
  2246. struct sd_lb_stats *sds)
  2247. {
  2248. struct sched_domain *child = sd->child;
  2249. struct sched_group *sg = sd->groups;
  2250. struct sg_lb_stats sgs;
  2251. int load_idx, prefer_sibling = 0;
  2252. if (child && child->flags & SD_PREFER_SIBLING)
  2253. prefer_sibling = 1;
  2254. init_sd_power_savings_stats(sd, sds, idle);
  2255. load_idx = get_sd_load_idx(sd, idle);
  2256. do {
  2257. int local_group;
  2258. local_group = cpumask_test_cpu(this_cpu, sched_group_cpus(sg));
  2259. memset(&sgs, 0, sizeof(sgs));
  2260. update_sg_lb_stats(sd, sg, this_cpu, idle, load_idx, sd_idle,
  2261. local_group, cpus, balance, &sgs);
  2262. if (local_group && !(*balance))
  2263. return;
  2264. sds->total_load += sgs.group_load;
  2265. sds->total_pwr += sg->cpu_power;
  2266. /*
  2267. * In case the child domain prefers tasks go to siblings
  2268. * first, lower the sg capacity to one so that we'll try
  2269. * and move all the excess tasks away. We lower the capacity
  2270. * of a group only if the local group has the capacity to fit
  2271. * these excess tasks, i.e. nr_running < group_capacity. The
  2272. * extra check prevents the case where you always pull from the
  2273. * heaviest group when it is already under-utilized (possible
  2274. * with a large weight task outweighs the tasks on the system).
  2275. */
  2276. if (prefer_sibling && !local_group && sds->this_has_capacity)
  2277. sgs.group_capacity = min(sgs.group_capacity, 1UL);
  2278. if (local_group) {
  2279. sds->this_load = sgs.avg_load;
  2280. sds->this = sg;
  2281. sds->this_nr_running = sgs.sum_nr_running;
  2282. sds->this_load_per_task = sgs.sum_weighted_load;
  2283. sds->this_has_capacity = sgs.group_has_capacity;
  2284. } else if (update_sd_pick_busiest(sd, sds, sg, &sgs, this_cpu)) {
  2285. sds->max_load = sgs.avg_load;
  2286. sds->busiest = sg;
  2287. sds->busiest_nr_running = sgs.sum_nr_running;
  2288. sds->busiest_group_capacity = sgs.group_capacity;
  2289. sds->busiest_load_per_task = sgs.sum_weighted_load;
  2290. sds->busiest_has_capacity = sgs.group_has_capacity;
  2291. sds->group_imb = sgs.group_imb;
  2292. }
  2293. update_sd_power_savings_stats(sg, sds, local_group, &sgs);
  2294. sg = sg->next;
  2295. } while (sg != sd->groups);
  2296. }
  2297. int __weak arch_sd_sibling_asym_packing(void)
  2298. {
  2299. return 0*SD_ASYM_PACKING;
  2300. }
  2301. /**
  2302. * check_asym_packing - Check to see if the group is packed into the
  2303. * sched doman.
  2304. *
  2305. * This is primarily intended to used at the sibling level. Some
  2306. * cores like POWER7 prefer to use lower numbered SMT threads. In the
  2307. * case of POWER7, it can move to lower SMT modes only when higher
  2308. * threads are idle. When in lower SMT modes, the threads will
  2309. * perform better since they share less core resources. Hence when we
  2310. * have idle threads, we want them to be the higher ones.
  2311. *
  2312. * This packing function is run on idle threads. It checks to see if
  2313. * the busiest CPU in this domain (core in the P7 case) has a higher
  2314. * CPU number than the packing function is being run on. Here we are
  2315. * assuming lower CPU number will be equivalent to lower a SMT thread
  2316. * number.
  2317. *
  2318. * Returns 1 when packing is required and a task should be moved to
  2319. * this CPU. The amount of the imbalance is returned in *imbalance.
  2320. *
  2321. * @sd: The sched_domain whose packing is to be checked.
  2322. * @sds: Statistics of the sched_domain which is to be packed
  2323. * @this_cpu: The cpu at whose sched_domain we're performing load-balance.
  2324. * @imbalance: returns amount of imbalanced due to packing.
  2325. */
  2326. static int check_asym_packing(struct sched_domain *sd,
  2327. struct sd_lb_stats *sds,
  2328. int this_cpu, unsigned long *imbalance)
  2329. {
  2330. int busiest_cpu;
  2331. if (!(sd->flags & SD_ASYM_PACKING))
  2332. return 0;
  2333. if (!sds->busiest)
  2334. return 0;
  2335. busiest_cpu = group_first_cpu(sds->busiest);
  2336. if (this_cpu > busiest_cpu)
  2337. return 0;
  2338. *imbalance = DIV_ROUND_CLOSEST(sds->max_load * sds->busiest->cpu_power,
  2339. SCHED_LOAD_SCALE);
  2340. return 1;
  2341. }
  2342. /**
  2343. * fix_small_imbalance - Calculate the minor imbalance that exists
  2344. * amongst the groups of a sched_domain, during
  2345. * load balancing.
  2346. * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
  2347. * @this_cpu: The cpu at whose sched_domain we're performing load-balance.
  2348. * @imbalance: Variable to store the imbalance.
  2349. */
  2350. static inline void fix_small_imbalance(struct sd_lb_stats *sds,
  2351. int this_cpu, unsigned long *imbalance)
  2352. {
  2353. unsigned long tmp, pwr_now = 0, pwr_move = 0;
  2354. unsigned int imbn = 2;
  2355. unsigned long scaled_busy_load_per_task;
  2356. if (sds->this_nr_running) {
  2357. sds->this_load_per_task /= sds->this_nr_running;
  2358. if (sds->busiest_load_per_task >
  2359. sds->this_load_per_task)
  2360. imbn = 1;
  2361. } else
  2362. sds->this_load_per_task =
  2363. cpu_avg_load_per_task(this_cpu);
  2364. scaled_busy_load_per_task = sds->busiest_load_per_task
  2365. * SCHED_LOAD_SCALE;
  2366. scaled_busy_load_per_task /= sds->busiest->cpu_power;
  2367. if (sds->max_load - sds->this_load + scaled_busy_load_per_task >=
  2368. (scaled_busy_load_per_task * imbn)) {
  2369. *imbalance = sds->busiest_load_per_task;
  2370. return;
  2371. }
  2372. /*
  2373. * OK, we don't have enough imbalance to justify moving tasks,
  2374. * however we may be able to increase total CPU power used by
  2375. * moving them.
