tcp_input.c 172 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816581758185819582058215822582358245825582658275828582958305831583258335834583558365837583858395840584158425843584458455846584758485849585058515852585358545855585658575858585958605861586258635864586558665867586858695870587158725873587458755876587758785879588058815882588358845885588658875888588958905891589258935894589558965897589858995900590159025903590459055906590759085909591059115912591359145915591659175918591959205921592259235924592559265927592859295930593159325933593459355936593759385939594059415942594359445945594659475948594959505951595259535954595559565957595859595960596159625963596459655966596759685969597059715972597359745975597659775978597959805981598259835984598559865987598859895990599159925993599459955996599759985999600060016002600360046005600660076008600960106011601260136014601560166017601860196020602160226023602460256026602760286029603060316032603360346035603660376038603960406041604260436044604560466047604860496050605160526053
  1. /*
  2. * INET An implementation of the TCP/IP protocol suite for the LINUX
  3. * operating system. INET is implemented using the BSD Socket
  4. * interface as the means of communication with the user level.
  5. *
  6. * Implementation of the Transmission Control Protocol(TCP).
  7. *
  8. * Authors: Ross Biro
  9. * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
  10. * Mark Evans, <evansmp@uhura.aston.ac.uk>
  11. * Corey Minyard <wf-rch!minyard@relay.EU.net>
  12. * Florian La Roche, <flla@stud.uni-sb.de>
  13. * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
  14. * Linus Torvalds, <torvalds@cs.helsinki.fi>
  15. * Alan Cox, <gw4pts@gw4pts.ampr.org>
  16. * Matthew Dillon, <dillon@apollo.west.oic.com>
  17. * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
  18. * Jorge Cwik, <jorge@laser.satlink.net>
  19. */
  20. /*
  21. * Changes:
  22. * Pedro Roque : Fast Retransmit/Recovery.
  23. * Two receive queues.
  24. * Retransmit queue handled by TCP.
  25. * Better retransmit timer handling.
  26. * New congestion avoidance.
  27. * Header prediction.
  28. * Variable renaming.
  29. *
  30. * Eric : Fast Retransmit.
  31. * Randy Scott : MSS option defines.
  32. * Eric Schenk : Fixes to slow start algorithm.
  33. * Eric Schenk : Yet another double ACK bug.
  34. * Eric Schenk : Delayed ACK bug fixes.
  35. * Eric Schenk : Floyd style fast retrans war avoidance.
  36. * David S. Miller : Don't allow zero congestion window.
  37. * Eric Schenk : Fix retransmitter so that it sends
  38. * next packet on ack of previous packet.
  39. * Andi Kleen : Moved open_request checking here
  40. * and process RSTs for open_requests.
  41. * Andi Kleen : Better prune_queue, and other fixes.
  42. * Andrey Savochkin: Fix RTT measurements in the presence of
  43. * timestamps.
  44. * Andrey Savochkin: Check sequence numbers correctly when
  45. * removing SACKs due to in sequence incoming
  46. * data segments.
  47. * Andi Kleen: Make sure we never ack data there is not
  48. * enough room for. Also make this condition
  49. * a fatal error if it might still happen.
  50. * Andi Kleen: Add tcp_measure_rcv_mss to make
  51. * connections with MSS<min(MTU,ann. MSS)
  52. * work without delayed acks.
  53. * Andi Kleen: Process packets with PSH set in the
  54. * fast path.
  55. * J Hadi Salim: ECN support
  56. * Andrei Gurtov,
  57. * Pasi Sarolahti,
  58. * Panu Kuhlberg: Experimental audit of TCP (re)transmission
  59. * engine. Lots of bugs are found.
  60. * Pasi Sarolahti: F-RTO for dealing with spurious RTOs
  61. */
  62. #define pr_fmt(fmt) "TCP: " fmt
  63. #include <linux/mm.h>
  64. #include <linux/slab.h>
  65. #include <linux/module.h>
  66. #include <linux/sysctl.h>
  67. #include <linux/kernel.h>
  68. #include <net/dst.h>
  69. #include <net/tcp.h>
  70. #include <net/inet_common.h>
  71. #include <linux/ipsec.h>
  72. #include <asm/unaligned.h>
  73. #include <net/netdma.h>
  74. int sysctl_tcp_timestamps __read_mostly = 1;
  75. int sysctl_tcp_window_scaling __read_mostly = 1;
  76. int sysctl_tcp_sack __read_mostly = 1;
  77. int sysctl_tcp_fack __read_mostly = 1;
  78. int sysctl_tcp_reordering __read_mostly = TCP_FASTRETRANS_THRESH;
  79. EXPORT_SYMBOL(sysctl_tcp_reordering);
  80. int sysctl_tcp_ecn __read_mostly = 2;
  81. EXPORT_SYMBOL(sysctl_tcp_ecn);
  82. int sysctl_tcp_dsack __read_mostly = 1;
  83. int sysctl_tcp_app_win __read_mostly = 31;
  84. int sysctl_tcp_adv_win_scale __read_mostly = 2;
  85. EXPORT_SYMBOL(sysctl_tcp_adv_win_scale);
  86. int sysctl_tcp_stdurg __read_mostly;
  87. int sysctl_tcp_rfc1337 __read_mostly;
  88. int sysctl_tcp_max_orphans __read_mostly = NR_FILE;
  89. int sysctl_tcp_frto __read_mostly = 2;
  90. int sysctl_tcp_frto_response __read_mostly;
  91. int sysctl_tcp_nometrics_save __read_mostly;
  92. int sysctl_tcp_thin_dupack __read_mostly;
  93. int sysctl_tcp_moderate_rcvbuf __read_mostly = 1;
  94. int sysctl_tcp_abc __read_mostly;
  95. #define FLAG_DATA 0x01 /* Incoming frame contained data. */
  96. #define FLAG_WIN_UPDATE 0x02 /* Incoming ACK was a window update. */
  97. #define FLAG_DATA_ACKED 0x04 /* This ACK acknowledged new data. */
  98. #define FLAG_RETRANS_DATA_ACKED 0x08 /* "" "" some of which was retransmitted. */
  99. #define FLAG_SYN_ACKED 0x10 /* This ACK acknowledged SYN. */
  100. #define FLAG_DATA_SACKED 0x20 /* New SACK. */
  101. #define FLAG_ECE 0x40 /* ECE in this ACK */
  102. #define FLAG_SLOWPATH 0x100 /* Do not skip RFC checks for window update.*/
  103. #define FLAG_ONLY_ORIG_SACKED 0x200 /* SACKs only non-rexmit sent before RTO */
  104. #define FLAG_SND_UNA_ADVANCED 0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */
  105. #define FLAG_DSACKING_ACK 0x800 /* SACK blocks contained D-SACK info */
  106. #define FLAG_NONHEAD_RETRANS_ACKED 0x1000 /* Non-head rexmitted data was ACKed */
  107. #define FLAG_SACK_RENEGING 0x2000 /* snd_una advanced to a sacked seq */
  108. #define FLAG_ACKED (FLAG_DATA_ACKED|FLAG_SYN_ACKED)
  109. #define FLAG_NOT_DUP (FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
  110. #define FLAG_CA_ALERT (FLAG_DATA_SACKED|FLAG_ECE)
  111. #define FLAG_FORWARD_PROGRESS (FLAG_ACKED|FLAG_DATA_SACKED)
  112. #define FLAG_ANY_PROGRESS (FLAG_FORWARD_PROGRESS|FLAG_SND_UNA_ADVANCED)
  113. #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
  114. #define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH))
  115. /* Adapt the MSS value used to make delayed ack decision to the
  116. * real world.
  117. */
  118. static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb)
  119. {
  120. struct inet_connection_sock *icsk = inet_csk(sk);
  121. const unsigned int lss = icsk->icsk_ack.last_seg_size;
  122. unsigned int len;
  123. icsk->icsk_ack.last_seg_size = 0;
  124. /* skb->len may jitter because of SACKs, even if peer
  125. * sends good full-sized frames.
  126. */
  127. len = skb_shinfo(skb)->gso_size ? : skb->len;
  128. if (len >= icsk->icsk_ack.rcv_mss) {
  129. icsk->icsk_ack.rcv_mss = len;
  130. } else {
  131. /* Otherwise, we make more careful check taking into account,
  132. * that SACKs block is variable.
  133. *
  134. * "len" is invariant segment length, including TCP header.
  135. */
  136. len += skb->data - skb_transport_header(skb);
  137. if (len >= TCP_MSS_DEFAULT + sizeof(struct tcphdr) ||
  138. /* If PSH is not set, packet should be
  139. * full sized, provided peer TCP is not badly broken.
  140. * This observation (if it is correct 8)) allows
  141. * to handle super-low mtu links fairly.
  142. */
  143. (len >= TCP_MIN_MSS + sizeof(struct tcphdr) &&
  144. !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) {
  145. /* Subtract also invariant (if peer is RFC compliant),
  146. * tcp header plus fixed timestamp option length.
  147. * Resulting "len" is MSS free of SACK jitter.
  148. */
  149. len -= tcp_sk(sk)->tcp_header_len;
  150. icsk->icsk_ack.last_seg_size = len;
  151. if (len == lss) {
  152. icsk->icsk_ack.rcv_mss = len;
  153. return;
  154. }
  155. }
  156. if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)
  157. icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2;
  158. icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
  159. }
  160. }
  161. static void tcp_incr_quickack(struct sock *sk)
  162. {
  163. struct inet_connection_sock *icsk = inet_csk(sk);
  164. unsigned quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss);
  165. if (quickacks == 0)
  166. quickacks = 2;
  167. if (quickacks > icsk->icsk_ack.quick)
  168. icsk->icsk_ack.quick = min(quickacks, TCP_MAX_QUICKACKS);
  169. }
  170. static void tcp_enter_quickack_mode(struct sock *sk)
  171. {
  172. struct inet_connection_sock *icsk = inet_csk(sk);
  173. tcp_incr_quickack(sk);
  174. icsk->icsk_ack.pingpong = 0;
  175. icsk->icsk_ack.ato = TCP_ATO_MIN;
  176. }
  177. /* Send ACKs quickly, if "quick" count is not exhausted
  178. * and the session is not interactive.
  179. */
  180. static inline int tcp_in_quickack_mode(const struct sock *sk)
  181. {
  182. const struct inet_connection_sock *icsk = inet_csk(sk);
  183. return icsk->icsk_ack.quick && !icsk->icsk_ack.pingpong;
  184. }
  185. static inline void TCP_ECN_queue_cwr(struct tcp_sock *tp)
  186. {
  187. if (tp->ecn_flags & TCP_ECN_OK)
  188. tp->ecn_flags |= TCP_ECN_QUEUE_CWR;
  189. }
  190. static inline void TCP_ECN_accept_cwr(struct tcp_sock *tp, const struct sk_buff *skb)
  191. {
  192. if (tcp_hdr(skb)->cwr)
  193. tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
  194. }
  195. static inline void TCP_ECN_withdraw_cwr(struct tcp_sock *tp)
  196. {
  197. tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
  198. }
  199. static inline void TCP_ECN_check_ce(struct tcp_sock *tp, const struct sk_buff *skb)
  200. {
  201. if (!(tp->ecn_flags & TCP_ECN_OK))
  202. return;
  203. switch (TCP_SKB_CB(skb)->ip_dsfield & INET_ECN_MASK) {
  204. case INET_ECN_NOT_ECT:
  205. /* Funny extension: if ECT is not set on a segment,
  206. * and we already seen ECT on a previous segment,
  207. * it is probably a retransmit.
  208. */
  209. if (tp->ecn_flags & TCP_ECN_SEEN)
  210. tcp_enter_quickack_mode((struct sock *)tp);
  211. break;
  212. case INET_ECN_CE:
  213. tp->ecn_flags |= TCP_ECN_DEMAND_CWR;
  214. /* fallinto */
  215. default:
  216. tp->ecn_flags |= TCP_ECN_SEEN;
  217. }
  218. }
  219. static inline void TCP_ECN_rcv_synack(struct tcp_sock *tp, const struct tcphdr *th)
  220. {
  221. if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || th->cwr))
  222. tp->ecn_flags &= ~TCP_ECN_OK;
  223. }
  224. static inline void TCP_ECN_rcv_syn(struct tcp_sock *tp, const struct tcphdr *th)
  225. {
  226. if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || !th->cwr))
  227. tp->ecn_flags &= ~TCP_ECN_OK;
  228. }
  229. static inline int TCP_ECN_rcv_ecn_echo(const struct tcp_sock *tp, const struct tcphdr *th)
  230. {
  231. if (th->ece && !th->syn && (tp->ecn_flags & TCP_ECN_OK))
  232. return 1;
  233. return 0;
  234. }
  235. /* Buffer size and advertised window tuning.
  236. *
  237. * 1. Tuning sk->sk_sndbuf, when connection enters established state.
  238. */
  239. static void tcp_fixup_sndbuf(struct sock *sk)
  240. {
  241. int sndmem = SKB_TRUESIZE(tcp_sk(sk)->rx_opt.mss_clamp + MAX_TCP_HEADER);
  242. sndmem *= TCP_INIT_CWND;
  243. if (sk->sk_sndbuf < sndmem)
  244. sk->sk_sndbuf = min(sndmem, sysctl_tcp_wmem[2]);
  245. }
  246. /* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
  247. *
  248. * All tcp_full_space() is split to two parts: "network" buffer, allocated
  249. * forward and advertised in receiver window (tp->rcv_wnd) and
  250. * "application buffer", required to isolate scheduling/application
  251. * latencies from network.
  252. * window_clamp is maximal advertised window. It can be less than
  253. * tcp_full_space(), in this case tcp_full_space() - window_clamp
  254. * is reserved for "application" buffer. The less window_clamp is
  255. * the smoother our behaviour from viewpoint of network, but the lower
  256. * throughput and the higher sensitivity of the connection to losses. 8)
  257. *
  258. * rcv_ssthresh is more strict window_clamp used at "slow start"
  259. * phase to predict further behaviour of this connection.
  260. * It is used for two goals:
  261. * - to enforce header prediction at sender, even when application
  262. * requires some significant "application buffer". It is check #1.
  263. * - to prevent pruning of receive queue because of misprediction
  264. * of receiver window. Check #2.
  265. *
  266. * The scheme does not work when sender sends good segments opening
  267. * window and then starts to feed us spaghetti. But it should work
  268. * in common situations. Otherwise, we have to rely on queue collapsing.
  269. */
  270. /* Slow part of check#2. */
  271. static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb)
  272. {
  273. struct tcp_sock *tp = tcp_sk(sk);
  274. /* Optimize this! */
  275. int truesize = tcp_win_from_space(skb->truesize) >> 1;
  276. int window = tcp_win_from_space(sysctl_tcp_rmem[2]) >> 1;
  277. while (tp->rcv_ssthresh <= window) {
  278. if (truesize <= skb->len)
  279. return 2 * inet_csk(sk)->icsk_ack.rcv_mss;
  280. truesize >>= 1;
  281. window >>= 1;
  282. }
  283. return 0;
  284. }
  285. static void tcp_grow_window(struct sock *sk, const struct sk_buff *skb)
  286. {
  287. struct tcp_sock *tp = tcp_sk(sk);
  288. /* Check #1 */
  289. if (tp->rcv_ssthresh < tp->window_clamp &&
  290. (int)tp->rcv_ssthresh < tcp_space(sk) &&
  291. !sk_under_memory_pressure(sk)) {
  292. int incr;
  293. /* Check #2. Increase window, if skb with such overhead
  294. * will fit to rcvbuf in future.
  295. */
  296. if (tcp_win_from_space(skb->truesize) <= skb->len)
  297. incr = 2 * tp->advmss;
  298. else
  299. incr = __tcp_grow_window(sk, skb);
  300. if (incr) {
  301. tp->rcv_ssthresh = min(tp->rcv_ssthresh + incr,
  302. tp->window_clamp);
  303. inet_csk(sk)->icsk_ack.quick |= 1;
  304. }
  305. }
  306. }
  307. /* 3. Tuning rcvbuf, when connection enters established state. */
  308. static void tcp_fixup_rcvbuf(struct sock *sk)
  309. {
  310. u32 mss = tcp_sk(sk)->advmss;
  311. u32 icwnd = TCP_DEFAULT_INIT_RCVWND;
  312. int rcvmem;
  313. /* Limit to 10 segments if mss <= 1460,
  314. * or 14600/mss segments, with a minimum of two segments.
  315. */
  316. if (mss > 1460)
  317. icwnd = max_t(u32, (1460 * TCP_DEFAULT_INIT_RCVWND) / mss, 2);
  318. rcvmem = SKB_TRUESIZE(mss + MAX_TCP_HEADER);
  319. while (tcp_win_from_space(rcvmem) < mss)
  320. rcvmem += 128;
  321. rcvmem *= icwnd;
  322. if (sk->sk_rcvbuf < rcvmem)
  323. sk->sk_rcvbuf = min(rcvmem, sysctl_tcp_rmem[2]);
  324. }
  325. /* 4. Try to fixup all. It is made immediately after connection enters
  326. * established state.
  327. */
  328. static void tcp_init_buffer_space(struct sock *sk)
  329. {
  330. struct tcp_sock *tp = tcp_sk(sk);
  331. int maxwin;
  332. if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK))
  333. tcp_fixup_rcvbuf(sk);
  334. if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK))
  335. tcp_fixup_sndbuf(sk);
  336. tp->rcvq_space.space = tp->rcv_wnd;
  337. maxwin = tcp_full_space(sk);
  338. if (tp->window_clamp >= maxwin) {
  339. tp->window_clamp = maxwin;
  340. if (sysctl_tcp_app_win && maxwin > 4 * tp->advmss)
  341. tp->window_clamp = max(maxwin -
  342. (maxwin >> sysctl_tcp_app_win),
  343. 4 * tp->advmss);
  344. }
  345. /* Force reservation of one segment. */
  346. if (sysctl_tcp_app_win &&
  347. tp->window_clamp > 2 * tp->advmss &&
  348. tp->window_clamp + tp->advmss > maxwin)
  349. tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss);
  350. tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp);
  351. tp->snd_cwnd_stamp = tcp_time_stamp;
  352. }
  353. /* 5. Recalculate window clamp after socket hit its memory bounds. */
  354. static void tcp_clamp_window(struct sock *sk)
  355. {
  356. struct tcp_sock *tp = tcp_sk(sk);
  357. struct inet_connection_sock *icsk = inet_csk(sk);
  358. icsk->icsk_ack.quick = 0;
  359. if (sk->sk_rcvbuf < sysctl_tcp_rmem[2] &&
  360. !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) &&
  361. !sk_under_memory_pressure(sk) &&
  362. sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)) {
  363. sk->sk_rcvbuf = min(atomic_read(&sk->sk_rmem_alloc),
  364. sysctl_tcp_rmem[2]);
  365. }
  366. if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf)
  367. tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss);
  368. }
  369. /* Initialize RCV_MSS value.
  370. * RCV_MSS is an our guess about MSS used by the peer.
  371. * We haven't any direct information about the MSS.
  372. * It's better to underestimate the RCV_MSS rather than overestimate.
  373. * Overestimations make us ACKing less frequently than needed.
  374. * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
  375. */
  376. void tcp_initialize_rcv_mss(struct sock *sk)
  377. {
  378. const struct tcp_sock *tp = tcp_sk(sk);
  379. unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache);
  380. hint = min(hint, tp->rcv_wnd / 2);
  381. hint = min(hint, TCP_MSS_DEFAULT);
  382. hint = max(hint, TCP_MIN_MSS);
  383. inet_csk(sk)->icsk_ack.rcv_mss = hint;
  384. }
  385. EXPORT_SYMBOL(tcp_initialize_rcv_mss);
  386. /* Receiver "autotuning" code.
  387. *
  388. * The algorithm for RTT estimation w/o timestamps is based on
  389. * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
  390. * <http://public.lanl.gov/radiant/pubs.html#DRS>
  391. *
  392. * More detail on this code can be found at
  393. * <http://staff.psc.edu/jheffner/>,
  394. * though this reference is out of date. A new paper
  395. * is pending.
  396. */
  397. static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep)
  398. {
  399. u32 new_sample = tp->rcv_rtt_est.rtt;
  400. long m = sample;
  401. if (m == 0)
  402. m = 1;
  403. if (new_sample != 0) {
  404. /* If we sample in larger samples in the non-timestamp
  405. * case, we could grossly overestimate the RTT especially
  406. * with chatty applications or bulk transfer apps which
  407. * are stalled on filesystem I/O.
  408. *
  409. * Also, since we are only going for a minimum in the
  410. * non-timestamp case, we do not smooth things out
  411. * else with timestamps disabled convergence takes too
  412. * long.
  413. */
  414. if (!win_dep) {
  415. m -= (new_sample >> 3);
  416. new_sample += m;
  417. } else if (m < new_sample)
  418. new_sample = m << 3;
  419. } else {
  420. /* No previous measure. */
  421. new_sample = m << 3;
  422. }
  423. if (tp->rcv_rtt_est.rtt != new_sample)
  424. tp->rcv_rtt_est.rtt = new_sample;
  425. }
  426. static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp)
  427. {
  428. if (tp->rcv_rtt_est.time == 0)
  429. goto new_measure;
  430. if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq))
  431. return;
  432. tcp_rcv_rtt_update(tp, jiffies - tp->rcv_rtt_est.time, 1);
  433. new_measure:
  434. tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd;
  435. tp->rcv_rtt_est.time = tcp_time_stamp;
  436. }
  437. static inline void tcp_rcv_rtt_measure_ts(struct sock *sk,
  438. const struct sk_buff *skb)
  439. {
  440. struct tcp_sock *tp = tcp_sk(sk);
  441. if (tp->rx_opt.rcv_tsecr &&
  442. (TCP_SKB_CB(skb)->end_seq -
  443. TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss))
  444. tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rx_opt.rcv_tsecr, 0);
  445. }
  446. /*
  447. * This function should be called every time data is copied to user space.
  448. * It calculates the appropriate TCP receive buffer space.
