mmu.c 30 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135
  1. /*
  2. * linux/arch/arm/mm/mmu.c
  3. *
  4. * Copyright (C) 1995-2005 Russell King
  5. *
  6. * This program is free software; you can redistribute it and/or modify
  7. * it under the terms of the GNU General Public License version 2 as
  8. * published by the Free Software Foundation.
  9. */
  10. #include <linux/module.h>
  11. #include <linux/kernel.h>
  12. #include <linux/errno.h>
  13. #include <linux/init.h>
  14. #include <linux/mman.h>
  15. #include <linux/nodemask.h>
  16. #include <linux/memblock.h>
  17. #include <linux/fs.h>
  18. #include <linux/vmalloc.h>
  19. #include <asm/cp15.h>
  20. #include <asm/cputype.h>
  21. #include <asm/sections.h>
  22. #include <asm/cachetype.h>
  23. #include <asm/setup.h>
  24. #include <asm/sizes.h>
  25. #include <asm/smp_plat.h>
  26. #include <asm/tlb.h>
  27. #include <asm/highmem.h>
  28. #include <asm/system_info.h>
  29. #include <asm/traps.h>
  30. #include <asm/mach/arch.h>
  31. #include <asm/mach/map.h>
  32. #include "mm.h"
  33. /*
  34. * empty_zero_page is a special page that is used for
  35. * zero-initialized data and COW.
  36. */
  37. struct page *empty_zero_page;
  38. EXPORT_SYMBOL(empty_zero_page);
  39. /*
  40. * The pmd table for the upper-most set of pages.
  41. */
  42. pmd_t *top_pmd;
  43. #define CPOLICY_UNCACHED 0
  44. #define CPOLICY_BUFFERED 1
  45. #define CPOLICY_WRITETHROUGH 2
  46. #define CPOLICY_WRITEBACK 3
  47. #define CPOLICY_WRITEALLOC 4
  48. static unsigned int cachepolicy __initdata = CPOLICY_WRITEBACK;
  49. static unsigned int ecc_mask __initdata = 0;
  50. pgprot_t pgprot_user;
  51. pgprot_t pgprot_kernel;
  52. EXPORT_SYMBOL(pgprot_user);
  53. EXPORT_SYMBOL(pgprot_kernel);
  54. struct cachepolicy {
  55. const char policy[16];
  56. unsigned int cr_mask;
  57. pmdval_t pmd;
  58. pteval_t pte;
  59. };
  60. static struct cachepolicy cache_policies[] __initdata = {
  61. {
  62. .policy = "uncached",
  63. .cr_mask = CR_W|CR_C,
  64. .pmd = PMD_SECT_UNCACHED,
  65. .pte = L_PTE_MT_UNCACHED,
  66. }, {
  67. .policy = "buffered",
  68. .cr_mask = CR_C,
  69. .pmd = PMD_SECT_BUFFERED,
  70. .pte = L_PTE_MT_BUFFERABLE,
  71. }, {
  72. .policy = "writethrough",
  73. .cr_mask = 0,
  74. .pmd = PMD_SECT_WT,
  75. .pte = L_PTE_MT_WRITETHROUGH,
  76. }, {
  77. .policy = "writeback",
  78. .cr_mask = 0,
  79. .pmd = PMD_SECT_WB,
  80. .pte = L_PTE_MT_WRITEBACK,
  81. }, {
  82. .policy = "writealloc",
  83. .cr_mask = 0,
  84. .pmd = PMD_SECT_WBWA,
  85. .pte = L_PTE_MT_WRITEALLOC,
  86. }
  87. };
  88. /*
  89. * These are useful for identifying cache coherency
  90. * problems by allowing the cache or the cache and
  91. * writebuffer to be turned off. (Note: the write
  92. * buffer should not be on and the cache off).
  93. */
  94. static int __init early_cachepolicy(char *p)
  95. {
  96. int i;
  97. for (i = 0; i < ARRAY_SIZE(cache_policies); i++) {
  98. int len = strlen(cache_policies[i].policy);
  99. if (memcmp(p, cache_policies[i].policy, len) == 0) {
  100. cachepolicy = i;
  101. cr_alignment &= ~cache_policies[i].cr_mask;
  102. cr_no_alignment &= ~cache_policies[i].cr_mask;
  103. break;
  104. }
  105. }
  106. if (i == ARRAY_SIZE(cache_policies))
  107. printk(KERN_ERR "ERROR: unknown or unsupported cache policy\n");
  108. /*
  109. * This restriction is partly to do with the way we boot; it is
  110. * unpredictable to have memory mapped using two different sets of
  111. * memory attributes (shared, type, and cache attribs). We can not
  112. * change these attributes once the initial assembly has setup the
  113. * page tables.
