dm-thin.c 66 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774
  1. /*
  2. * Copyright (C) 2011 Red Hat UK.
  3. *
  4. * This file is released under the GPL.
  5. */
  6. #include "dm-thin-metadata.h"
  7. #include <linux/device-mapper.h>
  8. #include <linux/dm-io.h>
  9. #include <linux/dm-kcopyd.h>
  10. #include <linux/list.h>
  11. #include <linux/init.h>
  12. #include <linux/module.h>
  13. #include <linux/slab.h>
  14. #define DM_MSG_PREFIX "thin"
  15. /*
  16. * Tunable constants
  17. */
  18. #define ENDIO_HOOK_POOL_SIZE 10240
  19. #define DEFERRED_SET_SIZE 64
  20. #define MAPPING_POOL_SIZE 1024
  21. #define PRISON_CELLS 1024
  22. #define COMMIT_PERIOD HZ
  23. /*
  24. * The block size of the device holding pool data must be
  25. * between 64KB and 1GB.
  26. */
  27. #define DATA_DEV_BLOCK_SIZE_MIN_SECTORS (64 * 1024 >> SECTOR_SHIFT)
  28. #define DATA_DEV_BLOCK_SIZE_MAX_SECTORS (1024 * 1024 * 1024 >> SECTOR_SHIFT)
  29. /*
  30. * Device id is restricted to 24 bits.
  31. */
  32. #define MAX_DEV_ID ((1 << 24) - 1)
  33. /*
  34. * How do we handle breaking sharing of data blocks?
  35. * =================================================
  36. *
  37. * We use a standard copy-on-write btree to store the mappings for the
  38. * devices (note I'm talking about copy-on-write of the metadata here, not
  39. * the data). When you take an internal snapshot you clone the root node
  40. * of the origin btree. After this there is no concept of an origin or a
  41. * snapshot. They are just two device trees that happen to point to the
  42. * same data blocks.
  43. *
  44. * When we get a write in we decide if it's to a shared data block using
  45. * some timestamp magic. If it is, we have to break sharing.
  46. *
  47. * Let's say we write to a shared block in what was the origin. The
  48. * steps are:
  49. *
  50. * i) plug io further to this physical block. (see bio_prison code).
  51. *
  52. * ii) quiesce any read io to that shared data block. Obviously
  53. * including all devices that share this block. (see deferred_set code)
  54. *
  55. * iii) copy the data block to a newly allocate block. This step can be
  56. * missed out if the io covers the block. (schedule_copy).
  57. *
  58. * iv) insert the new mapping into the origin's btree
  59. * (process_prepared_mapping). This act of inserting breaks some
  60. * sharing of btree nodes between the two devices. Breaking sharing only
  61. * effects the btree of that specific device. Btrees for the other
  62. * devices that share the block never change. The btree for the origin
  63. * device as it was after the last commit is untouched, ie. we're using
  64. * persistent data structures in the functional programming sense.
  65. *
  66. * v) unplug io to this physical block, including the io that triggered
  67. * the breaking of sharing.
  68. *
  69. * Steps (ii) and (iii) occur in parallel.
  70. *
  71. * The metadata _doesn't_ need to be committed before the io continues. We
  72. * get away with this because the io is always written to a _new_ block.
  73. * If there's a crash, then:
  74. *
  75. * - The origin mapping will point to the old origin block (the shared
  76. * one). This will contain the data as it was before the io that triggered
  77. * the breaking of sharing came in.
  78. *
  79. * - The snap mapping still points to the old block. As it would after
  80. * the commit.
  81. *
  82. * The downside of this scheme is the timestamp magic isn't perfect, and
  83. * will continue to think that data block in the snapshot device is shared
  84. * even after the write to the origin has broken sharing. I suspect data
  85. * blocks will typically be shared by many different devices, so we're
  86. * breaking sharing n + 1 times, rather than n, where n is the number of
  87. * devices that reference this data block. At the moment I think the
  88. * benefits far, far outweigh the disadvantages.
  89. */
  90. /*----------------------------------------------------------------*/
  91. /*
  92. * Sometimes we can't deal with a bio straight away. We put them in prison
  93. * where they can't cause any mischief. Bios are put in a cell identified
  94. * by a key, multiple bios can be in the same cell. When the cell is
  95. * subsequently unlocked the bios become available.
  96. */
  97. struct bio_prison;
  98. struct cell_key {
  99. int virtual;
  100. dm_thin_id dev;
  101. dm_block_t block;
  102. };
  103. struct cell {
  104. struct hlist_node list;
  105. struct bio_prison *prison;
  106. struct cell_key key;
  107. struct bio *holder;
  108. struct bio_list bios;
  109. };
  110. struct bio_prison {
  111. spinlock_t lock;
  112. mempool_t *cell_pool;
  113. unsigned nr_buckets;
  114. unsigned hash_mask;
  115. struct hlist_head *cells;
  116. };
  117. static uint32_t calc_nr_buckets(unsigned nr_cells)
  118. {
  119. uint32_t n = 128;
  120. nr_cells /= 4;
  121. nr_cells = min(nr_cells, 8192u);
  122. while (n < nr_cells)
  123. n <<= 1;
  124. return n;
  125. }
  126. /*
  127. * @nr_cells should be the number of cells you want in use _concurrently_.
  128. * Don't confuse it with the number of distinct keys.
  129. */
  130. static struct bio_prison *prison_create(unsigned nr_cells)
  131. {
  132. unsigned i;
  133. uint32_t nr_buckets = calc_nr_buckets(nr_cells);
  134. size_t len = sizeof(struct bio_prison) +
  135. (sizeof(struct hlist_head) * nr_buckets);
  136. struct bio_prison *prison = kmalloc(len, GFP_KERNEL);
  137. if (!prison)
  138. return NULL;
  139. spin_lock_init(&prison->lock);
  140. prison->cell_pool = mempool_create_kmalloc_pool(nr_cells,
  141. sizeof(struct cell));
  142. if (!prison->cell_pool) {
  143. kfree(prison);
  144. return NULL;
  145. }
  146. prison->nr_buckets = nr_buckets;
  147. prison->hash_mask = nr_buckets - 1;
  148. prison->cells = (struct hlist_head *) (prison + 1);
  149. for (i = 0; i < nr_buckets; i++)
  150. INIT_HLIST_HEAD(prison->cells + i);
  151. return prison;
  152. }
  153. static void prison_destroy(struct bio_prison *prison)
  154. {
  155. mempool_destroy(prison->cell_pool);
  156. kfree(prison);
  157. }
  158. static uint32_t hash_key(struct bio_prison *prison, struct cell_key *key)
  159. {
  160. const unsigned long BIG_PRIME = 4294967291UL;
  161. uint64_t hash = key->block * BIG_PRIME;
  162. return (uint32_t) (hash & prison->hash_mask);
  163. }
  164. static int keys_equal(struct cell_key *lhs, struct cell_key *rhs)
  165. {
  166. return (lhs->virtual == rhs->virtual) &&
  167. (lhs->dev == rhs->dev) &&
  168. (lhs->block == rhs->block);
  169. }
  170. static struct cell *__search_bucket(struct hlist_head *bucket,
  171. struct cell_key *key)
  172. {
  173. struct cell *cell;
  174. struct hlist_node *tmp;
  175. hlist_for_each_entry(cell, tmp, bucket, list)
  176. if (keys_equal(&cell->key, key))
  177. return cell;
  178. return NULL;
  179. }
  180. /*
  181. * This may block if a new cell needs allocating. You must ensure that
  182. * cells will be unlocked even if the calling thread is blocked.
  183. *
  184. * Returns 1 if the cell was already held, 0 if @inmate is the new holder.
  185. */
  186. static int bio_detain(struct bio_prison *prison, struct cell_key *key,
  187. struct bio *inmate, struct cell **ref)
  188. {
  189. int r = 1;
  190. unsigned long flags;
  191. uint32_t hash = hash_key(prison, key);
  192. struct cell *cell, *cell2;
  193. BUG_ON(hash > prison->nr_buckets);
  194. spin_lock_irqsave(&prison->lock, flags);
  195. cell = __search_bucket(prison->cells + hash, key);
  196. if (cell) {
  197. bio_list_add(&cell->bios, inmate);
  198. goto out;
  199. }
  200. /*
  201. * Allocate a new cell
  202. */
  203. spin_unlock_irqrestore(&prison->lock, flags);
  204. cell2 = mempool_alloc(prison->cell_pool, GFP_NOIO);
  205. spin_lock_irqsave(&prison->lock, flags);
  206. /*
  207. * We've been unlocked, so we have to double check that
  208. * nobody else has inserted this cell in the meantime.
  209. */
  210. cell = __search_bucket(prison->cells + hash, key);
  211. if (cell) {
  212. mempool_free(cell2, prison->cell_pool);
  213. bio_list_add(&cell->bios, inmate);
  214. goto out;
  215. }
  216. /*
  217. * Use new cell.
  218. */
  219. cell = cell2;
  220. cell->prison = prison;
  221. memcpy(&cell->key, key, sizeof(cell->key));
  222. cell->holder = inmate;
  223. bio_list_init(&cell->bios);
  224. hlist_add_head(&cell->list, prison->cells + hash);
  225. r = 0;
  226. out:
  227. spin_unlock_irqrestore(&prison->lock, flags);
  228. *ref = cell;
  229. return r;
  230. }
  231. /*
  232. * @inmates must have been initialised prior to this call
  233. */
  234. static void __cell_release(struct cell *cell, struct bio_list *inmates)
  235. {
  236. struct bio_prison *prison = cell->prison;
  237. hlist_del(&cell->list);
  238. if (inmates) {
  239. bio_list_add(inmates, cell->holder);
  240. bio_list_merge(inmates, &cell->bios);
  241. }
  242. mempool_free(cell, prison->cell_pool);
  243. }
  244. static void cell_release(struct cell *cell, struct bio_list *bios)
  245. {
  246. unsigned long flags;
  247. struct bio_prison *prison = cell->prison;
  248. spin_lock_irqsave(&prison->lock, flags);
  249. __cell_release(cell, bios);
  250. spin_unlock_irqrestore(&prison->lock, flags);
  251. }
  252. /*
  253. * There are a couple of places where we put a bio into a cell briefly
  254. * before taking it out again. In these situations we know that no other
  255. * bio may be in the cell. This function releases the cell, and also does
  256. * a sanity check.
  257. */
  258. static void __cell_release_singleton(struct cell *cell, struct bio *bio)
  259. {
  260. BUG_ON(cell->holder != bio);
  261. BUG_ON(!bio_list_empty(&cell->bios));
  262. __cell_release(cell, NULL);
  263. }
  264. static void cell_release_singleton(struct cell *cell, struct bio *bio)
  265. {
  266. unsigned long flags;
  267. struct bio_prison *prison = cell->prison;
  268. spin_lock_irqsave(&prison->lock, flags);
  269. __cell_release_singleton(cell, bio);
  270. spin_unlock_irqrestore(&prison->lock, flags);
  271. }
  272. /*
  273. * Sometimes we don't want the holder, just the additional bios.
  274. */
  275. static void __cell_release_no_holder(struct cell *cell, struct bio_list *inmates)
  276. {
  277. struct bio_prison *prison = cell->prison;
  278. hlist_del(&cell->list);
  279. bio_list_merge(inmates, &cell->bios);
  280. mempool_free(cell, prison->cell_pool);
  281. }
  282. static void cell_release_no_holder(struct cell *cell, struct bio_list *inmates)
  283. {
  284. unsigned long flags;
  285. struct bio_prison *prison = cell->prison;
  286. spin_lock_irqsave(&prison->lock, flags);
  287. __cell_release_no_holder(cell, inmates);
  288. spin_unlock_irqrestore(&prison->lock, flags);
  289. }
  290. static void cell_error(struct cell *cell)
  291. {
  292. struct bio_prison *prison = cell->prison;
  293. struct bio_list bios;
  294. struct bio *bio;
  295. unsigned long flags;
  296. bio_list_init(&bios);
  297. spin_lock_irqsave(&prison->lock, flags);
  298. __cell_release(cell, &bios);
  299. spin_unlock_irqrestore(&prison->lock, flags);
  300. while ((bio = bio_list_pop(&bios)))
  301. bio_io_error(bio);
  302. }
  303. /*----------------------------------------------------------------*/
  304. /*
  305. * We use the deferred set to keep track of pending reads to shared blocks.