  2376. */
  2377. pwr_now += sds->busiest->cpu_power *
  2378. min(sds->busiest_load_per_task, sds->max_load);
  2379. pwr_now += sds->this->cpu_power *
  2380. min(sds->this_load_per_task, sds->this_load);
  2381. pwr_now /= SCHED_LOAD_SCALE;
  2382. /* Amount of load we'd subtract */
  2383. tmp = (sds->busiest_load_per_task * SCHED_LOAD_SCALE) /
  2384. sds->busiest->cpu_power;
  2385. if (sds->max_load > tmp)
  2386. pwr_move += sds->busiest->cpu_power *
  2387. min(sds->busiest_load_per_task, sds->max_load - tmp);
  2388. /* Amount of load we'd add */
  2389. if (sds->max_load * sds->busiest->cpu_power <
  2390. sds->busiest_load_per_task * SCHED_LOAD_SCALE)
  2391. tmp = (sds->max_load * sds->busiest->cpu_power) /
  2392. sds->this->cpu_power;
  2393. else
  2394. tmp = (sds->busiest_load_per_task * SCHED_LOAD_SCALE) /
  2395. sds->this->cpu_power;
  2396. pwr_move += sds->this->cpu_power *
  2397. min(sds->this_load_per_task, sds->this_load + tmp);
  2398. pwr_move /= SCHED_LOAD_SCALE;
  2399. /* Move if we gain throughput */
  2400. if (pwr_move > pwr_now)
  2401. *imbalance = sds->busiest_load_per_task;
  2402. }
  2403. /**
  2404. * calculate_imbalance - Calculate the amount of imbalance present within the
  2405. * groups of a given sched_domain during load balance.
  2406. * @sds: statistics of the sched_domain whose imbalance is to be calculated.
  2407. * @this_cpu: Cpu for which currently load balance is being performed.
  2408. * @imbalance: The variable to store the imbalance.
  2409. */
  2410. static inline void calculate_imbalance(struct sd_lb_stats *sds, int this_cpu,
  2411. unsigned long *imbalance)
  2412. {
  2413. unsigned long max_pull, load_above_capacity = ~0UL;
  2414. sds->busiest_load_per_task /= sds->busiest_nr_running;
  2415. if (sds->group_imb) {
  2416. sds->busiest_load_per_task =
  2417. min(sds->busiest_load_per_task, sds->avg_load);
  2418. }
  2419. /*
  2420. * In the presence of smp nice balancing, certain scenarios can have
  2421. * max load less than avg load(as we skip the groups at or below
  2422. * its cpu_power, while calculating max_load..)
  2423. */
  2424. if (sds->max_load < sds->avg_load) {
  2425. *imbalance = 0;
  2426. return fix_small_imbalance(sds, this_cpu, imbalance);
  2427. }
  2428. if (!sds->group_imb) {
  2429. /*
  2430. * Don't want to pull so many tasks that a group would go idle.
  2431. */
  2432. load_above_capacity = (sds->busiest_nr_running -
  2433. sds->busiest_group_capacity);
  2434. load_above_capacity *= (SCHED_LOAD_SCALE * SCHED_LOAD_SCALE);
  2435. load_above_capacity /= sds->busiest->cpu_power;
  2436. }
  2437. /*
  2438. * We're trying to get all the cpus to the average_load, so we don't
  2439. * want to push ourselves above the average load, nor do we wish to
  2440. * reduce the max loaded cpu below the average load. At the same time,
  2441. * we also don't want to reduce the group load below the group capacity
  2442. * (so that we can implement power-savings policies etc). Thus we look
  2443. * for the minimum possible imbalance.
  2444. * Be careful of negative numbers as they'll appear as very large values
  2445. * with unsigned longs.
  2446. */
  2447. max_pull = min(sds->max_load - sds->avg_load, load_above_capacity);
  2448. /* How much load to actually move to equalise the imbalance */
  2449. *imbalance = min(max_pull * sds->busiest->cpu_power,
  2450. (sds->avg_load - sds->this_load) * sds->this->cpu_power)
  2451. / SCHED_LOAD_SCALE;
  2452. /*
  2453. * if *imbalance is less than the average load per runnable task
  2454. * there is no gaurantee that any tasks will be moved so we'll have
  2455. * a think about bumping its value to force at least one task to be
  2456. * moved
  2457. */
  2458. if (*imbalance < sds->busiest_load_per_task)
  2459. return fix_small_imbalance(sds, this_cpu, imbalance);
  2460. }
  2461. /******* find_busiest_group() helpers end here *********************/
  2462. /**
  2463. * find_busiest_group - Returns the busiest group within the sched_domain
  2464. * if there is an imbalance. If there isn't an imbalance, and
  2465. * the user has opted for power-savings, it returns a group whose
  2466. * CPUs can be put to idle by rebalancing those tasks elsewhere, if
  2467. * such a group exists.
  2468. *
  2469. * Also calculates the amount of weighted load which should be moved
  2470. * to restore balance.
  2471. *
  2472. * @sd: The sched_domain whose busiest group is to be returned.
  2473. * @this_cpu: The cpu for which load balancing is currently being performed.
  2474. * @imbalance: Variable which stores amount of weighted load which should
  2475. * be moved to restore balance/put a group to idle.
  2476. * @idle: The idle status of this_cpu.
  2477. * @sd_idle: The idleness of sd
  2478. * @cpus: The set of CPUs under consideration for load-balancing.
  2479. * @balance: Pointer to a variable indicating if this_cpu
  2480. * is the appropriate cpu to perform load balancing at this_level.
  2481. *
  2482. * Returns: - the busiest group if imbalance exists.
  2483. * - If no imbalance and user has opted for power-savings balance,
  2484. * return the least loaded group whose CPUs can be
  2485. * put to idle by rebalancing its tasks onto our group.
  2486. */
  2487. static struct sched_group *
  2488. find_busiest_group(struct sched_domain *sd, int this_cpu,
  2489. unsigned long *imbalance, enum cpu_idle_type idle,
  2490. int *sd_idle, const struct cpumask *cpus, int *balance)
  2491. {
  2492. struct sd_lb_stats sds;
  2493. memset(&sds, 0, sizeof(sds));
  2494. /*
  2495. * Compute the various statistics relavent for load balancing at
  2496. * this level.
  2497. */
  2498. update_sd_lb_stats(sd, this_cpu, idle, sd_idle, cpus,
  2499. balance, &sds);
  2500. /* Cases where imbalance does not exist from POV of this_cpu */
  2501. /* 1) this_cpu is not the appropriate cpu to perform load balancing
  2502. * at this level.
  2503. * 2) There is no busy sibling group to pull from.
  2504. * 3) This group is the busiest group.
  2505. * 4) This group is more busy than the avg busieness at this
  2506. * sched_domain.
  2507. * 5) The imbalance is within the specified limit.
  2508. *
  2509. * Note: when doing newidle balance, if the local group has excess
  2510. * capacity (i.e. nr_running < group_capacity) and the busiest group
  2511. * does not have any capacity, we force a load balance to pull tasks
  2512. * to the local group. In this case, we skip past checks 3, 4 and 5.
