skge.c 106 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164
  1. /*
  2. * New driver for Marvell Yukon chipset and SysKonnect Gigabit
  3. * Ethernet adapters. Based on earlier sk98lin, e100 and
  4. * FreeBSD if_sk drivers.
  5. *
  6. * This driver intentionally does not support all the features
  7. * of the original driver such as link fail-over and link management because
  8. * those should be done at higher levels.
  9. *
  10. * Copyright (C) 2004, 2005 Stephen Hemminger <shemminger@osdl.org>
  11. *
  12. * This program is free software; you can redistribute it and/or modify
  13. * it under the terms of the GNU General Public License as published by
  14. * the Free Software Foundation; either version 2 of the License.
  15. *
  16. * This program is distributed in the hope that it will be useful,
  17. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  18. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  19. * GNU General Public License for more details.
  20. *
  21. * You should have received a copy of the GNU General Public License
  22. * along with this program; if not, write to the Free Software
  23. * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  24. */
  25. #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  26. #include <linux/in.h>
  27. #include <linux/kernel.h>
  28. #include <linux/module.h>
  29. #include <linux/moduleparam.h>
  30. #include <linux/netdevice.h>
  31. #include <linux/etherdevice.h>
  32. #include <linux/ethtool.h>
  33. #include <linux/pci.h>
  34. #include <linux/if_vlan.h>
  35. #include <linux/ip.h>
  36. #include <linux/delay.h>
  37. #include <linux/crc32.h>
  38. #include <linux/dma-mapping.h>
  39. #include <linux/debugfs.h>
  40. #include <linux/sched.h>
  41. #include <linux/seq_file.h>
  42. #include <linux/mii.h>
  43. #include <asm/irq.h>
  44. #include "skge.h"
  45. #define DRV_NAME "skge"
  46. #define DRV_VERSION "1.13"
  47. #define DEFAULT_TX_RING_SIZE 128
  48. #define DEFAULT_RX_RING_SIZE 512
  49. #define MAX_TX_RING_SIZE 1024
  50. #define TX_LOW_WATER (MAX_SKB_FRAGS + 1)
  51. #define MAX_RX_RING_SIZE 4096
  52. #define RX_COPY_THRESHOLD 128
  53. #define RX_BUF_SIZE 1536
  54. #define PHY_RETRIES 1000
  55. #define ETH_JUMBO_MTU 9000
  56. #define TX_WATCHDOG (5 * HZ)
  57. #define NAPI_WEIGHT 64
  58. #define BLINK_MS 250
  59. #define LINK_HZ HZ
  60. #define SKGE_EEPROM_MAGIC 0x9933aabb
  61. MODULE_DESCRIPTION("SysKonnect Gigabit Ethernet driver");
  62. MODULE_AUTHOR("Stephen Hemminger <shemminger@linux-foundation.org>");
  63. MODULE_LICENSE("GPL");
  64. MODULE_VERSION(DRV_VERSION);
  65. static const u32 default_msg = (NETIF_MSG_DRV | NETIF_MSG_PROBE |
  66. NETIF_MSG_LINK | NETIF_MSG_IFUP |
  67. NETIF_MSG_IFDOWN);
  68. static int debug = -1; /* defaults above */
  69. module_param(debug, int, 0);
  70. MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
  71. static DEFINE_PCI_DEVICE_TABLE(skge_id_table) = {
  72. { PCI_DEVICE(PCI_VENDOR_ID_3COM, PCI_DEVICE_ID_3COM_3C940) },
  73. { PCI_DEVICE(PCI_VENDOR_ID_3COM, PCI_DEVICE_ID_3COM_3C940B) },
  74. { PCI_DEVICE(PCI_VENDOR_ID_SYSKONNECT, PCI_DEVICE_ID_SYSKONNECT_GE) },
  75. { PCI_DEVICE(PCI_VENDOR_ID_SYSKONNECT, PCI_DEVICE_ID_SYSKONNECT_YU) },
  76. { PCI_DEVICE(PCI_VENDOR_ID_DLINK, PCI_DEVICE_ID_DLINK_DGE510T) },
  77. { PCI_DEVICE(PCI_VENDOR_ID_DLINK, 0x4b01) }, /* DGE-530T */
  78. { PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x4320) },
  79. { PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x5005) }, /* Belkin */
  80. { PCI_DEVICE(PCI_VENDOR_ID_CNET, PCI_DEVICE_ID_CNET_GIGACARD) },
  81. { PCI_DEVICE(PCI_VENDOR_ID_LINKSYS, PCI_DEVICE_ID_LINKSYS_EG1064) },
  82. { PCI_VENDOR_ID_LINKSYS, 0x1032, PCI_ANY_ID, 0x0015 },
  83. { 0 }
  84. };
  85. MODULE_DEVICE_TABLE(pci, skge_id_table);
  86. static int skge_up(struct net_device *dev);
  87. static int skge_down(struct net_device *dev);
  88. static void skge_phy_reset(struct skge_port *skge);
  89. static void skge_tx_clean(struct net_device *dev);
  90. static int xm_phy_write(struct skge_hw *hw, int port, u16 reg, u16 val);
  91. static int gm_phy_write(struct skge_hw *hw, int port, u16 reg, u16 val);
  92. static void genesis_get_stats(struct skge_port *skge, u64 *data);
  93. static void yukon_get_stats(struct skge_port *skge, u64 *data);
  94. static void yukon_init(struct skge_hw *hw, int port);
  95. static void genesis_mac_init(struct skge_hw *hw, int port);
  96. static void genesis_link_up(struct skge_port *skge);
  97. static void skge_set_multicast(struct net_device *dev);
  98. /* Avoid conditionals by using array */
  99. static const int txqaddr[] = { Q_XA1, Q_XA2 };
  100. static const int rxqaddr[] = { Q_R1, Q_R2 };
  101. static const u32 rxirqmask[] = { IS_R1_F, IS_R2_F };
  102. static const u32 txirqmask[] = { IS_XA1_F, IS_XA2_F };
  103. static const u32 napimask[] = { IS_R1_F|IS_XA1_F, IS_R2_F|IS_XA2_F };
  104. static const u32 portmask[] = { IS_PORT_1, IS_PORT_2 };
  105. static int skge_get_regs_len(struct net_device *dev)
  106. {
  107. return 0x4000;
  108. }
  109. /*
  110. * Returns copy of whole control register region
  111. * Note: skip RAM address register because accessing it will
  112. * cause bus hangs!
  113. */
  114. static void skge_get_regs(struct net_device *dev, struct ethtool_regs *regs,
  115. void *p)
  116. {
  117. const struct skge_port *skge = netdev_priv(dev);
  118. const void __iomem *io = skge->hw->regs;
  119. regs->version = 1;
  120. memset(p, 0, regs->len);
  121. memcpy_fromio(p, io, B3_RAM_ADDR);
  122. memcpy_fromio(p + B3_RI_WTO_R1, io + B3_RI_WTO_R1,
  123. regs->len - B3_RI_WTO_R1);
  124. }
  125. /* Wake on Lan only supported on Yukon chips with rev 1 or above */
  126. static u32 wol_supported(const struct skge_hw *hw)
  127. {
  128. if (hw->chip_id == CHIP_ID_GENESIS)
  129. return 0;
  130. if (hw->chip_id == CHIP_ID_YUKON && hw->chip_rev == 0)
  131. return 0;
  132. return WAKE_MAGIC | WAKE_PHY;
  133. }
  134. static void skge_wol_init(struct skge_port *skge)
  135. {
  136. struct skge_hw *hw = skge->hw;
  137. int port = skge->port;
  138. u16 ctrl;
  139. skge_write16(hw, B0_CTST, CS_RST_CLR);
  140. skge_write16(hw, SK_REG(port, GMAC_LINK_CTRL), GMLC_RST_CLR);
  141. /* Turn on Vaux */
  142. skge_write8(hw, B0_POWER_CTRL,
  143. PC_VAUX_ENA | PC_VCC_ENA | PC_VAUX_ON | PC_VCC_OFF);
  144. /* WA code for COMA mode -- clear PHY reset */
  145. if (hw->chip_id == CHIP_ID_YUKON_LITE &&
  146. hw->chip_rev >= CHIP_REV_YU_LITE_A3) {
  147. u32 reg = skge_read32(hw, B2_GP_IO);
  148. reg |= GP_DIR_9;
  149. reg &= ~GP_IO_9;
  150. skge_write32(hw, B2_GP_IO, reg);
  151. }
  152. skge_write32(hw, SK_REG(port, GPHY_CTRL),
  153. GPC_DIS_SLEEP |
  154. GPC_HWCFG_M_3 | GPC_HWCFG_M_2 | GPC_HWCFG_M_1 | GPC_HWCFG_M_0 |
  155. GPC_ANEG_1 | GPC_RST_SET);
  156. skge_write32(hw, SK_REG(port, GPHY_CTRL),
  157. GPC_DIS_SLEEP |
  158. GPC_HWCFG_M_3 | GPC_HWCFG_M_2 | GPC_HWCFG_M_1 | GPC_HWCFG_M_0 |
  159. GPC_ANEG_1 | GPC_RST_CLR);
  160. skge_write32(hw, SK_REG(port, GMAC_CTRL), GMC_RST_CLR);
  161. /* Force to 10/100 skge_reset will re-enable on resume */
  162. gm_phy_write(hw, port, PHY_MARV_AUNE_ADV,
  163. (PHY_AN_100FULL | PHY_AN_100HALF |
  164. PHY_AN_10FULL | PHY_AN_10HALF | PHY_AN_CSMA));
  165. /* no 1000 HD/FD */
  166. gm_phy_write(hw, port, PHY_MARV_1000T_CTRL, 0);
  167. gm_phy_write(hw, port, PHY_MARV_CTRL,
  168. PHY_CT_RESET | PHY_CT_SPS_LSB | PHY_CT_ANE |
  169. PHY_CT_RE_CFG | PHY_CT_DUP_MD);
  170. /* Set GMAC to no flow control and auto update for speed/duplex */
  171. gma_write16(hw, port, GM_GP_CTRL,
  172. GM_GPCR_FC_TX_DIS|GM_GPCR_TX_ENA|GM_GPCR_RX_ENA|
  173. GM_GPCR_DUP_FULL|GM_GPCR_FC_RX_DIS|GM_GPCR_AU_FCT_DIS);
  174. /* Set WOL address */
  175. memcpy_toio(hw->regs + WOL_REGS(port, WOL_MAC_ADDR),
  176. skge->netdev->dev_addr, ETH_ALEN);
  177. /* Turn on appropriate WOL control bits */
  178. skge_write16(hw, WOL_REGS(port, WOL_CTRL_STAT), WOL_CTL_CLEAR_RESULT);
  179. ctrl = 0;
  180. if (skge->wol & WAKE_PHY)
  181. ctrl |= WOL_CTL_ENA_PME_ON_LINK_CHG|WOL_CTL_ENA_LINK_CHG_UNIT;
  182. else
  183. ctrl |= WOL_CTL_DIS_PME_ON_LINK_CHG|WOL_CTL_DIS_LINK_CHG_UNIT;
  184. if (skge->wol & WAKE_MAGIC)
  185. ctrl |= WOL_CTL_ENA_PME_ON_MAGIC_PKT|WOL_CTL_ENA_MAGIC_PKT_UNIT;
  186. else
  187. ctrl |= WOL_CTL_DIS_PME_ON_MAGIC_PKT|WOL_CTL_DIS_MAGIC_PKT_UNIT;
  188. ctrl |= WOL_CTL_DIS_PME_ON_PATTERN|WOL_CTL_DIS_PATTERN_UNIT;
  189. skge_write16(hw, WOL_REGS(port, WOL_CTRL_STAT), ctrl);
  190. /* block receiver */
  191. skge_write8(hw, SK_REG(port, RX_GMF_CTRL_T), GMF_RST_SET);
  192. }
  193. static void skge_get_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
  194. {
  195. struct skge_port *skge = netdev_priv(dev);
  196. wol->supported = wol_supported(skge->hw);
  197. wol->wolopts = skge->wol;
  198. }
  199. static int skge_set_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
  200. {
  201. struct skge_port *skge = netdev_priv(dev);
  202. struct skge_hw *hw = skge->hw;
  203. if ((wol->wolopts & ~wol_supported(hw)) ||
  204. !device_can_wakeup(&hw->pdev->dev))
  205. return -EOPNOTSUPP;
  206. skge->wol = wol->wolopts;
  207. device_set_wakeup_enable(&hw->pdev->dev, skge->wol);
  208. return 0;
  209. }
  210. /* Determine supported/advertised modes based on hardware.
  211. * Note: ethtool ADVERTISED_xxx == SUPPORTED_xxx
  212. */
  213. static u32 skge_supported_modes(const struct skge_hw *hw)
  214. {
  215. u32 supported;
  216. if (hw->copper) {
  217. supported = (SUPPORTED_10baseT_Half |
  218. SUPPORTED_10baseT_Full |
  219. SUPPORTED_100baseT_Half |
  220. SUPPORTED_100baseT_Full |
  221. SUPPORTED_1000baseT_Half |
  222. SUPPORTED_1000baseT_Full |
  223. SUPPORTED_Autoneg |
  224. SUPPORTED_TP);
  225. if (hw->chip_id == CHIP_ID_GENESIS)
  226. supported &= ~(SUPPORTED_10baseT_Half |
  227. SUPPORTED_10baseT_Full |
  228. SUPPORTED_100baseT_Half |
  229. SUPPORTED_100baseT_Full);
  230. else if (hw->chip_id == CHIP_ID_YUKON)
  231. supported &= ~SUPPORTED_1000baseT_Half;
  232. } else
  233. supported = (SUPPORTED_1000baseT_Full |
  234. SUPPORTED_1000baseT_Half |
  235. SUPPORTED_FIBRE |
  236. SUPPORTED_Autoneg);
  237. return supported;
  238. }
  239. static int skge_get_settings(struct net_device *dev,
  240. struct ethtool_cmd *ecmd)
  241. {
  242. struct skge_port *skge = netdev_priv(dev);
  243. struct skge_hw *hw = skge->hw;
  244. ecmd->transceiver = XCVR_INTERNAL;
  245. ecmd->supported = skge_supported_modes(hw);
  246. if (hw->copper) {
  247. ecmd->port = PORT_TP;
  248. ecmd->phy_address = hw->phy_addr;
  249. } else
  250. ecmd->port = PORT_FIBRE;
  251. ecmd->advertising = skge->advertising;
  252. ecmd->autoneg = skge->autoneg;
  253. ecmd->speed = skge->speed;
  254. ecmd->duplex = skge->duplex;
  255. return 0;
  256. }
  257. static int skge_set_settings(struct net_device *dev, struct ethtool_cmd *ecmd)
  258. {
  259. struct skge_port *skge = netdev_priv(dev);
  260. const struct skge_hw *hw = skge->hw;
  261. u32 supported = skge_supported_modes(hw);
  262. int err = 0;
  263. if (ecmd->autoneg == AUTONEG_ENABLE) {
  264. ecmd->advertising = supported;
  265. skge->duplex = -1;
  266. skge->speed = -1;
  267. } else {
  268. u32 setting;
  269. switch (ecmd->speed) {
  270. case SPEED_1000:
  271. if (ecmd->duplex == DUPLEX_FULL)
  272. setting = SUPPORTED_1000baseT_Full;
  273. else if (ecmd->duplex == DUPLEX_HALF)
  274. setting = SUPPORTED_1000baseT_Half;
  275. else
  276. return -EINVAL;
  277. break;
  278. case SPEED_100:
  279. if (ecmd->duplex == DUPLEX_FULL)
  280. setting = SUPPORTED_100baseT_Full;
  281. else if (ecmd->duplex == DUPLEX_HALF)
  282. setting = SUPPORTED_100baseT_Half;
  283. else
  284. return -EINVAL;
  285. break;
  286. case SPEED_10:
  287. if (ecmd->duplex == DUPLEX_FULL)
  288. setting = SUPPORTED_10baseT_Full;
  289. else if (ecmd->duplex == DUPLEX_HALF)
  290. setting = SUPPORTED_10baseT_Half;
  291. else
  292. return -EINVAL;
  293. break;
  294. default:
  295. return -EINVAL;
  296. }
  297. if ((setting & supported) == 0)
  298. return -EINVAL;
  299. skge->speed = ecmd->speed;
  300. skge->duplex = ecmd->duplex;
  301. }
  302. skge->autoneg = ecmd->autoneg;
  303. skge->advertising = ecmd->advertising;
  304. if (netif_running(dev)) {
  305. skge_down(dev);
  306. err = skge_up(dev);
  307. if (err) {
  308. dev_close(dev);
  309. return err;
  310. }
  311. }
  312. return 0;
  313. }
  314. static void skge_get_drvinfo(struct net_device *dev,
  315. struct ethtool_drvinfo *info)
  316. {
  317. struct skge_port *skge = netdev_priv(dev);
  318. strcpy(info->driver, DRV_NAME);
  319. strcpy(info->version, DRV_VERSION);
  320. strcpy(info->fw_version, "N/A");
  321. strcpy(info->bus_info, pci_name(skge->hw->pdev));
  322. }
  323. static const struct skge_stat {
  324. char name[ETH_GSTRING_LEN];
  325. u16 xmac_offset;
  326. u16 gma_offset;
  327. } skge_stats[] = {
  328. { "tx_bytes", XM_TXO_OK_HI, GM_TXO_OK_HI },
  329. { "rx_bytes", XM_RXO_OK_HI, GM_RXO_OK_HI },
  330. { "tx_broadcast", XM_TXF_BC_OK, GM_TXF_BC_OK },
  331. { "rx_broadcast", XM_RXF_BC_OK, GM_RXF_BC_OK },
  332. { "tx_multicast", XM_TXF_MC_OK, GM_TXF_MC_OK },
  333. { "rx_multicast", XM_RXF_MC_OK, GM_RXF_MC_OK },
  334. { "tx_unicast", XM_TXF_UC_OK, GM_TXF_UC_OK },
  335. { "rx_unicast", XM_RXF_UC_OK, GM_RXF_UC_OK },
  336. { "tx_mac_pause", XM_TXF_MPAUSE, GM_TXF_MPAUSE },
  337. { "rx_mac_pause", XM_RXF_MPAUSE, GM_RXF_MPAUSE },
  338. { "collisions", XM_TXF_SNG_COL, GM_TXF_SNG_COL },
  339. { "multi_collisions", XM_TXF_MUL_COL, GM_TXF_MUL_COL },
  340. { "aborted", XM_TXF_ABO_COL, GM_TXF_ABO_COL },
  341. { "late_collision", XM_TXF_LAT_COL, GM_TXF_LAT_COL },
  342. { "fifo_underrun", XM_TXE_FIFO_UR, GM_TXE_FIFO_UR },
  343. { "fifo_overflow", XM_RXE_FIFO_OV, GM_RXE_FIFO_OV },
  344. { "rx_toolong", XM_RXF_LNG_ERR, GM_RXF_LNG_ERR },
  345. { "rx_jabber", XM_RXF_JAB_PKT, GM_RXF_JAB_PKT },
  346. { "rx_runt", XM_RXE_RUNT, GM_RXE_FRAG },
  347. { "rx_too_long", XM_RXF_LNG_ERR, GM_RXF_LNG_ERR },
  348. { "rx_fcs_error", XM_RXF_FCS_ERR, GM_RXF_FCS_ERR },
  349. };
  350. static int skge_get_sset_count(struct net_device *dev, int sset)
  351. {
  352. switch (sset) {
  353. case ETH_SS_STATS:
  354. return ARRAY_SIZE(skge_stats);
  355. default:
  356. return -EOPNOTSUPP;
  357. }
  358. }
  359. static void skge_get_ethtool_stats(struct net_device *dev,
  360. struct ethtool_stats *stats, u64 *data)
  361. {
  362. struct skge_port *skge = netdev_priv(dev);
  363. if (skge->hw->chip_id == CHIP_ID_GENESIS)
  364. genesis_get_stats(skge, data);
  365. else
  366. yukon_get_stats(skge, data);
  367. }
  368. /* Use hardware MIB variables for critical path statistics and
  369. * transmit feedback not reported at interrupt.
  370. * Other errors are accounted for in interrupt handler.