  306. * We do this to ensure the new mapping caused by a write isn't performed
  307. * until these prior reads have completed. Otherwise the insertion of the
  308. * new mapping could free the old block that the read bios are mapped to.
  309. */
  310. struct deferred_set;
  311. struct deferred_entry {
  312. struct deferred_set *ds;
  313. unsigned count;
  314. struct list_head work_items;
  315. };
  316. struct deferred_set {
  317. spinlock_t lock;
  318. unsigned current_entry;
  319. unsigned sweeper;
  320. struct deferred_entry entries[DEFERRED_SET_SIZE];
  321. };
  322. static void ds_init(struct deferred_set *ds)
  323. {
  324. int i;
  325. spin_lock_init(&ds->lock);
  326. ds->current_entry = 0;
  327. ds->sweeper = 0;
  328. for (i = 0; i < DEFERRED_SET_SIZE; i++) {
  329. ds->entries[i].ds = ds;
  330. ds->entries[i].count = 0;
  331. INIT_LIST_HEAD(&ds->entries[i].work_items);
  332. }
  333. }
  334. static struct deferred_entry *ds_inc(struct deferred_set *ds)
  335. {
  336. unsigned long flags;
  337. struct deferred_entry *entry;
  338. spin_lock_irqsave(&ds->lock, flags);
  339. entry = ds->entries + ds->current_entry;
  340. entry->count++;
  341. spin_unlock_irqrestore(&ds->lock, flags);
  342. return entry;
  343. }
  344. static unsigned ds_next(unsigned index)
  345. {
  346. return (index + 1) % DEFERRED_SET_SIZE;
  347. }
  348. static void __sweep(struct deferred_set *ds, struct list_head *head)
  349. {
  350. while ((ds->sweeper != ds->current_entry) &&
  351. !ds->entries[ds->sweeper].count) {
  352. list_splice_init(&ds->entries[ds->sweeper].work_items, head);
  353. ds->sweeper = ds_next(ds->sweeper);
  354. }
  355. if ((ds->sweeper == ds->current_entry) && !ds->entries[ds->sweeper].count)
  356. list_splice_init(&ds->entries[ds->sweeper].work_items, head);
  357. }
  358. static void ds_dec(struct deferred_entry *entry, struct list_head *head)
  359. {
  360. unsigned long flags;
  361. spin_lock_irqsave(&entry->ds->lock, flags);
  362. BUG_ON(!entry->count);
  363. --entry->count;
  364. __sweep(entry->ds, head);
  365. spin_unlock_irqrestore(&entry->ds->lock, flags);
  366. }
  367. /*
  368. * Returns 1 if deferred or 0 if no pending items to delay job.
  369. */
  370. static int ds_add_work(struct deferred_set *ds, struct list_head *work)
  371. {
  372. int r = 1;
  373. unsigned long flags;
  374. unsigned next_entry;
  375. spin_lock_irqsave(&ds->lock, flags);
  376. if ((ds->sweeper == ds->current_entry) &&
  377. !ds->entries[ds->current_entry].count)
  378. r = 0;
  379. else {
  380. list_add(work, &ds->entries[ds->current_entry].work_items);
  381. next_entry = ds_next(ds->current_entry);
  382. if (!ds->entries[next_entry].count)
  383. ds->current_entry = next_entry;
  384. }
  385. spin_unlock_irqrestore(&ds->lock, flags);
  386. return r;
  387. }
  388. /*----------------------------------------------------------------*/
  389. /*
  390. * Key building.
  391. */
  392. static void build_data_key(struct dm_thin_device *td,
  393. dm_block_t b, struct cell_key *key)
  394. {
  395. key->virtual = 0;
  396. key->dev = dm_thin_dev_id(td);
  397. key->block = b;
  398. }
  399. static void build_virtual_key(struct dm_thin_device *td, dm_block_t b,
  400. struct cell_key *key)
  401. {
  402. key->virtual = 1;
  403. key->dev = dm_thin_dev_id(td);
  404. key->block = b;
  405. }
  406. /*----------------------------------------------------------------*/
  407. /*
  408. * A pool device ties together a metadata device and a data device. It
  409. * also provides the interface for creating and destroying internal
  410. * devices.
  411. */
  412. struct new_mapping;
  413. struct pool_features {
  414. unsigned zero_new_blocks:1;
  415. unsigned discard_enabled:1;
  416. unsigned discard_passdown:1;
  417. };
  418. struct pool {
  419. struct list_head list;
  420. struct dm_target *ti; /* Only set if a pool target is bound */
  421. struct mapped_device *pool_md;
  422. struct block_device *md_dev;
  423. struct dm_pool_metadata *pmd;
  424. uint32_t sectors_per_block;
  425. unsigned block_shift;
  426. dm_block_t offset_mask;
  427. dm_block_t low_water_blocks;
  428. struct pool_features pf;
  429. unsigned low_water_triggered:1; /* A dm event has been sent */
  430. unsigned no_free_space:1; /* A -ENOSPC warning has been issued */
  431. struct bio_prison *prison;
  432. struct dm_kcopyd_client *copier;
  433. struct workqueue_struct *wq;
  434. struct work_struct worker;
  435. struct delayed_work waker;
  436. unsigned ref_count;
  437. unsigned long last_commit_jiffies;
  438. spinlock_t lock;
  439. struct bio_list deferred_bios;
  440. struct bio_list deferred_flush_bios;
  441. struct list_head prepared_mappings;
  442. struct list_head prepared_discards;
  443. struct bio_list retry_on_resume_list;
  444. struct deferred_set shared_read_ds;
  445. struct deferred_set all_io_ds;
  446. struct new_mapping *next_mapping;
  447. mempool_t *mapping_pool;
  448. mempool_t *endio_hook_pool;
  449. };
  450. /*
  451. * Target context for a pool.
  452. */
  453. struct pool_c {
  454. struct dm_target *ti;
  455. struct pool *pool;
  456. struct dm_dev *data_dev;
  457. struct dm_dev *metadata_dev;
  458. struct dm_target_callbacks callbacks;
  459. dm_block_t low_water_blocks;
  460. struct pool_features pf;
  461. };
  462. /*
  463. * Target context for a thin.
  464. */
  465. struct thin_c {
  466. struct dm_dev *pool_dev;
  467. struct dm_dev *origin_dev;
  468. dm_thin_id dev_id;
  469. struct pool *pool;
  470. struct dm_thin_device *td;
  471. };
  472. /*----------------------------------------------------------------*/
  473. /*
  474. * A global list of pools that uses a struct mapped_device as a key.
  475. */
  476. static struct dm_thin_pool_table {
  477. struct mutex mutex;
  478. struct list_head pools;
  479. } dm_thin_pool_table;
  480. static void pool_table_init(void)
  481. {
  482. mutex_init(&dm_thin_pool_table.mutex);
  483. INIT_LIST_HEAD(&dm_thin_pool_table.pools);
  484. }
  485. static void __pool_table_insert(struct pool *pool)
  486. {
  487. BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
  488. list_add(&pool->list, &dm_thin_pool_table.pools);
  489. }
  490. static void __pool_table_remove(struct pool *pool)
  491. {
  492. BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
  493. list_del(&pool->list);
  494. }
  495. static struct pool *__pool_table_lookup(struct mapped_device *md)
  496. {
  497. struct pool *pool = NULL, *tmp;
  498. BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
  499. list_for_each_entry(tmp, &dm_thin_pool_table.pools, list) {
  500. if (tmp->pool_md == md) {
  501. pool = tmp;
  502. break;
  503. }
  504. }
  505. return pool;
  506. }
  507. static struct pool *__pool_table_lookup_metadata_dev(struct block_device *md_dev)
  508. {
  509. struct pool *pool = NULL, *tmp;
  510. BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
  511. list_for_each_entry(tmp, &dm_thin_pool_table.pools, list) {
  512. if (tmp->md_dev == md_dev) {
  513. pool = tmp;
  514. break;
  515. }
  516. }
  517. return pool;
  518. }
  519. /*----------------------------------------------------------------*/
  520. struct endio_hook {
  521. struct thin_c *tc;
  522. struct deferred_entry *shared_read_entry;
  523. struct deferred_entry *all_io_entry;
  524. struct new_mapping *overwrite_mapping;
  525. };
  526. static void __requeue_bio_list(struct thin_c *tc, struct bio_list *master)
  527. {
  528. struct bio *bio;
  529. struct bio_list bios;
  530. bio_list_init(&bios);
  531. bio_list_merge(&bios, master);
  532. bio_list_init(master);
  533. while ((bio = bio_list_pop(&bios))) {
  534. struct endio_hook *h = dm_get_mapinfo(bio)->ptr;
  535. if (h->tc == tc)
  536. bio_endio(bio, DM_ENDIO_REQUEUE);
  537. else
  538. bio_list_add(master, bio);
  539. }
  540. }
  541. static void requeue_io(struct thin_c *tc)
  542. {
  543. struct pool *pool = tc->pool;
  544. unsigned long flags;
  545. spin_lock_irqsave(&pool->lock, flags);
  546. __requeue_bio_list(tc, &pool->deferred_bios);
  547. __requeue_bio_list(tc, &pool->retry_on_resume_list);
  548. spin_unlock_irqrestore(&pool->lock, flags);
  549. }
  550. /*
  551. * This section of code contains the logic for processing a thin device's IO.
  552. * Much of the code depends on pool object resources (lists, workqueues, etc)
  553. * but most is exclusively called from the thin target rather than the thin-pool
  554. * target.
  555. */
  556. static dm_block_t get_bio_block(struct thin_c *tc, struct bio *bio)
  557. {
  558. return bio->bi_sector >> tc->pool->block_shift;
  559. }
  560. static void remap(struct thin_c *tc, struct bio *bio, dm_block_t block)
  561. {
  562. struct pool *pool = tc->pool;
  563. bio->bi_bdev = tc->pool_dev->bdev;
  564. bio->bi_sector = (block << pool->block_shift) +
  565. (bio->bi_sector & pool->offset_mask);
  566. }
  567. static void remap_to_origin(struct thin_c *tc, struct bio *bio)
  568. {
  569. bio->bi_bdev = tc->origin_dev->bdev;
  570. }
  571. static void issue(struct thin_c *tc, struct bio *bio)
  572. {
  573. struct pool *pool = tc->pool;
  574. unsigned long flags;
  575. /*
  576. * Batch together any FUA/FLUSH bios we find and then issue
  577. * a single commit for them in process_deferred_bios().
  578. */
  579. if (bio->bi_rw & (REQ_FLUSH | REQ_FUA)) {
  580. spin_lock_irqsave(&pool->lock, flags);
  581. bio_list_add(&pool->deferred_flush_bios, bio);
  582. spin_unlock_irqrestore(&pool->lock, flags);
  583. } else
  584. generic_make_request(bio);
  585. }
  586. static void remap_to_origin_and_issue(struct thin_c *tc, struct bio *bio)
  587. {
  588. remap_to_origin(tc, bio);
  589. issue(tc, bio);
  590. }
  591. static void remap_and_issue(struct thin_c *tc, struct bio *bio,
  592. dm_block_t block)
  593. {
  594. remap(tc, bio, block);
  595. issue(tc, bio);
  596. }
  597. /*
  598. * wake_worker() is used when new work is queued and when pool_resume is
  599. * ready to continue deferred IO processing.
  600. */
  601. static void wake_worker(struct pool *pool)
  602. {
  603. queue_work(pool->wq, &pool->worker);
  604. }
  605. /*----------------------------------------------------------------*/
  606. /*
  607. * Bio endio functions.
