datagram.c 20 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872
  1. /*
  2. * common UDP/RAW code
  3. * Linux INET6 implementation
  4. *
  5. * Authors:
  6. * Pedro Roque <roque@di.fc.ul.pt>
  7. *
  8. * This program is free software; you can redistribute it and/or
  9. * modify it under the terms of the GNU General Public License
  10. * as published by the Free Software Foundation; either version
  11. * 2 of the License, or (at your option) any later version.
  12. */
  13. #include <linux/capability.h>
  14. #include <linux/errno.h>
  15. #include <linux/types.h>
  16. #include <linux/kernel.h>
  17. #include <linux/interrupt.h>
  18. #include <linux/socket.h>
  19. #include <linux/sockios.h>
  20. #include <linux/in6.h>
  21. #include <linux/ipv6.h>
  22. #include <linux/route.h>
  23. #include <linux/slab.h>
  24. #include <net/ipv6.h>
  25. #include <net/ndisc.h>
  26. #include <net/addrconf.h>
  27. #include <net/transp_v6.h>
  28. #include <net/ip6_route.h>
  29. #include <net/tcp_states.h>
  30. #include <linux/errqueue.h>
  31. #include <asm/uaccess.h>
  32. static inline int ipv6_mapped_addr_any(const struct in6_addr *a)
  33. {
  34. return (ipv6_addr_v4mapped(a) && (a->s6_addr32[3] == 0));
  35. }
  36. int ip6_datagram_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len)
  37. {
  38. struct sockaddr_in6 *usin = (struct sockaddr_in6 *) uaddr;
  39. struct inet_sock *inet = inet_sk(sk);
  40. struct ipv6_pinfo *np = inet6_sk(sk);
  41. struct in6_addr *daddr, *final_p, final;
  42. struct dst_entry *dst;
  43. struct flowi6 fl6;
  44. struct ip6_flowlabel *flowlabel = NULL;
  45. struct ipv6_txoptions *opt;
  46. int addr_type;
  47. int err;
  48. if (usin->sin6_family == AF_INET) {
  49. if (__ipv6_only_sock(sk))
  50. return -EAFNOSUPPORT;
  51. err = ip4_datagram_connect(sk, uaddr, addr_len);
  52. goto ipv4_connected;
  53. }
  54. if (addr_len < SIN6_LEN_RFC2133)
  55. return -EINVAL;
  56. if (usin->sin6_family != AF_INET6)
  57. return -EAFNOSUPPORT;
  58. memset(&fl6, 0, sizeof(fl6));
  59. if (np->sndflow) {
  60. fl6.flowlabel = usin->sin6_flowinfo&IPV6_FLOWINFO_MASK;
  61. if (fl6.flowlabel&IPV6_FLOWLABEL_MASK) {
  62. flowlabel = fl6_sock_lookup(sk, fl6.flowlabel);
  63. if (flowlabel == NULL)
  64. return -EINVAL;
  65. usin->sin6_addr = flowlabel->dst;
  66. }
  67. }
  68. addr_type = ipv6_addr_type(&usin->sin6_addr);
  69. if (addr_type == IPV6_ADDR_ANY) {
  70. /*
  71. * connect to self
  72. */
  73. usin->sin6_addr.s6_addr[15] = 0x01;
  74. }
  75. daddr = &usin->sin6_addr;
  76. if (addr_type == IPV6_ADDR_MAPPED) {
  77. struct sockaddr_in sin;
  78. if (__ipv6_only_sock(sk)) {
  79. err = -ENETUNREACH;
  80. goto out;
  81. }