  371. */
  372. static struct net_device_stats *skge_get_stats(struct net_device *dev)
  373. {
  374. struct skge_port *skge = netdev_priv(dev);
  375. u64 data[ARRAY_SIZE(skge_stats)];
  376. if (skge->hw->chip_id == CHIP_ID_GENESIS)
  377. genesis_get_stats(skge, data);
  378. else
  379. yukon_get_stats(skge, data);
  380. dev->stats.tx_bytes = data[0];
  381. dev->stats.rx_bytes = data[1];
  382. dev->stats.tx_packets = data[2] + data[4] + data[6];
  383. dev->stats.rx_packets = data[3] + data[5] + data[7];
  384. dev->stats.multicast = data[3] + data[5];
  385. dev->stats.collisions = data[10];
  386. dev->stats.tx_aborted_errors = data[12];
  387. return &dev->stats;
  388. }
  389. static void skge_get_strings(struct net_device *dev, u32 stringset, u8 *data)
  390. {
  391. int i;
  392. switch (stringset) {
  393. case ETH_SS_STATS:
  394. for (i = 0; i < ARRAY_SIZE(skge_stats); i++)
  395. memcpy(data + i * ETH_GSTRING_LEN,
  396. skge_stats[i].name, ETH_GSTRING_LEN);
  397. break;
  398. }
  399. }
  400. static void skge_get_ring_param(struct net_device *dev,
  401. struct ethtool_ringparam *p)
  402. {
  403. struct skge_port *skge = netdev_priv(dev);
  404. p->rx_max_pending = MAX_RX_RING_SIZE;
  405. p->tx_max_pending = MAX_TX_RING_SIZE;
  406. p->rx_mini_max_pending = 0;
  407. p->rx_jumbo_max_pending = 0;
  408. p->rx_pending = skge->rx_ring.count;
  409. p->tx_pending = skge->tx_ring.count;
  410. p->rx_mini_pending = 0;
  411. p->rx_jumbo_pending = 0;
  412. }
  413. static int skge_set_ring_param(struct net_device *dev,
  414. struct ethtool_ringparam *p)
  415. {
  416. struct skge_port *skge = netdev_priv(dev);
  417. int err = 0;
  418. if (p->rx_pending == 0 || p->rx_pending > MAX_RX_RING_SIZE ||
  419. p->tx_pending < TX_LOW_WATER || p->tx_pending > MAX_TX_RING_SIZE)
  420. return -EINVAL;
  421. skge->rx_ring.count = p->rx_pending;
  422. skge->tx_ring.count = p->tx_pending;
  423. if (netif_running(dev)) {
  424. skge_down(dev);
  425. err = skge_up(dev);
  426. if (err)
  427. dev_close(dev);
  428. }
  429. return err;
  430. }
  431. static u32 skge_get_msglevel(struct net_device *netdev)
  432. {
  433. struct skge_port *skge = netdev_priv(netdev);
  434. return skge->msg_enable;
  435. }
  436. static void skge_set_msglevel(struct net_device *netdev, u32 value)
  437. {
  438. struct skge_port *skge = netdev_priv(netdev);
  439. skge->msg_enable = value;
  440. }
  441. static int skge_nway_reset(struct net_device *dev)
  442. {
  443. struct skge_port *skge = netdev_priv(dev);
  444. if (skge->autoneg != AUTONEG_ENABLE || !netif_running(dev))
  445. return -EINVAL;
  446. skge_phy_reset(skge);
  447. return 0;
  448. }
  449. static int skge_set_sg(struct net_device *dev, u32 data)
  450. {
  451. struct skge_port *skge = netdev_priv(dev);
  452. struct skge_hw *hw = skge->hw;
  453. if (hw->chip_id == CHIP_ID_GENESIS && data)
  454. return -EOPNOTSUPP;
  455. return ethtool_op_set_sg(dev, data);
  456. }
  457. static int skge_set_tx_csum(struct net_device *dev, u32 data)
  458. {
  459. struct skge_port *skge = netdev_priv(dev);
  460. struct skge_hw *hw = skge->hw;
  461. if (hw->chip_id == CHIP_ID_GENESIS && data)
  462. return -EOPNOTSUPP;
  463. return ethtool_op_set_tx_csum(dev, data);
  464. }
  465. static u32 skge_get_rx_csum(struct net_device *dev)
  466. {
  467. struct skge_port *skge = netdev_priv(dev);
  468. return skge->rx_csum;
  469. }
  470. /* Only Yukon supports checksum offload. */
  471. static int skge_set_rx_csum(struct net_device *dev, u32 data)
  472. {
  473. struct skge_port *skge = netdev_priv(dev);
  474. if (skge->hw->chip_id == CHIP_ID_GENESIS && data)
  475. return -EOPNOTSUPP;
  476. skge->rx_csum = data;
  477. return 0;
  478. }
  479. static void skge_get_pauseparam(struct net_device *dev,
  480. struct ethtool_pauseparam *ecmd)
  481. {
  482. struct skge_port *skge = netdev_priv(dev);
  483. ecmd->rx_pause = ((skge->flow_control == FLOW_MODE_SYMMETRIC) ||
  484. (skge->flow_control == FLOW_MODE_SYM_OR_REM));
  485. ecmd->tx_pause = (ecmd->rx_pause ||
  486. (skge->flow_control == FLOW_MODE_LOC_SEND));
  487. ecmd->autoneg = ecmd->rx_pause || ecmd->tx_pause;
  488. }
  489. static int skge_set_pauseparam(struct net_device *dev,
  490. struct ethtool_pauseparam *ecmd)
  491. {
  492. struct skge_port *skge = netdev_priv(dev);
  493. struct ethtool_pauseparam old;
  494. int err = 0;
  495. skge_get_pauseparam(dev, &old);
  496. if (ecmd->autoneg != old.autoneg)
  497. skge->flow_control = ecmd->autoneg ? FLOW_MODE_NONE : FLOW_MODE_SYMMETRIC;
  498. else {
  499. if (ecmd->rx_pause && ecmd->tx_pause)
  500. skge->flow_control = FLOW_MODE_SYMMETRIC;
  501. else if (ecmd->rx_pause && !ecmd->tx_pause)
  502. skge->flow_control = FLOW_MODE_SYM_OR_REM;
  503. else if (!ecmd->rx_pause && ecmd->tx_pause)
  504. skge->flow_control = FLOW_MODE_LOC_SEND;
  505. else
  506. skge->flow_control = FLOW_MODE_NONE;
  507. }
  508. if (netif_running(dev)) {
  509. skge_down(dev);
  510. err = skge_up(dev);
  511. if (err) {
  512. dev_close(dev);
  513. return err;
  514. }
  515. }
  516. return 0;
  517. }
  518. /* Chip internal frequency for clock calculations */
  519. static inline u32 hwkhz(const struct skge_hw *hw)
  520. {
  521. return (hw->chip_id == CHIP_ID_GENESIS) ? 53125 : 78125;
  522. }
  523. /* Chip HZ to microseconds */
  524. static inline u32 skge_clk2usec(const struct skge_hw *hw, u32 ticks)
  525. {
  526. return (ticks * 1000) / hwkhz(hw);
  527. }
  528. /* Microseconds to chip HZ */
  529. static inline u32 skge_usecs2clk(const struct skge_hw *hw, u32 usec)
  530. {
  531. return hwkhz(hw) * usec / 1000;
  532. }
  533. static int skge_get_coalesce(struct net_device *dev,
  534. struct ethtool_coalesce *ecmd)
  535. {
  536. struct skge_port *skge = netdev_priv(dev);
  537. struct skge_hw *hw = skge->hw;
  538. int port = skge->port;
  539. ecmd->rx_coalesce_usecs = 0;
  540. ecmd->tx_coalesce_usecs = 0;
  541. if (skge_read32(hw, B2_IRQM_CTRL) & TIM_START) {
  542. u32 delay = skge_clk2usec(hw, skge_read32(hw, B2_IRQM_INI));
  543. u32 msk = skge_read32(hw, B2_IRQM_MSK);
  544. if (msk & rxirqmask[port])
  545. ecmd->rx_coalesce_usecs = delay;
  546. if (msk & txirqmask[port])
  547. ecmd->tx_coalesce_usecs = delay;
  548. }
  549. return 0;
  550. }
  551. /* Note: interrupt timer is per board, but can turn on/off per port */
  552. static int skge_set_coalesce(struct net_device *dev,
  553. struct ethtool_coalesce *ecmd)
  554. {
  555. struct skge_port *skge = netdev_priv(dev);
  556. struct skge_hw *hw = skge->hw;
  557. int port = skge->port;
  558. u32 msk = skge_read32(hw, B2_IRQM_MSK);
  559. u32 delay = 25;
  560. if (ecmd->rx_coalesce_usecs == 0)
  561. msk &= ~rxirqmask[port];
  562. else if (ecmd->rx_coalesce_usecs < 25 ||
  563. ecmd->rx_coalesce_usecs > 33333)
  564. return -EINVAL;
  565. else {
  566. msk |= rxirqmask[port];
  567. delay = ecmd->rx_coalesce_usecs;
  568. }
  569. if (ecmd->tx_coalesce_usecs == 0)
  570. msk &= ~txirqmask[port];
  571. else if (ecmd->tx_coalesce_usecs < 25 ||
  572. ecmd->tx_coalesce_usecs > 33333)
  573. return -EINVAL;
  574. else {
  575. msk |= txirqmask[port];
  576. delay = min(delay, ecmd->rx_coalesce_usecs);
  577. }
  578. skge_write32(hw, B2_IRQM_MSK, msk);
  579. if (msk == 0)
  580. skge_write32(hw, B2_IRQM_CTRL, TIM_STOP);
  581. else {
  582. skge_write32(hw, B2_IRQM_INI, skge_usecs2clk(hw, delay));
  583. skge_write32(hw, B2_IRQM_CTRL, TIM_START);
  584. }
  585. return 0;
  586. }
  587. enum led_mode { LED_MODE_OFF, LED_MODE_ON, LED_MODE_TST };
  588. static void skge_led(struct skge_port *skge, enum led_mode mode)
  589. {
  590. struct skge_hw *hw = skge->hw;
  591. int port = skge->port;
  592. spin_lock_bh(&hw->phy_lock);
  593. if (hw->chip_id == CHIP_ID_GENESIS) {
  594. switch (mode) {
  595. case LED_MODE_OFF:
  596. if (hw->phy_type == SK_PHY_BCOM)
  597. xm_phy_write(hw, port, PHY_BCOM_P_EXT_CTRL, PHY_B_PEC_LED_OFF);
  598. else {
  599. skge_write32(hw, SK_REG(port, TX_LED_VAL), 0);
  600. skge_write8(hw, SK_REG(port, TX_LED_CTRL), LED_T_OFF);
  601. }
  602. skge_write8(hw, SK_REG(port, LNK_LED_REG), LINKLED_OFF);
  603. skge_write32(hw, SK_REG(port, RX_LED_VAL), 0);
  604. skge_write8(hw, SK_REG(port, RX_LED_CTRL), LED_T_OFF);
  605. break;
  606. case LED_MODE_ON:
  607. skge_write8(hw, SK_REG(port, LNK_LED_REG), LINKLED_ON);
  608. skge_write8(hw, SK_REG(port, LNK_LED_REG), LINKLED_LINKSYNC_ON);
  609. skge_write8(hw, SK_REG(port, RX_LED_CTRL), LED_START);
  610. skge_write8(hw, SK_REG(port, TX_LED_CTRL), LED_START);
  611. break;
  612. case LED_MODE_TST:
  613. skge_write8(hw, SK_REG(port, RX_LED_TST), LED_T_ON);
  614. skge_write32(hw, SK_REG(port, RX_LED_VAL), 100);
  615. skge_write8(hw, SK_REG(port, RX_LED_CTRL), LED_START);
  616. if (hw->phy_type == SK_PHY_BCOM)
  617. xm_phy_write(hw, port, PHY_BCOM_P_EXT_CTRL, PHY_B_PEC_LED_ON);
  618. else {
  619. skge_write8(hw, SK_REG(port, TX_LED_TST), LED_T_ON);
  620. skge_write32(hw, SK_REG(port, TX_LED_VAL), 100);
  621. skge_write8(hw, SK_REG(port, TX_LED_CTRL), LED_START);
  622. }
  623. }
  624. } else {
  625. switch (mode) {
  626. case LED_MODE_OFF:
  627. gm_phy_write(hw, port, PHY_MARV_LED_CTRL, 0);
  628. gm_phy_write(hw, port, PHY_MARV_LED_OVER,
  629. PHY_M_LED_MO_DUP(MO_LED_OFF) |
  630. PHY_M_LED_MO_10(MO_LED_OFF) |
  631. PHY_M_LED_MO_100(MO_LED_OFF) |
  632. PHY_M_LED_MO_1000(MO_LED_OFF) |
  633. PHY_M_LED_MO_RX(MO_LED_OFF));
  634. break;
  635. case LED_MODE_ON:
  636. gm_phy_write(hw, port, PHY_MARV_LED_CTRL,
  637. PHY_M_LED_PULS_DUR(PULS_170MS) |
  638. PHY_M_LED_BLINK_RT(BLINK_84MS) |
  639. PHY_M_LEDC_TX_CTRL |
  640. PHY_M_LEDC_DP_CTRL);
  641. gm_phy_write(hw, port, PHY_MARV_LED_OVER,
  642. PHY_M_LED_MO_RX(MO_LED_OFF) |
  643. (skge->speed == SPEED_100 ?
  644. PHY_M_LED_MO_100(MO_LED_ON) : 0));
  645. break;
  646. case LED_MODE_TST:
  647. gm_phy_write(hw, port, PHY_MARV_LED_CTRL, 0);
  648. gm_phy_write(hw, port, PHY_MARV_LED_OVER,
  649. PHY_M_LED_MO_DUP(MO_LED_ON) |
  650. PHY_M_LED_MO_10(MO_LED_ON) |
  651. PHY_M_LED_MO_100(MO_LED_ON) |
  652. PHY_M_LED_MO_1000(MO_LED_ON) |
  653. PHY_M_LED_MO_RX(MO_LED_ON));
  654. }
  655. }
  656. spin_unlock_bh(&hw->phy_lock);
  657. }
  658. /* blink LED's for finding board */
  659. static int skge_phys_id(struct net_device *dev, u32 data)
  660. {
  661. struct skge_port *skge = netdev_priv(dev);
  662. unsigned long ms;
  663. enum led_mode mode = LED_MODE_TST;
  664. if (!data || data > (u32)(MAX_SCHEDULE_TIMEOUT / HZ))
  665. ms = jiffies_to_msecs(MAX_SCHEDULE_TIMEOUT / HZ) * 1000;
  666. else
  667. ms = data * 1000;
  668. while (ms > 0) {
  669. skge_led(skge, mode);
  670. mode ^= LED_MODE_TST;
  671. if (msleep_interruptible(BLINK_MS))
  672. break;
  673. ms -= BLINK_MS;
  674. }
  675. /* back to regular LED state */
  676. skge_led(skge, netif_running(dev) ? LED_MODE_ON : LED_MODE_OFF);
  677. return 0;
  678. }
  679. static int skge_get_eeprom_len(struct net_device *dev)
  680. {
  681. struct skge_port *skge = netdev_priv(dev);
  682. u32 reg2;
  683. pci_read_config_dword(skge->hw->pdev, PCI_DEV_REG2, &reg2);
  684. return 1 << (((reg2 & PCI_VPD_ROM_SZ) >> 14) + 8);
  685. }
  686. static u32 skge_vpd_read(struct pci_dev *pdev, int cap, u16 offset)
  687. {
  688. u32 val;
  689. pci_write_config_word(pdev, cap + PCI_VPD_ADDR, offset);
  690. do {
  691. pci_read_config_word(pdev, cap + PCI_VPD_ADDR, &offset);
  692. } while (!(offset & PCI_VPD_ADDR_F));
  693. pci_read_config_dword(pdev, cap + PCI_VPD_DATA, &val);
  694. return val;
  695. }
  696. static void skge_vpd_write(struct pci_dev *pdev, int cap, u16 offset, u32 val)
  697. {
  698. pci_write_config_dword(pdev, cap + PCI_VPD_DATA, val);
  699. pci_write_config_word(pdev, cap + PCI_VPD_ADDR,
  700. offset | PCI_VPD_ADDR_F);
  701. do {
  702. pci_read_config_word(pdev, cap + PCI_VPD_ADDR, &offset);
  703. } while (offset & PCI_VPD_ADDR_F);
  704. }
  705. static int skge_get_eeprom(struct net_device *dev, struct ethtool_eeprom *eeprom,
  706. u8 *data)
  707. {
  708. struct skge_port *skge = netdev_priv(dev);
  709. struct pci_dev *pdev = skge->hw->pdev;
  710. int cap = pci_find_capability(pdev, PCI_CAP_ID_VPD);
  711. int length = eeprom->len;
  712. u16 offset = eeprom->offset;
  713. if (!cap)
  714. return -EINVAL;
  715. eeprom->magic = SKGE_EEPROM_MAGIC;
  716. while (length > 0) {
  717. u32 val = skge_vpd_read(pdev, cap, offset);
  718. int n = min_t(int, length, sizeof(val));
  719. memcpy(data, &val, n);
  720. length -= n;
  721. data += n;
  722. offset += n;
  723. }
  724. return 0;
  725. }
  726. static int skge_set_eeprom(struct net_device *dev, struct ethtool_eeprom *eeprom,
  727. u8 *data)
  728. {
  729. struct skge_port *skge = netdev_priv(dev);
  730. struct pci_dev *pdev = skge->hw->pdev;
  731. int cap = pci_find_capability(pdev, PCI_CAP_ID_VPD);
  732. int length = eeprom->len;
  733. u16 offset = eeprom->offset;
  734. if (!cap)
  735. return -EINVAL;
  736. if (eeprom->magic != SKGE_EEPROM_MAGIC)
  737. return -EINVAL;
  738. while (length > 0) {
  739. u32 val;
  740. int n = min_t(int, length, sizeof(val));
  741. if (n < sizeof(val))
  742. val = skge_vpd_read(pdev, cap, offset);
  743. memcpy(&val, data, n);
  744. skge_vpd_write(pdev, cap, offset, val);
  745. length -= n;
  746. data += n;
  747. offset += n;
  748. }
  749. return 0;
  750. }
  751. static const struct ethtool_ops skge_ethtool_ops = {
  752. .get_settings = skge_get_settings,
  753. .set_settings = skge_set_settings,
  754. .get_drvinfo = skge_get_drvinfo,
  755. .get_regs_len = skge_get_regs_len,
  756. .get_regs = skge_get_regs,
  757. .get_wol = skge_get_wol,
  758. .set_wol = skge_set_wol,
  759. .get_msglevel = skge_get_msglevel,
  760. .set_msglevel = skge_set_msglevel,
  761. .nway_reset = skge_nway_reset,
  762. .get_link = ethtool_op_get_link,
  763. .get_eeprom_len = skge_get_eeprom_len,
  764. .get_eeprom = skge_get_eeprom,
  765. .set_eeprom = skge_set_eeprom,
  766. .get_ringparam = skge_get_ring_param,
  767. .set_ringparam = skge_set_ring_param,
  768. .get_pauseparam = skge_get_pauseparam,
  769. .set_pauseparam = skge_set_pauseparam,
  770. .get_coalesce = skge_get_coalesce,
  771. .set_coalesce = skge_set_coalesce,
  772. .set_sg = skge_set_sg,
  773. .set_tx_csum = skge_set_tx_csum,
  774. .get_rx_csum = skge_get_rx_csum,
  775. .set_rx_csum = skge_set_rx_csum,
  776. .get_strings = skge_get_strings,
  777. .phys_id = skge_phys_id,
  778. .get_sset_count = skge_get_sset_count,
  779. .get_ethtool_stats = skge_get_ethtool_stats,
  780. };
  781. /*
  782. * Allocate ring elements and chain them together
  783. * One-to-one association of board descriptors with ring elements
  784. */
  785. static int skge_ring_alloc(struct skge_ring *ring, void *vaddr, u32 base)
  786. {
  787. struct skge_tx_desc *d;
  788. struct skge_element *e;
  789. int i;
  790. ring->start = kcalloc(ring->count, sizeof(*e), GFP_KERNEL);
  791. if (!ring->start)
  792. return -ENOMEM;
  793. for (i = 0, e = ring->start, d = vaddr; i < ring->count; i++, e++, d++) {
  794. e->desc = d;
  795. if (i == ring->count - 1) {
  796. e->next = ring->start;
  797. d->next_offset = base;
  798. } else {
  799. e->next = e + 1;
  800. d->next_offset = base + (i+1) * sizeof(*d);
  801. }
  802. }
  803. ring->to_use = ring->to_clean = ring->start;
  804. return 0;
  805. }
  806. /* Allocate and setup a new buffer for receiving */
  807. static void skge_rx_setup(struct skge_port *skge, struct skge_element *e,
  808. struct sk_buff *skb, unsigned int bufsize)
  809. {
  810. struct skge_rx_desc *rd = e->desc;
  811. u64 map;
  812. map = pci_map_single(skge->hw->pdev, skb->data, bufsize,
  813. PCI_DMA_FROMDEVICE);
  814. rd->dma_lo = map;
  815. rd->dma_hi = map >> 32;
  816. e->skb = skb;
  817. rd->csum1_start = ETH_HLEN;
  818. rd->csum2_start = ETH_HLEN;
  819. rd->csum1 = 0;
  820. rd->csum2 = 0;
  821. wmb();
  822. rd->control = BMU_OWN | BMU_STF | BMU_IRQ_EOF | BMU_TCP_CHECK | bufsize;
  823. pci_unmap_addr_set(e, mapaddr, map);
  824. pci_unmap_len_set(e, maplen, bufsize);
  825. }
  826. /* Resume receiving using existing skb,
  827. * Note: DMA address is not changed by chip.
  828. * MTU not changed while receiver active.
  829. */
  830. static inline void skge_rx_reuse(struct skge_element *e, unsigned int size)
  831. {
  832. struct skge_rx_desc *rd = e->desc;
  833. rd->csum2 = 0;
  834. rd->csum2_start = ETH_HLEN;
  835. wmb();
  836. rd->control = BMU_OWN | BMU_STF | BMU_IRQ_EOF | BMU_TCP_CHECK | size;
  837. }
  838. /* Free all buffers in receive ring, assumes receiver stopped */
  839. static void skge_rx_clean(struct skge_port *skge)
  840. {
  841. struct skge_hw *hw = skge->hw;
  842. struct skge_ring *ring = &skge->rx_ring;
  843. struct skge_element *e;
  844. e = ring->start;
  845. do {
  846. struct skge_rx_desc *rd = e->desc;
  847. rd->control = 0;
  848. if (e->skb) {
  849. pci_unmap_single(hw->pdev,
  850. pci_unmap_addr(e, mapaddr),
  851. pci_unmap_len(e, maplen),
  852. PCI_DMA_FROMDEVICE);
  853. dev_kfree_skb(e->skb);
  854. e->skb = NULL;
  855. }
  856. } while ((e = e->next) != ring->start);
  857. }
  858. /* Allocate buffers for receive ring
  859. * For receive: to_clean is next received frame.