  114. */
  115. if (cpu_architecture() >= CPU_ARCH_ARMv6) {
  116. printk(KERN_WARNING "Only cachepolicy=writeback supported on ARMv6 and later\n");
  117. cachepolicy = CPOLICY_WRITEBACK;
  118. }
  119. flush_cache_all();
  120. set_cr(cr_alignment);
  121. return 0;
  122. }
  123. early_param("cachepolicy", early_cachepolicy);
  124. static int __init early_nocache(char *__unused)
  125. {
  126. char *p = "buffered";
  127. printk(KERN_WARNING "nocache is deprecated; use cachepolicy=%s\n", p);
  128. early_cachepolicy(p);
  129. return 0;
  130. }
  131. early_param("nocache", early_nocache);
  132. static int __init early_nowrite(char *__unused)
  133. {
  134. char *p = "uncached";
  135. printk(KERN_WARNING "nowb is deprecated; use cachepolicy=%s\n", p);
  136. early_cachepolicy(p);
  137. return 0;
  138. }
  139. early_param("nowb", early_nowrite);
  140. #ifndef CONFIG_ARM_LPAE
  141. static int __init early_ecc(char *p)
  142. {
  143. if (memcmp(p, "on", 2) == 0)
  144. ecc_mask = PMD_PROTECTION;
  145. else if (memcmp(p, "off", 3) == 0)
  146. ecc_mask = 0;
  147. return 0;
  148. }
  149. early_param("ecc", early_ecc);
  150. #endif
  151. static int __init noalign_setup(char *__unused)
  152. {
  153. cr_alignment &= ~CR_A;
  154. cr_no_alignment &= ~CR_A;
  155. set_cr(cr_alignment);
  156. return 1;
  157. }
  158. __setup("noalign", noalign_setup);
  159. #ifndef CONFIG_SMP
  160. void adjust_cr(unsigned long mask, unsigned long set)
  161. {
  162. unsigned long flags;
  163. mask &= ~CR_A;
  164. set &= mask;
  165. local_irq_save(flags);
  166. cr_no_alignment = (cr_no_alignment & ~mask) | set;
  167. cr_alignment = (cr_alignment & ~mask) | set;
  168. set_cr((get_cr() & ~mask) | set);
  169. local_irq_restore(flags);
  170. }
  171. #endif
  172. #define PROT_PTE_DEVICE L_PTE_PRESENT|L_PTE_YOUNG|L_PTE_DIRTY|L_PTE_XN
  173. #define PROT_SECT_DEVICE PMD_TYPE_SECT|PMD_SECT_AP_WRITE
  174. static struct mem_type mem_types[] = {
  175. [MT_DEVICE] = { /* Strongly ordered / ARMv6 shared device */
  176. .prot_pte = PROT_PTE_DEVICE | L_PTE_MT_DEV_SHARED |
  177. L_PTE_SHARED,
  178. .prot_l1 = PMD_TYPE_TABLE,
  179. .prot_sect = PROT_SECT_DEVICE | PMD_SECT_S,
  180. .domain = DOMAIN_IO,
  181. },
  182. [MT_DEVICE_NONSHARED] = { /* ARMv6 non-shared device */
  183. .prot_pte = PROT_PTE_DEVICE | L_PTE_MT_DEV_NONSHARED,
  184. .prot_l1 = PMD_TYPE_TABLE,
  185. .prot_sect = PROT_SECT_DEVICE,
  186. .domain = DOMAIN_IO,
  187. },
  188. [MT_DEVICE_CACHED] = { /* ioremap_cached */
  189. .prot_pte = PROT_PTE_DEVICE | L_PTE_MT_DEV_CACHED,
  190. .prot_l1 = PMD_TYPE_TABLE,
  191. .prot_sect = PROT_SECT_DEVICE | PMD_SECT_WB,
  192. .domain = DOMAIN_IO,
  193. },
  194. [MT_DEVICE_WC] = { /* ioremap_wc */
  195. .prot_pte = PROT_PTE_DEVICE | L_PTE_MT_DEV_WC,
  196. .prot_l1 = PMD_TYPE_TABLE,
  197. .prot_sect = PROT_SECT_DEVICE,
  198. .domain = DOMAIN_IO,
  199. },
  200. [MT_UNCACHED] = {
  201. .prot_pte = PROT_PTE_DEVICE,
  202. .prot_l1 = PMD_TYPE_TABLE,
  203. .prot_sect = PMD_TYPE_SECT | PMD_SECT_XN,
  204. .domain = DOMAIN_IO,
  205. },
  206. [MT_CACHECLEAN] = {
  207. .prot_sect = PMD_TYPE_SECT | PMD_SECT_XN,
  208. .domain = DOMAIN_KERNEL,
  209. },
  210. #ifndef CONFIG_ARM_LPAE
  211. [MT_MINICLEAN] = {
  212. .prot_sect = PMD_TYPE_SECT | PMD_SECT_XN | PMD_SECT_MINICACHE,
  213. .domain = DOMAIN_KERNEL,
  214. },
  215. #endif
  216. [MT_LOW_VECTORS] = {
  217. .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
  218. L_PTE_RDONLY,
  219. .prot_l1 = PMD_TYPE_TABLE,
  220. .domain = DOMAIN_USER,
  221. },
  222. [MT_HIGH_VECTORS] = {
  223. .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
  224. L_PTE_USER | L_PTE_RDONLY,
  225. .prot_l1 = PMD_TYPE_TABLE,
  226. .domain = DOMAIN_USER,
  227. },
  228. [MT_MEMORY] = {
  229. .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY,
  230. .prot_l1 = PMD_TYPE_TABLE,
  231. .prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE,
  232. .domain = DOMAIN_KERNEL,
  233. },
  234. [MT_ROM] = {
  235. .prot_sect = PMD_TYPE_SECT,
  236. .domain = DOMAIN_KERNEL,
  237. },
  238. [MT_MEMORY_NONCACHED] = {
  239. .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
  240. L_PTE_MT_BUFFERABLE,
  241. .prot_l1 = PMD_TYPE_TABLE,
  242. .prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE,
  243. .domain = DOMAIN_KERNEL,
  244. },
  245. [MT_MEMORY_DTCM] = {
  246. .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
  247. L_PTE_XN,
  248. .prot_l1 = PMD_TYPE_TABLE,
  249. .prot_sect = PMD_TYPE_SECT | PMD_SECT_XN,
  250. .domain = DOMAIN_KERNEL,
  251. },
  252. [MT_MEMORY_ITCM] = {
  253. .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY,
  254. .prot_l1 = PMD_TYPE_TABLE,
  255. .domain = DOMAIN_KERNEL,
  256. },
  257. [MT_MEMORY_SO] = {
  258. .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
  259. L_PTE_MT_UNCACHED,
  260. .prot_l1 = PMD_TYPE_TABLE,
  261. .prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE | PMD_SECT_S |
  262. PMD_SECT_UNCACHED | PMD_SECT_XN,
  263. .domain = DOMAIN_KERNEL,
  264. },
  265. };
  266. const struct mem_type *get_mem_type(unsigned int type)
  267. {
  268. return type < ARRAY_SIZE(mem_types) ? &mem_types[type] : NULL;
  269. }
  270. EXPORT_SYMBOL(get_mem_type);
  271. /*
  272. * Adjust the PMD section entries according to the CPU in use.
