i915_gem_execbuffer.c 34 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311
  1. /*
  2. * Copyright © 2008,2010 Intel Corporation
  3. *
  4. * Permission is hereby granted, free of charge, to any person obtaining a
  5. * copy of this software and associated documentation files (the "Software"),
  6. * to deal in the Software without restriction, including without limitation
  7. * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8. * and/or sell copies of the Software, and to permit persons to whom the
  9. * Software is furnished to do so, subject to the following conditions:
  10. *
  11. * The above copyright notice and this permission notice (including the next
  12. * paragraph) shall be included in all copies or substantial portions of the
  13. * Software.
  14. *
  15. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  18. * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  20. * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
  21. * IN THE SOFTWARE.
  22. *
  23. * Authors:
  24. * Eric Anholt <eric@anholt.net>
  25. * Chris Wilson <chris@chris-wilson.co.uk>
  26. *
  27. */
  28. #include "drmP.h"
  29. #include "drm.h"
  30. #include "i915_drm.h"
  31. #include "i915_drv.h"
  32. #include "i915_trace.h"
  33. #include "intel_drv.h"
  34. struct change_domains {
  35. uint32_t invalidate_domains;
  36. uint32_t flush_domains;
  37. uint32_t flush_rings;
  38. };
  39. /*
  40. * Set the next domain for the specified object. This
  41. * may not actually perform the necessary flushing/invaliding though,
  42. * as that may want to be batched with other set_domain operations
  43. *
  44. * This is (we hope) the only really tricky part of gem. The goal
  45. * is fairly simple -- track which caches hold bits of the object
  46. * and make sure they remain coherent. A few concrete examples may
  47. * help to explain how it works. For shorthand, we use the notation
  48. * (read_domains, write_domain), e.g. (CPU, CPU) to indicate the
  49. * a pair of read and write domain masks.
  50. *
  51. * Case 1: the batch buffer
  52. *
  53. * 1. Allocated
  54. * 2. Written by CPU
  55. * 3. Mapped to GTT
  56. * 4. Read by GPU
  57. * 5. Unmapped from GTT
  58. * 6. Freed
  59. *
  60. * Let's take these a step at a time
  61. *
  62. * 1. Allocated
  63. * Pages allocated from the kernel may still have
  64. * cache contents, so we set them to (CPU, CPU) always.
  65. * 2. Written by CPU (using pwrite)
  66. * The pwrite function calls set_domain (CPU, CPU) and
  67. * this function does nothing (as nothing changes)
  68. * 3. Mapped by GTT
  69. * This function asserts that the object is not
  70. * currently in any GPU-based read or write domains
  71. * 4. Read by GPU
  72. * i915_gem_execbuffer calls set_domain (COMMAND, 0).
  73. * As write_domain is zero, this function adds in the
  74. * current read domains (CPU+COMMAND, 0).
  75. * flush_domains is set to CPU.
  76. * invalidate_domains is set to COMMAND
  77. * clflush is run to get data out of the CPU caches
  78. * then i915_dev_set_domain calls i915_gem_flush to
  79. * emit an MI_FLUSH and drm_agp_chipset_flush
  80. * 5. Unmapped from GTT
  81. * i915_gem_object_unbind calls set_domain (CPU, CPU)
  82. * flush_domains and invalidate_domains end up both zero
  83. * so no flushing/invalidating happens
  84. * 6. Freed
  85. * yay, done
  86. *
  87. * Case 2: The shared render buffer
  88. *
  89. * 1. Allocated
  90. * 2. Mapped to GTT
  91. * 3. Read/written by GPU
  92. * 4. set_domain to (CPU,CPU)
  93. * 5. Read/written by CPU
  94. * 6. Read/written by GPU
  95. *
  96. * 1. Allocated
  97. * Same as last example, (CPU, CPU)
  98. * 2. Mapped to GTT
  99. * Nothing changes (assertions find that it is not in the GPU)
  100. * 3. Read/written by GPU
  101. * execbuffer calls set_domain (RENDER, RENDER)
  102. * flush_domains gets CPU
  103. * invalidate_domains gets GPU
  104. * clflush (obj)
  105. * MI_FLUSH and drm_agp_chipset_flush
  106. * 4. set_domain (CPU, CPU)
  107. * flush_domains gets GPU
  108. * invalidate_domains gets CPU
  109. * wait_rendering (obj) to make sure all drawing is complete.
  110. * This will include an MI_FLUSH to get the data from GPU
  111. * to memory
  112. * clflush (obj) to invalidate the CPU cache
  113. * Another MI_FLUSH in i915_gem_flush (eliminate this somehow?)
  114. * 5. Read/written by CPU
  115. * cache lines are loaded and dirtied
  116. * 6. Read written by GPU
  117. * Same as last GPU access
  118. *
  119. * Case 3: The constant buffer
  120. *
  121. * 1. Allocated
  122. * 2. Written by CPU
  123. * 3. Read by GPU
  124. * 4. Updated (written) by CPU again
  125. * 5. Read by GPU
  126. *
  127. * 1. Allocated
  128. * (CPU, CPU)
  129. * 2. Written by CPU
  130. * (CPU, CPU)
  131. * 3. Read by GPU
  132. * (CPU+RENDER, 0)
  133. * flush_domains = CPU
  134. * invalidate_domains = RENDER
  135. * clflush (obj)
  136. * MI_FLUSH
  137. * drm_agp_chipset_flush
  138. * 4. Updated (written) by CPU again
  139. * (CPU, CPU)
  140. * flush_domains = 0 (no previous write domain)
  141. * invalidate_domains = 0 (no new read domains)
  142. * 5. Read by GPU
  143. * (CPU+RENDER, 0)
  144. * flush_domains = CPU
  145. * invalidate_domains = RENDER
  146. * clflush (obj)
  147. * MI_FLUSH
  148. * drm_agp_chipset_flush
  149. */
  150. static void
  151. i915_gem_object_set_to_gpu_domain(struct drm_i915_gem_object *obj,
  152. struct intel_ring_buffer *ring,
  153. struct change_domains *cd)
  154. {
  155. uint32_t invalidate_domains = 0, flush_domains = 0;
  156. /*
  157. * If the object isn't moving to a new write domain,
  158. * let the object stay in multiple read domains
  159. */
  160. if (obj->base.pending_write_domain == 0)
  161. obj->base.pending_read_domains |= obj->base.read_domains;
  162. /*
  163. * Flush the current write domain if
  164. * the new read domains don't match. Invalidate
  165. * any read domains which differ from the old
  166. * write domain
  167. */
  168. if (obj->base.write_domain &&
  169. (((obj->base.write_domain != obj->base.pending_read_domains ||
  170. obj->ring != ring)) ||
  171. (obj->fenced_gpu_access && !obj->pending_fenced_gpu_access))) {
  172. flush_domains |= obj->base.write_domain;
  173. invalidate_domains |=
  174. obj->base.pending_read_domains & ~obj->base.write_domain;
  175. }
  176. /*
  177. * Invalidate any read caches which may have
  178. * stale data. That is, any new read domains.