  860. */
  861. static int skge_rx_fill(struct net_device *dev)
  862. {
  863. struct skge_port *skge = netdev_priv(dev);
  864. struct skge_ring *ring = &skge->rx_ring;
  865. struct skge_element *e;
  866. e = ring->start;
  867. do {
  868. struct sk_buff *skb;
  869. skb = __netdev_alloc_skb(dev, skge->rx_buf_size + NET_IP_ALIGN,
  870. GFP_KERNEL);
  871. if (!skb)
  872. return -ENOMEM;
  873. skb_reserve(skb, NET_IP_ALIGN);
  874. skge_rx_setup(skge, e, skb, skge->rx_buf_size);
  875. } while ((e = e->next) != ring->start);
  876. ring->to_clean = ring->start;
  877. return 0;
  878. }
  879. static const char *skge_pause(enum pause_status status)
  880. {
  881. switch (status) {
  882. case FLOW_STAT_NONE:
  883. return "none";
  884. case FLOW_STAT_REM_SEND:
  885. return "rx only";
  886. case FLOW_STAT_LOC_SEND:
  887. return "tx_only";
  888. case FLOW_STAT_SYMMETRIC: /* Both station may send PAUSE */
  889. return "both";
  890. default:
  891. return "indeterminated";
  892. }
  893. }
  894. static void skge_link_up(struct skge_port *skge)
  895. {
  896. skge_write8(skge->hw, SK_REG(skge->port, LNK_LED_REG),
  897. LED_BLK_OFF|LED_SYNC_OFF|LED_ON);
  898. netif_carrier_on(skge->netdev);
  899. netif_wake_queue(skge->netdev);
  900. netif_info(skge, link, skge->netdev,
  901. "Link is up at %d Mbps, %s duplex, flow control %s\n",
  902. skge->speed,
  903. skge->duplex == DUPLEX_FULL ? "full" : "half",
  904. skge_pause(skge->flow_status));
  905. }
  906. static void skge_link_down(struct skge_port *skge)
  907. {
  908. skge_write8(skge->hw, SK_REG(skge->port, LNK_LED_REG), LED_OFF);
  909. netif_carrier_off(skge->netdev);
  910. netif_stop_queue(skge->netdev);
  911. netif_info(skge, link, skge->netdev, "Link is down\n");
  912. }
  913. static void xm_link_down(struct skge_hw *hw, int port)
  914. {
  915. struct net_device *dev = hw->dev[port];
  916. struct skge_port *skge = netdev_priv(dev);
  917. xm_write16(hw, port, XM_IMSK, XM_IMSK_DISABLE);
  918. if (netif_carrier_ok(dev))
  919. skge_link_down(skge);
  920. }
  921. static int __xm_phy_read(struct skge_hw *hw, int port, u16 reg, u16 *val)
  922. {
  923. int i;
  924. xm_write16(hw, port, XM_PHY_ADDR, reg | hw->phy_addr);
  925. *val = xm_read16(hw, port, XM_PHY_DATA);
  926. if (hw->phy_type == SK_PHY_XMAC)
  927. goto ready;
  928. for (i = 0; i < PHY_RETRIES; i++) {
  929. if (xm_read16(hw, port, XM_MMU_CMD) & XM_MMU_PHY_RDY)
  930. goto ready;
  931. udelay(1);
  932. }
  933. return -ETIMEDOUT;
  934. ready:
  935. *val = xm_read16(hw, port, XM_PHY_DATA);
  936. return 0;
  937. }
  938. static u16 xm_phy_read(struct skge_hw *hw, int port, u16 reg)
  939. {
  940. u16 v = 0;
  941. if (__xm_phy_read(hw, port, reg, &v))
  942. pr_warning("%s: phy read timed out\n", hw->dev[port]->name);
  943. return v;
  944. }
  945. static int xm_phy_write(struct skge_hw *hw, int port, u16 reg, u16 val)
  946. {
  947. int i;
  948. xm_write16(hw, port, XM_PHY_ADDR, reg | hw->phy_addr);
  949. for (i = 0; i < PHY_RETRIES; i++) {
  950. if (!(xm_read16(hw, port, XM_MMU_CMD) & XM_MMU_PHY_BUSY))
  951. goto ready;
  952. udelay(1);
  953. }
  954. return -EIO;
  955. ready:
  956. xm_write16(hw, port, XM_PHY_DATA, val);
  957. for (i = 0; i < PHY_RETRIES; i++) {
  958. if (!(xm_read16(hw, port, XM_MMU_CMD) & XM_MMU_PHY_BUSY))
  959. return 0;
  960. udelay(1);
  961. }
  962. return -ETIMEDOUT;
  963. }
  964. static void genesis_init(struct skge_hw *hw)
  965. {
  966. /* set blink source counter */
  967. skge_write32(hw, B2_BSC_INI, (SK_BLK_DUR * SK_FACT_53) / 100);
  968. skge_write8(hw, B2_BSC_CTRL, BSC_START);
  969. /* configure mac arbiter */
  970. skge_write16(hw, B3_MA_TO_CTRL, MA_RST_CLR);
  971. /* configure mac arbiter timeout values */
  972. skge_write8(hw, B3_MA_TOINI_RX1, SK_MAC_TO_53);
  973. skge_write8(hw, B3_MA_TOINI_RX2, SK_MAC_TO_53);
  974. skge_write8(hw, B3_MA_TOINI_TX1, SK_MAC_TO_53);
  975. skge_write8(hw, B3_MA_TOINI_TX2, SK_MAC_TO_53);
  976. skge_write8(hw, B3_MA_RCINI_RX1, 0);
  977. skge_write8(hw, B3_MA_RCINI_RX2, 0);
  978. skge_write8(hw, B3_MA_RCINI_TX1, 0);
  979. skge_write8(hw, B3_MA_RCINI_TX2, 0);
  980. /* configure packet arbiter timeout */
  981. skge_write16(hw, B3_PA_CTRL, PA_RST_CLR);
  982. skge_write16(hw, B3_PA_TOINI_RX1, SK_PKT_TO_MAX);
  983. skge_write16(hw, B3_PA_TOINI_TX1, SK_PKT_TO_MAX);
  984. skge_write16(hw, B3_PA_TOINI_RX2, SK_PKT_TO_MAX);
  985. skge_write16(hw, B3_PA_TOINI_TX2, SK_PKT_TO_MAX);
  986. }
  987. static void genesis_reset(struct skge_hw *hw, int port)
  988. {
  989. const u8 zero[8] = { 0 };
  990. u32 reg;
  991. skge_write8(hw, SK_REG(port, GMAC_IRQ_MSK), 0);
  992. /* reset the statistics module */
  993. xm_write32(hw, port, XM_GP_PORT, XM_GP_RES_STAT);
  994. xm_write16(hw, port, XM_IMSK, XM_IMSK_DISABLE);
  995. xm_write32(hw, port, XM_MODE, 0); /* clear Mode Reg */
  996. xm_write16(hw, port, XM_TX_CMD, 0); /* reset TX CMD Reg */
  997. xm_write16(hw, port, XM_RX_CMD, 0); /* reset RX CMD Reg */
  998. /* disable Broadcom PHY IRQ */
  999. if (hw->phy_type == SK_PHY_BCOM)
  1000. xm_write16(hw, port, PHY_BCOM_INT_MASK, 0xffff);
  1001. xm_outhash(hw, port, XM_HSM, zero);
  1002. /* Flush TX and RX fifo */
  1003. reg = xm_read32(hw, port, XM_MODE);
  1004. xm_write32(hw, port, XM_MODE, reg | XM_MD_FTF);
  1005. xm_write32(hw, port, XM_MODE, reg | XM_MD_FRF);
  1006. }
  1007. /* Convert mode to MII values */
  1008. static const u16 phy_pause_map[] = {
  1009. [FLOW_MODE_NONE] = 0,
  1010. [FLOW_MODE_LOC_SEND] = PHY_AN_PAUSE_ASYM,
  1011. [FLOW_MODE_SYMMETRIC] = PHY_AN_PAUSE_CAP,
  1012. [FLOW_MODE_SYM_OR_REM] = PHY_AN_PAUSE_CAP | PHY_AN_PAUSE_ASYM,
  1013. };
  1014. /* special defines for FIBER (88E1011S only) */
  1015. static const u16 fiber_pause_map[] = {
  1016. [FLOW_MODE_NONE] = PHY_X_P_NO_PAUSE,
  1017. [FLOW_MODE_LOC_SEND] = PHY_X_P_ASYM_MD,
  1018. [FLOW_MODE_SYMMETRIC] = PHY_X_P_SYM_MD,
  1019. [FLOW_MODE_SYM_OR_REM] = PHY_X_P_BOTH_MD,
  1020. };
  1021. /* Check status of Broadcom phy link */
  1022. static void bcom_check_link(struct skge_hw *hw, int port)
  1023. {
  1024. struct net_device *dev = hw->dev[port];
  1025. struct skge_port *skge = netdev_priv(dev);
  1026. u16 status;
  1027. /* read twice because of latch */
  1028. xm_phy_read(hw, port, PHY_BCOM_STAT);
  1029. status = xm_phy_read(hw, port, PHY_BCOM_STAT);
  1030. if ((status & PHY_ST_LSYNC) == 0) {
  1031. xm_link_down(hw, port);
  1032. return;
  1033. }
  1034. if (skge->autoneg == AUTONEG_ENABLE) {
  1035. u16 lpa, aux;
  1036. if (!(status & PHY_ST_AN_OVER))
  1037. return;
  1038. lpa = xm_phy_read(hw, port, PHY_XMAC_AUNE_LP);
  1039. if (lpa & PHY_B_AN_RF) {
  1040. netdev_notice(dev, "remote fault\n");
  1041. return;
  1042. }
  1043. aux = xm_phy_read(hw, port, PHY_BCOM_AUX_STAT);
  1044. /* Check Duplex mismatch */
  1045. switch (aux & PHY_B_AS_AN_RES_MSK) {
  1046. case PHY_B_RES_1000FD:
  1047. skge->duplex = DUPLEX_FULL;
  1048. break;
  1049. case PHY_B_RES_1000HD:
  1050. skge->duplex = DUPLEX_HALF;
  1051. break;
  1052. default:
  1053. netdev_notice(dev, "duplex mismatch\n");
  1054. return;
  1055. }
  1056. /* We are using IEEE 802.3z/D5.0 Table 37-4 */
  1057. switch (aux & PHY_B_AS_PAUSE_MSK) {
  1058. case PHY_B_AS_PAUSE_MSK:
  1059. skge->flow_status = FLOW_STAT_SYMMETRIC;
  1060. break;
  1061. case PHY_B_AS_PRR:
  1062. skge->flow_status = FLOW_STAT_REM_SEND;
  1063. break;
  1064. case PHY_B_AS_PRT:
  1065. skge->flow_status = FLOW_STAT_LOC_SEND;
  1066. break;
  1067. default:
  1068. skge->flow_status = FLOW_STAT_NONE;
  1069. }
  1070. skge->speed = SPEED_1000;
  1071. }
  1072. if (!netif_carrier_ok(dev))
  1073. genesis_link_up(skge);
  1074. }
  1075. /* Broadcom 5400 only supports giagabit! SysKonnect did not put an additional
  1076. * Phy on for 100 or 10Mbit operation
  1077. */
  1078. static void bcom_phy_init(struct skge_port *skge)
  1079. {
  1080. struct skge_hw *hw = skge->hw;
  1081. int port = skge->port;
  1082. int i;
  1083. u16 id1, r, ext, ctl;
  1084. /* magic workaround patterns for Broadcom */
  1085. static const struct {
  1086. u16 reg;
  1087. u16 val;
  1088. } A1hack[] = {
  1089. { 0x18, 0x0c20 }, { 0x17, 0x0012 }, { 0x15, 0x1104 },
  1090. { 0x17, 0x0013 }, { 0x15, 0x0404 }, { 0x17, 0x8006 },
  1091. { 0x15, 0x0132 }, { 0x17, 0x8006 }, { 0x15, 0x0232 },
  1092. { 0x17, 0x800D }, { 0x15, 0x000F }, { 0x18, 0x0420 },
  1093. }, C0hack[] = {
  1094. { 0x18, 0x0c20 }, { 0x17, 0x0012 }, { 0x15, 0x1204 },
  1095. { 0x17, 0x0013 }, { 0x15, 0x0A04 }, { 0x18, 0x0420 },
  1096. };
  1097. /* read Id from external PHY (all have the same address) */
  1098. id1 = xm_phy_read(hw, port, PHY_XMAC_ID1);
  1099. /* Optimize MDIO transfer by suppressing preamble. */
  1100. r = xm_read16(hw, port, XM_MMU_CMD);
  1101. r |= XM_MMU_NO_PRE;
  1102. xm_write16(hw, port, XM_MMU_CMD, r);
  1103. switch (id1) {
  1104. case PHY_BCOM_ID1_C0:
  1105. /*
  1106. * Workaround BCOM Errata for the C0 type.
  1107. * Write magic patterns to reserved registers.
  1108. */
  1109. for (i = 0; i < ARRAY_SIZE(C0hack); i++)
  1110. xm_phy_write(hw, port,
  1111. C0hack[i].reg, C0hack[i].val);
  1112. break;
  1113. case PHY_BCOM_ID1_A1:
  1114. /*
  1115. * Workaround BCOM Errata for the A1 type.
  1116. * Write magic patterns to reserved registers.
  1117. */
  1118. for (i = 0; i < ARRAY_SIZE(A1hack); i++)
  1119. xm_phy_write(hw, port,
  1120. A1hack[i].reg, A1hack[i].val);
  1121. break;
  1122. }
  1123. /*
  1124. * Workaround BCOM Errata (#10523) for all BCom PHYs.
  1125. * Disable Power Management after reset.
  1126. */
  1127. r = xm_phy_read(hw, port, PHY_BCOM_AUX_CTRL);
  1128. r |= PHY_B_AC_DIS_PM;
  1129. xm_phy_write(hw, port, PHY_BCOM_AUX_CTRL, r);
  1130. /* Dummy read */
  1131. xm_read16(hw, port, XM_ISRC);
  1132. ext = PHY_B_PEC_EN_LTR; /* enable tx led */
  1133. ctl = PHY_CT_SP1000; /* always 1000mbit */
  1134. if (skge->autoneg == AUTONEG_ENABLE) {
  1135. /*
  1136. * Workaround BCOM Errata #1 for the C5 type.
  1137. * 1000Base-T Link Acquisition Failure in Slave Mode
  1138. * Set Repeater/DTE bit 10 of the 1000Base-T Control Register
  1139. */
  1140. u16 adv = PHY_B_1000C_RD;
  1141. if (skge->advertising & ADVERTISED_1000baseT_Half)
  1142. adv |= PHY_B_1000C_AHD;
  1143. if (skge->advertising & ADVERTISED_1000baseT_Full)
  1144. adv |= PHY_B_1000C_AFD;
  1145. xm_phy_write(hw, port, PHY_BCOM_1000T_CTRL, adv);
  1146. ctl |= PHY_CT_ANE | PHY_CT_RE_CFG;
  1147. } else {
  1148. if (skge->duplex == DUPLEX_FULL)
  1149. ctl |= PHY_CT_DUP_MD;
  1150. /* Force to slave */
  1151. xm_phy_write(hw, port, PHY_BCOM_1000T_CTRL, PHY_B_1000C_MSE);
  1152. }
  1153. /* Set autonegotiation pause parameters */
  1154. xm_phy_write(hw, port, PHY_BCOM_AUNE_ADV,
  1155. phy_pause_map[skge->flow_control] | PHY_AN_CSMA);
  1156. /* Handle Jumbo frames */
  1157. if (hw->dev[port]->mtu > ETH_DATA_LEN) {
  1158. xm_phy_write(hw, port, PHY_BCOM_AUX_CTRL,
  1159. PHY_B_AC_TX_TST | PHY_B_AC_LONG_PACK);
  1160. ext |= PHY_B_PEC_HIGH_LA;
  1161. }
  1162. xm_phy_write(hw, port, PHY_BCOM_P_EXT_CTRL, ext);
  1163. xm_phy_write(hw, port, PHY_BCOM_CTRL, ctl);
  1164. /* Use link status change interrupt */
  1165. xm_phy_write(hw, port, PHY_BCOM_INT_MASK, PHY_B_DEF_MSK);
  1166. }
  1167. static void xm_phy_init(struct skge_port *skge)
  1168. {
  1169. struct skge_hw *hw = skge->hw;
  1170. int port = skge->port;
  1171. u16 ctrl = 0;
  1172. if (skge->autoneg == AUTONEG_ENABLE) {
  1173. if (skge->advertising & ADVERTISED_1000baseT_Half)
  1174. ctrl |= PHY_X_AN_HD;
  1175. if (skge->advertising & ADVERTISED_1000baseT_Full)
  1176. ctrl |= PHY_X_AN_FD;
  1177. ctrl |= fiber_pause_map[skge->flow_control];
  1178. xm_phy_write(hw, port, PHY_XMAC_AUNE_ADV, ctrl);
  1179. /* Restart Auto-negotiation */
  1180. ctrl = PHY_CT_ANE | PHY_CT_RE_CFG;
  1181. } else {
  1182. /* Set DuplexMode in Config register */
  1183. if (skge->duplex == DUPLEX_FULL)
  1184. ctrl |= PHY_CT_DUP_MD;
  1185. /*
  1186. * Do NOT enable Auto-negotiation here. This would hold
  1187. * the link down because no IDLEs are transmitted
  1188. */
  1189. }
  1190. xm_phy_write(hw, port, PHY_XMAC_CTRL, ctrl);
  1191. /* Poll PHY for status changes */
  1192. mod_timer(&skge->link_timer, jiffies + LINK_HZ);
  1193. }
  1194. static int xm_check_link(struct net_device *dev)
  1195. {
  1196. struct skge_port *skge = netdev_priv(dev);
  1197. struct skge_hw *hw = skge->hw;
  1198. int port = skge->port;
  1199. u16 status;
  1200. /* read twice because of latch */
  1201. xm_phy_read(hw, port, PHY_XMAC_STAT);
  1202. status = xm_phy_read(hw, port, PHY_XMAC_STAT);
  1203. if ((status & PHY_ST_LSYNC) == 0) {
  1204. xm_link_down(hw, port);
  1205. return 0;
  1206. }
  1207. if (skge->autoneg == AUTONEG_ENABLE) {
  1208. u16 lpa, res;
  1209. if (!(status & PHY_ST_AN_OVER))
  1210. return 0;
  1211. lpa = xm_phy_read(hw, port, PHY_XMAC_AUNE_LP);
  1212. if (lpa & PHY_B_AN_RF) {
  1213. netdev_notice(dev, "remote fault\n");
  1214. return 0;
  1215. }
  1216. res = xm_phy_read(hw, port, PHY_XMAC_RES_ABI);
  1217. /* Check Duplex mismatch */
  1218. switch (res & (PHY_X_RS_HD | PHY_X_RS_FD)) {
  1219. case PHY_X_RS_FD:
  1220. skge->duplex = DUPLEX_FULL;
  1221. break;
  1222. case PHY_X_RS_HD:
  1223. skge->duplex = DUPLEX_HALF;
  1224. break;
  1225. default:
  1226. netdev_notice(dev, "duplex mismatch\n");
  1227. return 0;
  1228. }
  1229. /* We are using IEEE 802.3z/D5.0 Table 37-4 */
  1230. if ((skge->flow_control == FLOW_MODE_SYMMETRIC ||
  1231. skge->flow_control == FLOW_MODE_SYM_OR_REM) &&
  1232. (lpa & PHY_X_P_SYM_MD))
  1233. skge->flow_status = FLOW_STAT_SYMMETRIC;
  1234. else if (skge->flow_control == FLOW_MODE_SYM_OR_REM &&
  1235. (lpa & PHY_X_RS_PAUSE) == PHY_X_P_ASYM_MD)
  1236. /* Enable PAUSE receive, disable PAUSE transmit */
  1237. skge->flow_status = FLOW_STAT_REM_SEND;
  1238. else if (skge->flow_control == FLOW_MODE_LOC_SEND &&
  1239. (lpa & PHY_X_RS_PAUSE) == PHY_X_P_BOTH_MD)
  1240. /* Disable PAUSE receive, enable PAUSE transmit */
  1241. skge->flow_status = FLOW_STAT_LOC_SEND;
  1242. else
  1243. skge->flow_status = FLOW_STAT_NONE;
  1244. skge->speed = SPEED_1000;
  1245. }
  1246. if (!netif_carrier_ok(dev))
  1247. genesis_link_up(skge);
  1248. return 1;
  1249. }
  1250. /* Poll to check for link coming up.
  1251. *
  1252. * Since internal PHY is wired to a level triggered pin, can't
  1253. * get an interrupt when carrier is detected, need to poll for
  1254. * link coming up.
  1255. */
  1256. static void xm_link_timer(unsigned long arg)
  1257. {
  1258. struct skge_port *skge = (struct skge_port *) arg;
  1259. struct net_device *dev = skge->netdev;
  1260. struct skge_hw *hw = skge->hw;
  1261. int port = skge->port;
  1262. int i;
  1263. unsigned long flags;
  1264. if (!netif_running(dev))
  1265. return;
  1266. spin_lock_irqsave(&hw->phy_lock, flags);
  1267. /*
  1268. * Verify that the link by checking GPIO register three times.
  1269. * This pin has the signal from the link_sync pin connected to it.
  1270. */
  1271. for (i = 0; i < 3; i++) {
  1272. if (xm_read16(hw, port, XM_GP_PORT) & XM_GP_INP_ASS)
  1273. goto link_down;
  1274. }
  1275. /* Re-enable interrupt to detect link down */
  1276. if (xm_check_link(dev)) {
  1277. u16 msk = xm_read16(hw, port, XM_IMSK);
  1278. msk &= ~XM_IS_INP_ASS;
  1279. xm_write16(hw, port, XM_IMSK, msk);
  1280. xm_read16(hw, port, XM_ISRC);
  1281. } else {
  1282. link_down:
  1283. mod_timer(&skge->link_timer,
  1284. round_jiffies(jiffies + LINK_HZ));
  1285. }
  1286. spin_unlock_irqrestore(&hw->phy_lock, flags);
  1287. }
  1288. static void genesis_mac_init(struct skge_hw *hw, int port)
  1289. {
  1290. struct net_device *dev = hw->dev[port];
  1291. struct skge_port *skge = netdev_priv(dev);
  1292. int jumbo = hw->dev[port]->mtu > ETH_DATA_LEN;
  1293. int i;
  1294. u32 r;
  1295. const u8 zero[6] = { 0 };
  1296. for (i = 0; i < 10; i++) {
  1297. skge_write16(hw, SK_REG(port, TX_MFF_CTRL1),
  1298. MFF_SET_MAC_RST);
  1299. if (skge_read16(hw, SK_REG(port, TX_MFF_CTRL1)) & MFF_SET_MAC_RST)
  1300. goto reset_ok;
  1301. udelay(1);
  1302. }
  1303. netdev_warn(dev, "genesis reset failed\n");
  1304. reset_ok:
  1305. /* Unreset the XMAC. */
  1306. skge_write16(hw, SK_REG(port, TX_MFF_CTRL1), MFF_CLR_MAC_RST);
  1307. /*
  1308. * Perform additional initialization for external PHYs,
  1309. * namely for the 1000baseTX cards that use the XMAC's
  1310. * GMII mode.
