time.c 32 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225
  1. /*
  2. * Common time routines among all ppc machines.
  3. *
  4. * Written by Cort Dougan (cort@cs.nmt.edu) to merge
  5. * Paul Mackerras' version and mine for PReP and Pmac.
  6. * MPC8xx/MBX changes by Dan Malek (dmalek@jlc.net).
  7. * Converted for 64-bit by Mike Corrigan (mikejc@us.ibm.com)
  8. *
  9. * First round of bugfixes by Gabriel Paubert (paubert@iram.es)
  10. * to make clock more stable (2.4.0-test5). The only thing
  11. * that this code assumes is that the timebases have been synchronized
  12. * by firmware on SMP and are never stopped (never do sleep
  13. * on SMP then, nap and doze are OK).
  14. *
  15. * Speeded up do_gettimeofday by getting rid of references to
  16. * xtime (which required locks for consistency). (mikejc@us.ibm.com)
  17. *
  18. * TODO (not necessarily in this file):
  19. * - improve precision and reproducibility of timebase frequency
  20. * measurement at boot time. (for iSeries, we calibrate the timebase
  21. * against the Titan chip's clock.)
  22. * - for astronomical applications: add a new function to get
  23. * non ambiguous timestamps even around leap seconds. This needs
  24. * a new timestamp format and a good name.
  25. *
  26. * 1997-09-10 Updated NTP code according to technical memorandum Jan '96
  27. * "A Kernel Model for Precision Timekeeping" by Dave Mills
  28. *
  29. * This program is free software; you can redistribute it and/or
  30. * modify it under the terms of the GNU General Public License
  31. * as published by the Free Software Foundation; either version
  32. * 2 of the License, or (at your option) any later version.
  33. */
  34. #include <linux/errno.h>
  35. #include <linux/module.h>
  36. #include <linux/sched.h>
  37. #include <linux/kernel.h>
  38. #include <linux/param.h>
  39. #include <linux/string.h>
  40. #include <linux/mm.h>
  41. #include <linux/interrupt.h>
  42. #include <linux/timex.h>
  43. #include <linux/kernel_stat.h>
  44. #include <linux/time.h>
  45. #include <linux/init.h>
  46. #include <linux/profile.h>
  47. #include <linux/cpu.h>
  48. #include <linux/security.h>
  49. #include <linux/percpu.h>
  50. #include <linux/rtc.h>
  51. #include <linux/jiffies.h>
  52. #include <linux/posix-timers.h>
  53. #include <linux/irq.h>
  54. #include <linux/delay.h>
  55. #include <linux/perf_event.h>
  56. #include <asm/trace.h>
  57. #include <asm/io.h>
  58. #include <asm/processor.h>
  59. #include <asm/nvram.h>
  60. #include <asm/cache.h>
  61. #include <asm/machdep.h>
  62. #include <asm/uaccess.h>
  63. #include <asm/time.h>
  64. #include <asm/prom.h>
  65. #include <asm/irq.h>
  66. #include <asm/div64.h>
  67. #include <asm/smp.h>
  68. #include <asm/vdso_datapage.h>
  69. #include <asm/firmware.h>
  70. #include <asm/cputime.h>
  71. #ifdef CONFIG_PPC_ISERIES
  72. #include <asm/iseries/it_lp_queue.h>
  73. #include <asm/iseries/hv_call_xm.h>
  74. #endif
  75. /* powerpc clocksource/clockevent code */
  76. #include <linux/clockchips.h>
  77. #include <linux/clocksource.h>
  78. static cycle_t rtc_read(struct clocksource *);
  79. static struct clocksource clocksource_rtc = {
  80. .name = "rtc",
  81. .rating = 400,
  82. .flags = CLOCK_SOURCE_IS_CONTINUOUS,
  83. .mask = CLOCKSOURCE_MASK(64),
  84. .shift = 22,
  85. .mult = 0, /* To be filled in */
  86. .read = rtc_read,
  87. };
  88. static cycle_t timebase_read(struct clocksource *);
  89. static struct clocksource clocksource_timebase = {
  90. .name = "timebase",
  91. .rating = 400,
  92. .flags = CLOCK_SOURCE_IS_CONTINUOUS,
  93. .mask = CLOCKSOURCE_MASK(64),
  94. .shift = 22,
  95. .mult = 0, /* To be filled in */
  96. .read = timebase_read,
  97. };
  98. #define DECREMENTER_MAX 0x7fffffff
  99. static int decrementer_set_next_event(unsigned long evt,
  100. struct clock_event_device *dev);
  101. static void decrementer_set_mode(enum clock_event_mode mode,
  102. struct clock_event_device *dev);
  103. static struct clock_event_device decrementer_clockevent = {
  104. .name = "decrementer",
  105. .rating = 200,
  106. .shift = 0, /* To be filled in */
  107. .mult = 0, /* To be filled in */
  108. .irq = 0,
  109. .set_next_event = decrementer_set_next_event,
  110. .set_mode = decrementer_set_mode,
  111. .features = CLOCK_EVT_FEAT_ONESHOT,
  112. };
  113. struct decrementer_clock {
  114. struct clock_event_device event;
  115. u64 next_tb;
  116. };
  117. static DEFINE_PER_CPU(struct decrementer_clock, decrementers);
  118. #ifdef CONFIG_PPC_ISERIES
  119. static unsigned long __initdata iSeries_recal_titan;
  120. static signed long __initdata iSeries_recal_tb;
  121. /* Forward declaration is only needed for iSereis compiles */
  122. static void __init clocksource_init(void);
  123. #endif
  124. #define XSEC_PER_SEC (1024*1024)
