lm85.c 46 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533
  1. /*
  2. lm85.c - Part of lm_sensors, Linux kernel modules for hardware
  3. monitoring
  4. Copyright (c) 1998, 1999 Frodo Looijaard <frodol@dds.nl>
  5. Copyright (c) 2002, 2003 Philip Pokorny <ppokorny@penguincomputing.com>
  6. Copyright (c) 2003 Margit Schubert-While <margitsw@t-online.de>
  7. Copyright (c) 2004 Justin Thiessen <jthiessen@penguincomputing.com>
  8. Copyright (C) 2007, 2008 Jean Delvare <khali@linux-fr.org>
  9. Chip details at <http://www.national.com/ds/LM/LM85.pdf>
  10. This program is free software; you can redistribute it and/or modify
  11. it under the terms of the GNU General Public License as published by
  12. the Free Software Foundation; either version 2 of the License, or
  13. (at your option) any later version.
  14. This program is distributed in the hope that it will be useful,
  15. but WITHOUT ANY WARRANTY; without even the implied warranty of
  16. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  17. GNU General Public License for more details.
  18. You should have received a copy of the GNU General Public License
  19. along with this program; if not, write to the Free Software
  20. Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  21. */
  22. #include <linux/module.h>
  23. #include <linux/init.h>
  24. #include <linux/slab.h>
  25. #include <linux/jiffies.h>
  26. #include <linux/i2c.h>
  27. #include <linux/hwmon.h>
  28. #include <linux/hwmon-vid.h>
  29. #include <linux/hwmon-sysfs.h>
  30. #include <linux/err.h>
  31. #include <linux/mutex.h>
  32. /* Addresses to scan */
  33. static const unsigned short normal_i2c[] = { 0x2c, 0x2d, 0x2e, I2C_CLIENT_END };
  34. /* Insmod parameters */
  35. I2C_CLIENT_INSMOD_6(lm85b, lm85c, adm1027, adt7463, emc6d100, emc6d102);
  36. /* The LM85 registers */
  37. #define LM85_REG_IN(nr) (0x20 + (nr))
  38. #define LM85_REG_IN_MIN(nr) (0x44 + (nr) * 2)
  39. #define LM85_REG_IN_MAX(nr) (0x45 + (nr) * 2)
  40. #define LM85_REG_TEMP(nr) (0x25 + (nr))
  41. #define LM85_REG_TEMP_MIN(nr) (0x4e + (nr) * 2)
  42. #define LM85_REG_TEMP_MAX(nr) (0x4f + (nr) * 2)
  43. /* Fan speeds are LSB, MSB (2 bytes) */
  44. #define LM85_REG_FAN(nr) (0x28 + (nr) * 2)
  45. #define LM85_REG_FAN_MIN(nr) (0x54 + (nr) * 2)
  46. #define LM85_REG_PWM(nr) (0x30 + (nr))
  47. #define LM85_REG_COMPANY 0x3e
  48. #define LM85_REG_VERSTEP 0x3f
  49. /* These are the recognized values for the above regs */
  50. #define LM85_COMPANY_NATIONAL 0x01
  51. #define LM85_COMPANY_ANALOG_DEV 0x41
  52. #define LM85_COMPANY_SMSC 0x5c
  53. #define LM85_VERSTEP_VMASK 0xf0
  54. #define LM85_VERSTEP_GENERIC 0x60
  55. #define LM85_VERSTEP_LM85C 0x60
  56. #define LM85_VERSTEP_LM85B 0x62
  57. #define LM85_VERSTEP_ADM1027 0x60
  58. #define LM85_VERSTEP_ADT7463 0x62
  59. #define LM85_VERSTEP_ADT7463C 0x6A
  60. #define LM85_VERSTEP_EMC6D100_A0 0x60
  61. #define LM85_VERSTEP_EMC6D100_A1 0x61
  62. #define LM85_VERSTEP_EMC6D102 0x65
  63. #define LM85_REG_CONFIG 0x40
  64. #define LM85_REG_ALARM1 0x41
  65. #define LM85_REG_ALARM2 0x42
  66. #define LM85_REG_VID 0x43
  67. /* Automated FAN control */
  68. #define LM85_REG_AFAN_CONFIG(nr) (0x5c + (nr))
  69. #define LM85_REG_AFAN_RANGE(nr) (0x5f + (nr))
  70. #define LM85_REG_AFAN_SPIKE1 0x62
  71. #define LM85_REG_AFAN_MINPWM(nr) (0x64 + (nr))
  72. #define LM85_REG_AFAN_LIMIT(nr) (0x67 + (nr))
  73. #define LM85_REG_AFAN_CRITICAL(nr) (0x6a + (nr))
  74. #define LM85_REG_AFAN_HYST1 0x6d
  75. #define LM85_REG_AFAN_HYST2 0x6e
  76. #define ADM1027_REG_EXTEND_ADC1 0x76
  77. #define ADM1027_REG_EXTEND_ADC2 0x77
  78. #define EMC6D100_REG_ALARM3 0x7d
  79. /* IN5, IN6 and IN7 */
  80. #define EMC6D100_REG_IN(nr) (0x70 + ((nr) - 5))
  81. #define EMC6D100_REG_IN_MIN(nr) (0x73 + ((nr) - 5) * 2)
  82. #define EMC6D100_REG_IN_MAX(nr) (0x74 + ((nr) - 5) * 2)
  83. #define EMC6D102_REG_EXTEND_ADC1 0x85
  84. #define EMC6D102_REG_EXTEND_ADC2 0x86
  85. #define EMC6D102_REG_EXTEND_ADC3 0x87
  86. #define EMC6D102_REG_EXTEND_ADC4 0x88
  87. /* Conversions. Rounding and limit checking is only done on the TO_REG
  88. variants. Note that you should be a bit careful with which arguments
  89. these macros are called: arguments may be evaluated more than once.
  90. */
  91. /* IN are scaled acording to built-in resistors */
  92. static const int lm85_scaling[] = { /* .001 Volts */
  93. 2500, 2250, 3300, 5000, 12000,
  94. 3300, 1500, 1800 /*EMC6D100*/
  95. };
  96. #define SCALE(val, from, to) (((val) * (to) + ((from) / 2)) / (from))
  97. #define INS_TO_REG(n, val) \
  98. SENSORS_LIMIT(SCALE(val, lm85_scaling[n], 192), 0, 255)
  99. #define INSEXT_FROM_REG(n, val, ext) \
  100. SCALE(((val) << 4) + (ext), 192 << 4, lm85_scaling[n])
  101. #define INS_FROM_REG(n, val) SCALE((val), 192, lm85_scaling[n])
  102. /* FAN speed is measured using 90kHz clock */
  103. static inline u16 FAN_TO_REG(unsigned long val)
  104. {
  105. if (!val)
  106. return 0xffff;
  107. return SENSORS_LIMIT(5400000 / val, 1, 0xfffe);
  108. }
  109. #define FAN_FROM_REG(val) ((val) == 0 ? -1 : (val) == 0xffff ? 0 : \
  110. 5400000 / (val))
  111. /* Temperature is reported in .001 degC increments */
  112. #define TEMP_TO_REG(val) \
  113. SENSORS_LIMIT(SCALE(val, 1000, 1), -127, 127)
  114. #define TEMPEXT_FROM_REG(val, ext) \
  115. SCALE(((val) << 4) + (ext), 16, 1000)
  116. #define TEMP_FROM_REG(val) ((val) * 1000)
  117. #define PWM_TO_REG(val) SENSORS_LIMIT(val, 0, 255)
  118. #define PWM_FROM_REG(val) (val)
  119. /* ZONEs have the following parameters:
  120. * Limit (low) temp, 1. degC
  121. * Hysteresis (below limit), 1. degC (0-15)
  122. * Range of speed control, .1 degC (2-80)
  123. * Critical (high) temp, 1. degC
  124. *
  125. * FAN PWMs have the following parameters:
  126. * Reference Zone, 1, 2, 3, etc.
  127. * Spinup time, .05 sec
  128. * PWM value at limit/low temp, 1 count
  129. * PWM Frequency, 1. Hz
  130. * PWM is Min or OFF below limit, flag
  131. * Invert PWM output, flag
  132. *
  133. * Some chips filter the temp, others the fan.
