sched_debug.c 7.0 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315
  1. /*
  2. * kernel/time/sched_debug.c
  3. *
  4. * Print the CFS rbtree
  5. *
  6. * Copyright(C) 2007, Red Hat, Inc., Ingo Molnar
  7. *
  8. * This program is free software; you can redistribute it and/or modify
  9. * it under the terms of the GNU General Public License version 2 as
  10. * published by the Free Software Foundation.
  11. */
  12. #include <linux/proc_fs.h>
  13. #include <linux/sched.h>
  14. #include <linux/seq_file.h>
  15. #include <linux/kallsyms.h>
  16. #include <linux/utsname.h>
  17. /*
  18. * This allows printing both to /proc/sched_debug and
  19. * to the console
  20. */
  21. #define SEQ_printf(m, x...) \
  22. do { \
  23. if (m) \
  24. seq_printf(m, x); \
  25. else \
  26. printk(x); \
  27. } while (0)
  28. static void
  29. print_task(struct seq_file *m, struct rq *rq, struct task_struct *p)
  30. {
  31. if (rq->curr == p)
  32. SEQ_printf(m, "R");
  33. else
  34. SEQ_printf(m, " ");
  35. SEQ_printf(m, "%15s %5d %15Ld %13Ld %13Ld %9Ld %5d ",
  36. p->comm, p->pid,
  37. (long long)p->se.fair_key,
  38. (long long)(p->se.fair_key - rq->cfs.fair_clock),
  39. (long long)p->se.wait_runtime,
  40. (long long)(p->nvcsw + p->nivcsw),
  41. p->prio);
  42. #ifdef CONFIG_SCHEDSTATS
  43. SEQ_printf(m, "%15Ld %15Ld %15Ld %15Ld %15Ld %15Ld\n",
  44. (long long)p->se.vruntime,
  45. (long long)p->se.sum_exec_runtime,
  46. (long long)p->se.sum_wait_runtime,
  47. (long long)p->se.sum_sleep_runtime,
  48. (long long)p->se.wait_runtime_overruns,
  49. (long long)p->se.wait_runtime_underruns);
  50. #else
  51. SEQ_printf(m, "%15Ld %15Ld %15Ld %15Ld %15Ld\n",
  52. 0LL, 0LL, 0LL, 0LL, 0LL);
  53. #endif
  54. }
  55. static void print_rq(struct seq_file *m, struct rq *rq, int rq_cpu)
  56. {
  57. struct task_struct *g, *p;
  58. SEQ_printf(m,
  59. "\nrunnable tasks:\n"
  60. " task PID tree-key delta waiting"
  61. " switches prio"
  62. " exec-runtime sum-exec sum-wait sum-sleep"
  63. " wait-overrun wait-underrun\n"
  64. "------------------------------------------------------------------"
  65. "--------------------------------"
  66. "------------------------------------------------"
  67. "--------------------------------\n");
  68. read_lock_irq(&tasklist_lock);
  69. do_each_thread(g, p) {
  70. if (!p->se.on_rq || task_cpu(p) != rq_cpu)
  71. continue;
  72. print_task(m, rq, p);
  73. } while_each_thread(g, p);
  74. read_unlock_irq(&tasklist_lock);
  75. }
  76. static void
  77. print_cfs_rq_runtime_sum(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq)
  78. {
  79. s64 wait_runtime_rq_sum = 0;
  80. struct task_struct *p;
  81. struct rb_node *curr;
  82. unsigned long flags;
  83. struct rq *rq = &per_cpu(runqueues, cpu);
  84. spin_lock_irqsave(&rq->lock, flags);
  85. curr = first_fair(cfs_rq);
  86. while (curr) {
  87. p = rb_entry(curr, struct task_struct, se.run_node);
  88. wait_runtime_rq_sum += p->se.wait_runtime;
  89. curr = rb_next(curr);
  90. }
  91. spin_unlock_irqrestore(&rq->lock, flags);
  92. SEQ_printf(m, " .%-30s: %Ld\n", "wait_runtime_rq_sum",
  93. (long long)wait_runtime_rq_sum);
  94. }
  95. void print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq)
  96. {
  97. s64 MIN_vruntime = -1, max_vruntime = -1, spread;
  98. struct rq *rq = &per_cpu(runqueues, cpu);
  99. struct sched_entity *last;
  100. unsigned long flags;
  101. SEQ_printf(m, "\ncfs_rq\n");
  102. #define P(x) \
  103. SEQ_printf(m, " .%-30s: %Ld\n", #x, (long long)(cfs_rq->x))
  104. P(fair_clock);
  105. P(exec_clock);
  106. P(min_vruntime);
  107. spin_lock_irqsave(&rq->lock, flags);
  108. if (cfs_rq->rb_leftmost)
  109. MIN_vruntime = (__pick_next_entity(cfs_rq))->vruntime;
  110. last = __pick_last_entity(cfs_rq);
  111. if (last)
  112. max_vruntime = last->vruntime;
  113. spin_unlock_irqrestore(&rq->lock, flags);
  114. SEQ_printf(m, " .%-30s: %Ld\n", "MIN_vruntime",
  115. (long long)MIN_vruntime);
  116. SEQ_printf(m, " .%-30s: %Ld\n", "max_vruntime",
  117. (long long)max_vruntime);
  118. spread = max_vruntime - MIN_vruntime;
  119. SEQ_printf(m, " .%-30s: %Ld\n", "spread",
  120. (long long)spread);
  121. P(wait_runtime);
  122. P(wait_runtime_overruns);
  123. P(wait_runtime_underruns);