  608. */
  609. struct new_mapping {
  610. struct list_head list;
  611. unsigned quiesced:1;
  612. unsigned prepared:1;
  613. unsigned pass_discard:1;
  614. struct thin_c *tc;
  615. dm_block_t virt_block;
  616. dm_block_t data_block;
  617. struct cell *cell, *cell2;
  618. int err;
  619. /*
  620. * If the bio covers the whole area of a block then we can avoid
  621. * zeroing or copying. Instead this bio is hooked. The bio will
  622. * still be in the cell, so care has to be taken to avoid issuing
  623. * the bio twice.
  624. */
  625. struct bio *bio;
  626. bio_end_io_t *saved_bi_end_io;
  627. };
  628. static void __maybe_add_mapping(struct new_mapping *m)
  629. {
  630. struct pool *pool = m->tc->pool;
  631. if (m->quiesced && m->prepared) {
  632. list_add(&m->list, &pool->prepared_mappings);
  633. wake_worker(pool);
  634. }
  635. }
  636. static void copy_complete(int read_err, unsigned long write_err, void *context)
  637. {
  638. unsigned long flags;
  639. struct new_mapping *m = context;
  640. struct pool *pool = m->tc->pool;
  641. m->err = read_err || write_err ? -EIO : 0;
  642. spin_lock_irqsave(&pool->lock, flags);
  643. m->prepared = 1;
  644. __maybe_add_mapping(m);
  645. spin_unlock_irqrestore(&pool->lock, flags);
  646. }
  647. static void overwrite_endio(struct bio *bio, int err)
  648. {
  649. unsigned long flags;
  650. struct endio_hook *h = dm_get_mapinfo(bio)->ptr;
  651. struct new_mapping *m = h->overwrite_mapping;
  652. struct pool *pool = m->tc->pool;
  653. m->err = err;
  654. spin_lock_irqsave(&pool->lock, flags);
  655. m->prepared = 1;
  656. __maybe_add_mapping(m);
  657. spin_unlock_irqrestore(&pool->lock, flags);
  658. }
  659. /*----------------------------------------------------------------*/
  660. /*
  661. * Workqueue.
  662. */
  663. /*
  664. * Prepared mapping jobs.
  665. */
  666. /*
  667. * This sends the bios in the cell back to the deferred_bios list.
  668. */
  669. static void cell_defer(struct thin_c *tc, struct cell *cell,
  670. dm_block_t data_block)
  671. {
  672. struct pool *pool = tc->pool;
  673. unsigned long flags;
  674. spin_lock_irqsave(&pool->lock, flags);
  675. cell_release(cell, &pool->deferred_bios);
  676. spin_unlock_irqrestore(&tc->pool->lock, flags);
  677. wake_worker(pool);
  678. }
  679. /*
  680. * Same as cell_defer above, except it omits one particular detainee,
  681. * a write bio that covers the block and has already been processed.
  682. */
  683. static void cell_defer_except(struct thin_c *tc, struct cell *cell)
  684. {
  685. struct bio_list bios;
  686. struct pool *pool = tc->pool;
  687. unsigned long flags;
  688. bio_list_init(&bios);
  689. spin_lock_irqsave(&pool->lock, flags);
  690. cell_release_no_holder(cell, &pool->deferred_bios);
  691. spin_unlock_irqrestore(&pool->lock, flags);
  692. wake_worker(pool);
  693. }
  694. static void process_prepared_mapping(struct new_mapping *m)
  695. {
  696. struct thin_c *tc = m->tc;
  697. struct bio *bio;
  698. int r;
  699. bio = m->bio;
  700. if (bio)
  701. bio->bi_end_io = m->saved_bi_end_io;
  702. if (m->err) {
  703. cell_error(m->cell);
  704. return;
  705. }
  706. /*
  707. * Commit the prepared block into the mapping btree.
  708. * Any I/O for this block arriving after this point will get
  709. * remapped to it directly.
  710. */
  711. r = dm_thin_insert_block(tc->td, m->virt_block, m->data_block);
  712. if (r) {
  713. DMERR("dm_thin_insert_block() failed");
  714. cell_error(m->cell);
  715. return;
  716. }
  717. /*
  718. * Release any bios held while the block was being provisioned.
  719. * If we are processing a write bio that completely covers the block,
  720. * we already processed it so can ignore it now when processing
  721. * the bios in the cell.
  722. */
  723. if (bio) {
  724. cell_defer_except(tc, m->cell);
  725. bio_endio(bio, 0);
  726. } else
  727. cell_defer(tc, m->cell, m->data_block);
  728. list_del(&m->list);
  729. mempool_free(m, tc->pool->mapping_pool);
  730. }
  731. static void process_prepared_discard(struct new_mapping *m)
  732. {
  733. int r;
  734. struct thin_c *tc = m->tc;
  735. r = dm_thin_remove_block(tc->td, m->virt_block);
  736. if (r)
  737. DMERR("dm_thin_remove_block() failed");
  738. /*
  739. * Pass the discard down to the underlying device?
  740. */
  741. if (m->pass_discard)
  742. remap_and_issue(tc, m->bio, m->data_block);
  743. else
  744. bio_endio(m->bio, 0);
  745. cell_defer_except(tc, m->cell);
  746. cell_defer_except(tc, m->cell2);
  747. mempool_free(m, tc->pool->mapping_pool);
  748. }
  749. static void process_prepared(struct pool *pool, struct list_head *head,
  750. void (*fn)(struct new_mapping *))
  751. {
  752. unsigned long flags;
  753. struct list_head maps;
  754. struct new_mapping *m, *tmp;
  755. INIT_LIST_HEAD(&maps);
  756. spin_lock_irqsave(&pool->lock, flags);
  757. list_splice_init(head, &maps);
  758. spin_unlock_irqrestore(&pool->lock, flags);
  759. list_for_each_entry_safe(m, tmp, &maps, list)
  760. fn(m);
  761. }
  762. /*
  763. * Deferred bio jobs.
  764. */
  765. static int io_overlaps_block(struct pool *pool, struct bio *bio)
  766. {
  767. return !(bio->bi_sector & pool->offset_mask) &&
  768. (bio->bi_size == (pool->sectors_per_block << SECTOR_SHIFT));
  769. }
  770. static int io_overwrites_block(struct pool *pool, struct bio *bio)
  771. {
  772. return (bio_data_dir(bio) == WRITE) &&
  773. io_overlaps_block(pool, bio);
  774. }
  775. static void save_and_set_endio(struct bio *bio, bio_end_io_t **save,
  776. bio_end_io_t *fn)
  777. {
  778. *save = bio->bi_end_io;
  779. bio->bi_end_io = fn;
  780. }
  781. static int ensure_next_mapping(struct pool *pool)
  782. {
  783. if (pool->next_mapping)
  784. return 0;
  785. pool->next_mapping = mempool_alloc(pool->mapping_pool, GFP_ATOMIC);
  786. return pool->next_mapping ? 0 : -ENOMEM;
  787. }
  788. static struct new_mapping *get_next_mapping(struct pool *pool)
  789. {
  790. struct new_mapping *r = pool->next_mapping;
  791. BUG_ON(!pool->next_mapping);
  792. pool->next_mapping = NULL;
  793. return r;
  794. }
  795. static void schedule_copy(struct thin_c *tc, dm_block_t virt_block,
  796. struct dm_dev *origin, dm_block_t data_origin,
  797. dm_block_t data_dest,
  798. struct cell *cell, struct bio *bio)
  799. {
  800. int r;
  801. struct pool *pool = tc->pool;
  802. struct new_mapping *m = get_next_mapping(pool);
  803. INIT_LIST_HEAD(&m->list);
  804. m->quiesced = 0;
  805. m->prepared = 0;
  806. m->tc = tc;
  807. m->virt_block = virt_block;
  808. m->data_block = data_dest;
  809. m->cell = cell;
  810. m->err = 0;
  811. m->bio = NULL;
  812. if (!ds_add_work(&pool->shared_read_ds, &m->list))
  813. m->quiesced = 1;
  814. /*
  815. * IO to pool_dev remaps to the pool target's data_dev.
  816. *
  817. * If the whole block of data is being overwritten, we can issue the
  818. * bio immediately. Otherwise we use kcopyd to clone the data first.
  819. */
  820. if (io_overwrites_block(pool, bio)) {
  821. struct endio_hook *h = dm_get_mapinfo(bio)->ptr;
  822. h->overwrite_mapping = m;
  823. m->bio = bio;
  824. save_and_set_endio(bio, &m->saved_bi_end_io, overwrite_endio);
  825. remap_and_issue(tc, bio, data_dest);
  826. } else {
  827. struct dm_io_region from, to;
  828. from.bdev = origin->bdev;
  829. from.sector = data_origin * pool->sectors_per_block;
  830. from.count = pool->sectors_per_block;
  831. to.bdev = tc->pool_dev->bdev;
  832. to.sector = data_dest * pool->sectors_per_block;
  833. to.count = pool->sectors_per_block;
  834. r = dm_kcopyd_copy(pool->copier, &from, 1, &to,
  835. 0, copy_complete, m);
  836. if (r < 0) {
  837. mempool_free(m, pool->mapping_pool);
  838. DMERR("dm_kcopyd_copy() failed");
  839. cell_error(cell);
  840. }
  841. }
  842. }
  843. static void schedule_internal_copy(struct thin_c *tc, dm_block_t virt_block,
  844. dm_block_t data_origin, dm_block_t data_dest,
  845. struct cell *cell, struct bio *bio)
  846. {
  847. schedule_copy(tc, virt_block, tc->pool_dev,
  848. data_origin, data_dest, cell, bio);
  849. }
  850. static void schedule_external_copy(struct thin_c *tc, dm_block_t virt_block,
  851. dm_block_t data_dest,
  852. struct cell *cell, struct bio *bio)
  853. {
  854. schedule_copy(tc, virt_block, tc->origin_dev,
  855. virt_block, data_dest, cell, bio);
  856. }
  857. static void schedule_zero(struct thin_c *tc, dm_block_t virt_block,
  858. dm_block_t data_block, struct cell *cell,
  859. struct bio *bio)
  860. {
  861. struct pool *pool = tc->pool;
  862. struct new_mapping *m = get_next_mapping(pool);
  863. INIT_LIST_HEAD(&m->list);
  864. m->quiesced = 1;
  865. m->prepared = 0;
  866. m->tc = tc;
  867. m->virt_block = virt_block;
  868. m->data_block = data_block;
  869. m->cell = cell;
  870. m->err = 0;
  871. m->bio = NULL;
  872. /*
  873. * If the whole block of data is being overwritten or we are not
  874. * zeroing pre-existing data, we can issue the bio immediately.
  875. * Otherwise we use kcopyd to zero the data first.
  876. */
  877. if (!pool->pf.zero_new_blocks)
  878. process_prepared_mapping(m);
  879. else if (io_overwrites_block(pool, bio)) {
  880. struct endio_hook *h = dm_get_mapinfo(bio)->ptr;
  881. h->overwrite_mapping = m;
  882. m->bio = bio;
  883. save_and_set_endio(bio, &m->saved_bi_end_io, overwrite_endio);
  884. remap_and_issue(tc, bio, data_block);
  885. } else {
  886. int r;
  887. struct dm_io_region to;
  888. to.bdev = tc->pool_dev->bdev;
  889. to.sector = data_block * pool->sectors_per_block;
  890. to.count = pool->sectors_per_block;
  891. r = dm_kcopyd_zero(pool->copier, 1, &to, 0, copy_complete, m);
  892. if (r < 0) {
  893. mempool_free(m, pool->mapping_pool);
  894. DMERR("dm_kcopyd_zero() failed");
  895. cell_error(cell);
  896. }
  897. }
  898. }
  899. static int alloc_data_block(struct thin_c *tc, dm_block_t *result)
  900. {
  901. int r;
  902. dm_block_t free_blocks;
  903. unsigned long flags;
  904. struct pool *pool = tc->pool;
  905. r = dm_pool_get_free_block_count(pool->pmd, &free_blocks);
  906. if (r)
  907. return r;
  908. if (free_blocks <= pool->low_water_blocks && !pool->low_water_triggered) {
  909. DMWARN("%s: reached low water mark, sending event.",
  910. dm_device_name(pool->pool_md));
  911. spin_lock_irqsave(&pool->lock, flags);
  912. pool->low_water_triggered = 1;
  913. spin_unlock_irqrestore(&pool->lock, flags);
  914. dm_table_event(pool->ti->table);
  915. }
  916. if (!free_blocks) {
  917. if (pool->no_free_space)
  918. return -ENOSPC;
  919. else {
  920. /*
  921. * Try to commit to see if that will free up some
  922. * more space.