  134. * Filter constant (or disabled) .1 seconds
  135. */
  136. /* These are the zone temperature range encodings in .001 degree C */
  137. static const int lm85_range_map[] = {
  138. 2000, 2500, 3300, 4000, 5000, 6600, 8000, 10000,
  139. 13300, 16000, 20000, 26600, 32000, 40000, 53300, 80000
  140. };
  141. static int RANGE_TO_REG(int range)
  142. {
  143. int i;
  144. if (range >= lm85_range_map[15])
  145. return 15;
  146. /* Find the closest match */
  147. for (i = 14; i >= 0; --i) {
  148. if (range >= lm85_range_map[i]) {
  149. if ((lm85_range_map[i + 1] - range) <
  150. (range - lm85_range_map[i]))
  151. return i + 1;
  152. return i;
  153. }
  154. }
  155. return 0;
  156. }
  157. #define RANGE_FROM_REG(val) lm85_range_map[(val) & 0x0f]
  158. /* These are the PWM frequency encodings */
  159. static const int lm85_freq_map[8] = { /* 1 Hz */
  160. 10, 15, 23, 30, 38, 47, 61, 94
  161. };
  162. static const int adm1027_freq_map[8] = { /* 1 Hz */
  163. 11, 15, 22, 29, 35, 44, 59, 88
  164. };
  165. static int FREQ_TO_REG(const int *map, int freq)
  166. {
  167. int i;
  168. /* Find the closest match */
  169. for (i = 0; i < 7; ++i)
  170. if (freq <= (map[i] + map[i + 1]) / 2)
  171. break;
  172. return i;
  173. }
  174. static int FREQ_FROM_REG(const int *map, u8 reg)
  175. {
  176. return map[reg & 0x07];
  177. }
  178. /* Since we can't use strings, I'm abusing these numbers
  179. * to stand in for the following meanings:
  180. * 1 -- PWM responds to Zone 1
  181. * 2 -- PWM responds to Zone 2
  182. * 3 -- PWM responds to Zone 3
  183. * 23 -- PWM responds to the higher temp of Zone 2 or 3
  184. * 123 -- PWM responds to highest of Zone 1, 2, or 3
  185. * 0 -- PWM is always at 0% (ie, off)
  186. * -1 -- PWM is always at 100%
  187. * -2 -- PWM responds to manual control
  188. */
  189. static const int lm85_zone_map[] = { 1, 2, 3, -1, 0, 23, 123, -2 };
  190. #define ZONE_FROM_REG(val) lm85_zone_map[(val) >> 5]
  191. static int ZONE_TO_REG(int zone)
  192. {
  193. int i;
  194. for (i = 0; i <= 7; ++i)
  195. if (zone == lm85_zone_map[i])
  196. break;
  197. if (i > 7) /* Not found. */
  198. i = 3; /* Always 100% */
  199. return i << 5;
  200. }
  201. #define HYST_TO_REG(val) SENSORS_LIMIT(((val) + 500) / 1000, 0, 15)
  202. #define HYST_FROM_REG(val) ((val) * 1000)
  203. /* Chip sampling rates
  204. *
  205. * Some sensors are not updated more frequently than once per second
  206. * so it doesn't make sense to read them more often than that.
  207. * We cache the results and return the saved data if the driver
  208. * is called again before a second has elapsed.
  209. *
  210. * Also, there is significant configuration data for this chip
  211. * given the automatic PWM fan control that is possible. There
  212. * are about 47 bytes of config data to only 22 bytes of actual
  213. * readings. So, we keep the config data up to date in the cache
  214. * when it is written and only sample it once every 1 *minute*
  215. */
  216. #define LM85_DATA_INTERVAL (HZ + HZ / 2)
  217. #define LM85_CONFIG_INTERVAL (1 * 60 * HZ)
  218. /* LM85 can automatically adjust fan speeds based on temperature
  219. * This structure encapsulates an entire Zone config. There are
  220. * three zones (one for each temperature input) on the lm85
  221. */
  222. struct lm85_zone {
  223. s8 limit; /* Low temp limit */
  224. u8 hyst; /* Low limit hysteresis. (0-15) */
  225. u8 range; /* Temp range, encoded */
  226. s8 critical; /* "All fans ON" temp limit */
  227. u8 off_desired; /* Actual "off" temperature specified. Preserved
  228. * to prevent "drift" as other autofan control
  229. * values change.
  230. */
  231. u8 max_desired; /* Actual "max" temperature specified. Preserved
  232. * to prevent "drift" as other autofan control
  233. * values change.
  234. */
  235. };
  236. struct lm85_autofan {
  237. u8 config; /* Register value */
  238. u8 min_pwm; /* Minimum PWM value, encoded */
  239. u8 min_off; /* Min PWM or OFF below "limit", flag */
  240. };
  241. /* For each registered chip, we need to keep some data in memory.
  242. The structure is dynamically allocated. */
  243. struct lm85_data {
  244. struct device *hwmon_dev;
  245. const int *freq_map;
  246. enum chips type;
  247. struct mutex update_lock;
  248. int valid; /* !=0 if following fields are valid */
  249. unsigned long last_reading; /* In jiffies */
  250. unsigned long last_config; /* In jiffies */
  251. u8 in[8]; /* Register value */
  252. u8 in_max[8]; /* Register value */
  253. u8 in_min[8]; /* Register value */
  254. s8 temp[3]; /* Register value */
  255. s8 temp_min[3]; /* Register value */
  256. s8 temp_max[3]; /* Register value */
  257. u16 fan[4]; /* Register value */
  258. u16 fan_min[4]; /* Register value */
  259. u8 pwm[3]; /* Register value */
  260. u8 pwm_freq[3]; /* Register encoding */
  261. u8 temp_ext[3]; /* Decoded values */
  262. u8 in_ext[8]; /* Decoded values */
  263. u8 vid; /* Register value */
  264. u8 vrm; /* VRM version */
  265. u32 alarms; /* Register encoding, combined */
  266. struct lm85_autofan autofan[3];
  267. struct lm85_zone zone[3];
  268. };
  269. static int lm85_detect(struct i2c_client *client, int kind,
  270. struct i2c_board_info *info);
  271. static int lm85_probe(struct i2c_client *client,
  272. const struct i2c_device_id *id);
  273. static int lm85_remove(struct i2c_client *client);
  274. static int lm85_read_value(struct i2c_client *client, u8 reg);
  275. static void lm85_write_value(struct i2c_client *client, u8 reg, int value);
  276. static struct lm85_data *lm85_update_device(struct device *dev);
  277. static const struct i2c_device_id lm85_id[] = {
  278. { "adm1027", adm1027 },
  279. { "adt7463", adt7463 },
  280. { "lm85", any_chip },
  281. { "lm85b", lm85b },
  282. { "lm85c", lm85c },
  283. { "emc6d100", emc6d100 },
  284. { "emc6d101", emc6d100 },
  285. { "emc6d102", emc6d102 },
  286. { }
  287. };
  288. MODULE_DEVICE_TABLE(i2c, lm85_id);
  289. static struct i2c_driver lm85_driver = {
  290. .class = I2C_CLASS_HWMON,
  291. .driver = {
  292. .name = "lm85",
  293. },
  294. .probe = lm85_probe,
  295. .remove = lm85_remove,
  296. .id_table = lm85_id,
  297. .detect = lm85_detect,
  298. .address_data = &addr_data,
  299. };
  300. /* 4 Fans */
  301. static ssize_t show_fan(struct device *dev, struct device_attribute *attr,
  302. char *buf)
  303. {
  304. int nr = to_sensor_dev_attr(attr)->index;
  305. struct lm85_data *data = lm85_update_device(dev);
  306. return sprintf(buf, "%d\n", FAN_FROM_REG(data->fan[nr]));
  307. }
  308. static ssize_t show_fan_min(struct device *dev, struct device_attribute *attr,
  309. char *buf)
  310. {
  311. int nr = to_sensor_dev_attr(attr)->index;
  312. struct lm85_data *data = lm85_update_device(dev);
  313. return sprintf(buf, "%d\n", FAN_FROM_REG(data->fan_min[nr]));
  314. }
  315. static ssize_t set_fan_min(struct device *dev, struct device_attribute *attr,
  316. const char *buf, size_t count)
  317. {