  125. #ifdef CONFIG_PPC64
  126. #define SCALE_XSEC(xsec, max) (((xsec) * max) / XSEC_PER_SEC)
  127. #else
  128. /* compute ((xsec << 12) * max) >> 32 */
  129. #define SCALE_XSEC(xsec, max) mulhwu((xsec) << 12, max)
  130. #endif
  131. unsigned long tb_ticks_per_jiffy;
  132. unsigned long tb_ticks_per_usec = 100; /* sane default */
  133. EXPORT_SYMBOL(tb_ticks_per_usec);
  134. unsigned long tb_ticks_per_sec;
  135. EXPORT_SYMBOL(tb_ticks_per_sec); /* for cputime_t conversions */
  136. u64 tb_to_xs;
  137. unsigned tb_to_us;
  138. #define TICKLEN_SCALE NTP_SCALE_SHIFT
  139. static u64 last_tick_len; /* units are ns / 2^TICKLEN_SCALE */
  140. static u64 ticklen_to_xs; /* 0.64 fraction */
  141. /* If last_tick_len corresponds to about 1/HZ seconds, then
  142. last_tick_len << TICKLEN_SHIFT will be about 2^63. */
  143. #define TICKLEN_SHIFT (63 - 30 - TICKLEN_SCALE + SHIFT_HZ)
  144. DEFINE_SPINLOCK(rtc_lock);
  145. EXPORT_SYMBOL_GPL(rtc_lock);
  146. static u64 tb_to_ns_scale __read_mostly;
  147. static unsigned tb_to_ns_shift __read_mostly;
  148. static unsigned long boot_tb __read_mostly;
  149. extern struct timezone sys_tz;
  150. static long timezone_offset;
  151. unsigned long ppc_proc_freq;
  152. EXPORT_SYMBOL(ppc_proc_freq);
  153. unsigned long ppc_tb_freq;
  154. static u64 tb_last_jiffy __cacheline_aligned_in_smp;
  155. static DEFINE_PER_CPU(u64, last_jiffy);
  156. #ifdef CONFIG_VIRT_CPU_ACCOUNTING
  157. /*
  158. * Factors for converting from cputime_t (timebase ticks) to
  159. * jiffies, milliseconds, seconds, and clock_t (1/USER_HZ seconds).
  160. * These are all stored as 0.64 fixed-point binary fractions.
  161. */
  162. u64 __cputime_jiffies_factor;
  163. EXPORT_SYMBOL(__cputime_jiffies_factor);
  164. u64 __cputime_msec_factor;
  165. EXPORT_SYMBOL(__cputime_msec_factor);
  166. u64 __cputime_sec_factor;
  167. EXPORT_SYMBOL(__cputime_sec_factor);
  168. u64 __cputime_clockt_factor;
  169. EXPORT_SYMBOL(__cputime_clockt_factor);
  170. DEFINE_PER_CPU(unsigned long, cputime_last_delta);
  171. DEFINE_PER_CPU(unsigned long, cputime_scaled_last_delta);
  172. cputime_t cputime_one_jiffy;
  173. static void calc_cputime_factors(void)
  174. {
  175. struct div_result res;
  176. div128_by_32(HZ, 0, tb_ticks_per_sec, &res);
  177. __cputime_jiffies_factor = res.result_low;
  178. div128_by_32(1000, 0, tb_ticks_per_sec, &res);
  179. __cputime_msec_factor = res.result_low;
  180. div128_by_32(1, 0, tb_ticks_per_sec, &res);
  181. __cputime_sec_factor = res.result_low;
  182. div128_by_32(USER_HZ, 0, tb_ticks_per_sec, &res);
  183. __cputime_clockt_factor = res.result_low;
  184. }
  185. /*
  186. * Read the PURR on systems that have it, otherwise the timebase.
  187. */
  188. static u64 read_purr(void)
  189. {
  190. if (cpu_has_feature(CPU_FTR_PURR))
  191. return mfspr(SPRN_PURR);
  192. return mftb();
  193. }
  194. /*
  195. * Read the SPURR on systems that have it, otherwise the purr
  196. */
  197. static u64 read_spurr(u64 purr)
  198. {
  199. /*
  200. * cpus without PURR won't have a SPURR
  201. * We already know the former when we use this, so tell gcc
  202. */
  203. if (cpu_has_feature(CPU_FTR_PURR) && cpu_has_feature(CPU_FTR_SPURR))
  204. return mfspr(SPRN_SPURR);
  205. return purr;
  206. }
  207. /*
  208. * Account time for a transition between system, hard irq
  209. * or soft irq state.
  210. */
  211. void account_system_vtime(struct task_struct *tsk)
  212. {
  213. u64 now, nowscaled, delta, deltascaled, sys_time;
  214. unsigned long flags;
  215. local_irq_save(flags);
  216. now = read_purr();
  217. nowscaled = read_spurr(now);
  218. delta = now - get_paca()->startpurr;
  219. deltascaled = nowscaled - get_paca()->startspurr;
  220. get_paca()->startpurr = now;
  221. get_paca()->startspurr = nowscaled;
  222. if (!in_interrupt()) {
  223. /* deltascaled includes both user and system time.
  224. * Hence scale it based on the purr ratio to estimate
  225. * the system time */
  226. sys_time = get_paca()->system_time;
  227. if (get_paca()->user_time)
  228. deltascaled = deltascaled * sys_time /
  229. (sys_time + get_paca()->user_time);
  230. delta += sys_time;
  231. get_paca()->system_time = 0;
  232. }
  233. if (in_irq() || idle_task(smp_processor_id()) != tsk)
  234. account_system_time(tsk, 0, delta, deltascaled);
  235. else
  236. account_idle_time(delta);
  237. per_cpu(cputime_last_delta, smp_processor_id()) = delta;
  238. per_cpu(cputime_scaled_last_delta, smp_processor_id()) = deltascaled;
  239. local_irq_restore(flags);
  240. }
  241. /*
  242. * Transfer the user and system times accumulated in the paca
  243. * by the exception entry and exit code to the generic process
  244. * user and system time records.
  245. * Must be called with interrupts disabled.