  1311. */
  1312. if (hw->phy_type != SK_PHY_XMAC) {
  1313. /* Take external Phy out of reset */
  1314. r = skge_read32(hw, B2_GP_IO);
  1315. if (port == 0)
  1316. r |= GP_DIR_0|GP_IO_0;
  1317. else
  1318. r |= GP_DIR_2|GP_IO_2;
  1319. skge_write32(hw, B2_GP_IO, r);
  1320. /* Enable GMII interface */
  1321. xm_write16(hw, port, XM_HW_CFG, XM_HW_GMII_MD);
  1322. }
  1323. switch (hw->phy_type) {
  1324. case SK_PHY_XMAC:
  1325. xm_phy_init(skge);
  1326. break;
  1327. case SK_PHY_BCOM:
  1328. bcom_phy_init(skge);
  1329. bcom_check_link(hw, port);
  1330. }
  1331. /* Set Station Address */
  1332. xm_outaddr(hw, port, XM_SA, dev->dev_addr);
  1333. /* We don't use match addresses so clear */
  1334. for (i = 1; i < 16; i++)
  1335. xm_outaddr(hw, port, XM_EXM(i), zero);
  1336. /* Clear MIB counters */
  1337. xm_write16(hw, port, XM_STAT_CMD,
  1338. XM_SC_CLR_RXC | XM_SC_CLR_TXC);
  1339. /* Clear two times according to Errata #3 */
  1340. xm_write16(hw, port, XM_STAT_CMD,
  1341. XM_SC_CLR_RXC | XM_SC_CLR_TXC);
  1342. /* configure Rx High Water Mark (XM_RX_HI_WM) */
  1343. xm_write16(hw, port, XM_RX_HI_WM, 1450);
  1344. /* We don't need the FCS appended to the packet. */
  1345. r = XM_RX_LENERR_OK | XM_RX_STRIP_FCS;
  1346. if (jumbo)
  1347. r |= XM_RX_BIG_PK_OK;
  1348. if (skge->duplex == DUPLEX_HALF) {
  1349. /*
  1350. * If in manual half duplex mode the other side might be in
  1351. * full duplex mode, so ignore if a carrier extension is not seen
  1352. * on frames received
  1353. */
  1354. r |= XM_RX_DIS_CEXT;
  1355. }
  1356. xm_write16(hw, port, XM_RX_CMD, r);
  1357. /* We want short frames padded to 60 bytes. */
  1358. xm_write16(hw, port, XM_TX_CMD, XM_TX_AUTO_PAD);
  1359. /* Increase threshold for jumbo frames on dual port */
  1360. if (hw->ports > 1 && jumbo)
  1361. xm_write16(hw, port, XM_TX_THR, 1020);
  1362. else
  1363. xm_write16(hw, port, XM_TX_THR, 512);
  1364. /*
  1365. * Enable the reception of all error frames. This is is
  1366. * a necessary evil due to the design of the XMAC. The
  1367. * XMAC's receive FIFO is only 8K in size, however jumbo
  1368. * frames can be up to 9000 bytes in length. When bad
  1369. * frame filtering is enabled, the XMAC's RX FIFO operates
  1370. * in 'store and forward' mode. For this to work, the
  1371. * entire frame has to fit into the FIFO, but that means
  1372. * that jumbo frames larger than 8192 bytes will be
  1373. * truncated. Disabling all bad frame filtering causes
  1374. * the RX FIFO to operate in streaming mode, in which
  1375. * case the XMAC will start transferring frames out of the
  1376. * RX FIFO as soon as the FIFO threshold is reached.
  1377. */
  1378. xm_write32(hw, port, XM_MODE, XM_DEF_MODE);
  1379. /*
  1380. * Initialize the Receive Counter Event Mask (XM_RX_EV_MSK)
  1381. * - Enable all bits excepting 'Octets Rx OK Low CntOv'
  1382. * and 'Octets Rx OK Hi Cnt Ov'.
  1383. */
  1384. xm_write32(hw, port, XM_RX_EV_MSK, XMR_DEF_MSK);
  1385. /*
  1386. * Initialize the Transmit Counter Event Mask (XM_TX_EV_MSK)
  1387. * - Enable all bits excepting 'Octets Tx OK Low CntOv'
  1388. * and 'Octets Tx OK Hi Cnt Ov'.
  1389. */
  1390. xm_write32(hw, port, XM_TX_EV_MSK, XMT_DEF_MSK);
  1391. /* Configure MAC arbiter */
  1392. skge_write16(hw, B3_MA_TO_CTRL, MA_RST_CLR);
  1393. /* configure timeout values */
  1394. skge_write8(hw, B3_MA_TOINI_RX1, 72);
  1395. skge_write8(hw, B3_MA_TOINI_RX2, 72);
  1396. skge_write8(hw, B3_MA_TOINI_TX1, 72);
  1397. skge_write8(hw, B3_MA_TOINI_TX2, 72);
  1398. skge_write8(hw, B3_MA_RCINI_RX1, 0);
  1399. skge_write8(hw, B3_MA_RCINI_RX2, 0);
  1400. skge_write8(hw, B3_MA_RCINI_TX1, 0);
  1401. skge_write8(hw, B3_MA_RCINI_TX2, 0);
  1402. /* Configure Rx MAC FIFO */
  1403. skge_write8(hw, SK_REG(port, RX_MFF_CTRL2), MFF_RST_CLR);
  1404. skge_write16(hw, SK_REG(port, RX_MFF_CTRL1), MFF_ENA_TIM_PAT);
  1405. skge_write8(hw, SK_REG(port, RX_MFF_CTRL2), MFF_ENA_OP_MD);
  1406. /* Configure Tx MAC FIFO */
  1407. skge_write8(hw, SK_REG(port, TX_MFF_CTRL2), MFF_RST_CLR);
  1408. skge_write16(hw, SK_REG(port, TX_MFF_CTRL1), MFF_TX_CTRL_DEF);
  1409. skge_write8(hw, SK_REG(port, TX_MFF_CTRL2), MFF_ENA_OP_MD);
  1410. if (jumbo) {
  1411. /* Enable frame flushing if jumbo frames used */
  1412. skge_write16(hw, SK_REG(port, RX_MFF_CTRL1), MFF_ENA_FLUSH);
  1413. } else {
  1414. /* enable timeout timers if normal frames */
  1415. skge_write16(hw, B3_PA_CTRL,
  1416. (port == 0) ? PA_ENA_TO_TX1 : PA_ENA_TO_TX2);
  1417. }
  1418. }
  1419. static void genesis_stop(struct skge_port *skge)
  1420. {
  1421. struct skge_hw *hw = skge->hw;
  1422. int port = skge->port;
  1423. unsigned retries = 1000;
  1424. u16 cmd;
  1425. /* Disable Tx and Rx */
  1426. cmd = xm_read16(hw, port, XM_MMU_CMD);
  1427. cmd &= ~(XM_MMU_ENA_RX | XM_MMU_ENA_TX);
  1428. xm_write16(hw, port, XM_MMU_CMD, cmd);
  1429. genesis_reset(hw, port);
  1430. /* Clear Tx packet arbiter timeout IRQ */
  1431. skge_write16(hw, B3_PA_CTRL,
  1432. port == 0 ? PA_CLR_TO_TX1 : PA_CLR_TO_TX2);
  1433. /* Reset the MAC */
  1434. skge_write16(hw, SK_REG(port, TX_MFF_CTRL1), MFF_CLR_MAC_RST);
  1435. do {
  1436. skge_write16(hw, SK_REG(port, TX_MFF_CTRL1), MFF_SET_MAC_RST);
  1437. if (!(skge_read16(hw, SK_REG(port, TX_MFF_CTRL1)) & MFF_SET_MAC_RST))
  1438. break;
  1439. } while (--retries > 0);
  1440. /* For external PHYs there must be special handling */
  1441. if (hw->phy_type != SK_PHY_XMAC) {
  1442. u32 reg = skge_read32(hw, B2_GP_IO);
  1443. if (port == 0) {
  1444. reg |= GP_DIR_0;
  1445. reg &= ~GP_IO_0;
  1446. } else {
  1447. reg |= GP_DIR_2;
  1448. reg &= ~GP_IO_2;
  1449. }
  1450. skge_write32(hw, B2_GP_IO, reg);
  1451. skge_read32(hw, B2_GP_IO);
  1452. }
  1453. xm_write16(hw, port, XM_MMU_CMD,
  1454. xm_read16(hw, port, XM_MMU_CMD)
  1455. & ~(XM_MMU_ENA_RX | XM_MMU_ENA_TX));
  1456. xm_read16(hw, port, XM_MMU_CMD);
  1457. }
  1458. static void genesis_get_stats(struct skge_port *skge, u64 *data)
  1459. {
  1460. struct skge_hw *hw = skge->hw;
  1461. int port = skge->port;
  1462. int i;
  1463. unsigned long timeout = jiffies + HZ;
  1464. xm_write16(hw, port,
  1465. XM_STAT_CMD, XM_SC_SNP_TXC | XM_SC_SNP_RXC);
  1466. /* wait for update to complete */
  1467. while (xm_read16(hw, port, XM_STAT_CMD)
  1468. & (XM_SC_SNP_TXC | XM_SC_SNP_RXC)) {
  1469. if (time_after(jiffies, timeout))
  1470. break;
  1471. udelay(10);
  1472. }
  1473. /* special case for 64 bit octet counter */
  1474. data[0] = (u64) xm_read32(hw, port, XM_TXO_OK_HI) << 32
  1475. | xm_read32(hw, port, XM_TXO_OK_LO);
  1476. data[1] = (u64) xm_read32(hw, port, XM_RXO_OK_HI) << 32
  1477. | xm_read32(hw, port, XM_RXO_OK_LO);
  1478. for (i = 2; i < ARRAY_SIZE(skge_stats); i++)
  1479. data[i] = xm_read32(hw, port, skge_stats[i].xmac_offset);
  1480. }
  1481. static void genesis_mac_intr(struct skge_hw *hw, int port)
  1482. {
  1483. struct net_device *dev = hw->dev[port];
  1484. struct skge_port *skge = netdev_priv(dev);
  1485. u16 status = xm_read16(hw, port, XM_ISRC);
  1486. netif_printk(skge, intr, KERN_DEBUG, skge->netdev,
  1487. "mac interrupt status 0x%x\n", status);
  1488. if (hw->phy_type == SK_PHY_XMAC && (status & XM_IS_INP_ASS)) {
  1489. xm_link_down(hw, port);
  1490. mod_timer(&skge->link_timer, jiffies + 1);
  1491. }
  1492. if (status & XM_IS_TXF_UR) {
  1493. xm_write32(hw, port, XM_MODE, XM_MD_FTF);
  1494. ++dev->stats.tx_fifo_errors;
  1495. }
  1496. }
  1497. static void genesis_link_up(struct skge_port *skge)
  1498. {
  1499. struct skge_hw *hw = skge->hw;
  1500. int port = skge->port;
  1501. u16 cmd, msk;
  1502. u32 mode;
  1503. cmd = xm_read16(hw, port, XM_MMU_CMD);
  1504. /*
  1505. * enabling pause frame reception is required for 1000BT
  1506. * because the XMAC is not reset if the link is going down
  1507. */
  1508. if (skge->flow_status == FLOW_STAT_NONE ||
  1509. skge->flow_status == FLOW_STAT_LOC_SEND)
  1510. /* Disable Pause Frame Reception */
  1511. cmd |= XM_MMU_IGN_PF;
  1512. else
  1513. /* Enable Pause Frame Reception */
  1514. cmd &= ~XM_MMU_IGN_PF;
  1515. xm_write16(hw, port, XM_MMU_CMD, cmd);
  1516. mode = xm_read32(hw, port, XM_MODE);
  1517. if (skge->flow_status == FLOW_STAT_SYMMETRIC ||
  1518. skge->flow_status == FLOW_STAT_LOC_SEND) {
  1519. /*
  1520. * Configure Pause Frame Generation
  1521. * Use internal and external Pause Frame Generation.
  1522. * Sending pause frames is edge triggered.
  1523. * Send a Pause frame with the maximum pause time if
  1524. * internal oder external FIFO full condition occurs.
  1525. * Send a zero pause time frame to re-start transmission.
  1526. */
  1527. /* XM_PAUSE_DA = '010000C28001' (default) */
  1528. /* XM_MAC_PTIME = 0xffff (maximum) */
  1529. /* remember this value is defined in big endian (!) */
  1530. xm_write16(hw, port, XM_MAC_PTIME, 0xffff);
  1531. mode |= XM_PAUSE_MODE;
  1532. skge_write16(hw, SK_REG(port, RX_MFF_CTRL1), MFF_ENA_PAUSE);
  1533. } else {
  1534. /*
  1535. * disable pause frame generation is required for 1000BT
  1536. * because the XMAC is not reset if the link is going down
  1537. */
  1538. /* Disable Pause Mode in Mode Register */
  1539. mode &= ~XM_PAUSE_MODE;
  1540. skge_write16(hw, SK_REG(port, RX_MFF_CTRL1), MFF_DIS_PAUSE);
  1541. }
  1542. xm_write32(hw, port, XM_MODE, mode);
  1543. /* Turn on detection of Tx underrun */
  1544. msk = xm_read16(hw, port, XM_IMSK);
  1545. msk &= ~XM_IS_TXF_UR;
  1546. xm_write16(hw, port, XM_IMSK, msk);
  1547. xm_read16(hw, port, XM_ISRC);
  1548. /* get MMU Command Reg. */
  1549. cmd = xm_read16(hw, port, XM_MMU_CMD);
  1550. if (hw->phy_type != SK_PHY_XMAC && skge->duplex == DUPLEX_FULL)
  1551. cmd |= XM_MMU_GMII_FD;
  1552. /*
  1553. * Workaround BCOM Errata (#10523) for all BCom Phys
  1554. * Enable Power Management after link up
  1555. */
  1556. if (hw->phy_type == SK_PHY_BCOM) {
  1557. xm_phy_write(hw, port, PHY_BCOM_AUX_CTRL,
  1558. xm_phy_read(hw, port, PHY_BCOM_AUX_CTRL)
  1559. & ~PHY_B_AC_DIS_PM);
  1560. xm_phy_write(hw, port, PHY_BCOM_INT_MASK, PHY_B_DEF_MSK);
  1561. }
  1562. /* enable Rx/Tx */
  1563. xm_write16(hw, port, XM_MMU_CMD,
  1564. cmd | XM_MMU_ENA_RX | XM_MMU_ENA_TX);
  1565. skge_link_up(skge);
  1566. }
  1567. static inline void bcom_phy_intr(struct skge_port *skge)
  1568. {
  1569. struct skge_hw *hw = skge->hw;
  1570. int port = skge->port;
  1571. u16 isrc;
  1572. isrc = xm_phy_read(hw, port, PHY_BCOM_INT_STAT);
  1573. netif_printk(skge, intr, KERN_DEBUG, skge->netdev,
  1574. "phy interrupt status 0x%x\n", isrc);
  1575. if (isrc & PHY_B_IS_PSE)
  1576. pr_err("%s: uncorrectable pair swap error\n",
  1577. hw->dev[port]->name);
  1578. /* Workaround BCom Errata:
  1579. * enable and disable loopback mode if "NO HCD" occurs.
  1580. */
  1581. if (isrc & PHY_B_IS_NO_HDCL) {
  1582. u16 ctrl = xm_phy_read(hw, port, PHY_BCOM_CTRL);
  1583. xm_phy_write(hw, port, PHY_BCOM_CTRL,
  1584. ctrl | PHY_CT_LOOP);
  1585. xm_phy_write(hw, port, PHY_BCOM_CTRL,
  1586. ctrl & ~PHY_CT_LOOP);
  1587. }
  1588. if (isrc & (PHY_B_IS_AN_PR | PHY_B_IS_LST_CHANGE))
  1589. bcom_check_link(hw, port);
  1590. }
  1591. static int gm_phy_write(struct skge_hw *hw, int port, u16 reg, u16 val)
  1592. {
  1593. int i;
  1594. gma_write16(hw, port, GM_SMI_DATA, val);
  1595. gma_write16(hw, port, GM_SMI_CTRL,
  1596. GM_SMI_CT_PHY_AD(hw->phy_addr) | GM_SMI_CT_REG_AD(reg));
  1597. for (i = 0; i < PHY_RETRIES; i++) {
  1598. udelay(1);
  1599. if (!(gma_read16(hw, port, GM_SMI_CTRL) & GM_SMI_CT_BUSY))
  1600. return 0;
  1601. }
  1602. pr_warning("%s: phy write timeout\n", hw->dev[port]->name);
  1603. return -EIO;
  1604. }
  1605. static int __gm_phy_read(struct skge_hw *hw, int port, u16 reg, u16 *val)
  1606. {
  1607. int i;
  1608. gma_write16(hw, port, GM_SMI_CTRL,
  1609. GM_SMI_CT_PHY_AD(hw->phy_addr)
  1610. | GM_SMI_CT_REG_AD(reg) | GM_SMI_CT_OP_RD);
  1611. for (i = 0; i < PHY_RETRIES; i++) {
  1612. udelay(1);
  1613. if (gma_read16(hw, port, GM_SMI_CTRL) & GM_SMI_CT_RD_VAL)
  1614. goto ready;
  1615. }
  1616. return -ETIMEDOUT;
  1617. ready:
  1618. *val = gma_read16(hw, port, GM_SMI_DATA);
  1619. return 0;
  1620. }
  1621. static u16 gm_phy_read(struct skge_hw *hw, int port, u16 reg)
  1622. {
  1623. u16 v = 0;
  1624. if (__gm_phy_read(hw, port, reg, &v))
  1625. pr_warning("%s: phy read timeout\n", hw->dev[port]->name);
  1626. return v;
  1627. }
  1628. /* Marvell Phy Initialization */
  1629. static void yukon_init(struct skge_hw *hw, int port)
  1630. {
  1631. struct skge_port *skge = netdev_priv(hw->dev[port]);
  1632. u16 ctrl, ct1000, adv;
  1633. if (skge->autoneg == AUTONEG_ENABLE) {
  1634. u16 ectrl = gm_phy_read(hw, port, PHY_MARV_EXT_CTRL);
  1635. ectrl &= ~(PHY_M_EC_M_DSC_MSK | PHY_M_EC_S_DSC_MSK |
  1636. PHY_M_EC_MAC_S_MSK);
  1637. ectrl |= PHY_M_EC_MAC_S(MAC_TX_CLK_25_MHZ);
  1638. ectrl |= PHY_M_EC_M_DSC(0) | PHY_M_EC_S_DSC(1);
  1639. gm_phy_write(hw, port, PHY_MARV_EXT_CTRL, ectrl);
  1640. }
  1641. ctrl = gm_phy_read(hw, port, PHY_MARV_CTRL);
  1642. if (skge->autoneg == AUTONEG_DISABLE)
  1643. ctrl &= ~PHY_CT_ANE;
  1644. ctrl |= PHY_CT_RESET;
  1645. gm_phy_write(hw, port, PHY_MARV_CTRL, ctrl);
  1646. ctrl = 0;
  1647. ct1000 = 0;
  1648. adv = PHY_AN_CSMA;
  1649. if (skge->autoneg == AUTONEG_ENABLE) {
  1650. if (hw->copper) {
  1651. if (skge->advertising & ADVERTISED_1000baseT_Full)
  1652. ct1000 |= PHY_M_1000C_AFD;
  1653. if (skge->advertising & ADVERTISED_1000baseT_Half)
  1654. ct1000 |= PHY_M_1000C_AHD;
  1655. if (skge->advertising & ADVERTISED_100baseT_Full)
  1656. adv |= PHY_M_AN_100_FD;
  1657. if (skge->advertising & ADVERTISED_100baseT_Half)
  1658. adv |= PHY_M_AN_100_HD;
  1659. if (skge->advertising & ADVERTISED_10baseT_Full)
  1660. adv |= PHY_M_AN_10_FD;
  1661. if (skge->advertising & ADVERTISED_10baseT_Half)
  1662. adv |= PHY_M_AN_10_HD;
  1663. /* Set Flow-control capabilities */
  1664. adv |= phy_pause_map[skge->flow_control];
  1665. } else {
  1666. if (skge->advertising & ADVERTISED_1000baseT_Full)
  1667. adv |= PHY_M_AN_1000X_AFD;
  1668. if (skge->advertising & ADVERTISED_1000baseT_Half)
  1669. adv |= PHY_M_AN_1000X_AHD;
  1670. adv |= fiber_pause_map[skge->flow_control];
  1671. }
  1672. /* Restart Auto-negotiation */
  1673. ctrl |= PHY_CT_ANE | PHY_CT_RE_CFG;
  1674. } else {
  1675. /* forced speed/duplex settings */
  1676. ct1000 = PHY_M_1000C_MSE;
  1677. if (skge->duplex == DUPLEX_FULL)
  1678. ctrl |= PHY_CT_DUP_MD;
  1679. switch (skge->speed) {
  1680. case SPEED_1000:
  1681. ctrl |= PHY_CT_SP1000;
  1682. break;
  1683. case SPEED_100:
  1684. ctrl |= PHY_CT_SP100;
  1685. break;
  1686. }
  1687. ctrl |= PHY_CT_RESET;
  1688. }
  1689. gm_phy_write(hw, port, PHY_MARV_1000T_CTRL, ct1000);
  1690. gm_phy_write(hw, port, PHY_MARV_AUNE_ADV, adv);
  1691. gm_phy_write(hw, port, PHY_MARV_CTRL, ctrl);
  1692. /* Enable phy interrupt on autonegotiation complete (or link up) */
  1693. if (skge->autoneg == AUTONEG_ENABLE)
  1694. gm_phy_write(hw, port, PHY_MARV_INT_MASK, PHY_M_IS_AN_MSK);
  1695. else
  1696. gm_phy_write(hw, port, PHY_MARV_INT_MASK, PHY_M_IS_DEF_MSK);
  1697. }