  923. */
  924. r = dm_pool_commit_metadata(pool->pmd);
  925. if (r) {
  926. DMERR("%s: dm_pool_commit_metadata() failed, error = %d",
  927. __func__, r);
  928. return r;
  929. }
  930. r = dm_pool_get_free_block_count(pool->pmd, &free_blocks);
  931. if (r)
  932. return r;
  933. /*
  934. * If we still have no space we set a flag to avoid
  935. * doing all this checking and return -ENOSPC.
  936. */
  937. if (!free_blocks) {
  938. DMWARN("%s: no free space available.",
  939. dm_device_name(pool->pool_md));
  940. spin_lock_irqsave(&pool->lock, flags);
  941. pool->no_free_space = 1;
  942. spin_unlock_irqrestore(&pool->lock, flags);
  943. return -ENOSPC;
  944. }
  945. }
  946. }
  947. r = dm_pool_alloc_data_block(pool->pmd, result);
  948. if (r)
  949. return r;
  950. return 0;
  951. }
  952. /*
  953. * If we have run out of space, queue bios until the device is
  954. * resumed, presumably after having been reloaded with more space.
  955. */
  956. static void retry_on_resume(struct bio *bio)
  957. {
  958. struct endio_hook *h = dm_get_mapinfo(bio)->ptr;
  959. struct thin_c *tc = h->tc;
  960. struct pool *pool = tc->pool;
  961. unsigned long flags;
  962. spin_lock_irqsave(&pool->lock, flags);
  963. bio_list_add(&pool->retry_on_resume_list, bio);
  964. spin_unlock_irqrestore(&pool->lock, flags);
  965. }
  966. static void no_space(struct cell *cell)
  967. {
  968. struct bio *bio;
  969. struct bio_list bios;
  970. bio_list_init(&bios);
  971. cell_release(cell, &bios);
  972. while ((bio = bio_list_pop(&bios)))
  973. retry_on_resume(bio);
  974. }
  975. static void process_discard(struct thin_c *tc, struct bio *bio)
  976. {
  977. int r;
  978. unsigned long flags;
  979. struct pool *pool = tc->pool;
  980. struct cell *cell, *cell2;
  981. struct cell_key key, key2;
  982. dm_block_t block = get_bio_block(tc, bio);
  983. struct dm_thin_lookup_result lookup_result;
  984. struct new_mapping *m;
  985. build_virtual_key(tc->td, block, &key);
  986. if (bio_detain(tc->pool->prison, &key, bio, &cell))
  987. return;
  988. r = dm_thin_find_block(tc->td, block, 1, &lookup_result);
  989. switch (r) {
  990. case 0:
  991. /*
  992. * Check nobody is fiddling with this pool block. This can
  993. * happen if someone's in the process of breaking sharing
  994. * on this block.
  995. */
  996. build_data_key(tc->td, lookup_result.block, &key2);
  997. if (bio_detain(tc->pool->prison, &key2, bio, &cell2)) {
  998. cell_release_singleton(cell, bio);
  999. break;
  1000. }
  1001. if (io_overlaps_block(pool, bio)) {
  1002. /*
  1003. * IO may still be going to the destination block. We must
  1004. * quiesce before we can do the removal.
  1005. */
  1006. m = get_next_mapping(pool);
  1007. m->tc = tc;
  1008. m->pass_discard = (!lookup_result.shared) & pool->pf.discard_passdown;
  1009. m->virt_block = block;
  1010. m->data_block = lookup_result.block;
  1011. m->cell = cell;
  1012. m->cell2 = cell2;
  1013. m->err = 0;
  1014. m->bio = bio;
  1015. if (!ds_add_work(&pool->all_io_ds, &m->list)) {
  1016. spin_lock_irqsave(&pool->lock, flags);
  1017. list_add(&m->list, &pool->prepared_discards);
  1018. spin_unlock_irqrestore(&pool->lock, flags);
  1019. wake_worker(pool);
  1020. }
  1021. } else {
  1022. /*
  1023. * This path is hit if people are ignoring
  1024. * limits->discard_granularity. It ignores any
  1025. * part of the discard that is in a subsequent
  1026. * block.
  1027. */
  1028. sector_t offset = bio->bi_sector - (block << pool->block_shift);
  1029. unsigned remaining = (pool->sectors_per_block - offset) << 9;
  1030. bio->bi_size = min(bio->bi_size, remaining);
  1031. cell_release_singleton(cell, bio);
  1032. cell_release_singleton(cell2, bio);
  1033. remap_and_issue(tc, bio, lookup_result.block);
  1034. }
  1035. break;
  1036. case -ENODATA:
  1037. /*
  1038. * It isn't provisioned, just forget it.
  1039. */
  1040. cell_release_singleton(cell, bio);
  1041. bio_endio(bio, 0);
  1042. break;
  1043. default:
  1044. DMERR("discard: find block unexpectedly returned %d", r);
  1045. cell_release_singleton(cell, bio);
  1046. bio_io_error(bio);
  1047. break;
  1048. }
  1049. }
  1050. static void break_sharing(struct thin_c *tc, struct bio *bio, dm_block_t block,
  1051. struct cell_key *key,
  1052. struct dm_thin_lookup_result *lookup_result,
  1053. struct cell *cell)
  1054. {
  1055. int r;
  1056. dm_block_t data_block;
  1057. r = alloc_data_block(tc, &data_block);
  1058. switch (r) {
  1059. case 0:
  1060. schedule_internal_copy(tc, block, lookup_result->block,
  1061. data_block, cell, bio);
  1062. break;
  1063. case -ENOSPC:
  1064. no_space(cell);
  1065. break;
  1066. default:
  1067. DMERR("%s: alloc_data_block() failed, error = %d", __func__, r);
  1068. cell_error(cell);
  1069. break;
  1070. }
  1071. }
  1072. static void process_shared_bio(struct thin_c *tc, struct bio *bio,
  1073. dm_block_t block,
  1074. struct dm_thin_lookup_result *lookup_result)
  1075. {
  1076. struct cell *cell;
  1077. struct pool *pool = tc->pool;
  1078. struct cell_key key;
  1079. /*
  1080. * If cell is already occupied, then sharing is already in the process
  1081. * of being broken so we have nothing further to do here.
  1082. */
  1083. build_data_key(tc->td, lookup_result->block, &key);
  1084. if (bio_detain(pool->prison, &key, bio, &cell))
  1085. return;
  1086. if (bio_data_dir(bio) == WRITE)
  1087. break_sharing(tc, bio, block, &key, lookup_result, cell);
  1088. else {
  1089. struct endio_hook *h = dm_get_mapinfo(bio)->ptr;
  1090. h->shared_read_entry = ds_inc(&pool->shared_read_ds);
  1091. cell_release_singleton(cell, bio);
  1092. remap_and_issue(tc, bio, lookup_result->block);
  1093. }
  1094. }
  1095. static void provision_block(struct thin_c *tc, struct bio *bio, dm_block_t block,
  1096. struct cell *cell)
  1097. {
  1098. int r;
  1099. dm_block_t data_block;
  1100. /*
  1101. * Remap empty bios (flushes) immediately, without provisioning.
  1102. */
  1103. if (!bio->bi_size) {
  1104. cell_release_singleton(cell, bio);
  1105. remap_and_issue(tc, bio, 0);
  1106. return;
  1107. }
  1108. /*
  1109. * Fill read bios with zeroes and complete them immediately.
  1110. */
  1111. if (bio_data_dir(bio) == READ) {
  1112. zero_fill_bio(bio);
  1113. cell_release_singleton(cell, bio);
  1114. bio_endio(bio, 0);
  1115. return;
  1116. }
  1117. r = alloc_data_block(tc, &data_block);
  1118. switch (r) {
  1119. case 0:
  1120. if (tc->origin_dev)
  1121. schedule_external_copy(tc, block, data_block, cell, bio);
  1122. else
  1123. schedule_zero(tc, block, data_block, cell, bio);
  1124. break;
  1125. case -ENOSPC:
  1126. no_space(cell);
  1127. break;
  1128. default:
  1129. DMERR("%s: alloc_data_block() failed, error = %d", __func__, r);
  1130. cell_error(cell);
  1131. break;
  1132. }
  1133. }
  1134. static void process_bio(struct thin_c *tc, struct bio *bio)
  1135. {
  1136. int r;
  1137. dm_block_t block = get_bio_block(tc, bio);
  1138. struct cell *cell;
  1139. struct cell_key key;
  1140. struct dm_thin_lookup_result lookup_result;
  1141. /*
  1142. * If cell is already occupied, then the block is already
  1143. * being provisioned so we have nothing further to do here.
  1144. */
  1145. build_virtual_key(tc->td, block, &key);
  1146. if (bio_detain(tc->pool->prison, &key, bio, &cell))
  1147. return;
  1148. r = dm_thin_find_block(tc->td, block, 1, &lookup_result);
  1149. switch (r) {
  1150. case 0:
  1151. /*
  1152. * We can release this cell now. This thread is the only
  1153. * one that puts bios into a cell, and we know there were
  1154. * no preceding bios.
  1155. */
  1156. /*
  1157. * TODO: this will probably have to change when discard goes
  1158. * back in.
  1159. */
  1160. cell_release_singleton(cell, bio);
  1161. if (lookup_result.shared)
  1162. process_shared_bio(tc, bio, block, &lookup_result);
  1163. else
  1164. remap_and_issue(tc, bio, lookup_result.block);
  1165. break;
  1166. case -ENODATA:
  1167. if (bio_data_dir(bio) == READ && tc->origin_dev) {
  1168. cell_release_singleton(cell, bio);
  1169. remap_to_origin_and_issue(tc, bio);
  1170. } else
  1171. provision_block(tc, bio, block, cell);
  1172. break;
  1173. default:
  1174. DMERR("dm_thin_find_block() failed, error = %d", r);
  1175. cell_release_singleton(cell, bio);
  1176. bio_io_error(bio);
  1177. break;
  1178. }
  1179. }
  1180. static int need_commit_due_to_time(struct pool *pool)
  1181. {
  1182. return jiffies < pool->last_commit_jiffies ||
  1183. jiffies > pool->last_commit_jiffies + COMMIT_PERIOD;
  1184. }
  1185. static void process_deferred_bios(struct pool *pool)
  1186. {
  1187. unsigned long flags;
  1188. struct bio *bio;
  1189. struct bio_list bios;
  1190. int r;
  1191. bio_list_init(&bios);
  1192. spin_lock_irqsave(&pool->lock, flags);
  1193. bio_list_merge(&bios, &pool->deferred_bios);
  1194. bio_list_init(&pool->deferred_bios);
  1195. spin_unlock_irqrestore(&pool->lock, flags);
  1196. while ((bio = bio_list_pop(&bios))) {
  1197. struct endio_hook *h = dm_get_mapinfo(bio)->ptr;
  1198. struct thin_c *tc = h->tc;
  1199. /*
  1200. * If we've got no free new_mapping structs, and processing
  1201. * this bio might require one, we pause until there are some
  1202. * prepared mappings to process.