  82. sin.sin_family = AF_INET;
  83. sin.sin_addr.s_addr = daddr->s6_addr32[3];
  84. sin.sin_port = usin->sin6_port;
  85. err = ip4_datagram_connect(sk,
  86. (struct sockaddr*) &sin,
  87. sizeof(sin));
  88. ipv4_connected:
  89. if (err)
  90. goto out;
  91. ipv6_addr_set_v4mapped(inet->inet_daddr, &np->daddr);
  92. if (ipv6_addr_any(&np->saddr) ||
  93. ipv6_mapped_addr_any(&np->saddr))
  94. ipv6_addr_set_v4mapped(inet->inet_saddr, &np->saddr);
  95. if (ipv6_addr_any(&np->rcv_saddr) ||
  96. ipv6_mapped_addr_any(&np->rcv_saddr)) {
  97. ipv6_addr_set_v4mapped(inet->inet_rcv_saddr,
  98. &np->rcv_saddr);
  99. if (sk->sk_prot->rehash)
  100. sk->sk_prot->rehash(sk);
  101. }
  102. goto out;
  103. }
  104. if (addr_type&IPV6_ADDR_LINKLOCAL) {
  105. if (addr_len >= sizeof(struct sockaddr_in6) &&
  106. usin->sin6_scope_id) {
  107. if (sk->sk_bound_dev_if &&
  108. sk->sk_bound_dev_if != usin->sin6_scope_id) {
  109. err = -EINVAL;
  110. goto out;
  111. }
  112. sk->sk_bound_dev_if = usin->sin6_scope_id;
  113. }
  114. if (!sk->sk_bound_dev_if && (addr_type & IPV6_ADDR_MULTICAST))
  115. sk->sk_bound_dev_if = np->mcast_oif;
  116. /* Connect to link-local address requires an interface */
  117. if (!sk->sk_bound_dev_if) {
  118. err = -EINVAL;
  119. goto out;
  120. }
  121. }
  122. np->daddr = *daddr;
  123. np->flow_label = fl6.flowlabel;
  124. inet->inet_dport = usin->sin6_port;
  125. /*
  126. * Check for a route to destination an obtain the
  127. * destination cache for it.
  128. */
  129. fl6.flowi6_proto = sk->sk_protocol;
  130. fl6.daddr = np->daddr;
  131. fl6.saddr = np->saddr;
  132. fl6.flowi6_oif = sk->sk_bound_dev_if;
  133. fl6.flowi6_mark = sk->sk_mark;
  134. fl6.fl6_dport = inet->inet_dport;
  135. fl6.fl6_sport = inet->inet_sport;
  136. if (!fl6.flowi6_oif && (addr_type&IPV6_ADDR_MULTICAST))
  137. fl6.flowi6_oif = np->mcast_oif;
  138. security_sk_classify_flow(sk, flowi6_to_flowi(&fl6));
  139. opt = flowlabel ? flowlabel->opt : np->opt;
  140. final_p = fl6_update_dst(&fl6, opt, &final);
  141. dst = ip6_dst_lookup_flow(sk, &fl6, final_p, true);
  142. err = 0;
  143. if (IS_ERR(dst)) {
  144. err = PTR_ERR(dst);
  145. goto out;
  146. }
  147. /* source address lookup done in ip6_dst_lookup */
  148. if (ipv6_addr_any(&np->saddr))
  149. np->saddr = fl6.saddr;
  150. if (ipv6_addr_any(&np->rcv_saddr)) {
  151. np->rcv_saddr = fl6.saddr;
  152. inet->inet_rcv_saddr = LOOPBACK4_IPV6;
  153. if (sk->sk_prot->rehash)
  154. sk->sk_prot->rehash(sk);
  155. }
  156. ip6_dst_store(sk, dst,
  157. ipv6_addr_equal(&fl6.daddr, &np->daddr) ?
  158. &np->daddr : NULL,
  159. #ifdef CONFIG_IPV6_SUBTREES
  160. ipv6_addr_equal(&fl6.saddr, &np->saddr) ?