  179. */
  180. invalidate_domains |= obj->base.pending_read_domains & ~obj->base.read_domains;
  181. if ((flush_domains | invalidate_domains) & I915_GEM_DOMAIN_CPU)
  182. i915_gem_clflush_object(obj);
  183. /* blow away mappings if mapped through GTT */
  184. if ((flush_domains | invalidate_domains) & I915_GEM_DOMAIN_GTT)
  185. i915_gem_release_mmap(obj);
  186. /* The actual obj->write_domain will be updated with
  187. * pending_write_domain after we emit the accumulated flush for all
  188. * of our domain changes in execbuffers (which clears objects'
  189. * write_domains). So if we have a current write domain that we
  190. * aren't changing, set pending_write_domain to that.
  191. */
  192. if (flush_domains == 0 && obj->base.pending_write_domain == 0)
  193. obj->base.pending_write_domain = obj->base.write_domain;
  194. cd->invalidate_domains |= invalidate_domains;
  195. cd->flush_domains |= flush_domains;
  196. if (flush_domains & I915_GEM_GPU_DOMAINS)
  197. cd->flush_rings |= obj->ring->id;
  198. if (invalidate_domains & I915_GEM_GPU_DOMAINS)
  199. cd->flush_rings |= ring->id;
  200. }
  201. struct eb_objects {
  202. int and;
  203. struct hlist_head buckets[0];
  204. };
  205. static struct eb_objects *
  206. eb_create(int size)
  207. {
  208. struct eb_objects *eb;
  209. int count = PAGE_SIZE / sizeof(struct hlist_head) / 2;
  210. while (count > size)
  211. count >>= 1;
  212. eb = kzalloc(count*sizeof(struct hlist_head) +
  213. sizeof(struct eb_objects),
  214. GFP_KERNEL);
  215. if (eb == NULL)
  216. return eb;
  217. eb->and = count - 1;
  218. return eb;
  219. }
  220. static void
  221. eb_reset(struct eb_objects *eb)
  222. {
  223. memset(eb->buckets, 0, (eb->and+1)*sizeof(struct hlist_head));
  224. }
  225. static void
  226. eb_add_object(struct eb_objects *eb, struct drm_i915_gem_object *obj)
  227. {
  228. hlist_add_head(&obj->exec_node,
  229. &eb->buckets[obj->exec_handle & eb->and]);
  230. }
  231. static struct drm_i915_gem_object *
  232. eb_get_object(struct eb_objects *eb, unsigned long handle)
  233. {
  234. struct hlist_head *head;
  235. struct hlist_node *node;
  236. struct drm_i915_gem_object *obj;
  237. head = &eb->buckets[handle & eb->and];
  238. hlist_for_each(node, head) {
  239. obj = hlist_entry(node, struct drm_i915_gem_object, exec_node);
  240. if (obj->exec_handle == handle)
  241. return obj;
  242. }
  243. return NULL;
  244. }
  245. static void
  246. eb_destroy(struct eb_objects *eb)
  247. {
  248. kfree(eb);
  249. }
  250. static int
  251. i915_gem_execbuffer_relocate_entry(struct drm_i915_gem_object *obj,
  252. struct eb_objects *eb,
  253. struct drm_i915_gem_exec_object2 *entry,
  254. struct drm_i915_gem_relocation_entry *reloc)
  255. {
  256. struct drm_device *dev = obj->base.dev;
  257. struct drm_gem_object *target_obj;
  258. uint32_t target_offset;
  259. int ret = -EINVAL;
  260. /* we've already hold a reference to all valid objects */
  261. target_obj = &eb_get_object(eb, reloc->target_handle)->base;
  262. if (unlikely(target_obj == NULL))
  263. return -ENOENT;
  264. target_offset = to_intel_bo(target_obj)->gtt_offset;
  265. #if WATCH_RELOC
  266. DRM_INFO("%s: obj %p offset %08x target %d "
  267. "read %08x write %08x gtt %08x "
  268. "presumed %08x delta %08x\n",
  269. __func__,
  270. obj,
  271. (int) reloc->offset,
  272. (int) reloc->target_handle,
  273. (int) reloc->read_domains,
  274. (int) reloc->write_domain,
  275. (int) target_offset,
  276. (int) reloc->presumed_offset,
  277. reloc->delta);
  278. #endif
  279. /* The target buffer should have appeared before us in the
  280. * exec_object list, so it should have a GTT space bound by now.