  1203. */
  1204. if (ensure_next_mapping(pool)) {
  1205. spin_lock_irqsave(&pool->lock, flags);
  1206. bio_list_merge(&pool->deferred_bios, &bios);
  1207. spin_unlock_irqrestore(&pool->lock, flags);
  1208. break;
  1209. }
  1210. if (bio->bi_rw & REQ_DISCARD)
  1211. process_discard(tc, bio);
  1212. else
  1213. process_bio(tc, bio);
  1214. }
  1215. /*
  1216. * If there are any deferred flush bios, we must commit
  1217. * the metadata before issuing them.
  1218. */
  1219. bio_list_init(&bios);
  1220. spin_lock_irqsave(&pool->lock, flags);
  1221. bio_list_merge(&bios, &pool->deferred_flush_bios);
  1222. bio_list_init(&pool->deferred_flush_bios);
  1223. spin_unlock_irqrestore(&pool->lock, flags);
  1224. if (bio_list_empty(&bios) && !need_commit_due_to_time(pool))
  1225. return;
  1226. r = dm_pool_commit_metadata(pool->pmd);
  1227. if (r) {
  1228. DMERR("%s: dm_pool_commit_metadata() failed, error = %d",
  1229. __func__, r);
  1230. while ((bio = bio_list_pop(&bios)))
  1231. bio_io_error(bio);
  1232. return;
  1233. }
  1234. pool->last_commit_jiffies = jiffies;
  1235. while ((bio = bio_list_pop(&bios)))
  1236. generic_make_request(bio);
  1237. }
  1238. static void do_worker(struct work_struct *ws)
  1239. {
  1240. struct pool *pool = container_of(ws, struct pool, worker);
  1241. process_prepared(pool, &pool->prepared_mappings, process_prepared_mapping);
  1242. process_prepared(pool, &pool->prepared_discards, process_prepared_discard);
  1243. process_deferred_bios(pool);
  1244. }
  1245. /*
  1246. * We want to commit periodically so that not too much
  1247. * unwritten data builds up.
  1248. */
  1249. static void do_waker(struct work_struct *ws)
  1250. {
  1251. struct pool *pool = container_of(to_delayed_work(ws), struct pool, waker);
  1252. wake_worker(pool);
  1253. queue_delayed_work(pool->wq, &pool->waker, COMMIT_PERIOD);
  1254. }
  1255. /*----------------------------------------------------------------*/
  1256. /*
  1257. * Mapping functions.
  1258. */
  1259. /*
  1260. * Called only while mapping a thin bio to hand it over to the workqueue.
  1261. */
  1262. static void thin_defer_bio(struct thin_c *tc, struct bio *bio)
  1263. {
  1264. unsigned long flags;
  1265. struct pool *pool = tc->pool;
  1266. spin_lock_irqsave(&pool->lock, flags);
  1267. bio_list_add(&pool->deferred_bios, bio);
  1268. spin_unlock_irqrestore(&pool->lock, flags);
  1269. wake_worker(pool);
  1270. }
  1271. static struct endio_hook *thin_hook_bio(struct thin_c *tc, struct bio *bio)
  1272. {
  1273. struct pool *pool = tc->pool;
  1274. struct endio_hook *h = mempool_alloc(pool->endio_hook_pool, GFP_NOIO);
  1275. h->tc = tc;
  1276. h->shared_read_entry = NULL;
  1277. h->all_io_entry = bio->bi_rw & REQ_DISCARD ? NULL : ds_inc(&pool->all_io_ds);
  1278. h->overwrite_mapping = NULL;
  1279. return h;
  1280. }
  1281. /*
  1282. * Non-blocking function called from the thin target's map function.
  1283. */
  1284. static int thin_bio_map(struct dm_target *ti, struct bio *bio,
  1285. union map_info *map_context)
  1286. {
  1287. int r;
  1288. struct thin_c *tc = ti->private;
  1289. dm_block_t block = get_bio_block(tc, bio);
  1290. struct dm_thin_device *td = tc->td;
  1291. struct dm_thin_lookup_result result;
  1292. map_context->ptr = thin_hook_bio(tc, bio);
  1293. if (bio->bi_rw & (REQ_DISCARD | REQ_FLUSH | REQ_FUA)) {
  1294. thin_defer_bio(tc, bio);
  1295. return DM_MAPIO_SUBMITTED;
  1296. }
  1297. r = dm_thin_find_block(td, block, 0, &result);
  1298. /*
  1299. * Note that we defer readahead too.
  1300. */
  1301. switch (r) {
  1302. case 0:
  1303. if (unlikely(result.shared)) {
  1304. /*
  1305. * We have a race condition here between the
  1306. * result.shared value returned by the lookup and
  1307. * snapshot creation, which may cause new
  1308. * sharing.
  1309. *
  1310. * To avoid this always quiesce the origin before
  1311. * taking the snap. You want to do this anyway to
  1312. * ensure a consistent application view
  1313. * (i.e. lockfs).
  1314. *
  1315. * More distant ancestors are irrelevant. The
  1316. * shared flag will be set in their case.
  1317. */
  1318. thin_defer_bio(tc, bio);
  1319. r = DM_MAPIO_SUBMITTED;
  1320. } else {
  1321. remap(tc, bio, result.block);
  1322. r = DM_MAPIO_REMAPPED;
  1323. }
  1324. break;
  1325. case -ENODATA:
  1326. /*
  1327. * In future, the failed dm_thin_find_block above could
  1328. * provide the hint to load the metadata into cache.
  1329. */
  1330. case -EWOULDBLOCK:
  1331. thin_defer_bio(tc, bio);
  1332. r = DM_MAPIO_SUBMITTED;
  1333. break;
  1334. }
  1335. return r;
  1336. }
  1337. static int pool_is_congested(struct dm_target_callbacks *cb, int bdi_bits)
  1338. {
  1339. int r;
  1340. unsigned long flags;
  1341. struct pool_c *pt = container_of(cb, struct pool_c, callbacks);
  1342. spin_lock_irqsave(&pt->pool->lock, flags);
  1343. r = !bio_list_empty(&pt->pool->retry_on_resume_list);
  1344. spin_unlock_irqrestore(&pt->pool->lock, flags);
  1345. if (!r) {
  1346. struct request_queue *q = bdev_get_queue(pt->data_dev->bdev);
  1347. r = bdi_congested(&q->backing_dev_info, bdi_bits);
  1348. }
  1349. return r;
  1350. }
  1351. static void __requeue_bios(struct pool *pool)
  1352. {
  1353. bio_list_merge(&pool->deferred_bios, &pool->retry_on_resume_list);
  1354. bio_list_init(&pool->retry_on_resume_list);
  1355. }
  1356. /*----------------------------------------------------------------
  1357. * Binding of control targets to a pool object
  1358. *--------------------------------------------------------------*/
  1359. static int bind_control_target(struct pool *pool, struct dm_target *ti)
  1360. {
  1361. struct pool_c *pt = ti->private;
  1362. pool->ti = ti;
  1363. pool->low_water_blocks = pt->low_water_blocks;
  1364. pool->pf = pt->pf;
  1365. /*
  1366. * If discard_passdown was enabled verify that the data device
  1367. * supports discards. Disable discard_passdown if not; otherwise
  1368. * -EOPNOTSUPP will be returned.
  1369. */
  1370. if (pt->pf.discard_passdown) {
  1371. struct request_queue *q = bdev_get_queue(pt->data_dev->bdev);
  1372. if (!q || !blk_queue_discard(q)) {
  1373. char buf[BDEVNAME_SIZE];
  1374. DMWARN("Discard unsupported by data device (%s): Disabling discard passdown.",
  1375. bdevname(pt->data_dev->bdev, buf));
  1376. pool->pf.discard_passdown = 0;
  1377. }
  1378. }
  1379. return 0;
  1380. }
  1381. static void unbind_control_target(struct pool *pool, struct dm_target *ti)
  1382. {
  1383. if (pool->ti == ti)
  1384. pool->ti = NULL;
  1385. }
  1386. /*----------------------------------------------------------------
  1387. * Pool creation
  1388. *--------------------------------------------------------------*/
  1389. /* Initialize pool features. */
  1390. static void pool_features_init(struct pool_features *pf)
  1391. {
  1392. pf->zero_new_blocks = 1;
  1393. pf->discard_enabled = 1;
  1394. pf->discard_passdown = 1;
  1395. }
  1396. static void __pool_destroy(struct pool *pool)
  1397. {
  1398. __pool_table_remove(pool);
  1399. if (dm_pool_metadata_close(pool->pmd) < 0)
  1400. DMWARN("%s: dm_pool_metadata_close() failed.", __func__);
  1401. prison_destroy(pool->prison);
  1402. dm_kcopyd_client_destroy(pool->copier);
  1403. if (pool->wq)
  1404. destroy_workqueue(pool->wq);
  1405. if (pool->next_mapping)
  1406. mempool_free(pool->next_mapping, pool->mapping_pool);
  1407. mempool_destroy(pool->mapping_pool);
  1408. mempool_destroy(pool->endio_hook_pool);
  1409. kfree(pool);
  1410. }
  1411. static struct pool *pool_create(struct mapped_device *pool_md,
  1412. struct block_device *metadata_dev,
  1413. unsigned long block_size, char **error)
  1414. {
  1415. int r;
  1416. void *err_p;
  1417. struct pool *pool;
  1418. struct dm_pool_metadata *pmd;
  1419. pmd = dm_pool_metadata_open(metadata_dev, block_size);
  1420. if (IS_ERR(pmd)) {
  1421. *error = "Error creating metadata object";
  1422. return (struct pool *)pmd;
  1423. }
  1424. pool = kmalloc(sizeof(*pool), GFP_KERNEL);
  1425. if (!pool) {
  1426. *error = "Error allocating memory for pool";
  1427. err_p = ERR_PTR(-ENOMEM);
  1428. goto bad_pool;
  1429. }
  1430. pool->pmd = pmd;
  1431. pool->sectors_per_block = block_size;
  1432. pool->block_shift = ffs(block_size) - 1;
  1433. pool->offset_mask = block_size - 1;
  1434. pool->low_water_blocks = 0;
  1435. pool_features_init(&pool->pf);
  1436. pool->prison = prison_create(PRISON_CELLS);
  1437. if (!pool->prison) {
  1438. *error = "Error creating pool's bio prison";
  1439. err_p = ERR_PTR(-ENOMEM);
  1440. goto bad_prison;
  1441. }
  1442. pool->copier = dm_kcopyd_client_create();
  1443. if (IS_ERR(pool->copier)) {
  1444. r = PTR_ERR(pool->copier);
  1445. *error = "Error creating pool's kcopyd client";
  1446. err_p = ERR_PTR(r);
  1447. goto bad_kcopyd_client;
  1448. }
  1449. /*
  1450. * Create singlethreaded workqueue that will service all devices
  1451. * that use this metadata.