  449. */
  450. void tcp_rcv_space_adjust(struct sock *sk)
  451. {
  452. struct tcp_sock *tp = tcp_sk(sk);
  453. int time;
  454. int space;
  455. if (tp->rcvq_space.time == 0)
  456. goto new_measure;
  457. time = tcp_time_stamp - tp->rcvq_space.time;
  458. if (time < (tp->rcv_rtt_est.rtt >> 3) || tp->rcv_rtt_est.rtt == 0)
  459. return;
  460. space = 2 * (tp->copied_seq - tp->rcvq_space.seq);
  461. space = max(tp->rcvq_space.space, space);
  462. if (tp->rcvq_space.space != space) {
  463. int rcvmem;
  464. tp->rcvq_space.space = space;
  465. if (sysctl_tcp_moderate_rcvbuf &&
  466. !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
  467. int new_clamp = space;
  468. /* Receive space grows, normalize in order to
  469. * take into account packet headers and sk_buff
  470. * structure overhead.
  471. */
  472. space /= tp->advmss;
  473. if (!space)
  474. space = 1;
  475. rcvmem = SKB_TRUESIZE(tp->advmss + MAX_TCP_HEADER);
  476. while (tcp_win_from_space(rcvmem) < tp->advmss)
  477. rcvmem += 128;
  478. space *= rcvmem;
  479. space = min(space, sysctl_tcp_rmem[2]);
  480. if (space > sk->sk_rcvbuf) {
  481. sk->sk_rcvbuf = space;
  482. /* Make the window clamp follow along. */
  483. tp->window_clamp = new_clamp;
  484. }
  485. }
  486. }
  487. new_measure:
  488. tp->rcvq_space.seq = tp->copied_seq;
  489. tp->rcvq_space.time = tcp_time_stamp;
  490. }
  491. /* There is something which you must keep in mind when you analyze the
  492. * behavior of the tp->ato delayed ack timeout interval. When a
  493. * connection starts up, we want to ack as quickly as possible. The
  494. * problem is that "good" TCP's do slow start at the beginning of data
  495. * transmission. The means that until we send the first few ACK's the
  496. * sender will sit on his end and only queue most of his data, because
  497. * he can only send snd_cwnd unacked packets at any given time. For
  498. * each ACK we send, he increments snd_cwnd and transmits more of his
  499. * queue. -DaveM
  500. */
  501. static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb)
  502. {
  503. struct tcp_sock *tp = tcp_sk(sk);
  504. struct inet_connection_sock *icsk = inet_csk(sk);
  505. u32 now;
  506. inet_csk_schedule_ack(sk);
  507. tcp_measure_rcv_mss(sk, skb);
  508. tcp_rcv_rtt_measure(tp);
  509. now = tcp_time_stamp;
  510. if (!icsk->icsk_ack.ato) {
  511. /* The _first_ data packet received, initialize
  512. * delayed ACK engine.
  513. */
  514. tcp_incr_quickack(sk);
  515. icsk->icsk_ack.ato = TCP_ATO_MIN;
  516. } else {
  517. int m = now - icsk->icsk_ack.lrcvtime;
  518. if (m <= TCP_ATO_MIN / 2) {
  519. /* The fastest case is the first. */
  520. icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2;
  521. } else if (m < icsk->icsk_ack.ato) {
  522. icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m;
  523. if (icsk->icsk_ack.ato > icsk->icsk_rto)
  524. icsk->icsk_ack.ato = icsk->icsk_rto;
  525. } else if (m > icsk->icsk_rto) {
  526. /* Too long gap. Apparently sender failed to
  527. * restart window, so that we send ACKs quickly.
  528. */
  529. tcp_incr_quickack(sk);
  530. sk_mem_reclaim(sk);
  531. }
  532. }
  533. icsk->icsk_ack.lrcvtime = now;
  534. TCP_ECN_check_ce(tp, skb);
  535. if (skb->len >= 128)
  536. tcp_grow_window(sk, skb);
  537. }
  538. /* Called to compute a smoothed rtt estimate. The data fed to this
  539. * routine either comes from timestamps, or from segments that were
  540. * known _not_ to have been retransmitted [see Karn/Partridge
  541. * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
  542. * piece by Van Jacobson.
  543. * NOTE: the next three routines used to be one big routine.
  544. * To save cycles in the RFC 1323 implementation it was better to break
  545. * it up into three procedures. -- erics
  546. */
  547. static void tcp_rtt_estimator(struct sock *sk, const __u32 mrtt)
  548. {
  549. struct tcp_sock *tp = tcp_sk(sk);
  550. long m = mrtt; /* RTT */
  551. /* The following amusing code comes from Jacobson's
  552. * article in SIGCOMM '88. Note that rtt and mdev
  553. * are scaled versions of rtt and mean deviation.
  554. * This is designed to be as fast as possible
  555. * m stands for "measurement".
  556. *
  557. * On a 1990 paper the rto value is changed to:
  558. * RTO = rtt + 4 * mdev
  559. *
  560. * Funny. This algorithm seems to be very broken.
  561. * These formulae increase RTO, when it should be decreased, increase
  562. * too slowly, when it should be increased quickly, decrease too quickly
  563. * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
  564. * does not matter how to _calculate_ it. Seems, it was trap
  565. * that VJ failed to avoid. 8)
  566. */
  567. if (m == 0)
  568. m = 1;
  569. if (tp->srtt != 0) {
  570. m -= (tp->srtt >> 3); /* m is now error in rtt est */
  571. tp->srtt += m; /* rtt = 7/8 rtt + 1/8 new */
  572. if (m < 0) {
  573. m = -m; /* m is now abs(error) */
  574. m -= (tp->mdev >> 2); /* similar update on mdev */
  575. /* This is similar to one of Eifel findings.
  576. * Eifel blocks mdev updates when rtt decreases.
  577. * This solution is a bit different: we use finer gain
  578. * for mdev in this case (alpha*beta).
  579. * Like Eifel it also prevents growth of rto,
  580. * but also it limits too fast rto decreases,
  581. * happening in pure Eifel.
  582. */
  583. if (m > 0)
  584. m >>= 3;
  585. } else {
  586. m -= (tp->mdev >> 2); /* similar update on mdev */
  587. }
  588. tp->mdev += m; /* mdev = 3/4 mdev + 1/4 new */
  589. if (tp->mdev > tp->mdev_max) {
  590. tp->mdev_max = tp->mdev;
  591. if (tp->mdev_max > tp->rttvar)
  592. tp->rttvar = tp->mdev_max;
  593. }
  594. if (after(tp->snd_una, tp->rtt_seq)) {
  595. if (tp->mdev_max < tp->rttvar)
  596. tp->rttvar -= (tp->rttvar - tp->mdev_max) >> 2;
  597. tp->rtt_seq = tp->snd_nxt;
  598. tp->mdev_max = tcp_rto_min(sk);
  599. }
  600. } else {
  601. /* no previous measure. */
  602. tp->srtt = m << 3; /* take the measured time to be rtt */
  603. tp->mdev = m << 1; /* make sure rto = 3*rtt */
  604. tp->mdev_max = tp->rttvar = max(tp->mdev, tcp_rto_min(sk));
  605. tp->rtt_seq = tp->snd_nxt;
  606. }
  607. }
  608. /* Calculate rto without backoff. This is the second half of Van Jacobson's
  609. * routine referred to above.
  610. */
  611. static inline void tcp_set_rto(struct sock *sk)
  612. {
  613. const struct tcp_sock *tp = tcp_sk(sk);
  614. /* Old crap is replaced with new one. 8)
  615. *
  616. * More seriously:
  617. * 1. If rtt variance happened to be less 50msec, it is hallucination.
  618. * It cannot be less due to utterly erratic ACK generation made
  619. * at least by solaris and freebsd. "Erratic ACKs" has _nothing_
  620. * to do with delayed acks, because at cwnd>2 true delack timeout
  621. * is invisible. Actually, Linux-2.4 also generates erratic
  622. * ACKs in some circumstances.
  623. */
  624. inet_csk(sk)->icsk_rto = __tcp_set_rto(tp);
  625. /* 2. Fixups made earlier cannot be right.
  626. * If we do not estimate RTO correctly without them,
  627. * all the algo is pure shit and should be replaced
  628. * with correct one. It is exactly, which we pretend to do.
  629. */
  630. /* NOTE: clamping at TCP_RTO_MIN is not required, current algo
  631. * guarantees that rto is higher.
  632. */
  633. tcp_bound_rto(sk);
  634. }
  635. /* Save metrics learned by this TCP session.
  636. This function is called only, when TCP finishes successfully
  637. i.e. when it enters TIME-WAIT or goes from LAST-ACK to CLOSE.
  638. */
  639. void tcp_update_metrics(struct sock *sk)
  640. {
  641. struct tcp_sock *tp = tcp_sk(sk);
  642. struct dst_entry *dst = __sk_dst_get(sk);
  643. if (sysctl_tcp_nometrics_save)
  644. return;
  645. dst_confirm(dst);
  646. if (dst && (dst->flags & DST_HOST)) {
  647. const struct inet_connection_sock *icsk = inet_csk(sk);
  648. int m;
  649. unsigned long rtt;
  650. if (icsk->icsk_backoff || !tp->srtt) {
  651. /* This session failed to estimate rtt. Why?
  652. * Probably, no packets returned in time.
  653. * Reset our results.
  654. */
  655. if (!(dst_metric_locked(dst, RTAX_RTT)))
  656. dst_metric_set(dst, RTAX_RTT, 0);
  657. return;
  658. }
  659. rtt = dst_metric_rtt(dst, RTAX_RTT);
  660. m = rtt - tp->srtt;
  661. /* If newly calculated rtt larger than stored one,
  662. * store new one. Otherwise, use EWMA. Remember,
  663. * rtt overestimation is always better than underestimation.
  664. */
  665. if (!(dst_metric_locked(dst, RTAX_RTT))) {
  666. if (m <= 0)
  667. set_dst_metric_rtt(dst, RTAX_RTT, tp->srtt);
  668. else
  669. set_dst_metric_rtt(dst, RTAX_RTT, rtt - (m >> 3));
  670. }
  671. if (!(dst_metric_locked(dst, RTAX_RTTVAR))) {
  672. unsigned long var;
  673. if (m < 0)
  674. m = -m;
  675. /* Scale deviation to rttvar fixed point */
  676. m >>= 1;
  677. if (m < tp->mdev)
  678. m = tp->mdev;
  679. var = dst_metric_rtt(dst, RTAX_RTTVAR);
  680. if (m >= var)
  681. var = m;
  682. else
  683. var -= (var - m) >> 2;
  684. set_dst_metric_rtt(dst, RTAX_RTTVAR, var);
  685. }
  686. if (tcp_in_initial_slowstart(tp)) {
  687. /* Slow start still did not finish. */
  688. if (dst_metric(dst, RTAX_SSTHRESH) &&
  689. !dst_metric_locked(dst, RTAX_SSTHRESH) &&
  690. (tp->snd_cwnd >> 1) > dst_metric(dst, RTAX_SSTHRESH))
  691. dst_metric_set(dst, RTAX_SSTHRESH, tp->snd_cwnd >> 1);
  692. if (!dst_metric_locked(dst, RTAX_CWND) &&
  693. tp->snd_cwnd > dst_metric(dst, RTAX_CWND))
  694. dst_metric_set(dst, RTAX_CWND, tp->snd_cwnd);
  695. } else if (tp->snd_cwnd > tp->snd_ssthresh &&
  696. icsk->icsk_ca_state == TCP_CA_Open) {
  697. /* Cong. avoidance phase, cwnd is reliable. */
  698. if (!dst_metric_locked(dst, RTAX_SSTHRESH))
  699. dst_metric_set(dst, RTAX_SSTHRESH,
  700. max(tp->snd_cwnd >> 1, tp->snd_ssthresh));
  701. if (!dst_metric_locked(dst, RTAX_CWND))
  702. dst_metric_set(dst, RTAX_CWND,
  703. (dst_metric(dst, RTAX_CWND) +
  704. tp->snd_cwnd) >> 1);
  705. } else {
  706. /* Else slow start did not finish, cwnd is non-sense,
  707. ssthresh may be also invalid.
  708. */
  709. if (!dst_metric_locked(dst, RTAX_CWND))
  710. dst_metric_set(dst, RTAX_CWND,
  711. (dst_metric(dst, RTAX_CWND) +
  712. tp->snd_ssthresh) >> 1);
  713. if (dst_metric(dst, RTAX_SSTHRESH) &&
  714. !dst_metric_locked(dst, RTAX_SSTHRESH) &&
  715. tp->snd_ssthresh > dst_metric(dst, RTAX_SSTHRESH))
  716. dst_metric_set(dst, RTAX_SSTHRESH, tp->snd_ssthresh);
  717. }
  718. if (!dst_metric_locked(dst, RTAX_REORDERING)) {
  719. if (dst_metric(dst, RTAX_REORDERING) < tp->reordering &&
  720. tp->reordering != sysctl_tcp_reordering)
  721. dst_metric_set(dst, RTAX_REORDERING, tp->reordering);
  722. }
  723. }
  724. }
  725. __u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst)
  726. {
  727. __u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0);
  728. if (!cwnd)
  729. cwnd = TCP_INIT_CWND;
  730. return min_t(__u32, cwnd, tp->snd_cwnd_clamp);
  731. }
  732. /* Set slow start threshold and cwnd not falling to slow start */
  733. void tcp_enter_cwr(struct sock *sk, const int set_ssthresh)
  734. {
  735. struct tcp_sock *tp = tcp_sk(sk);
  736. const struct inet_connection_sock *icsk = inet_csk(sk);
  737. tp->prior_ssthresh = 0;
  738. tp->bytes_acked = 0;
  739. if (icsk->icsk_ca_state < TCP_CA_CWR) {
  740. tp->undo_marker = 0;
  741. if (set_ssthresh)
  742. tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
  743. tp->snd_cwnd = min(tp->snd_cwnd,
  744. tcp_packets_in_flight(tp) + 1U);
  745. tp->snd_cwnd_cnt = 0;
  746. tp->high_seq = tp->snd_nxt;
  747. tp->snd_cwnd_stamp = tcp_time_stamp;
  748. TCP_ECN_queue_cwr(tp);
  749. tcp_set_ca_state(sk, TCP_CA_CWR);
  750. }
  751. }
  752. /*
  753. * Packet counting of FACK is based on in-order assumptions, therefore TCP
  754. * disables it when reordering is detected
  755. */
  756. static void tcp_disable_fack(struct tcp_sock *tp)
  757. {
  758. /* RFC3517 uses different metric in lost marker => reset on change */
  759. if (tcp_is_fack(tp))
  760. tp->lost_skb_hint = NULL;
  761. tp->rx_opt.sack_ok &= ~TCP_FACK_ENABLED;
  762. }
  763. /* Take a notice that peer is sending D-SACKs */
  764. static void tcp_dsack_seen(struct tcp_sock *tp)
  765. {
  766. tp->rx_opt.sack_ok |= TCP_DSACK_SEEN;
  767. }
  768. /* Initialize metrics on socket. */
  769. static void tcp_init_metrics(struct sock *sk)
  770. {
  771. struct tcp_sock *tp = tcp_sk(sk);
  772. struct dst_entry *dst = __sk_dst_get(sk);
  773. if (dst == NULL)
  774. goto reset;
  775. dst_confirm(dst);
  776. if (dst_metric_locked(dst, RTAX_CWND))
  777. tp->snd_cwnd_clamp = dst_metric(dst, RTAX_CWND);
  778. if (dst_metric(dst, RTAX_SSTHRESH)) {
  779. tp->snd_ssthresh = dst_metric(dst, RTAX_SSTHRESH);
  780. if (tp->snd_ssthresh > tp->snd_cwnd_clamp)
  781. tp->snd_ssthresh = tp->snd_cwnd_clamp;
  782. } else {
  783. /* ssthresh may have been reduced unnecessarily during.
  784. * 3WHS. Restore it back to its initial default.
  785. */
  786. tp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
  787. }
  788. if (dst_metric(dst, RTAX_REORDERING) &&
  789. tp->reordering != dst_metric(dst, RTAX_REORDERING)) {
  790. tcp_disable_fack(tp);
  791. tp->reordering = dst_metric(dst, RTAX_REORDERING);
  792. }
  793. if (dst_metric(dst, RTAX_RTT) == 0 || tp->srtt == 0)
  794. goto reset;
  795. /* Initial rtt is determined from SYN,SYN-ACK.
  796. * The segment is small and rtt may appear much
  797. * less than real one. Use per-dst memory
  798. * to make it more realistic.
  799. *
  800. * A bit of theory. RTT is time passed after "normal" sized packet
  801. * is sent until it is ACKed. In normal circumstances sending small
  802. * packets force peer to delay ACKs and calculation is correct too.
  803. * The algorithm is adaptive and, provided we follow specs, it
  804. * NEVER underestimate RTT. BUT! If peer tries to make some clever
  805. * tricks sort of "quick acks" for time long enough to decrease RTT
  806. * to low value, and then abruptly stops to do it and starts to delay
  807. * ACKs, wait for troubles.
  808. */
  809. if (dst_metric_rtt(dst, RTAX_RTT) > tp->srtt) {
  810. tp->srtt = dst_metric_rtt(dst, RTAX_RTT);
  811. tp->rtt_seq = tp->snd_nxt;
  812. }
  813. if (dst_metric_rtt(dst, RTAX_RTTVAR) > tp->mdev) {
  814. tp->mdev = dst_metric_rtt(dst, RTAX_RTTVAR);
  815. tp->mdev_max = tp->rttvar = max(tp->mdev, tcp_rto_min(sk));
  816. }
  817. tcp_set_rto(sk);
  818. reset:
  819. if (tp->srtt == 0) {
  820. /* RFC2988bis: We've failed to get a valid RTT sample from
  821. * 3WHS. This is most likely due to retransmission,
  822. * including spurious one. Reset the RTO back to 3secs
  823. * from the more aggressive 1sec to avoid more spurious
  824. * retransmission.
  825. */
  826. tp->mdev = tp->mdev_max = tp->rttvar = TCP_TIMEOUT_FALLBACK;
  827. inet_csk(sk)->icsk_rto = TCP_TIMEOUT_FALLBACK;
  828. }
  829. /* Cut cwnd down to 1 per RFC5681 if SYN or SYN-ACK has been
  830. * retransmitted. In light of RFC2988bis' more aggressive 1sec
  831. * initRTO, we only reset cwnd when more than 1 SYN/SYN-ACK
  832. * retransmission has occurred.
  833. */
  834. if (tp->total_retrans > 1)
  835. tp->snd_cwnd = 1;
  836. else
  837. tp->snd_cwnd = tcp_init_cwnd(tp, dst);
  838. tp->snd_cwnd_stamp = tcp_time_stamp;
  839. }
  840. static void tcp_update_reordering(struct sock *sk, const int metric,
  841. const int ts)
  842. {
  843. struct tcp_sock *tp = tcp_sk(sk);
  844. if (metric > tp->reordering) {
  845. int mib_idx;
  846. tp->reordering = min(TCP_MAX_REORDERING, metric);
  847. /* This exciting event is worth to be remembered. 8) */
  848. if (ts)
  849. mib_idx = LINUX_MIB_TCPTSREORDER;
  850. else if (tcp_is_reno(tp))
  851. mib_idx = LINUX_MIB_TCPRENOREORDER;
  852. else if (tcp_is_fack(tp))
  853. mib_idx = LINUX_MIB_TCPFACKREORDER;
  854. else
  855. mib_idx = LINUX_MIB_TCPSACKREORDER;
  856. NET_INC_STATS_BH(sock_net(sk), mib_idx);
  857. #if FASTRETRANS_DEBUG > 1
  858. printk(KERN_DEBUG "Disorder%d %d %u f%u s%u rr%d\n",
  859. tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state,
  860. tp->reordering,
  861. tp->fackets_out,
  862. tp->sacked_out,
  863. tp->undo_marker ? tp->undo_retrans : 0);
  864. #endif
  865. tcp_disable_fack(tp);
  866. }
  867. }
  868. /* This must be called before lost_out is incremented */
  869. static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb)
  870. {
  871. if ((tp->retransmit_skb_hint == NULL) ||
  872. before(TCP_SKB_CB(skb)->seq,
  873. TCP_SKB_CB(tp->retransmit_skb_hint)->seq))
  874. tp->retransmit_skb_hint = skb;
  875. if (!tp->lost_out ||
  876. after(TCP_SKB_CB(skb)->end_seq, tp->retransmit_high))
  877. tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
  878. }
  879. static void tcp_skb_mark_lost(struct tcp_sock *tp, struct sk_buff *skb)
  880. {
  881. if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
  882. tcp_verify_retransmit_hint(tp, skb);
  883. tp->lost_out += tcp_skb_pcount(skb);
  884. TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
  885. }
  886. }
  887. static void tcp_skb_mark_lost_uncond_verify(struct tcp_sock *tp,
  888. struct sk_buff *skb)
  889. {
  890. tcp_verify_retransmit_hint(tp, skb);
  891. if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
  892. tp->lost_out += tcp_skb_pcount(skb);
  893. TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
  894. }
  895. }
  896. /* This procedure tags the retransmission queue when SACKs arrive.
  897. *
  898. * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
  899. * Packets in queue with these bits set are counted in variables
  900. * sacked_out, retrans_out and lost_out, correspondingly.
  901. *
  902. * Valid combinations are:
  903. * Tag InFlight Description
  904. * 0 1 - orig segment is in flight.
  905. * S 0 - nothing flies, orig reached receiver.
  906. * L 0 - nothing flies, orig lost by net.
  907. * R 2 - both orig and retransmit are in flight.
  908. * L|R 1 - orig is lost, retransmit is in flight.
  909. * S|R 1 - orig reached receiver, retrans is still in flight.
  910. * (L|S|R is logically valid, it could occur when L|R is sacked,
  911. * but it is equivalent to plain S and code short-curcuits it to S.
  912. * L|S is logically invalid, it would mean -1 packet in flight 8))
  913. *
  914. * These 6 states form finite state machine, controlled by the following events:
  915. * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
  916. * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
  917. * 3. Loss detection event of two flavors:
  918. * A. Scoreboard estimator decided the packet is lost.
  919. * A'. Reno "three dupacks" marks head of queue lost.
  920. * A''. Its FACK modification, head until snd.fack is lost.
  921. * B. SACK arrives sacking SND.NXT at the moment, when the
  922. * segment was retransmitted.
  923. * 4. D-SACK added new rule: D-SACK changes any tag to S.
  924. *
  925. * It is pleasant to note, that state diagram turns out to be commutative,
  926. * so that we are allowed not to be bothered by order of our actions,
  927. * when multiple events arrive simultaneously. (see the function below).
  928. *
  929. * Reordering detection.