  281. */
  282. if (target_offset == 0) {
  283. DRM_ERROR("No GTT space found for object %d\n",
  284. reloc->target_handle);
  285. return ret;
  286. }
  287. /* Validate that the target is in a valid r/w GPU domain */
  288. if (reloc->write_domain & (reloc->write_domain - 1)) {
  289. DRM_ERROR("reloc with multiple write domains: "
  290. "obj %p target %d offset %d "
  291. "read %08x write %08x",
  292. obj, reloc->target_handle,
  293. (int) reloc->offset,
  294. reloc->read_domains,
  295. reloc->write_domain);
  296. return ret;
  297. }
  298. if (reloc->write_domain & I915_GEM_DOMAIN_CPU ||
  299. reloc->read_domains & I915_GEM_DOMAIN_CPU) {
  300. DRM_ERROR("reloc with read/write CPU domains: "
  301. "obj %p target %d offset %d "
  302. "read %08x write %08x",
  303. obj, reloc->target_handle,
  304. (int) reloc->offset,
  305. reloc->read_domains,
  306. reloc->write_domain);
  307. return ret;
  308. }
  309. if (reloc->write_domain && target_obj->pending_write_domain &&
  310. reloc->write_domain != target_obj->pending_write_domain) {
  311. DRM_ERROR("Write domain conflict: "
  312. "obj %p target %d offset %d "
  313. "new %08x old %08x\n",
  314. obj, reloc->target_handle,
  315. (int) reloc->offset,
  316. reloc->write_domain,
  317. target_obj->pending_write_domain);
  318. return ret;
  319. }
  320. target_obj->pending_read_domains |= reloc->read_domains;
  321. target_obj->pending_write_domain |= reloc->write_domain;
  322. /* If the relocation already has the right value in it, no
  323. * more work needs to be done.
  324. */
  325. if (target_offset == reloc->presumed_offset)
  326. return 0;
  327. /* Check that the relocation address is valid... */
  328. if (reloc->offset > obj->base.size - 4) {
  329. DRM_ERROR("Relocation beyond object bounds: "
  330. "obj %p target %d offset %d size %d.\n",
  331. obj, reloc->target_handle,
  332. (int) reloc->offset,
  333. (int) obj->base.size);
  334. return ret;
  335. }
  336. if (reloc->offset & 3) {
  337. DRM_ERROR("Relocation not 4-byte aligned: "
  338. "obj %p target %d offset %d.\n",
  339. obj, reloc->target_handle,
  340. (int) reloc->offset);
  341. return ret;
  342. }
  343. /* and points to somewhere within the target object. */
  344. if (reloc->delta >= target_obj->size) {
  345. DRM_ERROR("Relocation beyond target object bounds: "
  346. "obj %p target %d delta %d size %d.\n",
  347. obj, reloc->target_handle,
  348. (int) reloc->delta,
  349. (int) target_obj->size);
  350. return ret;
  351. }
  352. reloc->delta += target_offset;
  353. if (obj->base.write_domain == I915_GEM_DOMAIN_CPU) {
  354. uint32_t page_offset = reloc->offset & ~PAGE_MASK;
  355. char *vaddr;
  356. vaddr = kmap_atomic(obj->pages[reloc->offset >> PAGE_SHIFT]);
  357. *(uint32_t *)(vaddr + page_offset) = reloc->delta;
  358. kunmap_atomic(vaddr);
  359. } else {
  360. struct drm_i915_private *dev_priv = dev->dev_private;
  361. uint32_t __iomem *reloc_entry;
  362. void __iomem *reloc_page;
  363. ret = i915_gem_object_set_to_gtt_domain(obj, 1);
  364. if (ret)
  365. return ret;
  366. /* Map the page containing the relocation we're going to perform. */
  367. reloc->offset += obj->gtt_offset;
  368. reloc_page = io_mapping_map_atomic_wc(dev_priv->mm.gtt_mapping,
  369. reloc->offset & PAGE_MASK);
  370. reloc_entry = (uint32_t __iomem *)
  371. (reloc_page + (reloc->offset & ~PAGE_MASK));
  372. iowrite32(reloc->delta, reloc_entry);
  373. io_mapping_unmap_atomic(reloc_page);
  374. }
  375. /* and update the user's relocation entry */
  376. reloc->presumed_offset = target_offset;
  377. return 0;
  378. }
  379. static int
  380. i915_gem_execbuffer_relocate_object(struct drm_i915_gem_object *obj,
  381. struct eb_objects *eb,
  382. struct drm_i915_gem_exec_object2 *entry)
  383. {
  384. struct drm_i915_gem_relocation_entry __user *user_relocs;
  385. int i, ret;
  386. user_relocs = (void __user *)(uintptr_t)entry->relocs_ptr;
  387. for (i = 0; i < entry->relocation_count; i++) {
  388. struct drm_i915_gem_relocation_entry reloc;
  389. if (__copy_from_user_inatomic(&reloc,
  390. user_relocs+i,
  391. sizeof(reloc)))
  392. return -EFAULT;
  393. ret = i915_gem_execbuffer_relocate_entry(obj, eb, entry, &reloc);
  394. if (ret)
  395. return ret;
  396. if (__copy_to_user_inatomic(&user_relocs[i].presumed_offset,
  397. &reloc.presumed_offset,
  398. sizeof(reloc.presumed_offset)))
  399. return -EFAULT;
  400. }
  401. return 0;
  402. }
  403. static int
  404. i915_gem_execbuffer_relocate_object_slow(struct drm_i915_gem_object *obj,
  405. struct eb_objects *eb,
  406. struct drm_i915_gem_exec_object2 *entry,
  407. struct drm_i915_gem_relocation_entry *relocs)
  408. {
  409. int i, ret;
  410. for (i = 0; i < entry->relocation_count; i++) {
  411. ret = i915_gem_execbuffer_relocate_entry(obj, eb, entry, &relocs[i]);
  412. if (ret)
  413. return ret;
  414. }
  415. return 0;
  416. }
  417. static int
  418. i915_gem_execbuffer_relocate(struct drm_device *dev,
  419. struct eb_objects *eb,
  420. struct list_head *objects,
  421. struct drm_i915_gem_exec_object2 *exec)
  422. {
  423. struct drm_i915_gem_object *obj;
  424. int ret;
  425. list_for_each_entry(obj, objects, exec_list) {
  426. obj->base.pending_read_domains = 0;
  427. obj->base.pending_write_domain = 0;
  428. ret = i915_gem_execbuffer_relocate_object(obj, eb, exec++);
  429. if (ret)
  430. return ret;
  431. }
  432. return 0;
  433. }
  434. static int
  435. i915_gem_execbuffer_reserve(struct intel_ring_buffer *ring,
  436. struct drm_file *file,
  437. struct list_head *objects,
  438. struct drm_i915_gem_exec_object2 *exec)
  439. {
  440. struct drm_i915_gem_object *obj;
  441. struct drm_i915_gem_exec_object2 *entry;
  442. int ret, retry;
  443. bool has_fenced_gpu_access = INTEL_INFO(ring->dev)->gen < 4;
  444. /* Attempt to pin all of the buffers into the GTT.