  1698. static void yukon_reset(struct skge_hw *hw, int port)
  1699. {
  1700. gm_phy_write(hw, port, PHY_MARV_INT_MASK, 0);/* disable PHY IRQs */
  1701. gma_write16(hw, port, GM_MC_ADDR_H1, 0); /* clear MC hash */
  1702. gma_write16(hw, port, GM_MC_ADDR_H2, 0);
  1703. gma_write16(hw, port, GM_MC_ADDR_H3, 0);
  1704. gma_write16(hw, port, GM_MC_ADDR_H4, 0);
  1705. gma_write16(hw, port, GM_RX_CTRL,
  1706. gma_read16(hw, port, GM_RX_CTRL)
  1707. | GM_RXCR_UCF_ENA | GM_RXCR_MCF_ENA);
  1708. }
  1709. /* Apparently, early versions of Yukon-Lite had wrong chip_id? */
  1710. static int is_yukon_lite_a0(struct skge_hw *hw)
  1711. {
  1712. u32 reg;
  1713. int ret;
  1714. if (hw->chip_id != CHIP_ID_YUKON)
  1715. return 0;
  1716. reg = skge_read32(hw, B2_FAR);
  1717. skge_write8(hw, B2_FAR + 3, 0xff);
  1718. ret = (skge_read8(hw, B2_FAR + 3) != 0);
  1719. skge_write32(hw, B2_FAR, reg);
  1720. return ret;
  1721. }
  1722. static void yukon_mac_init(struct skge_hw *hw, int port)
  1723. {
  1724. struct skge_port *skge = netdev_priv(hw->dev[port]);
  1725. int i;
  1726. u32 reg;
  1727. const u8 *addr = hw->dev[port]->dev_addr;
  1728. /* WA code for COMA mode -- set PHY reset */
  1729. if (hw->chip_id == CHIP_ID_YUKON_LITE &&
  1730. hw->chip_rev >= CHIP_REV_YU_LITE_A3) {
  1731. reg = skge_read32(hw, B2_GP_IO);
  1732. reg |= GP_DIR_9 | GP_IO_9;
  1733. skge_write32(hw, B2_GP_IO, reg);
  1734. }
  1735. /* hard reset */
  1736. skge_write32(hw, SK_REG(port, GPHY_CTRL), GPC_RST_SET);
  1737. skge_write32(hw, SK_REG(port, GMAC_CTRL), GMC_RST_SET);
  1738. /* WA code for COMA mode -- clear PHY reset */
  1739. if (hw->chip_id == CHIP_ID_YUKON_LITE &&
  1740. hw->chip_rev >= CHIP_REV_YU_LITE_A3) {
  1741. reg = skge_read32(hw, B2_GP_IO);
  1742. reg |= GP_DIR_9;
  1743. reg &= ~GP_IO_9;
  1744. skge_write32(hw, B2_GP_IO, reg);
  1745. }
  1746. /* Set hardware config mode */
  1747. reg = GPC_INT_POL_HI | GPC_DIS_FC | GPC_DIS_SLEEP |
  1748. GPC_ENA_XC | GPC_ANEG_ADV_ALL_M | GPC_ENA_PAUSE;
  1749. reg |= hw->copper ? GPC_HWCFG_GMII_COP : GPC_HWCFG_GMII_FIB;
  1750. /* Clear GMC reset */
  1751. skge_write32(hw, SK_REG(port, GPHY_CTRL), reg | GPC_RST_SET);
  1752. skge_write32(hw, SK_REG(port, GPHY_CTRL), reg | GPC_RST_CLR);
  1753. skge_write32(hw, SK_REG(port, GMAC_CTRL), GMC_PAUSE_ON | GMC_RST_CLR);
  1754. if (skge->autoneg == AUTONEG_DISABLE) {
  1755. reg = GM_GPCR_AU_ALL_DIS;
  1756. gma_write16(hw, port, GM_GP_CTRL,
  1757. gma_read16(hw, port, GM_GP_CTRL) | reg);
  1758. switch (skge->speed) {
  1759. case SPEED_1000:
  1760. reg &= ~GM_GPCR_SPEED_100;
  1761. reg |= GM_GPCR_SPEED_1000;
  1762. break;
  1763. case SPEED_100:
  1764. reg &= ~GM_GPCR_SPEED_1000;
  1765. reg |= GM_GPCR_SPEED_100;
  1766. break;
  1767. case SPEED_10:
  1768. reg &= ~(GM_GPCR_SPEED_1000 | GM_GPCR_SPEED_100);
  1769. break;
  1770. }
  1771. if (skge->duplex == DUPLEX_FULL)
  1772. reg |= GM_GPCR_DUP_FULL;
  1773. } else
  1774. reg = GM_GPCR_SPEED_1000 | GM_GPCR_SPEED_100 | GM_GPCR_DUP_FULL;
  1775. switch (skge->flow_control) {
  1776. case FLOW_MODE_NONE:
  1777. skge_write32(hw, SK_REG(port, GMAC_CTRL), GMC_PAUSE_OFF);
  1778. reg |= GM_GPCR_FC_TX_DIS | GM_GPCR_FC_RX_DIS | GM_GPCR_AU_FCT_DIS;
  1779. break;
  1780. case FLOW_MODE_LOC_SEND:
  1781. /* disable Rx flow-control */
  1782. reg |= GM_GPCR_FC_RX_DIS | GM_GPCR_AU_FCT_DIS;
  1783. break;
  1784. case FLOW_MODE_SYMMETRIC:
  1785. case FLOW_MODE_SYM_OR_REM:
  1786. /* enable Tx & Rx flow-control */
  1787. break;
  1788. }
  1789. gma_write16(hw, port, GM_GP_CTRL, reg);
  1790. skge_read16(hw, SK_REG(port, GMAC_IRQ_SRC));
  1791. yukon_init(hw, port);
  1792. /* MIB clear */
  1793. reg = gma_read16(hw, port, GM_PHY_ADDR);
  1794. gma_write16(hw, port, GM_PHY_ADDR, reg | GM_PAR_MIB_CLR);
  1795. for (i = 0; i < GM_MIB_CNT_SIZE; i++)
  1796. gma_read16(hw, port, GM_MIB_CNT_BASE + 8*i);
  1797. gma_write16(hw, port, GM_PHY_ADDR, reg);
  1798. /* transmit control */
  1799. gma_write16(hw, port, GM_TX_CTRL, TX_COL_THR(TX_COL_DEF));
  1800. /* receive control reg: unicast + multicast + no FCS */
  1801. gma_write16(hw, port, GM_RX_CTRL,
  1802. GM_RXCR_UCF_ENA | GM_RXCR_CRC_DIS | GM_RXCR_MCF_ENA);
  1803. /* transmit flow control */
  1804. gma_write16(hw, port, GM_TX_FLOW_CTRL, 0xffff);
  1805. /* transmit parameter */
  1806. gma_write16(hw, port, GM_TX_PARAM,
  1807. TX_JAM_LEN_VAL(TX_JAM_LEN_DEF) |
  1808. TX_JAM_IPG_VAL(TX_JAM_IPG_DEF) |
  1809. TX_IPG_JAM_DATA(TX_IPG_JAM_DEF));
  1810. /* configure the Serial Mode Register */
  1811. reg = DATA_BLIND_VAL(DATA_BLIND_DEF)
  1812. | GM_SMOD_VLAN_ENA
  1813. | IPG_DATA_VAL(IPG_DATA_DEF);
  1814. if (hw->dev[port]->mtu > ETH_DATA_LEN)
  1815. reg |= GM_SMOD_JUMBO_ENA;
  1816. gma_write16(hw, port, GM_SERIAL_MODE, reg);
  1817. /* physical address: used for pause frames */
  1818. gma_set_addr(hw, port, GM_SRC_ADDR_1L, addr);
  1819. /* virtual address for data */
  1820. gma_set_addr(hw, port, GM_SRC_ADDR_2L, addr);
  1821. /* enable interrupt mask for counter overflows */
  1822. gma_write16(hw, port, GM_TX_IRQ_MSK, 0);
  1823. gma_write16(hw, port, GM_RX_IRQ_MSK, 0);
  1824. gma_write16(hw, port, GM_TR_IRQ_MSK, 0);
  1825. /* Initialize Mac Fifo */
  1826. /* Configure Rx MAC FIFO */
  1827. skge_write16(hw, SK_REG(port, RX_GMF_FL_MSK), RX_FF_FL_DEF_MSK);
  1828. reg = GMF_OPER_ON | GMF_RX_F_FL_ON;
  1829. /* disable Rx GMAC FIFO Flush for YUKON-Lite Rev. A0 only */
  1830. if (is_yukon_lite_a0(hw))
  1831. reg &= ~GMF_RX_F_FL_ON;
  1832. skge_write8(hw, SK_REG(port, RX_GMF_CTRL_T), GMF_RST_CLR);
  1833. skge_write16(hw, SK_REG(port, RX_GMF_CTRL_T), reg);
  1834. /*
  1835. * because Pause Packet Truncation in GMAC is not working
  1836. * we have to increase the Flush Threshold to 64 bytes
  1837. * in order to flush pause packets in Rx FIFO on Yukon-1
  1838. */
  1839. skge_write16(hw, SK_REG(port, RX_GMF_FL_THR), RX_GMF_FL_THR_DEF+1);
  1840. /* Configure Tx MAC FIFO */
  1841. skge_write8(hw, SK_REG(port, TX_GMF_CTRL_T), GMF_RST_CLR);
  1842. skge_write16(hw, SK_REG(port, TX_GMF_CTRL_T), GMF_OPER_ON);
  1843. }
  1844. /* Go into power down mode */
  1845. static void yukon_suspend(struct skge_hw *hw, int port)
  1846. {
  1847. u16 ctrl;
  1848. ctrl = gm_phy_read(hw, port, PHY_MARV_PHY_CTRL);
  1849. ctrl |= PHY_M_PC_POL_R_DIS;
  1850. gm_phy_write(hw, port, PHY_MARV_PHY_CTRL, ctrl);
  1851. ctrl = gm_phy_read(hw, port, PHY_MARV_CTRL);
  1852. ctrl |= PHY_CT_RESET;
  1853. gm_phy_write(hw, port, PHY_MARV_CTRL, ctrl);
  1854. /* switch IEEE compatible power down mode on */
  1855. ctrl = gm_phy_read(hw, port, PHY_MARV_CTRL);
  1856. ctrl |= PHY_CT_PDOWN;
  1857. gm_phy_write(hw, port, PHY_MARV_CTRL, ctrl);
  1858. }
  1859. static void yukon_stop(struct skge_port *skge)
  1860. {
  1861. struct skge_hw *hw = skge->hw;
  1862. int port = skge->port;
  1863. skge_write8(hw, SK_REG(port, GMAC_IRQ_MSK), 0);
  1864. yukon_reset(hw, port);
  1865. gma_write16(hw, port, GM_GP_CTRL,
  1866. gma_read16(hw, port, GM_GP_CTRL)
  1867. & ~(GM_GPCR_TX_ENA|GM_GPCR_RX_ENA));
  1868. gma_read16(hw, port, GM_GP_CTRL);
  1869. yukon_suspend(hw, port);
  1870. /* set GPHY Control reset */
  1871. skge_write8(hw, SK_REG(port, GPHY_CTRL), GPC_RST_SET);
  1872. skge_write8(hw, SK_REG(port, GMAC_CTRL), GMC_RST_SET);
  1873. }
  1874. static void yukon_get_stats(struct skge_port *skge, u64 *data)
  1875. {
  1876. struct skge_hw *hw = skge->hw;
  1877. int port = skge->port;
  1878. int i;
  1879. data[0] = (u64) gma_read32(hw, port, GM_TXO_OK_HI) << 32
  1880. | gma_read32(hw, port, GM_TXO_OK_LO);
  1881. data[1] = (u64) gma_read32(hw, port, GM_RXO_OK_HI) << 32
  1882. | gma_read32(hw, port, GM_RXO_OK_LO);
  1883. for (i = 2; i < ARRAY_SIZE(skge_stats); i++)
  1884. data[i] = gma_read32(hw, port,
  1885. skge_stats[i].gma_offset);
  1886. }
  1887. static void yukon_mac_intr(struct skge_hw *hw, int port)
  1888. {
  1889. struct net_device *dev = hw->dev[port];
  1890. struct skge_port *skge = netdev_priv(dev);
  1891. u8 status = skge_read8(hw, SK_REG(port, GMAC_IRQ_SRC));
  1892. netif_printk(skge, intr, KERN_DEBUG, skge->netdev,
  1893. "mac interrupt status 0x%x\n", status);
  1894. if (status & GM_IS_RX_FF_OR) {
  1895. ++dev->stats.rx_fifo_errors;
  1896. skge_write8(hw, SK_REG(port, RX_GMF_CTRL_T), GMF_CLI_RX_FO);
  1897. }
  1898. if (status & GM_IS_TX_FF_UR) {
  1899. ++dev->stats.tx_fifo_errors;
  1900. skge_write8(hw, SK_REG(port, TX_GMF_CTRL_T), GMF_CLI_TX_FU);
  1901. }
  1902. }
  1903. static u16 yukon_speed(const struct skge_hw *hw, u16 aux)
  1904. {
  1905. switch (aux & PHY_M_PS_SPEED_MSK) {
  1906. case PHY_M_PS_SPEED_1000:
  1907. return SPEED_1000;
  1908. case PHY_M_PS_SPEED_100:
  1909. return SPEED_100;
  1910. default:
  1911. return SPEED_10;
  1912. }
  1913. }
  1914. static void yukon_link_up(struct skge_port *skge)
  1915. {
  1916. struct skge_hw *hw = skge->hw;
  1917. int port = skge->port;
  1918. u16 reg;
  1919. /* Enable Transmit FIFO Underrun */
  1920. skge_write8(hw, SK_REG(port, GMAC_IRQ_MSK), GMAC_DEF_MSK);
  1921. reg = gma_read16(hw, port, GM_GP_CTRL);
  1922. if (skge->duplex == DUPLEX_FULL || skge->autoneg == AUTONEG_ENABLE)
  1923. reg |= GM_GPCR_DUP_FULL;
  1924. /* enable Rx/Tx */
  1925. reg |= GM_GPCR_RX_ENA | GM_GPCR_TX_ENA;
  1926. gma_write16(hw, port, GM_GP_CTRL, reg);
  1927. gm_phy_write(hw, port, PHY_MARV_INT_MASK, PHY_M_IS_DEF_MSK);
  1928. skge_link_up(skge);
  1929. }
  1930. static void yukon_link_down(struct skge_port *skge)
  1931. {
  1932. struct skge_hw *hw = skge->hw;
  1933. int port = skge->port;
  1934. u16 ctrl;
  1935. ctrl = gma_read16(hw, port, GM_GP_CTRL);
  1936. ctrl &= ~(GM_GPCR_RX_ENA | GM_GPCR_TX_ENA);
  1937. gma_write16(hw, port, GM_GP_CTRL, ctrl);
  1938. if (skge->flow_status == FLOW_STAT_REM_SEND) {
  1939. ctrl = gm_phy_read(hw, port, PHY_MARV_AUNE_ADV);
  1940. ctrl |= PHY_M_AN_ASP;
  1941. /* restore Asymmetric Pause bit */
  1942. gm_phy_write(hw, port, PHY_MARV_AUNE_ADV, ctrl);
  1943. }
  1944. skge_link_down(skge);
  1945. yukon_init(hw, port);
  1946. }
  1947. static void yukon_phy_intr(struct skge_port *skge)
  1948. {
  1949. struct skge_hw *hw = skge->hw;
  1950. int port = skge->port;
  1951. const char *reason = NULL;
  1952. u16 istatus, phystat;
  1953. istatus = gm_phy_read(hw, port, PHY_MARV_INT_STAT);
  1954. phystat = gm_phy_read(hw, port, PHY_MARV_PHY_STAT);
  1955. netif_printk(skge, intr, KERN_DEBUG, skge->netdev,
  1956. "phy interrupt status 0x%x 0x%x\n", istatus, phystat);
  1957. if (istatus & PHY_M_IS_AN_COMPL) {
  1958. if (gm_phy_read(hw, port, PHY_MARV_AUNE_LP)
  1959. & PHY_M_AN_RF) {
  1960. reason = "remote fault";
  1961. goto failed;
  1962. }
  1963. if (gm_phy_read(hw, port, PHY_MARV_1000T_STAT) & PHY_B_1000S_MSF) {
  1964. reason = "master/slave fault";
  1965. goto failed;
  1966. }
  1967. if (!(phystat & PHY_M_PS_SPDUP_RES)) {
  1968. reason = "speed/duplex";
  1969. goto failed;
  1970. }
  1971. skge->duplex = (phystat & PHY_M_PS_FULL_DUP)
  1972. ? DUPLEX_FULL : DUPLEX_HALF;
  1973. skge->speed = yukon_speed(hw, phystat);
  1974. /* We are using IEEE 802.3z/D5.0 Table 37-4 */
  1975. switch (phystat & PHY_M_PS_PAUSE_MSK) {
  1976. case PHY_M_PS_PAUSE_MSK:
  1977. skge->flow_status = FLOW_STAT_SYMMETRIC;
  1978. break;
  1979. case PHY_M_PS_RX_P_EN:
  1980. skge->flow_status = FLOW_STAT_REM_SEND;
  1981. break;
  1982. case PHY_M_PS_TX_P_EN:
  1983. skge->flow_status = FLOW_STAT_LOC_SEND;
  1984. break;
  1985. default:
  1986. skge->flow_status = FLOW_STAT_NONE;
  1987. }
  1988. if (skge->flow_status == FLOW_STAT_NONE ||
  1989. (skge->speed < SPEED_1000 && skge->duplex == DUPLEX_HALF))
  1990. skge_write8(hw, SK_REG(port, GMAC_CTRL), GMC_PAUSE_OFF);
  1991. else
  1992. skge_write8(hw, SK_REG(port, GMAC_CTRL), GMC_PAUSE_ON);
  1993. yukon_link_up(skge);
  1994. return;
  1995. }
  1996. if (istatus & PHY_M_IS_LSP_CHANGE)
  1997. skge->speed = yukon_speed(hw, phystat);
  1998. if (istatus & PHY_M_IS_DUP_CHANGE)
  1999. skge->duplex = (phystat & PHY_M_PS_FULL_DUP) ? DUPLEX_FULL : DUPLEX_HALF;
  2000. if (istatus & PHY_M_IS_LST_CHANGE) {
  2001. if (phystat & PHY_M_PS_LINK_UP)
  2002. yukon_link_up(skge);
  2003. else
  2004. yukon_link_down(skge);
  2005. }
  2006. return;
  2007. failed:
  2008. pr_err("%s: autonegotiation failed (%s)\n", skge->netdev->name, reason);
  2009. /* XXX restart autonegotiation? */
  2010. }
  2011. static void skge_phy_reset(struct skge_port *skge)
  2012. {
  2013. struct skge_hw *hw = skge->hw;
  2014. int port = skge->port;
  2015. struct net_device *dev = hw->dev[port];
  2016. netif_stop_queue(skge->netdev);
  2017. netif_carrier_off(skge->netdev);
  2018. spin_lock_bh(&hw->phy_lock);
  2019. if (hw->chip_id == CHIP_ID_GENESIS) {
  2020. genesis_reset(hw, port);
  2021. genesis_mac_init(hw, port);
  2022. } else {
  2023. yukon_reset(hw, port);
  2024. yukon_init(hw, port);
  2025. }
  2026. spin_unlock_bh(&hw->phy_lock);
  2027. skge_set_multicast(dev);
  2028. }
  2029. /* Basic MII support */
  2030. static int skge_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
  2031. {
  2032. struct mii_ioctl_data *data = if_mii(ifr);
  2033. struct skge_port *skge = netdev_priv(dev);
  2034. struct skge_hw *hw = skge->hw;
  2035. int err = -EOPNOTSUPP;
  2036. if (!netif_running(dev))
  2037. return -ENODEV; /* Phy still in reset */
  2038. switch (cmd) {
  2039. case SIOCGMIIPHY:
  2040. data->phy_id = hw->phy_addr;
  2041. /* fallthru */
  2042. case SIOCGMIIREG: {
  2043. u16 val = 0;
  2044. spin_lock_bh(&hw->phy_lock);
  2045. if (hw->chip_id == CHIP_ID_GENESIS)
  2046. err = __xm_phy_read(hw, skge->port, data->reg_num & 0x1f, &val);
  2047. else
  2048. err = __gm_phy_read(hw, skge->port, data->reg_num & 0x1f, &val);
  2049. spin_unlock_bh(&hw->phy_lock);
  2050. data->val_out = val;
  2051. break;
  2052. }
  2053. case SIOCSMIIREG:
  2054. spin_lock_bh(&hw->phy_lock);
  2055. if (hw->chip_id == CHIP_ID_GENESIS)
  2056. err = xm_phy_write(hw, skge->port, data->reg_num & 0x1f,
  2057. data->val_in);
  2058. else
  2059. err = gm_phy_write(hw, skge->port, data->reg_num & 0x1f,
  2060. data->val_in);
  2061. spin_unlock_bh(&hw->phy_lock);
  2062. break;
  2063. }
  2064. return err;
  2065. }
  2066. static void skge_ramset(struct skge_hw *hw, u16 q, u32 start, size_t len)
  2067. {
  2068. u32 end;
  2069. start /= 8;
  2070. len /= 8;
  2071. end = start + len - 1;
  2072. skge_write8(hw, RB_ADDR(q, RB_CTRL), RB_RST_CLR);
  2073. skge_write32(hw, RB_ADDR(q, RB_START), start);
  2074. skge_write32(hw, RB_ADDR(q, RB_WP), start);
  2075. skge_write32(hw, RB_ADDR(q, RB_RP), start);
  2076. skge_write32(hw, RB_ADDR(q, RB_END), end);
  2077. if (q == Q_R1 || q == Q_R2) {
  2078. /* Set thresholds on receive queue's */
  2079. skge_write32(hw, RB_ADDR(q, RB_RX_UTPP),
  2080. start + (2*len)/3);
  2081. skge_write32(hw, RB_ADDR(q, RB_RX_LTPP),
  2082. start + (len/3));
  2083. } else {
  2084. /* Enable store & forward on Tx queue's because
  2085. * Tx FIFO is only 4K on Genesis and 1K on Yukon
  2086. */
  2087. skge_write8(hw, RB_ADDR(q, RB_CTRL), RB_ENA_STFWD);
  2088. }
  2089. skge_write8(hw, RB_ADDR(q, RB_CTRL), RB_ENA_OP_MD);
  2090. }
  2091. /* Setup Bus Memory Interface */