  2513. */
  2514. if (!(*balance))
  2515. goto ret;
  2516. if ((idle == CPU_IDLE || idle == CPU_NEWLY_IDLE) &&
  2517. check_asym_packing(sd, &sds, this_cpu, imbalance))
  2518. return sds.busiest;
  2519. if (!sds.busiest || sds.busiest_nr_running == 0)
  2520. goto out_balanced;
  2521. /* SD_BALANCE_NEWIDLE trumps SMP nice when underutilized */
  2522. if (idle == CPU_NEWLY_IDLE && sds.this_has_capacity &&
  2523. !sds.busiest_has_capacity)
  2524. goto force_balance;
  2525. if (sds.this_load >= sds.max_load)
  2526. goto out_balanced;
  2527. sds.avg_load = (SCHED_LOAD_SCALE * sds.total_load) / sds.total_pwr;
  2528. if (sds.this_load >= sds.avg_load)
  2529. goto out_balanced;
  2530. if (100 * sds.max_load <= sd->imbalance_pct * sds.this_load)
  2531. goto out_balanced;
  2532. force_balance:
  2533. /* Looks like there is an imbalance. Compute it */
  2534. calculate_imbalance(&sds, this_cpu, imbalance);
  2535. return sds.busiest;
  2536. out_balanced:
  2537. /*
  2538. * There is no obvious imbalance. But check if we can do some balancing
  2539. * to save power.
  2540. */
  2541. if (check_power_save_busiest_group(&sds, this_cpu, imbalance))
  2542. return sds.busiest;
  2543. ret:
  2544. *imbalance = 0;
  2545. return NULL;
  2546. }
  2547. /*
  2548. * find_busiest_queue - find the busiest runqueue among the cpus in group.
  2549. */
  2550. static struct rq *
  2551. find_busiest_queue(struct sched_domain *sd, struct sched_group *group,
  2552. enum cpu_idle_type idle, unsigned long imbalance,
  2553. const struct cpumask *cpus)
  2554. {
  2555. struct rq *busiest = NULL, *rq;
  2556. unsigned long max_load = 0;
  2557. int i;
  2558. for_each_cpu(i, sched_group_cpus(group)) {
  2559. unsigned long power = power_of(i);
  2560. unsigned long capacity = DIV_ROUND_CLOSEST(power, SCHED_LOAD_SCALE);
  2561. unsigned long wl;
  2562. if (!capacity)
  2563. capacity = fix_small_capacity(sd, group);
  2564. if (!cpumask_test_cpu(i, cpus))
  2565. continue;
  2566. rq = cpu_rq(i);
  2567. wl = weighted_cpuload(i);
  2568. /*
  2569. * When comparing with imbalance, use weighted_cpuload()
  2570. * which is not scaled with the cpu power.
  2571. */
  2572. if (capacity && rq->nr_running == 1 && wl > imbalance)
  2573. continue;
  2574. /*
  2575. * For the load comparisons with the other cpu's, consider
  2576. * the weighted_cpuload() scaled with the cpu power, so that
  2577. * the load can be moved away from the cpu that is potentially
  2578. * running at a lower capacity.
  2579. */
  2580. wl = (wl * SCHED_LOAD_SCALE) / power;
  2581. if (wl > max_load) {
  2582. max_load = wl;
  2583. busiest = rq;
  2584. }
  2585. }
  2586. return busiest;
  2587. }
  2588. /*
  2589. * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
  2590. * so long as it is large enough.
  2591. */
  2592. #define MAX_PINNED_INTERVAL 512
  2593. /* Working cpumask for load_balance and load_balance_newidle. */
  2594. static DEFINE_PER_CPU(cpumask_var_t, load_balance_tmpmask);
  2595. static int need_active_balance(struct sched_domain *sd, int sd_idle, int idle,
  2596. int busiest_cpu, int this_cpu)
  2597. {
  2598. if (idle == CPU_NEWLY_IDLE) {
  2599. /*
  2600. * ASYM_PACKING needs to force migrate tasks from busy but
  2601. * higher numbered CPUs in order to pack all tasks in the
  2602. * lowest numbered CPUs.
  2603. */
  2604. if ((sd->flags & SD_ASYM_PACKING) && busiest_cpu > this_cpu)
  2605. return 1;
  2606. /*
  2607. * The only task running in a non-idle cpu can be moved to this
  2608. * cpu in an attempt to completely freeup the other CPU
  2609. * package.
  2610. *
  2611. * The package power saving logic comes from
  2612. * find_busiest_group(). If there are no imbalance, then
  2613. * f_b_g() will return NULL. However when sched_mc={1,2} then
  2614. * f_b_g() will select a group from which a running task may be
  2615. * pulled to this cpu in order to make the other package idle.
  2616. * If there is no opportunity to make a package idle and if
  2617. * there are no imbalance, then f_b_g() will return NULL and no
  2618. * action will be taken in load_balance_newidle().
  2619. *
  2620. * Under normal task pull operation due to imbalance, there
  2621. * will be more than one task in the source run queue and
  2622. * move_tasks() will succeed. ld_moved will be true and this
  2623. * active balance code will not be triggered.
  2624. */
  2625. if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  2626. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  2627. return 0;
  2628. if (sched_mc_power_savings < POWERSAVINGS_BALANCE_WAKEUP)
  2629. return 0;
  2630. }
  2631. return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2);
  2632. }
  2633. static int active_load_balance_cpu_stop(void *data);
  2634. /*
  2635. * Check this_cpu to ensure it is balanced within domain. Attempt to move
  2636. * tasks if there is an imbalance.
  2637. */
  2638. static int load_balance(int this_cpu, struct rq *this_rq,
  2639. struct sched_domain *sd, enum cpu_idle_type idle,
  2640. int *balance)
  2641. {
  2642. int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
  2643. struct sched_group *group;
  2644. unsigned long imbalance;
  2645. struct rq *busiest;
  2646. unsigned long flags;
  2647. struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask);
  2648. cpumask_copy(cpus, cpu_active_mask);
  2649. /*
  2650. * When power savings policy is enabled for the parent domain, idle
  2651. * sibling can pick up load irrespective of busy siblings. In this case,
  2652. * let the state of idle sibling percolate up as CPU_IDLE, instead of
  2653. * portraying it as CPU_NOT_IDLE.
  2654. */
  2655. if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
  2656. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  2657. sd_idle = 1;
  2658. schedstat_inc(sd, lb_count[idle]);
  2659. redo:
  2660. group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
  2661. cpus, balance);
  2662. if (*balance == 0)
  2663. goto out_balanced;
  2664. if (!group) {
  2665. schedstat_inc(sd, lb_nobusyg[idle]);
  2666. goto out_balanced;
  2667. }
  2668. busiest = find_busiest_queue(sd, group, idle, imbalance, cpus);
  2669. if (!busiest) {
  2670. schedstat_inc(sd, lb_nobusyq[idle]);
  2671. goto out_balanced;
  2672. }
  2673. BUG_ON(busiest == this_rq);
  2674. schedstat_add(sd, lb_imbalance[idle], imbalance);
  2675. ld_moved = 0;
  2676. if (busiest->nr_running > 1) {
  2677. /*
  2678. * Attempt to move tasks. If find_busiest_group has found
  2679. * an imbalance but busiest->nr_running <= 1, the group is
  2680. * still unbalanced. ld_moved simply stays zero, so it is
  2681. * correctly treated as an imbalance.