  318. int nr = to_sensor_dev_attr(attr)->index;
  319. struct i2c_client *client = to_i2c_client(dev);
  320. struct lm85_data *data = i2c_get_clientdata(client);
  321. unsigned long val = simple_strtoul(buf, NULL, 10);
  322. mutex_lock(&data->update_lock);
  323. data->fan_min[nr] = FAN_TO_REG(val);
  324. lm85_write_value(client, LM85_REG_FAN_MIN(nr), data->fan_min[nr]);
  325. mutex_unlock(&data->update_lock);
  326. return count;
  327. }
  328. #define show_fan_offset(offset) \
  329. static SENSOR_DEVICE_ATTR(fan##offset##_input, S_IRUGO, \
  330. show_fan, NULL, offset - 1); \
  331. static SENSOR_DEVICE_ATTR(fan##offset##_min, S_IRUGO | S_IWUSR, \
  332. show_fan_min, set_fan_min, offset - 1)
  333. show_fan_offset(1);
  334. show_fan_offset(2);
  335. show_fan_offset(3);
  336. show_fan_offset(4);
  337. /* vid, vrm, alarms */
  338. static ssize_t show_vid_reg(struct device *dev, struct device_attribute *attr,
  339. char *buf)
  340. {
  341. struct lm85_data *data = lm85_update_device(dev);
  342. int vid;
  343. if (data->type == adt7463 && (data->vid & 0x80)) {
  344. /* 6-pin VID (VRM 10) */
  345. vid = vid_from_reg(data->vid & 0x3f, data->vrm);
  346. } else {
  347. /* 5-pin VID (VRM 9) */
  348. vid = vid_from_reg(data->vid & 0x1f, data->vrm);
  349. }
  350. return sprintf(buf, "%d\n", vid);
  351. }
  352. static DEVICE_ATTR(cpu0_vid, S_IRUGO, show_vid_reg, NULL);
  353. static ssize_t show_vrm_reg(struct device *dev, struct device_attribute *attr,
  354. char *buf)
  355. {
  356. struct lm85_data *data = dev_get_drvdata(dev);
  357. return sprintf(buf, "%ld\n", (long) data->vrm);
  358. }
  359. static ssize_t store_vrm_reg(struct device *dev, struct device_attribute *attr,
  360. const char *buf, size_t count)
  361. {
  362. struct lm85_data *data = dev_get_drvdata(dev);
  363. data->vrm = simple_strtoul(buf, NULL, 10);
  364. return count;
  365. }
  366. static DEVICE_ATTR(vrm, S_IRUGO | S_IWUSR, show_vrm_reg, store_vrm_reg);
  367. static ssize_t show_alarms_reg(struct device *dev, struct device_attribute
  368. *attr, char *buf)
  369. {
  370. struct lm85_data *data = lm85_update_device(dev);
  371. return sprintf(buf, "%u\n", data->alarms);
  372. }
  373. static DEVICE_ATTR(alarms, S_IRUGO, show_alarms_reg, NULL);
  374. static ssize_t show_alarm(struct device *dev, struct device_attribute *attr,
  375. char *buf)
  376. {
  377. int nr = to_sensor_dev_attr(attr)->index;
  378. struct lm85_data *data = lm85_update_device(dev);
  379. return sprintf(buf, "%u\n", (data->alarms >> nr) & 1);
  380. }
  381. static SENSOR_DEVICE_ATTR(in0_alarm, S_IRUGO, show_alarm, NULL, 0);
  382. static SENSOR_DEVICE_ATTR(in1_alarm, S_IRUGO, show_alarm, NULL, 1);
  383. static SENSOR_DEVICE_ATTR(in2_alarm, S_IRUGO, show_alarm, NULL, 2);
  384. static SENSOR_DEVICE_ATTR(in3_alarm, S_IRUGO, show_alarm, NULL, 3);
  385. static SENSOR_DEVICE_ATTR(in4_alarm, S_IRUGO, show_alarm, NULL, 8);
  386. static SENSOR_DEVICE_ATTR(in5_alarm, S_IRUGO, show_alarm, NULL, 18);
  387. static SENSOR_DEVICE_ATTR(in6_alarm, S_IRUGO, show_alarm, NULL, 16);
  388. static SENSOR_DEVICE_ATTR(in7_alarm, S_IRUGO, show_alarm, NULL, 17);
  389. static SENSOR_DEVICE_ATTR(temp1_alarm, S_IRUGO, show_alarm, NULL, 4);
  390. static SENSOR_DEVICE_ATTR(temp1_fault, S_IRUGO, show_alarm, NULL, 14);
  391. static SENSOR_DEVICE_ATTR(temp2_alarm, S_IRUGO, show_alarm, NULL, 5);
  392. static SENSOR_DEVICE_ATTR(temp3_alarm, S_IRUGO, show_alarm, NULL, 6);
  393. static SENSOR_DEVICE_ATTR(temp3_fault, S_IRUGO, show_alarm, NULL, 15);
  394. static SENSOR_DEVICE_ATTR(fan1_alarm, S_IRUGO, show_alarm, NULL, 10);
  395. static SENSOR_DEVICE_ATTR(fan2_alarm, S_IRUGO, show_alarm, NULL, 11);
  396. static SENSOR_DEVICE_ATTR(fan3_alarm, S_IRUGO, show_alarm, NULL, 12);
  397. static SENSOR_DEVICE_ATTR(fan4_alarm, S_IRUGO, show_alarm, NULL, 13);
  398. /* pwm */
  399. static ssize_t show_pwm(struct device *dev, struct device_attribute *attr,
  400. char *buf)
  401. {
  402. int nr = to_sensor_dev_attr(attr)->index;
  403. struct lm85_data *data = lm85_update_device(dev);
  404. return sprintf(buf, "%d\n", PWM_FROM_REG(data->pwm[nr]));
  405. }
  406. static ssize_t set_pwm(struct device *dev, struct device_attribute *attr,
  407. const char *buf, size_t count)
  408. {
  409. int nr = to_sensor_dev_attr(attr)->index;
  410. struct i2c_client *client = to_i2c_client(dev);
  411. struct lm85_data *data = i2c_get_clientdata(client);
  412. long val = simple_strtol(buf, NULL, 10);
  413. mutex_lock(&data->update_lock);
  414. data->pwm[nr] = PWM_TO_REG(val);
  415. lm85_write_value(client, LM85_REG_PWM(nr), data->pwm[nr]);
  416. mutex_unlock(&data->update_lock);
  417. return count;
  418. }
  419. static ssize_t show_pwm_enable(struct device *dev, struct device_attribute
  420. *attr, char *buf)
  421. {
  422. int nr = to_sensor_dev_attr(attr)->index;
  423. struct lm85_data *data = lm85_update_device(dev);
  424. int pwm_zone, enable;
  425. pwm_zone = ZONE_FROM_REG(data->autofan[nr].config);
  426. switch (pwm_zone) {
  427. case -1: /* PWM is always at 100% */
  428. enable = 0;
  429. break;
  430. case 0: /* PWM is always at 0% */
  431. case -2: /* PWM responds to manual control */
  432. enable = 1;
  433. break;
  434. default: /* PWM in automatic mode */
  435. enable = 2;
  436. }
  437. return sprintf(buf, "%d\n", enable);
  438. }
  439. static ssize_t set_pwm_enable(struct device *dev, struct device_attribute
  440. *attr, const char *buf, size_t count)
  441. {
  442. int nr = to_sensor_dev_attr(attr)->index;
  443. struct i2c_client *client = to_i2c_client(dev);
  444. struct lm85_data *data = i2c_get_clientdata(client);
  445. long val = simple_strtol(buf, NULL, 10);
  446. u8 config;
  447. switch (val) {
  448. case 0:
  449. config = 3;
  450. break;
  451. case 1:
  452. config = 7;
  453. break;
  454. case 2:
  455. /* Here we have to choose arbitrarily one of the 5 possible
  456. configurations; I go for the safest */
  457. config = 6;
  458. break;
  459. default:
  460. return -EINVAL;
  461. }
  462. mutex_lock(&data->update_lock);
  463. data->autofan[nr].config = lm85_read_value(client,
  464. LM85_REG_AFAN_CONFIG(nr));
  465. data->autofan[nr].config = (data->autofan[nr].config & ~0xe0)
  466. | (config << 5);
  467. lm85_write_value(client, LM85_REG_AFAN_CONFIG(nr),
  468. data->autofan[nr].config);
  469. mutex_unlock(&data->update_lock);
  470. return count;
  471. }
  472. static ssize_t show_pwm_freq(struct device *dev,
  473. struct device_attribute *attr, char *buf)
  474. {
  475. int nr = to_sensor_dev_attr(attr)->index;
  476. struct lm85_data *data = lm85_update_device(dev);
  477. return sprintf(buf, "%d\n", FREQ_FROM_REG(data->freq_map,
  478. data->pwm_freq[nr]));
  479. }
  480. static ssize_t set_pwm_freq(struct device *dev,
  481. struct device_attribute *attr, const char *buf, size_t count)
  482. {
  483. int nr = to_sensor_dev_attr(attr)->index;
  484. struct i2c_client *client = to_i2c_client(dev);
  485. struct lm85_data *data = i2c_get_clientdata(client);