  2092. static void skge_qset(struct skge_port *skge, u16 q,
  2093. const struct skge_element *e)
  2094. {
  2095. struct skge_hw *hw = skge->hw;
  2096. u32 watermark = 0x600;
  2097. u64 base = skge->dma + (e->desc - skge->mem);
  2098. /* optimization to reduce window on 32bit/33mhz */
  2099. if ((skge_read16(hw, B0_CTST) & (CS_BUS_CLOCK | CS_BUS_SLOT_SZ)) == 0)
  2100. watermark /= 2;
  2101. skge_write32(hw, Q_ADDR(q, Q_CSR), CSR_CLR_RESET);
  2102. skge_write32(hw, Q_ADDR(q, Q_F), watermark);
  2103. skge_write32(hw, Q_ADDR(q, Q_DA_H), (u32)(base >> 32));
  2104. skge_write32(hw, Q_ADDR(q, Q_DA_L), (u32)base);
  2105. }
  2106. static int skge_up(struct net_device *dev)
  2107. {
  2108. struct skge_port *skge = netdev_priv(dev);
  2109. struct skge_hw *hw = skge->hw;
  2110. int port = skge->port;
  2111. u32 chunk, ram_addr;
  2112. size_t rx_size, tx_size;
  2113. int err;
  2114. if (!is_valid_ether_addr(dev->dev_addr))
  2115. return -EINVAL;
  2116. netif_info(skge, ifup, skge->netdev, "enabling interface\n");
  2117. if (dev->mtu > RX_BUF_SIZE)
  2118. skge->rx_buf_size = dev->mtu + ETH_HLEN;
  2119. else
  2120. skge->rx_buf_size = RX_BUF_SIZE;
  2121. rx_size = skge->rx_ring.count * sizeof(struct skge_rx_desc);
  2122. tx_size = skge->tx_ring.count * sizeof(struct skge_tx_desc);
  2123. skge->mem_size = tx_size + rx_size;
  2124. skge->mem = pci_alloc_consistent(hw->pdev, skge->mem_size, &skge->dma);
  2125. if (!skge->mem)
  2126. return -ENOMEM;
  2127. BUG_ON(skge->dma & 7);
  2128. if ((u64)skge->dma >> 32 != ((u64) skge->dma + skge->mem_size) >> 32) {
  2129. dev_err(&hw->pdev->dev, "pci_alloc_consistent region crosses 4G boundary\n");
  2130. err = -EINVAL;
  2131. goto free_pci_mem;
  2132. }
  2133. memset(skge->mem, 0, skge->mem_size);
  2134. err = skge_ring_alloc(&skge->rx_ring, skge->mem, skge->dma);
  2135. if (err)
  2136. goto free_pci_mem;
  2137. err = skge_rx_fill(dev);
  2138. if (err)
  2139. goto free_rx_ring;
  2140. err = skge_ring_alloc(&skge->tx_ring, skge->mem + rx_size,
  2141. skge->dma + rx_size);
  2142. if (err)
  2143. goto free_rx_ring;
  2144. /* Initialize MAC */
  2145. spin_lock_bh(&hw->phy_lock);
  2146. if (hw->chip_id == CHIP_ID_GENESIS)
  2147. genesis_mac_init(hw, port);
  2148. else
  2149. yukon_mac_init(hw, port);
  2150. spin_unlock_bh(&hw->phy_lock);
  2151. /* Configure RAMbuffers - equally between ports and tx/rx */
  2152. chunk = (hw->ram_size - hw->ram_offset) / (hw->ports * 2);
  2153. ram_addr = hw->ram_offset + 2 * chunk * port;
  2154. skge_ramset(hw, rxqaddr[port], ram_addr, chunk);
  2155. skge_qset(skge, rxqaddr[port], skge->rx_ring.to_clean);
  2156. BUG_ON(skge->tx_ring.to_use != skge->tx_ring.to_clean);
  2157. skge_ramset(hw, txqaddr[port], ram_addr+chunk, chunk);
  2158. skge_qset(skge, txqaddr[port], skge->tx_ring.to_use);
  2159. /* Start receiver BMU */
  2160. wmb();
  2161. skge_write8(hw, Q_ADDR(rxqaddr[port], Q_CSR), CSR_START | CSR_IRQ_CL_F);
  2162. skge_led(skge, LED_MODE_ON);
  2163. spin_lock_irq(&hw->hw_lock);
  2164. hw->intr_mask |= portmask[port];
  2165. skge_write32(hw, B0_IMSK, hw->intr_mask);
  2166. spin_unlock_irq(&hw->hw_lock);
  2167. napi_enable(&skge->napi);
  2168. return 0;
  2169. free_rx_ring:
  2170. skge_rx_clean(skge);
  2171. kfree(skge->rx_ring.start);
  2172. free_pci_mem:
  2173. pci_free_consistent(hw->pdev, skge->mem_size, skge->mem, skge->dma);
  2174. skge->mem = NULL;
  2175. return err;
  2176. }
  2177. /* stop receiver */
  2178. static void skge_rx_stop(struct skge_hw *hw, int port)
  2179. {
  2180. skge_write8(hw, Q_ADDR(rxqaddr[port], Q_CSR), CSR_STOP);
  2181. skge_write32(hw, RB_ADDR(port ? Q_R2 : Q_R1, RB_CTRL),
  2182. RB_RST_SET|RB_DIS_OP_MD);
  2183. skge_write32(hw, Q_ADDR(rxqaddr[port], Q_CSR), CSR_SET_RESET);
  2184. }
  2185. static int skge_down(struct net_device *dev)
  2186. {
  2187. struct skge_port *skge = netdev_priv(dev);
  2188. struct skge_hw *hw = skge->hw;
  2189. int port = skge->port;
  2190. if (skge->mem == NULL)
  2191. return 0;
  2192. netif_info(skge, ifdown, skge->netdev, "disabling interface\n");
  2193. netif_tx_disable(dev);
  2194. if (hw->chip_id == CHIP_ID_GENESIS && hw->phy_type == SK_PHY_XMAC)
  2195. del_timer_sync(&skge->link_timer);
  2196. napi_disable(&skge->napi);
  2197. netif_carrier_off(dev);
  2198. spin_lock_irq(&hw->hw_lock);
  2199. hw->intr_mask &= ~portmask[port];
  2200. skge_write32(hw, B0_IMSK, hw->intr_mask);
  2201. spin_unlock_irq(&hw->hw_lock);
  2202. skge_write8(skge->hw, SK_REG(skge->port, LNK_LED_REG), LED_OFF);
  2203. if (hw->chip_id == CHIP_ID_GENESIS)
  2204. genesis_stop(skge);
  2205. else
  2206. yukon_stop(skge);
  2207. /* Stop transmitter */
  2208. skge_write8(hw, Q_ADDR(txqaddr[port], Q_CSR), CSR_STOP);
  2209. skge_write32(hw, RB_ADDR(txqaddr[port], RB_CTRL),
  2210. RB_RST_SET|RB_DIS_OP_MD);
  2211. /* Disable Force Sync bit and Enable Alloc bit */
  2212. skge_write8(hw, SK_REG(port, TXA_CTRL),
  2213. TXA_DIS_FSYNC | TXA_DIS_ALLOC | TXA_STOP_RC);
  2214. /* Stop Interval Timer and Limit Counter of Tx Arbiter */
  2215. skge_write32(hw, SK_REG(port, TXA_ITI_INI), 0L);
  2216. skge_write32(hw, SK_REG(port, TXA_LIM_INI), 0L);
  2217. /* Reset PCI FIFO */
  2218. skge_write32(hw, Q_ADDR(txqaddr[port], Q_CSR), CSR_SET_RESET);
  2219. skge_write32(hw, RB_ADDR(txqaddr[port], RB_CTRL), RB_RST_SET);
  2220. /* Reset the RAM Buffer async Tx queue */
  2221. skge_write8(hw, RB_ADDR(port == 0 ? Q_XA1 : Q_XA2, RB_CTRL), RB_RST_SET);
  2222. skge_rx_stop(hw, port);
  2223. if (hw->chip_id == CHIP_ID_GENESIS) {
  2224. skge_write8(hw, SK_REG(port, TX_MFF_CTRL2), MFF_RST_SET);
  2225. skge_write8(hw, SK_REG(port, RX_MFF_CTRL2), MFF_RST_SET);
  2226. } else {
  2227. skge_write8(hw, SK_REG(port, RX_GMF_CTRL_T), GMF_RST_SET);
  2228. skge_write8(hw, SK_REG(port, TX_GMF_CTRL_T), GMF_RST_SET);
  2229. }
  2230. skge_led(skge, LED_MODE_OFF);
  2231. netif_tx_lock_bh(dev);
  2232. skge_tx_clean(dev);
  2233. netif_tx_unlock_bh(dev);
  2234. skge_rx_clean(skge);
  2235. kfree(skge->rx_ring.start);
  2236. kfree(skge->tx_ring.start);
  2237. pci_free_consistent(hw->pdev, skge->mem_size, skge->mem, skge->dma);
  2238. skge->mem = NULL;
  2239. return 0;
  2240. }
  2241. static inline int skge_avail(const struct skge_ring *ring)
  2242. {
  2243. smp_mb();
  2244. return ((ring->to_clean > ring->to_use) ? 0 : ring->count)
  2245. + (ring->to_clean - ring->to_use) - 1;
  2246. }
  2247. static netdev_tx_t skge_xmit_frame(struct sk_buff *skb,
  2248. struct net_device *dev)
  2249. {
  2250. struct skge_port *skge = netdev_priv(dev);
  2251. struct skge_hw *hw = skge->hw;
  2252. struct skge_element *e;
  2253. struct skge_tx_desc *td;
  2254. int i;
  2255. u32 control, len;
  2256. u64 map;
  2257. if (skb_padto(skb, ETH_ZLEN))
  2258. return NETDEV_TX_OK;
  2259. if (unlikely(skge_avail(&skge->tx_ring) < skb_shinfo(skb)->nr_frags + 1))
  2260. return NETDEV_TX_BUSY;
  2261. e = skge->tx_ring.to_use;
  2262. td = e->desc;
  2263. BUG_ON(td->control & BMU_OWN);
  2264. e->skb = skb;
  2265. len = skb_headlen(skb);
  2266. map = pci_map_single(hw->pdev, skb->data, len, PCI_DMA_TODEVICE);
  2267. pci_unmap_addr_set(e, mapaddr, map);
  2268. pci_unmap_len_set(e, maplen, len);
  2269. td->dma_lo = map;
  2270. td->dma_hi = map >> 32;
  2271. if (skb->ip_summed == CHECKSUM_PARTIAL) {
  2272. const int offset = skb_transport_offset(skb);
  2273. /* This seems backwards, but it is what the sk98lin
  2274. * does. Looks like hardware is wrong?
  2275. */
  2276. if (ipip_hdr(skb)->protocol == IPPROTO_UDP &&
  2277. hw->chip_rev == 0 && hw->chip_id == CHIP_ID_YUKON)
  2278. control = BMU_TCP_CHECK;
  2279. else
  2280. control = BMU_UDP_CHECK;
  2281. td->csum_offs = 0;
  2282. td->csum_start = offset;
  2283. td->csum_write = offset + skb->csum_offset;
  2284. } else
  2285. control = BMU_CHECK;
  2286. if (!skb_shinfo(skb)->nr_frags) /* single buffer i.e. no fragments */
  2287. control |= BMU_EOF | BMU_IRQ_EOF;
  2288. else {
  2289. struct skge_tx_desc *tf = td;
  2290. control |= BMU_STFWD;
  2291. for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
  2292. skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
  2293. map = pci_map_page(hw->pdev, frag->page, frag->page_offset,
  2294. frag->size, PCI_DMA_TODEVICE);
  2295. e = e->next;
  2296. e->skb = skb;
  2297. tf = e->desc;
  2298. BUG_ON(tf->control & BMU_OWN);
  2299. tf->dma_lo = map;
  2300. tf->dma_hi = (u64) map >> 32;
  2301. pci_unmap_addr_set(e, mapaddr, map);
  2302. pci_unmap_len_set(e, maplen, frag->size);
  2303. tf->control = BMU_OWN | BMU_SW | control | frag->size;
  2304. }
  2305. tf->control |= BMU_EOF | BMU_IRQ_EOF;
  2306. }
  2307. /* Make sure all the descriptors written */
  2308. wmb();
  2309. td->control = BMU_OWN | BMU_SW | BMU_STF | control | len;
  2310. wmb();
  2311. skge_write8(hw, Q_ADDR(txqaddr[skge->port], Q_CSR), CSR_START);
  2312. netif_printk(skge, tx_queued, KERN_DEBUG, skge->netdev,
  2313. "tx queued, slot %td, len %d\n",
  2314. e - skge->tx_ring.start, skb->len);
  2315. skge->tx_ring.to_use = e->next;
  2316. smp_wmb();
  2317. if (skge_avail(&skge->tx_ring) <= TX_LOW_WATER) {
  2318. netdev_dbg(dev, "transmit queue full\n");
  2319. netif_stop_queue(dev);
  2320. }
  2321. return NETDEV_TX_OK;
  2322. }
  2323. /* Free resources associated with this reing element */
  2324. static void skge_tx_free(struct skge_port *skge, struct skge_element *e,
  2325. u32 control)
  2326. {
  2327. struct pci_dev *pdev = skge->hw->pdev;
  2328. /* skb header vs. fragment */
  2329. if (control & BMU_STF)
  2330. pci_unmap_single(pdev, pci_unmap_addr(e, mapaddr),
  2331. pci_unmap_len(e, maplen),
  2332. PCI_DMA_TODEVICE);
  2333. else
  2334. pci_unmap_page(pdev, pci_unmap_addr(e, mapaddr),
  2335. pci_unmap_len(e, maplen),
  2336. PCI_DMA_TODEVICE);
  2337. if (control & BMU_EOF) {
  2338. netif_printk(skge, tx_done, KERN_DEBUG, skge->netdev,
  2339. "tx done slot %td\n", e - skge->tx_ring.start);
  2340. dev_kfree_skb(e->skb);
  2341. }
  2342. }
  2343. /* Free all buffers in transmit ring */
  2344. static void skge_tx_clean(struct net_device *dev)
  2345. {
  2346. struct skge_port *skge = netdev_priv(dev);
  2347. struct skge_element *e;
  2348. for (e = skge->tx_ring.to_clean; e != skge->tx_ring.to_use; e = e->next) {
  2349. struct skge_tx_desc *td = e->desc;
  2350. skge_tx_free(skge, e, td->control);
  2351. td->control = 0;
  2352. }
  2353. skge->tx_ring.to_clean = e;
  2354. }
  2355. static void skge_tx_timeout(struct net_device *dev)
  2356. {
  2357. struct skge_port *skge = netdev_priv(dev);
  2358. netif_printk(skge, timer, KERN_DEBUG, skge->netdev, "tx timeout\n");
  2359. skge_write8(skge->hw, Q_ADDR(txqaddr[skge->port], Q_CSR), CSR_STOP);
  2360. skge_tx_clean(dev);
  2361. netif_wake_queue(dev);
  2362. }
  2363. static int skge_change_mtu(struct net_device *dev, int new_mtu)
  2364. {
  2365. int err;
  2366. if (new_mtu < ETH_ZLEN || new_mtu > ETH_JUMBO_MTU)
  2367. return -EINVAL;
  2368. if (!netif_running(dev)) {
  2369. dev->mtu = new_mtu;
  2370. return 0;
  2371. }
  2372. skge_down(dev);
  2373. dev->mtu = new_mtu;
  2374. err = skge_up(dev);
  2375. if (err)
  2376. dev_close(dev);
  2377. return err;
  2378. }
  2379. static const u8 pause_mc_addr[ETH_ALEN] = { 0x1, 0x80, 0xc2, 0x0, 0x0, 0x1 };
  2380. static void genesis_add_filter(u8 filter[8], const u8 *addr)
  2381. {
  2382. u32 crc, bit;
  2383. crc = ether_crc_le(ETH_ALEN, addr);
  2384. bit = ~crc & 0x3f;
  2385. filter[bit/8] |= 1 << (bit%8);
  2386. }
  2387. static void genesis_set_multicast(struct net_device *dev)
  2388. {
  2389. struct skge_port *skge = netdev_priv(dev);
  2390. struct skge_hw *hw = skge->hw;
  2391. int port = skge->port;
  2392. int i, count = netdev_mc_count(dev);
  2393. struct dev_mc_list *list = dev->mc_list;
  2394. u32 mode;
  2395. u8 filter[8];
  2396. mode = xm_read32(hw, port, XM_MODE);
  2397. mode |= XM_MD_ENA_HASH;
  2398. if (dev->flags & IFF_PROMISC)
  2399. mode |= XM_MD_ENA_PROM;
  2400. else
  2401. mode &= ~XM_MD_ENA_PROM;
  2402. if (dev->flags & IFF_ALLMULTI)
  2403. memset(filter, 0xff, sizeof(filter));
  2404. else {
  2405. memset(filter, 0, sizeof(filter));
  2406. if (skge->flow_status == FLOW_STAT_REM_SEND ||
  2407. skge->flow_status == FLOW_STAT_SYMMETRIC)
  2408. genesis_add_filter(filter, pause_mc_addr);
  2409. for (i = 0; list && i < count; i++, list = list->next)
  2410. genesis_add_filter(filter, list->dmi_addr);
  2411. }
  2412. xm_write32(hw, port, XM_MODE, mode);
  2413. xm_outhash(hw, port, XM_HSM, filter);
  2414. }
  2415. static void yukon_add_filter(u8 filter[8], const u8 *addr)
  2416. {
  2417. u32 bit = ether_crc(ETH_ALEN, addr) & 0x3f;
  2418. filter[bit/8] |= 1 << (bit%8);
  2419. }
  2420. static void yukon_set_multicast(struct net_device *dev)
  2421. {
  2422. struct skge_port *skge = netdev_priv(dev);
  2423. struct skge_hw *hw = skge->hw;
  2424. int port = skge->port;
  2425. struct dev_mc_list *list = dev->mc_list;
  2426. int rx_pause = (skge->flow_status == FLOW_STAT_REM_SEND ||
  2427. skge->flow_status == FLOW_STAT_SYMMETRIC);
  2428. u16 reg;
  2429. u8 filter[8];
  2430. memset(filter, 0, sizeof(filter));
  2431. reg = gma_read16(hw, port, GM_RX_CTRL);
  2432. reg |= GM_RXCR_UCF_ENA;
  2433. if (dev->flags & IFF_PROMISC) /* promiscuous */
  2434. reg &= ~(GM_RXCR_UCF_ENA | GM_RXCR_MCF_ENA);
  2435. else if (dev->flags & IFF_ALLMULTI) /* all multicast */
  2436. memset(filter, 0xff, sizeof(filter));
  2437. else if (netdev_mc_empty(dev) && !rx_pause)/* no multicast */
  2438. reg &= ~GM_RXCR_MCF_ENA;
  2439. else {
  2440. int i;
  2441. reg |= GM_RXCR_MCF_ENA;
  2442. if (rx_pause)
  2443. yukon_add_filter(filter, pause_mc_addr);
  2444. for (i = 0; list && i < netdev_mc_count(dev); i++, list = list->next)
  2445. yukon_add_filter(filter, list->dmi_addr);
  2446. }
  2447. gma_write16(hw, port, GM_MC_ADDR_H1,
  2448. (u16)filter[0] | ((u16)filter[1] << 8));
  2449. gma_write16(hw, port, GM_MC_ADDR_H2,
  2450. (u16)filter[2] | ((u16)filter[3] << 8));
  2451. gma_write16(hw, port, GM_MC_ADDR_H3,
  2452. (u16)filter[4] | ((u16)filter[5] << 8));
  2453. gma_write16(hw, port, GM_MC_ADDR_H4,
  2454. (u16)filter[6] | ((u16)filter[7] << 8));
  2455. gma_write16(hw, port, GM_RX_CTRL, reg);
  2456. }
  2457. static inline u16 phy_length(const struct skge_hw *hw, u32 status)
  2458. {
  2459. if (hw->chip_id == CHIP_ID_GENESIS)
  2460. return status >> XMR_FS_LEN_SHIFT;
  2461. else
  2462. return status >> GMR_FS_LEN_SHIFT;
  2463. }
  2464. static inline int bad_phy_status(const struct skge_hw *hw, u32 status)
  2465. {
  2466. if (hw->chip_id == CHIP_ID_GENESIS)
  2467. return (status & (XMR_FS_ERR | XMR_FS_2L_VLAN)) != 0;
  2468. else
  2469. return (status & GMR_FS_ANY_ERR) ||
  2470. (status & GMR_FS_RX_OK) == 0;
  2471. }
  2472. static void skge_set_multicast(struct net_device *dev)
  2473. {
  2474. struct skge_port *skge = netdev_priv(dev);
  2475. struct skge_hw *hw = skge->hw;
  2476. if (hw->chip_id == CHIP_ID_GENESIS)
  2477. genesis_set_multicast(dev);
  2478. else
  2479. yukon_set_multicast(dev);
  2480. }
  2481. /* Get receive buffer from descriptor.