  2682. */
  2683. local_irq_save(flags);
  2684. double_rq_lock(this_rq, busiest);
  2685. ld_moved = move_tasks(this_rq, this_cpu, busiest,
  2686. imbalance, sd, idle, &all_pinned);
  2687. double_rq_unlock(this_rq, busiest);
  2688. local_irq_restore(flags);
  2689. /*
  2690. * some other cpu did the load balance for us.
  2691. */
  2692. if (ld_moved && this_cpu != smp_processor_id())
  2693. resched_cpu(this_cpu);
  2694. /* All tasks on this runqueue were pinned by CPU affinity */
  2695. if (unlikely(all_pinned)) {
  2696. cpumask_clear_cpu(cpu_of(busiest), cpus);
  2697. if (!cpumask_empty(cpus))
  2698. goto redo;
  2699. goto out_balanced;
  2700. }
  2701. }
  2702. if (!ld_moved) {
  2703. schedstat_inc(sd, lb_failed[idle]);
  2704. /*
  2705. * Increment the failure counter only on periodic balance.
  2706. * We do not want newidle balance, which can be very
  2707. * frequent, pollute the failure counter causing
  2708. * excessive cache_hot migrations and active balances.
  2709. */
  2710. if (idle != CPU_NEWLY_IDLE)
  2711. sd->nr_balance_failed++;
  2712. if (need_active_balance(sd, sd_idle, idle, cpu_of(busiest),
  2713. this_cpu)) {
  2714. raw_spin_lock_irqsave(&busiest->lock, flags);
  2715. /* don't kick the active_load_balance_cpu_stop,
  2716. * if the curr task on busiest cpu can't be
  2717. * moved to this_cpu
  2718. */
  2719. if (!cpumask_test_cpu(this_cpu,
  2720. &busiest->curr->cpus_allowed)) {
  2721. raw_spin_unlock_irqrestore(&busiest->lock,
  2722. flags);
  2723. all_pinned = 1;
  2724. goto out_one_pinned;
  2725. }
  2726. /*
  2727. * ->active_balance synchronizes accesses to
  2728. * ->active_balance_work. Once set, it's cleared
  2729. * only after active load balance is finished.
  2730. */
  2731. if (!busiest->active_balance) {
  2732. busiest->active_balance = 1;
  2733. busiest->push_cpu = this_cpu;
  2734. active_balance = 1;
  2735. }
  2736. raw_spin_unlock_irqrestore(&busiest->lock, flags);
  2737. if (active_balance)
  2738. stop_one_cpu_nowait(cpu_of(busiest),
  2739. active_load_balance_cpu_stop, busiest,
  2740. &busiest->active_balance_work);
  2741. /*
  2742. * We've kicked active balancing, reset the failure
  2743. * counter.
  2744. */
  2745. sd->nr_balance_failed = sd->cache_nice_tries+1;
  2746. }
  2747. } else
  2748. sd->nr_balance_failed = 0;
  2749. if (likely(!active_balance)) {
  2750. /* We were unbalanced, so reset the balancing interval */
  2751. sd->balance_interval = sd->min_interval;
  2752. } else {
  2753. /*
  2754. * If we've begun active balancing, start to back off. This
  2755. * case may not be covered by the all_pinned logic if there
  2756. * is only 1 task on the busy runqueue (because we don't call
  2757. * move_tasks).
  2758. */
  2759. if (sd->balance_interval < sd->max_interval)
  2760. sd->balance_interval *= 2;
  2761. }
  2762. if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  2763. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  2764. ld_moved = -1;
  2765. goto out;
  2766. out_balanced:
  2767. schedstat_inc(sd, lb_balanced[idle]);
  2768. sd->nr_balance_failed = 0;
  2769. out_one_pinned:
  2770. /* tune up the balancing interval */
  2771. if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
  2772. (sd->balance_interval < sd->max_interval))
  2773. sd->balance_interval *= 2;
  2774. if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  2775. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  2776. ld_moved = -1;
  2777. else
  2778. ld_moved = 0;
  2779. out:
  2780. return ld_moved;
  2781. }
  2782. /*
  2783. * idle_balance is called by schedule() if this_cpu is about to become
  2784. * idle. Attempts to pull tasks from other CPUs.
  2785. */
  2786. static void idle_balance(int this_cpu, struct rq *this_rq)
  2787. {
  2788. struct sched_domain *sd;
  2789. int pulled_task = 0;
  2790. unsigned long next_balance = jiffies + HZ;
  2791. this_rq->idle_stamp = this_rq->clock;
  2792. if (this_rq->avg_idle < sysctl_sched_migration_cost)
  2793. return;
  2794. /*
  2795. * Drop the rq->lock, but keep IRQ/preempt disabled.
  2796. */
  2797. raw_spin_unlock(&this_rq->lock);
  2798. for_each_domain(this_cpu, sd) {
  2799. unsigned long interval;
  2800. int balance = 1;
  2801. if (!(sd->flags & SD_LOAD_BALANCE))
  2802. continue;
  2803. if (sd->flags & SD_BALANCE_NEWIDLE) {
  2804. /* If we've pulled tasks over stop searching: */
  2805. pulled_task = load_balance(this_cpu, this_rq,
  2806. sd, CPU_NEWLY_IDLE, &balance);
  2807. }
  2808. interval = msecs_to_jiffies(sd->balance_interval);
  2809. if (time_after(next_balance, sd->last_balance + interval))
  2810. next_balance = sd->last_balance + interval;
  2811. if (pulled_task)
  2812. break;
  2813. }
  2814. raw_spin_lock(&this_rq->lock);
  2815. if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
  2816. /*
  2817. * We are going idle. next_balance may be set based on
  2818. * a busy processor. So reset next_balance.
  2819. */
  2820. this_rq->next_balance = next_balance;
  2821. }
  2822. }
  2823. /*
  2824. * active_load_balance_cpu_stop is run by cpu stopper. It pushes
  2825. * running tasks off the busiest CPU onto idle CPUs. It requires at
  2826. * least 1 task to be running on each physical CPU where possible, and
  2827. * avoids physical / logical imbalances.