  930. * --------------------
  931. * Reordering metric is maximal distance, which a packet can be displaced
  932. * in packet stream. With SACKs we can estimate it:
  933. *
  934. * 1. SACK fills old hole and the corresponding segment was not
  935. * ever retransmitted -> reordering. Alas, we cannot use it
  936. * when segment was retransmitted.
  937. * 2. The last flaw is solved with D-SACK. D-SACK arrives
  938. * for retransmitted and already SACKed segment -> reordering..
  939. * Both of these heuristics are not used in Loss state, when we cannot
  940. * account for retransmits accurately.
  941. *
  942. * SACK block validation.
  943. * ----------------------
  944. *
  945. * SACK block range validation checks that the received SACK block fits to
  946. * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT.
  947. * Note that SND.UNA is not included to the range though being valid because
  948. * it means that the receiver is rather inconsistent with itself reporting
  949. * SACK reneging when it should advance SND.UNA. Such SACK block this is
  950. * perfectly valid, however, in light of RFC2018 which explicitly states
  951. * that "SACK block MUST reflect the newest segment. Even if the newest
  952. * segment is going to be discarded ...", not that it looks very clever
  953. * in case of head skb. Due to potentional receiver driven attacks, we
  954. * choose to avoid immediate execution of a walk in write queue due to
  955. * reneging and defer head skb's loss recovery to standard loss recovery
  956. * procedure that will eventually trigger (nothing forbids us doing this).
  957. *
  958. * Implements also blockage to start_seq wrap-around. Problem lies in the
  959. * fact that though start_seq (s) is before end_seq (i.e., not reversed),
  960. * there's no guarantee that it will be before snd_nxt (n). The problem
  961. * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt
  962. * wrap (s_w):
  963. *
  964. * <- outs wnd -> <- wrapzone ->
  965. * u e n u_w e_w s n_w
  966. * | | | | | | |
  967. * |<------------+------+----- TCP seqno space --------------+---------->|
  968. * ...-- <2^31 ->| |<--------...
  969. * ...---- >2^31 ------>| |<--------...
  970. *
  971. * Current code wouldn't be vulnerable but it's better still to discard such
  972. * crazy SACK blocks. Doing this check for start_seq alone closes somewhat
  973. * similar case (end_seq after snd_nxt wrap) as earlier reversed check in
  974. * snd_nxt wrap -> snd_una region will then become "well defined", i.e.,
  975. * equal to the ideal case (infinite seqno space without wrap caused issues).
  976. *
  977. * With D-SACK the lower bound is extended to cover sequence space below
  978. * SND.UNA down to undo_marker, which is the last point of interest. Yet
  979. * again, D-SACK block must not to go across snd_una (for the same reason as
  980. * for the normal SACK blocks, explained above). But there all simplicity
  981. * ends, TCP might receive valid D-SACKs below that. As long as they reside
  982. * fully below undo_marker they do not affect behavior in anyway and can
  983. * therefore be safely ignored. In rare cases (which are more or less
  984. * theoretical ones), the D-SACK will nicely cross that boundary due to skb
  985. * fragmentation and packet reordering past skb's retransmission. To consider
  986. * them correctly, the acceptable range must be extended even more though
  987. * the exact amount is rather hard to quantify. However, tp->max_window can
  988. * be used as an exaggerated estimate.
  989. */
  990. static int tcp_is_sackblock_valid(struct tcp_sock *tp, int is_dsack,
  991. u32 start_seq, u32 end_seq)
  992. {
  993. /* Too far in future, or reversed (interpretation is ambiguous) */
  994. if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq))
  995. return 0;
  996. /* Nasty start_seq wrap-around check (see comments above) */
  997. if (!before(start_seq, tp->snd_nxt))
  998. return 0;
  999. /* In outstanding window? ...This is valid exit for D-SACKs too.
  1000. * start_seq == snd_una is non-sensical (see comments above)
  1001. */
  1002. if (after(start_seq, tp->snd_una))
  1003. return 1;
  1004. if (!is_dsack || !tp->undo_marker)
  1005. return 0;
  1006. /* ...Then it's D-SACK, and must reside below snd_una completely */
  1007. if (after(end_seq, tp->snd_una))
  1008. return 0;
  1009. if (!before(start_seq, tp->undo_marker))
  1010. return 1;
  1011. /* Too old */
  1012. if (!after(end_seq, tp->undo_marker))
  1013. return 0;
  1014. /* Undo_marker boundary crossing (overestimates a lot). Known already:
  1015. * start_seq < undo_marker and end_seq >= undo_marker.
  1016. */
  1017. return !before(start_seq, end_seq - tp->max_window);
  1018. }
  1019. /* Check for lost retransmit. This superb idea is borrowed from "ratehalving".
  1020. * Event "B". Later note: FACK people cheated me again 8), we have to account
  1021. * for reordering! Ugly, but should help.
  1022. *
  1023. * Search retransmitted skbs from write_queue that were sent when snd_nxt was
  1024. * less than what is now known to be received by the other end (derived from
  1025. * highest SACK block). Also calculate the lowest snd_nxt among the remaining
  1026. * retransmitted skbs to avoid some costly processing per ACKs.
  1027. */
  1028. static void tcp_mark_lost_retrans(struct sock *sk)
  1029. {
  1030. const struct inet_connection_sock *icsk = inet_csk(sk);
  1031. struct tcp_sock *tp = tcp_sk(sk);
  1032. struct sk_buff *skb;
  1033. int cnt = 0;
  1034. u32 new_low_seq = tp->snd_nxt;
  1035. u32 received_upto = tcp_highest_sack_seq(tp);
  1036. if (!tcp_is_fack(tp) || !tp->retrans_out ||
  1037. !after(received_upto, tp->lost_retrans_low) ||
  1038. icsk->icsk_ca_state != TCP_CA_Recovery)
  1039. return;
  1040. tcp_for_write_queue(skb, sk) {
  1041. u32 ack_seq = TCP_SKB_CB(skb)->ack_seq;
  1042. if (skb == tcp_send_head(sk))
  1043. break;
  1044. if (cnt == tp->retrans_out)
  1045. break;
  1046. if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
  1047. continue;
  1048. if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS))
  1049. continue;
  1050. /* TODO: We would like to get rid of tcp_is_fack(tp) only
  1051. * constraint here (see above) but figuring out that at
  1052. * least tp->reordering SACK blocks reside between ack_seq
  1053. * and received_upto is not easy task to do cheaply with
  1054. * the available datastructures.
  1055. *
  1056. * Whether FACK should check here for tp->reordering segs
  1057. * in-between one could argue for either way (it would be
  1058. * rather simple to implement as we could count fack_count
  1059. * during the walk and do tp->fackets_out - fack_count).
  1060. */
  1061. if (after(received_upto, ack_seq)) {
  1062. TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
  1063. tp->retrans_out -= tcp_skb_pcount(skb);
  1064. tcp_skb_mark_lost_uncond_verify(tp, skb);
  1065. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSTRETRANSMIT);
  1066. } else {
  1067. if (before(ack_seq, new_low_seq))
  1068. new_low_seq = ack_seq;
  1069. cnt += tcp_skb_pcount(skb);
  1070. }
  1071. }
  1072. if (tp->retrans_out)
  1073. tp->lost_retrans_low = new_low_seq;
  1074. }
  1075. static int tcp_check_dsack(struct sock *sk, const struct sk_buff *ack_skb,
  1076. struct tcp_sack_block_wire *sp, int num_sacks,
  1077. u32 prior_snd_una)
  1078. {
  1079. struct tcp_sock *tp = tcp_sk(sk);
  1080. u32 start_seq_0 = get_unaligned_be32(&sp[0].start_seq);
  1081. u32 end_seq_0 = get_unaligned_be32(&sp[0].end_seq);
  1082. int dup_sack = 0;
  1083. if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) {
  1084. dup_sack = 1;
  1085. tcp_dsack_seen(tp);
  1086. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPDSACKRECV);
  1087. } else if (num_sacks > 1) {
  1088. u32 end_seq_1 = get_unaligned_be32(&sp[1].end_seq);
  1089. u32 start_seq_1 = get_unaligned_be32(&sp[1].start_seq);
  1090. if (!after(end_seq_0, end_seq_1) &&
  1091. !before(start_seq_0, start_seq_1)) {
  1092. dup_sack = 1;
  1093. tcp_dsack_seen(tp);
  1094. NET_INC_STATS_BH(sock_net(sk),
  1095. LINUX_MIB_TCPDSACKOFORECV);
  1096. }
  1097. }
  1098. /* D-SACK for already forgotten data... Do dumb counting. */
  1099. if (dup_sack && tp->undo_marker && tp->undo_retrans &&
  1100. !after(end_seq_0, prior_snd_una) &&
  1101. after(end_seq_0, tp->undo_marker))
  1102. tp->undo_retrans--;
  1103. return dup_sack;
  1104. }
  1105. struct tcp_sacktag_state {
  1106. int reord;
  1107. int fack_count;
  1108. int flag;
  1109. };
  1110. /* Check if skb is fully within the SACK block. In presence of GSO skbs,
  1111. * the incoming SACK may not exactly match but we can find smaller MSS
  1112. * aligned portion of it that matches. Therefore we might need to fragment
  1113. * which may fail and creates some hassle (caller must handle error case
  1114. * returns).
  1115. *
  1116. * FIXME: this could be merged to shift decision code
  1117. */
  1118. static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb,
  1119. u32 start_seq, u32 end_seq)
  1120. {
  1121. int in_sack, err;
  1122. unsigned int pkt_len;
  1123. unsigned int mss;
  1124. in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
  1125. !before(end_seq, TCP_SKB_CB(skb)->end_seq);
  1126. if (tcp_skb_pcount(skb) > 1 && !in_sack &&
  1127. after(TCP_SKB_CB(skb)->end_seq, start_seq)) {
  1128. mss = tcp_skb_mss(skb);
  1129. in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
  1130. if (!in_sack) {
  1131. pkt_len = start_seq - TCP_SKB_CB(skb)->seq;
  1132. if (pkt_len < mss)
  1133. pkt_len = mss;
  1134. } else {
  1135. pkt_len = end_seq - TCP_SKB_CB(skb)->seq;
  1136. if (pkt_len < mss)
  1137. return -EINVAL;
  1138. }
  1139. /* Round if necessary so that SACKs cover only full MSSes
  1140. * and/or the remaining small portion (if present)
  1141. */
  1142. if (pkt_len > mss) {
  1143. unsigned int new_len = (pkt_len / mss) * mss;
  1144. if (!in_sack && new_len < pkt_len) {
  1145. new_len += mss;
  1146. if (new_len > skb->len)
  1147. return 0;
  1148. }
  1149. pkt_len = new_len;
  1150. }
  1151. err = tcp_fragment(sk, skb, pkt_len, mss);
  1152. if (err < 0)
  1153. return err;
  1154. }
  1155. return in_sack;
  1156. }
  1157. /* Mark the given newly-SACKed range as such, adjusting counters and hints. */
  1158. static u8 tcp_sacktag_one(struct sock *sk,
  1159. struct tcp_sacktag_state *state, u8 sacked,
  1160. u32 start_seq, u32 end_seq,
  1161. int dup_sack, int pcount)
  1162. {
  1163. struct tcp_sock *tp = tcp_sk(sk);
  1164. int fack_count = state->fack_count;
  1165. /* Account D-SACK for retransmitted packet. */
  1166. if (dup_sack && (sacked & TCPCB_RETRANS)) {
  1167. if (tp->undo_marker && tp->undo_retrans &&
  1168. after(end_seq, tp->undo_marker))
  1169. tp->undo_retrans--;
  1170. if (sacked & TCPCB_SACKED_ACKED)
  1171. state->reord = min(fack_count, state->reord);
  1172. }
  1173. /* Nothing to do; acked frame is about to be dropped (was ACKed). */
  1174. if (!after(end_seq, tp->snd_una))
  1175. return sacked;
  1176. if (!(sacked & TCPCB_SACKED_ACKED)) {
  1177. if (sacked & TCPCB_SACKED_RETRANS) {
  1178. /* If the segment is not tagged as lost,
  1179. * we do not clear RETRANS, believing
  1180. * that retransmission is still in flight.
  1181. */
  1182. if (sacked & TCPCB_LOST) {
  1183. sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
  1184. tp->lost_out -= pcount;
  1185. tp->retrans_out -= pcount;
  1186. }
  1187. } else {
  1188. if (!(sacked & TCPCB_RETRANS)) {
  1189. /* New sack for not retransmitted frame,
  1190. * which was in hole. It is reordering.
  1191. */
  1192. if (before(start_seq,
  1193. tcp_highest_sack_seq(tp)))
  1194. state->reord = min(fack_count,
  1195. state->reord);
  1196. /* SACK enhanced F-RTO (RFC4138; Appendix B) */
  1197. if (!after(end_seq, tp->frto_highmark))
  1198. state->flag |= FLAG_ONLY_ORIG_SACKED;
  1199. }
  1200. if (sacked & TCPCB_LOST) {
  1201. sacked &= ~TCPCB_LOST;
  1202. tp->lost_out -= pcount;
  1203. }
  1204. }
  1205. sacked |= TCPCB_SACKED_ACKED;
  1206. state->flag |= FLAG_DATA_SACKED;
  1207. tp->sacked_out += pcount;
  1208. fack_count += pcount;
  1209. /* Lost marker hint past SACKed? Tweak RFC3517 cnt */
  1210. if (!tcp_is_fack(tp) && (tp->lost_skb_hint != NULL) &&
  1211. before(start_seq, TCP_SKB_CB(tp->lost_skb_hint)->seq))
  1212. tp->lost_cnt_hint += pcount;
  1213. if (fack_count > tp->fackets_out)
  1214. tp->fackets_out = fack_count;
  1215. }
  1216. /* D-SACK. We can detect redundant retransmission in S|R and plain R
  1217. * frames and clear it. undo_retrans is decreased above, L|R frames
  1218. * are accounted above as well.
  1219. */
  1220. if (dup_sack && (sacked & TCPCB_SACKED_RETRANS)) {
  1221. sacked &= ~TCPCB_SACKED_RETRANS;
  1222. tp->retrans_out -= pcount;
  1223. }
  1224. return sacked;
  1225. }
  1226. /* Shift newly-SACKed bytes from this skb to the immediately previous
  1227. * already-SACKed sk_buff. Mark the newly-SACKed bytes as such.
  1228. */
  1229. static int tcp_shifted_skb(struct sock *sk, struct sk_buff *skb,
  1230. struct tcp_sacktag_state *state,
  1231. unsigned int pcount, int shifted, int mss,
  1232. int dup_sack)
  1233. {
  1234. struct tcp_sock *tp = tcp_sk(sk);
  1235. struct sk_buff *prev = tcp_write_queue_prev(sk, skb);
  1236. u32 start_seq = TCP_SKB_CB(skb)->seq; /* start of newly-SACKed */
  1237. u32 end_seq = start_seq + shifted; /* end of newly-SACKed */
  1238. BUG_ON(!pcount);
  1239. /* Adjust counters and hints for the newly sacked sequence
  1240. * range but discard the return value since prev is already
  1241. * marked. We must tag the range first because the seq
  1242. * advancement below implicitly advances
  1243. * tcp_highest_sack_seq() when skb is highest_sack.
  1244. */
  1245. tcp_sacktag_one(sk, state, TCP_SKB_CB(skb)->sacked,
  1246. start_seq, end_seq, dup_sack, pcount);
  1247. if (skb == tp->lost_skb_hint)
  1248. tp->lost_cnt_hint += pcount;
  1249. TCP_SKB_CB(prev)->end_seq += shifted;
  1250. TCP_SKB_CB(skb)->seq += shifted;
  1251. skb_shinfo(prev)->gso_segs += pcount;
  1252. BUG_ON(skb_shinfo(skb)->gso_segs < pcount);
  1253. skb_shinfo(skb)->gso_segs -= pcount;
  1254. /* When we're adding to gso_segs == 1, gso_size will be zero,
  1255. * in theory this shouldn't be necessary but as long as DSACK
  1256. * code can come after this skb later on it's better to keep
  1257. * setting gso_size to something.
  1258. */
  1259. if (!skb_shinfo(prev)->gso_size) {
  1260. skb_shinfo(prev)->gso_size = mss;
  1261. skb_shinfo(prev)->gso_type = sk->sk_gso_type;
  1262. }
  1263. /* CHECKME: To clear or not to clear? Mimics normal skb currently */
  1264. if (skb_shinfo(skb)->gso_segs <= 1) {
  1265. skb_shinfo(skb)->gso_size = 0;
  1266. skb_shinfo(skb)->gso_type = 0;
  1267. }
  1268. /* Difference in this won't matter, both ACKed by the same cumul. ACK */
  1269. TCP_SKB_CB(prev)->sacked |= (TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS);
  1270. if (skb->len > 0) {
  1271. BUG_ON(!tcp_skb_pcount(skb));
  1272. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKSHIFTED);
  1273. return 0;
  1274. }
  1275. /* Whole SKB was eaten :-) */
  1276. if (skb == tp->retransmit_skb_hint)
  1277. tp->retransmit_skb_hint = prev;
  1278. if (skb == tp->scoreboard_skb_hint)
  1279. tp->scoreboard_skb_hint = prev;
  1280. if (skb == tp->lost_skb_hint) {
  1281. tp->lost_skb_hint = prev;
  1282. tp->lost_cnt_hint -= tcp_skb_pcount(prev);
  1283. }
  1284. TCP_SKB_CB(skb)->tcp_flags |= TCP_SKB_CB(prev)->tcp_flags;
  1285. if (skb == tcp_highest_sack(sk))
  1286. tcp_advance_highest_sack(sk, skb);
  1287. tcp_unlink_write_queue(skb, sk);
  1288. sk_wmem_free_skb(sk, skb);
  1289. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKMERGED);
  1290. return 1;
  1291. }
  1292. /* I wish gso_size would have a bit more sane initialization than
  1293. * something-or-zero which complicates things
  1294. */
  1295. static int tcp_skb_seglen(const struct sk_buff *skb)
  1296. {
  1297. return tcp_skb_pcount(skb) == 1 ? skb->len : tcp_skb_mss(skb);
  1298. }
  1299. /* Shifting pages past head area doesn't work */
  1300. static int skb_can_shift(const struct sk_buff *skb)
  1301. {
  1302. return !skb_headlen(skb) && skb_is_nonlinear(skb);
  1303. }
  1304. /* Try collapsing SACK blocks spanning across multiple skbs to a single
  1305. * skb.
  1306. */
  1307. static struct sk_buff *tcp_shift_skb_data(struct sock *sk, struct sk_buff *skb,
  1308. struct tcp_sacktag_state *state,
  1309. u32 start_seq, u32 end_seq,
  1310. int dup_sack)
  1311. {
  1312. struct tcp_sock *tp = tcp_sk(sk);
  1313. struct sk_buff *prev;
  1314. int mss;
  1315. int pcount = 0;
  1316. int len;
  1317. int in_sack;
  1318. if (!sk_can_gso(sk))
  1319. goto fallback;
  1320. /* Normally R but no L won't result in plain S */
  1321. if (!dup_sack &&
  1322. (TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_RETRANS)) == TCPCB_SACKED_RETRANS)
  1323. goto fallback;
  1324. if (!skb_can_shift(skb))
  1325. goto fallback;
  1326. /* This frame is about to be dropped (was ACKed). */
  1327. if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
  1328. goto fallback;
  1329. /* Can only happen with delayed DSACK + discard craziness */
  1330. if (unlikely(skb == tcp_write_queue_head(sk)))
  1331. goto fallback;
  1332. prev = tcp_write_queue_prev(sk, skb);
  1333. if ((TCP_SKB_CB(prev)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED)
  1334. goto fallback;
  1335. in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
  1336. !before(end_seq, TCP_SKB_CB(skb)->end_seq);
  1337. if (in_sack) {
  1338. len = skb->len;
  1339. pcount = tcp_skb_pcount(skb);
  1340. mss = tcp_skb_seglen(skb);
  1341. /* TODO: Fix DSACKs to not fragment already SACKed and we can
  1342. * drop this restriction as unnecessary
  1343. */
  1344. if (mss != tcp_skb_seglen(prev))
  1345. goto fallback;
  1346. } else {
  1347. if (!after(TCP_SKB_CB(skb)->end_seq, start_seq))
  1348. goto noop;
  1349. /* CHECKME: This is non-MSS split case only?, this will
  1350. * cause skipped skbs due to advancing loop btw, original
  1351. * has that feature too
  1352. */
  1353. if (tcp_skb_pcount(skb) <= 1)
  1354. goto noop;
  1355. in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
  1356. if (!in_sack) {
  1357. /* TODO: head merge to next could be attempted here
  1358. * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)),
  1359. * though it might not be worth of the additional hassle
  1360. *
  1361. * ...we can probably just fallback to what was done
  1362. * previously. We could try merging non-SACKed ones
  1363. * as well but it probably isn't going to buy off
  1364. * because later SACKs might again split them, and
  1365. * it would make skb timestamp tracking considerably
  1366. * harder problem.
  1367. */
  1368. goto fallback;
  1369. }
  1370. len = end_seq - TCP_SKB_CB(skb)->seq;
  1371. BUG_ON(len < 0);
  1372. BUG_ON(len > skb->len);
  1373. /* MSS boundaries should be honoured or else pcount will
  1374. * severely break even though it makes things bit trickier.