  161. &np->saddr :
  162. #endif
  163. NULL);
  164. sk->sk_state = TCP_ESTABLISHED;
  165. out:
  166. fl6_sock_release(flowlabel);
  167. return err;
  168. }
  169. void ipv6_icmp_error(struct sock *sk, struct sk_buff *skb, int err,
  170. __be16 port, u32 info, u8 *payload)
  171. {
  172. struct ipv6_pinfo *np = inet6_sk(sk);
  173. struct icmp6hdr *icmph = icmp6_hdr(skb);
  174. struct sock_exterr_skb *serr;
  175. if (!np->recverr)
  176. return;
  177. skb = skb_clone(skb, GFP_ATOMIC);
  178. if (!skb)
  179. return;
  180. skb->protocol = htons(ETH_P_IPV6);
  181. serr = SKB_EXT_ERR(skb);
  182. serr->ee.ee_errno = err;
  183. serr->ee.ee_origin = SO_EE_ORIGIN_ICMP6;
  184. serr->ee.ee_type = icmph->icmp6_type;
  185. serr->ee.ee_code = icmph->icmp6_code;
  186. serr->ee.ee_pad = 0;
  187. serr->ee.ee_info = info;
  188. serr->ee.ee_data = 0;
  189. serr->addr_offset = (u8 *)&(((struct ipv6hdr *)(icmph + 1))->daddr) -
  190. skb_network_header(skb);
  191. serr->port = port;
  192. __skb_pull(skb, payload - skb->data);
  193. skb_reset_transport_header(skb);
  194. if (sock_queue_err_skb(sk, skb))
  195. kfree_skb(skb);
  196. }
  197. void ipv6_local_error(struct sock *sk, int err, struct flowi6 *fl6, u32 info)
  198. {
  199. struct ipv6_pinfo *np = inet6_sk(sk);
  200. struct sock_exterr_skb *serr;
  201. struct ipv6hdr *iph;
  202. struct sk_buff *skb;
  203. if (!np->recverr)
  204. return;
  205. skb = alloc_skb(sizeof(struct ipv6hdr), GFP_ATOMIC);
  206. if (!skb)
  207. return;
  208. skb->protocol = htons(ETH_P_IPV6);
  209. skb_put(skb, sizeof(struct ipv6hdr));
  210. skb_reset_network_header(skb);
  211. iph = ipv6_hdr(skb);
  212. iph->daddr = fl6->daddr;
  213. serr = SKB_EXT_ERR(skb);
  214. serr->ee.ee_errno = err;
  215. serr->ee.ee_origin = SO_EE_ORIGIN_LOCAL;
  216. serr->ee.ee_type = 0;
  217. serr->ee.ee_code = 0;
  218. serr->ee.ee_pad = 0;
  219. serr->ee.ee_info = info;
  220. serr->ee.ee_data = 0;
  221. serr->addr_offset = (u8 *)&iph->daddr - skb_network_header(skb);
  222. serr->port = fl6->fl6_dport;
  223. __skb_pull(skb, skb_tail_pointer(skb) - skb->data);
  224. skb_reset_transport_header(skb);
  225. if (sock_queue_err_skb(sk, skb))
  226. kfree_skb(skb);
  227. }
  228. void ipv6_local_rxpmtu(struct sock *sk, struct flowi6 *fl6, u32 mtu)
  229. {
  230. struct ipv6_pinfo *np = inet6_sk(sk);
  231. struct ipv6hdr *iph;
  232. struct sk_buff *skb;
  233. struct ip6_mtuinfo *mtu_info;
  234. if (!np->rxopt.bits.rxpmtu)
  235. return;
  236. skb = alloc_skb(sizeof(struct ipv6hdr), GFP_ATOMIC);
  237. if (!skb)
  238. return;
  239. skb_put(skb, sizeof(struct ipv6hdr));
  240. skb_reset_network_header(skb);
  241. iph = ipv6_hdr(skb);
  242. iph->daddr = fl6->daddr;
  243. mtu_info = IP6CBMTU(skb);
  244. mtu_info->ip6m_mtu = mtu;
  245. mtu_info->ip6m_addr.sin6_family = AF_INET6;
  246. mtu_info->ip6m_addr.sin6_port = 0;
  247. mtu_info->ip6m_addr.sin6_flowinfo = 0;