  2828. */
  2829. static int active_load_balance_cpu_stop(void *data)
  2830. {
  2831. struct rq *busiest_rq = data;
  2832. int busiest_cpu = cpu_of(busiest_rq);
  2833. int target_cpu = busiest_rq->push_cpu;
  2834. struct rq *target_rq = cpu_rq(target_cpu);
  2835. struct sched_domain *sd;
  2836. raw_spin_lock_irq(&busiest_rq->lock);
  2837. /* make sure the requested cpu hasn't gone down in the meantime */
  2838. if (unlikely(busiest_cpu != smp_processor_id() ||
  2839. !busiest_rq->active_balance))
  2840. goto out_unlock;
  2841. /* Is there any task to move? */
  2842. if (busiest_rq->nr_running <= 1)
  2843. goto out_unlock;
  2844. /*
  2845. * This condition is "impossible", if it occurs
  2846. * we need to fix it. Originally reported by
  2847. * Bjorn Helgaas on a 128-cpu setup.
  2848. */
  2849. BUG_ON(busiest_rq == target_rq);
  2850. /* move a task from busiest_rq to target_rq */
  2851. double_lock_balance(busiest_rq, target_rq);
  2852. /* Search for an sd spanning us and the target CPU. */
  2853. for_each_domain(target_cpu, sd) {
  2854. if ((sd->flags & SD_LOAD_BALANCE) &&
  2855. cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
  2856. break;
  2857. }
  2858. if (likely(sd)) {
  2859. schedstat_inc(sd, alb_count);
  2860. if (move_one_task(target_rq, target_cpu, busiest_rq,
  2861. sd, CPU_IDLE))
  2862. schedstat_inc(sd, alb_pushed);
  2863. else
  2864. schedstat_inc(sd, alb_failed);
  2865. }
  2866. double_unlock_balance(busiest_rq, target_rq);
  2867. out_unlock:
  2868. busiest_rq->active_balance = 0;
  2869. raw_spin_unlock_irq(&busiest_rq->lock);
  2870. return 0;
  2871. }
  2872. #ifdef CONFIG_NO_HZ
  2873. static DEFINE_PER_CPU(struct call_single_data, remote_sched_softirq_cb);
  2874. static void trigger_sched_softirq(void *data)
  2875. {
  2876. raise_softirq_irqoff(SCHED_SOFTIRQ);
  2877. }
  2878. static inline void init_sched_softirq_csd(struct call_single_data *csd)
  2879. {
  2880. csd->func = trigger_sched_softirq;
  2881. csd->info = NULL;
  2882. csd->flags = 0;
  2883. csd->priv = 0;
  2884. }
  2885. /*
  2886. * idle load balancing details
  2887. * - One of the idle CPUs nominates itself as idle load_balancer, while
  2888. * entering idle.
  2889. * - This idle load balancer CPU will also go into tickless mode when
  2890. * it is idle, just like all other idle CPUs
  2891. * - When one of the busy CPUs notice that there may be an idle rebalancing
  2892. * needed, they will kick the idle load balancer, which then does idle
  2893. * load balancing for all the idle CPUs.
  2894. */
  2895. static struct {
  2896. atomic_t load_balancer;
  2897. atomic_t first_pick_cpu;
  2898. atomic_t second_pick_cpu;
  2899. cpumask_var_t idle_cpus_mask;
  2900. cpumask_var_t grp_idle_mask;
  2901. unsigned long next_balance; /* in jiffy units */
  2902. } nohz ____cacheline_aligned;
  2903. int get_nohz_load_balancer(void)
  2904. {
  2905. return atomic_read(&nohz.load_balancer);
  2906. }
  2907. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  2908. /**
  2909. * lowest_flag_domain - Return lowest sched_domain containing flag.
  2910. * @cpu: The cpu whose lowest level of sched domain is to
  2911. * be returned.
  2912. * @flag: The flag to check for the lowest sched_domain
  2913. * for the given cpu.
  2914. *
  2915. * Returns the lowest sched_domain of a cpu which contains the given flag.
  2916. */
  2917. static inline struct sched_domain *lowest_flag_domain(int cpu, int flag)
  2918. {
  2919. struct sched_domain *sd;
  2920. for_each_domain(cpu, sd)
  2921. if (sd && (sd->flags & flag))
  2922. break;
  2923. return sd;
  2924. }
  2925. /**
  2926. * for_each_flag_domain - Iterates over sched_domains containing the flag.
  2927. * @cpu: The cpu whose domains we're iterating over.
  2928. * @sd: variable holding the value of the power_savings_sd
  2929. * for cpu.
  2930. * @flag: The flag to filter the sched_domains to be iterated.
  2931. *
  2932. * Iterates over all the scheduler domains for a given cpu that has the 'flag'
  2933. * set, starting from the lowest sched_domain to the highest.
  2934. */
  2935. #define for_each_flag_domain(cpu, sd, flag) \
  2936. for (sd = lowest_flag_domain(cpu, flag); \
  2937. (sd && (sd->flags & flag)); sd = sd->parent)
  2938. /**
  2939. * is_semi_idle_group - Checks if the given sched_group is semi-idle.
  2940. * @ilb_group: group to be checked for semi-idleness
  2941. *
  2942. * Returns: 1 if the group is semi-idle. 0 otherwise.
  2943. *
  2944. * We define a sched_group to be semi idle if it has atleast one idle-CPU
  2945. * and atleast one non-idle CPU. This helper function checks if the given
  2946. * sched_group is semi-idle or not.
  2947. */
  2948. static inline int is_semi_idle_group(struct sched_group *ilb_group)
  2949. {
  2950. cpumask_and(nohz.grp_idle_mask, nohz.idle_cpus_mask,
  2951. sched_group_cpus(ilb_group));
  2952. /*
  2953. * A sched_group is semi-idle when it has atleast one busy cpu
  2954. * and atleast one idle cpu.
  2955. */
  2956. if (cpumask_empty(nohz.grp_idle_mask))
  2957. return 0;
  2958. if (cpumask_equal(nohz.grp_idle_mask, sched_group_cpus(ilb_group)))
  2959. return 0;
  2960. return 1;
  2961. }
  2962. /**
  2963. * find_new_ilb - Finds the optimum idle load balancer for nomination.
  2964. * @cpu: The cpu which is nominating a new idle_load_balancer.
  2965. *
  2966. * Returns: Returns the id of the idle load balancer if it exists,
  2967. * Else, returns >= nr_cpu_ids.
  2968. *
  2969. * This algorithm picks the idle load balancer such that it belongs to a
  2970. * semi-idle powersavings sched_domain. The idea is to try and avoid
  2971. * completely idle packages/cores just for the purpose of idle load balancing
  2972. * when there are other idle cpu's which are better suited for that job.