  445. * This is done in 3 phases:
  446. *
  447. * 1a. Unbind all objects that do not match the GTT constraints for
  448. * the execbuffer (fenceable, mappable, alignment etc).
  449. * 1b. Increment pin count for already bound objects.
  450. * 2. Bind new objects.
  451. * 3. Decrement pin count.
  452. *
  453. * This avoid unnecessary unbinding of later objects in order to makr
  454. * room for the earlier objects *unless* we need to defragment.
  455. */
  456. retry = 0;
  457. do {
  458. ret = 0;
  459. /* Unbind any ill-fitting objects or pin. */
  460. entry = exec;
  461. list_for_each_entry(obj, objects, exec_list) {
  462. bool need_fence, need_mappable;
  463. if (!obj->gtt_space) {
  464. entry++;
  465. continue;
  466. }
  467. need_fence =
  468. has_fenced_gpu_access &&
  469. entry->flags & EXEC_OBJECT_NEEDS_FENCE &&
  470. obj->tiling_mode != I915_TILING_NONE;
  471. need_mappable =
  472. entry->relocation_count ? true : need_fence;
  473. if ((entry->alignment && obj->gtt_offset & (entry->alignment - 1)) ||
  474. (need_mappable && !obj->map_and_fenceable))
  475. ret = i915_gem_object_unbind(obj);
  476. else
  477. ret = i915_gem_object_pin(obj,
  478. entry->alignment,
  479. need_mappable);
  480. if (ret)
  481. goto err;
  482. entry++;
  483. }
  484. /* Bind fresh objects */
  485. entry = exec;
  486. list_for_each_entry(obj, objects, exec_list) {
  487. bool need_fence;
  488. need_fence =
  489. has_fenced_gpu_access &&
  490. entry->flags & EXEC_OBJECT_NEEDS_FENCE &&
  491. obj->tiling_mode != I915_TILING_NONE;
  492. if (!obj->gtt_space) {
  493. bool need_mappable =
  494. entry->relocation_count ? true : need_fence;
  495. ret = i915_gem_object_pin(obj,
  496. entry->alignment,
  497. need_mappable);
  498. if (ret)
  499. break;
  500. }
  501. if (has_fenced_gpu_access) {
  502. if (need_fence) {
  503. ret = i915_gem_object_get_fence(obj, ring, 1);
  504. if (ret)
  505. break;
  506. } else if (entry->flags & EXEC_OBJECT_NEEDS_FENCE &&
  507. obj->tiling_mode == I915_TILING_NONE) {
  508. /* XXX pipelined! */
  509. ret = i915_gem_object_put_fence(obj);
  510. if (ret)
  511. break;
  512. }
  513. obj->pending_fenced_gpu_access = need_fence;
  514. }
  515. entry->offset = obj->gtt_offset;
  516. entry++;
  517. }
  518. /* Decrement pin count for bound objects */
  519. list_for_each_entry(obj, objects, exec_list) {
  520. if (obj->gtt_space)
  521. i915_gem_object_unpin(obj);
  522. }
  523. if (ret != -ENOSPC || retry > 1)
  524. return ret;
  525. /* First attempt, just clear anything that is purgeable.
  526. * Second attempt, clear the entire GTT.
  527. */
  528. ret = i915_gem_evict_everything(ring->dev, retry == 0);
  529. if (ret)
  530. return ret;
  531. retry++;
  532. } while (1);
  533. err:
  534. obj = list_entry(obj->exec_list.prev,
  535. struct drm_i915_gem_object,
  536. exec_list);
  537. while (objects != &obj->exec_list) {
  538. if (obj->gtt_space)
  539. i915_gem_object_unpin(obj);
  540. obj = list_entry(obj->exec_list.prev,
  541. struct drm_i915_gem_object,
  542. exec_list);
  543. }
  544. return ret;
  545. }
  546. static int
  547. i915_gem_execbuffer_relocate_slow(struct drm_device *dev,
  548. struct drm_file *file,
  549. struct intel_ring_buffer *ring,
  550. struct list_head *objects,
  551. struct eb_objects *eb,
  552. struct drm_i915_gem_exec_object2 *exec,
  553. int count)
  554. {
  555. struct drm_i915_gem_relocation_entry *reloc;
  556. struct drm_i915_gem_object *obj;
  557. int i, total, ret;
  558. /* We may process another execbuffer during the unlock... */
  559. while (list_empty(objects)) {
  560. obj = list_first_entry(objects,
  561. struct drm_i915_gem_object,
  562. exec_list);
  563. list_del_init(&obj->exec_list);
  564. drm_gem_object_unreference(&obj->base);
  565. }
  566. mutex_unlock(&dev->struct_mutex);
  567. total = 0;
  568. for (i = 0; i < count; i++)
  569. total += exec[i].relocation_count;
  570. reloc = drm_malloc_ab(total, sizeof(*reloc));
  571. if (reloc == NULL) {
  572. mutex_lock(&dev->struct_mutex);
  573. return -ENOMEM;
  574. }
  575. total = 0;
  576. for (i = 0; i < count; i++) {
  577. struct drm_i915_gem_relocation_entry __user *user_relocs;
  578. user_relocs = (void __user *)(uintptr_t)exec[i].relocs_ptr;
  579. if (copy_from_user(reloc+total, user_relocs,
  580. exec[i].relocation_count * sizeof(*reloc))) {
  581. ret = -EFAULT;
  582. mutex_lock(&dev->struct_mutex);
  583. goto err;
  584. }
  585. total += exec[i].relocation_count;
  586. }
  587. ret = i915_mutex_lock_interruptible(dev);
  588. if (ret) {
  589. mutex_lock(&dev->struct_mutex);
  590. goto err;
  591. }
  592. /* reacquire the objects */
  593. INIT_LIST_HEAD(objects);
  594. eb_reset(eb);
  595. for (i = 0; i < count; i++) {
  596. struct drm_i915_gem_object *obj;
  597. obj = to_intel_bo(drm_gem_object_lookup(dev, file,
  598. exec[i].handle));
  599. if (obj == NULL) {
  600. DRM_ERROR("Invalid object handle %d at index %d\n",
  601. exec[i].handle, i);
  602. ret = -ENOENT;
  603. goto err;
  604. }
  605. list_add_tail(&obj->exec_list, objects);
  606. obj->exec_handle = exec[i].handle;
  607. eb_add_object(eb, obj);
  608. }
  609. ret = i915_gem_execbuffer_reserve(ring, file, objects, exec);
  610. if (ret)
  611. goto err;
  612. total = 0;
  613. list_for_each_entry(obj, objects, exec_list) {
  614. obj->base.pending_read_domains = 0;
  615. obj->base.pending_write_domain = 0;
  616. ret = i915_gem_execbuffer_relocate_object_slow(obj, eb,
  617. exec,
  618. reloc + total);
  619. if (ret)
  620. goto err;
  621. total += exec->relocation_count;
  622. exec++;
  623. }
  624. /* Leave the user relocations as are, this is the painfully slow path,
  625. * and we want to avoid the complication of dropping the lock whilst
  626. * having buffers reserved in the aperture and so causing spurious
  627. * ENOSPC for random operations.