  486. long val = simple_strtol(buf, NULL, 10);
  487. mutex_lock(&data->update_lock);
  488. data->pwm_freq[nr] = FREQ_TO_REG(data->freq_map, val);
  489. lm85_write_value(client, LM85_REG_AFAN_RANGE(nr),
  490. (data->zone[nr].range << 4)
  491. | data->pwm_freq[nr]);
  492. mutex_unlock(&data->update_lock);
  493. return count;
  494. }
  495. #define show_pwm_reg(offset) \
  496. static SENSOR_DEVICE_ATTR(pwm##offset, S_IRUGO | S_IWUSR, \
  497. show_pwm, set_pwm, offset - 1); \
  498. static SENSOR_DEVICE_ATTR(pwm##offset##_enable, S_IRUGO | S_IWUSR, \
  499. show_pwm_enable, set_pwm_enable, offset - 1); \
  500. static SENSOR_DEVICE_ATTR(pwm##offset##_freq, S_IRUGO | S_IWUSR, \
  501. show_pwm_freq, set_pwm_freq, offset - 1)
  502. show_pwm_reg(1);
  503. show_pwm_reg(2);
  504. show_pwm_reg(3);
  505. /* Voltages */
  506. static ssize_t show_in(struct device *dev, struct device_attribute *attr,
  507. char *buf)
  508. {
  509. int nr = to_sensor_dev_attr(attr)->index;
  510. struct lm85_data *data = lm85_update_device(dev);
  511. return sprintf(buf, "%d\n", INSEXT_FROM_REG(nr, data->in[nr],
  512. data->in_ext[nr]));
  513. }
  514. static ssize_t show_in_min(struct device *dev, struct device_attribute *attr,
  515. char *buf)
  516. {
  517. int nr = to_sensor_dev_attr(attr)->index;
  518. struct lm85_data *data = lm85_update_device(dev);
  519. return sprintf(buf, "%d\n", INS_FROM_REG(nr, data->in_min[nr]));
  520. }
  521. static ssize_t set_in_min(struct device *dev, struct device_attribute *attr,
  522. const char *buf, size_t count)
  523. {
  524. int nr = to_sensor_dev_attr(attr)->index;
  525. struct i2c_client *client = to_i2c_client(dev);
  526. struct lm85_data *data = i2c_get_clientdata(client);
  527. long val = simple_strtol(buf, NULL, 10);
  528. mutex_lock(&data->update_lock);
  529. data->in_min[nr] = INS_TO_REG(nr, val);
  530. lm85_write_value(client, LM85_REG_IN_MIN(nr), data->in_min[nr]);
  531. mutex_unlock(&data->update_lock);
  532. return count;
  533. }
  534. static ssize_t show_in_max(struct device *dev, struct device_attribute *attr,
  535. char *buf)
  536. {
  537. int nr = to_sensor_dev_attr(attr)->index;
  538. struct lm85_data *data = lm85_update_device(dev);
  539. return sprintf(buf, "%d\n", INS_FROM_REG(nr, data->in_max[nr]));
  540. }
  541. static ssize_t set_in_max(struct device *dev, struct device_attribute *attr,
  542. const char *buf, size_t count)
  543. {
  544. int nr = to_sensor_dev_attr(attr)->index;
  545. struct i2c_client *client = to_i2c_client(dev);
  546. struct lm85_data *data = i2c_get_clientdata(client);
  547. long val = simple_strtol(buf, NULL, 10);
  548. mutex_lock(&data->update_lock);
  549. data->in_max[nr] = INS_TO_REG(nr, val);
  550. lm85_write_value(client, LM85_REG_IN_MAX(nr), data->in_max[nr]);
  551. mutex_unlock(&data->update_lock);
  552. return count;
  553. }
  554. #define show_in_reg(offset) \
  555. static SENSOR_DEVICE_ATTR(in##offset##_input, S_IRUGO, \
  556. show_in, NULL, offset); \
  557. static SENSOR_DEVICE_ATTR(in##offset##_min, S_IRUGO | S_IWUSR, \
  558. show_in_min, set_in_min, offset); \
  559. static SENSOR_DEVICE_ATTR(in##offset##_max, S_IRUGO | S_IWUSR, \
  560. show_in_max, set_in_max, offset)
  561. show_in_reg(0);
  562. show_in_reg(1);
  563. show_in_reg(2);
  564. show_in_reg(3);
  565. show_in_reg(4);
  566. show_in_reg(5);
  567. show_in_reg(6);
  568. show_in_reg(7);
  569. /* Temps */
  570. static ssize_t show_temp(struct device *dev, struct device_attribute *attr,
  571. char *buf)
  572. {
  573. int nr = to_sensor_dev_attr(attr)->index;
  574. struct lm85_data *data = lm85_update_device(dev);
  575. return sprintf(buf, "%d\n", TEMPEXT_FROM_REG(data->temp[nr],
  576. data->temp_ext[nr]));
  577. }
  578. static ssize_t show_temp_min(struct device *dev, struct device_attribute *attr,
  579. char *buf)
  580. {
  581. int nr = to_sensor_dev_attr(attr)->index;
  582. struct lm85_data *data = lm85_update_device(dev);
  583. return sprintf(buf, "%d\n", TEMP_FROM_REG(data->temp_min[nr]));
  584. }
  585. static ssize_t set_temp_min(struct device *dev, struct device_attribute *attr,
  586. const char *buf, size_t count)
  587. {
  588. int nr = to_sensor_dev_attr(attr)->index;
  589. struct i2c_client *client = to_i2c_client(dev);
  590. struct lm85_data *data = i2c_get_clientdata(client);
  591. long val = simple_strtol(buf, NULL, 10);
  592. mutex_lock(&data->update_lock);
  593. data->temp_min[nr] = TEMP_TO_REG(val);
  594. lm85_write_value(client, LM85_REG_TEMP_MIN(nr), data->temp_min[nr]);
  595. mutex_unlock(&data->update_lock);
  596. return count;
  597. }
  598. static ssize_t show_temp_max(struct device *dev, struct device_attribute *attr,
  599. char *buf)
  600. {
  601. int nr = to_sensor_dev_attr(attr)->index;
  602. struct lm85_data *data = lm85_update_device(dev);
  603. return sprintf(buf, "%d\n", TEMP_FROM_REG(data->temp_max[nr]));
  604. }
  605. static ssize_t set_temp_max(struct device *dev, struct device_attribute *attr,
  606. const char *buf, size_t count)
  607. {
  608. int nr = to_sensor_dev_attr(attr)->index;
  609. struct i2c_client *client = to_i2c_client(dev);
  610. struct lm85_data *data = i2c_get_clientdata(client);
  611. long val = simple_strtol(buf, NULL, 10);
  612. mutex_lock(&data->update_lock);
  613. data->temp_max[nr] = TEMP_TO_REG(val);
  614. lm85_write_value(client, LM85_REG_TEMP_MAX(nr), data->temp_max[nr]);
  615. mutex_unlock(&data->update_lock);
  616. return count;
  617. }
  618. #define show_temp_reg(offset) \
  619. static SENSOR_DEVICE_ATTR(temp##offset##_input, S_IRUGO, \
  620. show_temp, NULL, offset - 1); \
  621. static SENSOR_DEVICE_ATTR(temp##offset##_min, S_IRUGO | S_IWUSR, \
  622. show_temp_min, set_temp_min, offset - 1); \
  623. static SENSOR_DEVICE_ATTR(temp##offset##_max, S_IRUGO | S_IWUSR, \
  624. show_temp_max, set_temp_max, offset - 1);
  625. show_temp_reg(1);
  626. show_temp_reg(2);
  627. show_temp_reg(3);
  628. /* Automatic PWM control */
  629. static ssize_t show_pwm_auto_channels(struct device *dev,
  630. struct device_attribute *attr, char *buf)
  631. {
  632. int nr = to_sensor_dev_attr(attr)->index;
  633. struct lm85_data *data = lm85_update_device(dev);
  634. return sprintf(buf, "%d\n", ZONE_FROM_REG(data->autofan[nr].config));
  635. }
  636. static ssize_t set_pwm_auto_channels(struct device *dev,
  637. struct device_attribute *attr, const char *buf, size_t count)
  638. {
  639. int nr = to_sensor_dev_attr(attr)->index;
  640. struct i2c_client *client = to_i2c_client(dev);
  641. struct lm85_data *data = i2c_get_clientdata(client);
  642. long val = simple_strtol(buf, NULL, 10);
  643. mutex_lock(&data->update_lock);
  644. data->autofan[nr].config = (data->autofan[nr].config & (~0xe0))
  645. | ZONE_TO_REG(val);
  646. lm85_write_value(client, LM85_REG_AFAN_CONFIG(nr),
  647. data->autofan[nr].config);
  648. mutex_unlock(&data->update_lock);
  649. return count;
  650. }
  651. static ssize_t show_pwm_auto_pwm_min(struct device *dev,