  246. */
  247. void account_process_tick(struct task_struct *tsk, int user_tick)
  248. {
  249. cputime_t utime, utimescaled;
  250. utime = get_paca()->user_time;
  251. get_paca()->user_time = 0;
  252. utimescaled = cputime_to_scaled(utime);
  253. account_user_time(tsk, utime, utimescaled);
  254. }
  255. /*
  256. * Stuff for accounting stolen time.
  257. */
  258. struct cpu_purr_data {
  259. int initialized; /* thread is running */
  260. u64 tb; /* last TB value read */
  261. u64 purr; /* last PURR value read */
  262. u64 spurr; /* last SPURR value read */
  263. };
  264. /*
  265. * Each entry in the cpu_purr_data array is manipulated only by its
  266. * "owner" cpu -- usually in the timer interrupt but also occasionally
  267. * in process context for cpu online. As long as cpus do not touch
  268. * each others' cpu_purr_data, disabling local interrupts is
  269. * sufficient to serialize accesses.
  270. */
  271. static DEFINE_PER_CPU(struct cpu_purr_data, cpu_purr_data);
  272. static void snapshot_tb_and_purr(void *data)
  273. {
  274. unsigned long flags;
  275. struct cpu_purr_data *p = &__get_cpu_var(cpu_purr_data);
  276. local_irq_save(flags);
  277. p->tb = get_tb_or_rtc();
  278. p->purr = mfspr(SPRN_PURR);
  279. wmb();
  280. p->initialized = 1;
  281. local_irq_restore(flags);
  282. }
  283. /*
  284. * Called during boot when all cpus have come up.
  285. */
  286. void snapshot_timebases(void)
  287. {
  288. if (!cpu_has_feature(CPU_FTR_PURR))
  289. return;
  290. on_each_cpu(snapshot_tb_and_purr, NULL, 1);
  291. }
  292. /*
  293. * Must be called with interrupts disabled.
  294. */
  295. void calculate_steal_time(void)
  296. {
  297. u64 tb, purr;
  298. s64 stolen;
  299. struct cpu_purr_data *pme;
  300. pme = &__get_cpu_var(cpu_purr_data);
  301. if (!pme->initialized)
  302. return; /* !CPU_FTR_PURR or early in early boot */
  303. tb = mftb();
  304. purr = mfspr(SPRN_PURR);
  305. stolen = (tb - pme->tb) - (purr - pme->purr);
  306. if (stolen > 0) {
  307. if (idle_task(smp_processor_id()) != current)
  308. account_steal_time(stolen);
  309. else
  310. account_idle_time(stolen);
  311. }
  312. pme->tb = tb;
  313. pme->purr = purr;
  314. }
  315. #ifdef CONFIG_PPC_SPLPAR
  316. /*
  317. * Must be called before the cpu is added to the online map when
  318. * a cpu is being brought up at runtime.
  319. */
  320. static void snapshot_purr(void)
  321. {
  322. struct cpu_purr_data *pme;
  323. unsigned long flags;
  324. if (!cpu_has_feature(CPU_FTR_PURR))
  325. return;
  326. local_irq_save(flags);
  327. pme = &__get_cpu_var(cpu_purr_data);
  328. pme->tb = mftb();
  329. pme->purr = mfspr(SPRN_PURR);
  330. pme->initialized = 1;
  331. local_irq_restore(flags);
  332. }
  333. #endif /* CONFIG_PPC_SPLPAR */
  334. #else /* ! CONFIG_VIRT_CPU_ACCOUNTING */
  335. #define calc_cputime_factors()
  336. #define calculate_steal_time() do { } while (0)
  337. #endif
  338. #if !(defined(CONFIG_VIRT_CPU_ACCOUNTING) && defined(CONFIG_PPC_SPLPAR))
  339. #define snapshot_purr() do { } while (0)
  340. #endif
  341. /*
  342. * Called when a cpu comes up after the system has finished booting,
  343. * i.e. as a result of a hotplug cpu action.
  344. */
  345. void snapshot_timebase(void)
  346. {
  347. __get_cpu_var(last_jiffy) = get_tb_or_rtc();
  348. snapshot_purr();
  349. }
  350. void __delay(unsigned long loops)
  351. {
  352. unsigned long start;
  353. int diff;
  354. if (__USE_RTC()) {
  355. start = get_rtcl();
  356. do {
  357. /* the RTCL register wraps at 1000000000 */
  358. diff = get_rtcl() - start;
  359. if (diff < 0)
  360. diff += 1000000000;
  361. } while (diff < loops);
  362. } else {
  363. start = get_tbl();
  364. while (get_tbl() - start < loops)
  365. HMT_low();
  366. HMT_medium();
  367. }
  368. }
  369. EXPORT_SYMBOL(__delay);
  370. void udelay(unsigned long usecs)
  371. {
  372. __delay(tb_ticks_per_usec * usecs);
  373. }
  374. EXPORT_SYMBOL(udelay);
  375. static inline void update_gtod(u64 new_tb_stamp, u64 new_stamp_xsec,
  376. u64 new_tb_to_xs)
  377. {
  378. /*
  379. * tb_update_count is used to allow the userspace gettimeofday code
  380. * to assure itself that it sees a consistent view of the tb_to_xs and
  381. * stamp_xsec variables. It reads the tb_update_count, then reads
  382. * tb_to_xs and stamp_xsec and then reads tb_update_count again. If
  383. * the two values of tb_update_count match and are even then the
  384. * tb_to_xs and stamp_xsec values are consistent. If not, then it
  385. * loops back and reads them again until this criteria is met.
  386. * We expect the caller to have done the first increment of
  387. * vdso_data->tb_update_count already.