  2973. */
  2974. static int find_new_ilb(int cpu)
  2975. {
  2976. struct sched_domain *sd;
  2977. struct sched_group *ilb_group;
  2978. /*
  2979. * Have idle load balancer selection from semi-idle packages only
  2980. * when power-aware load balancing is enabled
  2981. */
  2982. if (!(sched_smt_power_savings || sched_mc_power_savings))
  2983. goto out_done;
  2984. /*
  2985. * Optimize for the case when we have no idle CPUs or only one
  2986. * idle CPU. Don't walk the sched_domain hierarchy in such cases
  2987. */
  2988. if (cpumask_weight(nohz.idle_cpus_mask) < 2)
  2989. goto out_done;
  2990. for_each_flag_domain(cpu, sd, SD_POWERSAVINGS_BALANCE) {
  2991. ilb_group = sd->groups;
  2992. do {
  2993. if (is_semi_idle_group(ilb_group))
  2994. return cpumask_first(nohz.grp_idle_mask);
  2995. ilb_group = ilb_group->next;
  2996. } while (ilb_group != sd->groups);
  2997. }
  2998. out_done:
  2999. return nr_cpu_ids;
  3000. }
  3001. #else /* (CONFIG_SCHED_MC || CONFIG_SCHED_SMT) */
  3002. static inline int find_new_ilb(int call_cpu)
  3003. {
  3004. return nr_cpu_ids;
  3005. }
  3006. #endif
  3007. /*
  3008. * Kick a CPU to do the nohz balancing, if it is time for it. We pick the
  3009. * nohz_load_balancer CPU (if there is one) otherwise fallback to any idle
  3010. * CPU (if there is one).
  3011. */
  3012. static void nohz_balancer_kick(int cpu)
  3013. {
  3014. int ilb_cpu;
  3015. nohz.next_balance++;
  3016. ilb_cpu = get_nohz_load_balancer();
  3017. if (ilb_cpu >= nr_cpu_ids) {
  3018. ilb_cpu = cpumask_first(nohz.idle_cpus_mask);
  3019. if (ilb_cpu >= nr_cpu_ids)
  3020. return;
  3021. }
  3022. if (!cpu_rq(ilb_cpu)->nohz_balance_kick) {
  3023. struct call_single_data *cp;
  3024. cpu_rq(ilb_cpu)->nohz_balance_kick = 1;
  3025. cp = &per_cpu(remote_sched_softirq_cb, cpu);
  3026. __smp_call_function_single(ilb_cpu, cp, 0);
  3027. }
  3028. return;
  3029. }
  3030. /*
  3031. * This routine will try to nominate the ilb (idle load balancing)
  3032. * owner among the cpus whose ticks are stopped. ilb owner will do the idle
  3033. * load balancing on behalf of all those cpus.
  3034. *
  3035. * When the ilb owner becomes busy, we will not have new ilb owner until some
  3036. * idle CPU wakes up and goes back to idle or some busy CPU tries to kick
  3037. * idle load balancing by kicking one of the idle CPUs.
  3038. *
  3039. * Ticks are stopped for the ilb owner as well, with busy CPU kicking this
  3040. * ilb owner CPU in future (when there is a need for idle load balancing on
  3041. * behalf of all idle CPUs).
  3042. */
  3043. void select_nohz_load_balancer(int stop_tick)
  3044. {
  3045. int cpu = smp_processor_id();
  3046. if (stop_tick) {
  3047. if (!cpu_active(cpu)) {
  3048. if (atomic_read(&nohz.load_balancer) != cpu)
  3049. return;
  3050. /*
  3051. * If we are going offline and still the leader,
  3052. * give up!
  3053. */
  3054. if (atomic_cmpxchg(&nohz.load_balancer, cpu,
  3055. nr_cpu_ids) != cpu)
  3056. BUG();
  3057. return;
  3058. }
  3059. cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
  3060. if (atomic_read(&nohz.first_pick_cpu) == cpu)
  3061. atomic_cmpxchg(&nohz.first_pick_cpu, cpu, nr_cpu_ids);
  3062. if (atomic_read(&nohz.second_pick_cpu) == cpu)
  3063. atomic_cmpxchg(&nohz.second_pick_cpu, cpu, nr_cpu_ids);
  3064. if (atomic_read(&nohz.load_balancer) >= nr_cpu_ids) {
  3065. int new_ilb;
  3066. /* make me the ilb owner */
  3067. if (atomic_cmpxchg(&nohz.load_balancer, nr_cpu_ids,
  3068. cpu) != nr_cpu_ids)
  3069. return;
  3070. /*
  3071. * Check to see if there is a more power-efficient
  3072. * ilb.
  3073. */
  3074. new_ilb = find_new_ilb(cpu);
  3075. if (new_ilb < nr_cpu_ids && new_ilb != cpu) {
  3076. atomic_set(&nohz.load_balancer, nr_cpu_ids);
  3077. resched_cpu(new_ilb);
  3078. return;
  3079. }
  3080. return;
  3081. }
  3082. } else {
  3083. if (!cpumask_test_cpu(cpu, nohz.idle_cpus_mask))
  3084. return;
  3085. cpumask_clear_cpu(cpu, nohz.idle_cpus_mask);
  3086. if (atomic_read(&nohz.load_balancer) == cpu)
  3087. if (atomic_cmpxchg(&nohz.load_balancer, cpu,
  3088. nr_cpu_ids) != cpu)
  3089. BUG();
  3090. }
  3091. return;
  3092. }
  3093. #endif
  3094. static DEFINE_SPINLOCK(balancing);
  3095. /*
  3096. * It checks each scheduling domain to see if it is due to be balanced,
  3097. * and initiates a balancing operation if so.
  3098. *
  3099. * Balancing parameters are set up in arch_init_sched_domains.
  3100. */
  3101. static void rebalance_domains(int cpu, enum cpu_idle_type idle)
  3102. {
  3103. int balance = 1;
  3104. struct rq *rq = cpu_rq(cpu);
  3105. unsigned long interval;
  3106. struct sched_domain *sd;
  3107. /* Earliest time when we have to do rebalance again */
  3108. unsigned long next_balance = jiffies + 60*HZ;
  3109. int update_next_balance = 0;
  3110. int need_serialize;
  3111. update_shares(cpu);
  3112. for_each_domain(cpu, sd) {
  3113. if (!(sd->flags & SD_LOAD_BALANCE))
  3114. continue;
  3115. interval = sd->balance_interval;
  3116. if (idle != CPU_IDLE)
  3117. interval *= sd->busy_factor;
  3118. /* scale ms to jiffies */
  3119. interval = msecs_to_jiffies(interval);
  3120. if (unlikely(!interval))
  3121. interval = 1;
  3122. if (interval > HZ*NR_CPUS/10)
  3123. interval = HZ*NR_CPUS/10;
  3124. need_serialize = sd->flags & SD_SERIALIZE;
  3125. if (need_serialize) {
  3126. if (!spin_trylock(&balancing))
  3127. goto out;
  3128. }
  3129. if (time_after_eq(jiffies, sd->last_balance + interval)) {
  3130. if (load_balance(cpu, rq, sd, idle, &balance)) {
  3131. /*
  3132. * We've pulled tasks over so either we're no
  3133. * longer idle, or one of our SMT siblings is
  3134. * not idle.