  1375. * Optimize common case to avoid most of the divides
  1376. */
  1377. mss = tcp_skb_mss(skb);
  1378. /* TODO: Fix DSACKs to not fragment already SACKed and we can
  1379. * drop this restriction as unnecessary
  1380. */
  1381. if (mss != tcp_skb_seglen(prev))
  1382. goto fallback;
  1383. if (len == mss) {
  1384. pcount = 1;
  1385. } else if (len < mss) {
  1386. goto noop;
  1387. } else {
  1388. pcount = len / mss;
  1389. len = pcount * mss;
  1390. }
  1391. }
  1392. /* tcp_sacktag_one() won't SACK-tag ranges below snd_una */
  1393. if (!after(TCP_SKB_CB(skb)->seq + len, tp->snd_una))
  1394. goto fallback;
  1395. if (!skb_shift(prev, skb, len))
  1396. goto fallback;
  1397. if (!tcp_shifted_skb(sk, skb, state, pcount, len, mss, dup_sack))
  1398. goto out;
  1399. /* Hole filled allows collapsing with the next as well, this is very
  1400. * useful when hole on every nth skb pattern happens
  1401. */
  1402. if (prev == tcp_write_queue_tail(sk))
  1403. goto out;
  1404. skb = tcp_write_queue_next(sk, prev);
  1405. if (!skb_can_shift(skb) ||
  1406. (skb == tcp_send_head(sk)) ||
  1407. ((TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) ||
  1408. (mss != tcp_skb_seglen(skb)))
  1409. goto out;
  1410. len = skb->len;
  1411. if (skb_shift(prev, skb, len)) {
  1412. pcount += tcp_skb_pcount(skb);
  1413. tcp_shifted_skb(sk, skb, state, tcp_skb_pcount(skb), len, mss, 0);
  1414. }
  1415. out:
  1416. state->fack_count += pcount;
  1417. return prev;
  1418. noop:
  1419. return skb;
  1420. fallback:
  1421. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKSHIFTFALLBACK);
  1422. return NULL;
  1423. }
  1424. static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk,
  1425. struct tcp_sack_block *next_dup,
  1426. struct tcp_sacktag_state *state,
  1427. u32 start_seq, u32 end_seq,
  1428. int dup_sack_in)
  1429. {
  1430. struct tcp_sock *tp = tcp_sk(sk);
  1431. struct sk_buff *tmp;
  1432. tcp_for_write_queue_from(skb, sk) {
  1433. int in_sack = 0;
  1434. int dup_sack = dup_sack_in;
  1435. if (skb == tcp_send_head(sk))
  1436. break;
  1437. /* queue is in-order => we can short-circuit the walk early */
  1438. if (!before(TCP_SKB_CB(skb)->seq, end_seq))
  1439. break;
  1440. if ((next_dup != NULL) &&
  1441. before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) {
  1442. in_sack = tcp_match_skb_to_sack(sk, skb,
  1443. next_dup->start_seq,
  1444. next_dup->end_seq);
  1445. if (in_sack > 0)
  1446. dup_sack = 1;
  1447. }
  1448. /* skb reference here is a bit tricky to get right, since
  1449. * shifting can eat and free both this skb and the next,
  1450. * so not even _safe variant of the loop is enough.
  1451. */
  1452. if (in_sack <= 0) {
  1453. tmp = tcp_shift_skb_data(sk, skb, state,
  1454. start_seq, end_seq, dup_sack);
  1455. if (tmp != NULL) {
  1456. if (tmp != skb) {
  1457. skb = tmp;
  1458. continue;
  1459. }
  1460. in_sack = 0;
  1461. } else {
  1462. in_sack = tcp_match_skb_to_sack(sk, skb,
  1463. start_seq,
  1464. end_seq);
  1465. }
  1466. }
  1467. if (unlikely(in_sack < 0))
  1468. break;
  1469. if (in_sack) {
  1470. TCP_SKB_CB(skb)->sacked =
  1471. tcp_sacktag_one(sk,
  1472. state,
  1473. TCP_SKB_CB(skb)->sacked,
  1474. TCP_SKB_CB(skb)->seq,
  1475. TCP_SKB_CB(skb)->end_seq,
  1476. dup_sack,
  1477. tcp_skb_pcount(skb));
  1478. if (!before(TCP_SKB_CB(skb)->seq,
  1479. tcp_highest_sack_seq(tp)))
  1480. tcp_advance_highest_sack(sk, skb);
  1481. }
  1482. state->fack_count += tcp_skb_pcount(skb);
  1483. }
  1484. return skb;
  1485. }
  1486. /* Avoid all extra work that is being done by sacktag while walking in
  1487. * a normal way
  1488. */
  1489. static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk,
  1490. struct tcp_sacktag_state *state,
  1491. u32 skip_to_seq)
  1492. {
  1493. tcp_for_write_queue_from(skb, sk) {
  1494. if (skb == tcp_send_head(sk))
  1495. break;
  1496. if (after(TCP_SKB_CB(skb)->end_seq, skip_to_seq))
  1497. break;
  1498. state->fack_count += tcp_skb_pcount(skb);
  1499. }
  1500. return skb;
  1501. }
  1502. static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb,
  1503. struct sock *sk,
  1504. struct tcp_sack_block *next_dup,
  1505. struct tcp_sacktag_state *state,
  1506. u32 skip_to_seq)
  1507. {
  1508. if (next_dup == NULL)
  1509. return skb;
  1510. if (before(next_dup->start_seq, skip_to_seq)) {
  1511. skb = tcp_sacktag_skip(skb, sk, state, next_dup->start_seq);
  1512. skb = tcp_sacktag_walk(skb, sk, NULL, state,
  1513. next_dup->start_seq, next_dup->end_seq,
  1514. 1);
  1515. }
  1516. return skb;
  1517. }
  1518. static int tcp_sack_cache_ok(const struct tcp_sock *tp, const struct tcp_sack_block *cache)
  1519. {
  1520. return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
  1521. }
  1522. static int
  1523. tcp_sacktag_write_queue(struct sock *sk, const struct sk_buff *ack_skb,
  1524. u32 prior_snd_una)
  1525. {
  1526. const struct inet_connection_sock *icsk = inet_csk(sk);
  1527. struct tcp_sock *tp = tcp_sk(sk);
  1528. const unsigned char *ptr = (skb_transport_header(ack_skb) +
  1529. TCP_SKB_CB(ack_skb)->sacked);
  1530. struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2);
  1531. struct tcp_sack_block sp[TCP_NUM_SACKS];
  1532. struct tcp_sack_block *cache;
  1533. struct tcp_sacktag_state state;
  1534. struct sk_buff *skb;
  1535. int num_sacks = min(TCP_NUM_SACKS, (ptr[1] - TCPOLEN_SACK_BASE) >> 3);
  1536. int used_sacks;
  1537. int found_dup_sack = 0;
  1538. int i, j;
  1539. int first_sack_index;
  1540. state.flag = 0;
  1541. state.reord = tp->packets_out;
  1542. if (!tp->sacked_out) {
  1543. if (WARN_ON(tp->fackets_out))
  1544. tp->fackets_out = 0;
  1545. tcp_highest_sack_reset(sk);
  1546. }
  1547. found_dup_sack = tcp_check_dsack(sk, ack_skb, sp_wire,
  1548. num_sacks, prior_snd_una);
  1549. if (found_dup_sack)
  1550. state.flag |= FLAG_DSACKING_ACK;
  1551. /* Eliminate too old ACKs, but take into
  1552. * account more or less fresh ones, they can
  1553. * contain valid SACK info.
  1554. */
  1555. if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window))
  1556. return 0;
  1557. if (!tp->packets_out)
  1558. goto out;
  1559. used_sacks = 0;
  1560. first_sack_index = 0;
  1561. for (i = 0; i < num_sacks; i++) {
  1562. int dup_sack = !i && found_dup_sack;
  1563. sp[used_sacks].start_seq = get_unaligned_be32(&sp_wire[i].start_seq);
  1564. sp[used_sacks].end_seq = get_unaligned_be32(&sp_wire[i].end_seq);
  1565. if (!tcp_is_sackblock_valid(tp, dup_sack,
  1566. sp[used_sacks].start_seq,
  1567. sp[used_sacks].end_seq)) {
  1568. int mib_idx;
  1569. if (dup_sack) {
  1570. if (!tp->undo_marker)
  1571. mib_idx = LINUX_MIB_TCPDSACKIGNOREDNOUNDO;
  1572. else
  1573. mib_idx = LINUX_MIB_TCPDSACKIGNOREDOLD;
  1574. } else {
  1575. /* Don't count olds caused by ACK reordering */
  1576. if ((TCP_SKB_CB(ack_skb)->ack_seq != tp->snd_una) &&
  1577. !after(sp[used_sacks].end_seq, tp->snd_una))
  1578. continue;
  1579. mib_idx = LINUX_MIB_TCPSACKDISCARD;
  1580. }
  1581. NET_INC_STATS_BH(sock_net(sk), mib_idx);
  1582. if (i == 0)
  1583. first_sack_index = -1;
  1584. continue;
  1585. }
  1586. /* Ignore very old stuff early */
  1587. if (!after(sp[used_sacks].end_seq, prior_snd_una))
  1588. continue;
  1589. used_sacks++;
  1590. }
  1591. /* order SACK blocks to allow in order walk of the retrans queue */
  1592. for (i = used_sacks - 1; i > 0; i--) {
  1593. for (j = 0; j < i; j++) {
  1594. if (after(sp[j].start_seq, sp[j + 1].start_seq)) {
  1595. swap(sp[j], sp[j + 1]);
  1596. /* Track where the first SACK block goes to */
  1597. if (j == first_sack_index)
  1598. first_sack_index = j + 1;
  1599. }
  1600. }
  1601. }
  1602. skb = tcp_write_queue_head(sk);
  1603. state.fack_count = 0;
  1604. i = 0;
  1605. if (!tp->sacked_out) {
  1606. /* It's already past, so skip checking against it */
  1607. cache = tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
  1608. } else {
  1609. cache = tp->recv_sack_cache;
  1610. /* Skip empty blocks in at head of the cache */
  1611. while (tcp_sack_cache_ok(tp, cache) && !cache->start_seq &&
  1612. !cache->end_seq)
  1613. cache++;
  1614. }
  1615. while (i < used_sacks) {
  1616. u32 start_seq = sp[i].start_seq;
  1617. u32 end_seq = sp[i].end_seq;
  1618. int dup_sack = (found_dup_sack && (i == first_sack_index));
  1619. struct tcp_sack_block *next_dup = NULL;
  1620. if (found_dup_sack && ((i + 1) == first_sack_index))
  1621. next_dup = &sp[i + 1];
  1622. /* Skip too early cached blocks */
  1623. while (tcp_sack_cache_ok(tp, cache) &&
  1624. !before(start_seq, cache->end_seq))
  1625. cache++;
  1626. /* Can skip some work by looking recv_sack_cache? */
  1627. if (tcp_sack_cache_ok(tp, cache) && !dup_sack &&
  1628. after(end_seq, cache->start_seq)) {
  1629. /* Head todo? */
  1630. if (before(start_seq, cache->start_seq)) {
  1631. skb = tcp_sacktag_skip(skb, sk, &state,
  1632. start_seq);
  1633. skb = tcp_sacktag_walk(skb, sk, next_dup,
  1634. &state,
  1635. start_seq,
  1636. cache->start_seq,
  1637. dup_sack);
  1638. }
  1639. /* Rest of the block already fully processed? */
  1640. if (!after(end_seq, cache->end_seq))
  1641. goto advance_sp;
  1642. skb = tcp_maybe_skipping_dsack(skb, sk, next_dup,
  1643. &state,
  1644. cache->end_seq);
  1645. /* ...tail remains todo... */
  1646. if (tcp_highest_sack_seq(tp) == cache->end_seq) {
  1647. /* ...but better entrypoint exists! */
  1648. skb = tcp_highest_sack(sk);
  1649. if (skb == NULL)
  1650. break;
  1651. state.fack_count = tp->fackets_out;
  1652. cache++;
  1653. goto walk;
  1654. }
  1655. skb = tcp_sacktag_skip(skb, sk, &state, cache->end_seq);
  1656. /* Check overlap against next cached too (past this one already) */
  1657. cache++;
  1658. continue;
  1659. }
  1660. if (!before(start_seq, tcp_highest_sack_seq(tp))) {
  1661. skb = tcp_highest_sack(sk);
  1662. if (skb == NULL)
  1663. break;
  1664. state.fack_count = tp->fackets_out;
  1665. }
  1666. skb = tcp_sacktag_skip(skb, sk, &state, start_seq);
  1667. walk:
  1668. skb = tcp_sacktag_walk(skb, sk, next_dup, &state,
  1669. start_seq, end_seq, dup_sack);
  1670. advance_sp:
  1671. /* SACK enhanced FRTO (RFC4138, Appendix B): Clearing correct
  1672. * due to in-order walk
  1673. */
  1674. if (after(end_seq, tp->frto_highmark))
  1675. state.flag &= ~FLAG_ONLY_ORIG_SACKED;
  1676. i++;
  1677. }
  1678. /* Clear the head of the cache sack blocks so we can skip it next time */
  1679. for (i = 0; i < ARRAY_SIZE(tp->recv_sack_cache) - used_sacks; i++) {
  1680. tp->recv_sack_cache[i].start_seq = 0;
  1681. tp->recv_sack_cache[i].end_seq = 0;
  1682. }
  1683. for (j = 0; j < used_sacks; j++)
  1684. tp->recv_sack_cache[i++] = sp[j];
  1685. tcp_mark_lost_retrans(sk);
  1686. tcp_verify_left_out(tp);
  1687. if ((state.reord < tp->fackets_out) &&
  1688. ((icsk->icsk_ca_state != TCP_CA_Loss) || tp->undo_marker) &&
  1689. (!tp->frto_highmark || after(tp->snd_una, tp->frto_highmark)))
  1690. tcp_update_reordering(sk, tp->fackets_out - state.reord, 0);
  1691. out:
  1692. #if FASTRETRANS_DEBUG > 0
  1693. WARN_ON((int)tp->sacked_out < 0);
  1694. WARN_ON((int)tp->lost_out < 0);
  1695. WARN_ON((int)tp->retrans_out < 0);
  1696. WARN_ON((int)tcp_packets_in_flight(tp) < 0);
  1697. #endif
  1698. return state.flag;
  1699. }
  1700. /* Limits sacked_out so that sum with lost_out isn't ever larger than
  1701. * packets_out. Returns zero if sacked_out adjustement wasn't necessary.
  1702. */
  1703. static int tcp_limit_reno_sacked(struct tcp_sock *tp)
  1704. {
  1705. u32 holes;
  1706. holes = max(tp->lost_out, 1U);
  1707. holes = min(holes, tp->packets_out);
  1708. if ((tp->sacked_out + holes) > tp->packets_out) {
  1709. tp->sacked_out = tp->packets_out - holes;
  1710. return 1;
  1711. }
  1712. return 0;
  1713. }
  1714. /* If we receive more dupacks than we expected counting segments
  1715. * in assumption of absent reordering, interpret this as reordering.
  1716. * The only another reason could be bug in receiver TCP.
  1717. */
  1718. static void tcp_check_reno_reordering(struct sock *sk, const int addend)
  1719. {
  1720. struct tcp_sock *tp = tcp_sk(sk);
  1721. if (tcp_limit_reno_sacked(tp))
  1722. tcp_update_reordering(sk, tp->packets_out + addend, 0);
  1723. }
  1724. /* Emulate SACKs for SACKless connection: account for a new dupack. */
  1725. static void tcp_add_reno_sack(struct sock *sk)
  1726. {
  1727. struct tcp_sock *tp = tcp_sk(sk);
  1728. tp->sacked_out++;
  1729. tcp_check_reno_reordering(sk, 0);
  1730. tcp_verify_left_out(tp);
  1731. }
  1732. /* Account for ACK, ACKing some data in Reno Recovery phase. */
  1733. static void tcp_remove_reno_sacks(struct sock *sk, int acked)
  1734. {
  1735. struct tcp_sock *tp = tcp_sk(sk);
  1736. if (acked > 0) {
  1737. /* One ACK acked hole. The rest eat duplicate ACKs. */
  1738. if (acked - 1 >= tp->sacked_out)
  1739. tp->sacked_out = 0;
  1740. else
  1741. tp->sacked_out -= acked - 1;
  1742. }
  1743. tcp_check_reno_reordering(sk, acked);
  1744. tcp_verify_left_out(tp);
  1745. }
  1746. static inline void tcp_reset_reno_sack(struct tcp_sock *tp)
  1747. {
  1748. tp->sacked_out = 0;
  1749. }
  1750. static int tcp_is_sackfrto(const struct tcp_sock *tp)
  1751. {
  1752. return (sysctl_tcp_frto == 0x2) && !tcp_is_reno(tp);
  1753. }
  1754. /* F-RTO can only be used if TCP has never retransmitted anything other than
  1755. * head (SACK enhanced variant from Appendix B of RFC4138 is more robust here)
  1756. */
  1757. int tcp_use_frto(struct sock *sk)
  1758. {
  1759. const struct tcp_sock *tp = tcp_sk(sk);
  1760. const struct inet_connection_sock *icsk = inet_csk(sk);
  1761. struct sk_buff *skb;
  1762. if (!sysctl_tcp_frto)
  1763. return 0;
  1764. /* MTU probe and F-RTO won't really play nicely along currently */
  1765. if (icsk->icsk_mtup.probe_size)
  1766. return 0;
  1767. if (tcp_is_sackfrto(tp))
  1768. return 1;
  1769. /* Avoid expensive walking of rexmit queue if possible */
  1770. if (tp->retrans_out > 1)
  1771. return 0;
  1772. skb = tcp_write_queue_head(sk);
  1773. if (tcp_skb_is_last(sk, skb))
  1774. return 1;
  1775. skb = tcp_write_queue_next(sk, skb); /* Skips head */
  1776. tcp_for_write_queue_from(skb, sk) {
  1777. if (skb == tcp_send_head(sk))
  1778. break;
  1779. if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
  1780. return 0;
  1781. /* Short-circuit when first non-SACKed skb has been checked */
  1782. if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
  1783. break;
  1784. }
  1785. return 1;
  1786. }
  1787. /* RTO occurred, but do not yet enter Loss state. Instead, defer RTO
  1788. * recovery a bit and use heuristics in tcp_process_frto() to detect if
  1789. * the RTO was spurious. Only clear SACKED_RETRANS of the head here to
  1790. * keep retrans_out counting accurate (with SACK F-RTO, other than head
  1791. * may still have that bit set); TCPCB_LOST and remaining SACKED_RETRANS
  1792. * bits are handled if the Loss state is really to be entered (in
  1793. * tcp_enter_frto_loss).
  1794. *
  1795. * Do like tcp_enter_loss() would; when RTO expires the second time it
  1796. * does:
  1797. * "Reduce ssthresh if it has not yet been made inside this window."
  1798. */
  1799. void tcp_enter_frto(struct sock *sk)
  1800. {
  1801. const struct inet_connection_sock *icsk = inet_csk(sk);
  1802. struct tcp_sock *tp = tcp_sk(sk);
  1803. struct sk_buff *skb;
  1804. if ((!tp->frto_counter && icsk->icsk_ca_state <= TCP_CA_Disorder) ||
  1805. tp->snd_una == tp->high_seq ||
  1806. ((icsk->icsk_ca_state == TCP_CA_Loss || tp->frto_counter) &&
  1807. !icsk->icsk_retransmits)) {
  1808. tp->prior_ssthresh = tcp_current_ssthresh(sk);
  1809. /* Our state is too optimistic in ssthresh() call because cwnd
  1810. * is not reduced until tcp_enter_frto_loss() when previous F-RTO
  1811. * recovery has not yet completed. Pattern would be this: RTO,
  1812. * Cumulative ACK, RTO (2xRTO for the same segment does not end
  1813. * up here twice).
  1814. * RFC4138 should be more specific on what to do, even though
  1815. * RTO is quite unlikely to occur after the first Cumulative ACK
  1816. * due to back-off and complexity of triggering events ...
  1817. */
  1818. if (tp->frto_counter) {
  1819. u32 stored_cwnd;
  1820. stored_cwnd = tp->snd_cwnd;
  1821. tp->snd_cwnd = 2;
  1822. tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
  1823. tp->snd_cwnd = stored_cwnd;
  1824. } else {
  1825. tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
  1826. }
  1827. /* ... in theory, cong.control module could do "any tricks" in
  1828. * ssthresh(), which means that ca_state, lost bits and lost_out
  1829. * counter would have to be faked before the call occurs. We
  1830. * consider that too expensive, unlikely and hacky, so modules
  1831. * using these in ssthresh() must deal these incompatibility
  1832. * issues if they receives CA_EVENT_FRTO and frto_counter != 0
  1833. */
  1834. tcp_ca_event(sk, CA_EVENT_FRTO);
  1835. }
  1836. tp->undo_marker = tp->snd_una;
  1837. tp->undo_retrans = 0;
  1838. skb = tcp_write_queue_head(sk);
  1839. if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
  1840. tp->undo_marker = 0;
  1841. if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
  1842. TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
  1843. tp->retrans_out -= tcp_skb_pcount(skb);
  1844. }
  1845. tcp_verify_left_out(tp);
  1846. /* Too bad if TCP was application limited */
  1847. tp->snd_cwnd = min(tp->snd_cwnd, tcp_packets_in_flight(tp) + 1);
  1848. /* Earlier loss recovery underway (see RFC4138; Appendix B).
  1849. * The last condition is necessary at least in tp->frto_counter case.
  1850. */
  1851. if (tcp_is_sackfrto(tp) && (tp->frto_counter ||
  1852. ((1 << icsk->icsk_ca_state) & (TCPF_CA_Recovery|TCPF_CA_Loss))) &&
  1853. after(tp->high_seq, tp->snd_una)) {
  1854. tp->frto_highmark = tp->high_seq;
  1855. } else {
  1856. tp->frto_highmark = tp->snd_nxt;
  1857. }
  1858. tcp_set_ca_state(sk, TCP_CA_Disorder);
  1859. tp->high_seq = tp->snd_nxt;
  1860. tp->frto_counter = 1;
  1861. }
  1862. /* Enter Loss state after F-RTO was applied. Dupack arrived after RTO,
  1863. * which indicates that we should follow the traditional RTO recovery,
  1864. * i.e. mark everything lost and do go-back-N retransmission.
  1865. */
  1866. static void tcp_enter_frto_loss(struct sock *sk, int allowed_segments, int flag)
  1867. {
  1868. struct tcp_sock *tp = tcp_sk(sk);
  1869. struct sk_buff *skb;
  1870. tp->lost_out = 0;
  1871. tp->retrans_out = 0;
  1872. if (tcp_is_reno(tp))
  1873. tcp_reset_reno_sack(tp);
  1874. tcp_for_write_queue(skb, sk) {
  1875. if (skb == tcp_send_head(sk))
  1876. break;
  1877. TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
  1878. /*
  1879. * Count the retransmission made on RTO correctly (only when
  1880. * waiting for the first ACK and did not get it)...
  1881. */
  1882. if ((tp->frto_counter == 1) && !(flag & FLAG_DATA_ACKED)) {
  1883. /* For some reason this R-bit might get cleared? */
  1884. if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS)
  1885. tp->retrans_out += tcp_skb_pcount(skb);
  1886. /* ...enter this if branch just for the first segment */
  1887. flag |= FLAG_DATA_ACKED;
  1888. } else {
  1889. if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
  1890. tp->undo_marker = 0;
  1891. TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
  1892. }
  1893. /* Marking forward transmissions that were made after RTO lost
  1894. * can cause unnecessary retransmissions in some scenarios,
  1895. * SACK blocks will mitigate that in some but not in all cases.