  273. */
  274. static void __init build_mem_type_table(void)
  275. {
  276. struct cachepolicy *cp;
  277. unsigned int cr = get_cr();
  278. pteval_t user_pgprot, kern_pgprot, vecs_pgprot;
  279. int cpu_arch = cpu_architecture();
  280. int i;
  281. if (cpu_arch < CPU_ARCH_ARMv6) {
  282. #if defined(CONFIG_CPU_DCACHE_DISABLE)
  283. if (cachepolicy > CPOLICY_BUFFERED)
  284. cachepolicy = CPOLICY_BUFFERED;
  285. #elif defined(CONFIG_CPU_DCACHE_WRITETHROUGH)
  286. if (cachepolicy > CPOLICY_WRITETHROUGH)
  287. cachepolicy = CPOLICY_WRITETHROUGH;
  288. #endif
  289. }
  290. if (cpu_arch < CPU_ARCH_ARMv5) {
  291. if (cachepolicy >= CPOLICY_WRITEALLOC)
  292. cachepolicy = CPOLICY_WRITEBACK;
  293. ecc_mask = 0;
  294. }
  295. if (is_smp())
  296. cachepolicy = CPOLICY_WRITEALLOC;
  297. /*
  298. * Strip out features not present on earlier architectures.
  299. * Pre-ARMv5 CPUs don't have TEX bits. Pre-ARMv6 CPUs or those
  300. * without extended page tables don't have the 'Shared' bit.
  301. */
  302. if (cpu_arch < CPU_ARCH_ARMv5)
  303. for (i = 0; i < ARRAY_SIZE(mem_types); i++)
  304. mem_types[i].prot_sect &= ~PMD_SECT_TEX(7);
  305. if ((cpu_arch < CPU_ARCH_ARMv6 || !(cr & CR_XP)) && !cpu_is_xsc3())
  306. for (i = 0; i < ARRAY_SIZE(mem_types); i++)
  307. mem_types[i].prot_sect &= ~PMD_SECT_S;
  308. /*
  309. * ARMv5 and lower, bit 4 must be set for page tables (was: cache
  310. * "update-able on write" bit on ARM610). However, Xscale and
  311. * Xscale3 require this bit to be cleared.
  312. */
  313. if (cpu_is_xscale() || cpu_is_xsc3()) {
  314. for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
  315. mem_types[i].prot_sect &= ~PMD_BIT4;
  316. mem_types[i].prot_l1 &= ~PMD_BIT4;
  317. }
  318. } else if (cpu_arch < CPU_ARCH_ARMv6) {
  319. for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
  320. if (mem_types[i].prot_l1)
  321. mem_types[i].prot_l1 |= PMD_BIT4;
  322. if (mem_types[i].prot_sect)
  323. mem_types[i].prot_sect |= PMD_BIT4;
  324. }
  325. }
  326. /*
  327. * Mark the device areas according to the CPU/architecture.
  328. */
  329. if (cpu_is_xsc3() || (cpu_arch >= CPU_ARCH_ARMv6 && (cr & CR_XP))) {
  330. if (!cpu_is_xsc3()) {
  331. /*
  332. * Mark device regions on ARMv6+ as execute-never
  333. * to prevent speculative instruction fetches.
  334. */
  335. mem_types[MT_DEVICE].prot_sect |= PMD_SECT_XN;
  336. mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_XN;
  337. mem_types[MT_DEVICE_CACHED].prot_sect |= PMD_SECT_XN;
  338. mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_XN;
  339. }
  340. if (cpu_arch >= CPU_ARCH_ARMv7 && (cr & CR_TRE)) {
  341. /*
  342. * For ARMv7 with TEX remapping,
  343. * - shared device is SXCB=1100
  344. * - nonshared device is SXCB=0100
  345. * - write combine device mem is SXCB=0001
  346. * (Uncached Normal memory)
  347. */
  348. mem_types[MT_DEVICE].prot_sect |= PMD_SECT_TEX(1);
  349. mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(1);
  350. mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_BUFFERABLE;
  351. } else if (cpu_is_xsc3()) {
  352. /*
  353. * For Xscale3,
  354. * - shared device is TEXCB=00101
  355. * - nonshared device is TEXCB=01000
  356. * - write combine device mem is TEXCB=00100
  357. * (Inner/Outer Uncacheable in xsc3 parlance)
  358. */
  359. mem_types[MT_DEVICE].prot_sect |= PMD_SECT_TEX(1) | PMD_SECT_BUFFERED;
  360. mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(2);
  361. mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_TEX(1);
  362. } else {
  363. /*
  364. * For ARMv6 and ARMv7 without TEX remapping,
  365. * - shared device is TEXCB=00001
  366. * - nonshared device is TEXCB=01000
  367. * - write combine device mem is TEXCB=00100
  368. * (Uncached Normal in ARMv6 parlance).