  2482. * Handles copy of small buffers and reallocation failures
  2483. */
  2484. static struct sk_buff *skge_rx_get(struct net_device *dev,
  2485. struct skge_element *e,
  2486. u32 control, u32 status, u16 csum)
  2487. {
  2488. struct skge_port *skge = netdev_priv(dev);
  2489. struct sk_buff *skb;
  2490. u16 len = control & BMU_BBC;
  2491. netif_printk(skge, rx_status, KERN_DEBUG, skge->netdev,
  2492. "rx slot %td status 0x%x len %d\n",
  2493. e - skge->rx_ring.start, status, len);
  2494. if (len > skge->rx_buf_size)
  2495. goto error;
  2496. if ((control & (BMU_EOF|BMU_STF)) != (BMU_STF|BMU_EOF))
  2497. goto error;
  2498. if (bad_phy_status(skge->hw, status))
  2499. goto error;
  2500. if (phy_length(skge->hw, status) != len)
  2501. goto error;
  2502. if (len < RX_COPY_THRESHOLD) {
  2503. skb = netdev_alloc_skb_ip_align(dev, len);
  2504. if (!skb)
  2505. goto resubmit;
  2506. pci_dma_sync_single_for_cpu(skge->hw->pdev,
  2507. pci_unmap_addr(e, mapaddr),
  2508. len, PCI_DMA_FROMDEVICE);
  2509. skb_copy_from_linear_data(e->skb, skb->data, len);
  2510. pci_dma_sync_single_for_device(skge->hw->pdev,
  2511. pci_unmap_addr(e, mapaddr),
  2512. len, PCI_DMA_FROMDEVICE);
  2513. skge_rx_reuse(e, skge->rx_buf_size);
  2514. } else {
  2515. struct sk_buff *nskb;
  2516. nskb = netdev_alloc_skb_ip_align(dev, skge->rx_buf_size);
  2517. if (!nskb)
  2518. goto resubmit;
  2519. pci_unmap_single(skge->hw->pdev,
  2520. pci_unmap_addr(e, mapaddr),
  2521. pci_unmap_len(e, maplen),
  2522. PCI_DMA_FROMDEVICE);
  2523. skb = e->skb;
  2524. prefetch(skb->data);
  2525. skge_rx_setup(skge, e, nskb, skge->rx_buf_size);
  2526. }
  2527. skb_put(skb, len);
  2528. if (skge->rx_csum) {
  2529. skb->csum = csum;
  2530. skb->ip_summed = CHECKSUM_COMPLETE;
  2531. }
  2532. skb->protocol = eth_type_trans(skb, dev);
  2533. return skb;
  2534. error:
  2535. netif_printk(skge, rx_err, KERN_DEBUG, skge->netdev,
  2536. "rx err, slot %td control 0x%x status 0x%x\n",
  2537. e - skge->rx_ring.start, control, status);
  2538. if (skge->hw->chip_id == CHIP_ID_GENESIS) {
  2539. if (status & (XMR_FS_RUNT|XMR_FS_LNG_ERR))
  2540. dev->stats.rx_length_errors++;
  2541. if (status & XMR_FS_FRA_ERR)
  2542. dev->stats.rx_frame_errors++;
  2543. if (status & XMR_FS_FCS_ERR)
  2544. dev->stats.rx_crc_errors++;
  2545. } else {
  2546. if (status & (GMR_FS_LONG_ERR|GMR_FS_UN_SIZE))
  2547. dev->stats.rx_length_errors++;
  2548. if (status & GMR_FS_FRAGMENT)
  2549. dev->stats.rx_frame_errors++;
  2550. if (status & GMR_FS_CRC_ERR)
  2551. dev->stats.rx_crc_errors++;
  2552. }
  2553. resubmit:
  2554. skge_rx_reuse(e, skge->rx_buf_size);
  2555. return NULL;
  2556. }
  2557. /* Free all buffers in Tx ring which are no longer owned by device */
  2558. static void skge_tx_done(struct net_device *dev)
  2559. {
  2560. struct skge_port *skge = netdev_priv(dev);
  2561. struct skge_ring *ring = &skge->tx_ring;
  2562. struct skge_element *e;
  2563. skge_write8(skge->hw, Q_ADDR(txqaddr[skge->port], Q_CSR), CSR_IRQ_CL_F);
  2564. for (e = ring->to_clean; e != ring->to_use; e = e->next) {
  2565. u32 control = ((const struct skge_tx_desc *) e->desc)->control;
  2566. if (control & BMU_OWN)
  2567. break;
  2568. skge_tx_free(skge, e, control);
  2569. }
  2570. skge->tx_ring.to_clean = e;
  2571. /* Can run lockless until we need to synchronize to restart queue. */
  2572. smp_mb();
  2573. if (unlikely(netif_queue_stopped(dev) &&
  2574. skge_avail(&skge->tx_ring) > TX_LOW_WATER)) {
  2575. netif_tx_lock(dev);
  2576. if (unlikely(netif_queue_stopped(dev) &&
  2577. skge_avail(&skge->tx_ring) > TX_LOW_WATER)) {
  2578. netif_wake_queue(dev);
  2579. }
  2580. netif_tx_unlock(dev);
  2581. }
  2582. }
  2583. static int skge_poll(struct napi_struct *napi, int to_do)
  2584. {
  2585. struct skge_port *skge = container_of(napi, struct skge_port, napi);
  2586. struct net_device *dev = skge->netdev;
  2587. struct skge_hw *hw = skge->hw;
  2588. struct skge_ring *ring = &skge->rx_ring;
  2589. struct skge_element *e;
  2590. int work_done = 0;
  2591. skge_tx_done(dev);
  2592. skge_write8(hw, Q_ADDR(rxqaddr[skge->port], Q_CSR), CSR_IRQ_CL_F);
  2593. for (e = ring->to_clean; prefetch(e->next), work_done < to_do; e = e->next) {
  2594. struct skge_rx_desc *rd = e->desc;
  2595. struct sk_buff *skb;
  2596. u32 control;
  2597. rmb();
  2598. control = rd->control;
  2599. if (control & BMU_OWN)
  2600. break;
  2601. skb = skge_rx_get(dev, e, control, rd->status, rd->csum2);
  2602. if (likely(skb)) {
  2603. netif_receive_skb(skb);
  2604. ++work_done;
  2605. }
  2606. }
  2607. ring->to_clean = e;
  2608. /* restart receiver */
  2609. wmb();
  2610. skge_write8(hw, Q_ADDR(rxqaddr[skge->port], Q_CSR), CSR_START);
  2611. if (work_done < to_do) {
  2612. unsigned long flags;
  2613. spin_lock_irqsave(&hw->hw_lock, flags);
  2614. __napi_complete(napi);
  2615. hw->intr_mask |= napimask[skge->port];
  2616. skge_write32(hw, B0_IMSK, hw->intr_mask);
  2617. skge_read32(hw, B0_IMSK);
  2618. spin_unlock_irqrestore(&hw->hw_lock, flags);
  2619. }
  2620. return work_done;
  2621. }
  2622. /* Parity errors seem to happen when Genesis is connected to a switch
  2623. * with no other ports present. Heartbeat error??
  2624. */
  2625. static void skge_mac_parity(struct skge_hw *hw, int port)
  2626. {
  2627. struct net_device *dev = hw->dev[port];
  2628. ++dev->stats.tx_heartbeat_errors;
  2629. if (hw->chip_id == CHIP_ID_GENESIS)
  2630. skge_write16(hw, SK_REG(port, TX_MFF_CTRL1),
  2631. MFF_CLR_PERR);
  2632. else
  2633. /* HW-Bug #8: cleared by GMF_CLI_TX_FC instead of GMF_CLI_TX_PE */
  2634. skge_write8(hw, SK_REG(port, TX_GMF_CTRL_T),
  2635. (hw->chip_id == CHIP_ID_YUKON && hw->chip_rev == 0)
  2636. ? GMF_CLI_TX_FC : GMF_CLI_TX_PE);
  2637. }
  2638. static void skge_mac_intr(struct skge_hw *hw, int port)
  2639. {
  2640. if (hw->chip_id == CHIP_ID_GENESIS)
  2641. genesis_mac_intr(hw, port);
  2642. else
  2643. yukon_mac_intr(hw, port);
  2644. }
  2645. /* Handle device specific framing and timeout interrupts */
  2646. static void skge_error_irq(struct skge_hw *hw)
  2647. {
  2648. struct pci_dev *pdev = hw->pdev;
  2649. u32 hwstatus = skge_read32(hw, B0_HWE_ISRC);
  2650. if (hw->chip_id == CHIP_ID_GENESIS) {
  2651. /* clear xmac errors */
  2652. if (hwstatus & (IS_NO_STAT_M1|IS_NO_TIST_M1))
  2653. skge_write16(hw, RX_MFF_CTRL1, MFF_CLR_INSTAT);
  2654. if (hwstatus & (IS_NO_STAT_M2|IS_NO_TIST_M2))
  2655. skge_write16(hw, RX_MFF_CTRL2, MFF_CLR_INSTAT);
  2656. } else {
  2657. /* Timestamp (unused) overflow */
  2658. if (hwstatus & IS_IRQ_TIST_OV)
  2659. skge_write8(hw, GMAC_TI_ST_CTRL, GMT_ST_CLR_IRQ);
  2660. }
  2661. if (hwstatus & IS_RAM_RD_PAR) {
  2662. dev_err(&pdev->dev, "Ram read data parity error\n");
  2663. skge_write16(hw, B3_RI_CTRL, RI_CLR_RD_PERR);
  2664. }
  2665. if (hwstatus & IS_RAM_WR_PAR) {
  2666. dev_err(&pdev->dev, "Ram write data parity error\n");
  2667. skge_write16(hw, B3_RI_CTRL, RI_CLR_WR_PERR);
  2668. }
  2669. if (hwstatus & IS_M1_PAR_ERR)
  2670. skge_mac_parity(hw, 0);
  2671. if (hwstatus & IS_M2_PAR_ERR)
  2672. skge_mac_parity(hw, 1);
  2673. if (hwstatus & IS_R1_PAR_ERR) {
  2674. dev_err(&pdev->dev, "%s: receive queue parity error\n",
  2675. hw->dev[0]->name);
  2676. skge_write32(hw, B0_R1_CSR, CSR_IRQ_CL_P);
  2677. }
  2678. if (hwstatus & IS_R2_PAR_ERR) {
  2679. dev_err(&pdev->dev, "%s: receive queue parity error\n",
  2680. hw->dev[1]->name);
  2681. skge_write32(hw, B0_R2_CSR, CSR_IRQ_CL_P);
  2682. }
  2683. if (hwstatus & (IS_IRQ_MST_ERR|IS_IRQ_STAT)) {
  2684. u16 pci_status, pci_cmd;
  2685. pci_read_config_word(pdev, PCI_COMMAND, &pci_cmd);
  2686. pci_read_config_word(pdev, PCI_STATUS, &pci_status);
  2687. dev_err(&pdev->dev, "PCI error cmd=%#x status=%#x\n",
  2688. pci_cmd, pci_status);
  2689. /* Write the error bits back to clear them. */
  2690. pci_status &= PCI_STATUS_ERROR_BITS;
  2691. skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_ON);
  2692. pci_write_config_word(pdev, PCI_COMMAND,
  2693. pci_cmd | PCI_COMMAND_SERR | PCI_COMMAND_PARITY);
  2694. pci_write_config_word(pdev, PCI_STATUS, pci_status);
  2695. skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_OFF);
  2696. /* if error still set then just ignore it */
  2697. hwstatus = skge_read32(hw, B0_HWE_ISRC);
  2698. if (hwstatus & IS_IRQ_STAT) {
  2699. dev_warn(&hw->pdev->dev, "unable to clear error (so ignoring them)\n");
  2700. hw->intr_mask &= ~IS_HW_ERR;
  2701. }
  2702. }
  2703. }
  2704. /*
  2705. * Interrupt from PHY are handled in tasklet (softirq)
  2706. * because accessing phy registers requires spin wait which might
  2707. * cause excess interrupt latency.
  2708. */
  2709. static void skge_extirq(unsigned long arg)
  2710. {
  2711. struct skge_hw *hw = (struct skge_hw *) arg;
  2712. int port;
  2713. for (port = 0; port < hw->ports; port++) {
  2714. struct net_device *dev = hw->dev[port];
  2715. if (netif_running(dev)) {
  2716. struct skge_port *skge = netdev_priv(dev);
  2717. spin_lock(&hw->phy_lock);
  2718. if (hw->chip_id != CHIP_ID_GENESIS)
  2719. yukon_phy_intr(skge);
  2720. else if (hw->phy_type == SK_PHY_BCOM)
  2721. bcom_phy_intr(skge);
  2722. spin_unlock(&hw->phy_lock);
  2723. }
  2724. }
  2725. spin_lock_irq(&hw->hw_lock);
  2726. hw->intr_mask |= IS_EXT_REG;
  2727. skge_write32(hw, B0_IMSK, hw->intr_mask);
  2728. skge_read32(hw, B0_IMSK);
  2729. spin_unlock_irq(&hw->hw_lock);
  2730. }
  2731. static irqreturn_t skge_intr(int irq, void *dev_id)
  2732. {
  2733. struct skge_hw *hw = dev_id;
  2734. u32 status;
  2735. int handled = 0;
  2736. spin_lock(&hw->hw_lock);
  2737. /* Reading this register masks IRQ */
  2738. status = skge_read32(hw, B0_SP_ISRC);
  2739. if (status == 0 || status == ~0)
  2740. goto out;
  2741. handled = 1;
  2742. status &= hw->intr_mask;
  2743. if (status & IS_EXT_REG) {
  2744. hw->intr_mask &= ~IS_EXT_REG;
  2745. tasklet_schedule(&hw->phy_task);
  2746. }
  2747. if (status & (IS_XA1_F|IS_R1_F)) {
  2748. struct skge_port *skge = netdev_priv(hw->dev[0]);
  2749. hw->intr_mask &= ~(IS_XA1_F|IS_R1_F);
  2750. napi_schedule(&skge->napi);
  2751. }
  2752. if (status & IS_PA_TO_TX1)
  2753. skge_write16(hw, B3_PA_CTRL, PA_CLR_TO_TX1);
  2754. if (status & IS_PA_TO_RX1) {
  2755. ++hw->dev[0]->stats.rx_over_errors;
  2756. skge_write16(hw, B3_PA_CTRL, PA_CLR_TO_RX1);
  2757. }
  2758. if (status & IS_MAC1)
  2759. skge_mac_intr(hw, 0);
  2760. if (hw->dev[1]) {
  2761. struct skge_port *skge = netdev_priv(hw->dev[1]);
  2762. if (status & (IS_XA2_F|IS_R2_F)) {
  2763. hw->intr_mask &= ~(IS_XA2_F|IS_R2_F);
  2764. napi_schedule(&skge->napi);
  2765. }
  2766. if (status & IS_PA_TO_RX2) {
  2767. ++hw->dev[1]->stats.rx_over_errors;
  2768. skge_write16(hw, B3_PA_CTRL, PA_CLR_TO_RX2);
  2769. }
  2770. if (status & IS_PA_TO_TX2)
  2771. skge_write16(hw, B3_PA_CTRL, PA_CLR_TO_TX2);
  2772. if (status & IS_MAC2)
  2773. skge_mac_intr(hw, 1);
  2774. }
  2775. if (status & IS_HW_ERR)
  2776. skge_error_irq(hw);
  2777. skge_write32(hw, B0_IMSK, hw->intr_mask);
  2778. skge_read32(hw, B0_IMSK);
  2779. out:
  2780. spin_unlock(&hw->hw_lock);
  2781. return IRQ_RETVAL(handled);
  2782. }
  2783. #ifdef CONFIG_NET_POLL_CONTROLLER
  2784. static void skge_netpoll(struct net_device *dev)
  2785. {
  2786. struct skge_port *skge = netdev_priv(dev);
  2787. disable_irq(dev->irq);
  2788. skge_intr(dev->irq, skge->hw);
  2789. enable_irq(dev->irq);
  2790. }
  2791. #endif
  2792. static int skge_set_mac_address(struct net_device *dev, void *p)
  2793. {
  2794. struct skge_port *skge = netdev_priv(dev);
  2795. struct skge_hw *hw = skge->hw;
  2796. unsigned port = skge->port;
  2797. const struct sockaddr *addr = p;
  2798. u16 ctrl;
  2799. if (!is_valid_ether_addr(addr->sa_data))
  2800. return -EADDRNOTAVAIL;
  2801. memcpy(dev->dev_addr, addr->sa_data, ETH_ALEN);
  2802. if (!netif_running(dev)) {
  2803. memcpy_toio(hw->regs + B2_MAC_1 + port*8, dev->dev_addr, ETH_ALEN);
  2804. memcpy_toio(hw->regs + B2_MAC_2 + port*8, dev->dev_addr, ETH_ALEN);
  2805. } else {
  2806. /* disable Rx */
  2807. spin_lock_bh(&hw->phy_lock);
  2808. ctrl = gma_read16(hw, port, GM_GP_CTRL);
  2809. gma_write16(hw, port, GM_GP_CTRL, ctrl & ~GM_GPCR_RX_ENA);
  2810. memcpy_toio(hw->regs + B2_MAC_1 + port*8, dev->dev_addr, ETH_ALEN);
  2811. memcpy_toio(hw->regs + B2_MAC_2 + port*8, dev->dev_addr, ETH_ALEN);
  2812. if (hw->chip_id == CHIP_ID_GENESIS)
  2813. xm_outaddr(hw, port, XM_SA, dev->dev_addr);
  2814. else {
  2815. gma_set_addr(hw, port, GM_SRC_ADDR_1L, dev->dev_addr);
  2816. gma_set_addr(hw, port, GM_SRC_ADDR_2L, dev->dev_addr);
  2817. }
  2818. gma_write16(hw, port, GM_GP_CTRL, ctrl);
  2819. spin_unlock_bh(&hw->phy_lock);
  2820. }
  2821. return 0;
  2822. }
  2823. static const struct {
  2824. u8 id;
  2825. const char *name;
  2826. } skge_chips[] = {
  2827. { CHIP_ID_GENESIS, "Genesis" },
  2828. { CHIP_ID_YUKON, "Yukon" },
  2829. { CHIP_ID_YUKON_LITE, "Yukon-Lite"},
  2830. { CHIP_ID_YUKON_LP, "Yukon-LP"},
  2831. };
  2832. static const char *skge_board_name(const struct skge_hw *hw)
  2833. {
  2834. int i;
  2835. static char buf[16];
  2836. for (i = 0; i < ARRAY_SIZE(skge_chips); i++)
  2837. if (skge_chips[i].id == hw->chip_id)
  2838. return skge_chips[i].name;
  2839. snprintf(buf, sizeof buf, "chipid 0x%x", hw->chip_id);
  2840. return buf;
  2841. }
  2842. /*
  2843. * Setup the board data structure, but don't bring up
  2844. * the port(s)
  2845. */
  2846. static int skge_reset(struct skge_hw *hw)
  2847. {
  2848. u32 reg;
  2849. u16 ctst, pci_status;
  2850. u8 t8, mac_cfg, pmd_type;
  2851. int i;
  2852. ctst = skge_read16(hw, B0_CTST);
  2853. /* do a SW reset */
  2854. skge_write8(hw, B0_CTST, CS_RST_SET);
  2855. skge_write8(hw, B0_CTST, CS_RST_CLR);
  2856. /* clear PCI errors, if any */
  2857. skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_ON);
  2858. skge_write8(hw, B2_TST_CTRL2, 0);
  2859. pci_read_config_word(hw->pdev, PCI_STATUS, &pci_status);
  2860. pci_write_config_word(hw->pdev, PCI_STATUS,
  2861. pci_status | PCI_STATUS_ERROR_BITS);
  2862. skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_OFF);
  2863. skge_write8(hw, B0_CTST, CS_MRST_CLR);
  2864. /* restore CLK_RUN bits (for Yukon-Lite) */
  2865. skge_write16(hw, B0_CTST,
  2866. ctst & (CS_CLK_RUN_HOT|CS_CLK_RUN_RST|CS_CLK_RUN_ENA));
  2867. hw->chip_id = skge_read8(hw, B2_CHIP_ID);
  2868. hw->phy_type = skge_read8(hw, B2_E_1) & 0xf;
  2869. pmd_type = skge_read8(hw, B2_PMD_TYP);
  2870. hw->copper = (pmd_type == 'T' || pmd_type == '1');
  2871. switch (hw->chip_id) {
  2872. case CHIP_ID_GENESIS:
  2873. switch (hw->phy_type) {
  2874. case SK_PHY_XMAC:
  2875. hw->phy_addr = PHY_ADDR_XMAC;
  2876. break;
  2877. case SK_PHY_BCOM:
  2878. hw->phy_addr = PHY_ADDR_BCOM;
  2879. break;
  2880. default:
  2881. dev_err(&hw->pdev->dev, "unsupported phy type 0x%x\n",
  2882. hw->phy_type);
  2883. return -EOPNOTSUPP;
  2884. }
  2885. break;
  2886. case CHIP_ID_YUKON:
  2887. case CHIP_ID_YUKON_LITE:
  2888. case CHIP_ID_YUKON_LP:
  2889. if (hw->phy_type < SK_PHY_MARV_COPPER && pmd_type != 'S')
  2890. hw->copper = 1;
  2891. hw->phy_addr = PHY_ADDR_MARV;
  2892. break;
  2893. default:
  2894. dev_err(&hw->pdev->dev, "unsupported chip type 0x%x\n",
  2895. hw->chip_id);
  2896. return -EOPNOTSUPP;
  2897. }
  2898. mac_cfg = skge_read8(hw, B2_MAC_CFG);
  2899. hw->ports = (mac_cfg & CFG_SNG_MAC) ? 1 : 2;
  2900. hw->chip_rev = (mac_cfg & CFG_CHIP_R_MSK) >> 4;
  2901. /* read the adapters RAM size */
  2902. t8 = skge_read8(hw, B2_E_0);
  2903. if (hw->chip_id == CHIP_ID_GENESIS) {
  2904. if (t8 == 3) {
  2905. /* special case: 4 x 64k x 36, offset = 0x80000 */
  2906. hw->ram_size = 0x100000;
  2907. hw->ram_offset = 0x80000;
  2908. } else
  2909. hw->ram_size = t8 * 512;
  2910. } else if (t8 == 0)
  2911. hw->ram_size = 0x20000;
  2912. else
  2913. hw->ram_size = t8 * 4096;
  2914. hw->intr_mask = IS_HW_ERR;
  2915. /* Use PHY IRQ for all but fiber based Genesis board */
  2916. if (!(hw->chip_id == CHIP_ID_GENESIS && hw->phy_type == SK_PHY_XMAC))
  2917. hw->intr_mask |= IS_EXT_REG;
  2918. if (hw->chip_id == CHIP_ID_GENESIS)
  2919. genesis_init(hw);
  2920. else {
  2921. /* switch power to VCC (WA for VAUX problem) */
  2922. skge_write8(hw, B0_POWER_CTRL,
  2923. PC_VAUX_ENA | PC_VCC_ENA | PC_VAUX_OFF | PC_VCC_ON);