  388. */
  389. vdso_data->tb_orig_stamp = new_tb_stamp;
  390. vdso_data->stamp_xsec = new_stamp_xsec;
  391. vdso_data->tb_to_xs = new_tb_to_xs;
  392. vdso_data->wtom_clock_sec = wall_to_monotonic.tv_sec;
  393. vdso_data->wtom_clock_nsec = wall_to_monotonic.tv_nsec;
  394. vdso_data->stamp_xtime = xtime;
  395. smp_wmb();
  396. ++(vdso_data->tb_update_count);
  397. }
  398. #ifdef CONFIG_SMP
  399. unsigned long profile_pc(struct pt_regs *regs)
  400. {
  401. unsigned long pc = instruction_pointer(regs);
  402. if (in_lock_functions(pc))
  403. return regs->link;
  404. return pc;
  405. }
  406. EXPORT_SYMBOL(profile_pc);
  407. #endif
  408. #ifdef CONFIG_PPC_ISERIES
  409. /*
  410. * This function recalibrates the timebase based on the 49-bit time-of-day
  411. * value in the Titan chip. The Titan is much more accurate than the value
  412. * returned by the service processor for the timebase frequency.
  413. */
  414. static int __init iSeries_tb_recal(void)
  415. {
  416. struct div_result divres;
  417. unsigned long titan, tb;
  418. /* Make sure we only run on iSeries */
  419. if (!firmware_has_feature(FW_FEATURE_ISERIES))
  420. return -ENODEV;
  421. tb = get_tb();
  422. titan = HvCallXm_loadTod();
  423. if ( iSeries_recal_titan ) {
  424. unsigned long tb_ticks = tb - iSeries_recal_tb;
  425. unsigned long titan_usec = (titan - iSeries_recal_titan) >> 12;
  426. unsigned long new_tb_ticks_per_sec = (tb_ticks * USEC_PER_SEC)/titan_usec;
  427. unsigned long new_tb_ticks_per_jiffy =
  428. DIV_ROUND_CLOSEST(new_tb_ticks_per_sec, HZ);
  429. long tick_diff = new_tb_ticks_per_jiffy - tb_ticks_per_jiffy;
  430. char sign = '+';
  431. /* make sure tb_ticks_per_sec and tb_ticks_per_jiffy are consistent */
  432. new_tb_ticks_per_sec = new_tb_ticks_per_jiffy * HZ;
  433. if ( tick_diff < 0 ) {
  434. tick_diff = -tick_diff;
  435. sign = '-';
  436. }
  437. if ( tick_diff ) {
  438. if ( tick_diff < tb_ticks_per_jiffy/25 ) {
  439. printk( "Titan recalibrate: new tb_ticks_per_jiffy = %lu (%c%ld)\n",
  440. new_tb_ticks_per_jiffy, sign, tick_diff );
  441. tb_ticks_per_jiffy = new_tb_ticks_per_jiffy;
  442. tb_ticks_per_sec = new_tb_ticks_per_sec;
  443. calc_cputime_factors();
  444. div128_by_32( XSEC_PER_SEC, 0, tb_ticks_per_sec, &divres );
  445. tb_to_xs = divres.result_low;
  446. vdso_data->tb_ticks_per_sec = tb_ticks_per_sec;
  447. vdso_data->tb_to_xs = tb_to_xs;
  448. setup_cputime_one_jiffy();
  449. }
  450. else {
  451. printk( "Titan recalibrate: FAILED (difference > 4 percent)\n"
  452. " new tb_ticks_per_jiffy = %lu\n"
  453. " old tb_ticks_per_jiffy = %lu\n",
  454. new_tb_ticks_per_jiffy, tb_ticks_per_jiffy );
  455. }
  456. }
  457. }
  458. iSeries_recal_titan = titan;
  459. iSeries_recal_tb = tb;
  460. /* Called here as now we know accurate values for the timebase */
  461. clocksource_init();
  462. return 0;
  463. }
  464. late_initcall(iSeries_tb_recal);
  465. /* Called from platform early init */
  466. void __init iSeries_time_init_early(void)
  467. {
  468. iSeries_recal_tb = get_tb();
  469. iSeries_recal_titan = HvCallXm_loadTod();
  470. }
  471. #endif /* CONFIG_PPC_ISERIES */
  472. #if defined(CONFIG_PERF_EVENTS) && defined(CONFIG_PPC32)
  473. DEFINE_PER_CPU(u8, perf_event_pending);
  474. void set_perf_event_pending(void)
  475. {
  476. get_cpu_var(perf_event_pending) = 1;
  477. set_dec(1);
  478. put_cpu_var(perf_event_pending);
  479. }
  480. #define test_perf_event_pending() __get_cpu_var(perf_event_pending)
  481. #define clear_perf_event_pending() __get_cpu_var(perf_event_pending) = 0
  482. #else /* CONFIG_PERF_EVENTS && CONFIG_PPC32 */
  483. #define test_perf_event_pending() 0
  484. #define clear_perf_event_pending()
  485. #endif /* CONFIG_PERF_EVENTS && CONFIG_PPC32 */
  486. /*
  487. * For iSeries shared processors, we have to let the hypervisor
  488. * set the hardware decrementer. We set a virtual decrementer
  489. * in the lppaca and call the hypervisor if the virtual
  490. * decrementer is less than the current value in the hardware
  491. * decrementer. (almost always the new decrementer value will
  492. * be greater than the current hardware decementer so the hypervisor
  493. * call will not be needed)
  494. */
  495. /*
  496. * timer_interrupt - gets called when the decrementer overflows,
  497. * with interrupts disabled.