  1896. * We used to not mark them but it was causing break-ups with
  1897. * receivers that do only in-order receival.
  1898. *
  1899. * TODO: we could detect presence of such receiver and select
  1900. * different behavior per flow.
  1901. */
  1902. if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) {
  1903. TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
  1904. tp->lost_out += tcp_skb_pcount(skb);
  1905. tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
  1906. }
  1907. }
  1908. tcp_verify_left_out(tp);
  1909. tp->snd_cwnd = tcp_packets_in_flight(tp) + allowed_segments;
  1910. tp->snd_cwnd_cnt = 0;
  1911. tp->snd_cwnd_stamp = tcp_time_stamp;
  1912. tp->frto_counter = 0;
  1913. tp->bytes_acked = 0;
  1914. tp->reordering = min_t(unsigned int, tp->reordering,
  1915. sysctl_tcp_reordering);
  1916. tcp_set_ca_state(sk, TCP_CA_Loss);
  1917. tp->high_seq = tp->snd_nxt;
  1918. TCP_ECN_queue_cwr(tp);
  1919. tcp_clear_all_retrans_hints(tp);
  1920. }
  1921. static void tcp_clear_retrans_partial(struct tcp_sock *tp)
  1922. {
  1923. tp->retrans_out = 0;
  1924. tp->lost_out = 0;
  1925. tp->undo_marker = 0;
  1926. tp->undo_retrans = 0;
  1927. }
  1928. void tcp_clear_retrans(struct tcp_sock *tp)
  1929. {
  1930. tcp_clear_retrans_partial(tp);
  1931. tp->fackets_out = 0;
  1932. tp->sacked_out = 0;
  1933. }
  1934. /* Enter Loss state. If "how" is not zero, forget all SACK information
  1935. * and reset tags completely, otherwise preserve SACKs. If receiver
  1936. * dropped its ofo queue, we will know this due to reneging detection.
  1937. */
  1938. void tcp_enter_loss(struct sock *sk, int how)
  1939. {
  1940. const struct inet_connection_sock *icsk = inet_csk(sk);
  1941. struct tcp_sock *tp = tcp_sk(sk);
  1942. struct sk_buff *skb;
  1943. /* Reduce ssthresh if it has not yet been made inside this window. */
  1944. if (icsk->icsk_ca_state <= TCP_CA_Disorder || tp->snd_una == tp->high_seq ||
  1945. (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) {
  1946. tp->prior_ssthresh = tcp_current_ssthresh(sk);
  1947. tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
  1948. tcp_ca_event(sk, CA_EVENT_LOSS);
  1949. }
  1950. tp->snd_cwnd = 1;
  1951. tp->snd_cwnd_cnt = 0;
  1952. tp->snd_cwnd_stamp = tcp_time_stamp;
  1953. tp->bytes_acked = 0;
  1954. tcp_clear_retrans_partial(tp);
  1955. if (tcp_is_reno(tp))
  1956. tcp_reset_reno_sack(tp);
  1957. if (!how) {
  1958. /* Push undo marker, if it was plain RTO and nothing
  1959. * was retransmitted. */
  1960. tp->undo_marker = tp->snd_una;
  1961. } else {
  1962. tp->sacked_out = 0;
  1963. tp->fackets_out = 0;
  1964. }
  1965. tcp_clear_all_retrans_hints(tp);
  1966. tcp_for_write_queue(skb, sk) {
  1967. if (skb == tcp_send_head(sk))
  1968. break;
  1969. if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
  1970. tp->undo_marker = 0;
  1971. TCP_SKB_CB(skb)->sacked &= (~TCPCB_TAGBITS)|TCPCB_SACKED_ACKED;
  1972. if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED) || how) {
  1973. TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED;
  1974. TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
  1975. tp->lost_out += tcp_skb_pcount(skb);
  1976. tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
  1977. }
  1978. }
  1979. tcp_verify_left_out(tp);
  1980. tp->reordering = min_t(unsigned int, tp->reordering,
  1981. sysctl_tcp_reordering);
  1982. tcp_set_ca_state(sk, TCP_CA_Loss);
  1983. tp->high_seq = tp->snd_nxt;
  1984. TCP_ECN_queue_cwr(tp);
  1985. /* Abort F-RTO algorithm if one is in progress */
  1986. tp->frto_counter = 0;
  1987. }
  1988. /* If ACK arrived pointing to a remembered SACK, it means that our
  1989. * remembered SACKs do not reflect real state of receiver i.e.
  1990. * receiver _host_ is heavily congested (or buggy).
  1991. *
  1992. * Do processing similar to RTO timeout.
  1993. */
  1994. static int tcp_check_sack_reneging(struct sock *sk, int flag)
  1995. {
  1996. if (flag & FLAG_SACK_RENEGING) {
  1997. struct inet_connection_sock *icsk = inet_csk(sk);
  1998. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSACKRENEGING);
  1999. tcp_enter_loss(sk, 1);
  2000. icsk->icsk_retransmits++;
  2001. tcp_retransmit_skb(sk, tcp_write_queue_head(sk));
  2002. inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
  2003. icsk->icsk_rto, TCP_RTO_MAX);
  2004. return 1;
  2005. }
  2006. return 0;
  2007. }
  2008. static inline int tcp_fackets_out(const struct tcp_sock *tp)
  2009. {
  2010. return tcp_is_reno(tp) ? tp->sacked_out + 1 : tp->fackets_out;
  2011. }
  2012. /* Heurestics to calculate number of duplicate ACKs. There's no dupACKs
  2013. * counter when SACK is enabled (without SACK, sacked_out is used for
  2014. * that purpose).
  2015. *
  2016. * Instead, with FACK TCP uses fackets_out that includes both SACKed
  2017. * segments up to the highest received SACK block so far and holes in
  2018. * between them.
  2019. *
  2020. * With reordering, holes may still be in flight, so RFC3517 recovery
  2021. * uses pure sacked_out (total number of SACKed segments) even though
  2022. * it violates the RFC that uses duplicate ACKs, often these are equal
  2023. * but when e.g. out-of-window ACKs or packet duplication occurs,
  2024. * they differ. Since neither occurs due to loss, TCP should really
  2025. * ignore them.
  2026. */
  2027. static inline int tcp_dupack_heuristics(const struct tcp_sock *tp)
  2028. {
  2029. return tcp_is_fack(tp) ? tp->fackets_out : tp->sacked_out + 1;
  2030. }
  2031. static inline int tcp_skb_timedout(const struct sock *sk,
  2032. const struct sk_buff *skb)
  2033. {
  2034. return tcp_time_stamp - TCP_SKB_CB(skb)->when > inet_csk(sk)->icsk_rto;
  2035. }
  2036. static inline int tcp_head_timedout(const struct sock *sk)
  2037. {
  2038. const struct tcp_sock *tp = tcp_sk(sk);
  2039. return tp->packets_out &&
  2040. tcp_skb_timedout(sk, tcp_write_queue_head(sk));
  2041. }
  2042. /* Linux NewReno/SACK/FACK/ECN state machine.
  2043. * --------------------------------------
  2044. *
  2045. * "Open" Normal state, no dubious events, fast path.
  2046. * "Disorder" In all the respects it is "Open",
  2047. * but requires a bit more attention. It is entered when
  2048. * we see some SACKs or dupacks. It is split of "Open"
  2049. * mainly to move some processing from fast path to slow one.
  2050. * "CWR" CWND was reduced due to some Congestion Notification event.
  2051. * It can be ECN, ICMP source quench, local device congestion.
  2052. * "Recovery" CWND was reduced, we are fast-retransmitting.
  2053. * "Loss" CWND was reduced due to RTO timeout or SACK reneging.
  2054. *
  2055. * tcp_fastretrans_alert() is entered:
  2056. * - each incoming ACK, if state is not "Open"
  2057. * - when arrived ACK is unusual, namely:
  2058. * * SACK
  2059. * * Duplicate ACK.
  2060. * * ECN ECE.
  2061. *
  2062. * Counting packets in flight is pretty simple.
  2063. *
  2064. * in_flight = packets_out - left_out + retrans_out
  2065. *
  2066. * packets_out is SND.NXT-SND.UNA counted in packets.
  2067. *
  2068. * retrans_out is number of retransmitted segments.
  2069. *
  2070. * left_out is number of segments left network, but not ACKed yet.
  2071. *
  2072. * left_out = sacked_out + lost_out
  2073. *
  2074. * sacked_out: Packets, which arrived to receiver out of order
  2075. * and hence not ACKed. With SACKs this number is simply
  2076. * amount of SACKed data. Even without SACKs
  2077. * it is easy to give pretty reliable estimate of this number,
  2078. * counting duplicate ACKs.
  2079. *
  2080. * lost_out: Packets lost by network. TCP has no explicit
  2081. * "loss notification" feedback from network (for now).
  2082. * It means that this number can be only _guessed_.
  2083. * Actually, it is the heuristics to predict lossage that
  2084. * distinguishes different algorithms.
  2085. *
  2086. * F.e. after RTO, when all the queue is considered as lost,
  2087. * lost_out = packets_out and in_flight = retrans_out.
  2088. *
  2089. * Essentially, we have now two algorithms counting
  2090. * lost packets.
  2091. *
  2092. * FACK: It is the simplest heuristics. As soon as we decided
  2093. * that something is lost, we decide that _all_ not SACKed
  2094. * packets until the most forward SACK are lost. I.e.
  2095. * lost_out = fackets_out - sacked_out and left_out = fackets_out.
  2096. * It is absolutely correct estimate, if network does not reorder
  2097. * packets. And it loses any connection to reality when reordering
  2098. * takes place. We use FACK by default until reordering
  2099. * is suspected on the path to this destination.
  2100. *
  2101. * NewReno: when Recovery is entered, we assume that one segment
  2102. * is lost (classic Reno). While we are in Recovery and
  2103. * a partial ACK arrives, we assume that one more packet
  2104. * is lost (NewReno). This heuristics are the same in NewReno
  2105. * and SACK.
  2106. *
  2107. * Imagine, that's all! Forget about all this shamanism about CWND inflation
  2108. * deflation etc. CWND is real congestion window, never inflated, changes
  2109. * only according to classic VJ rules.
  2110. *
  2111. * Really tricky (and requiring careful tuning) part of algorithm
  2112. * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue().
  2113. * The first determines the moment _when_ we should reduce CWND and,
  2114. * hence, slow down forward transmission. In fact, it determines the moment
  2115. * when we decide that hole is caused by loss, rather than by a reorder.
  2116. *
  2117. * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill
  2118. * holes, caused by lost packets.
  2119. *
  2120. * And the most logically complicated part of algorithm is undo
  2121. * heuristics. We detect false retransmits due to both too early
  2122. * fast retransmit (reordering) and underestimated RTO, analyzing
  2123. * timestamps and D-SACKs. When we detect that some segments were
  2124. * retransmitted by mistake and CWND reduction was wrong, we undo
  2125. * window reduction and abort recovery phase. This logic is hidden
  2126. * inside several functions named tcp_try_undo_<something>.
  2127. */
  2128. /* This function decides, when we should leave Disordered state
  2129. * and enter Recovery phase, reducing congestion window.
  2130. *
  2131. * Main question: may we further continue forward transmission
  2132. * with the same cwnd?
  2133. */
  2134. static int tcp_time_to_recover(struct sock *sk)
  2135. {
  2136. struct tcp_sock *tp = tcp_sk(sk);
  2137. __u32 packets_out;
  2138. /* Do not perform any recovery during F-RTO algorithm */
  2139. if (tp->frto_counter)
  2140. return 0;
  2141. /* Trick#1: The loss is proven. */
  2142. if (tp->lost_out)
  2143. return 1;
  2144. /* Not-A-Trick#2 : Classic rule... */
  2145. if (tcp_dupack_heuristics(tp) > tp->reordering)
  2146. return 1;
  2147. /* Trick#3 : when we use RFC2988 timer restart, fast
  2148. * retransmit can be triggered by timeout of queue head.
  2149. */
  2150. if (tcp_is_fack(tp) && tcp_head_timedout(sk))
  2151. return 1;
  2152. /* Trick#4: It is still not OK... But will it be useful to delay
  2153. * recovery more?
  2154. */
  2155. packets_out = tp->packets_out;
  2156. if (packets_out <= tp->reordering &&
  2157. tp->sacked_out >= max_t(__u32, packets_out/2, sysctl_tcp_reordering) &&
  2158. !tcp_may_send_now(sk)) {
  2159. /* We have nothing to send. This connection is limited
  2160. * either by receiver window or by application.
  2161. */
  2162. return 1;
  2163. }
  2164. /* If a thin stream is detected, retransmit after first
  2165. * received dupack. Employ only if SACK is supported in order
  2166. * to avoid possible corner-case series of spurious retransmissions
  2167. * Use only if there are no unsent data.
  2168. */
  2169. if ((tp->thin_dupack || sysctl_tcp_thin_dupack) &&
  2170. tcp_stream_is_thin(tp) && tcp_dupack_heuristics(tp) > 1 &&
  2171. tcp_is_sack(tp) && !tcp_send_head(sk))
  2172. return 1;
  2173. return 0;
  2174. }
  2175. /* New heuristics: it is possible only after we switched to restart timer
  2176. * each time when something is ACKed. Hence, we can detect timed out packets
  2177. * during fast retransmit without falling to slow start.
  2178. *
  2179. * Usefulness of this as is very questionable, since we should know which of
  2180. * the segments is the next to timeout which is relatively expensive to find
  2181. * in general case unless we add some data structure just for that. The
  2182. * current approach certainly won't find the right one too often and when it
  2183. * finally does find _something_ it usually marks large part of the window
  2184. * right away (because a retransmission with a larger timestamp blocks the
  2185. * loop from advancing). -ij
  2186. */
  2187. static void tcp_timeout_skbs(struct sock *sk)
  2188. {
  2189. struct tcp_sock *tp = tcp_sk(sk);
  2190. struct sk_buff *skb;
  2191. if (!tcp_is_fack(tp) || !tcp_head_timedout(sk))
  2192. return;
  2193. skb = tp->scoreboard_skb_hint;
  2194. if (tp->scoreboard_skb_hint == NULL)
  2195. skb = tcp_write_queue_head(sk);
  2196. tcp_for_write_queue_from(skb, sk) {
  2197. if (skb == tcp_send_head(sk))
  2198. break;
  2199. if (!tcp_skb_timedout(sk, skb))
  2200. break;
  2201. tcp_skb_mark_lost(tp, skb);
  2202. }
  2203. tp->scoreboard_skb_hint = skb;
  2204. tcp_verify_left_out(tp);
  2205. }
  2206. /* Detect loss in event "A" above by marking head of queue up as lost.
  2207. * For FACK or non-SACK(Reno) senders, the first "packets" number of segments
  2208. * are considered lost. For RFC3517 SACK, a segment is considered lost if it
  2209. * has at least tp->reordering SACKed seqments above it; "packets" refers to
  2210. * the maximum SACKed segments to pass before reaching this limit.
  2211. */
  2212. static void tcp_mark_head_lost(struct sock *sk, int packets, int mark_head)
  2213. {
  2214. struct tcp_sock *tp = tcp_sk(sk);
  2215. struct sk_buff *skb;
  2216. int cnt, oldcnt;
  2217. int err;
  2218. unsigned int mss;
  2219. /* Use SACK to deduce losses of new sequences sent during recovery */
  2220. const u32 loss_high = tcp_is_sack(tp) ? tp->snd_nxt : tp->high_seq;
  2221. WARN_ON(packets > tp->packets_out);
  2222. if (tp->lost_skb_hint) {
  2223. skb = tp->lost_skb_hint;
  2224. cnt = tp->lost_cnt_hint;
  2225. /* Head already handled? */
  2226. if (mark_head && skb != tcp_write_queue_head(sk))
  2227. return;
  2228. } else {
  2229. skb = tcp_write_queue_head(sk);
  2230. cnt = 0;
  2231. }
  2232. tcp_for_write_queue_from(skb, sk) {
  2233. if (skb == tcp_send_head(sk))
  2234. break;
  2235. /* TODO: do this better */
  2236. /* this is not the most efficient way to do this... */
  2237. tp->lost_skb_hint = skb;
  2238. tp->lost_cnt_hint = cnt;
  2239. if (after(TCP_SKB_CB(skb)->end_seq, loss_high))
  2240. break;
  2241. oldcnt = cnt;
  2242. if (tcp_is_fack(tp) || tcp_is_reno(tp) ||
  2243. (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
  2244. cnt += tcp_skb_pcount(skb);
  2245. if (cnt > packets) {
  2246. if ((tcp_is_sack(tp) && !tcp_is_fack(tp)) ||
  2247. (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) ||
  2248. (oldcnt >= packets))
  2249. break;
  2250. mss = skb_shinfo(skb)->gso_size;
  2251. err = tcp_fragment(sk, skb, (packets - oldcnt) * mss, mss);
  2252. if (err < 0)
  2253. break;
  2254. cnt = packets;
  2255. }
  2256. tcp_skb_mark_lost(tp, skb);
  2257. if (mark_head)
  2258. break;
  2259. }
  2260. tcp_verify_left_out(tp);
  2261. }
  2262. /* Account newly detected lost packet(s) */
  2263. static void tcp_update_scoreboard(struct sock *sk, int fast_rexmit)
  2264. {
  2265. struct tcp_sock *tp = tcp_sk(sk);
  2266. if (tcp_is_reno(tp)) {
  2267. tcp_mark_head_lost(sk, 1, 1);
  2268. } else if (tcp_is_fack(tp)) {
  2269. int lost = tp->fackets_out - tp->reordering;
  2270. if (lost <= 0)
  2271. lost = 1;
  2272. tcp_mark_head_lost(sk, lost, 0);
  2273. } else {
  2274. int sacked_upto = tp->sacked_out - tp->reordering;
  2275. if (sacked_upto >= 0)
  2276. tcp_mark_head_lost(sk, sacked_upto, 0);
  2277. else if (fast_rexmit)
  2278. tcp_mark_head_lost(sk, 1, 1);
  2279. }
  2280. tcp_timeout_skbs(sk);
  2281. }
  2282. /* CWND moderation, preventing bursts due to too big ACKs
  2283. * in dubious situations.
  2284. */
  2285. static inline void tcp_moderate_cwnd(struct tcp_sock *tp)
  2286. {
  2287. tp->snd_cwnd = min(tp->snd_cwnd,
  2288. tcp_packets_in_flight(tp) + tcp_max_burst(tp));
  2289. tp->snd_cwnd_stamp = tcp_time_stamp;
  2290. }
  2291. /* Lower bound on congestion window is slow start threshold
  2292. * unless congestion avoidance choice decides to overide it.
  2293. */
  2294. static inline u32 tcp_cwnd_min(const struct sock *sk)
  2295. {
  2296. const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
  2297. return ca_ops->min_cwnd ? ca_ops->min_cwnd(sk) : tcp_sk(sk)->snd_ssthresh;
  2298. }
  2299. /* Decrease cwnd each second ack. */
  2300. static void tcp_cwnd_down(struct sock *sk, int flag)
  2301. {
  2302. struct tcp_sock *tp = tcp_sk(sk);
  2303. int decr = tp->snd_cwnd_cnt + 1;
  2304. if ((flag & (FLAG_ANY_PROGRESS | FLAG_DSACKING_ACK)) ||
  2305. (tcp_is_reno(tp) && !(flag & FLAG_NOT_DUP))) {
  2306. tp->snd_cwnd_cnt = decr & 1;
  2307. decr >>= 1;
  2308. if (decr && tp->snd_cwnd > tcp_cwnd_min(sk))
  2309. tp->snd_cwnd -= decr;
  2310. tp->snd_cwnd = min(tp->snd_cwnd, tcp_packets_in_flight(tp) + 1);
  2311. tp->snd_cwnd_stamp = tcp_time_stamp;
  2312. }
  2313. }
  2314. /* Nothing was retransmitted or returned timestamp is less
  2315. * than timestamp of the first retransmission.
  2316. */
  2317. static inline int tcp_packet_delayed(const struct tcp_sock *tp)
  2318. {
  2319. return !tp->retrans_stamp ||
  2320. (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
  2321. before(tp->rx_opt.rcv_tsecr, tp->retrans_stamp));
  2322. }
  2323. /* Undo procedures. */
  2324. #if FASTRETRANS_DEBUG > 1
  2325. static void DBGUNDO(struct sock *sk, const char *msg)
  2326. {
  2327. struct tcp_sock *tp = tcp_sk(sk);
  2328. struct inet_sock *inet = inet_sk(sk);
  2329. if (sk->sk_family == AF_INET) {
  2330. printk(KERN_DEBUG "Undo %s %pI4/%u c%u l%u ss%u/%u p%u\n",
  2331. msg,
  2332. &inet->inet_daddr, ntohs(inet->inet_dport),
  2333. tp->snd_cwnd, tcp_left_out(tp),
  2334. tp->snd_ssthresh, tp->prior_ssthresh,
  2335. tp->packets_out);
  2336. }
  2337. #if IS_ENABLED(CONFIG_IPV6)
  2338. else if (sk->sk_family == AF_INET6) {
  2339. struct ipv6_pinfo *np = inet6_sk(sk);
  2340. printk(KERN_DEBUG "Undo %s %pI6/%u c%u l%u ss%u/%u p%u\n",
  2341. msg,
  2342. &np->daddr, ntohs(inet->inet_dport),
  2343. tp->snd_cwnd, tcp_left_out(tp),
  2344. tp->snd_ssthresh, tp->prior_ssthresh,
  2345. tp->packets_out);
  2346. }
  2347. #endif
  2348. }
  2349. #else
  2350. #define DBGUNDO(x...) do { } while (0)
  2351. #endif
  2352. static void tcp_undo_cwr(struct sock *sk, const bool undo_ssthresh)
  2353. {
  2354. struct tcp_sock *tp = tcp_sk(sk);
  2355. if (tp->prior_ssthresh) {
  2356. const struct inet_connection_sock *icsk = inet_csk(sk);
  2357. if (icsk->icsk_ca_ops->undo_cwnd)
  2358. tp->snd_cwnd = icsk->icsk_ca_ops->undo_cwnd(sk);
  2359. else
  2360. tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh << 1);
  2361. if (undo_ssthresh && tp->prior_ssthresh > tp->snd_ssthresh) {
  2362. tp->snd_ssthresh = tp->prior_ssthresh;
  2363. TCP_ECN_withdraw_cwr(tp);
  2364. }
  2365. } else {
  2366. tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh);
  2367. }
  2368. tp->snd_cwnd_stamp = tcp_time_stamp;
  2369. }
  2370. static inline int tcp_may_undo(const struct tcp_sock *tp)
  2371. {
  2372. return tp->undo_marker && (!tp->undo_retrans || tcp_packet_delayed(tp));
  2373. }
  2374. /* People celebrate: "We love our President!" */
  2375. static int tcp_try_undo_recovery(struct sock *sk)
  2376. {
  2377. struct tcp_sock *tp = tcp_sk(sk);
  2378. if (tcp_may_undo(tp)) {
  2379. int mib_idx;
  2380. /* Happy end! We did not retransmit anything
  2381. * or our original transmission succeeded.