  628. */
  629. err:
  630. drm_free_large(reloc);
  631. return ret;
  632. }
  633. static void
  634. i915_gem_execbuffer_flush(struct drm_device *dev,
  635. uint32_t invalidate_domains,
  636. uint32_t flush_domains,
  637. uint32_t flush_rings)
  638. {
  639. drm_i915_private_t *dev_priv = dev->dev_private;
  640. int i;
  641. if (flush_domains & I915_GEM_DOMAIN_CPU)
  642. intel_gtt_chipset_flush();
  643. if ((flush_domains | invalidate_domains) & I915_GEM_GPU_DOMAINS) {
  644. for (i = 0; i < I915_NUM_RINGS; i++)
  645. if (flush_rings & (1 << i))
  646. i915_gem_flush_ring(dev, &dev_priv->ring[i],
  647. invalidate_domains,
  648. flush_domains);
  649. }
  650. }
  651. static int
  652. i915_gem_execbuffer_sync_rings(struct drm_i915_gem_object *obj,
  653. struct intel_ring_buffer *to)
  654. {
  655. struct intel_ring_buffer *from = obj->ring;
  656. u32 seqno;
  657. int ret, idx;
  658. if (from == NULL || to == from)
  659. return 0;
  660. if (INTEL_INFO(obj->base.dev)->gen < 6)
  661. return i915_gem_object_wait_rendering(obj, true);
  662. idx = intel_ring_sync_index(from, to);
  663. seqno = obj->last_rendering_seqno;
  664. if (seqno <= from->sync_seqno[idx])
  665. return 0;
  666. if (seqno == from->outstanding_lazy_request) {
  667. struct drm_i915_gem_request *request;
  668. request = kzalloc(sizeof(*request), GFP_KERNEL);
  669. if (request == NULL)
  670. return -ENOMEM;
  671. ret = i915_add_request(obj->base.dev, NULL, request, from);
  672. if (ret) {
  673. kfree(request);
  674. return ret;
  675. }
  676. seqno = request->seqno;
  677. }
  678. from->sync_seqno[idx] = seqno;
  679. return intel_ring_sync(to, from, seqno - 1);
  680. }
  681. static int
  682. i915_gem_execbuffer_move_to_gpu(struct intel_ring_buffer *ring,
  683. struct list_head *objects)
  684. {
  685. struct drm_i915_gem_object *obj;
  686. struct change_domains cd;
  687. int ret;
  688. cd.invalidate_domains = 0;
  689. cd.flush_domains = 0;
  690. cd.flush_rings = 0;
  691. list_for_each_entry(obj, objects, exec_list)
  692. i915_gem_object_set_to_gpu_domain(obj, ring, &cd);
  693. if (cd.invalidate_domains | cd.flush_domains) {
  694. #if WATCH_EXEC
  695. DRM_INFO("%s: invalidate_domains %08x flush_domains %08x\n",
  696. __func__,
  697. cd.invalidate_domains,
  698. cd.flush_domains);
  699. #endif
  700. i915_gem_execbuffer_flush(ring->dev,
  701. cd.invalidate_domains,
  702. cd.flush_domains,
  703. cd.flush_rings);
  704. }
  705. list_for_each_entry(obj, objects, exec_list) {
  706. ret = i915_gem_execbuffer_sync_rings(obj, ring);
  707. if (ret)
  708. return ret;
  709. }
  710. return 0;
  711. }
  712. static bool
  713. i915_gem_check_execbuffer(struct drm_i915_gem_execbuffer2 *exec)
  714. {
  715. return ((exec->batch_start_offset | exec->batch_len) & 0x7) == 0;
  716. }
  717. static int
  718. validate_exec_list(struct drm_i915_gem_exec_object2 *exec,
  719. int count)
  720. {
  721. int i;
  722. for (i = 0; i < count; i++) {
  723. char __user *ptr = (char __user *)(uintptr_t)exec[i].relocs_ptr;
  724. int length; /* limited by fault_in_pages_readable() */
  725. /* First check for malicious input causing overflow */
  726. if (exec[i].relocation_count >
  727. INT_MAX / sizeof(struct drm_i915_gem_relocation_entry))
  728. return -EINVAL;
  729. length = exec[i].relocation_count *
  730. sizeof(struct drm_i915_gem_relocation_entry);
  731. if (!access_ok(VERIFY_READ, ptr, length))
  732. return -EFAULT;
  733. /* we may also need to update the presumed offsets */
  734. if (!access_ok(VERIFY_WRITE, ptr, length))
  735. return -EFAULT;
  736. if (fault_in_pages_readable(ptr, length))
  737. return -EFAULT;
  738. }
  739. return 0;
  740. }
  741. static int
  742. i915_gem_execbuffer_wait_for_flips(struct intel_ring_buffer *ring,
  743. struct list_head *objects)
  744. {
  745. struct drm_i915_gem_object *obj;
  746. int flips;
  747. /* Check for any pending flips. As we only maintain a flip queue depth
  748. * of 1, we can simply insert a WAIT for the next display flip prior
  749. * to executing the batch and avoid stalling the CPU.