  498. */
  499. void timer_interrupt(struct pt_regs * regs)
  500. {
  501. struct pt_regs *old_regs;
  502. struct decrementer_clock *decrementer = &__get_cpu_var(decrementers);
  503. struct clock_event_device *evt = &decrementer->event;
  504. u64 now;
  505. trace_timer_interrupt_entry(regs);
  506. /* Ensure a positive value is written to the decrementer, or else
  507. * some CPUs will continuue to take decrementer exceptions */
  508. set_dec(DECREMENTER_MAX);
  509. #ifdef CONFIG_PPC32
  510. if (test_perf_event_pending()) {
  511. clear_perf_event_pending();
  512. perf_event_do_pending();
  513. }
  514. if (atomic_read(&ppc_n_lost_interrupts) != 0)
  515. do_IRQ(regs);
  516. #endif
  517. now = get_tb_or_rtc();
  518. if (now < decrementer->next_tb) {
  519. /* not time for this event yet */
  520. now = decrementer->next_tb - now;
  521. if (now <= DECREMENTER_MAX)
  522. set_dec((int)now);
  523. trace_timer_interrupt_exit(regs);
  524. return;
  525. }
  526. old_regs = set_irq_regs(regs);
  527. irq_enter();
  528. calculate_steal_time();
  529. #ifdef CONFIG_PPC_ISERIES
  530. if (firmware_has_feature(FW_FEATURE_ISERIES))
  531. get_lppaca()->int_dword.fields.decr_int = 0;
  532. #endif
  533. if (evt->event_handler)
  534. evt->event_handler(evt);
  535. #ifdef CONFIG_PPC_ISERIES
  536. if (firmware_has_feature(FW_FEATURE_ISERIES) && hvlpevent_is_pending())
  537. process_hvlpevents();
  538. #endif
  539. #ifdef CONFIG_PPC64
  540. /* collect purr register values often, for accurate calculations */
  541. if (firmware_has_feature(FW_FEATURE_SPLPAR)) {
  542. struct cpu_usage *cu = &__get_cpu_var(cpu_usage_array);
  543. cu->current_tb = mfspr(SPRN_PURR);
  544. }
  545. #endif
  546. irq_exit();
  547. set_irq_regs(old_regs);
  548. trace_timer_interrupt_exit(regs);
  549. }
  550. void wakeup_decrementer(void)
  551. {
  552. unsigned long ticks;
  553. /*
  554. * The timebase gets saved on sleep and restored on wakeup,
  555. * so all we need to do is to reset the decrementer.
  556. */
  557. ticks = tb_ticks_since(__get_cpu_var(last_jiffy));
  558. if (ticks < tb_ticks_per_jiffy)
  559. ticks = tb_ticks_per_jiffy - ticks;
  560. else
  561. ticks = 1;
  562. set_dec(ticks);
  563. }
  564. #ifdef CONFIG_SUSPEND
  565. void generic_suspend_disable_irqs(void)
  566. {
  567. preempt_disable();
  568. /* Disable the decrementer, so that it doesn't interfere
  569. * with suspending.
  570. */
  571. set_dec(0x7fffffff);
  572. local_irq_disable();
  573. set_dec(0x7fffffff);
  574. }
  575. void generic_suspend_enable_irqs(void)
  576. {
  577. wakeup_decrementer();
  578. local_irq_enable();
  579. preempt_enable();
  580. }
  581. /* Overrides the weak version in kernel/power/main.c */
  582. void arch_suspend_disable_irqs(void)
  583. {
  584. if (ppc_md.suspend_disable_irqs)
  585. ppc_md.suspend_disable_irqs();
  586. generic_suspend_disable_irqs();
  587. }
  588. /* Overrides the weak version in kernel/power/main.c */
  589. void arch_suspend_enable_irqs(void)
  590. {
  591. generic_suspend_enable_irqs();
  592. if (ppc_md.suspend_enable_irqs)
  593. ppc_md.suspend_enable_irqs();
  594. }
  595. #endif
  596. #ifdef CONFIG_SMP
  597. void __init smp_space_timers(unsigned int max_cpus)
  598. {
  599. int i;
  600. u64 previous_tb = per_cpu(last_jiffy, boot_cpuid);
  601. /* make sure tb > per_cpu(last_jiffy, cpu) for all cpus always */
  602. previous_tb -= tb_ticks_per_jiffy;
  603. for_each_possible_cpu(i) {
  604. if (i == boot_cpuid)
  605. continue;
  606. per_cpu(last_jiffy, i) = previous_tb;
  607. }
  608. }
  609. #endif
  610. /*
  611. * Scheduler clock - returns current time in nanosec units.
  612. *
  613. * Note: mulhdu(a, b) (multiply high double unsigned) returns
  614. * the high 64 bits of a * b, i.e. (a * b) >> 64, where a and b
  615. * are 64-bit unsigned numbers.
  616. */
  617. unsigned long long sched_clock(void)
  618. {
  619. if (__USE_RTC())
  620. return get_rtc();
  621. return mulhdu(get_tb() - boot_tb, tb_to_ns_scale) << tb_to_ns_shift;
  622. }
  623. static int __init get_freq(char *name, int cells, unsigned long *val)
  624. {
  625. struct device_node *cpu;
  626. const unsigned int *fp;
  627. int found = 0;
  628. /* The cpu node should have timebase and clock frequency properties */
  629. cpu = of_find_node_by_type(NULL, "cpu");
  630. if (cpu) {
  631. fp = of_get_property(cpu, name, NULL);
  632. if (fp) {
  633. found = 1;