  369. */
  370. mem_types[MT_DEVICE].prot_sect |= PMD_SECT_BUFFERED;
  371. mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(2);
  372. mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_TEX(1);
  373. }
  374. } else {
  375. /*
  376. * On others, write combining is "Uncached/Buffered"
  377. */
  378. mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_BUFFERABLE;
  379. }
  380. /*
  381. * Now deal with the memory-type mappings
  382. */
  383. cp = &cache_policies[cachepolicy];
  384. vecs_pgprot = kern_pgprot = user_pgprot = cp->pte;
  385. /*
  386. * Only use write-through for non-SMP systems
  387. */
  388. if (!is_smp() && cpu_arch >= CPU_ARCH_ARMv5 && cachepolicy > CPOLICY_WRITETHROUGH)
  389. vecs_pgprot = cache_policies[CPOLICY_WRITETHROUGH].pte;
  390. /*
  391. * Enable CPU-specific coherency if supported.
  392. * (Only available on XSC3 at the moment.)
  393. */
  394. if (arch_is_coherent() && cpu_is_xsc3()) {
  395. mem_types[MT_MEMORY].prot_sect |= PMD_SECT_S;
  396. mem_types[MT_MEMORY].prot_pte |= L_PTE_SHARED;
  397. mem_types[MT_MEMORY_NONCACHED].prot_sect |= PMD_SECT_S;
  398. mem_types[MT_MEMORY_NONCACHED].prot_pte |= L_PTE_SHARED;
  399. }
  400. /*
  401. * ARMv6 and above have extended page tables.
  402. */
  403. if (cpu_arch >= CPU_ARCH_ARMv6 && (cr & CR_XP)) {
  404. #ifndef CONFIG_ARM_LPAE
  405. /*
  406. * Mark cache clean areas and XIP ROM read only
  407. * from SVC mode and no access from userspace.
  408. */
  409. mem_types[MT_ROM].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
  410. mem_types[MT_MINICLEAN].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
  411. mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
  412. #endif
  413. if (is_smp()) {
  414. /*
  415. * Mark memory with the "shared" attribute
  416. * for SMP systems
  417. */
  418. user_pgprot |= L_PTE_SHARED;
  419. kern_pgprot |= L_PTE_SHARED;
  420. vecs_pgprot |= L_PTE_SHARED;
  421. mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_S;
  422. mem_types[MT_DEVICE_WC].prot_pte |= L_PTE_SHARED;
  423. mem_types[MT_DEVICE_CACHED].prot_sect |= PMD_SECT_S;
  424. mem_types[MT_DEVICE_CACHED].prot_pte |= L_PTE_SHARED;
  425. mem_types[MT_MEMORY].prot_sect |= PMD_SECT_S;
  426. mem_types[MT_MEMORY].prot_pte |= L_PTE_SHARED;
  427. mem_types[MT_MEMORY_NONCACHED].prot_sect |= PMD_SECT_S;
  428. mem_types[MT_MEMORY_NONCACHED].prot_pte |= L_PTE_SHARED;
  429. }
  430. }
  431. /*
  432. * Non-cacheable Normal - intended for memory areas that must
  433. * not cause dirty cache line writebacks when used
  434. */
  435. if (cpu_arch >= CPU_ARCH_ARMv6) {
  436. if (cpu_arch >= CPU_ARCH_ARMv7 && (cr & CR_TRE)) {
  437. /* Non-cacheable Normal is XCB = 001 */
  438. mem_types[MT_MEMORY_NONCACHED].prot_sect |=
  439. PMD_SECT_BUFFERED;
  440. } else {
  441. /* For both ARMv6 and non-TEX-remapping ARMv7 */
  442. mem_types[MT_MEMORY_NONCACHED].prot_sect |=
  443. PMD_SECT_TEX(1);
  444. }
  445. } else {
  446. mem_types[MT_MEMORY_NONCACHED].prot_sect |= PMD_SECT_BUFFERABLE;
  447. }
  448. #ifdef CONFIG_ARM_LPAE
  449. /*
  450. * Do not generate access flag faults for the kernel mappings.
  451. */
  452. for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
  453. mem_types[i].prot_pte |= PTE_EXT_AF;
  454. if (mem_types[i].prot_sect)
  455. mem_types[i].prot_sect |= PMD_SECT_AF;
  456. }
  457. kern_pgprot |= PTE_EXT_AF;
  458. vecs_pgprot |= PTE_EXT_AF;
  459. #endif
  460. for (i = 0; i < 16; i++) {
  461. unsigned long v = pgprot_val(protection_map[i]);
  462. protection_map[i] = __pgprot(v | user_pgprot);
  463. }
  464. mem_types[MT_LOW_VECTORS].prot_pte |= vecs_pgprot;
  465. mem_types[MT_HIGH_VECTORS].prot_pte |= vecs_pgprot;
  466. pgprot_user = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG | user_pgprot);
  467. pgprot_kernel = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG |
  468. L_PTE_DIRTY | kern_pgprot);
  469. mem_types[MT_LOW_VECTORS].prot_l1 |= ecc_mask;
  470. mem_types[MT_HIGH_VECTORS].prot_l1 |= ecc_mask;
  471. mem_types[MT_MEMORY].prot_sect |= ecc_mask | cp->pmd;
  472. mem_types[MT_MEMORY].prot_pte |= kern_pgprot;
  473. mem_types[MT_MEMORY_NONCACHED].prot_sect |= ecc_mask;
  474. mem_types[MT_ROM].prot_sect |= cp->pmd;
  475. switch (cp->pmd) {
  476. case PMD_SECT_WT:
  477. mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_WT;
  478. break;
  479. case PMD_SECT_WB:
  480. case PMD_SECT_WBWA:
  481. mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_WB;
  482. break;
  483. }
  484. printk("Memory policy: ECC %sabled, Data cache %s\n",
  485. ecc_mask ? "en" : "dis", cp->policy);
  486. for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