  750. */
  751. flips = 0;
  752. list_for_each_entry(obj, objects, exec_list) {
  753. if (obj->base.write_domain)
  754. flips |= atomic_read(&obj->pending_flip);
  755. }
  756. if (flips) {
  757. int plane, flip_mask, ret;
  758. for (plane = 0; flips >> plane; plane++) {
  759. if (((flips >> plane) & 1) == 0)
  760. continue;
  761. if (plane)
  762. flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
  763. else
  764. flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
  765. ret = intel_ring_begin(ring, 2);
  766. if (ret)
  767. return ret;
  768. intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
  769. intel_ring_emit(ring, MI_NOOP);
  770. intel_ring_advance(ring);
  771. }
  772. }
  773. return 0;
  774. }
  775. static void
  776. i915_gem_execbuffer_move_to_active(struct list_head *objects,
  777. struct intel_ring_buffer *ring,
  778. u32 seqno)
  779. {
  780. struct drm_i915_gem_object *obj;
  781. list_for_each_entry(obj, objects, exec_list) {
  782. obj->base.read_domains = obj->base.pending_read_domains;
  783. obj->base.write_domain = obj->base.pending_write_domain;
  784. obj->fenced_gpu_access = obj->pending_fenced_gpu_access;
  785. i915_gem_object_move_to_active(obj, ring, seqno);
  786. if (obj->base.write_domain) {
  787. obj->dirty = 1;
  788. obj->pending_gpu_write = true;
  789. list_move_tail(&obj->gpu_write_list,
  790. &ring->gpu_write_list);
  791. intel_mark_busy(ring->dev, obj);
  792. }
  793. trace_i915_gem_object_change_domain(obj,
  794. obj->base.read_domains,
  795. obj->base.write_domain);
  796. }
  797. }
  798. static void
  799. i915_gem_execbuffer_retire_commands(struct drm_device *dev,
  800. struct drm_file *file,
  801. struct intel_ring_buffer *ring)
  802. {
  803. struct drm_i915_gem_request *request;
  804. u32 flush_domains;
  805. /*
  806. * Ensure that the commands in the batch buffer are
  807. * finished before the interrupt fires.
  808. *
  809. * The sampler always gets flushed on i965 (sigh).
  810. */
  811. flush_domains = 0;
  812. if (INTEL_INFO(dev)->gen >= 4)
  813. flush_domains |= I915_GEM_DOMAIN_SAMPLER;
  814. ring->flush(ring, I915_GEM_DOMAIN_COMMAND, flush_domains);
  815. /* Add a breadcrumb for the completion of the batch buffer */
  816. request = kzalloc(sizeof(*request), GFP_KERNEL);
  817. if (request == NULL || i915_add_request(dev, file, request, ring)) {
  818. i915_gem_next_request_seqno(dev, ring);
  819. kfree(request);
  820. }
  821. }
  822. static int
  823. i915_gem_do_execbuffer(struct drm_device *dev, void *data,
  824. struct drm_file *file,
  825. struct drm_i915_gem_execbuffer2 *args,
  826. struct drm_i915_gem_exec_object2 *exec)
  827. {
  828. drm_i915_private_t *dev_priv = dev->dev_private;
  829. struct list_head objects;
  830. struct eb_objects *eb;
  831. struct drm_i915_gem_object *batch_obj;
  832. struct drm_clip_rect *cliprects = NULL;
  833. struct intel_ring_buffer *ring;
  834. u32 exec_start, exec_len;
  835. u32 seqno;
  836. int ret, i;
  837. if (!i915_gem_check_execbuffer(args)) {
  838. DRM_ERROR("execbuf with invalid offset/length\n");
  839. return -EINVAL;
  840. }
  841. ret = validate_exec_list(exec, args->buffer_count);
  842. if (ret)
  843. return ret;
  844. #if WATCH_EXEC
  845. DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n",
  846. (int) args->buffers_ptr, args->buffer_count, args->batch_len);
  847. #endif
  848. switch (args->flags & I915_EXEC_RING_MASK) {
  849. case I915_EXEC_DEFAULT:
  850. case I915_EXEC_RENDER:
  851. ring = &dev_priv->ring[RCS];
  852. break;
  853. case I915_EXEC_BSD:
  854. if (!HAS_BSD(dev)) {
  855. DRM_ERROR("execbuf with invalid ring (BSD)\n");
  856. return -EINVAL;
  857. }
  858. ring = &dev_priv->ring[VCS];
  859. break;
  860. case I915_EXEC_BLT:
  861. if (!HAS_BLT(dev)) {
  862. DRM_ERROR("execbuf with invalid ring (BLT)\n");
  863. return -EINVAL;
  864. }
  865. ring = &dev_priv->ring[BCS];
  866. break;
  867. default:
  868. DRM_ERROR("execbuf with unknown ring: %d\n",
  869. (int)(args->flags & I915_EXEC_RING_MASK));
  870. return -EINVAL;
  871. }
  872. if (args->buffer_count < 1) {
  873. DRM_ERROR("execbuf with %d buffers\n", args->buffer_count);
  874. return -EINVAL;
  875. }
  876. if (args->num_cliprects != 0) {
  877. if (ring != &dev_priv->ring[RCS]) {
  878. DRM_ERROR("clip rectangles are only valid with the render ring\n");
  879. return -EINVAL;
  880. }