  634. *val = of_read_ulong(fp, cells);
  635. }
  636. of_node_put(cpu);
  637. }
  638. return found;
  639. }
  640. /* should become __cpuinit when secondary_cpu_time_init also is */
  641. void start_cpu_decrementer(void)
  642. {
  643. #if defined(CONFIG_BOOKE) || defined(CONFIG_40x)
  644. /* Clear any pending timer interrupts */
  645. mtspr(SPRN_TSR, TSR_ENW | TSR_WIS | TSR_DIS | TSR_FIS);
  646. /* Enable decrementer interrupt */
  647. mtspr(SPRN_TCR, TCR_DIE);
  648. #endif /* defined(CONFIG_BOOKE) || defined(CONFIG_40x) */
  649. }
  650. void __init generic_calibrate_decr(void)
  651. {
  652. ppc_tb_freq = DEFAULT_TB_FREQ; /* hardcoded default */
  653. if (!get_freq("ibm,extended-timebase-frequency", 2, &ppc_tb_freq) &&
  654. !get_freq("timebase-frequency", 1, &ppc_tb_freq)) {
  655. printk(KERN_ERR "WARNING: Estimating decrementer frequency "
  656. "(not found)\n");
  657. }
  658. ppc_proc_freq = DEFAULT_PROC_FREQ; /* hardcoded default */
  659. if (!get_freq("ibm,extended-clock-frequency", 2, &ppc_proc_freq) &&
  660. !get_freq("clock-frequency", 1, &ppc_proc_freq)) {
  661. printk(KERN_ERR "WARNING: Estimating processor frequency "
  662. "(not found)\n");
  663. }
  664. }
  665. int update_persistent_clock(struct timespec now)
  666. {
  667. struct rtc_time tm;
  668. if (!ppc_md.set_rtc_time)
  669. return 0;
  670. to_tm(now.tv_sec + 1 + timezone_offset, &tm);
  671. tm.tm_year -= 1900;
  672. tm.tm_mon -= 1;
  673. return ppc_md.set_rtc_time(&tm);
  674. }
  675. void read_persistent_clock(struct timespec *ts)
  676. {
  677. struct rtc_time tm;
  678. static int first = 1;
  679. ts->tv_nsec = 0;
  680. /* XXX this is a litle fragile but will work okay in the short term */
  681. if (first) {
  682. first = 0;
  683. if (ppc_md.time_init)
  684. timezone_offset = ppc_md.time_init();
  685. /* get_boot_time() isn't guaranteed to be safe to call late */
  686. if (ppc_md.get_boot_time) {
  687. ts->tv_sec = ppc_md.get_boot_time() - timezone_offset;
  688. return;
  689. }
  690. }
  691. if (!ppc_md.get_rtc_time) {
  692. ts->tv_sec = 0;
  693. return;
  694. }
  695. ppc_md.get_rtc_time(&tm);
  696. ts->tv_sec = mktime(tm.tm_year+1900, tm.tm_mon+1, tm.tm_mday,
  697. tm.tm_hour, tm.tm_min, tm.tm_sec);
  698. }
  699. /* clocksource code */
  700. static cycle_t rtc_read(struct clocksource *cs)
  701. {
  702. return (cycle_t)get_rtc();
  703. }
  704. static cycle_t timebase_read(struct clocksource *cs)
  705. {
  706. return (cycle_t)get_tb();
  707. }
  708. void update_vsyscall(struct timespec *wall_time, struct clocksource *clock)
  709. {
  710. u64 t2x, stamp_xsec;
  711. if (clock != &clocksource_timebase)
  712. return;
  713. /* Make userspace gettimeofday spin until we're done. */
  714. ++vdso_data->tb_update_count;
  715. smp_mb();
  716. /* XXX this assumes clock->shift == 22 */
  717. /* 4611686018 ~= 2^(20+64-22) / 1e9 */
  718. t2x = (u64) clock->mult * 4611686018ULL;
  719. stamp_xsec = (u64) xtime.tv_nsec * XSEC_PER_SEC;
  720. do_div(stamp_xsec, 1000000000);
  721. stamp_xsec += (u64) xtime.tv_sec * XSEC_PER_SEC;
  722. update_gtod(clock->cycle_last, stamp_xsec, t2x);
  723. }
  724. void update_vsyscall_tz(void)
  725. {
  726. /* Make userspace gettimeofday spin until we're done. */
  727. ++vdso_data->tb_update_count;
  728. smp_mb();
  729. vdso_data->tz_minuteswest = sys_tz.tz_minuteswest;
  730. vdso_data->tz_dsttime = sys_tz.tz_dsttime;
  731. smp_mb();
  732. ++vdso_data->tb_update_count;
  733. }
  734. static void __init clocksource_init(void)
  735. {
  736. struct clocksource *clock;
  737. if (__USE_RTC())
  738. clock = &clocksource_rtc;
  739. else
  740. clock = &clocksource_timebase;
  741. clock->mult = clocksource_hz2mult(tb_ticks_per_sec, clock->shift);
  742. if (clocksource_register(clock)) {
  743. printk(KERN_ERR "clocksource: %s is already registered\n",
  744. clock->name);
  745. return;
  746. }
  747. printk(KERN_INFO "clocksource: %s mult[%x] shift[%d] registered\n",
  748. clock->name, clock->mult, clock->shift);
  749. }
  750. static int decrementer_set_next_event(unsigned long evt,
  751. struct clock_event_device *dev)
  752. {
  753. __get_cpu_var(decrementers).next_tb = get_tb_or_rtc() + evt;
  754. set_dec(evt);
  755. return 0;
  756. }
  757. static void decrementer_set_mode(enum clock_event_mode mode,
  758. struct clock_event_device *dev)
  759. {
  760. if (mode != CLOCK_EVT_MODE_ONESHOT)
  761. decrementer_set_next_event(DECREMENTER_MAX, dev);