  487. struct mem_type *t = &mem_types[i];
  488. if (t->prot_l1)
  489. t->prot_l1 |= PMD_DOMAIN(t->domain);
  490. if (t->prot_sect)
  491. t->prot_sect |= PMD_DOMAIN(t->domain);
  492. }
  493. }
  494. #ifdef CONFIG_ARM_DMA_MEM_BUFFERABLE
  495. pgprot_t phys_mem_access_prot(struct file *file, unsigned long pfn,
  496. unsigned long size, pgprot_t vma_prot)
  497. {
  498. if (!pfn_valid(pfn))
  499. return pgprot_noncached(vma_prot);
  500. else if (file->f_flags & O_SYNC)
  501. return pgprot_writecombine(vma_prot);
  502. return vma_prot;
  503. }
  504. EXPORT_SYMBOL(phys_mem_access_prot);
  505. #endif
  506. #define vectors_base() (vectors_high() ? 0xffff0000 : 0)
  507. static void __init *early_alloc_aligned(unsigned long sz, unsigned long align)
  508. {
  509. void *ptr = __va(memblock_alloc(sz, align));
  510. memset(ptr, 0, sz);
  511. return ptr;
  512. }
  513. static void __init *early_alloc(unsigned long sz)
  514. {
  515. return early_alloc_aligned(sz, sz);
  516. }
  517. static pte_t * __init early_pte_alloc(pmd_t *pmd, unsigned long addr, unsigned long prot)
  518. {
  519. if (pmd_none(*pmd)) {
  520. pte_t *pte = early_alloc(PTE_HWTABLE_OFF + PTE_HWTABLE_SIZE);
  521. __pmd_populate(pmd, __pa(pte), prot);
  522. }
  523. BUG_ON(pmd_bad(*pmd));
  524. return pte_offset_kernel(pmd, addr);
  525. }
  526. static void __init alloc_init_pte(pmd_t *pmd, unsigned long addr,
  527. unsigned long end, unsigned long pfn,
  528. const struct mem_type *type)
  529. {
  530. pte_t *pte = early_pte_alloc(pmd, addr, type->prot_l1);
  531. do {
  532. set_pte_ext(pte, pfn_pte(pfn, __pgprot(type->prot_pte)), 0);
  533. pfn++;
  534. } while (pte++, addr += PAGE_SIZE, addr != end);
  535. }
  536. static void __init alloc_init_section(pud_t *pud, unsigned long addr,
  537. unsigned long end, phys_addr_t phys,
  538. const struct mem_type *type)
  539. {
  540. pmd_t *pmd = pmd_offset(pud, addr);
  541. /*
  542. * Try a section mapping - end, addr and phys must all be aligned
  543. * to a section boundary. Note that PMDs refer to the individual
  544. * L1 entries, whereas PGDs refer to a group of L1 entries making
  545. * up one logical pointer to an L2 table.
  546. */
  547. if (((addr | end | phys) & ~SECTION_MASK) == 0) {
  548. pmd_t *p = pmd;
  549. #ifndef CONFIG_ARM_LPAE
  550. if (addr & SECTION_SIZE)
  551. pmd++;
  552. #endif
  553. do {
  554. *pmd = __pmd(phys | type->prot_sect);
  555. phys += SECTION_SIZE;
  556. } while (pmd++, addr += SECTION_SIZE, addr != end);
  557. flush_pmd_entry(p);
  558. } else {
  559. /*
  560. * No need to loop; pte's aren't interested in the
  561. * individual L1 entries.
  562. */
  563. alloc_init_pte(pmd, addr, end, __phys_to_pfn(phys), type);
  564. }
  565. }
  566. static void __init alloc_init_pud(pgd_t *pgd, unsigned long addr,
  567. unsigned long end, unsigned long phys, const struct mem_type *type)
  568. {
  569. pud_t *pud = pud_offset(pgd, addr);
  570. unsigned long next;
  571. do {
  572. next = pud_addr_end(addr, end);
  573. alloc_init_section(pud, addr, next, phys, type);
  574. phys += next - addr;
  575. } while (pud++, addr = next, addr != end);
  576. }
  577. #ifndef CONFIG_ARM_LPAE
  578. static void __init create_36bit_mapping(struct map_desc *md,
  579. const struct mem_type *type)
  580. {
  581. unsigned long addr, length, end;
  582. phys_addr_t phys;
  583. pgd_t *pgd;
  584. addr = md->virtual;
  585. phys = __pfn_to_phys(md->pfn);
  586. length = PAGE_ALIGN(md->length);
  587. if (!(cpu_architecture() >= CPU_ARCH_ARMv6 || cpu_is_xsc3())) {
  588. printk(KERN_ERR "MM: CPU does not support supersection "
  589. "mapping for 0x%08llx at 0x%08lx\n",
  590. (long long)__pfn_to_phys((u64)md->pfn), addr);
  591. return;
  592. }
  593. /* N.B. ARMv6 supersections are only defined to work with domain 0.
  594. * Since domain assignments can in fact be arbitrary, the
  595. * 'domain == 0' check below is required to insure that ARMv6
  596. * supersections are only allocated for domain 0 regardless
  597. * of the actual domain assignments in use.
  598. */
  599. if (type->domain) {
  600. printk(KERN_ERR "MM: invalid domain in supersection "
  601. "mapping for 0x%08llx at 0x%08lx\n",
  602. (long long)__pfn_to_phys((u64)md->pfn), addr);
  603. return;
  604. }
  605. if ((addr | length | __pfn_to_phys(md->pfn)) & ~SUPERSECTION_MASK) {
  606. printk(KERN_ERR "MM: cannot create mapping for 0x%08llx"
  607. " at 0x%08lx invalid alignment\n",
  608. (long long)__pfn_to_phys((u64)md->pfn), addr);
  609. return;
  610. }
  611. /*
  612. * Shift bits [35:32] of address into bits [23:20] of PMD
  613. * (See ARMv6 spec).