  652. struct device_attribute *attr, char *buf)
  653. {
  654. int nr = to_sensor_dev_attr(attr)->index;
  655. struct lm85_data *data = lm85_update_device(dev);
  656. return sprintf(buf, "%d\n", PWM_FROM_REG(data->autofan[nr].min_pwm));
  657. }
  658. static ssize_t set_pwm_auto_pwm_min(struct device *dev,
  659. struct device_attribute *attr, const char *buf, size_t count)
  660. {
  661. int nr = to_sensor_dev_attr(attr)->index;
  662. struct i2c_client *client = to_i2c_client(dev);
  663. struct lm85_data *data = i2c_get_clientdata(client);
  664. long val = simple_strtol(buf, NULL, 10);
  665. mutex_lock(&data->update_lock);
  666. data->autofan[nr].min_pwm = PWM_TO_REG(val);
  667. lm85_write_value(client, LM85_REG_AFAN_MINPWM(nr),
  668. data->autofan[nr].min_pwm);
  669. mutex_unlock(&data->update_lock);
  670. return count;
  671. }
  672. static ssize_t show_pwm_auto_pwm_minctl(struct device *dev,
  673. struct device_attribute *attr, char *buf)
  674. {
  675. int nr = to_sensor_dev_attr(attr)->index;
  676. struct lm85_data *data = lm85_update_device(dev);
  677. return sprintf(buf, "%d\n", data->autofan[nr].min_off);
  678. }
  679. static ssize_t set_pwm_auto_pwm_minctl(struct device *dev,
  680. struct device_attribute *attr, const char *buf, size_t count)
  681. {
  682. int nr = to_sensor_dev_attr(attr)->index;
  683. struct i2c_client *client = to_i2c_client(dev);
  684. struct lm85_data *data = i2c_get_clientdata(client);
  685. long val = simple_strtol(buf, NULL, 10);
  686. u8 tmp;
  687. mutex_lock(&data->update_lock);
  688. data->autofan[nr].min_off = val;
  689. tmp = lm85_read_value(client, LM85_REG_AFAN_SPIKE1);
  690. tmp &= ~(0x20 << nr);
  691. if (data->autofan[nr].min_off)
  692. tmp |= 0x20 << nr;
  693. lm85_write_value(client, LM85_REG_AFAN_SPIKE1, tmp);
  694. mutex_unlock(&data->update_lock);
  695. return count;
  696. }
  697. #define pwm_auto(offset) \
  698. static SENSOR_DEVICE_ATTR(pwm##offset##_auto_channels, \
  699. S_IRUGO | S_IWUSR, show_pwm_auto_channels, \
  700. set_pwm_auto_channels, offset - 1); \
  701. static SENSOR_DEVICE_ATTR(pwm##offset##_auto_pwm_min, \
  702. S_IRUGO | S_IWUSR, show_pwm_auto_pwm_min, \
  703. set_pwm_auto_pwm_min, offset - 1); \
  704. static SENSOR_DEVICE_ATTR(pwm##offset##_auto_pwm_minctl, \
  705. S_IRUGO | S_IWUSR, show_pwm_auto_pwm_minctl, \
  706. set_pwm_auto_pwm_minctl, offset - 1)
  707. pwm_auto(1);
  708. pwm_auto(2);
  709. pwm_auto(3);
  710. /* Temperature settings for automatic PWM control */
  711. static ssize_t show_temp_auto_temp_off(struct device *dev,
  712. struct device_attribute *attr, char *buf)
  713. {
  714. int nr = to_sensor_dev_attr(attr)->index;
  715. struct lm85_data *data = lm85_update_device(dev);
  716. return sprintf(buf, "%d\n", TEMP_FROM_REG(data->zone[nr].limit) -
  717. HYST_FROM_REG(data->zone[nr].hyst));
  718. }
  719. static ssize_t set_temp_auto_temp_off(struct device *dev,
  720. struct device_attribute *attr, const char *buf, size_t count)
  721. {
  722. int nr = to_sensor_dev_attr(attr)->index;
  723. struct i2c_client *client = to_i2c_client(dev);
  724. struct lm85_data *data = i2c_get_clientdata(client);
  725. int min;
  726. long val = simple_strtol(buf, NULL, 10);
  727. mutex_lock(&data->update_lock);
  728. min = TEMP_FROM_REG(data->zone[nr].limit);
  729. data->zone[nr].off_desired = TEMP_TO_REG(val);
  730. data->zone[nr].hyst = HYST_TO_REG(min - val);
  731. if (nr == 0 || nr == 1) {
  732. lm85_write_value(client, LM85_REG_AFAN_HYST1,
  733. (data->zone[0].hyst << 4)
  734. | data->zone[1].hyst);
  735. } else {
  736. lm85_write_value(client, LM85_REG_AFAN_HYST2,
  737. (data->zone[2].hyst << 4));
  738. }
  739. mutex_unlock(&data->update_lock);
  740. return count;
  741. }
  742. static ssize_t show_temp_auto_temp_min(struct device *dev,
  743. struct device_attribute *attr, char *buf)
  744. {
  745. int nr = to_sensor_dev_attr(attr)->index;
  746. struct lm85_data *data = lm85_update_device(dev);
  747. return sprintf(buf, "%d\n", TEMP_FROM_REG(data->zone[nr].limit));
  748. }
  749. static ssize_t set_temp_auto_temp_min(struct device *dev,
  750. struct device_attribute *attr, const char *buf, size_t count)
  751. {
  752. int nr = to_sensor_dev_attr(attr)->index;
  753. struct i2c_client *client = to_i2c_client(dev);
  754. struct lm85_data *data = i2c_get_clientdata(client);
  755. long val = simple_strtol(buf, NULL, 10);
  756. mutex_lock(&data->update_lock);
  757. data->zone[nr].limit = TEMP_TO_REG(val);
  758. lm85_write_value(client, LM85_REG_AFAN_LIMIT(nr),
  759. data->zone[nr].limit);
  760. /* Update temp_auto_max and temp_auto_range */
  761. data->zone[nr].range = RANGE_TO_REG(
  762. TEMP_FROM_REG(data->zone[nr].max_desired) -
  763. TEMP_FROM_REG(data->zone[nr].limit));
  764. lm85_write_value(client, LM85_REG_AFAN_RANGE(nr),
  765. ((data->zone[nr].range & 0x0f) << 4)
  766. | (data->pwm_freq[nr] & 0x07));
  767. /* Update temp_auto_hyst and temp_auto_off */
  768. data->zone[nr].hyst = HYST_TO_REG(TEMP_FROM_REG(
  769. data->zone[nr].limit) - TEMP_FROM_REG(
  770. data->zone[nr].off_desired));
  771. if (nr == 0 || nr == 1) {
  772. lm85_write_value(client, LM85_REG_AFAN_HYST1,
  773. (data->zone[0].hyst << 4)
  774. | data->zone[1].hyst);
  775. } else {
  776. lm85_write_value(client, LM85_REG_AFAN_HYST2,
  777. (data->zone[2].hyst << 4));
  778. }
  779. mutex_unlock(&data->update_lock);
  780. return count;
  781. }
  782. static ssize_t show_temp_auto_temp_max(struct device *dev,
  783. struct device_attribute *attr, char *buf)
  784. {
  785. int nr = to_sensor_dev_attr(attr)->index;
  786. struct lm85_data *data = lm85_update_device(dev);
  787. return sprintf(buf, "%d\n", TEMP_FROM_REG(data->zone[nr].limit) +
  788. RANGE_FROM_REG(data->zone[nr].range));
  789. }
  790. static ssize_t set_temp_auto_temp_max(struct device *dev,
  791. struct device_attribute *attr, const char *buf, size_t count)
  792. {
  793. int nr = to_sensor_dev_attr(attr)->index;
  794. struct i2c_client *client = to_i2c_client(dev);
  795. struct lm85_data *data = i2c_get_clientdata(client);
  796. int min;
  797. long val = simple_strtol(buf, NULL, 10);
  798. mutex_lock(&data->update_lock);
  799. min = TEMP_FROM_REG(data->zone[nr].limit);
  800. data->zone[nr].max_desired = TEMP_TO_REG(val);
  801. data->zone[nr].range = RANGE_TO_REG(
  802. val - min);
  803. lm85_write_value(client, LM85_REG_AFAN_RANGE(nr),
  804. ((data->zone[nr].range & 0x0f) << 4)
  805. | (data->pwm_freq[nr] & 0x07));
  806. mutex_unlock(&data->update_lock);
  807. return count;
  808. }
  809. static ssize_t show_temp_auto_temp_crit(struct device *dev,
  810. struct device_attribute *attr, char *buf)
  811. {
  812. int nr = to_sensor_dev_attr(attr)->index;
  813. struct lm85_data *data = lm85_update_device(dev);
  814. return sprintf(buf, "%d\n", TEMP_FROM_REG(data->zone[nr].critical));
  815. }
  816. static ssize_t set_temp_auto_temp_crit(struct device *dev,
  817. struct device_attribute *attr, const char *buf, size_t count)
  818. {