  248. mtu_info->ip6m_addr.sin6_scope_id = fl6->flowi6_oif;
  249. mtu_info->ip6m_addr.sin6_addr = ipv6_hdr(skb)->daddr;
  250. __skb_pull(skb, skb_tail_pointer(skb) - skb->data);
  251. skb_reset_transport_header(skb);
  252. skb = xchg(&np->rxpmtu, skb);
  253. kfree_skb(skb);
  254. }
  255. /*
  256. * Handle MSG_ERRQUEUE
  257. */
  258. int ipv6_recv_error(struct sock *sk, struct msghdr *msg, int len)
  259. {
  260. struct ipv6_pinfo *np = inet6_sk(sk);
  261. struct sock_exterr_skb *serr;
  262. struct sk_buff *skb, *skb2;
  263. struct sockaddr_in6 *sin;
  264. struct {
  265. struct sock_extended_err ee;
  266. struct sockaddr_in6 offender;
  267. } errhdr;
  268. int err;
  269. int copied;
  270. err = -EAGAIN;
  271. skb = skb_dequeue(&sk->sk_error_queue);
  272. if (skb == NULL)
  273. goto out;
  274. copied = skb->len;
  275. if (copied > len) {
  276. msg->msg_flags |= MSG_TRUNC;
  277. copied = len;
  278. }
  279. err = skb_copy_datagram_iovec(skb, 0, msg->msg_iov, copied);
  280. if (err)
  281. goto out_free_skb;
  282. sock_recv_timestamp(msg, sk, skb);
  283. serr = SKB_EXT_ERR(skb);
  284. sin = (struct sockaddr_in6 *)msg->msg_name;
  285. if (sin) {
  286. const unsigned char *nh = skb_network_header(skb);
  287. sin->sin6_family = AF_INET6;
  288. sin->sin6_flowinfo = 0;
  289. sin->sin6_port = serr->port;
  290. sin->sin6_scope_id = 0;
  291. if (skb->protocol == htons(ETH_P_IPV6)) {
  292. sin->sin6_addr =
  293. *(struct in6_addr *)(nh + serr->addr_offset);
  294. if (np->sndflow)
  295. sin->sin6_flowinfo =
  296. (*(__be32 *)(nh + serr->addr_offset - 24) &
  297. IPV6_FLOWINFO_MASK);
  298. if (ipv6_addr_type(&sin->sin6_addr) & IPV6_ADDR_LINKLOCAL)
  299. sin->sin6_scope_id = IP6CB(skb)->iif;
  300. } else {
  301. ipv6_addr_set_v4mapped(*(__be32 *)(nh + serr->addr_offset),
  302. &sin->sin6_addr);
  303. }
  304. }
  305. memcpy(&errhdr.ee, &serr->ee, sizeof(struct sock_extended_err));
  306. sin = &errhdr.offender;
  307. sin->sin6_family = AF_UNSPEC;
  308. if (serr->ee.ee_origin != SO_EE_ORIGIN_LOCAL) {
  309. sin->sin6_family = AF_INET6;
  310. sin->sin6_flowinfo = 0;
  311. sin->sin6_scope_id = 0;
  312. if (skb->protocol == htons(ETH_P_IPV6)) {
  313. sin->sin6_addr = ipv6_hdr(skb)->saddr;
  314. if (np->rxopt.all)
  315. datagram_recv_ctl(sk, msg, skb);
  316. if (ipv6_addr_type(&sin->sin6_addr) & IPV6_ADDR_LINKLOCAL)
  317. sin->sin6_scope_id = IP6CB(skb)->iif;
  318. } else {
  319. struct inet_sock *inet = inet_sk(sk);
  320. ipv6_addr_set_v4mapped(ip_hdr(skb)->saddr,
  321. &sin->sin6_addr);
  322. if (inet->cmsg_flags)
  323. ip_cmsg_recv(msg, skb);
  324. }
  325. }
  326. put_cmsg(msg, SOL_IPV6, IPV6_RECVERR, sizeof(errhdr), &errhdr);
  327. /* Now we could try to dump offended packet options */
  328. msg->msg_flags |= MSG_ERRQUEUE;
  329. err = copied;
  330. /* Reset and regenerate socket error */
  331. spin_lock_bh(&sk->sk_error_queue.lock);
  332. sk->sk_err = 0;
  333. if ((skb2 = skb_peek(&sk->sk_error_queue)) != NULL) {