  2382. */
  2383. DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans");
  2384. tcp_undo_cwr(sk, true);
  2385. if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss)
  2386. mib_idx = LINUX_MIB_TCPLOSSUNDO;
  2387. else
  2388. mib_idx = LINUX_MIB_TCPFULLUNDO;
  2389. NET_INC_STATS_BH(sock_net(sk), mib_idx);
  2390. tp->undo_marker = 0;
  2391. }
  2392. if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) {
  2393. /* Hold old state until something *above* high_seq
  2394. * is ACKed. For Reno it is MUST to prevent false
  2395. * fast retransmits (RFC2582). SACK TCP is safe. */
  2396. tcp_moderate_cwnd(tp);
  2397. return 1;
  2398. }
  2399. tcp_set_ca_state(sk, TCP_CA_Open);
  2400. return 0;
  2401. }
  2402. /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */
  2403. static void tcp_try_undo_dsack(struct sock *sk)
  2404. {
  2405. struct tcp_sock *tp = tcp_sk(sk);
  2406. if (tp->undo_marker && !tp->undo_retrans) {
  2407. DBGUNDO(sk, "D-SACK");
  2408. tcp_undo_cwr(sk, true);
  2409. tp->undo_marker = 0;
  2410. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPDSACKUNDO);
  2411. }
  2412. }
  2413. /* We can clear retrans_stamp when there are no retransmissions in the
  2414. * window. It would seem that it is trivially available for us in
  2415. * tp->retrans_out, however, that kind of assumptions doesn't consider
  2416. * what will happen if errors occur when sending retransmission for the
  2417. * second time. ...It could the that such segment has only
  2418. * TCPCB_EVER_RETRANS set at the present time. It seems that checking
  2419. * the head skb is enough except for some reneging corner cases that
  2420. * are not worth the effort.
  2421. *
  2422. * Main reason for all this complexity is the fact that connection dying
  2423. * time now depends on the validity of the retrans_stamp, in particular,
  2424. * that successive retransmissions of a segment must not advance
  2425. * retrans_stamp under any conditions.
  2426. */
  2427. static int tcp_any_retrans_done(const struct sock *sk)
  2428. {
  2429. const struct tcp_sock *tp = tcp_sk(sk);
  2430. struct sk_buff *skb;
  2431. if (tp->retrans_out)
  2432. return 1;
  2433. skb = tcp_write_queue_head(sk);
  2434. if (unlikely(skb && TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS))
  2435. return 1;
  2436. return 0;
  2437. }
  2438. /* Undo during fast recovery after partial ACK. */
  2439. static int tcp_try_undo_partial(struct sock *sk, int acked)
  2440. {
  2441. struct tcp_sock *tp = tcp_sk(sk);
  2442. /* Partial ACK arrived. Force Hoe's retransmit. */
  2443. int failed = tcp_is_reno(tp) || (tcp_fackets_out(tp) > tp->reordering);
  2444. if (tcp_may_undo(tp)) {
  2445. /* Plain luck! Hole if filled with delayed
  2446. * packet, rather than with a retransmit.
  2447. */
  2448. if (!tcp_any_retrans_done(sk))
  2449. tp->retrans_stamp = 0;
  2450. tcp_update_reordering(sk, tcp_fackets_out(tp) + acked, 1);
  2451. DBGUNDO(sk, "Hoe");
  2452. tcp_undo_cwr(sk, false);
  2453. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPPARTIALUNDO);
  2454. /* So... Do not make Hoe's retransmit yet.
  2455. * If the first packet was delayed, the rest
  2456. * ones are most probably delayed as well.
  2457. */
  2458. failed = 0;
  2459. }
  2460. return failed;
  2461. }
  2462. /* Undo during loss recovery after partial ACK. */
  2463. static int tcp_try_undo_loss(struct sock *sk)
  2464. {
  2465. struct tcp_sock *tp = tcp_sk(sk);
  2466. if (tcp_may_undo(tp)) {
  2467. struct sk_buff *skb;
  2468. tcp_for_write_queue(skb, sk) {
  2469. if (skb == tcp_send_head(sk))
  2470. break;
  2471. TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
  2472. }
  2473. tcp_clear_all_retrans_hints(tp);
  2474. DBGUNDO(sk, "partial loss");
  2475. tp->lost_out = 0;
  2476. tcp_undo_cwr(sk, true);
  2477. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSSUNDO);
  2478. inet_csk(sk)->icsk_retransmits = 0;
  2479. tp->undo_marker = 0;
  2480. if (tcp_is_sack(tp))
  2481. tcp_set_ca_state(sk, TCP_CA_Open);
  2482. return 1;
  2483. }
  2484. return 0;
  2485. }
  2486. static inline void tcp_complete_cwr(struct sock *sk)
  2487. {
  2488. struct tcp_sock *tp = tcp_sk(sk);
  2489. /* Do not moderate cwnd if it's already undone in cwr or recovery. */
  2490. if (tp->undo_marker) {
  2491. if (inet_csk(sk)->icsk_ca_state == TCP_CA_CWR)
  2492. tp->snd_cwnd = min(tp->snd_cwnd, tp->snd_ssthresh);
  2493. else /* PRR */
  2494. tp->snd_cwnd = tp->snd_ssthresh;
  2495. tp->snd_cwnd_stamp = tcp_time_stamp;
  2496. }
  2497. tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR);
  2498. }
  2499. static void tcp_try_keep_open(struct sock *sk)
  2500. {
  2501. struct tcp_sock *tp = tcp_sk(sk);
  2502. int state = TCP_CA_Open;
  2503. if (tcp_left_out(tp) || tcp_any_retrans_done(sk))
  2504. state = TCP_CA_Disorder;
  2505. if (inet_csk(sk)->icsk_ca_state != state) {
  2506. tcp_set_ca_state(sk, state);
  2507. tp->high_seq = tp->snd_nxt;
  2508. }
  2509. }
  2510. static void tcp_try_to_open(struct sock *sk, int flag)
  2511. {
  2512. struct tcp_sock *tp = tcp_sk(sk);
  2513. tcp_verify_left_out(tp);
  2514. if (!tp->frto_counter && !tcp_any_retrans_done(sk))
  2515. tp->retrans_stamp = 0;
  2516. if (flag & FLAG_ECE)
  2517. tcp_enter_cwr(sk, 1);
  2518. if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) {
  2519. tcp_try_keep_open(sk);
  2520. if (inet_csk(sk)->icsk_ca_state != TCP_CA_Open)
  2521. tcp_moderate_cwnd(tp);
  2522. } else {
  2523. tcp_cwnd_down(sk, flag);
  2524. }
  2525. }
  2526. static void tcp_mtup_probe_failed(struct sock *sk)
  2527. {
  2528. struct inet_connection_sock *icsk = inet_csk(sk);
  2529. icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1;
  2530. icsk->icsk_mtup.probe_size = 0;
  2531. }
  2532. static void tcp_mtup_probe_success(struct sock *sk)
  2533. {
  2534. struct tcp_sock *tp = tcp_sk(sk);
  2535. struct inet_connection_sock *icsk = inet_csk(sk);
  2536. /* FIXME: breaks with very large cwnd */
  2537. tp->prior_ssthresh = tcp_current_ssthresh(sk);
  2538. tp->snd_cwnd = tp->snd_cwnd *
  2539. tcp_mss_to_mtu(sk, tp->mss_cache) /
  2540. icsk->icsk_mtup.probe_size;
  2541. tp->snd_cwnd_cnt = 0;
  2542. tp->snd_cwnd_stamp = tcp_time_stamp;
  2543. tp->snd_ssthresh = tcp_current_ssthresh(sk);
  2544. icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size;
  2545. icsk->icsk_mtup.probe_size = 0;
  2546. tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
  2547. }
  2548. /* Do a simple retransmit without using the backoff mechanisms in
  2549. * tcp_timer. This is used for path mtu discovery.
  2550. * The socket is already locked here.
  2551. */
  2552. void tcp_simple_retransmit(struct sock *sk)
  2553. {
  2554. const struct inet_connection_sock *icsk = inet_csk(sk);
  2555. struct tcp_sock *tp = tcp_sk(sk);
  2556. struct sk_buff *skb;
  2557. unsigned int mss = tcp_current_mss(sk);
  2558. u32 prior_lost = tp->lost_out;
  2559. tcp_for_write_queue(skb, sk) {
  2560. if (skb == tcp_send_head(sk))
  2561. break;
  2562. if (tcp_skb_seglen(skb) > mss &&
  2563. !(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) {
  2564. if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
  2565. TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
  2566. tp->retrans_out -= tcp_skb_pcount(skb);
  2567. }
  2568. tcp_skb_mark_lost_uncond_verify(tp, skb);
  2569. }
  2570. }
  2571. tcp_clear_retrans_hints_partial(tp);
  2572. if (prior_lost == tp->lost_out)
  2573. return;
  2574. if (tcp_is_reno(tp))
  2575. tcp_limit_reno_sacked(tp);
  2576. tcp_verify_left_out(tp);
  2577. /* Don't muck with the congestion window here.
  2578. * Reason is that we do not increase amount of _data_
  2579. * in network, but units changed and effective
  2580. * cwnd/ssthresh really reduced now.
  2581. */
  2582. if (icsk->icsk_ca_state != TCP_CA_Loss) {
  2583. tp->high_seq = tp->snd_nxt;
  2584. tp->snd_ssthresh = tcp_current_ssthresh(sk);
  2585. tp->prior_ssthresh = 0;
  2586. tp->undo_marker = 0;
  2587. tcp_set_ca_state(sk, TCP_CA_Loss);
  2588. }
  2589. tcp_xmit_retransmit_queue(sk);
  2590. }
  2591. EXPORT_SYMBOL(tcp_simple_retransmit);
  2592. /* This function implements the PRR algorithm, specifcally the PRR-SSRB
  2593. * (proportional rate reduction with slow start reduction bound) as described in
  2594. * http://www.ietf.org/id/draft-mathis-tcpm-proportional-rate-reduction-01.txt.
  2595. * It computes the number of packets to send (sndcnt) based on packets newly
  2596. * delivered:
  2597. * 1) If the packets in flight is larger than ssthresh, PRR spreads the
  2598. * cwnd reductions across a full RTT.
  2599. * 2) If packets in flight is lower than ssthresh (such as due to excess
  2600. * losses and/or application stalls), do not perform any further cwnd
  2601. * reductions, but instead slow start up to ssthresh.
  2602. */
  2603. static void tcp_update_cwnd_in_recovery(struct sock *sk, int newly_acked_sacked,
  2604. int fast_rexmit, int flag)
  2605. {
  2606. struct tcp_sock *tp = tcp_sk(sk);
  2607. int sndcnt = 0;
  2608. int delta = tp->snd_ssthresh - tcp_packets_in_flight(tp);
  2609. if (tcp_packets_in_flight(tp) > tp->snd_ssthresh) {
  2610. u64 dividend = (u64)tp->snd_ssthresh * tp->prr_delivered +
  2611. tp->prior_cwnd - 1;
  2612. sndcnt = div_u64(dividend, tp->prior_cwnd) - tp->prr_out;
  2613. } else {
  2614. sndcnt = min_t(int, delta,
  2615. max_t(int, tp->prr_delivered - tp->prr_out,
  2616. newly_acked_sacked) + 1);
  2617. }
  2618. sndcnt = max(sndcnt, (fast_rexmit ? 1 : 0));
  2619. tp->snd_cwnd = tcp_packets_in_flight(tp) + sndcnt;
  2620. }
  2621. /* Process an event, which can update packets-in-flight not trivially.
  2622. * Main goal of this function is to calculate new estimate for left_out,
  2623. * taking into account both packets sitting in receiver's buffer and
  2624. * packets lost by network.
  2625. *
  2626. * Besides that it does CWND reduction, when packet loss is detected
  2627. * and changes state of machine.
  2628. *
  2629. * It does _not_ decide what to send, it is made in function
  2630. * tcp_xmit_retransmit_queue().
  2631. */
  2632. static void tcp_fastretrans_alert(struct sock *sk, int pkts_acked,
  2633. int newly_acked_sacked, bool is_dupack,
  2634. int flag)
  2635. {
  2636. struct inet_connection_sock *icsk = inet_csk(sk);
  2637. struct tcp_sock *tp = tcp_sk(sk);
  2638. int do_lost = is_dupack || ((flag & FLAG_DATA_SACKED) &&
  2639. (tcp_fackets_out(tp) > tp->reordering));
  2640. int fast_rexmit = 0, mib_idx;
  2641. if (WARN_ON(!tp->packets_out && tp->sacked_out))
  2642. tp->sacked_out = 0;
  2643. if (WARN_ON(!tp->sacked_out && tp->fackets_out))
  2644. tp->fackets_out = 0;
  2645. /* Now state machine starts.
  2646. * A. ECE, hence prohibit cwnd undoing, the reduction is required. */
  2647. if (flag & FLAG_ECE)
  2648. tp->prior_ssthresh = 0;
  2649. /* B. In all the states check for reneging SACKs. */
  2650. if (tcp_check_sack_reneging(sk, flag))
  2651. return;
  2652. /* C. Check consistency of the current state. */
  2653. tcp_verify_left_out(tp);
  2654. /* D. Check state exit conditions. State can be terminated
  2655. * when high_seq is ACKed. */
  2656. if (icsk->icsk_ca_state == TCP_CA_Open) {
  2657. WARN_ON(tp->retrans_out != 0);
  2658. tp->retrans_stamp = 0;
  2659. } else if (!before(tp->snd_una, tp->high_seq)) {
  2660. switch (icsk->icsk_ca_state) {
  2661. case TCP_CA_Loss:
  2662. icsk->icsk_retransmits = 0;
  2663. if (tcp_try_undo_recovery(sk))
  2664. return;
  2665. break;
  2666. case TCP_CA_CWR:
  2667. /* CWR is to be held something *above* high_seq
  2668. * is ACKed for CWR bit to reach receiver. */
  2669. if (tp->snd_una != tp->high_seq) {
  2670. tcp_complete_cwr(sk);
  2671. tcp_set_ca_state(sk, TCP_CA_Open);
  2672. }
  2673. break;
  2674. case TCP_CA_Recovery:
  2675. if (tcp_is_reno(tp))
  2676. tcp_reset_reno_sack(tp);
  2677. if (tcp_try_undo_recovery(sk))
  2678. return;
  2679. tcp_complete_cwr(sk);
  2680. break;
  2681. }
  2682. }
  2683. /* E. Process state. */
  2684. switch (icsk->icsk_ca_state) {
  2685. case TCP_CA_Recovery:
  2686. if (!(flag & FLAG_SND_UNA_ADVANCED)) {
  2687. if (tcp_is_reno(tp) && is_dupack)
  2688. tcp_add_reno_sack(sk);
  2689. } else
  2690. do_lost = tcp_try_undo_partial(sk, pkts_acked);
  2691. break;
  2692. case TCP_CA_Loss:
  2693. if (flag & FLAG_DATA_ACKED)
  2694. icsk->icsk_retransmits = 0;
  2695. if (tcp_is_reno(tp) && flag & FLAG_SND_UNA_ADVANCED)
  2696. tcp_reset_reno_sack(tp);
  2697. if (!tcp_try_undo_loss(sk)) {
  2698. tcp_moderate_cwnd(tp);
  2699. tcp_xmit_retransmit_queue(sk);
  2700. return;
  2701. }
  2702. if (icsk->icsk_ca_state != TCP_CA_Open)
  2703. return;
  2704. /* Loss is undone; fall through to processing in Open state. */
  2705. default:
  2706. if (tcp_is_reno(tp)) {
  2707. if (flag & FLAG_SND_UNA_ADVANCED)
  2708. tcp_reset_reno_sack(tp);
  2709. if (is_dupack)
  2710. tcp_add_reno_sack(sk);
  2711. }
  2712. if (icsk->icsk_ca_state <= TCP_CA_Disorder)
  2713. tcp_try_undo_dsack(sk);
  2714. if (!tcp_time_to_recover(sk)) {
  2715. tcp_try_to_open(sk, flag);
  2716. return;
  2717. }
  2718. /* MTU probe failure: don't reduce cwnd */
  2719. if (icsk->icsk_ca_state < TCP_CA_CWR &&
  2720. icsk->icsk_mtup.probe_size &&
  2721. tp->snd_una == tp->mtu_probe.probe_seq_start) {
  2722. tcp_mtup_probe_failed(sk);
  2723. /* Restores the reduction we did in tcp_mtup_probe() */
  2724. tp->snd_cwnd++;
  2725. tcp_simple_retransmit(sk);
  2726. return;
  2727. }
  2728. /* Otherwise enter Recovery state */
  2729. if (tcp_is_reno(tp))
  2730. mib_idx = LINUX_MIB_TCPRENORECOVERY;
  2731. else
  2732. mib_idx = LINUX_MIB_TCPSACKRECOVERY;
  2733. NET_INC_STATS_BH(sock_net(sk), mib_idx);
  2734. tp->high_seq = tp->snd_nxt;
  2735. tp->prior_ssthresh = 0;
  2736. tp->undo_marker = tp->snd_una;
  2737. tp->undo_retrans = tp->retrans_out;
  2738. if (icsk->icsk_ca_state < TCP_CA_CWR) {
  2739. if (!(flag & FLAG_ECE))
  2740. tp->prior_ssthresh = tcp_current_ssthresh(sk);
  2741. tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
  2742. TCP_ECN_queue_cwr(tp);
  2743. }
  2744. tp->bytes_acked = 0;
  2745. tp->snd_cwnd_cnt = 0;
  2746. tp->prior_cwnd = tp->snd_cwnd;
  2747. tp->prr_delivered = 0;
  2748. tp->prr_out = 0;
  2749. tcp_set_ca_state(sk, TCP_CA_Recovery);
  2750. fast_rexmit = 1;
  2751. }
  2752. if (do_lost || (tcp_is_fack(tp) && tcp_head_timedout(sk)))
  2753. tcp_update_scoreboard(sk, fast_rexmit);
  2754. tp->prr_delivered += newly_acked_sacked;
  2755. tcp_update_cwnd_in_recovery(sk, newly_acked_sacked, fast_rexmit, flag);
  2756. tcp_xmit_retransmit_queue(sk);
  2757. }
  2758. void tcp_valid_rtt_meas(struct sock *sk, u32 seq_rtt)
  2759. {
  2760. tcp_rtt_estimator(sk, seq_rtt);
  2761. tcp_set_rto(sk);
  2762. inet_csk(sk)->icsk_backoff = 0;
  2763. }
  2764. EXPORT_SYMBOL(tcp_valid_rtt_meas);
  2765. /* Read draft-ietf-tcplw-high-performance before mucking
  2766. * with this code. (Supersedes RFC1323)
  2767. */
  2768. static void tcp_ack_saw_tstamp(struct sock *sk, int flag)
  2769. {
  2770. /* RTTM Rule: A TSecr value received in a segment is used to
  2771. * update the averaged RTT measurement only if the segment
  2772. * acknowledges some new data, i.e., only if it advances the
  2773. * left edge of the send window.
  2774. *
  2775. * See draft-ietf-tcplw-high-performance-00, section 3.3.
  2776. * 1998/04/10 Andrey V. Savochkin <saw@msu.ru>
  2777. *
  2778. * Changed: reset backoff as soon as we see the first valid sample.
  2779. * If we do not, we get strongly overestimated rto. With timestamps
  2780. * samples are accepted even from very old segments: f.e., when rtt=1
  2781. * increases to 8, we retransmit 5 times and after 8 seconds delayed
  2782. * answer arrives rto becomes 120 seconds! If at least one of segments
  2783. * in window is lost... Voila. --ANK (010210)
  2784. */
  2785. struct tcp_sock *tp = tcp_sk(sk);
  2786. tcp_valid_rtt_meas(sk, tcp_time_stamp - tp->rx_opt.rcv_tsecr);
  2787. }
  2788. static void tcp_ack_no_tstamp(struct sock *sk, u32 seq_rtt, int flag)
  2789. {
  2790. /* We don't have a timestamp. Can only use
  2791. * packets that are not retransmitted to determine
  2792. * rtt estimates. Also, we must not reset the
  2793. * backoff for rto until we get a non-retransmitted
  2794. * packet. This allows us to deal with a situation
  2795. * where the network delay has increased suddenly.
  2796. * I.e. Karn's algorithm. (SIGCOMM '87, p5.)
  2797. */
  2798. if (flag & FLAG_RETRANS_DATA_ACKED)
  2799. return;
  2800. tcp_valid_rtt_meas(sk, seq_rtt);
  2801. }
  2802. static inline void tcp_ack_update_rtt(struct sock *sk, const int flag,
  2803. const s32 seq_rtt)
  2804. {
  2805. const struct tcp_sock *tp = tcp_sk(sk);
  2806. /* Note that peer MAY send zero echo. In this case it is ignored. (rfc1323) */
  2807. if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
  2808. tcp_ack_saw_tstamp(sk, flag);
  2809. else if (seq_rtt >= 0)
  2810. tcp_ack_no_tstamp(sk, seq_rtt, flag);
  2811. }
  2812. static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 in_flight)
  2813. {
  2814. const struct inet_connection_sock *icsk = inet_csk(sk);
  2815. icsk->icsk_ca_ops->cong_avoid(sk, ack, in_flight);
  2816. tcp_sk(sk)->snd_cwnd_stamp = tcp_time_stamp;
  2817. }
  2818. /* Restart timer after forward progress on connection.
  2819. * RFC2988 recommends to restart timer to now+rto.