  762. }
  763. static void __init setup_clockevent_multiplier(unsigned long hz)
  764. {
  765. u64 mult, shift = 32;
  766. while (1) {
  767. mult = div_sc(hz, NSEC_PER_SEC, shift);
  768. if (mult && (mult >> 32UL) == 0UL)
  769. break;
  770. shift--;
  771. }
  772. decrementer_clockevent.shift = shift;
  773. decrementer_clockevent.mult = mult;
  774. }
  775. static void register_decrementer_clockevent(int cpu)
  776. {
  777. struct clock_event_device *dec = &per_cpu(decrementers, cpu).event;
  778. *dec = decrementer_clockevent;
  779. dec->cpumask = cpumask_of(cpu);
  780. printk(KERN_DEBUG "clockevent: %s mult[%lx] shift[%d] cpu[%d]\n",
  781. dec->name, dec->mult, dec->shift, cpu);
  782. clockevents_register_device(dec);
  783. }
  784. static void __init init_decrementer_clockevent(void)
  785. {
  786. int cpu = smp_processor_id();
  787. setup_clockevent_multiplier(ppc_tb_freq);
  788. decrementer_clockevent.max_delta_ns =
  789. clockevent_delta2ns(DECREMENTER_MAX, &decrementer_clockevent);
  790. decrementer_clockevent.min_delta_ns =
  791. clockevent_delta2ns(2, &decrementer_clockevent);
  792. register_decrementer_clockevent(cpu);
  793. }
  794. void secondary_cpu_time_init(void)
  795. {
  796. /* Start the decrementer on CPUs that have manual control
  797. * such as BookE
  798. */
  799. start_cpu_decrementer();
  800. /* FIME: Should make unrelatred change to move snapshot_timebase
  801. * call here ! */
  802. register_decrementer_clockevent(smp_processor_id());
  803. }
  804. /* This function is only called on the boot processor */
  805. void __init time_init(void)
  806. {
  807. unsigned long flags;
  808. struct div_result res;
  809. u64 scale, x;
  810. unsigned shift;
  811. if (__USE_RTC()) {
  812. /* 601 processor: dec counts down by 128 every 128ns */
  813. ppc_tb_freq = 1000000000;
  814. tb_last_jiffy = get_rtcl();
  815. } else {
  816. /* Normal PowerPC with timebase register */
  817. ppc_md.calibrate_decr();
  818. printk(KERN_DEBUG "time_init: decrementer frequency = %lu.%.6lu MHz\n",
  819. ppc_tb_freq / 1000000, ppc_tb_freq % 1000000);
  820. printk(KERN_DEBUG "time_init: processor frequency = %lu.%.6lu MHz\n",
  821. ppc_proc_freq / 1000000, ppc_proc_freq % 1000000);
  822. tb_last_jiffy = get_tb();
  823. }
  824. tb_ticks_per_jiffy = ppc_tb_freq / HZ;
  825. tb_ticks_per_sec = ppc_tb_freq;
  826. tb_ticks_per_usec = ppc_tb_freq / 1000000;
  827. tb_to_us = mulhwu_scale_factor(ppc_tb_freq, 1000000);
  828. calc_cputime_factors();
  829. setup_cputime_one_jiffy();
  830. /*
  831. * Calculate the length of each tick in ns. It will not be
  832. * exactly 1e9/HZ unless ppc_tb_freq is divisible by HZ.
  833. * We compute 1e9 * tb_ticks_per_jiffy / ppc_tb_freq,
  834. * rounded up.
  835. */
  836. x = (u64) NSEC_PER_SEC * tb_ticks_per_jiffy + ppc_tb_freq - 1;
  837. do_div(x, ppc_tb_freq);
  838. tick_nsec = x;
  839. last_tick_len = x << TICKLEN_SCALE;
  840. /*
  841. * Compute ticklen_to_xs, which is a factor which gets multiplied
  842. * by (last_tick_len << TICKLEN_SHIFT) to get a tb_to_xs value.
  843. * It is computed as:
  844. * ticklen_to_xs = 2^N / (tb_ticks_per_jiffy * 1e9)
  845. * where N = 64 + 20 - TICKLEN_SCALE - TICKLEN_SHIFT
  846. * which turns out to be N = 51 - SHIFT_HZ.
  847. * This gives the result as a 0.64 fixed-point fraction.
  848. * That value is reduced by an offset amounting to 1 xsec per
  849. * 2^31 timebase ticks to avoid problems with time going backwards
  850. * by 1 xsec when we do timer_recalc_offset due to losing the
  851. * fractional xsec. That offset is equal to ppc_tb_freq/2^51
  852. * since there are 2^20 xsec in a second.
  853. */
  854. div128_by_32((1ULL << 51) - ppc_tb_freq, 0,
  855. tb_ticks_per_jiffy << SHIFT_HZ, &res);
  856. div128_by_32(res.result_high, res.result_low, NSEC_PER_SEC, &res);
  857. ticklen_to_xs = res.result_low;
  858. /* Compute tb_to_xs from tick_nsec */
  859. tb_to_xs = mulhdu(last_tick_len << TICKLEN_SHIFT, ticklen_to_xs);
  860. /*
  861. * Compute scale factor for sched_clock.
  862. * The calibrate_decr() function has set tb_ticks_per_sec,
  863. * which is the timebase frequency.
  864. * We compute 1e9 * 2^64 / tb_ticks_per_sec and interpret
  865. * the 128-bit result as a 64.64 fixed-point number.
  866. * We then shift that number right until it is less than 1.0,
  867. * giving us the scale factor and shift count to use in
  868. * sched_clock().