  3135. */
  3136. idle = CPU_NOT_IDLE;
  3137. }
  3138. sd->last_balance = jiffies;
  3139. }
  3140. if (need_serialize)
  3141. spin_unlock(&balancing);
  3142. out:
  3143. if (time_after(next_balance, sd->last_balance + interval)) {
  3144. next_balance = sd->last_balance + interval;
  3145. update_next_balance = 1;
  3146. }
  3147. /*
  3148. * Stop the load balance at this level. There is another
  3149. * CPU in our sched group which is doing load balancing more
  3150. * actively.
  3151. */
  3152. if (!balance)
  3153. break;
  3154. }
  3155. /*
  3156. * next_balance will be updated only when there is a need.
  3157. * When the cpu is attached to null domain for ex, it will not be
  3158. * updated.
  3159. */
  3160. if (likely(update_next_balance))
  3161. rq->next_balance = next_balance;
  3162. }
  3163. #ifdef CONFIG_NO_HZ
  3164. /*
  3165. * In CONFIG_NO_HZ case, the idle balance kickee will do the
  3166. * rebalancing for all the cpus for whom scheduler ticks are stopped.
  3167. */
  3168. static void nohz_idle_balance(int this_cpu, enum cpu_idle_type idle)
  3169. {
  3170. struct rq *this_rq = cpu_rq(this_cpu);
  3171. struct rq *rq;
  3172. int balance_cpu;
  3173. if (idle != CPU_IDLE || !this_rq->nohz_balance_kick)
  3174. return;
  3175. for_each_cpu(balance_cpu, nohz.idle_cpus_mask) {
  3176. if (balance_cpu == this_cpu)
  3177. continue;
  3178. /*
  3179. * If this cpu gets work to do, stop the load balancing
  3180. * work being done for other cpus. Next load
  3181. * balancing owner will pick it up.
  3182. */
  3183. if (need_resched()) {
  3184. this_rq->nohz_balance_kick = 0;
  3185. break;
  3186. }
  3187. raw_spin_lock_irq(&this_rq->lock);
  3188. update_rq_clock(this_rq);
  3189. update_cpu_load(this_rq);
  3190. raw_spin_unlock_irq(&this_rq->lock);
  3191. rebalance_domains(balance_cpu, CPU_IDLE);
  3192. rq = cpu_rq(balance_cpu);
  3193. if (time_after(this_rq->next_balance, rq->next_balance))
  3194. this_rq->next_balance = rq->next_balance;
  3195. }
  3196. nohz.next_balance = this_rq->next_balance;
  3197. this_rq->nohz_balance_kick = 0;
  3198. }
  3199. /*
  3200. * Current heuristic for kicking the idle load balancer
  3201. * - first_pick_cpu is the one of the busy CPUs. It will kick
  3202. * idle load balancer when it has more than one process active. This
  3203. * eliminates the need for idle load balancing altogether when we have
  3204. * only one running process in the system (common case).
  3205. * - If there are more than one busy CPU, idle load balancer may have
  3206. * to run for active_load_balance to happen (i.e., two busy CPUs are
  3207. * SMT or core siblings and can run better if they move to different
  3208. * physical CPUs). So, second_pick_cpu is the second of the busy CPUs
  3209. * which will kick idle load balancer as soon as it has any load.
  3210. */
  3211. static inline int nohz_kick_needed(struct rq *rq, int cpu)
  3212. {
  3213. unsigned long now = jiffies;
  3214. int ret;
  3215. int first_pick_cpu, second_pick_cpu;
  3216. if (time_before(now, nohz.next_balance))
  3217. return 0;
  3218. if (rq->idle_at_tick)
  3219. return 0;
  3220. first_pick_cpu = atomic_read(&nohz.first_pick_cpu);
  3221. second_pick_cpu = atomic_read(&nohz.second_pick_cpu);
  3222. if (first_pick_cpu < nr_cpu_ids && first_pick_cpu != cpu &&
  3223. second_pick_cpu < nr_cpu_ids && second_pick_cpu != cpu)
  3224. return 0;
  3225. ret = atomic_cmpxchg(&nohz.first_pick_cpu, nr_cpu_ids, cpu);
  3226. if (ret == nr_cpu_ids || ret == cpu) {
  3227. atomic_cmpxchg(&nohz.second_pick_cpu, cpu, nr_cpu_ids);
  3228. if (rq->nr_running > 1)
  3229. return 1;
  3230. } else {
  3231. ret = atomic_cmpxchg(&nohz.second_pick_cpu, nr_cpu_ids, cpu);
  3232. if (ret == nr_cpu_ids || ret == cpu) {
  3233. if (rq->nr_running)
  3234. return 1;
  3235. }
  3236. }
  3237. return 0;
  3238. }
  3239. #else
  3240. static void nohz_idle_balance(int this_cpu, enum cpu_idle_type idle) { }
  3241. #endif
  3242. /*
  3243. * run_rebalance_domains is triggered when needed from the scheduler tick.
  3244. * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
  3245. */
  3246. static void run_rebalance_domains(struct softirq_action *h)
  3247. {
  3248. int this_cpu = smp_processor_id();
  3249. struct rq *this_rq = cpu_rq(this_cpu);
  3250. enum cpu_idle_type idle = this_rq->idle_at_tick ?
  3251. CPU_IDLE : CPU_NOT_IDLE;
  3252. rebalance_domains(this_cpu, idle);
  3253. /*
  3254. * If this cpu has a pending nohz_balance_kick, then do the
  3255. * balancing on behalf of the other idle cpus whose ticks are
  3256. * stopped.