  2820. */
  2821. static void tcp_rearm_rto(struct sock *sk)
  2822. {
  2823. const struct tcp_sock *tp = tcp_sk(sk);
  2824. if (!tp->packets_out) {
  2825. inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS);
  2826. } else {
  2827. inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
  2828. inet_csk(sk)->icsk_rto, TCP_RTO_MAX);
  2829. }
  2830. }
  2831. /* If we get here, the whole TSO packet has not been acked. */
  2832. static u32 tcp_tso_acked(struct sock *sk, struct sk_buff *skb)
  2833. {
  2834. struct tcp_sock *tp = tcp_sk(sk);
  2835. u32 packets_acked;
  2836. BUG_ON(!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una));
  2837. packets_acked = tcp_skb_pcount(skb);
  2838. if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
  2839. return 0;
  2840. packets_acked -= tcp_skb_pcount(skb);
  2841. if (packets_acked) {
  2842. BUG_ON(tcp_skb_pcount(skb) == 0);
  2843. BUG_ON(!before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq));
  2844. }
  2845. return packets_acked;
  2846. }
  2847. /* Remove acknowledged frames from the retransmission queue. If our packet
  2848. * is before the ack sequence we can discard it as it's confirmed to have
  2849. * arrived at the other end.
  2850. */
  2851. static int tcp_clean_rtx_queue(struct sock *sk, int prior_fackets,
  2852. u32 prior_snd_una)
  2853. {
  2854. struct tcp_sock *tp = tcp_sk(sk);
  2855. const struct inet_connection_sock *icsk = inet_csk(sk);
  2856. struct sk_buff *skb;
  2857. u32 now = tcp_time_stamp;
  2858. int fully_acked = 1;
  2859. int flag = 0;
  2860. u32 pkts_acked = 0;
  2861. u32 reord = tp->packets_out;
  2862. u32 prior_sacked = tp->sacked_out;
  2863. s32 seq_rtt = -1;
  2864. s32 ca_seq_rtt = -1;
  2865. ktime_t last_ackt = net_invalid_timestamp();
  2866. while ((skb = tcp_write_queue_head(sk)) && skb != tcp_send_head(sk)) {
  2867. struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
  2868. u32 acked_pcount;
  2869. u8 sacked = scb->sacked;
  2870. /* Determine how many packets and what bytes were acked, tso and else */
  2871. if (after(scb->end_seq, tp->snd_una)) {
  2872. if (tcp_skb_pcount(skb) == 1 ||
  2873. !after(tp->snd_una, scb->seq))
  2874. break;
  2875. acked_pcount = tcp_tso_acked(sk, skb);
  2876. if (!acked_pcount)
  2877. break;
  2878. fully_acked = 0;
  2879. } else {
  2880. acked_pcount = tcp_skb_pcount(skb);
  2881. }
  2882. if (sacked & TCPCB_RETRANS) {
  2883. if (sacked & TCPCB_SACKED_RETRANS)
  2884. tp->retrans_out -= acked_pcount;
  2885. flag |= FLAG_RETRANS_DATA_ACKED;
  2886. ca_seq_rtt = -1;
  2887. seq_rtt = -1;
  2888. if ((flag & FLAG_DATA_ACKED) || (acked_pcount > 1))
  2889. flag |= FLAG_NONHEAD_RETRANS_ACKED;
  2890. } else {
  2891. ca_seq_rtt = now - scb->when;
  2892. last_ackt = skb->tstamp;
  2893. if (seq_rtt < 0) {
  2894. seq_rtt = ca_seq_rtt;
  2895. }
  2896. if (!(sacked & TCPCB_SACKED_ACKED))
  2897. reord = min(pkts_acked, reord);
  2898. }
  2899. if (sacked & TCPCB_SACKED_ACKED)
  2900. tp->sacked_out -= acked_pcount;
  2901. if (sacked & TCPCB_LOST)
  2902. tp->lost_out -= acked_pcount;
  2903. tp->packets_out -= acked_pcount;
  2904. pkts_acked += acked_pcount;
  2905. /* Initial outgoing SYN's get put onto the write_queue
  2906. * just like anything else we transmit. It is not
  2907. * true data, and if we misinform our callers that
  2908. * this ACK acks real data, we will erroneously exit
  2909. * connection startup slow start one packet too
  2910. * quickly. This is severely frowned upon behavior.
  2911. */
  2912. if (!(scb->tcp_flags & TCPHDR_SYN)) {
  2913. flag |= FLAG_DATA_ACKED;
  2914. } else {
  2915. flag |= FLAG_SYN_ACKED;
  2916. tp->retrans_stamp = 0;
  2917. }
  2918. if (!fully_acked)
  2919. break;
  2920. tcp_unlink_write_queue(skb, sk);
  2921. sk_wmem_free_skb(sk, skb);
  2922. tp->scoreboard_skb_hint = NULL;
  2923. if (skb == tp->retransmit_skb_hint)
  2924. tp->retransmit_skb_hint = NULL;
  2925. if (skb == tp->lost_skb_hint)
  2926. tp->lost_skb_hint = NULL;
  2927. }
  2928. if (likely(between(tp->snd_up, prior_snd_una, tp->snd_una)))
  2929. tp->snd_up = tp->snd_una;
  2930. if (skb && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
  2931. flag |= FLAG_SACK_RENEGING;
  2932. if (flag & FLAG_ACKED) {
  2933. const struct tcp_congestion_ops *ca_ops
  2934. = inet_csk(sk)->icsk_ca_ops;
  2935. if (unlikely(icsk->icsk_mtup.probe_size &&
  2936. !after(tp->mtu_probe.probe_seq_end, tp->snd_una))) {
  2937. tcp_mtup_probe_success(sk);
  2938. }
  2939. tcp_ack_update_rtt(sk, flag, seq_rtt);
  2940. tcp_rearm_rto(sk);
  2941. if (tcp_is_reno(tp)) {
  2942. tcp_remove_reno_sacks(sk, pkts_acked);
  2943. } else {
  2944. int delta;
  2945. /* Non-retransmitted hole got filled? That's reordering */
  2946. if (reord < prior_fackets)
  2947. tcp_update_reordering(sk, tp->fackets_out - reord, 0);
  2948. delta = tcp_is_fack(tp) ? pkts_acked :
  2949. prior_sacked - tp->sacked_out;
  2950. tp->lost_cnt_hint -= min(tp->lost_cnt_hint, delta);
  2951. }
  2952. tp->fackets_out -= min(pkts_acked, tp->fackets_out);
  2953. if (ca_ops->pkts_acked) {
  2954. s32 rtt_us = -1;
  2955. /* Is the ACK triggering packet unambiguous? */
  2956. if (!(flag & FLAG_RETRANS_DATA_ACKED)) {
  2957. /* High resolution needed and available? */
  2958. if (ca_ops->flags & TCP_CONG_RTT_STAMP &&
  2959. !ktime_equal(last_ackt,
  2960. net_invalid_timestamp()))
  2961. rtt_us = ktime_us_delta(ktime_get_real(),
  2962. last_ackt);
  2963. else if (ca_seq_rtt >= 0)
  2964. rtt_us = jiffies_to_usecs(ca_seq_rtt);
  2965. }
  2966. ca_ops->pkts_acked(sk, pkts_acked, rtt_us);
  2967. }
  2968. }
  2969. #if FASTRETRANS_DEBUG > 0
  2970. WARN_ON((int)tp->sacked_out < 0);
  2971. WARN_ON((int)tp->lost_out < 0);
  2972. WARN_ON((int)tp->retrans_out < 0);
  2973. if (!tp->packets_out && tcp_is_sack(tp)) {
  2974. icsk = inet_csk(sk);
  2975. if (tp->lost_out) {
  2976. printk(KERN_DEBUG "Leak l=%u %d\n",
  2977. tp->lost_out, icsk->icsk_ca_state);
  2978. tp->lost_out = 0;
  2979. }
  2980. if (tp->sacked_out) {
  2981. printk(KERN_DEBUG "Leak s=%u %d\n",
  2982. tp->sacked_out, icsk->icsk_ca_state);
  2983. tp->sacked_out = 0;
  2984. }
  2985. if (tp->retrans_out) {
  2986. printk(KERN_DEBUG "Leak r=%u %d\n",
  2987. tp->retrans_out, icsk->icsk_ca_state);
  2988. tp->retrans_out = 0;
  2989. }
  2990. }
  2991. #endif
  2992. return flag;
  2993. }
  2994. static void tcp_ack_probe(struct sock *sk)
  2995. {
  2996. const struct tcp_sock *tp = tcp_sk(sk);
  2997. struct inet_connection_sock *icsk = inet_csk(sk);
  2998. /* Was it a usable window open? */
  2999. if (!after(TCP_SKB_CB(tcp_send_head(sk))->end_seq, tcp_wnd_end(tp))) {
  3000. icsk->icsk_backoff = 0;
  3001. inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0);
  3002. /* Socket must be waked up by subsequent tcp_data_snd_check().
  3003. * This function is not for random using!
  3004. */
  3005. } else {
  3006. inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
  3007. min(icsk->icsk_rto << icsk->icsk_backoff, TCP_RTO_MAX),
  3008. TCP_RTO_MAX);
  3009. }
  3010. }
  3011. static inline int tcp_ack_is_dubious(const struct sock *sk, const int flag)
  3012. {
  3013. return !(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) ||
  3014. inet_csk(sk)->icsk_ca_state != TCP_CA_Open;
  3015. }
  3016. static inline int tcp_may_raise_cwnd(const struct sock *sk, const int flag)
  3017. {
  3018. const struct tcp_sock *tp = tcp_sk(sk);
  3019. return (!(flag & FLAG_ECE) || tp->snd_cwnd < tp->snd_ssthresh) &&
  3020. !((1 << inet_csk(sk)->icsk_ca_state) & (TCPF_CA_Recovery | TCPF_CA_CWR));
  3021. }
  3022. /* Check that window update is acceptable.
  3023. * The function assumes that snd_una<=ack<=snd_next.
  3024. */
  3025. static inline int tcp_may_update_window(const struct tcp_sock *tp,
  3026. const u32 ack, const u32 ack_seq,
  3027. const u32 nwin)
  3028. {
  3029. return after(ack, tp->snd_una) ||
  3030. after(ack_seq, tp->snd_wl1) ||
  3031. (ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd);
  3032. }
  3033. /* Update our send window.
  3034. *
  3035. * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2
  3036. * and in FreeBSD. NetBSD's one is even worse.) is wrong.
  3037. */
  3038. static int tcp_ack_update_window(struct sock *sk, const struct sk_buff *skb, u32 ack,
  3039. u32 ack_seq)
  3040. {
  3041. struct tcp_sock *tp = tcp_sk(sk);
  3042. int flag = 0;
  3043. u32 nwin = ntohs(tcp_hdr(skb)->window);
  3044. if (likely(!tcp_hdr(skb)->syn))
  3045. nwin <<= tp->rx_opt.snd_wscale;
  3046. if (tcp_may_update_window(tp, ack, ack_seq, nwin)) {
  3047. flag |= FLAG_WIN_UPDATE;
  3048. tcp_update_wl(tp, ack_seq);
  3049. if (tp->snd_wnd != nwin) {
  3050. tp->snd_wnd = nwin;
  3051. /* Note, it is the only place, where
  3052. * fast path is recovered for sending TCP.
  3053. */
  3054. tp->pred_flags = 0;
  3055. tcp_fast_path_check(sk);
  3056. if (nwin > tp->max_window) {
  3057. tp->max_window = nwin;
  3058. tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie);
  3059. }
  3060. }
  3061. }
  3062. tp->snd_una = ack;
  3063. return flag;
  3064. }
  3065. /* A very conservative spurious RTO response algorithm: reduce cwnd and
  3066. * continue in congestion avoidance.
  3067. */
  3068. static void tcp_conservative_spur_to_response(struct tcp_sock *tp)
  3069. {
  3070. tp->snd_cwnd = min(tp->snd_cwnd, tp->snd_ssthresh);
  3071. tp->snd_cwnd_cnt = 0;
  3072. tp->bytes_acked = 0;
  3073. TCP_ECN_queue_cwr(tp);
  3074. tcp_moderate_cwnd(tp);
  3075. }
  3076. /* A conservative spurious RTO response algorithm: reduce cwnd using
  3077. * rate halving and continue in congestion avoidance.
  3078. */
  3079. static void tcp_ratehalving_spur_to_response(struct sock *sk)
  3080. {
  3081. tcp_enter_cwr(sk, 0);
  3082. }
  3083. static void tcp_undo_spur_to_response(struct sock *sk, int flag)
  3084. {
  3085. if (flag & FLAG_ECE)
  3086. tcp_ratehalving_spur_to_response(sk);
  3087. else
  3088. tcp_undo_cwr(sk, true);
  3089. }
  3090. /* F-RTO spurious RTO detection algorithm (RFC4138)
  3091. *
  3092. * F-RTO affects during two new ACKs following RTO (well, almost, see inline
  3093. * comments). State (ACK number) is kept in frto_counter. When ACK advances
  3094. * window (but not to or beyond highest sequence sent before RTO):
  3095. * On First ACK, send two new segments out.
  3096. * On Second ACK, RTO was likely spurious. Do spurious response (response
  3097. * algorithm is not part of the F-RTO detection algorithm
  3098. * given in RFC4138 but can be selected separately).
  3099. * Otherwise (basically on duplicate ACK), RTO was (likely) caused by a loss
  3100. * and TCP falls back to conventional RTO recovery. F-RTO allows overriding
  3101. * of Nagle, this is done using frto_counter states 2 and 3, when a new data
  3102. * segment of any size sent during F-RTO, state 2 is upgraded to 3.
  3103. *
  3104. * Rationale: if the RTO was spurious, new ACKs should arrive from the
  3105. * original window even after we transmit two new data segments.
  3106. *
  3107. * SACK version:
  3108. * on first step, wait until first cumulative ACK arrives, then move to
  3109. * the second step. In second step, the next ACK decides.
  3110. *
  3111. * F-RTO is implemented (mainly) in four functions:
  3112. * - tcp_use_frto() is used to determine if TCP is can use F-RTO
  3113. * - tcp_enter_frto() prepares TCP state on RTO if F-RTO is used, it is
  3114. * called when tcp_use_frto() showed green light
  3115. * - tcp_process_frto() handles incoming ACKs during F-RTO algorithm
  3116. * - tcp_enter_frto_loss() is called if there is not enough evidence
  3117. * to prove that the RTO is indeed spurious. It transfers the control
  3118. * from F-RTO to the conventional RTO recovery
  3119. */
  3120. static int tcp_process_frto(struct sock *sk, int flag)
  3121. {
  3122. struct tcp_sock *tp = tcp_sk(sk);
  3123. tcp_verify_left_out(tp);
  3124. /* Duplicate the behavior from Loss state (fastretrans_alert) */
  3125. if (flag & FLAG_DATA_ACKED)
  3126. inet_csk(sk)->icsk_retransmits = 0;
  3127. if ((flag & FLAG_NONHEAD_RETRANS_ACKED) ||
  3128. ((tp->frto_counter >= 2) && (flag & FLAG_RETRANS_DATA_ACKED)))
  3129. tp->undo_marker = 0;
  3130. if (!before(tp->snd_una, tp->frto_highmark)) {
  3131. tcp_enter_frto_loss(sk, (tp->frto_counter == 1 ? 2 : 3), flag);
  3132. return 1;
  3133. }
  3134. if (!tcp_is_sackfrto(tp)) {
  3135. /* RFC4138 shortcoming in step 2; should also have case c):
  3136. * ACK isn't duplicate nor advances window, e.g., opposite dir
  3137. * data, winupdate
  3138. */
  3139. if (!(flag & FLAG_ANY_PROGRESS) && (flag & FLAG_NOT_DUP))
  3140. return 1;
  3141. if (!(flag & FLAG_DATA_ACKED)) {
  3142. tcp_enter_frto_loss(sk, (tp->frto_counter == 1 ? 0 : 3),
  3143. flag);
  3144. return 1;
  3145. }
  3146. } else {
  3147. if (!(flag & FLAG_DATA_ACKED) && (tp->frto_counter == 1)) {
  3148. /* Prevent sending of new data. */
  3149. tp->snd_cwnd = min(tp->snd_cwnd,
  3150. tcp_packets_in_flight(tp));
  3151. return 1;
  3152. }
  3153. if ((tp->frto_counter >= 2) &&
  3154. (!(flag & FLAG_FORWARD_PROGRESS) ||
  3155. ((flag & FLAG_DATA_SACKED) &&
  3156. !(flag & FLAG_ONLY_ORIG_SACKED)))) {
  3157. /* RFC4138 shortcoming (see comment above) */
  3158. if (!(flag & FLAG_FORWARD_PROGRESS) &&
  3159. (flag & FLAG_NOT_DUP))
  3160. return 1;
  3161. tcp_enter_frto_loss(sk, 3, flag);
  3162. return 1;
  3163. }
  3164. }
  3165. if (tp->frto_counter == 1) {
  3166. /* tcp_may_send_now needs to see updated state */
  3167. tp->snd_cwnd = tcp_packets_in_flight(tp) + 2;
  3168. tp->frto_counter = 2;
  3169. if (!tcp_may_send_now(sk))
  3170. tcp_enter_frto_loss(sk, 2, flag);
  3171. return 1;
  3172. } else {
  3173. switch (sysctl_tcp_frto_response) {
  3174. case 2:
  3175. tcp_undo_spur_to_response(sk, flag);
  3176. break;
  3177. case 1:
  3178. tcp_conservative_spur_to_response(tp);
  3179. break;
  3180. default:
  3181. tcp_ratehalving_spur_to_response(sk);
  3182. break;
  3183. }
  3184. tp->frto_counter = 0;
  3185. tp->undo_marker = 0;
  3186. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSPURIOUSRTOS);
  3187. }
  3188. return 0;
  3189. }
  3190. /* This routine deals with incoming acks, but not outgoing ones. */
  3191. static int tcp_ack(struct sock *sk, const struct sk_buff *skb, int flag)
  3192. {
  3193. struct inet_connection_sock *icsk = inet_csk(sk);
  3194. struct tcp_sock *tp = tcp_sk(sk);
  3195. u32 prior_snd_una = tp->snd_una;
  3196. u32 ack_seq = TCP_SKB_CB(skb)->seq;
  3197. u32 ack = TCP_SKB_CB(skb)->ack_seq;
  3198. bool is_dupack = false;
  3199. u32 prior_in_flight;
  3200. u32 prior_fackets;
  3201. int prior_packets;
  3202. int prior_sacked = tp->sacked_out;
  3203. int pkts_acked = 0;
  3204. int newly_acked_sacked = 0;
  3205. int frto_cwnd = 0;
  3206. /* If the ack is older than previous acks
  3207. * then we can probably ignore it.
  3208. */
  3209. if (before(ack, prior_snd_una))
  3210. goto old_ack;
  3211. /* If the ack includes data we haven't sent yet, discard
  3212. * this segment (RFC793 Section 3.9).
  3213. */
  3214. if (after(ack, tp->snd_nxt))
  3215. goto invalid_ack;
  3216. if (after(ack, prior_snd_una))
  3217. flag |= FLAG_SND_UNA_ADVANCED;
  3218. if (sysctl_tcp_abc) {
  3219. if (icsk->icsk_ca_state < TCP_CA_CWR)
  3220. tp->bytes_acked += ack - prior_snd_una;
  3221. else if (icsk->icsk_ca_state == TCP_CA_Loss)
  3222. /* we assume just one segment left network */
  3223. tp->bytes_acked += min(ack - prior_snd_una,
  3224. tp->mss_cache);
  3225. }
  3226. prior_fackets = tp->fackets_out;
  3227. prior_in_flight = tcp_packets_in_flight(tp);
  3228. if (!(flag & FLAG_SLOWPATH) && after(ack, prior_snd_una)) {
  3229. /* Window is constant, pure forward advance.
  3230. * No more checks are required.
  3231. * Note, we use the fact that SND.UNA>=SND.WL2.
  3232. */
  3233. tcp_update_wl(tp, ack_seq);
  3234. tp->snd_una = ack;
  3235. flag |= FLAG_WIN_UPDATE;
  3236. tcp_ca_event(sk, CA_EVENT_FAST_ACK);
  3237. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPACKS);
  3238. } else {
  3239. if (ack_seq != TCP_SKB_CB(skb)->end_seq)
  3240. flag |= FLAG_DATA;
  3241. else
  3242. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPPUREACKS);
  3243. flag |= tcp_ack_update_window(sk, skb, ack, ack_seq);
  3244. if (TCP_SKB_CB(skb)->sacked)
  3245. flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una);
  3246. if (TCP_ECN_rcv_ecn_echo(tp, tcp_hdr(skb)))
  3247. flag |= FLAG_ECE;
  3248. tcp_ca_event(sk, CA_EVENT_SLOW_ACK);
  3249. }
  3250. /* We passed data and got it acked, remove any soft error
  3251. * log. Something worked...
  3252. */
  3253. sk->sk_err_soft = 0;
  3254. icsk->icsk_probes_out = 0;
  3255. tp->rcv_tstamp = tcp_time_stamp;
  3256. prior_packets = tp->packets_out;
  3257. if (!prior_packets)
  3258. goto no_queue;
  3259. /* See if we can take anything off of the retransmit queue. */
  3260. flag |= tcp_clean_rtx_queue(sk, prior_fackets, prior_snd_una);
  3261. pkts_acked = prior_packets - tp->packets_out;
  3262. newly_acked_sacked = (prior_packets - prior_sacked) -
  3263. (tp->packets_out - tp->sacked_out);
  3264. if (tp->frto_counter)
  3265. frto_cwnd = tcp_process_frto(sk, flag);
  3266. /* Guarantee sacktag reordering detection against wrap-arounds */
  3267. if (before(tp->frto_highmark, tp->snd_una))
  3268. tp->frto_highmark = 0;
  3269. if (tcp_ack_is_dubious(sk, flag)) {
  3270. /* Advance CWND, if state allows this. */
  3271. if ((flag & FLAG_DATA_ACKED) && !frto_cwnd &&
  3272. tcp_may_raise_cwnd(sk, flag))
  3273. tcp_cong_avoid(sk, ack, prior_in_flight);
  3274. is_dupack = !(flag & (FLAG_SND_UNA_ADVANCED | FLAG_NOT_DUP));
  3275. tcp_fastretrans_alert(sk, pkts_acked, newly_acked_sacked,
  3276. is_dupack, flag);
  3277. } else {
  3278. if ((flag & FLAG_DATA_ACKED) && !frto_cwnd)
  3279. tcp_cong_avoid(sk, ack, prior_in_flight);
  3280. }
  3281. if ((flag & FLAG_FORWARD_PROGRESS) || !(flag & FLAG_NOT_DUP))
  3282. dst_confirm(__sk_dst_get(sk));
  3283. return 1;
  3284. no_queue:
  3285. /* If data was DSACKed, see if we can undo a cwnd reduction. */
  3286. if (flag & FLAG_DSACKING_ACK)
  3287. tcp_fastretrans_alert(sk, pkts_acked, newly_acked_sacked,
  3288. is_dupack, flag);
  3289. /* If this ack opens up a zero window, clear backoff. It was
  3290. * being used to time the probes, and is probably far higher than
  3291. * it needs to be for normal retransmission.