  1452. */
  1453. pool->wq = alloc_ordered_workqueue("dm-" DM_MSG_PREFIX, WQ_MEM_RECLAIM);
  1454. if (!pool->wq) {
  1455. *error = "Error creating pool's workqueue";
  1456. err_p = ERR_PTR(-ENOMEM);
  1457. goto bad_wq;
  1458. }
  1459. INIT_WORK(&pool->worker, do_worker);
  1460. INIT_DELAYED_WORK(&pool->waker, do_waker);
  1461. spin_lock_init(&pool->lock);
  1462. bio_list_init(&pool->deferred_bios);
  1463. bio_list_init(&pool->deferred_flush_bios);
  1464. INIT_LIST_HEAD(&pool->prepared_mappings);
  1465. INIT_LIST_HEAD(&pool->prepared_discards);
  1466. pool->low_water_triggered = 0;
  1467. pool->no_free_space = 0;
  1468. bio_list_init(&pool->retry_on_resume_list);
  1469. ds_init(&pool->shared_read_ds);
  1470. ds_init(&pool->all_io_ds);
  1471. pool->next_mapping = NULL;
  1472. pool->mapping_pool =
  1473. mempool_create_kmalloc_pool(MAPPING_POOL_SIZE, sizeof(struct new_mapping));
  1474. if (!pool->mapping_pool) {
  1475. *error = "Error creating pool's mapping mempool";
  1476. err_p = ERR_PTR(-ENOMEM);
  1477. goto bad_mapping_pool;
  1478. }
  1479. pool->endio_hook_pool =
  1480. mempool_create_kmalloc_pool(ENDIO_HOOK_POOL_SIZE, sizeof(struct endio_hook));
  1481. if (!pool->endio_hook_pool) {
  1482. *error = "Error creating pool's endio_hook mempool";
  1483. err_p = ERR_PTR(-ENOMEM);
  1484. goto bad_endio_hook_pool;
  1485. }
  1486. pool->ref_count = 1;
  1487. pool->last_commit_jiffies = jiffies;
  1488. pool->pool_md = pool_md;
  1489. pool->md_dev = metadata_dev;
  1490. __pool_table_insert(pool);
  1491. return pool;
  1492. bad_endio_hook_pool:
  1493. mempool_destroy(pool->mapping_pool);
  1494. bad_mapping_pool:
  1495. destroy_workqueue(pool->wq);
  1496. bad_wq:
  1497. dm_kcopyd_client_destroy(pool->copier);
  1498. bad_kcopyd_client:
  1499. prison_destroy(pool->prison);
  1500. bad_prison:
  1501. kfree(pool);
  1502. bad_pool:
  1503. if (dm_pool_metadata_close(pmd))
  1504. DMWARN("%s: dm_pool_metadata_close() failed.", __func__);
  1505. return err_p;
  1506. }
  1507. static void __pool_inc(struct pool *pool)
  1508. {
  1509. BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
  1510. pool->ref_count++;
  1511. }
  1512. static void __pool_dec(struct pool *pool)
  1513. {
  1514. BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
  1515. BUG_ON(!pool->ref_count);
  1516. if (!--pool->ref_count)
  1517. __pool_destroy(pool);
  1518. }
  1519. static struct pool *__pool_find(struct mapped_device *pool_md,
  1520. struct block_device *metadata_dev,
  1521. unsigned long block_size, char **error,
  1522. int *created)
  1523. {
  1524. struct pool *pool = __pool_table_lookup_metadata_dev(metadata_dev);
  1525. if (pool) {
  1526. if (pool->pool_md != pool_md)
  1527. return ERR_PTR(-EBUSY);
  1528. __pool_inc(pool);
  1529. } else {
  1530. pool = __pool_table_lookup(pool_md);
  1531. if (pool) {
  1532. if (pool->md_dev != metadata_dev)
  1533. return ERR_PTR(-EINVAL);
  1534. __pool_inc(pool);
  1535. } else {
  1536. pool = pool_create(pool_md, metadata_dev, block_size, error);
  1537. *created = 1;
  1538. }
  1539. }
  1540. return pool;
  1541. }
  1542. /*----------------------------------------------------------------
  1543. * Pool target methods
  1544. *--------------------------------------------------------------*/
  1545. static void pool_dtr(struct dm_target *ti)
  1546. {
  1547. struct pool_c *pt = ti->private;
  1548. mutex_lock(&dm_thin_pool_table.mutex);
  1549. unbind_control_target(pt->pool, ti);
  1550. __pool_dec(pt->pool);
  1551. dm_put_device(ti, pt->metadata_dev);
  1552. dm_put_device(ti, pt->data_dev);
  1553. kfree(pt);
  1554. mutex_unlock(&dm_thin_pool_table.mutex);
  1555. }
  1556. static int parse_pool_features(struct dm_arg_set *as, struct pool_features *pf,
  1557. struct dm_target *ti)
  1558. {
  1559. int r;
  1560. unsigned argc;
  1561. const char *arg_name;
  1562. static struct dm_arg _args[] = {
  1563. {0, 3, "Invalid number of pool feature arguments"},
  1564. };
  1565. /*
  1566. * No feature arguments supplied.
  1567. */
  1568. if (!as->argc)
  1569. return 0;
  1570. r = dm_read_arg_group(_args, as, &argc, &ti->error);
  1571. if (r)
  1572. return -EINVAL;
  1573. while (argc && !r) {
  1574. arg_name = dm_shift_arg(as);
  1575. argc--;
  1576. if (!strcasecmp(arg_name, "skip_block_zeroing")) {
  1577. pf->zero_new_blocks = 0;
  1578. continue;
  1579. } else if (!strcasecmp(arg_name, "ignore_discard")) {
  1580. pf->discard_enabled = 0;
  1581. continue;
  1582. } else if (!strcasecmp(arg_name, "no_discard_passdown")) {
  1583. pf->discard_passdown = 0;
  1584. continue;
  1585. }
  1586. ti->error = "Unrecognised pool feature requested";
  1587. r = -EINVAL;
  1588. }
  1589. return r;
  1590. }
  1591. /*
  1592. * thin-pool <metadata dev> <data dev>
  1593. * <data block size (sectors)>
  1594. * <low water mark (blocks)>
  1595. * [<#feature args> [<arg>]*]
  1596. *
  1597. * Optional feature arguments are:
  1598. * skip_block_zeroing: skips the zeroing of newly-provisioned blocks.
  1599. * ignore_discard: disable discard
  1600. * no_discard_passdown: don't pass discards down to the data device
  1601. */
  1602. static int pool_ctr(struct dm_target *ti, unsigned argc, char **argv)
  1603. {
  1604. int r, pool_created = 0;
  1605. struct pool_c *pt;
  1606. struct pool *pool;
  1607. struct pool_features pf;
  1608. struct dm_arg_set as;
  1609. struct dm_dev *data_dev;
  1610. unsigned long block_size;
  1611. dm_block_t low_water_blocks;
  1612. struct dm_dev *metadata_dev;
  1613. sector_t metadata_dev_size;
  1614. char b[BDEVNAME_SIZE];
  1615. /*
  1616. * FIXME Remove validation from scope of lock.
  1617. */
  1618. mutex_lock(&dm_thin_pool_table.mutex);
  1619. if (argc < 4) {
  1620. ti->error = "Invalid argument count";
  1621. r = -EINVAL;
  1622. goto out_unlock;
  1623. }
  1624. as.argc = argc;
  1625. as.argv = argv;
  1626. r = dm_get_device(ti, argv[0], FMODE_READ | FMODE_WRITE, &metadata_dev);
  1627. if (r) {
  1628. ti->error = "Error opening metadata block device";
  1629. goto out_unlock;
  1630. }
  1631. metadata_dev_size = i_size_read(metadata_dev->bdev->bd_inode) >> SECTOR_SHIFT;
  1632. if (metadata_dev_size > THIN_METADATA_MAX_SECTORS_WARNING)
  1633. DMWARN("Metadata device %s is larger than %u sectors: excess space will not be used.",
  1634. bdevname(metadata_dev->bdev, b), THIN_METADATA_MAX_SECTORS);
  1635. r = dm_get_device(ti, argv[1], FMODE_READ | FMODE_WRITE, &data_dev);
  1636. if (r) {
  1637. ti->error = "Error getting data device";
  1638. goto out_metadata;
  1639. }
  1640. if (kstrtoul(argv[2], 10, &block_size) || !block_size ||
  1641. block_size < DATA_DEV_BLOCK_SIZE_MIN_SECTORS ||
  1642. block_size > DATA_DEV_BLOCK_SIZE_MAX_SECTORS ||
  1643. !is_power_of_2(block_size)) {
  1644. ti->error = "Invalid block size";
  1645. r = -EINVAL;
  1646. goto out;
  1647. }
  1648. if (kstrtoull(argv[3], 10, (unsigned long long *)&low_water_blocks)) {
  1649. ti->error = "Invalid low water mark";
  1650. r = -EINVAL;
  1651. goto out;
  1652. }
  1653. /*
  1654. * Set default pool features.
  1655. */
  1656. pool_features_init(&pf);
  1657. dm_consume_args(&as, 4);
  1658. r = parse_pool_features(&as, &pf, ti);
  1659. if (r)
  1660. goto out;
  1661. pt = kzalloc(sizeof(*pt), GFP_KERNEL);
  1662. if (!pt) {
  1663. r = -ENOMEM;
  1664. goto out;
  1665. }
  1666. pool = __pool_find(dm_table_get_md(ti->table), metadata_dev->bdev,
  1667. block_size, &ti->error, &pool_created);
  1668. if (IS_ERR(pool)) {
  1669. r = PTR_ERR(pool);
  1670. goto out_free_pt;
  1671. }
  1672. /*
  1673. * 'pool_created' reflects whether this is the first table load.
  1674. * Top level discard support is not allowed to be changed after
  1675. * initial load. This would require a pool reload to trigger thin
  1676. * device changes.
  1677. */
  1678. if (!pool_created && pf.discard_enabled != pool->pf.discard_enabled) {
  1679. ti->error = "Discard support cannot be disabled once enabled";
  1680. r = -EINVAL;
  1681. goto out_flags_changed;
  1682. }
  1683. pt->pool = pool;
  1684. pt->ti = ti;
  1685. pt->metadata_dev = metadata_dev;
  1686. pt->data_dev = data_dev;
  1687. pt->low_water_blocks = low_water_blocks;
  1688. pt->pf = pf;
  1689. ti->num_flush_requests = 1;
  1690. /*
  1691. * Only need to enable discards if the pool should pass
  1692. * them down to the data device. The thin device's discard
  1693. * processing will cause mappings to be removed from the btree.
  1694. */
  1695. if (pf.discard_enabled && pf.discard_passdown) {
  1696. ti->num_discard_requests = 1;
  1697. /*
  1698. * Setting 'discards_supported' circumvents the normal
  1699. * stacking of discard limits (this keeps the pool and
  1700. * thin devices' discard limits consistent).
  1701. */
  1702. ti->discards_supported = 1;
  1703. }
  1704. ti->private = pt;
  1705. pt->callbacks.congested_fn = pool_is_congested;
  1706. dm_table_add_target_callbacks(ti->table, &pt->callbacks);
  1707. mutex_unlock(&dm_thin_pool_table.mutex);
  1708. return 0;
  1709. out_flags_changed:
  1710. __pool_dec(pool);
  1711. out_free_pt:
  1712. kfree(pt);
  1713. out:
  1714. dm_put_device(ti, data_dev);
  1715. out_metadata:
  1716. dm_put_device(ti, metadata_dev);
  1717. out_unlock:
  1718. mutex_unlock(&dm_thin_pool_table.mutex);
  1719. return r;
  1720. }
  1721. static int pool_map(struct dm_target *ti, struct bio *bio,
  1722. union map_info *map_context)
  1723. {
  1724. int r;
  1725. struct pool_c *pt = ti->private;
  1726. struct pool *pool = pt->pool;
  1727. unsigned long flags;
  1728. /*
  1729. * As this is a singleton target, ti->begin is always zero.
  1730. */
  1731. spin_lock_irqsave(&pool->lock, flags);
  1732. bio->bi_bdev = pt->data_dev->bdev;
  1733. r = DM_MAPIO_REMAPPED;
  1734. spin_unlock_irqrestore(&pool->lock, flags);
  1735. return r;
  1736. }
  1737. /*
  1738. * Retrieves the number of blocks of the data device from
  1739. * the superblock and compares it to the actual device size,
  1740. * thus resizing the data device in case it has grown.
  1741. *
  1742. * This both copes with opening preallocated data devices in the ctr
  1743. * being followed by a resume
  1744. * -and-
  1745. * calling the resume method individually after userspace has
  1746. * grown the data device in reaction to a table event.
  1747. */
  1748. static int pool_preresume(struct dm_target *ti)
  1749. {
  1750. int r;
  1751. struct pool_c *pt = ti->private;
  1752. struct pool *pool = pt->pool;
  1753. dm_block_t data_size, sb_data_size;
  1754. /*
  1755. * Take control of the pool object.