  614. */
  615. phys |= (((md->pfn >> (32 - PAGE_SHIFT)) & 0xF) << 20);
  616. pgd = pgd_offset_k(addr);
  617. end = addr + length;
  618. do {
  619. pud_t *pud = pud_offset(pgd, addr);
  620. pmd_t *pmd = pmd_offset(pud, addr);
  621. int i;
  622. for (i = 0; i < 16; i++)
  623. *pmd++ = __pmd(phys | type->prot_sect | PMD_SECT_SUPER);
  624. addr += SUPERSECTION_SIZE;
  625. phys += SUPERSECTION_SIZE;
  626. pgd += SUPERSECTION_SIZE >> PGDIR_SHIFT;
  627. } while (addr != end);
  628. }
  629. #endif /* !CONFIG_ARM_LPAE */
  630. /*
  631. * Create the page directory entries and any necessary
  632. * page tables for the mapping specified by `md'. We
  633. * are able to cope here with varying sizes and address
  634. * offsets, and we take full advantage of sections and
  635. * supersections.
  636. */
  637. static void __init create_mapping(struct map_desc *md)
  638. {
  639. unsigned long addr, length, end;
  640. phys_addr_t phys;
  641. const struct mem_type *type;
  642. pgd_t *pgd;
  643. if (md->virtual != vectors_base() && md->virtual < TASK_SIZE) {
  644. printk(KERN_WARNING "BUG: not creating mapping for 0x%08llx"
  645. " at 0x%08lx in user region\n",
  646. (long long)__pfn_to_phys((u64)md->pfn), md->virtual);
  647. return;
  648. }
  649. if ((md->type == MT_DEVICE || md->type == MT_ROM) &&
  650. md->virtual >= PAGE_OFFSET &&
  651. (md->virtual < VMALLOC_START || md->virtual >= VMALLOC_END)) {
  652. printk(KERN_WARNING "BUG: mapping for 0x%08llx"
  653. " at 0x%08lx out of vmalloc space\n",
  654. (long long)__pfn_to_phys((u64)md->pfn), md->virtual);
  655. }
  656. type = &mem_types[md->type];
  657. #ifndef CONFIG_ARM_LPAE
  658. /*
  659. * Catch 36-bit addresses
  660. */
  661. if (md->pfn >= 0x100000) {
  662. create_36bit_mapping(md, type);
  663. return;
  664. }
  665. #endif
  666. addr = md->virtual & PAGE_MASK;
  667. phys = __pfn_to_phys(md->pfn);
  668. length = PAGE_ALIGN(md->length + (md->virtual & ~PAGE_MASK));
  669. if (type->prot_l1 == 0 && ((addr | phys | length) & ~SECTION_MASK)) {
  670. printk(KERN_WARNING "BUG: map for 0x%08llx at 0x%08lx can not "
  671. "be mapped using pages, ignoring.\n",
  672. (long long)__pfn_to_phys(md->pfn), addr);
  673. return;
  674. }
  675. pgd = pgd_offset_k(addr);
  676. end = addr + length;
  677. do {
  678. unsigned long next = pgd_addr_end(addr, end);
  679. alloc_init_pud(pgd, addr, next, phys, type);
  680. phys += next - addr;
  681. addr = next;
  682. } while (pgd++, addr != end);
  683. }
  684. /*
  685. * Create the architecture specific mappings
  686. */
  687. void __init iotable_init(struct map_desc *io_desc, int nr)
  688. {
  689. struct map_desc *md;
  690. struct vm_struct *vm;
  691. if (!nr)
  692. return;
  693. vm = early_alloc_aligned(sizeof(*vm) * nr, __alignof__(*vm));
  694. for (md = io_desc; nr; md++, nr--) {
  695. create_mapping(md);
  696. vm->addr = (void *)(md->virtual & PAGE_MASK);
  697. vm->size = PAGE_ALIGN(md->length + (md->virtual & ~PAGE_MASK));
  698. vm->phys_addr = __pfn_to_phys(md->pfn);
  699. vm->flags = VM_IOREMAP | VM_ARM_STATIC_MAPPING;
  700. vm->flags |= VM_ARM_MTYPE(md->type);
  701. vm->caller = iotable_init;
  702. vm_area_add_early(vm++);
  703. }
  704. }
  705. static void * __initdata vmalloc_min =
  706. (void *)(VMALLOC_END - (240 << 20) - VMALLOC_OFFSET);
  707. /*
  708. * vmalloc=size forces the vmalloc area to be exactly 'size'
  709. * bytes. This can be used to increase (or decrease) the vmalloc
  710. * area - the default is 240m.
  711. */
  712. static int __init early_vmalloc(char *arg)
  713. {
  714. unsigned long vmalloc_reserve = memparse(arg, NULL);
  715. if (vmalloc_reserve < SZ_16M) {
  716. vmalloc_reserve = SZ_16M;
  717. printk(KERN_WARNING
  718. "vmalloc area too small, limiting to %luMB\n",
  719. vmalloc_reserve >> 20);
  720. }
  721. if (vmalloc_reserve > VMALLOC_END - (PAGE_OFFSET + SZ_32M)) {
  722. vmalloc_reserve = VMALLOC_END - (PAGE_OFFSET + SZ_32M);
  723. printk(KERN_WARNING
  724. "vmalloc area is too big, limiting to %luMB\n",
  725. vmalloc_reserve >> 20);
  726. }
  727. vmalloc_min = (void *)(VMALLOC_END - vmalloc_reserve);
  728. return 0;
  729. }
  730. early_param("vmalloc", early_vmalloc);
  731. static phys_addr_t lowmem_limit __initdata = 0;
  732. void __init sanity_check_meminfo(void)
  733. {
  734. int i, j, highmem = 0;
  735. for (i = 0, j = 0; i < meminfo.nr_banks; i++) {
  736. struct membank *bank = &meminfo.bank[j];
  737. *bank = meminfo.bank[i];
  738. if (bank->start > ULONG_MAX)
  739. highmem = 1;
  740. #ifdef CONFIG_HIGHMEM
  741. if (__va(bank->start) >= vmalloc_min ||
  742. __va(bank->start) < (void *)PAGE_OFFSET)
  743. highmem = 1;
  744. bank->highmem = highmem;
  745. /*
  746. * Split those memory banks which are partially overlapping
  747. * the vmalloc area greatly simplifying things later.