  819. int nr = to_sensor_dev_attr(attr)->index;
  820. struct i2c_client *client = to_i2c_client(dev);
  821. struct lm85_data *data = i2c_get_clientdata(client);
  822. long val = simple_strtol(buf, NULL, 10);
  823. mutex_lock(&data->update_lock);
  824. data->zone[nr].critical = TEMP_TO_REG(val);
  825. lm85_write_value(client, LM85_REG_AFAN_CRITICAL(nr),
  826. data->zone[nr].critical);
  827. mutex_unlock(&data->update_lock);
  828. return count;
  829. }
  830. #define temp_auto(offset) \
  831. static SENSOR_DEVICE_ATTR(temp##offset##_auto_temp_off, \
  832. S_IRUGO | S_IWUSR, show_temp_auto_temp_off, \
  833. set_temp_auto_temp_off, offset - 1); \
  834. static SENSOR_DEVICE_ATTR(temp##offset##_auto_temp_min, \
  835. S_IRUGO | S_IWUSR, show_temp_auto_temp_min, \
  836. set_temp_auto_temp_min, offset - 1); \
  837. static SENSOR_DEVICE_ATTR(temp##offset##_auto_temp_max, \
  838. S_IRUGO | S_IWUSR, show_temp_auto_temp_max, \
  839. set_temp_auto_temp_max, offset - 1); \
  840. static SENSOR_DEVICE_ATTR(temp##offset##_auto_temp_crit, \
  841. S_IRUGO | S_IWUSR, show_temp_auto_temp_crit, \
  842. set_temp_auto_temp_crit, offset - 1);
  843. temp_auto(1);
  844. temp_auto(2);
  845. temp_auto(3);
  846. static struct attribute *lm85_attributes[] = {
  847. &sensor_dev_attr_fan1_input.dev_attr.attr,
  848. &sensor_dev_attr_fan2_input.dev_attr.attr,
  849. &sensor_dev_attr_fan3_input.dev_attr.attr,
  850. &sensor_dev_attr_fan4_input.dev_attr.attr,
  851. &sensor_dev_attr_fan1_min.dev_attr.attr,
  852. &sensor_dev_attr_fan2_min.dev_attr.attr,
  853. &sensor_dev_attr_fan3_min.dev_attr.attr,
  854. &sensor_dev_attr_fan4_min.dev_attr.attr,
  855. &sensor_dev_attr_fan1_alarm.dev_attr.attr,
  856. &sensor_dev_attr_fan2_alarm.dev_attr.attr,
  857. &sensor_dev_attr_fan3_alarm.dev_attr.attr,
  858. &sensor_dev_attr_fan4_alarm.dev_attr.attr,
  859. &sensor_dev_attr_pwm1.dev_attr.attr,
  860. &sensor_dev_attr_pwm2.dev_attr.attr,
  861. &sensor_dev_attr_pwm3.dev_attr.attr,
  862. &sensor_dev_attr_pwm1_enable.dev_attr.attr,
  863. &sensor_dev_attr_pwm2_enable.dev_attr.attr,
  864. &sensor_dev_attr_pwm3_enable.dev_attr.attr,
  865. &sensor_dev_attr_pwm1_freq.dev_attr.attr,
  866. &sensor_dev_attr_pwm2_freq.dev_attr.attr,
  867. &sensor_dev_attr_pwm3_freq.dev_attr.attr,
  868. &sensor_dev_attr_in0_input.dev_attr.attr,
  869. &sensor_dev_attr_in1_input.dev_attr.attr,
  870. &sensor_dev_attr_in2_input.dev_attr.attr,
  871. &sensor_dev_attr_in3_input.dev_attr.attr,
  872. &sensor_dev_attr_in0_min.dev_attr.attr,
  873. &sensor_dev_attr_in1_min.dev_attr.attr,
  874. &sensor_dev_attr_in2_min.dev_attr.attr,
  875. &sensor_dev_attr_in3_min.dev_attr.attr,
  876. &sensor_dev_attr_in0_max.dev_attr.attr,
  877. &sensor_dev_attr_in1_max.dev_attr.attr,
  878. &sensor_dev_attr_in2_max.dev_attr.attr,
  879. &sensor_dev_attr_in3_max.dev_attr.attr,
  880. &sensor_dev_attr_in0_alarm.dev_attr.attr,
  881. &sensor_dev_attr_in1_alarm.dev_attr.attr,
  882. &sensor_dev_attr_in2_alarm.dev_attr.attr,
  883. &sensor_dev_attr_in3_alarm.dev_attr.attr,
  884. &sensor_dev_attr_temp1_input.dev_attr.attr,
  885. &sensor_dev_attr_temp2_input.dev_attr.attr,
  886. &sensor_dev_attr_temp3_input.dev_attr.attr,
  887. &sensor_dev_attr_temp1_min.dev_attr.attr,
  888. &sensor_dev_attr_temp2_min.dev_attr.attr,
  889. &sensor_dev_attr_temp3_min.dev_attr.attr,
  890. &sensor_dev_attr_temp1_max.dev_attr.attr,
  891. &sensor_dev_attr_temp2_max.dev_attr.attr,
  892. &sensor_dev_attr_temp3_max.dev_attr.attr,
  893. &sensor_dev_attr_temp1_alarm.dev_attr.attr,
  894. &sensor_dev_attr_temp2_alarm.dev_attr.attr,
  895. &sensor_dev_attr_temp3_alarm.dev_attr.attr,
  896. &sensor_dev_attr_temp1_fault.dev_attr.attr,
  897. &sensor_dev_attr_temp3_fault.dev_attr.attr,
  898. &sensor_dev_attr_pwm1_auto_channels.dev_attr.attr,
  899. &sensor_dev_attr_pwm2_auto_channels.dev_attr.attr,
  900. &sensor_dev_attr_pwm3_auto_channels.dev_attr.attr,
  901. &sensor_dev_attr_pwm1_auto_pwm_min.dev_attr.attr,
  902. &sensor_dev_attr_pwm2_auto_pwm_min.dev_attr.attr,
  903. &sensor_dev_attr_pwm3_auto_pwm_min.dev_attr.attr,
  904. &sensor_dev_attr_pwm1_auto_pwm_minctl.dev_attr.attr,
  905. &sensor_dev_attr_pwm2_auto_pwm_minctl.dev_attr.attr,
  906. &sensor_dev_attr_pwm3_auto_pwm_minctl.dev_attr.attr,
  907. &sensor_dev_attr_temp1_auto_temp_off.dev_attr.attr,
  908. &sensor_dev_attr_temp2_auto_temp_off.dev_attr.attr,
  909. &sensor_dev_attr_temp3_auto_temp_off.dev_attr.attr,
  910. &sensor_dev_attr_temp1_auto_temp_min.dev_attr.attr,
  911. &sensor_dev_attr_temp2_auto_temp_min.dev_attr.attr,
  912. &sensor_dev_attr_temp3_auto_temp_min.dev_attr.attr,
  913. &sensor_dev_attr_temp1_auto_temp_max.dev_attr.attr,
  914. &sensor_dev_attr_temp2_auto_temp_max.dev_attr.attr,
  915. &sensor_dev_attr_temp3_auto_temp_max.dev_attr.attr,
  916. &sensor_dev_attr_temp1_auto_temp_crit.dev_attr.attr,
  917. &sensor_dev_attr_temp2_auto_temp_crit.dev_attr.attr,
  918. &sensor_dev_attr_temp3_auto_temp_crit.dev_attr.attr,
  919. &dev_attr_vrm.attr,
  920. &dev_attr_cpu0_vid.attr,
  921. &dev_attr_alarms.attr,
  922. NULL
  923. };
  924. static const struct attribute_group lm85_group = {
  925. .attrs = lm85_attributes,
  926. };
  927. static struct attribute *lm85_attributes_in4[] = {
  928. &sensor_dev_attr_in4_input.dev_attr.attr,
  929. &sensor_dev_attr_in4_min.dev_attr.attr,
  930. &sensor_dev_attr_in4_max.dev_attr.attr,
  931. &sensor_dev_attr_in4_alarm.dev_attr.attr,
  932. NULL
  933. };
  934. static const struct attribute_group lm85_group_in4 = {
  935. .attrs = lm85_attributes_in4,
  936. };
  937. static struct attribute *lm85_attributes_in567[] = {
  938. &sensor_dev_attr_in5_input.dev_attr.attr,
  939. &sensor_dev_attr_in6_input.dev_attr.attr,
  940. &sensor_dev_attr_in7_input.dev_attr.attr,
  941. &sensor_dev_attr_in5_min.dev_attr.attr,
  942. &sensor_dev_attr_in6_min.dev_attr.attr,
  943. &sensor_dev_attr_in7_min.dev_attr.attr,
  944. &sensor_dev_attr_in5_max.dev_attr.attr,
  945. &sensor_dev_attr_in6_max.dev_attr.attr,
  946. &sensor_dev_attr_in7_max.dev_attr.attr,
  947. &sensor_dev_attr_in5_alarm.dev_attr.attr,
  948. &sensor_dev_attr_in6_alarm.dev_attr.attr,
  949. &sensor_dev_attr_in7_alarm.dev_attr.attr,
  950. NULL
  951. };
  952. static const struct attribute_group lm85_group_in567 = {
  953. .attrs = lm85_attributes_in567,
  954. };
  955. static void lm85_init_client(struct i2c_client *client)
  956. {
  957. int value;
  958. /* Start monitoring if needed */
  959. value = lm85_read_value(client, LM85_REG_CONFIG);
  960. if (!(value & 0x01)) {
  961. dev_info(&client->dev, "Starting monitoring\n");
  962. lm85_write_value(client, LM85_REG_CONFIG, value | 0x01);
  963. }
  964. /* Warn about unusual configuration bits */
  965. if (value & 0x02)
  966. dev_warn(&client->dev, "Device configuration is locked\n");
  967. if (!(value & 0x04))
  968. dev_warn(&client->dev, "Device is not ready\n");
  969. }
  970. /* Return 0 if detection is successful, -ENODEV otherwise */
  971. static int lm85_detect(struct i2c_client *client, int kind,
  972. struct i2c_board_info *info)