  1756. */
  1757. r = bind_control_target(pool, ti);
  1758. if (r)
  1759. return r;
  1760. data_size = ti->len >> pool->block_shift;
  1761. r = dm_pool_get_data_dev_size(pool->pmd, &sb_data_size);
  1762. if (r) {
  1763. DMERR("failed to retrieve data device size");
  1764. return r;
  1765. }
  1766. if (data_size < sb_data_size) {
  1767. DMERR("pool target too small, is %llu blocks (expected %llu)",
  1768. data_size, sb_data_size);
  1769. return -EINVAL;
  1770. } else if (data_size > sb_data_size) {
  1771. r = dm_pool_resize_data_dev(pool->pmd, data_size);
  1772. if (r) {
  1773. DMERR("failed to resize data device");
  1774. return r;
  1775. }
  1776. r = dm_pool_commit_metadata(pool->pmd);
  1777. if (r) {
  1778. DMERR("%s: dm_pool_commit_metadata() failed, error = %d",
  1779. __func__, r);
  1780. return r;
  1781. }
  1782. }
  1783. return 0;
  1784. }
  1785. static void pool_resume(struct dm_target *ti)
  1786. {
  1787. struct pool_c *pt = ti->private;
  1788. struct pool *pool = pt->pool;
  1789. unsigned long flags;
  1790. spin_lock_irqsave(&pool->lock, flags);
  1791. pool->low_water_triggered = 0;
  1792. pool->no_free_space = 0;
  1793. __requeue_bios(pool);
  1794. spin_unlock_irqrestore(&pool->lock, flags);
  1795. do_waker(&pool->waker.work);
  1796. }
  1797. static void pool_postsuspend(struct dm_target *ti)
  1798. {
  1799. int r;
  1800. struct pool_c *pt = ti->private;
  1801. struct pool *pool = pt->pool;
  1802. cancel_delayed_work(&pool->waker);
  1803. flush_workqueue(pool->wq);
  1804. r = dm_pool_commit_metadata(pool->pmd);
  1805. if (r < 0) {
  1806. DMERR("%s: dm_pool_commit_metadata() failed, error = %d",
  1807. __func__, r);
  1808. /* FIXME: invalidate device? error the next FUA or FLUSH bio ?*/
  1809. }
  1810. }
  1811. static int check_arg_count(unsigned argc, unsigned args_required)
  1812. {
  1813. if (argc != args_required) {
  1814. DMWARN("Message received with %u arguments instead of %u.",
  1815. argc, args_required);
  1816. return -EINVAL;
  1817. }
  1818. return 0;
  1819. }
  1820. static int read_dev_id(char *arg, dm_thin_id *dev_id, int warning)
  1821. {
  1822. if (!kstrtoull(arg, 10, (unsigned long long *)dev_id) &&
  1823. *dev_id <= MAX_DEV_ID)
  1824. return 0;
  1825. if (warning)
  1826. DMWARN("Message received with invalid device id: %s", arg);
  1827. return -EINVAL;
  1828. }
  1829. static int process_create_thin_mesg(unsigned argc, char **argv, struct pool *pool)
  1830. {
  1831. dm_thin_id dev_id;
  1832. int r;
  1833. r = check_arg_count(argc, 2);
  1834. if (r)
  1835. return r;
  1836. r = read_dev_id(argv[1], &dev_id, 1);
  1837. if (r)
  1838. return r;
  1839. r = dm_pool_create_thin(pool->pmd, dev_id);
  1840. if (r) {
  1841. DMWARN("Creation of new thinly-provisioned device with id %s failed.",
  1842. argv[1]);
  1843. return r;
  1844. }
  1845. return 0;
  1846. }
  1847. static int process_create_snap_mesg(unsigned argc, char **argv, struct pool *pool)
  1848. {
  1849. dm_thin_id dev_id;
  1850. dm_thin_id origin_dev_id;
  1851. int r;
  1852. r = check_arg_count(argc, 3);
  1853. if (r)
  1854. return r;
  1855. r = read_dev_id(argv[1], &dev_id, 1);
  1856. if (r)
  1857. return r;
  1858. r = read_dev_id(argv[2], &origin_dev_id, 1);
  1859. if (r)
  1860. return r;
  1861. r = dm_pool_create_snap(pool->pmd, dev_id, origin_dev_id);
  1862. if (r) {
  1863. DMWARN("Creation of new snapshot %s of device %s failed.",
  1864. argv[1], argv[2]);
  1865. return r;
  1866. }
  1867. return 0;
  1868. }
  1869. static int process_delete_mesg(unsigned argc, char **argv, struct pool *pool)
  1870. {
  1871. dm_thin_id dev_id;
  1872. int r;
  1873. r = check_arg_count(argc, 2);
  1874. if (r)
  1875. return r;
  1876. r = read_dev_id(argv[1], &dev_id, 1);
  1877. if (r)
  1878. return r;
  1879. r = dm_pool_delete_thin_device(pool->pmd, dev_id);
  1880. if (r)
  1881. DMWARN("Deletion of thin device %s failed.", argv[1]);
  1882. return r;
  1883. }
  1884. static int process_set_transaction_id_mesg(unsigned argc, char **argv, struct pool *pool)
  1885. {
  1886. dm_thin_id old_id, new_id;
  1887. int r;
  1888. r = check_arg_count(argc, 3);
  1889. if (r)
  1890. return r;
  1891. if (kstrtoull(argv[1], 10, (unsigned long long *)&old_id)) {
  1892. DMWARN("set_transaction_id message: Unrecognised id %s.", argv[1]);
  1893. return -EINVAL;
  1894. }
  1895. if (kstrtoull(argv[2], 10, (unsigned long long *)&new_id)) {
  1896. DMWARN("set_transaction_id message: Unrecognised new id %s.", argv[2]);
  1897. return -EINVAL;
  1898. }
  1899. r = dm_pool_set_metadata_transaction_id(pool->pmd, old_id, new_id);
  1900. if (r) {
  1901. DMWARN("Failed to change transaction id from %s to %s.",
  1902. argv[1], argv[2]);
  1903. return r;
  1904. }
  1905. return 0;
  1906. }
  1907. /*
  1908. * Messages supported:
  1909. * create_thin <dev_id>
  1910. * create_snap <dev_id> <origin_id>
  1911. * delete <dev_id>
  1912. * trim <dev_id> <new_size_in_sectors>
  1913. * set_transaction_id <current_trans_id> <new_trans_id>
  1914. */
  1915. static int pool_message(struct dm_target *ti, unsigned argc, char **argv)
  1916. {
  1917. int r = -EINVAL;
  1918. struct pool_c *pt = ti->private;
  1919. struct pool *pool = pt->pool;
  1920. if (!strcasecmp(argv[0], "create_thin"))
  1921. r = process_create_thin_mesg(argc, argv, pool);
  1922. else if (!strcasecmp(argv[0], "create_snap"))
  1923. r = process_create_snap_mesg(argc, argv, pool);
  1924. else if (!strcasecmp(argv[0], "delete"))
  1925. r = process_delete_mesg(argc, argv, pool);
  1926. else if (!strcasecmp(argv[0], "set_transaction_id"))
  1927. r = process_set_transaction_id_mesg(argc, argv, pool);
  1928. else
  1929. DMWARN("Unrecognised thin pool target message received: %s", argv[0]);
  1930. if (!r) {
  1931. r = dm_pool_commit_metadata(pool->pmd);
  1932. if (r)
  1933. DMERR("%s message: dm_pool_commit_metadata() failed, error = %d",
  1934. argv[0], r);
  1935. }
  1936. return r;
  1937. }
  1938. /*
  1939. * Status line is:
  1940. * <transaction id> <used metadata sectors>/<total metadata sectors>
  1941. * <used data sectors>/<total data sectors> <held metadata root>
  1942. */
  1943. static int pool_status(struct dm_target *ti, status_type_t type,
  1944. char *result, unsigned maxlen)
  1945. {
  1946. int r, count;
  1947. unsigned sz = 0;
  1948. uint64_t transaction_id;
  1949. dm_block_t nr_free_blocks_data;
  1950. dm_block_t nr_free_blocks_metadata;
  1951. dm_block_t nr_blocks_data;
  1952. dm_block_t nr_blocks_metadata;
  1953. dm_block_t held_root;
  1954. char buf[BDEVNAME_SIZE];
  1955. char buf2[BDEVNAME_SIZE];
  1956. struct pool_c *pt = ti->private;
  1957. struct pool *pool = pt->pool;
  1958. switch (type) {
  1959. case STATUSTYPE_INFO:
  1960. r = dm_pool_get_metadata_transaction_id(pool->pmd,
  1961. &transaction_id);
  1962. if (r)
  1963. return r;
  1964. r = dm_pool_get_free_metadata_block_count(pool->pmd,
  1965. &nr_free_blocks_metadata);
  1966. if (r)
  1967. return r;
  1968. r = dm_pool_get_metadata_dev_size(pool->pmd, &nr_blocks_metadata);
  1969. if (r)
  1970. return r;
  1971. r = dm_pool_get_free_block_count(pool->pmd,
  1972. &nr_free_blocks_data);
  1973. if (r)
  1974. return r;
  1975. r = dm_pool_get_data_dev_size(pool->pmd, &nr_blocks_data);
  1976. if (r)
  1977. return r;
  1978. r = dm_pool_get_held_metadata_root(pool->pmd, &held_root);
  1979. if (r)
  1980. return r;
  1981. DMEMIT("%llu %llu/%llu %llu/%llu ",
  1982. (unsigned long long)transaction_id,
  1983. (unsigned long long)(nr_blocks_metadata - nr_free_blocks_metadata),
  1984. (unsigned long long)nr_blocks_metadata,
  1985. (unsigned long long)(nr_blocks_data - nr_free_blocks_data),
  1986. (unsigned long long)nr_blocks_data);
  1987. if (held_root)
  1988. DMEMIT("%llu", held_root);
  1989. else
  1990. DMEMIT("-");
  1991. break;
  1992. case STATUSTYPE_TABLE:
  1993. DMEMIT("%s %s %lu %llu ",
  1994. format_dev_t(buf, pt->metadata_dev->bdev->bd_dev),
  1995. format_dev_t(buf2, pt->data_dev->bdev->bd_dev),
  1996. (unsigned long)pool->sectors_per_block,
  1997. (unsigned long long)pt->low_water_blocks);
  1998. count = !pool->pf.zero_new_blocks + !pool->pf.discard_enabled +
  1999. !pt->pf.discard_passdown;
  2000. DMEMIT("%u ", count);
  2001. if (!pool->pf.zero_new_blocks)
  2002. DMEMIT("skip_block_zeroing ");
  2003. if (!pool->pf.discard_enabled)
  2004. DMEMIT("ignore_discard ");
  2005. if (!pt->pf.discard_passdown)
  2006. DMEMIT("no_discard_passdown ");
  2007. break;
  2008. }
  2009. return 0;
  2010. }
  2011. static int pool_iterate_devices(struct dm_target *ti,
  2012. iterate_devices_callout_fn fn, void *data)
  2013. {
  2014. struct pool_c *pt = ti->private;
  2015. return fn(ti, pt->data_dev, 0, ti->len, data);
  2016. }
  2017. static int pool_merge(struct dm_target *ti, struct bvec_merge_data *bvm,
  2018. struct bio_vec *biovec, int max_size)
  2019. {
  2020. struct pool_c *pt = ti->private;
  2021. struct request_queue *q = bdev_get_queue(pt->data_dev->bdev);
  2022. if (!q->merge_bvec_fn)
  2023. return max_size;
  2024. bvm->bi_bdev = pt->data_dev->bdev;
  2025. return min(max_size, q->merge_bvec_fn(q, bvm, biovec));
  2026. }
  2027. static void set_discard_limits(struct pool *pool, struct queue_limits *limits)
  2028. {
  2029. /*
  2030. * FIXME: these limits may be incompatible with the pool's data device
  2031. */
  2032. limits->max_discard_sectors = pool->sectors_per_block;
  2033. /*
  2034. * This is just a hint, and not enforced. We have to cope with
  2035. * bios that overlap 2 blocks.