  334. sk->sk_err = SKB_EXT_ERR(skb2)->ee.ee_errno;
  335. spin_unlock_bh(&sk->sk_error_queue.lock);
  336. sk->sk_error_report(sk);
  337. } else {
  338. spin_unlock_bh(&sk->sk_error_queue.lock);
  339. }
  340. out_free_skb:
  341. kfree_skb(skb);
  342. out:
  343. return err;
  344. }
  345. /*
  346. * Handle IPV6_RECVPATHMTU
  347. */
  348. int ipv6_recv_rxpmtu(struct sock *sk, struct msghdr *msg, int len)
  349. {
  350. struct ipv6_pinfo *np = inet6_sk(sk);
  351. struct sk_buff *skb;
  352. struct sockaddr_in6 *sin;
  353. struct ip6_mtuinfo mtu_info;
  354. int err;
  355. int copied;
  356. err = -EAGAIN;
  357. skb = xchg(&np->rxpmtu, NULL);
  358. if (skb == NULL)
  359. goto out;
  360. copied = skb->len;
  361. if (copied > len) {
  362. msg->msg_flags |= MSG_TRUNC;
  363. copied = len;
  364. }
  365. err = skb_copy_datagram_iovec(skb, 0, msg->msg_iov, copied);
  366. if (err)
  367. goto out_free_skb;
  368. sock_recv_timestamp(msg, sk, skb);
  369. memcpy(&mtu_info, IP6CBMTU(skb), sizeof(mtu_info));
  370. sin = (struct sockaddr_in6 *)msg->msg_name;
  371. if (sin) {
  372. sin->sin6_family = AF_INET6;
  373. sin->sin6_flowinfo = 0;
  374. sin->sin6_port = 0;
  375. sin->sin6_scope_id = mtu_info.ip6m_addr.sin6_scope_id;
  376. sin->sin6_addr = mtu_info.ip6m_addr.sin6_addr;
  377. }
  378. put_cmsg(msg, SOL_IPV6, IPV6_PATHMTU, sizeof(mtu_info), &mtu_info);
  379. err = copied;
  380. out_free_skb:
  381. kfree_skb(skb);
  382. out:
  383. return err;
  384. }
  385. int datagram_recv_ctl(struct sock *sk, struct msghdr *msg, struct sk_buff *skb)
  386. {
  387. struct ipv6_pinfo *np = inet6_sk(sk);
  388. struct inet6_skb_parm *opt = IP6CB(skb);
  389. unsigned char *nh = skb_network_header(skb);
  390. if (np->rxopt.bits.rxinfo) {
  391. struct in6_pktinfo src_info;
  392. src_info.ipi6_ifindex = opt->iif;
  393. src_info.ipi6_addr = ipv6_hdr(skb)->daddr;
  394. put_cmsg(msg, SOL_IPV6, IPV6_PKTINFO, sizeof(src_info), &src_info);
  395. }
  396. if (np->rxopt.bits.rxhlim) {
  397. int hlim = ipv6_hdr(skb)->hop_limit;
  398. put_cmsg(msg, SOL_IPV6, IPV6_HOPLIMIT, sizeof(hlim), &hlim);
  399. }
  400. if (np->rxopt.bits.rxtclass) {
  401. int tclass = ipv6_tclass(ipv6_hdr(skb));
  402. put_cmsg(msg, SOL_IPV6, IPV6_TCLASS, sizeof(tclass), &tclass);
  403. }
  404. if (np->rxopt.bits.rxflow && (*(__be32 *)nh & IPV6_FLOWINFO_MASK)) {
  405. __be32 flowinfo = *(__be32 *)nh & IPV6_FLOWINFO_MASK;
  406. put_cmsg(msg, SOL_IPV6, IPV6_FLOWINFO, sizeof(flowinfo), &flowinfo);
  407. }
  408. /* HbH is allowed only once */
  409. if (np->rxopt.bits.hopopts && opt->hop) {
  410. u8 *ptr = nh + opt->hop;
  411. put_cmsg(msg, SOL_IPV6, IPV6_HOPOPTS, (ptr[1]+1)<<3, ptr);
  412. }
  413. if (opt->lastopt &&
  414. (np->rxopt.bits.dstopts || np->rxopt.bits.srcrt)) {
  415. /*
  416. * Silly enough, but we need to reparse in order to
  417. * report extension headers (except for HbH)
  418. * in order.