  973. {
  974. struct i2c_adapter *adapter = client->adapter;
  975. int address = client->addr;
  976. const char *type_name;
  977. if (!i2c_check_functionality(adapter, I2C_FUNC_SMBUS_BYTE_DATA)) {
  978. /* We need to be able to do byte I/O */
  979. return -ENODEV;
  980. }
  981. /* If auto-detecting, determine the chip type */
  982. if (kind < 0) {
  983. int company = lm85_read_value(client, LM85_REG_COMPANY);
  984. int verstep = lm85_read_value(client, LM85_REG_VERSTEP);
  985. dev_dbg(&adapter->dev, "Detecting device at 0x%02x with "
  986. "COMPANY: 0x%02x and VERSTEP: 0x%02x\n",
  987. address, company, verstep);
  988. /* All supported chips have the version in common */
  989. if ((verstep & LM85_VERSTEP_VMASK) != LM85_VERSTEP_GENERIC) {
  990. dev_dbg(&adapter->dev, "Autodetection failed: "
  991. "unsupported version\n");
  992. return -ENODEV;
  993. }
  994. kind = any_chip;
  995. /* Now, refine the detection */
  996. if (company == LM85_COMPANY_NATIONAL) {
  997. switch (verstep) {
  998. case LM85_VERSTEP_LM85C:
  999. kind = lm85c;
  1000. break;
  1001. case LM85_VERSTEP_LM85B:
  1002. kind = lm85b;
  1003. break;
  1004. }
  1005. } else if (company == LM85_COMPANY_ANALOG_DEV) {
  1006. switch (verstep) {
  1007. case LM85_VERSTEP_ADM1027:
  1008. kind = adm1027;
  1009. break;
  1010. case LM85_VERSTEP_ADT7463:
  1011. case LM85_VERSTEP_ADT7463C:
  1012. kind = adt7463;
  1013. break;
  1014. }
  1015. } else if (company == LM85_COMPANY_SMSC) {
  1016. switch (verstep) {
  1017. case LM85_VERSTEP_EMC6D100_A0:
  1018. case LM85_VERSTEP_EMC6D100_A1:
  1019. /* Note: we can't tell a '100 from a '101 */
  1020. kind = emc6d100;
  1021. break;
  1022. case LM85_VERSTEP_EMC6D102:
  1023. kind = emc6d102;
  1024. break;
  1025. }
  1026. } else {
  1027. dev_dbg(&adapter->dev, "Autodetection failed: "
  1028. "unknown vendor\n");
  1029. return -ENODEV;
  1030. }
  1031. }
  1032. switch (kind) {
  1033. case lm85b:
  1034. type_name = "lm85b";
  1035. break;
  1036. case lm85c:
  1037. type_name = "lm85c";
  1038. break;
  1039. case adm1027:
  1040. type_name = "adm1027";
  1041. break;
  1042. case adt7463:
  1043. type_name = "adt7463";
  1044. break;
  1045. case emc6d100:
  1046. type_name = "emc6d100";
  1047. break;
  1048. case emc6d102:
  1049. type_name = "emc6d102";
  1050. break;
  1051. default:
  1052. type_name = "lm85";
  1053. }
  1054. strlcpy(info->type, type_name, I2C_NAME_SIZE);
  1055. return 0;
  1056. }
  1057. static int lm85_probe(struct i2c_client *client,
  1058. const struct i2c_device_id *id)
  1059. {
  1060. struct lm85_data *data;
  1061. int err;
  1062. data = kzalloc(sizeof(struct lm85_data), GFP_KERNEL);
  1063. if (!data)
  1064. return -ENOMEM;
  1065. i2c_set_clientdata(client, data);
  1066. data->type = id->driver_data;
  1067. mutex_init(&data->update_lock);
  1068. /* Fill in the chip specific driver values */
  1069. switch (data->type) {
  1070. case adm1027:
  1071. case adt7463:
  1072. case emc6d100:
  1073. case emc6d102:
  1074. data->freq_map = adm1027_freq_map;
  1075. break;
  1076. default:
  1077. data->freq_map = lm85_freq_map;
  1078. }
  1079. /* Set the VRM version */
  1080. data->vrm = vid_which_vrm();
  1081. /* Initialize the LM85 chip */
  1082. lm85_init_client(client);
  1083. /* Register sysfs hooks */
  1084. err = sysfs_create_group(&client->dev.kobj, &lm85_group);
  1085. if (err)
  1086. goto ERROR1;
  1087. /* The ADT7463 has an optional VRM 10 mode where pin 21 is used
  1088. as a sixth digital VID input rather than an analog input. */
  1089. data->vid = lm85_read_value(client, LM85_REG_VID);
  1090. if (!(data->type == adt7463 && (data->vid & 0x80)))
  1091. if ((err = sysfs_create_group(&client->dev.kobj,
  1092. &lm85_group_in4)))
  1093. goto ERROR3;
  1094. /* The EMC6D100 has 3 additional voltage inputs */
  1095. if (data->type == emc6d100)
  1096. if ((err = sysfs_create_group(&client->dev.kobj,
  1097. &lm85_group_in567)))
  1098. goto ERROR3;
  1099. data->hwmon_dev = hwmon_device_register(&client->dev);
  1100. if (IS_ERR(data->hwmon_dev)) {
  1101. err = PTR_ERR(data->hwmon_dev);
  1102. goto ERROR3;
  1103. }
  1104. return 0;
  1105. /* Error out and cleanup code */
  1106. ERROR3:
  1107. sysfs_remove_group(&client->dev.kobj, &lm85_group);
  1108. sysfs_remove_group(&client->dev.kobj, &lm85_group_in4);
  1109. if (data->type == emc6d100)
  1110. sysfs_remove_group(&client->dev.kobj, &lm85_group_in567);
  1111. ERROR1:
  1112. kfree(data);
  1113. return err;
  1114. }
  1115. static int lm85_remove(struct i2c_client *client)
  1116. {
  1117. struct lm85_data *data = i2c_get_clientdata(client);
  1118. hwmon_device_unregister(data->hwmon_dev);
  1119. sysfs_remove_group(&client->dev.kobj, &lm85_group);
  1120. sysfs_remove_group(&client->dev.kobj, &lm85_group_in4);
  1121. if (data->type == emc6d100)
  1122. sysfs_remove_group(&client->dev.kobj, &lm85_group_in567);
  1123. kfree(data);
  1124. return 0;
  1125. }
  1126. static int lm85_read_value(struct i2c_client *client, u8 reg)
  1127. {
  1128. int res;
  1129. /* What size location is it? */
  1130. switch (reg) {
  1131. case LM85_REG_FAN(0): /* Read WORD data */
  1132. case LM85_REG_FAN(1):
  1133. case LM85_REG_FAN(2):
  1134. case LM85_REG_FAN(3):
  1135. case LM85_REG_FAN_MIN(0):
  1136. case LM85_REG_FAN_MIN(1):
  1137. case LM85_REG_FAN_MIN(2):
  1138. case LM85_REG_FAN_MIN(3):
  1139. case LM85_REG_ALARM1: /* Read both bytes at once */
  1140. res = i2c_smbus_read_byte_data(client, reg) & 0xff;
  1141. res |= i2c_smbus_read_byte_data(client, reg + 1) << 8;
  1142. break;
  1143. default: /* Read BYTE data */
  1144. res = i2c_smbus_read_byte_data(client, reg);
  1145. break;
  1146. }
  1147. return res;
  1148. }
  1149. static void lm85_write_value(struct i2c_client *client, u8 reg, int value)
  1150. {
  1151. switch (reg) {
  1152. case LM85_REG_FAN(0): /* Write WORD data */
  1153. case LM85_REG_FAN(1):
  1154. case LM85_REG_FAN(2):
  1155. case LM85_REG_FAN(3):
  1156. case LM85_REG_FAN_MIN(0):
  1157. case LM85_REG_FAN_MIN(1):
  1158. case LM85_REG_FAN_MIN(2):
  1159. case LM85_REG_FAN_MIN(3):
  1160. /* NOTE: ALARM is read only, so not included here */
  1161. i2c_smbus_write_byte_data(client, reg, value & 0xff);
  1162. i2c_smbus_write_byte_data(client, reg + 1, value >> 8);
  1163. break;
  1164. default: /* Write BYTE data */
  1165. i2c_smbus_write_byte_data(client, reg, value);
  1166. break;
  1167. }
  1168. }
  1169. static struct lm85_data *lm85_update_device(struct device *dev)
  1170. {
  1171. struct i2c_client *client = to_i2c_client(dev);
  1172. struct lm85_data *data = i2c_get_clientdata(client);
  1173. int i;
  1174. mutex_lock(&data->update_lock);
  1175. if (!data->valid ||
  1176. time_after(jiffies, data->last_reading + LM85_DATA_INTERVAL)) {
  1177. /* Things that change quickly */
  1178. dev_dbg(&client->dev, "Reading sensor values\n");
  1179. /* Have to read extended bits first to "freeze" the
  1180. * more significant bits that are read later.