  2036. */
  2037. limits->discard_granularity = pool->sectors_per_block << SECTOR_SHIFT;
  2038. limits->discard_zeroes_data = pool->pf.zero_new_blocks;
  2039. }
  2040. static void pool_io_hints(struct dm_target *ti, struct queue_limits *limits)
  2041. {
  2042. struct pool_c *pt = ti->private;
  2043. struct pool *pool = pt->pool;
  2044. blk_limits_io_min(limits, 0);
  2045. blk_limits_io_opt(limits, pool->sectors_per_block << SECTOR_SHIFT);
  2046. if (pool->pf.discard_enabled)
  2047. set_discard_limits(pool, limits);
  2048. }
  2049. static struct target_type pool_target = {
  2050. .name = "thin-pool",
  2051. .features = DM_TARGET_SINGLETON | DM_TARGET_ALWAYS_WRITEABLE |
  2052. DM_TARGET_IMMUTABLE,
  2053. .version = {1, 1, 0},
  2054. .module = THIS_MODULE,
  2055. .ctr = pool_ctr,
  2056. .dtr = pool_dtr,
  2057. .map = pool_map,
  2058. .postsuspend = pool_postsuspend,
  2059. .preresume = pool_preresume,
  2060. .resume = pool_resume,
  2061. .message = pool_message,
  2062. .status = pool_status,
  2063. .merge = pool_merge,
  2064. .iterate_devices = pool_iterate_devices,
  2065. .io_hints = pool_io_hints,
  2066. };
  2067. /*----------------------------------------------------------------
  2068. * Thin target methods
  2069. *--------------------------------------------------------------*/
  2070. static void thin_dtr(struct dm_target *ti)
  2071. {
  2072. struct thin_c *tc = ti->private;
  2073. mutex_lock(&dm_thin_pool_table.mutex);
  2074. __pool_dec(tc->pool);
  2075. dm_pool_close_thin_device(tc->td);
  2076. dm_put_device(ti, tc->pool_dev);
  2077. if (tc->origin_dev)
  2078. dm_put_device(ti, tc->origin_dev);
  2079. kfree(tc);
  2080. mutex_unlock(&dm_thin_pool_table.mutex);
  2081. }
  2082. /*
  2083. * Thin target parameters:
  2084. *
  2085. * <pool_dev> <dev_id> [origin_dev]
  2086. *
  2087. * pool_dev: the path to the pool (eg, /dev/mapper/my_pool)
  2088. * dev_id: the internal device identifier
  2089. * origin_dev: a device external to the pool that should act as the origin
  2090. *
  2091. * If the pool device has discards disabled, they get disabled for the thin
  2092. * device as well.
  2093. */
  2094. static int thin_ctr(struct dm_target *ti, unsigned argc, char **argv)
  2095. {
  2096. int r;
  2097. struct thin_c *tc;
  2098. struct dm_dev *pool_dev, *origin_dev;
  2099. struct mapped_device *pool_md;
  2100. mutex_lock(&dm_thin_pool_table.mutex);
  2101. if (argc != 2 && argc != 3) {
  2102. ti->error = "Invalid argument count";
  2103. r = -EINVAL;
  2104. goto out_unlock;
  2105. }
  2106. tc = ti->private = kzalloc(sizeof(*tc), GFP_KERNEL);
  2107. if (!tc) {
  2108. ti->error = "Out of memory";
  2109. r = -ENOMEM;
  2110. goto out_unlock;
  2111. }
  2112. if (argc == 3) {
  2113. r = dm_get_device(ti, argv[2], FMODE_READ, &origin_dev);
  2114. if (r) {
  2115. ti->error = "Error opening origin device";
  2116. goto bad_origin_dev;
  2117. }
  2118. tc->origin_dev = origin_dev;
  2119. }
  2120. r = dm_get_device(ti, argv[0], dm_table_get_mode(ti->table), &pool_dev);
  2121. if (r) {
  2122. ti->error = "Error opening pool device";
  2123. goto bad_pool_dev;
  2124. }
  2125. tc->pool_dev = pool_dev;
  2126. if (read_dev_id(argv[1], (unsigned long long *)&tc->dev_id, 0)) {
  2127. ti->error = "Invalid device id";
  2128. r = -EINVAL;
  2129. goto bad_common;
  2130. }
  2131. pool_md = dm_get_md(tc->pool_dev->bdev->bd_dev);
  2132. if (!pool_md) {
  2133. ti->error = "Couldn't get pool mapped device";
  2134. r = -EINVAL;
  2135. goto bad_common;
  2136. }
  2137. tc->pool = __pool_table_lookup(pool_md);
  2138. if (!tc->pool) {
  2139. ti->error = "Couldn't find pool object";
  2140. r = -EINVAL;
  2141. goto bad_pool_lookup;
  2142. }
  2143. __pool_inc(tc->pool);
  2144. r = dm_pool_open_thin_device(tc->pool->pmd, tc->dev_id, &tc->td);
  2145. if (r) {
  2146. ti->error = "Couldn't open thin internal device";
  2147. goto bad_thin_open;
  2148. }
  2149. ti->split_io = tc->pool->sectors_per_block;
  2150. ti->num_flush_requests = 1;
  2151. /* In case the pool supports discards, pass them on. */
  2152. if (tc->pool->pf.discard_enabled) {
  2153. ti->discards_supported = 1;
  2154. ti->num_discard_requests = 1;
  2155. }
  2156. dm_put(pool_md);
  2157. mutex_unlock(&dm_thin_pool_table.mutex);
  2158. return 0;
  2159. bad_thin_open:
  2160. __pool_dec(tc->pool);
  2161. bad_pool_lookup:
  2162. dm_put(pool_md);
  2163. bad_common:
  2164. dm_put_device(ti, tc->pool_dev);
  2165. bad_pool_dev:
  2166. if (tc->origin_dev)
  2167. dm_put_device(ti, tc->origin_dev);
  2168. bad_origin_dev:
  2169. kfree(tc);
  2170. out_unlock:
  2171. mutex_unlock(&dm_thin_pool_table.mutex);
  2172. return r;
  2173. }
  2174. static int thin_map(struct dm_target *ti, struct bio *bio,
  2175. union map_info *map_context)
  2176. {
  2177. bio->bi_sector = dm_target_offset(ti, bio->bi_sector);
  2178. return thin_bio_map(ti, bio, map_context);
  2179. }
  2180. static int thin_endio(struct dm_target *ti,
  2181. struct bio *bio, int err,
  2182. union map_info *map_context)
  2183. {
  2184. unsigned long flags;
  2185. struct endio_hook *h = map_context->ptr;
  2186. struct list_head work;
  2187. struct new_mapping *m, *tmp;
  2188. struct pool *pool = h->tc->pool;
  2189. if (h->shared_read_entry) {
  2190. INIT_LIST_HEAD(&work);
  2191. ds_dec(h->shared_read_entry, &work);
  2192. spin_lock_irqsave(&pool->lock, flags);
  2193. list_for_each_entry_safe(m, tmp, &work, list) {
  2194. list_del(&m->list);
  2195. m->quiesced = 1;
  2196. __maybe_add_mapping(m);
  2197. }
  2198. spin_unlock_irqrestore(&pool->lock, flags);
  2199. }
  2200. if (h->all_io_entry) {
  2201. INIT_LIST_HEAD(&work);
  2202. ds_dec(h->all_io_entry, &work);
  2203. spin_lock_irqsave(&pool->lock, flags);
  2204. list_for_each_entry_safe(m, tmp, &work, list)
  2205. list_add(&m->list, &pool->prepared_discards);
  2206. spin_unlock_irqrestore(&pool->lock, flags);
  2207. }
  2208. mempool_free(h, pool->endio_hook_pool);
  2209. return 0;
  2210. }
  2211. static void thin_postsuspend(struct dm_target *ti)
  2212. {
  2213. if (dm_noflush_suspending(ti))
  2214. requeue_io((struct thin_c *)ti->private);
  2215. }
  2216. /*
  2217. * <nr mapped sectors> <highest mapped sector>
  2218. */
  2219. static int thin_status(struct dm_target *ti, status_type_t type,
  2220. char *result, unsigned maxlen)
  2221. {
  2222. int r;
  2223. ssize_t sz = 0;
  2224. dm_block_t mapped, highest;
  2225. char buf[BDEVNAME_SIZE];
  2226. struct thin_c *tc = ti->private;
  2227. if (!tc->td)
  2228. DMEMIT("-");
  2229. else {
  2230. switch (type) {
  2231. case STATUSTYPE_INFO:
  2232. r = dm_thin_get_mapped_count(tc->td, &mapped);
  2233. if (r)
  2234. return r;
  2235. r = dm_thin_get_highest_mapped_block(tc->td, &highest);
  2236. if (r < 0)
  2237. return r;
  2238. DMEMIT("%llu ", mapped * tc->pool->sectors_per_block);
  2239. if (r)
  2240. DMEMIT("%llu", ((highest + 1) *
  2241. tc->pool->sectors_per_block) - 1);
  2242. else
  2243. DMEMIT("-");
  2244. break;
  2245. case STATUSTYPE_TABLE:
  2246. DMEMIT("%s %lu",
  2247. format_dev_t(buf, tc->pool_dev->bdev->bd_dev),
  2248. (unsigned long) tc->dev_id);
  2249. if (tc->origin_dev)
  2250. DMEMIT(" %s", format_dev_t(buf, tc->origin_dev->bdev->bd_dev));
  2251. break;
  2252. }
  2253. }
  2254. return 0;
  2255. }
  2256. static int thin_iterate_devices(struct dm_target *ti,
  2257. iterate_devices_callout_fn fn, void *data)
  2258. {
  2259. dm_block_t blocks;
  2260. struct thin_c *tc = ti->private;
  2261. /*
  2262. * We can't call dm_pool_get_data_dev_size() since that blocks. So
  2263. * we follow a more convoluted path through to the pool's target.
  2264. */
  2265. if (!tc->pool->ti)
  2266. return 0; /* nothing is bound */
  2267. blocks = tc->pool->ti->len >> tc->pool->block_shift;
  2268. if (blocks)
  2269. return fn(ti, tc->pool_dev, 0, tc->pool->sectors_per_block * blocks, data);
  2270. return 0;
  2271. }
  2272. static void thin_io_hints(struct dm_target *ti, struct queue_limits *limits)
  2273. {
  2274. struct thin_c *tc = ti->private;
  2275. struct pool *pool = tc->pool;
  2276. blk_limits_io_min(limits, 0);
  2277. blk_limits_io_opt(limits, pool->sectors_per_block << SECTOR_SHIFT);
  2278. set_discard_limits(pool, limits);
  2279. }
  2280. static struct target_type thin_target = {
  2281. .name = "thin",
  2282. .version = {1, 1, 0},
  2283. .module = THIS_MODULE,
  2284. .ctr = thin_ctr,
  2285. .dtr = thin_dtr,
  2286. .map = thin_map,
  2287. .end_io = thin_endio,
  2288. .postsuspend = thin_postsuspend,
  2289. .status = thin_status,
  2290. .iterate_devices = thin_iterate_devices,
  2291. .io_hints = thin_io_hints,
  2292. };
  2293. /*----------------------------------------------------------------*/
  2294. static int __init dm_thin_init(void)
  2295. {
  2296. int r;
  2297. pool_table_init();
  2298. r = dm_register_target(&thin_target);
  2299. if (r)
  2300. return r;
  2301. r = dm_register_target(&pool_target);
  2302. if (r)
  2303. dm_unregister_target(&thin_target);
  2304. return r;
  2305. }
  2306. static void dm_thin_exit(void)
  2307. {
  2308. dm_unregister_target(&thin_target);
  2309. dm_unregister_target(&pool_target);
  2310. }
  2311. module_init(dm_thin_init);
  2312. module_exit(dm_thin_exit);
  2313. MODULE_DESCRIPTION(DM_NAME " thin provisioning target");
  2314. MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
  2315. MODULE_LICENSE("GPL");