  419. *
  420. * Also note that IPV6_RECVRTHDRDSTOPTS is NOT
  421. * (and WILL NOT be) defined because
  422. * IPV6_RECVDSTOPTS is more generic. --yoshfuji
  423. */
  424. unsigned int off = sizeof(struct ipv6hdr);
  425. u8 nexthdr = ipv6_hdr(skb)->nexthdr;
  426. while (off <= opt->lastopt) {
  427. unsigned len;
  428. u8 *ptr = nh + off;
  429. switch(nexthdr) {
  430. case IPPROTO_DSTOPTS:
  431. nexthdr = ptr[0];
  432. len = (ptr[1] + 1) << 3;
  433. if (np->rxopt.bits.dstopts)
  434. put_cmsg(msg, SOL_IPV6, IPV6_DSTOPTS, len, ptr);
  435. break;
  436. case IPPROTO_ROUTING:
  437. nexthdr = ptr[0];
  438. len = (ptr[1] + 1) << 3;
  439. if (np->rxopt.bits.srcrt)
  440. put_cmsg(msg, SOL_IPV6, IPV6_RTHDR, len, ptr);
  441. break;
  442. case IPPROTO_AH:
  443. nexthdr = ptr[0];
  444. len = (ptr[1] + 2) << 2;
  445. break;
  446. default:
  447. nexthdr = ptr[0];
  448. len = (ptr[1] + 1) << 3;
  449. break;
  450. }
  451. off += len;
  452. }
  453. }
  454. /* socket options in old style */
  455. if (np->rxopt.bits.rxoinfo) {
  456. struct in6_pktinfo src_info;
  457. src_info.ipi6_ifindex = opt->iif;
  458. src_info.ipi6_addr = ipv6_hdr(skb)->daddr;
  459. put_cmsg(msg, SOL_IPV6, IPV6_2292PKTINFO, sizeof(src_info), &src_info);
  460. }
  461. if (np->rxopt.bits.rxohlim) {
  462. int hlim = ipv6_hdr(skb)->hop_limit;
  463. put_cmsg(msg, SOL_IPV6, IPV6_2292HOPLIMIT, sizeof(hlim), &hlim);
  464. }
  465. if (np->rxopt.bits.ohopopts && opt->hop) {
  466. u8 *ptr = nh + opt->hop;
  467. put_cmsg(msg, SOL_IPV6, IPV6_2292HOPOPTS, (ptr[1]+1)<<3, ptr);
  468. }
  469. if (np->rxopt.bits.odstopts && opt->dst0) {
  470. u8 *ptr = nh + opt->dst0;
  471. put_cmsg(msg, SOL_IPV6, IPV6_2292DSTOPTS, (ptr[1]+1)<<3, ptr);
  472. }
  473. if (np->rxopt.bits.osrcrt && opt->srcrt) {
  474. struct ipv6_rt_hdr *rthdr = (struct ipv6_rt_hdr *)(nh + opt->srcrt);
  475. put_cmsg(msg, SOL_IPV6, IPV6_2292RTHDR, (rthdr->hdrlen+1) << 3, rthdr);
  476. }
  477. if (np->rxopt.bits.odstopts && opt->dst1) {
  478. u8 *ptr = nh + opt->dst1;
  479. put_cmsg(msg, SOL_IPV6, IPV6_2292DSTOPTS, (ptr[1]+1)<<3, ptr);
  480. }
  481. if (np->rxopt.bits.rxorigdstaddr) {
  482. struct sockaddr_in6 sin6;
  483. __be16 *ports = (__be16 *) skb_transport_header(skb);
  484. if (skb_transport_offset(skb) + 4 <= skb->len) {
  485. /* All current transport protocols have the port numbers in the
  486. * first four bytes of the transport header and this function is
  487. * written with this assumption in mind.
  488. */
  489. sin6.sin6_family = AF_INET6;
  490. sin6.sin6_addr = ipv6_hdr(skb)->daddr;
  491. sin6.sin6_port = ports[1];
  492. sin6.sin6_flowinfo = 0;
  493. sin6.sin6_scope_id = 0;
  494. put_cmsg(msg, SOL_IPV6, IPV6_ORIGDSTADDR, sizeof(sin6), &sin6);
  495. }
  496. }
  497. return 0;
  498. }
  499. int datagram_send_ctl(struct net *net, struct sock *sk,
  500. struct msghdr *msg, struct flowi6 *fl6,
  501. struct ipv6_txoptions *opt,
  502. int *hlimit, int *tclass, int *dontfrag)
  503. {
  504. struct in6_pktinfo *src_info;