  1181. * There are 2 additional resolution bits per channel and we
  1182. * have room for 4, so we shift them to the left.
  1183. */
  1184. if (data->type == adm1027 || data->type == adt7463) {
  1185. int ext1 = lm85_read_value(client,
  1186. ADM1027_REG_EXTEND_ADC1);
  1187. int ext2 = lm85_read_value(client,
  1188. ADM1027_REG_EXTEND_ADC2);
  1189. int val = (ext1 << 8) + ext2;
  1190. for (i = 0; i <= 4; i++)
  1191. data->in_ext[i] =
  1192. ((val >> (i * 2)) & 0x03) << 2;
  1193. for (i = 0; i <= 2; i++)
  1194. data->temp_ext[i] =
  1195. (val >> ((i + 4) * 2)) & 0x0c;
  1196. }
  1197. data->vid = lm85_read_value(client, LM85_REG_VID);
  1198. for (i = 0; i <= 3; ++i) {
  1199. data->in[i] =
  1200. lm85_read_value(client, LM85_REG_IN(i));
  1201. data->fan[i] =
  1202. lm85_read_value(client, LM85_REG_FAN(i));
  1203. }
  1204. if (!(data->type == adt7463 && (data->vid & 0x80))) {
  1205. data->in[4] = lm85_read_value(client,
  1206. LM85_REG_IN(4));
  1207. }
  1208. for (i = 0; i <= 2; ++i) {
  1209. data->temp[i] =
  1210. lm85_read_value(client, LM85_REG_TEMP(i));
  1211. data->pwm[i] =
  1212. lm85_read_value(client, LM85_REG_PWM(i));
  1213. }
  1214. data->alarms = lm85_read_value(client, LM85_REG_ALARM1);
  1215. if (data->type == emc6d100) {
  1216. /* Three more voltage sensors */
  1217. for (i = 5; i <= 7; ++i) {
  1218. data->in[i] = lm85_read_value(client,
  1219. EMC6D100_REG_IN(i));
  1220. }
  1221. /* More alarm bits */
  1222. data->alarms |= lm85_read_value(client,
  1223. EMC6D100_REG_ALARM3) << 16;
  1224. } else if (data->type == emc6d102) {
  1225. /* Have to read LSB bits after the MSB ones because
  1226. the reading of the MSB bits has frozen the
  1227. LSBs (backward from the ADM1027).
  1228. */
  1229. int ext1 = lm85_read_value(client,
  1230. EMC6D102_REG_EXTEND_ADC1);
  1231. int ext2 = lm85_read_value(client,
  1232. EMC6D102_REG_EXTEND_ADC2);
  1233. int ext3 = lm85_read_value(client,
  1234. EMC6D102_REG_EXTEND_ADC3);
  1235. int ext4 = lm85_read_value(client,
  1236. EMC6D102_REG_EXTEND_ADC4);
  1237. data->in_ext[0] = ext3 & 0x0f;
  1238. data->in_ext[1] = ext4 & 0x0f;
  1239. data->in_ext[2] = ext4 >> 4;
  1240. data->in_ext[3] = ext3 >> 4;
  1241. data->in_ext[4] = ext2 >> 4;
  1242. data->temp_ext[0] = ext1 & 0x0f;
  1243. data->temp_ext[1] = ext2 & 0x0f;
  1244. data->temp_ext[2] = ext1 >> 4;
  1245. }
  1246. data->last_reading = jiffies;
  1247. } /* last_reading */
  1248. if (!data->valid ||
  1249. time_after(jiffies, data->last_config + LM85_CONFIG_INTERVAL)) {
  1250. /* Things that don't change often */
  1251. dev_dbg(&client->dev, "Reading config values\n");
  1252. for (i = 0; i <= 3; ++i) {
  1253. data->in_min[i] =
  1254. lm85_read_value(client, LM85_REG_IN_MIN(i));
  1255. data->in_max[i] =
  1256. lm85_read_value(client, LM85_REG_IN_MAX(i));
  1257. data->fan_min[i] =
  1258. lm85_read_value(client, LM85_REG_FAN_MIN(i));
  1259. }
  1260. if (!(data->type == adt7463 && (data->vid & 0x80))) {
  1261. data->in_min[4] = lm85_read_value(client,
  1262. LM85_REG_IN_MIN(4));
  1263. data->in_max[4] = lm85_read_value(client,
  1264. LM85_REG_IN_MAX(4));
  1265. }
  1266. if (data->type == emc6d100) {
  1267. for (i = 5; i <= 7; ++i) {
  1268. data->in_min[i] = lm85_read_value(client,
  1269. EMC6D100_REG_IN_MIN(i));
  1270. data->in_max[i] = lm85_read_value(client,
  1271. EMC6D100_REG_IN_MAX(i));
  1272. }
  1273. }
  1274. for (i = 0; i <= 2; ++i) {
  1275. int val;
  1276. data->temp_min[i] =
  1277. lm85_read_value(client, LM85_REG_TEMP_MIN(i));
  1278. data->temp_max[i] =
  1279. lm85_read_value(client, LM85_REG_TEMP_MAX(i));
  1280. data->autofan[i].config =
  1281. lm85_read_value(client, LM85_REG_AFAN_CONFIG(i));
  1282. val = lm85_read_value(client, LM85_REG_AFAN_RANGE(i));
  1283. data->pwm_freq[i] = val & 0x07;
  1284. data->zone[i].range = val >> 4;
  1285. data->autofan[i].min_pwm =
  1286. lm85_read_value(client, LM85_REG_AFAN_MINPWM(i));
  1287. data->zone[i].limit =
  1288. lm85_read_value(client, LM85_REG_AFAN_LIMIT(i));
  1289. data->zone[i].critical =
  1290. lm85_read_value(client, LM85_REG_AFAN_CRITICAL(i));
  1291. }
  1292. i = lm85_read_value(client, LM85_REG_AFAN_SPIKE1);
  1293. data->autofan[0].min_off = (i & 0x20) != 0;
  1294. data->autofan[1].min_off = (i & 0x40) != 0;
  1295. data->autofan[2].min_off = (i & 0x80) != 0;
  1296. i = lm85_read_value(client, LM85_REG_AFAN_HYST1);
  1297. data->zone[0].hyst = i >> 4;
  1298. data->zone[1].hyst = i & 0x0f;
  1299. i = lm85_read_value(client, LM85_REG_AFAN_HYST2);
  1300. data->zone[2].hyst = i >> 4;
  1301. data->last_config = jiffies;
  1302. } /* last_config */
  1303. data->valid = 1;
  1304. mutex_unlock(&data->update_lock);
  1305. return data;
  1306. }
  1307. static int __init sm_lm85_init(void)
  1308. {
  1309. return i2c_add_driver(&lm85_driver);
  1310. }
  1311. static void __exit sm_lm85_exit(void)
  1312. {
  1313. i2c_del_driver(&lm85_driver);
  1314. }
  1315. MODULE_LICENSE("GPL");
  1316. MODULE_AUTHOR("Philip Pokorny <ppokorny@penguincomputing.com>, "
  1317. "Margit Schubert-While <margitsw@t-online.de>, "
  1318. "Justin Thiessen <jthiessen@penguincomputing.com>");
  1319. MODULE_DESCRIPTION("LM85-B, LM85-C driver");
  1320. module_init(sm_lm85_init);
  1321. module_exit(sm_lm85_exit);