  881. cliprects = kmalloc(args->num_cliprects * sizeof(*cliprects),
  882. GFP_KERNEL);
  883. if (cliprects == NULL) {
  884. ret = -ENOMEM;
  885. goto pre_mutex_err;
  886. }
  887. if (copy_from_user(cliprects,
  888. (struct drm_clip_rect __user *)(uintptr_t)
  889. args->cliprects_ptr,
  890. sizeof(*cliprects)*args->num_cliprects)) {
  891. ret = -EFAULT;
  892. goto pre_mutex_err;
  893. }
  894. }
  895. ret = i915_mutex_lock_interruptible(dev);
  896. if (ret)
  897. goto pre_mutex_err;
  898. if (dev_priv->mm.suspended) {
  899. mutex_unlock(&dev->struct_mutex);
  900. ret = -EBUSY;
  901. goto pre_mutex_err;
  902. }
  903. eb = eb_create(args->buffer_count);
  904. if (eb == NULL) {
  905. mutex_unlock(&dev->struct_mutex);
  906. ret = -ENOMEM;
  907. goto pre_mutex_err;
  908. }
  909. /* Look up object handles */
  910. INIT_LIST_HEAD(&objects);
  911. for (i = 0; i < args->buffer_count; i++) {
  912. struct drm_i915_gem_object *obj;
  913. obj = to_intel_bo(drm_gem_object_lookup(dev, file,
  914. exec[i].handle));
  915. if (obj == NULL) {
  916. DRM_ERROR("Invalid object handle %d at index %d\n",
  917. exec[i].handle, i);
  918. /* prevent error path from reading uninitialized data */
  919. ret = -ENOENT;
  920. goto err;
  921. }
  922. if (!list_empty(&obj->exec_list)) {
  923. DRM_ERROR("Object %p [handle %d, index %d] appears more than once in object list\n",
  924. obj, exec[i].handle, i);
  925. ret = -EINVAL;
  926. goto err;
  927. }
  928. list_add_tail(&obj->exec_list, &objects);
  929. obj->exec_handle = exec[i].handle;
  930. eb_add_object(eb, obj);
  931. }
  932. /* Move the objects en-masse into the GTT, evicting if necessary. */
  933. ret = i915_gem_execbuffer_reserve(ring, file, &objects, exec);
  934. if (ret)
  935. goto err;
  936. /* The objects are in their final locations, apply the relocations. */
  937. ret = i915_gem_execbuffer_relocate(dev, eb, &objects, exec);
  938. if (ret) {
  939. if (ret == -EFAULT) {
  940. ret = i915_gem_execbuffer_relocate_slow(dev, file, ring,
  941. &objects, eb,
  942. exec,
  943. args->buffer_count);
  944. BUG_ON(!mutex_is_locked(&dev->struct_mutex));
  945. }
  946. if (ret)
  947. goto err;
  948. }
  949. /* Set the pending read domains for the batch buffer to COMMAND */
  950. batch_obj = list_entry(objects.prev,
  951. struct drm_i915_gem_object,
  952. exec_list);
  953. if (batch_obj->base.pending_write_domain) {
  954. DRM_ERROR("Attempting to use self-modifying batch buffer\n");
  955. ret = -EINVAL;
  956. goto err;
  957. }
  958. batch_obj->base.pending_read_domains |= I915_GEM_DOMAIN_COMMAND;
  959. ret = i915_gem_execbuffer_move_to_gpu(ring, &objects);
  960. if (ret)
  961. goto err;
  962. ret = i915_gem_execbuffer_wait_for_flips(ring, &objects);
  963. if (ret)
  964. goto err;
  965. seqno = i915_gem_next_request_seqno(dev, ring);
  966. for (i = 0; i < I915_NUM_RINGS-1; i++) {
  967. if (seqno < ring->sync_seqno[i]) {
  968. /* The GPU can not handle its semaphore value wrapping,
  969. * so every billion or so execbuffers, we need to stall
  970. * the GPU in order to reset the counters.
  971. */
  972. ret = i915_gpu_idle(dev);
  973. if (ret)
  974. goto err;
  975. BUG_ON(ring->sync_seqno[i]);
  976. }
  977. }
  978. exec_start = batch_obj->gtt_offset + args->batch_start_offset;
  979. exec_len = args->batch_len;
  980. if (cliprects) {
  981. for (i = 0; i < args->num_cliprects; i++) {
  982. ret = i915_emit_box(dev, &cliprects[i],
  983. args->DR1, args->DR4);
  984. if (ret)
  985. goto err;
  986. ret = ring->dispatch_execbuffer(ring,
  987. exec_start, exec_len);
  988. if (ret)
  989. goto err;
  990. }
  991. } else {
  992. ret = ring->dispatch_execbuffer(ring, exec_start, exec_len);
  993. if (ret)
  994. goto err;
  995. }
  996. i915_gem_execbuffer_move_to_active(&objects, ring, seqno);
  997. i915_gem_execbuffer_retire_commands(dev, file, ring);
  998. err:
  999. eb_destroy(eb);
  1000. while (!list_empty(&objects)) {
  1001. struct drm_i915_gem_object *obj;
  1002. obj = list_first_entry(&objects,
  1003. struct drm_i915_gem_object,
  1004. exec_list);
  1005. list_del_init(&obj->exec_list);
  1006. drm_gem_object_unreference(&obj->base);
  1007. }
  1008. mutex_unlock(&dev->struct_mutex);
  1009. pre_mutex_err:
  1010. kfree(cliprects);
  1011. return ret;
  1012. }
  1013. /*
  1014. * Legacy execbuffer just creates an exec2 list from the original exec object
  1015. * list array and passes it to the real function.