  2924. /* avoid boards with stuck Hardware error bits */
  2925. if ((skge_read32(hw, B0_ISRC) & IS_HW_ERR) &&
  2926. (skge_read32(hw, B0_HWE_ISRC) & IS_IRQ_SENSOR)) {
  2927. dev_warn(&hw->pdev->dev, "stuck hardware sensor bit\n");
  2928. hw->intr_mask &= ~IS_HW_ERR;
  2929. }
  2930. /* Clear PHY COMA */
  2931. skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_ON);
  2932. pci_read_config_dword(hw->pdev, PCI_DEV_REG1, &reg);
  2933. reg &= ~PCI_PHY_COMA;
  2934. pci_write_config_dword(hw->pdev, PCI_DEV_REG1, reg);
  2935. skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_OFF);
  2936. for (i = 0; i < hw->ports; i++) {
  2937. skge_write16(hw, SK_REG(i, GMAC_LINK_CTRL), GMLC_RST_SET);
  2938. skge_write16(hw, SK_REG(i, GMAC_LINK_CTRL), GMLC_RST_CLR);
  2939. }
  2940. }
  2941. /* turn off hardware timer (unused) */
  2942. skge_write8(hw, B2_TI_CTRL, TIM_STOP);
  2943. skge_write8(hw, B2_TI_CTRL, TIM_CLR_IRQ);
  2944. skge_write8(hw, B0_LED, LED_STAT_ON);
  2945. /* enable the Tx Arbiters */
  2946. for (i = 0; i < hw->ports; i++)
  2947. skge_write8(hw, SK_REG(i, TXA_CTRL), TXA_ENA_ARB);
  2948. /* Initialize ram interface */
  2949. skge_write16(hw, B3_RI_CTRL, RI_RST_CLR);
  2950. skge_write8(hw, B3_RI_WTO_R1, SK_RI_TO_53);
  2951. skge_write8(hw, B3_RI_WTO_XA1, SK_RI_TO_53);
  2952. skge_write8(hw, B3_RI_WTO_XS1, SK_RI_TO_53);
  2953. skge_write8(hw, B3_RI_RTO_R1, SK_RI_TO_53);
  2954. skge_write8(hw, B3_RI_RTO_XA1, SK_RI_TO_53);
  2955. skge_write8(hw, B3_RI_RTO_XS1, SK_RI_TO_53);
  2956. skge_write8(hw, B3_RI_WTO_R2, SK_RI_TO_53);
  2957. skge_write8(hw, B3_RI_WTO_XA2, SK_RI_TO_53);
  2958. skge_write8(hw, B3_RI_WTO_XS2, SK_RI_TO_53);
  2959. skge_write8(hw, B3_RI_RTO_R2, SK_RI_TO_53);
  2960. skge_write8(hw, B3_RI_RTO_XA2, SK_RI_TO_53);
  2961. skge_write8(hw, B3_RI_RTO_XS2, SK_RI_TO_53);
  2962. skge_write32(hw, B0_HWE_IMSK, IS_ERR_MSK);
  2963. /* Set interrupt moderation for Transmit only
  2964. * Receive interrupts avoided by NAPI
  2965. */
  2966. skge_write32(hw, B2_IRQM_MSK, IS_XA1_F|IS_XA2_F);
  2967. skge_write32(hw, B2_IRQM_INI, skge_usecs2clk(hw, 100));
  2968. skge_write32(hw, B2_IRQM_CTRL, TIM_START);
  2969. skge_write32(hw, B0_IMSK, hw->intr_mask);
  2970. for (i = 0; i < hw->ports; i++) {
  2971. if (hw->chip_id == CHIP_ID_GENESIS)
  2972. genesis_reset(hw, i);
  2973. else
  2974. yukon_reset(hw, i);
  2975. }
  2976. return 0;
  2977. }
  2978. #ifdef CONFIG_SKGE_DEBUG
  2979. static struct dentry *skge_debug;
  2980. static int skge_debug_show(struct seq_file *seq, void *v)
  2981. {
  2982. struct net_device *dev = seq->private;
  2983. const struct skge_port *skge = netdev_priv(dev);
  2984. const struct skge_hw *hw = skge->hw;
  2985. const struct skge_element *e;
  2986. if (!netif_running(dev))
  2987. return -ENETDOWN;
  2988. seq_printf(seq, "IRQ src=%x mask=%x\n", skge_read32(hw, B0_ISRC),
  2989. skge_read32(hw, B0_IMSK));
  2990. seq_printf(seq, "Tx Ring: (%d)\n", skge_avail(&skge->tx_ring));
  2991. for (e = skge->tx_ring.to_clean; e != skge->tx_ring.to_use; e = e->next) {
  2992. const struct skge_tx_desc *t = e->desc;
  2993. seq_printf(seq, "%#x dma=%#x%08x %#x csum=%#x/%x/%x\n",
  2994. t->control, t->dma_hi, t->dma_lo, t->status,
  2995. t->csum_offs, t->csum_write, t->csum_start);
  2996. }
  2997. seq_printf(seq, "\nRx Ring: \n");
  2998. for (e = skge->rx_ring.to_clean; ; e = e->next) {
  2999. const struct skge_rx_desc *r = e->desc;
  3000. if (r->control & BMU_OWN)
  3001. break;
  3002. seq_printf(seq, "%#x dma=%#x%08x %#x %#x csum=%#x/%x\n",
  3003. r->control, r->dma_hi, r->dma_lo, r->status,
  3004. r->timestamp, r->csum1, r->csum1_start);
  3005. }
  3006. return 0;
  3007. }
  3008. static int skge_debug_open(struct inode *inode, struct file *file)
  3009. {
  3010. return single_open(file, skge_debug_show, inode->i_private);
  3011. }
  3012. static const struct file_operations skge_debug_fops = {
  3013. .owner = THIS_MODULE,
  3014. .open = skge_debug_open,
  3015. .read = seq_read,
  3016. .llseek = seq_lseek,
  3017. .release = single_release,
  3018. };
  3019. /*
  3020. * Use network device events to create/remove/rename
  3021. * debugfs file entries
  3022. */
  3023. static int skge_device_event(struct notifier_block *unused,
  3024. unsigned long event, void *ptr)
  3025. {
  3026. struct net_device *dev = ptr;
  3027. struct skge_port *skge;
  3028. struct dentry *d;
  3029. if (dev->netdev_ops->ndo_open != &skge_up || !skge_debug)
  3030. goto done;
  3031. skge = netdev_priv(dev);
  3032. switch (event) {
  3033. case NETDEV_CHANGENAME:
  3034. if (skge->debugfs) {
  3035. d = debugfs_rename(skge_debug, skge->debugfs,
  3036. skge_debug, dev->name);
  3037. if (d)
  3038. skge->debugfs = d;
  3039. else {
  3040. netdev_info(dev, "rename failed\n");
  3041. debugfs_remove(skge->debugfs);
  3042. }
  3043. }
  3044. break;
  3045. case NETDEV_GOING_DOWN:
  3046. if (skge->debugfs) {
  3047. debugfs_remove(skge->debugfs);
  3048. skge->debugfs = NULL;
  3049. }
  3050. break;
  3051. case NETDEV_UP:
  3052. d = debugfs_create_file(dev->name, S_IRUGO,
  3053. skge_debug, dev,
  3054. &skge_debug_fops);
  3055. if (!d || IS_ERR(d))
  3056. netdev_info(dev, "debugfs create failed\n");
  3057. else
  3058. skge->debugfs = d;
  3059. break;
  3060. }
  3061. done:
  3062. return NOTIFY_DONE;
  3063. }
  3064. static struct notifier_block skge_notifier = {
  3065. .notifier_call = skge_device_event,
  3066. };
  3067. static __init void skge_debug_init(void)
  3068. {
  3069. struct dentry *ent;
  3070. ent = debugfs_create_dir("skge", NULL);
  3071. if (!ent || IS_ERR(ent)) {
  3072. pr_info("debugfs create directory failed\n");
  3073. return;
  3074. }
  3075. skge_debug = ent;
  3076. register_netdevice_notifier(&skge_notifier);
  3077. }
  3078. static __exit void skge_debug_cleanup(void)
  3079. {
  3080. if (skge_debug) {
  3081. unregister_netdevice_notifier(&skge_notifier);
  3082. debugfs_remove(skge_debug);
  3083. skge_debug = NULL;
  3084. }
  3085. }
  3086. #else
  3087. #define skge_debug_init()
  3088. #define skge_debug_cleanup()
  3089. #endif
  3090. static const struct net_device_ops skge_netdev_ops = {
  3091. .ndo_open = skge_up,
  3092. .ndo_stop = skge_down,
  3093. .ndo_start_xmit = skge_xmit_frame,
  3094. .ndo_do_ioctl = skge_ioctl,
  3095. .ndo_get_stats = skge_get_stats,
  3096. .ndo_tx_timeout = skge_tx_timeout,
  3097. .ndo_change_mtu = skge_change_mtu,
  3098. .ndo_validate_addr = eth_validate_addr,
  3099. .ndo_set_multicast_list = skge_set_multicast,
  3100. .ndo_set_mac_address = skge_set_mac_address,
  3101. #ifdef CONFIG_NET_POLL_CONTROLLER
  3102. .ndo_poll_controller = skge_netpoll,
  3103. #endif
  3104. };
  3105. /* Initialize network device */
  3106. static struct net_device *skge_devinit(struct skge_hw *hw, int port,
  3107. int highmem)
  3108. {
  3109. struct skge_port *skge;
  3110. struct net_device *dev = alloc_etherdev(sizeof(*skge));
  3111. if (!dev) {
  3112. dev_err(&hw->pdev->dev, "etherdev alloc failed\n");
  3113. return NULL;
  3114. }
  3115. SET_NETDEV_DEV(dev, &hw->pdev->dev);
  3116. dev->netdev_ops = &skge_netdev_ops;
  3117. dev->ethtool_ops = &skge_ethtool_ops;
  3118. dev->watchdog_timeo = TX_WATCHDOG;
  3119. dev->irq = hw->pdev->irq;
  3120. if (highmem)
  3121. dev->features |= NETIF_F_HIGHDMA;
  3122. skge = netdev_priv(dev);
  3123. netif_napi_add(dev, &skge->napi, skge_poll, NAPI_WEIGHT);
  3124. skge->netdev = dev;
  3125. skge->hw = hw;
  3126. skge->msg_enable = netif_msg_init(debug, default_msg);
  3127. skge->tx_ring.count = DEFAULT_TX_RING_SIZE;
  3128. skge->rx_ring.count = DEFAULT_RX_RING_SIZE;
  3129. /* Auto speed and flow control */
  3130. skge->autoneg = AUTONEG_ENABLE;
  3131. skge->flow_control = FLOW_MODE_SYM_OR_REM;
  3132. skge->duplex = -1;
  3133. skge->speed = -1;
  3134. skge->advertising = skge_supported_modes(hw);
  3135. if (device_can_wakeup(&hw->pdev->dev)) {
  3136. skge->wol = wol_supported(hw) & WAKE_MAGIC;
  3137. device_set_wakeup_enable(&hw->pdev->dev, skge->wol);
  3138. }
  3139. hw->dev[port] = dev;
  3140. skge->port = port;
  3141. /* Only used for Genesis XMAC */
  3142. setup_timer(&skge->link_timer, xm_link_timer, (unsigned long) skge);
  3143. if (hw->chip_id != CHIP_ID_GENESIS) {
  3144. dev->features |= NETIF_F_IP_CSUM | NETIF_F_SG;
  3145. skge->rx_csum = 1;
  3146. }
  3147. /* read the mac address */
  3148. memcpy_fromio(dev->dev_addr, hw->regs + B2_MAC_1 + port*8, ETH_ALEN);
  3149. memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
  3150. /* device is off until link detection */
  3151. netif_carrier_off(dev);
  3152. netif_stop_queue(dev);
  3153. return dev;
  3154. }
  3155. static void __devinit skge_show_addr(struct net_device *dev)
  3156. {
  3157. const struct skge_port *skge = netdev_priv(dev);
  3158. netif_info(skge, probe, skge->netdev, "addr %pM\n", dev->dev_addr);
  3159. }
  3160. static int __devinit skge_probe(struct pci_dev *pdev,
  3161. const struct pci_device_id *ent)
  3162. {
  3163. struct net_device *dev, *dev1;
  3164. struct skge_hw *hw;
  3165. int err, using_dac = 0;
  3166. err = pci_enable_device(pdev);
  3167. if (err) {
  3168. dev_err(&pdev->dev, "cannot enable PCI device\n");
  3169. goto err_out;
  3170. }
  3171. err = pci_request_regions(pdev, DRV_NAME);
  3172. if (err) {
  3173. dev_err(&pdev->dev, "cannot obtain PCI resources\n");
  3174. goto err_out_disable_pdev;
  3175. }
  3176. pci_set_master(pdev);
  3177. if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) {
  3178. using_dac = 1;
  3179. err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64));
  3180. } else if (!(err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32)))) {
  3181. using_dac = 0;
  3182. err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
  3183. }
  3184. if (err) {
  3185. dev_err(&pdev->dev, "no usable DMA configuration\n");
  3186. goto err_out_free_regions;
  3187. }
  3188. #ifdef __BIG_ENDIAN
  3189. /* byte swap descriptors in hardware */
  3190. {
  3191. u32 reg;
  3192. pci_read_config_dword(pdev, PCI_DEV_REG2, &reg);
  3193. reg |= PCI_REV_DESC;
  3194. pci_write_config_dword(pdev, PCI_DEV_REG2, reg);
  3195. }
  3196. #endif
  3197. err = -ENOMEM;
  3198. /* space for skge@pci:0000:04:00.0 */
  3199. hw = kzalloc(sizeof(*hw) + strlen(DRV_NAME "@pci:")
  3200. + strlen(pci_name(pdev)) + 1, GFP_KERNEL);
  3201. if (!hw) {
  3202. dev_err(&pdev->dev, "cannot allocate hardware struct\n");
  3203. goto err_out_free_regions;
  3204. }
  3205. sprintf(hw->irq_name, DRV_NAME "@pci:%s", pci_name(pdev));
  3206. hw->pdev = pdev;
  3207. spin_lock_init(&hw->hw_lock);
  3208. spin_lock_init(&hw->phy_lock);
  3209. tasklet_init(&hw->phy_task, skge_extirq, (unsigned long) hw);
  3210. hw->regs = ioremap_nocache(pci_resource_start(pdev, 0), 0x4000);
  3211. if (!hw->regs) {
  3212. dev_err(&pdev->dev, "cannot map device registers\n");
  3213. goto err_out_free_hw;
  3214. }
  3215. err = skge_reset(hw);
  3216. if (err)
  3217. goto err_out_iounmap;
  3218. pr_info("%s addr 0x%llx irq %d chip %s rev %d\n",
  3219. DRV_VERSION,
  3220. (unsigned long long)pci_resource_start(pdev, 0), pdev->irq,
  3221. skge_board_name(hw), hw->chip_rev);
  3222. dev = skge_devinit(hw, 0, using_dac);
  3223. if (!dev)
  3224. goto err_out_led_off;
  3225. /* Some motherboards are broken and has zero in ROM. */
  3226. if (!is_valid_ether_addr(dev->dev_addr))
  3227. dev_warn(&pdev->dev, "bad (zero?) ethernet address in rom\n");
  3228. err = register_netdev(dev);
  3229. if (err) {
  3230. dev_err(&pdev->dev, "cannot register net device\n");
  3231. goto err_out_free_netdev;
  3232. }
  3233. err = request_irq(pdev->irq, skge_intr, IRQF_SHARED, hw->irq_name, hw);
  3234. if (err) {
  3235. dev_err(&pdev->dev, "%s: cannot assign irq %d\n",
  3236. dev->name, pdev->irq);
  3237. goto err_out_unregister;
  3238. }
  3239. skge_show_addr(dev);
  3240. if (hw->ports > 1) {
  3241. dev1 = skge_devinit(hw, 1, using_dac);
  3242. if (dev1 && register_netdev(dev1) == 0)
  3243. skge_show_addr(dev1);
  3244. else {
  3245. /* Failure to register second port need not be fatal */
  3246. dev_warn(&pdev->dev, "register of second port failed\n");
  3247. hw->dev[1] = NULL;
  3248. hw->ports = 1;
  3249. if (dev1)
  3250. free_netdev(dev1);
  3251. }
  3252. }
  3253. pci_set_drvdata(pdev, hw);
  3254. return 0;
  3255. err_out_unregister:
  3256. unregister_netdev(dev);
  3257. err_out_free_netdev:
  3258. free_netdev(dev);
  3259. err_out_led_off:
  3260. skge_write16(hw, B0_LED, LED_STAT_OFF);
  3261. err_out_iounmap:
  3262. iounmap(hw->regs);
  3263. err_out_free_hw:
  3264. kfree(hw);
  3265. err_out_free_regions:
  3266. pci_release_regions(pdev);
  3267. err_out_disable_pdev:
  3268. pci_disable_device(pdev);
  3269. pci_set_drvdata(pdev, NULL);
  3270. err_out:
  3271. return err;
  3272. }
  3273. static void __devexit skge_remove(struct pci_dev *pdev)
  3274. {
  3275. struct skge_hw *hw = pci_get_drvdata(pdev);
  3276. struct net_device *dev0, *dev1;
  3277. if (!hw)
  3278. return;
  3279. flush_scheduled_work();
  3280. dev1 = hw->dev[1];
  3281. if (dev1)
  3282. unregister_netdev(dev1);
  3283. dev0 = hw->dev[0];
  3284. unregister_netdev(dev0);
  3285. tasklet_disable(&hw->phy_task);
  3286. spin_lock_irq(&hw->hw_lock);
  3287. hw->intr_mask = 0;
  3288. skge_write32(hw, B0_IMSK, 0);
  3289. skge_read32(hw, B0_IMSK);
  3290. spin_unlock_irq(&hw->hw_lock);
  3291. skge_write16(hw, B0_LED, LED_STAT_OFF);
  3292. skge_write8(hw, B0_CTST, CS_RST_SET);
  3293. free_irq(pdev->irq, hw);
  3294. pci_release_regions(pdev);
  3295. pci_disable_device(pdev);
  3296. if (dev1)
  3297. free_netdev(dev1);
  3298. free_netdev(dev0);
  3299. iounmap(hw->regs);
  3300. kfree(hw);
  3301. pci_set_drvdata(pdev, NULL);
  3302. }
  3303. #ifdef CONFIG_PM
  3304. static int skge_suspend(struct pci_dev *pdev, pm_message_t state)
  3305. {
  3306. struct skge_hw *hw = pci_get_drvdata(pdev);
  3307. int i, err, wol = 0;
  3308. if (!hw)
  3309. return 0;
  3310. err = pci_save_state(pdev);
  3311. if (err)
  3312. return err;
  3313. for (i = 0; i < hw->ports; i++) {
  3314. struct net_device *dev = hw->dev[i];
  3315. struct skge_port *skge = netdev_priv(dev);
  3316. if (netif_running(dev))
  3317. skge_down(dev);
  3318. if (skge->wol)
  3319. skge_wol_init(skge);
  3320. wol |= skge->wol;
  3321. }
  3322. skge_write32(hw, B0_IMSK, 0);
  3323. pci_prepare_to_sleep(pdev);
  3324. return 0;
  3325. }
  3326. static int skge_resume(struct pci_dev *pdev)
  3327. {
  3328. struct skge_hw *hw = pci_get_drvdata(pdev);
  3329. int i, err;
  3330. if (!hw)
  3331. return 0;
  3332. err = pci_back_from_sleep(pdev);
  3333. if (err)
  3334. goto out;
  3335. err = pci_restore_state(pdev);
  3336. if (err)
  3337. goto out;
  3338. err = skge_reset(hw);
  3339. if (err)
  3340. goto out;
  3341. for (i = 0; i < hw->ports; i++) {
  3342. struct net_device *dev = hw->dev[i];
  3343. if (netif_running(dev)) {
  3344. err = skge_up(dev);
  3345. if (err) {
  3346. netdev_err(dev, "could not up: %d\n", err);
  3347. dev_close(dev);
  3348. goto out;
  3349. }
  3350. }
  3351. }
  3352. out:
  3353. return err;
  3354. }
  3355. #endif
  3356. static void skge_shutdown(struct pci_dev *pdev)
  3357. {
  3358. struct skge_hw *hw = pci_get_drvdata(pdev);
  3359. int i, wol = 0;
  3360. if (!hw)
  3361. return;
  3362. for (i = 0; i < hw->ports; i++) {
  3363. struct net_device *dev = hw->dev[i];
  3364. struct skge_port *skge = netdev_priv(dev);
  3365. if (skge->wol)
  3366. skge_wol_init(skge);
  3367. wol |= skge->wol;
  3368. }
  3369. if (pci_enable_wake(pdev, PCI_D3cold, wol))
  3370. pci_enable_wake(pdev, PCI_D3hot, wol);
  3371. pci_disable_device(pdev);
  3372. pci_set_power_state(pdev, PCI_D3hot);
  3373. }
  3374. static struct pci_driver skge_driver = {
  3375. .name = DRV_NAME,
  3376. .id_table = skge_id_table,
  3377. .probe = skge_probe,
  3378. .remove = __devexit_p(skge_remove),
  3379. #ifdef CONFIG_PM
  3380. .suspend = skge_suspend,
  3381. .resume = skge_resume,
  3382. #endif
  3383. .shutdown = skge_shutdown,
  3384. };
  3385. static int __init skge_init_module(void)
  3386. {
  3387. skge_debug_init();
  3388. return pci_register_driver(&skge_driver);
  3389. }
  3390. static void __exit skge_cleanup_module(void)
  3391. {
  3392. pci_unregister_driver(&skge_driver);
  3393. skge_debug_cleanup();
  3394. }
  3395. module_init(skge_init_module);
  3396. module_exit(skge_cleanup_module);