  869. */
  870. div128_by_32(1000000000, 0, tb_ticks_per_sec, &res);
  871. scale = res.result_low;
  872. for (shift = 0; res.result_high != 0; ++shift) {
  873. scale = (scale >> 1) | (res.result_high << 63);
  874. res.result_high >>= 1;
  875. }
  876. tb_to_ns_scale = scale;
  877. tb_to_ns_shift = shift;
  878. /* Save the current timebase to pretty up CONFIG_PRINTK_TIME */
  879. boot_tb = get_tb_or_rtc();
  880. write_seqlock_irqsave(&xtime_lock, flags);
  881. /* If platform provided a timezone (pmac), we correct the time */
  882. if (timezone_offset) {
  883. sys_tz.tz_minuteswest = -timezone_offset / 60;
  884. sys_tz.tz_dsttime = 0;
  885. }
  886. vdso_data->tb_orig_stamp = tb_last_jiffy;
  887. vdso_data->tb_update_count = 0;
  888. vdso_data->tb_ticks_per_sec = tb_ticks_per_sec;
  889. vdso_data->stamp_xsec = (u64) xtime.tv_sec * XSEC_PER_SEC;
  890. vdso_data->tb_to_xs = tb_to_xs;
  891. write_sequnlock_irqrestore(&xtime_lock, flags);
  892. /* Start the decrementer on CPUs that have manual control
  893. * such as BookE
  894. */
  895. start_cpu_decrementer();
  896. /* Register the clocksource, if we're not running on iSeries */
  897. if (!firmware_has_feature(FW_FEATURE_ISERIES))
  898. clocksource_init();
  899. init_decrementer_clockevent();
  900. }
  901. #define FEBRUARY 2
  902. #define STARTOFTIME 1970
  903. #define SECDAY 86400L
  904. #define SECYR (SECDAY * 365)
  905. #define leapyear(year) ((year) % 4 == 0 && \
  906. ((year) % 100 != 0 || (year) % 400 == 0))
  907. #define days_in_year(a) (leapyear(a) ? 366 : 365)
  908. #define days_in_month(a) (month_days[(a) - 1])
  909. static int month_days[12] = {
  910. 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31
  911. };
  912. /*
  913. * This only works for the Gregorian calendar - i.e. after 1752 (in the UK)
  914. */
  915. void GregorianDay(struct rtc_time * tm)
  916. {
  917. int leapsToDate;
  918. int lastYear;
  919. int day;
  920. int MonthOffset[] = { 0, 31, 59, 90, 120, 151, 181, 212, 243, 273, 304, 334 };
  921. lastYear = tm->tm_year - 1;
  922. /*
  923. * Number of leap corrections to apply up to end of last year
  924. */
  925. leapsToDate = lastYear / 4 - lastYear / 100 + lastYear / 400;
  926. /*
  927. * This year is a leap year if it is divisible by 4 except when it is
  928. * divisible by 100 unless it is divisible by 400
  929. *
  930. * e.g. 1904 was a leap year, 1900 was not, 1996 is, and 2000 was
  931. */
  932. day = tm->tm_mon > 2 && leapyear(tm->tm_year);
  933. day += lastYear*365 + leapsToDate + MonthOffset[tm->tm_mon-1] +
  934. tm->tm_mday;
  935. tm->tm_wday = day % 7;
  936. }
  937. void to_tm(int tim, struct rtc_time * tm)
  938. {
  939. register int i;
  940. register long hms, day;
  941. day = tim / SECDAY;
  942. hms = tim % SECDAY;
  943. /* Hours, minutes, seconds are easy */
  944. tm->tm_hour = hms / 3600;
  945. tm->tm_min = (hms % 3600) / 60;
  946. tm->tm_sec = (hms % 3600) % 60;
  947. /* Number of years in days */
  948. for (i = STARTOFTIME; day >= days_in_year(i); i++)
  949. day -= days_in_year(i);
  950. tm->tm_year = i;
  951. /* Number of months in days left */
  952. if (leapyear(tm->tm_year))
  953. days_in_month(FEBRUARY) = 29;
  954. for (i = 1; day >= days_in_month(i); i++)
  955. day -= days_in_month(i);
  956. days_in_month(FEBRUARY) = 28;
  957. tm->tm_mon = i;
  958. /* Days are what is left over (+1) from all that. */
  959. tm->tm_mday = day + 1;
  960. /*
  961. * Determine the day of week
  962. */
  963. GregorianDay(tm);
  964. }
  965. /* Auxiliary function to compute scaling factors */
  966. /* Actually the choice of a timebase running at 1/4 the of the bus
  967. * frequency giving resolution of a few tens of nanoseconds is quite nice.
  968. * It makes this computation very precise (27-28 bits typically) which
  969. * is optimistic considering the stability of most processor clock
  970. * oscillators and the precision with which the timebase frequency
  971. * is measured but does not harm.
  972. */
  973. unsigned mulhwu_scale_factor(unsigned inscale, unsigned outscale)
  974. {
  975. unsigned mlt=0, tmp, err;
  976. /* No concern for performance, it's done once: use a stupid
  977. * but safe and compact method to find the multiplier.
  978. */
  979. for (tmp = 1U<<31; tmp != 0; tmp >>= 1) {
  980. if (mulhwu(inscale, mlt|tmp) < outscale)
  981. mlt |= tmp;
  982. }
  983. /* We might still be off by 1 for the best approximation.
  984. * A side effect of this is that if outscale is too large
  985. * the returned value will be zero.
  986. * Many corner cases have been checked and seem to work,
  987. * some might have been forgotten in the test however.
  988. */
  989. err = inscale * (mlt+1);
  990. if (err <= inscale/2)
  991. mlt++;
  992. return mlt;
  993. }
  994. /*
  995. * Divide a 128-bit dividend by a 32-bit divisor, leaving a 128 bit
  996. * result.
  997. */
  998. void div128_by_32(u64 dividend_high, u64 dividend_low,
  999. unsigned divisor, struct div_result *dr)
  1000. {
  1001. unsigned long a, b, c, d;
  1002. unsigned long w, x, y, z;
  1003. u64 ra, rb, rc;
  1004. a = dividend_high >> 32;
  1005. b = dividend_high & 0xffffffff;
  1006. c = dividend_low >> 32;
  1007. d = dividend_low & 0xffffffff;
  1008. w = a / divisor;
  1009. ra = ((u64)(a - (w * divisor)) << 32) + b;
  1010. rb = ((u64) do_div(ra, divisor) << 32) + c;
  1011. x = ra;
  1012. rc = ((u64) do_div(rb, divisor) << 32) + d;
  1013. y = rb;
  1014. do_div(rc, divisor);
  1015. z = rc;
  1016. dr->result_high = ((u64)w << 32) + x;
  1017. dr->result_low = ((u64)y << 32) + z;
  1018. }
  1019. /* We don't need to calibrate delay, we use the CPU timebase for that */
  1020. void calibrate_delay(void)
  1021. {
  1022. /* Some generic code (such as spinlock debug) use loops_per_jiffy
  1023. * as the number of __delay(1) in a jiffy, so make it so
  1024. */
  1025. loops_per_jiffy = tb_ticks_per_jiffy;
  1026. }
  1027. static int __init rtc_init(void)
  1028. {
  1029. struct platform_device *pdev;
  1030. if (!ppc_md.get_rtc_time)
  1031. return -ENODEV;
  1032. pdev = platform_device_register_simple("rtc-generic", -1, NULL, 0);
  1033. if (IS_ERR(pdev))
  1034. return PTR_ERR(pdev);
  1035. return 0;
  1036. }
  1037. module_init(rtc_init);