  124. P(sleeper_bonus);
  125. #undef P
  126. print_cfs_rq_runtime_sum(m, cpu, cfs_rq);
  127. }
  128. static void print_cpu(struct seq_file *m, int cpu)
  129. {
  130. struct rq *rq = &per_cpu(runqueues, cpu);
  131. #ifdef CONFIG_X86
  132. {
  133. unsigned int freq = cpu_khz ? : 1;
  134. SEQ_printf(m, "\ncpu#%d, %u.%03u MHz\n",
  135. cpu, freq / 1000, (freq % 1000));
  136. }
  137. #else
  138. SEQ_printf(m, "\ncpu#%d\n", cpu);
  139. #endif
  140. #define P(x) \
  141. SEQ_printf(m, " .%-30s: %Ld\n", #x, (long long)(rq->x))
  142. P(nr_running);
  143. SEQ_printf(m, " .%-30s: %lu\n", "load",
  144. rq->ls.load.weight);
  145. P(nr_switches);
  146. P(nr_load_updates);
  147. P(nr_uninterruptible);
  148. SEQ_printf(m, " .%-30s: %lu\n", "jiffies", jiffies);
  149. P(next_balance);
  150. P(curr->pid);
  151. P(clock);
  152. P(idle_clock);
  153. P(prev_clock_raw);
  154. P(clock_warps);
  155. P(clock_overflows);
  156. P(clock_deep_idle_events);
  157. P(clock_max_delta);
  158. P(cpu_load[0]);
  159. P(cpu_load[1]);
  160. P(cpu_load[2]);
  161. P(cpu_load[3]);
  162. P(cpu_load[4]);
  163. #undef P
  164. print_cfs_stats(m, cpu);
  165. print_rq(m, rq, cpu);
  166. }
  167. static int sched_debug_show(struct seq_file *m, void *v)
  168. {
  169. u64 now = ktime_to_ns(ktime_get());
  170. int cpu;
  171. SEQ_printf(m, "Sched Debug Version: v0.05-v20, %s %.*s\n",
  172. init_utsname()->release,
  173. (int)strcspn(init_utsname()->version, " "),
  174. init_utsname()->version);
  175. SEQ_printf(m, "now at %Lu nsecs\n", (unsigned long long)now);
  176. for_each_online_cpu(cpu)
  177. print_cpu(m, cpu);
  178. SEQ_printf(m, "\n");
  179. return 0;
  180. }
  181. static void sysrq_sched_debug_show(void)
  182. {
  183. sched_debug_show(NULL, NULL);
  184. }
  185. static int sched_debug_open(struct inode *inode, struct file *filp)
  186. {
  187. return single_open(filp, sched_debug_show, NULL);
  188. }
  189. static struct file_operations sched_debug_fops = {
  190. .open = sched_debug_open,
  191. .read = seq_read,
  192. .llseek = seq_lseek,
  193. .release = single_release,
  194. };
  195. static int __init init_sched_debug_procfs(void)
  196. {
  197. struct proc_dir_entry *pe;
  198. pe = create_proc_entry("sched_debug", 0644, NULL);
  199. if (!pe)
  200. return -ENOMEM;
  201. pe->proc_fops = &sched_debug_fops;
  202. return 0;
  203. }
  204. __initcall(init_sched_debug_procfs);
  205. void proc_sched_show_task(struct task_struct *p, struct seq_file *m)
  206. {
  207. unsigned long flags;
  208. int num_threads = 1;
  209. rcu_read_lock();
  210. if (lock_task_sighand(p, &flags)) {
  211. num_threads = atomic_read(&p->signal->count);
  212. unlock_task_sighand(p, &flags);
  213. }
  214. rcu_read_unlock();
  215. SEQ_printf(m, "%s (%d, #threads: %d)\n", p->comm, p->pid, num_threads);
  216. SEQ_printf(m, "----------------------------------------------\n");
  217. #define P(F) \
  218. SEQ_printf(m, "%-25s:%20Ld\n", #F, (long long)p->F)
  219. P(se.wait_runtime);
  220. P(se.wait_start_fair);
  221. P(se.exec_start);
  222. P(se.sleep_start_fair);
  223. P(se.vruntime);
  224. P(se.sum_exec_runtime);
  225. #ifdef CONFIG_SCHEDSTATS
  226. P(se.wait_start);
  227. P(se.sleep_start);
  228. P(se.block_start);
  229. P(se.sleep_max);
  230. P(se.block_max);
  231. P(se.exec_max);
  232. P(se.slice_max);
  233. P(se.wait_max);
  234. P(se.wait_runtime_overruns);
  235. P(se.wait_runtime_underruns);
  236. P(se.sum_wait_runtime);
  237. #endif
  238. SEQ_printf(m, "%-25s:%20Ld\n",
  239. "nr_switches", (long long)(p->nvcsw + p->nivcsw));
  240. P(se.load.weight);
  241. P(policy);
  242. P(prio);
  243. #undef P
  244. {
  245. u64 t0, t1;
  246. t0 = sched_clock();
  247. t1 = sched_clock();
  248. SEQ_printf(m, "%-25s:%20Ld\n",
  249. "clock-delta", (long long)(t1-t0));
  250. }
  251. }
  252. void proc_sched_set_task(struct task_struct *p)
  253. {
  254. #ifdef CONFIG_SCHEDSTATS
  255. p->se.sleep_max = 0;
  256. p->se.block_max = 0;
  257. p->se.exec_max = 0;
  258. p->se.slice_max = 0;
  259. p->se.wait_max = 0;
  260. p->se.wait_runtime_overruns = 0;
  261. p->se.wait_runtime_underruns = 0;
  262. #endif
  263. p->se.sum_exec_runtime = 0;
  264. p->se.prev_sum_exec_runtime = 0;
  265. }