  1016. */
  1017. int
  1018. i915_gem_execbuffer(struct drm_device *dev, void *data,
  1019. struct drm_file *file)
  1020. {
  1021. struct drm_i915_gem_execbuffer *args = data;
  1022. struct drm_i915_gem_execbuffer2 exec2;
  1023. struct drm_i915_gem_exec_object *exec_list = NULL;
  1024. struct drm_i915_gem_exec_object2 *exec2_list = NULL;
  1025. int ret, i;
  1026. #if WATCH_EXEC
  1027. DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n",
  1028. (int) args->buffers_ptr, args->buffer_count, args->batch_len);
  1029. #endif
  1030. if (args->buffer_count < 1) {
  1031. DRM_ERROR("execbuf with %d buffers\n", args->buffer_count);
  1032. return -EINVAL;
  1033. }
  1034. /* Copy in the exec list from userland */
  1035. exec_list = drm_malloc_ab(sizeof(*exec_list), args->buffer_count);
  1036. exec2_list = drm_malloc_ab(sizeof(*exec2_list), args->buffer_count);
  1037. if (exec_list == NULL || exec2_list == NULL) {
  1038. DRM_ERROR("Failed to allocate exec list for %d buffers\n",
  1039. args->buffer_count);
  1040. drm_free_large(exec_list);
  1041. drm_free_large(exec2_list);
  1042. return -ENOMEM;
  1043. }
  1044. ret = copy_from_user(exec_list,
  1045. (struct drm_i915_relocation_entry __user *)
  1046. (uintptr_t) args->buffers_ptr,
  1047. sizeof(*exec_list) * args->buffer_count);
  1048. if (ret != 0) {
  1049. DRM_ERROR("copy %d exec entries failed %d\n",
  1050. args->buffer_count, ret);
  1051. drm_free_large(exec_list);
  1052. drm_free_large(exec2_list);
  1053. return -EFAULT;
  1054. }
  1055. for (i = 0; i < args->buffer_count; i++) {
  1056. exec2_list[i].handle = exec_list[i].handle;
  1057. exec2_list[i].relocation_count = exec_list[i].relocation_count;
  1058. exec2_list[i].relocs_ptr = exec_list[i].relocs_ptr;
  1059. exec2_list[i].alignment = exec_list[i].alignment;
  1060. exec2_list[i].offset = exec_list[i].offset;
  1061. if (INTEL_INFO(dev)->gen < 4)
  1062. exec2_list[i].flags = EXEC_OBJECT_NEEDS_FENCE;
  1063. else
  1064. exec2_list[i].flags = 0;
  1065. }
  1066. exec2.buffers_ptr = args->buffers_ptr;
  1067. exec2.buffer_count = args->buffer_count;
  1068. exec2.batch_start_offset = args->batch_start_offset;
  1069. exec2.batch_len = args->batch_len;
  1070. exec2.DR1 = args->DR1;
  1071. exec2.DR4 = args->DR4;
  1072. exec2.num_cliprects = args->num_cliprects;
  1073. exec2.cliprects_ptr = args->cliprects_ptr;
  1074. exec2.flags = I915_EXEC_RENDER;
  1075. ret = i915_gem_do_execbuffer(dev, data, file, &exec2, exec2_list);
  1076. if (!ret) {
  1077. /* Copy the new buffer offsets back to the user's exec list. */
  1078. for (i = 0; i < args->buffer_count; i++)
  1079. exec_list[i].offset = exec2_list[i].offset;
  1080. /* ... and back out to userspace */
  1081. ret = copy_to_user((struct drm_i915_relocation_entry __user *)
  1082. (uintptr_t) args->buffers_ptr,
  1083. exec_list,
  1084. sizeof(*exec_list) * args->buffer_count);
  1085. if (ret) {
  1086. ret = -EFAULT;
  1087. DRM_ERROR("failed to copy %d exec entries "
  1088. "back to user (%d)\n",
  1089. args->buffer_count, ret);
  1090. }
  1091. }
  1092. drm_free_large(exec_list);
  1093. drm_free_large(exec2_list);
  1094. return ret;
  1095. }
  1096. int
  1097. i915_gem_execbuffer2(struct drm_device *dev, void *data,
  1098. struct drm_file *file)
  1099. {
  1100. struct drm_i915_gem_execbuffer2 *args = data;
  1101. struct drm_i915_gem_exec_object2 *exec2_list = NULL;
  1102. int ret;
  1103. #if WATCH_EXEC
  1104. DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n",
  1105. (int) args->buffers_ptr, args->buffer_count, args->batch_len);
  1106. #endif
  1107. if (args->buffer_count < 1) {
  1108. DRM_ERROR("execbuf2 with %d buffers\n", args->buffer_count);
  1109. return -EINVAL;
  1110. }
  1111. exec2_list = drm_malloc_ab(sizeof(*exec2_list), args->buffer_count);
  1112. if (exec2_list == NULL) {
  1113. DRM_ERROR("Failed to allocate exec list for %d buffers\n",
  1114. args->buffer_count);
  1115. return -ENOMEM;
  1116. }
  1117. ret = copy_from_user(exec2_list,
  1118. (struct drm_i915_relocation_entry __user *)
  1119. (uintptr_t) args->buffers_ptr,
  1120. sizeof(*exec2_list) * args->buffer_count);
  1121. if (ret != 0) {
  1122. DRM_ERROR("copy %d exec entries failed %d\n",
  1123. args->buffer_count, ret);
  1124. drm_free_large(exec2_list);
  1125. return -EFAULT;
  1126. }
  1127. ret = i915_gem_do_execbuffer(dev, data, file, args, exec2_list);
  1128. if (!ret) {
  1129. /* Copy the new buffer offsets back to the user's exec list. */
  1130. ret = copy_to_user((struct drm_i915_relocation_entry __user *)
  1131. (uintptr_t) args->buffers_ptr,
  1132. exec2_list,
  1133. sizeof(*exec2_list) * args->buffer_count);
  1134. if (ret) {
  1135. ret = -EFAULT;
  1136. DRM_ERROR("failed to copy %d exec entries "
  1137. "back to user (%d)\n",
  1138. args->buffer_count, ret);
  1139. }
  1140. }
  1141. drm_free_large(exec2_list);
  1142. return ret;
  1143. }