  748. */
  749. if (!highmem && __va(bank->start) < vmalloc_min &&
  750. bank->size > vmalloc_min - __va(bank->start)) {
  751. if (meminfo.nr_banks >= NR_BANKS) {
  752. printk(KERN_CRIT "NR_BANKS too low, "
  753. "ignoring high memory\n");
  754. } else {
  755. memmove(bank + 1, bank,
  756. (meminfo.nr_banks - i) * sizeof(*bank));
  757. meminfo.nr_banks++;
  758. i++;
  759. bank[1].size -= vmalloc_min - __va(bank->start);
  760. bank[1].start = __pa(vmalloc_min - 1) + 1;
  761. bank[1].highmem = highmem = 1;
  762. j++;
  763. }
  764. bank->size = vmalloc_min - __va(bank->start);
  765. }
  766. #else
  767. bank->highmem = highmem;
  768. /*
  769. * Highmem banks not allowed with !CONFIG_HIGHMEM.
  770. */
  771. if (highmem) {
  772. printk(KERN_NOTICE "Ignoring RAM at %.8llx-%.8llx "
  773. "(!CONFIG_HIGHMEM).\n",
  774. (unsigned long long)bank->start,
  775. (unsigned long long)bank->start + bank->size - 1);
  776. continue;
  777. }
  778. /*
  779. * Check whether this memory bank would entirely overlap
  780. * the vmalloc area.
  781. */
  782. if (__va(bank->start) >= vmalloc_min ||
  783. __va(bank->start) < (void *)PAGE_OFFSET) {
  784. printk(KERN_NOTICE "Ignoring RAM at %.8llx-%.8llx "
  785. "(vmalloc region overlap).\n",
  786. (unsigned long long)bank->start,
  787. (unsigned long long)bank->start + bank->size - 1);
  788. continue;
  789. }
  790. /*
  791. * Check whether this memory bank would partially overlap
  792. * the vmalloc area.
  793. */
  794. if (__va(bank->start + bank->size) > vmalloc_min ||
  795. __va(bank->start + bank->size) < __va(bank->start)) {
  796. unsigned long newsize = vmalloc_min - __va(bank->start);
  797. printk(KERN_NOTICE "Truncating RAM at %.8llx-%.8llx "
  798. "to -%.8llx (vmalloc region overlap).\n",
  799. (unsigned long long)bank->start,
  800. (unsigned long long)bank->start + bank->size - 1,
  801. (unsigned long long)bank->start + newsize - 1);
  802. bank->size = newsize;
  803. }
  804. #endif
  805. if (!bank->highmem && bank->start + bank->size > lowmem_limit)
  806. lowmem_limit = bank->start + bank->size;
  807. j++;
  808. }
  809. #ifdef CONFIG_HIGHMEM
  810. if (highmem) {
  811. const char *reason = NULL;
  812. if (cache_is_vipt_aliasing()) {
  813. /*
  814. * Interactions between kmap and other mappings
  815. * make highmem support with aliasing VIPT caches
  816. * rather difficult.
  817. */
  818. reason = "with VIPT aliasing cache";
  819. }
  820. if (reason) {
  821. printk(KERN_CRIT "HIGHMEM is not supported %s, ignoring high memory\n",
  822. reason);
  823. while (j > 0 && meminfo.bank[j - 1].highmem)
  824. j--;
  825. }
  826. }
  827. #endif
  828. meminfo.nr_banks = j;
  829. high_memory = __va(lowmem_limit - 1) + 1;
  830. memblock_set_current_limit(lowmem_limit);
  831. }
  832. static inline void prepare_page_table(void)
  833. {
  834. unsigned long addr;
  835. phys_addr_t end;
  836. /*
  837. * Clear out all the mappings below the kernel image.
  838. */
  839. for (addr = 0; addr < MODULES_VADDR; addr += PMD_SIZE)
  840. pmd_clear(pmd_off_k(addr));
  841. #ifdef CONFIG_XIP_KERNEL
  842. /* The XIP kernel is mapped in the module area -- skip over it */
  843. addr = ((unsigned long)_etext + PMD_SIZE - 1) & PMD_MASK;
  844. #endif
  845. for ( ; addr < PAGE_OFFSET; addr += PMD_SIZE)
  846. pmd_clear(pmd_off_k(addr));
  847. /*
  848. * Find the end of the first block of lowmem.
  849. */
  850. end = memblock.memory.regions[0].base + memblock.memory.regions[0].size;
  851. if (end >= lowmem_limit)
  852. end = lowmem_limit;
  853. /*
  854. * Clear out all the kernel space mappings, except for the first
  855. * memory bank, up to the vmalloc region.
  856. */
  857. for (addr = __phys_to_virt(end);
  858. addr < VMALLOC_START; addr += PMD_SIZE)
  859. pmd_clear(pmd_off_k(addr));
  860. }
  861. #ifdef CONFIG_ARM_LPAE
  862. /* the first page is reserved for pgd */
  863. #define SWAPPER_PG_DIR_SIZE (PAGE_SIZE + \
  864. PTRS_PER_PGD * PTRS_PER_PMD * sizeof(pmd_t))
  865. #else
  866. #define SWAPPER_PG_DIR_SIZE (PTRS_PER_PGD * sizeof(pgd_t))
  867. #endif
  868. /*
  869. * Reserve the special regions of memory
  870. */
  871. void __init arm_mm_memblock_reserve(void)
  872. {
  873. /*
  874. * Reserve the page tables. These are already in use,
  875. * and can only be in node 0.