  3257. */
  3258. nohz_idle_balance(this_cpu, idle);
  3259. }
  3260. static inline int on_null_domain(int cpu)
  3261. {
  3262. return !rcu_dereference_sched(cpu_rq(cpu)->sd);
  3263. }
  3264. /*
  3265. * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
  3266. */
  3267. static inline void trigger_load_balance(struct rq *rq, int cpu)
  3268. {
  3269. /* Don't need to rebalance while attached to NULL domain */
  3270. if (time_after_eq(jiffies, rq->next_balance) &&
  3271. likely(!on_null_domain(cpu)))
  3272. raise_softirq(SCHED_SOFTIRQ);
  3273. #ifdef CONFIG_NO_HZ
  3274. else if (nohz_kick_needed(rq, cpu) && likely(!on_null_domain(cpu)))
  3275. nohz_balancer_kick(cpu);
  3276. #endif
  3277. }
  3278. static void rq_online_fair(struct rq *rq)
  3279. {
  3280. update_sysctl();
  3281. }
  3282. static void rq_offline_fair(struct rq *rq)
  3283. {
  3284. update_sysctl();
  3285. }
  3286. #else /* CONFIG_SMP */
  3287. /*
  3288. * on UP we do not need to balance between CPUs:
  3289. */
  3290. static inline void idle_balance(int cpu, struct rq *rq)
  3291. {
  3292. }
  3293. #endif /* CONFIG_SMP */
  3294. /*
  3295. * scheduler tick hitting a task of our scheduling class:
  3296. */
  3297. static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
  3298. {
  3299. struct cfs_rq *cfs_rq;
  3300. struct sched_entity *se = &curr->se;
  3301. for_each_sched_entity(se) {
  3302. cfs_rq = cfs_rq_of(se);
  3303. entity_tick(cfs_rq, se, queued);
  3304. }
  3305. }
  3306. /*
  3307. * called on fork with the child task as argument from the parent's context
  3308. * - child not yet on the tasklist
  3309. * - preemption disabled
  3310. */
  3311. static void task_fork_fair(struct task_struct *p)
  3312. {
  3313. struct cfs_rq *cfs_rq = task_cfs_rq(current);
  3314. struct sched_entity *se = &p->se, *curr = cfs_rq->curr;
  3315. int this_cpu = smp_processor_id();
  3316. struct rq *rq = this_rq();
  3317. unsigned long flags;
  3318. raw_spin_lock_irqsave(&rq->lock, flags);
  3319. update_rq_clock(rq);
  3320. if (unlikely(task_cpu(p) != this_cpu)) {
  3321. rcu_read_lock();
  3322. __set_task_cpu(p, this_cpu);
  3323. rcu_read_unlock();
  3324. }
  3325. update_curr(cfs_rq);
  3326. if (curr)
  3327. se->vruntime = curr->vruntime;
  3328. place_entity(cfs_rq, se, 1);
  3329. if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
  3330. /*
  3331. * Upon rescheduling, sched_class::put_prev_task() will place
  3332. * 'current' within the tree based on its new key value.
  3333. */
  3334. swap(curr->vruntime, se->vruntime);
  3335. resched_task(rq->curr);
  3336. }
  3337. se->vruntime -= cfs_rq->min_vruntime;
  3338. raw_spin_unlock_irqrestore(&rq->lock, flags);
  3339. }
  3340. /*
  3341. * Priority of the task has changed. Check to see if we preempt
  3342. * the current task.
  3343. */
  3344. static void prio_changed_fair(struct rq *rq, struct task_struct *p,
  3345. int oldprio, int running)
  3346. {
  3347. /*
  3348. * Reschedule if we are currently running on this runqueue and
  3349. * our priority decreased, or if we are not currently running on
  3350. * this runqueue and our priority is higher than the current's
  3351. */
  3352. if (running) {
  3353. if (p->prio > oldprio)
  3354. resched_task(rq->curr);
  3355. } else
  3356. check_preempt_curr(rq, p, 0);
  3357. }
  3358. /*
  3359. * We switched to the sched_fair class.
  3360. */
  3361. static void switched_to_fair(struct rq *rq, struct task_struct *p,
  3362. int running)
  3363. {
  3364. /*
  3365. * We were most likely switched from sched_rt, so
  3366. * kick off the schedule if running, otherwise just see
  3367. * if we can still preempt the current task.
  3368. */
  3369. if (running)
  3370. resched_task(rq->curr);
  3371. else
  3372. check_preempt_curr(rq, p, 0);
  3373. }
  3374. /* Account for a task changing its policy or group.
  3375. *
  3376. * This routine is mostly called to set cfs_rq->curr field when a task
  3377. * migrates between groups/classes.
  3378. */
  3379. static void set_curr_task_fair(struct rq *rq)
  3380. {
  3381. struct sched_entity *se = &rq->curr->se;
  3382. for_each_sched_entity(se)
  3383. set_next_entity(cfs_rq_of(se), se);
  3384. }
  3385. #ifdef CONFIG_FAIR_GROUP_SCHED
  3386. static void task_move_group_fair(struct task_struct *p, int on_rq)
  3387. {
  3388. /*
  3389. * If the task was not on the rq at the time of this cgroup movement
  3390. * it must have been asleep, sleeping tasks keep their ->vruntime
  3391. * absolute on their old rq until wakeup (needed for the fair sleeper
  3392. * bonus in place_entity()).
  3393. *
  3394. * If it was on the rq, we've just 'preempted' it, which does convert
  3395. * ->vruntime to a relative base.
  3396. *
  3397. * Make sure both cases convert their relative position when migrating
  3398. * to another cgroup's rq. This does somewhat interfere with the
  3399. * fair sleeper stuff for the first placement, but who cares.
  3400. */
  3401. if (!on_rq)
  3402. p->se.vruntime -= cfs_rq_of(&p->se)->min_vruntime;
  3403. set_task_rq(p, task_cpu(p));
  3404. if (!on_rq)
  3405. p->se.vruntime += cfs_rq_of(&p->se)->min_vruntime;
  3406. }
  3407. #endif
  3408. static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
  3409. {
  3410. struct sched_entity *se = &task->se;
  3411. unsigned int rr_interval = 0;
  3412. /*
  3413. * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
  3414. * idle runqueue:
  3415. */
  3416. if (rq->cfs.load.weight)
  3417. rr_interval = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));
  3418. return rr_interval;
  3419. }
  3420. /*
  3421. * All the scheduling class methods:
  3422. */
  3423. static const struct sched_class fair_sched_class = {
  3424. .next = &idle_sched_class,
  3425. .enqueue_task = enqueue_task_fair,
  3426. .dequeue_task = dequeue_task_fair,
  3427. .yield_task = yield_task_fair,
  3428. .check_preempt_curr = check_preempt_wakeup,
  3429. .pick_next_task = pick_next_task_fair,
  3430. .put_prev_task = put_prev_task_fair,
  3431. #ifdef CONFIG_SMP
  3432. .select_task_rq = select_task_rq_fair,
  3433. .rq_online = rq_online_fair,
  3434. .rq_offline = rq_offline_fair,
  3435. .task_waking = task_waking_fair,
  3436. #endif
  3437. .set_curr_task = set_curr_task_fair,
  3438. .task_tick = task_tick_fair,
  3439. .task_fork = task_fork_fair,
  3440. .prio_changed = prio_changed_fair,
  3441. .switched_to = switched_to_fair,
  3442. .get_rr_interval = get_rr_interval_fair,
  3443. #ifdef CONFIG_FAIR_GROUP_SCHED
  3444. .task_move_group = task_move_group_fair,
  3445. #endif
  3446. };
  3447. #ifdef CONFIG_SCHED_DEBUG
  3448. static void print_cfs_stats(struct seq_file *m, int cpu)
  3449. {
  3450. struct cfs_rq *cfs_rq;
  3451. rcu_read_lock();
  3452. for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
  3453. print_cfs_rq(m, cpu, cfs_rq);
  3454. rcu_read_unlock();
  3455. }
  3456. #endif