  505. struct cmsghdr *cmsg;
  506. struct ipv6_rt_hdr *rthdr;
  507. struct ipv6_opt_hdr *hdr;
  508. int len;
  509. int err = 0;
  510. for (cmsg = CMSG_FIRSTHDR(msg); cmsg; cmsg = CMSG_NXTHDR(msg, cmsg)) {
  511. int addr_type;
  512. if (!CMSG_OK(msg, cmsg)) {
  513. err = -EINVAL;
  514. goto exit_f;
  515. }
  516. if (cmsg->cmsg_level != SOL_IPV6)
  517. continue;
  518. switch (cmsg->cmsg_type) {
  519. case IPV6_PKTINFO:
  520. case IPV6_2292PKTINFO:
  521. {
  522. struct net_device *dev = NULL;
  523. if (cmsg->cmsg_len < CMSG_LEN(sizeof(struct in6_pktinfo))) {
  524. err = -EINVAL;
  525. goto exit_f;
  526. }
  527. src_info = (struct in6_pktinfo *)CMSG_DATA(cmsg);
  528. if (src_info->ipi6_ifindex) {
  529. if (fl6->flowi6_oif &&
  530. src_info->ipi6_ifindex != fl6->flowi6_oif)
  531. return -EINVAL;
  532. fl6->flowi6_oif = src_info->ipi6_ifindex;
  533. }
  534. addr_type = __ipv6_addr_type(&src_info->ipi6_addr);
  535. rcu_read_lock();
  536. if (fl6->flowi6_oif) {
  537. dev = dev_get_by_index_rcu(net, fl6->flowi6_oif);
  538. if (!dev) {
  539. rcu_read_unlock();
  540. return -ENODEV;
  541. }
  542. } else if (addr_type & IPV6_ADDR_LINKLOCAL) {
  543. rcu_read_unlock();
  544. return -EINVAL;
  545. }
  546. if (addr_type != IPV6_ADDR_ANY) {
  547. int strict = __ipv6_addr_src_scope(addr_type) <= IPV6_ADDR_SCOPE_LINKLOCAL;
  548. if (!(inet_sk(sk)->freebind || inet_sk(sk)->transparent) &&
  549. !ipv6_chk_addr(net, &src_info->ipi6_addr,
  550. strict ? dev : NULL, 0))
  551. err = -EINVAL;
  552. else
  553. fl6->saddr = src_info->ipi6_addr;
  554. }
  555. rcu_read_unlock();
  556. if (err)
  557. goto exit_f;
  558. break;
  559. }
  560. case IPV6_FLOWINFO:
  561. if (cmsg->cmsg_len < CMSG_LEN(4)) {
  562. err = -EINVAL;
  563. goto exit_f;
  564. }
  565. if (fl6->flowlabel&IPV6_FLOWINFO_MASK) {
  566. if ((fl6->flowlabel^*(__be32 *)CMSG_DATA(cmsg))&~IPV6_FLOWINFO_MASK) {
  567. err = -EINVAL;
  568. goto exit_f;
  569. }
  570. }
  571. fl6->flowlabel = IPV6_FLOWINFO_MASK & *(__be32 *)CMSG_DATA(cmsg);
  572. break;
  573. case IPV6_2292HOPOPTS:
  574. case IPV6_HOPOPTS:
  575. if (opt->hopopt || cmsg->cmsg_len < CMSG_LEN(sizeof(struct ipv6_opt_hdr))) {
  576. err = -EINVAL;
  577. goto exit_f;
  578. }
  579. hdr = (struct ipv6_opt_hdr *)CMSG_DATA(cmsg);
  580. len = ((hdr->hdrlen + 1) << 3);
  581. if (cmsg->cmsg_len < CMSG_LEN(len)) {
  582. err = -EINVAL;
  583. goto exit_f;
  584. }
  585. if (!capable(CAP_NET_RAW)) {
  586. err = -EPERM;
  587. goto exit_f;
  588. }
  589. opt->opt_nflen += len;
  590. opt->hopopt = hdr;
  591. break;
  592. case IPV6_2292DSTOPTS:
  593. if (cmsg->cmsg_len < CMSG_LEN(sizeof(struct ipv6_opt_hdr))) {
  594. err = -EINVAL;
  595. goto exit_f;
  596. }
  597. hdr = (struct ipv6_opt_hdr *)CMSG_DATA(cmsg);
  598. len = ((hdr->hdrlen + 1) << 3);
  599. if (cmsg->cmsg_len < CMSG_LEN(len)) {
  600. err = -EINVAL;
  601. goto exit_f;
  602. }
  603. if (!capable(CAP_NET_RAW)) {
  604. err = -EPERM;
  605. goto exit_f;
  606. }
  607. if (opt->dst1opt) {
  608. err = -EINVAL;