  876. */
  877. memblock_reserve(__pa(swapper_pg_dir), SWAPPER_PG_DIR_SIZE);
  878. #ifdef CONFIG_SA1111
  879. /*
  880. * Because of the SA1111 DMA bug, we want to preserve our
  881. * precious DMA-able memory...
  882. */
  883. memblock_reserve(PHYS_OFFSET, __pa(swapper_pg_dir) - PHYS_OFFSET);
  884. #endif
  885. }
  886. /*
  887. * Set up the device mappings. Since we clear out the page tables for all
  888. * mappings above VMALLOC_START, we will remove any debug device mappings.
  889. * This means you have to be careful how you debug this function, or any
  890. * called function. This means you can't use any function or debugging
  891. * method which may touch any device, otherwise the kernel _will_ crash.
  892. */
  893. static void __init devicemaps_init(struct machine_desc *mdesc)
  894. {
  895. struct map_desc map;
  896. unsigned long addr;
  897. void *vectors;
  898. /*
  899. * Allocate the vector page early.
  900. */
  901. vectors = early_alloc(PAGE_SIZE);
  902. early_trap_init(vectors);
  903. for (addr = VMALLOC_START; addr; addr += PMD_SIZE)
  904. pmd_clear(pmd_off_k(addr));
  905. /*
  906. * Map the kernel if it is XIP.
  907. * It is always first in the modulearea.
  908. */
  909. #ifdef CONFIG_XIP_KERNEL
  910. map.pfn = __phys_to_pfn(CONFIG_XIP_PHYS_ADDR & SECTION_MASK);
  911. map.virtual = MODULES_VADDR;
  912. map.length = ((unsigned long)_etext - map.virtual + ~SECTION_MASK) & SECTION_MASK;
  913. map.type = MT_ROM;
  914. create_mapping(&map);
  915. #endif
  916. /*
  917. * Map the cache flushing regions.
  918. */
  919. #ifdef FLUSH_BASE
  920. map.pfn = __phys_to_pfn(FLUSH_BASE_PHYS);
  921. map.virtual = FLUSH_BASE;
  922. map.length = SZ_1M;
  923. map.type = MT_CACHECLEAN;
  924. create_mapping(&map);
  925. #endif
  926. #ifdef FLUSH_BASE_MINICACHE
  927. map.pfn = __phys_to_pfn(FLUSH_BASE_PHYS + SZ_1M);
  928. map.virtual = FLUSH_BASE_MINICACHE;
  929. map.length = SZ_1M;
  930. map.type = MT_MINICLEAN;
  931. create_mapping(&map);
  932. #endif
  933. /*
  934. * Create a mapping for the machine vectors at the high-vectors
  935. * location (0xffff0000). If we aren't using high-vectors, also
  936. * create a mapping at the low-vectors virtual address.
  937. */
  938. map.pfn = __phys_to_pfn(virt_to_phys(vectors));
  939. map.virtual = 0xffff0000;
  940. map.length = PAGE_SIZE;
  941. map.type = MT_HIGH_VECTORS;
  942. create_mapping(&map);
  943. if (!vectors_high()) {
  944. map.virtual = 0;
  945. map.type = MT_LOW_VECTORS;
  946. create_mapping(&map);
  947. }
  948. /*
  949. * Ask the machine support to map in the statically mapped devices.
  950. */
  951. if (mdesc->map_io)
  952. mdesc->map_io();
  953. /*
  954. * Finally flush the caches and tlb to ensure that we're in a
  955. * consistent state wrt the writebuffer. This also ensures that
  956. * any write-allocated cache lines in the vector page are written
  957. * back. After this point, we can start to touch devices again.
  958. */
  959. local_flush_tlb_all();
  960. flush_cache_all();
  961. }
  962. static void __init kmap_init(void)
  963. {
  964. #ifdef CONFIG_HIGHMEM
  965. pkmap_page_table = early_pte_alloc(pmd_off_k(PKMAP_BASE),
  966. PKMAP_BASE, _PAGE_KERNEL_TABLE);
  967. #endif
  968. }
  969. static void __init map_lowmem(void)
  970. {
  971. struct memblock_region *reg;
  972. /* Map all the lowmem memory banks. */
  973. for_each_memblock(memory, reg) {
  974. phys_addr_t start = reg->base;
  975. phys_addr_t end = start + reg->size;
  976. struct map_desc map;
  977. if (end > lowmem_limit)
  978. end = lowmem_limit;
  979. if (start >= end)
  980. break;
  981. map.pfn = __phys_to_pfn(start);
  982. map.virtual = __phys_to_virt(start);
  983. map.length = end - start;
  984. map.type = MT_MEMORY;
  985. create_mapping(&map);
  986. }
  987. }
  988. /*
  989. * paging_init() sets up the page tables, initialises the zone memory
  990. * maps, and sets up the zero page, bad page and bad page tables.
  991. */
  992. void __init paging_init(struct machine_desc *mdesc)
  993. {
  994. void *zero_page;
  995. memblock_set_current_limit(lowmem_limit);
  996. build_mem_type_table();
  997. prepare_page_table();
  998. map_lowmem();
  999. devicemaps_init(mdesc);
  1000. kmap_init();
  1001. top_pmd = pmd_off_k(0xffff0000);
  1002. /* allocate the zero page. */
  1003. zero_page = early_alloc(PAGE_SIZE);
  1004. bootmem_init();
  1005. empty_zero_page = virt_to_page(zero_page);
  1006. __flush_dcache_page(NULL, empty_zero_page);
  1007. }