  609. goto exit_f;
  610. }
  611. opt->opt_flen += len;
  612. opt->dst1opt = hdr;
  613. break;
  614. case IPV6_DSTOPTS:
  615. case IPV6_RTHDRDSTOPTS:
  616. if (cmsg->cmsg_len < CMSG_LEN(sizeof(struct ipv6_opt_hdr))) {
  617. err = -EINVAL;
  618. goto exit_f;
  619. }
  620. hdr = (struct ipv6_opt_hdr *)CMSG_DATA(cmsg);
  621. len = ((hdr->hdrlen + 1) << 3);
  622. if (cmsg->cmsg_len < CMSG_LEN(len)) {
  623. err = -EINVAL;
  624. goto exit_f;
  625. }
  626. if (!capable(CAP_NET_RAW)) {
  627. err = -EPERM;
  628. goto exit_f;
  629. }
  630. if (cmsg->cmsg_type == IPV6_DSTOPTS) {
  631. opt->opt_flen += len;
  632. opt->dst1opt = hdr;
  633. } else {
  634. opt->opt_nflen += len;
  635. opt->dst0opt = hdr;
  636. }
  637. break;
  638. case IPV6_2292RTHDR:
  639. case IPV6_RTHDR:
  640. if (cmsg->cmsg_len < CMSG_LEN(sizeof(struct ipv6_rt_hdr))) {
  641. err = -EINVAL;
  642. goto exit_f;
  643. }
  644. rthdr = (struct ipv6_rt_hdr *)CMSG_DATA(cmsg);
  645. switch (rthdr->type) {
  646. #if defined(CONFIG_IPV6_MIP6) || defined(CONFIG_IPV6_MIP6_MODULE)
  647. case IPV6_SRCRT_TYPE_2:
  648. if (rthdr->hdrlen != 2 ||
  649. rthdr->segments_left != 1) {
  650. err = -EINVAL;
  651. goto exit_f;
  652. }
  653. break;
  654. #endif
  655. default:
  656. err = -EINVAL;
  657. goto exit_f;
  658. }
  659. len = ((rthdr->hdrlen + 1) << 3);
  660. if (cmsg->cmsg_len < CMSG_LEN(len)) {
  661. err = -EINVAL;
  662. goto exit_f;
  663. }
  664. /* segments left must also match */
  665. if ((rthdr->hdrlen >> 1) != rthdr->segments_left) {
  666. err = -EINVAL;
  667. goto exit_f;
  668. }
  669. opt->opt_nflen += len;
  670. opt->srcrt = rthdr;
  671. if (cmsg->cmsg_type == IPV6_2292RTHDR && opt->dst1opt) {
  672. int dsthdrlen = ((opt->dst1opt->hdrlen+1)<<3);
  673. opt->opt_nflen += dsthdrlen;
  674. opt->dst0opt = opt->dst1opt;
  675. opt->dst1opt = NULL;
  676. opt->opt_flen -= dsthdrlen;
  677. }
  678. break;
  679. case IPV6_2292HOPLIMIT:
  680. case IPV6_HOPLIMIT:
  681. if (cmsg->cmsg_len != CMSG_LEN(sizeof(int))) {
  682. err = -EINVAL;
  683. goto exit_f;
  684. }
  685. *hlimit = *(int *)CMSG_DATA(cmsg);
  686. if (*hlimit < -1 || *hlimit > 0xff) {
  687. err = -EINVAL;
  688. goto exit_f;
  689. }
  690. break;
  691. case IPV6_TCLASS:
  692. {
  693. int tc;
  694. err = -EINVAL;
  695. if (cmsg->cmsg_len != CMSG_LEN(sizeof(int))) {
  696. goto exit_f;
  697. }
  698. tc = *(int *)CMSG_DATA(cmsg);
  699. if (tc < -1 || tc > 0xff)
  700. goto exit_f;
  701. err = 0;
  702. *tclass = tc;
  703. break;
  704. }
  705. case IPV6_DONTFRAG:
  706. {
  707. int df;
  708. err = -EINVAL;
  709. if (cmsg->cmsg_len != CMSG_LEN(sizeof(int))) {
  710. goto exit_f;
  711. }
  712. df = *(int *)CMSG_DATA(cmsg);
  713. if (df < 0 || df > 1)
  714. goto exit_f;
  715. err = 0;
  716. *dontfrag = df;
  717. break;
  718. }
  719. default:
  720. LIMIT_NETDEBUG(KERN_DEBUG "invalid cmsg type: %d\n",
  721. cmsg->cmsg_type);
  722. err = -EINVAL;
  723. goto exit_f;
  724. }
  725. }
  726. exit_f:
  727. return err;
  728. }