  3292. */
  3293. if (tcp_send_head(sk))
  3294. tcp_ack_probe(sk);
  3295. return 1;
  3296. invalid_ack:
  3297. SOCK_DEBUG(sk, "Ack %u after %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
  3298. return -1;
  3299. old_ack:
  3300. /* If data was SACKed, tag it and see if we should send more data.
  3301. * If data was DSACKed, see if we can undo a cwnd reduction.
  3302. */
  3303. if (TCP_SKB_CB(skb)->sacked) {
  3304. flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una);
  3305. newly_acked_sacked = tp->sacked_out - prior_sacked;
  3306. tcp_fastretrans_alert(sk, pkts_acked, newly_acked_sacked,
  3307. is_dupack, flag);
  3308. }
  3309. SOCK_DEBUG(sk, "Ack %u before %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
  3310. return 0;
  3311. }
  3312. /* Look for tcp options. Normally only called on SYN and SYNACK packets.
  3313. * But, this can also be called on packets in the established flow when
  3314. * the fast version below fails.
  3315. */
  3316. void tcp_parse_options(const struct sk_buff *skb, struct tcp_options_received *opt_rx,
  3317. const u8 **hvpp, int estab)
  3318. {
  3319. const unsigned char *ptr;
  3320. const struct tcphdr *th = tcp_hdr(skb);
  3321. int length = (th->doff * 4) - sizeof(struct tcphdr);
  3322. ptr = (const unsigned char *)(th + 1);
  3323. opt_rx->saw_tstamp = 0;
  3324. while (length > 0) {
  3325. int opcode = *ptr++;
  3326. int opsize;
  3327. switch (opcode) {
  3328. case TCPOPT_EOL:
  3329. return;
  3330. case TCPOPT_NOP: /* Ref: RFC 793 section 3.1 */
  3331. length--;
  3332. continue;
  3333. default:
  3334. opsize = *ptr++;
  3335. if (opsize < 2) /* "silly options" */
  3336. return;
  3337. if (opsize > length)
  3338. return; /* don't parse partial options */
  3339. switch (opcode) {
  3340. case TCPOPT_MSS:
  3341. if (opsize == TCPOLEN_MSS && th->syn && !estab) {
  3342. u16 in_mss = get_unaligned_be16(ptr);
  3343. if (in_mss) {
  3344. if (opt_rx->user_mss &&
  3345. opt_rx->user_mss < in_mss)
  3346. in_mss = opt_rx->user_mss;
  3347. opt_rx->mss_clamp = in_mss;
  3348. }
  3349. }
  3350. break;
  3351. case TCPOPT_WINDOW:
  3352. if (opsize == TCPOLEN_WINDOW && th->syn &&
  3353. !estab && sysctl_tcp_window_scaling) {
  3354. __u8 snd_wscale = *(__u8 *)ptr;
  3355. opt_rx->wscale_ok = 1;
  3356. if (snd_wscale > 14) {
  3357. if (net_ratelimit())
  3358. pr_info("%s: Illegal window scaling value %d >14 received\n",
  3359. __func__,
  3360. snd_wscale);
  3361. snd_wscale = 14;
  3362. }
  3363. opt_rx->snd_wscale = snd_wscale;
  3364. }
  3365. break;
  3366. case TCPOPT_TIMESTAMP:
  3367. if ((opsize == TCPOLEN_TIMESTAMP) &&
  3368. ((estab && opt_rx->tstamp_ok) ||
  3369. (!estab && sysctl_tcp_timestamps))) {
  3370. opt_rx->saw_tstamp = 1;
  3371. opt_rx->rcv_tsval = get_unaligned_be32(ptr);
  3372. opt_rx->rcv_tsecr = get_unaligned_be32(ptr + 4);
  3373. }
  3374. break;
  3375. case TCPOPT_SACK_PERM:
  3376. if (opsize == TCPOLEN_SACK_PERM && th->syn &&
  3377. !estab && sysctl_tcp_sack) {
  3378. opt_rx->sack_ok = TCP_SACK_SEEN;
  3379. tcp_sack_reset(opt_rx);
  3380. }
  3381. break;
  3382. case TCPOPT_SACK:
  3383. if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) &&
  3384. !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) &&
  3385. opt_rx->sack_ok) {
  3386. TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th;
  3387. }
  3388. break;
  3389. #ifdef CONFIG_TCP_MD5SIG
  3390. case TCPOPT_MD5SIG:
  3391. /*
  3392. * The MD5 Hash has already been
  3393. * checked (see tcp_v{4,6}_do_rcv()).
  3394. */
  3395. break;
  3396. #endif
  3397. case TCPOPT_COOKIE:
  3398. /* This option is variable length.
  3399. */
  3400. switch (opsize) {
  3401. case TCPOLEN_COOKIE_BASE:
  3402. /* not yet implemented */
  3403. break;
  3404. case TCPOLEN_COOKIE_PAIR:
  3405. /* not yet implemented */
  3406. break;
  3407. case TCPOLEN_COOKIE_MIN+0:
  3408. case TCPOLEN_COOKIE_MIN+2:
  3409. case TCPOLEN_COOKIE_MIN+4:
  3410. case TCPOLEN_COOKIE_MIN+6:
  3411. case TCPOLEN_COOKIE_MAX:
  3412. /* 16-bit multiple */
  3413. opt_rx->cookie_plus = opsize;
  3414. *hvpp = ptr;
  3415. break;
  3416. default:
  3417. /* ignore option */
  3418. break;
  3419. }
  3420. break;
  3421. }
  3422. ptr += opsize-2;
  3423. length -= opsize;
  3424. }
  3425. }
  3426. }
  3427. EXPORT_SYMBOL(tcp_parse_options);
  3428. static int tcp_parse_aligned_timestamp(struct tcp_sock *tp, const struct tcphdr *th)
  3429. {
  3430. const __be32 *ptr = (const __be32 *)(th + 1);
  3431. if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
  3432. | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) {
  3433. tp->rx_opt.saw_tstamp = 1;
  3434. ++ptr;
  3435. tp->rx_opt.rcv_tsval = ntohl(*ptr);
  3436. ++ptr;
  3437. tp->rx_opt.rcv_tsecr = ntohl(*ptr);
  3438. return 1;
  3439. }
  3440. return 0;
  3441. }
  3442. /* Fast parse options. This hopes to only see timestamps.
  3443. * If it is wrong it falls back on tcp_parse_options().
  3444. */
  3445. static int tcp_fast_parse_options(const struct sk_buff *skb,
  3446. const struct tcphdr *th,
  3447. struct tcp_sock *tp, const u8 **hvpp)
  3448. {
  3449. /* In the spirit of fast parsing, compare doff directly to constant
  3450. * values. Because equality is used, short doff can be ignored here.
  3451. */
  3452. if (th->doff == (sizeof(*th) / 4)) {
  3453. tp->rx_opt.saw_tstamp = 0;
  3454. return 0;
  3455. } else if (tp->rx_opt.tstamp_ok &&
  3456. th->doff == ((sizeof(*th) + TCPOLEN_TSTAMP_ALIGNED) / 4)) {
  3457. if (tcp_parse_aligned_timestamp(tp, th))
  3458. return 1;
  3459. }
  3460. tcp_parse_options(skb, &tp->rx_opt, hvpp, 1);
  3461. return 1;
  3462. }
  3463. #ifdef CONFIG_TCP_MD5SIG
  3464. /*
  3465. * Parse MD5 Signature option
  3466. */
  3467. const u8 *tcp_parse_md5sig_option(const struct tcphdr *th)
  3468. {
  3469. int length = (th->doff << 2) - sizeof(*th);
  3470. const u8 *ptr = (const u8 *)(th + 1);
  3471. /* If the TCP option is too short, we can short cut */
  3472. if (length < TCPOLEN_MD5SIG)
  3473. return NULL;
  3474. while (length > 0) {
  3475. int opcode = *ptr++;
  3476. int opsize;
  3477. switch(opcode) {
  3478. case TCPOPT_EOL:
  3479. return NULL;
  3480. case TCPOPT_NOP:
  3481. length--;
  3482. continue;
  3483. default:
  3484. opsize = *ptr++;
  3485. if (opsize < 2 || opsize > length)
  3486. return NULL;
  3487. if (opcode == TCPOPT_MD5SIG)
  3488. return opsize == TCPOLEN_MD5SIG ? ptr : NULL;
  3489. }
  3490. ptr += opsize - 2;
  3491. length -= opsize;
  3492. }
  3493. return NULL;
  3494. }
  3495. EXPORT_SYMBOL(tcp_parse_md5sig_option);
  3496. #endif
  3497. static inline void tcp_store_ts_recent(struct tcp_sock *tp)
  3498. {
  3499. tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval;
  3500. tp->rx_opt.ts_recent_stamp = get_seconds();
  3501. }
  3502. static inline void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq)
  3503. {
  3504. if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) {
  3505. /* PAWS bug workaround wrt. ACK frames, the PAWS discard
  3506. * extra check below makes sure this can only happen
  3507. * for pure ACK frames. -DaveM
  3508. *
  3509. * Not only, also it occurs for expired timestamps.
  3510. */
  3511. if (tcp_paws_check(&tp->rx_opt, 0))
  3512. tcp_store_ts_recent(tp);
  3513. }
  3514. }
  3515. /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM
  3516. *
  3517. * It is not fatal. If this ACK does _not_ change critical state (seqs, window)
  3518. * it can pass through stack. So, the following predicate verifies that
  3519. * this segment is not used for anything but congestion avoidance or
  3520. * fast retransmit. Moreover, we even are able to eliminate most of such
  3521. * second order effects, if we apply some small "replay" window (~RTO)
  3522. * to timestamp space.
  3523. *
  3524. * All these measures still do not guarantee that we reject wrapped ACKs
  3525. * on networks with high bandwidth, when sequence space is recycled fastly,
  3526. * but it guarantees that such events will be very rare and do not affect
  3527. * connection seriously. This doesn't look nice, but alas, PAWS is really
  3528. * buggy extension.
  3529. *
  3530. * [ Later note. Even worse! It is buggy for segments _with_ data. RFC
  3531. * states that events when retransmit arrives after original data are rare.
  3532. * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is
  3533. * the biggest problem on large power networks even with minor reordering.
  3534. * OK, let's give it small replay window. If peer clock is even 1hz, it is safe
  3535. * up to bandwidth of 18Gigabit/sec. 8) ]
  3536. */
  3537. static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb)
  3538. {
  3539. const struct tcp_sock *tp = tcp_sk(sk);
  3540. const struct tcphdr *th = tcp_hdr(skb);
  3541. u32 seq = TCP_SKB_CB(skb)->seq;
  3542. u32 ack = TCP_SKB_CB(skb)->ack_seq;
  3543. return (/* 1. Pure ACK with correct sequence number. */
  3544. (th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) &&
  3545. /* 2. ... and duplicate ACK. */
  3546. ack == tp->snd_una &&
  3547. /* 3. ... and does not update window. */
  3548. !tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) &&
  3549. /* 4. ... and sits in replay window. */
  3550. (s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ);
  3551. }
  3552. static inline int tcp_paws_discard(const struct sock *sk,
  3553. const struct sk_buff *skb)
  3554. {
  3555. const struct tcp_sock *tp = tcp_sk(sk);
  3556. return !tcp_paws_check(&tp->rx_opt, TCP_PAWS_WINDOW) &&
  3557. !tcp_disordered_ack(sk, skb);
  3558. }
  3559. /* Check segment sequence number for validity.
  3560. *
  3561. * Segment controls are considered valid, if the segment
  3562. * fits to the window after truncation to the window. Acceptability
  3563. * of data (and SYN, FIN, of course) is checked separately.
  3564. * See tcp_data_queue(), for example.
  3565. *
  3566. * Also, controls (RST is main one) are accepted using RCV.WUP instead
  3567. * of RCV.NXT. Peer still did not advance his SND.UNA when we
  3568. * delayed ACK, so that hisSND.UNA<=ourRCV.WUP.
  3569. * (borrowed from freebsd)
  3570. */
  3571. static inline int tcp_sequence(const struct tcp_sock *tp, u32 seq, u32 end_seq)
  3572. {
  3573. return !before(end_seq, tp->rcv_wup) &&
  3574. !after(seq, tp->rcv_nxt + tcp_receive_window(tp));
  3575. }
  3576. /* When we get a reset we do this. */
  3577. static void tcp_reset(struct sock *sk)
  3578. {
  3579. /* We want the right error as BSD sees it (and indeed as we do). */
  3580. switch (sk->sk_state) {
  3581. case TCP_SYN_SENT:
  3582. sk->sk_err = ECONNREFUSED;
  3583. break;
  3584. case TCP_CLOSE_WAIT:
  3585. sk->sk_err = EPIPE;
  3586. break;
  3587. case TCP_CLOSE:
  3588. return;
  3589. default:
  3590. sk->sk_err = ECONNRESET;
  3591. }
  3592. /* This barrier is coupled with smp_rmb() in tcp_poll() */
  3593. smp_wmb();
  3594. if (!sock_flag(sk, SOCK_DEAD))
  3595. sk->sk_error_report(sk);
  3596. tcp_done(sk);
  3597. }
  3598. /*
  3599. * Process the FIN bit. This now behaves as it is supposed to work
  3600. * and the FIN takes effect when it is validly part of sequence
  3601. * space. Not before when we get holes.
  3602. *
  3603. * If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT
  3604. * (and thence onto LAST-ACK and finally, CLOSE, we never enter
  3605. * TIME-WAIT)
  3606. *
  3607. * If we are in FINWAIT-1, a received FIN indicates simultaneous
  3608. * close and we go into CLOSING (and later onto TIME-WAIT)
  3609. *
  3610. * If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT.
  3611. */
  3612. static void tcp_fin(struct sock *sk)
  3613. {
  3614. struct tcp_sock *tp = tcp_sk(sk);
  3615. inet_csk_schedule_ack(sk);
  3616. sk->sk_shutdown |= RCV_SHUTDOWN;
  3617. sock_set_flag(sk, SOCK_DONE);
  3618. switch (sk->sk_state) {
  3619. case TCP_SYN_RECV:
  3620. case TCP_ESTABLISHED:
  3621. /* Move to CLOSE_WAIT */
  3622. tcp_set_state(sk, TCP_CLOSE_WAIT);
  3623. inet_csk(sk)->icsk_ack.pingpong = 1;
  3624. break;
  3625. case TCP_CLOSE_WAIT:
  3626. case TCP_CLOSING:
  3627. /* Received a retransmission of the FIN, do
  3628. * nothing.
  3629. */
  3630. break;
  3631. case TCP_LAST_ACK:
  3632. /* RFC793: Remain in the LAST-ACK state. */
  3633. break;
  3634. case TCP_FIN_WAIT1:
  3635. /* This case occurs when a simultaneous close
  3636. * happens, we must ack the received FIN and
  3637. * enter the CLOSING state.
  3638. */
  3639. tcp_send_ack(sk);
  3640. tcp_set_state(sk, TCP_CLOSING);
  3641. break;
  3642. case TCP_FIN_WAIT2:
  3643. /* Received a FIN -- send ACK and enter TIME_WAIT. */
  3644. tcp_send_ack(sk);
  3645. tcp_time_wait(sk, TCP_TIME_WAIT, 0);
  3646. break;
  3647. default:
  3648. /* Only TCP_LISTEN and TCP_CLOSE are left, in these
  3649. * cases we should never reach this piece of code.
  3650. */
  3651. pr_err("%s: Impossible, sk->sk_state=%d\n",
  3652. __func__, sk->sk_state);
  3653. break;
  3654. }
  3655. /* It _is_ possible, that we have something out-of-order _after_ FIN.
  3656. * Probably, we should reset in this case. For now drop them.
  3657. */
  3658. __skb_queue_purge(&tp->out_of_order_queue);
  3659. if (tcp_is_sack(tp))
  3660. tcp_sack_reset(&tp->rx_opt);
  3661. sk_mem_reclaim(sk);
  3662. if (!sock_flag(sk, SOCK_DEAD)) {
  3663. sk->sk_state_change(sk);
  3664. /* Do not send POLL_HUP for half duplex close. */
  3665. if (sk->sk_shutdown == SHUTDOWN_MASK ||
  3666. sk->sk_state == TCP_CLOSE)
  3667. sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP);
  3668. else
  3669. sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
  3670. }
  3671. }
  3672. static inline int tcp_sack_extend(struct tcp_sack_block *sp, u32 seq,
  3673. u32 end_seq)
  3674. {
  3675. if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) {
  3676. if (before(seq, sp->start_seq))
  3677. sp->start_seq = seq;
  3678. if (after(end_seq, sp->end_seq))
  3679. sp->end_seq = end_seq;
  3680. return 1;
  3681. }
  3682. return 0;
  3683. }
  3684. static void tcp_dsack_set(struct sock *sk, u32 seq, u32 end_seq)
  3685. {
  3686. struct tcp_sock *tp = tcp_sk(sk);
  3687. if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
  3688. int mib_idx;
  3689. if (before(seq, tp->rcv_nxt))
  3690. mib_idx = LINUX_MIB_TCPDSACKOLDSENT;
  3691. else
  3692. mib_idx = LINUX_MIB_TCPDSACKOFOSENT;
  3693. NET_INC_STATS_BH(sock_net(sk), mib_idx);
  3694. tp->rx_opt.dsack = 1;
  3695. tp->duplicate_sack[0].start_seq = seq;
  3696. tp->duplicate_sack[0].end_seq = end_seq;
  3697. }
  3698. }
  3699. static void tcp_dsack_extend(struct sock *sk, u32 seq, u32 end_seq)
  3700. {
  3701. struct tcp_sock *tp = tcp_sk(sk);
  3702. if (!tp->rx_opt.dsack)
  3703. tcp_dsack_set(sk, seq, end_seq);
  3704. else
  3705. tcp_sack_extend(tp->duplicate_sack, seq, end_seq);
  3706. }
  3707. static void tcp_send_dupack(struct sock *sk, const struct sk_buff *skb)
  3708. {
  3709. struct tcp_sock *tp = tcp_sk(sk);
  3710. if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
  3711. before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
  3712. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
  3713. tcp_enter_quickack_mode(sk);
  3714. if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
  3715. u32 end_seq = TCP_SKB_CB(skb)->end_seq;
  3716. if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))
  3717. end_seq = tp->rcv_nxt;
  3718. tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, end_seq);
  3719. }
  3720. }
  3721. tcp_send_ack(sk);
  3722. }
  3723. /* These routines update the SACK block as out-of-order packets arrive or
  3724. * in-order packets close up the sequence space.
  3725. */
  3726. static void tcp_sack_maybe_coalesce(struct tcp_sock *tp)
  3727. {
  3728. int this_sack;
  3729. struct tcp_sack_block *sp = &tp->selective_acks[0];
  3730. struct tcp_sack_block *swalk = sp + 1;
  3731. /* See if the recent change to the first SACK eats into
  3732. * or hits the sequence space of other SACK blocks, if so coalesce.
  3733. */
  3734. for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;) {
  3735. if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) {
  3736. int i;
  3737. /* Zap SWALK, by moving every further SACK up by one slot.
  3738. * Decrease num_sacks.
  3739. */
  3740. tp->rx_opt.num_sacks--;
  3741. for (i = this_sack; i < tp->rx_opt.num_sacks; i++)
  3742. sp[i] = sp[i + 1];
  3743. continue;
  3744. }
  3745. this_sack++, swalk++;
  3746. }
  3747. }
  3748. static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq)
  3749. {
  3750. struct tcp_sock *tp = tcp_sk(sk);
  3751. struct tcp_sack_block *sp = &tp->selective_acks[0];
  3752. int cur_sacks = tp->rx_opt.num_sacks;
  3753. int this_sack;
  3754. if (!cur_sacks)
  3755. goto new_sack;
  3756. for (this_sack = 0; this_sack < cur_sacks; this_sack++, sp++) {
  3757. if (tcp_sack_extend(sp, seq, end_seq)) {
  3758. /* Rotate this_sack to the first one. */
  3759. for (; this_sack > 0; this_sack--, sp--)
  3760. swap(*sp, *(sp - 1));
  3761. if (cur_sacks > 1)
  3762. tcp_sack_maybe_coalesce(tp);
  3763. return;
  3764. }
  3765. }
  3766. /* Could not find an adjacent existing SACK, build a new one,
  3767. * put it at the front, and shift everyone else down. We
  3768. * always know there is at least one SACK present already here.
  3769. *
  3770. * If the sack array is full, forget about the last one.
  3771. */
  3772. if (this_sack >= TCP_NUM_SACKS) {
  3773. this_sack--;
  3774. tp->rx_opt.num_sacks--;
  3775. sp--;
  3776. }
  3777. for (; this_sack > 0; this_sack--, sp--)
  3778. *sp = *(sp - 1);
  3779. new_sack:
  3780. /* Build the new head SACK, and we're done. */
  3781. sp->start_seq = seq;
  3782. sp->end_seq = end_seq;
  3783. tp->rx_opt.num_sacks++;
  3784. }
  3785. /* RCV.NXT advances, some SACKs should be eaten. */
  3786. static void tcp_sack_remove(struct tcp_sock *tp)
  3787. {
  3788. struct tcp_sack_block *sp = &tp->selective_acks[0];
  3789. int num_sacks = tp->rx_opt.num_sacks;
  3790. int this_sack;
  3791. /* Empty ofo queue, hence, all the SACKs are eaten. Clear. */
  3792. if (skb_queue_empty(&tp->out_of_order_queue)) {
  3793. tp->rx_opt.num_sacks = 0;
  3794. return;
  3795. }
  3796. for (this_sack = 0; this_sack < num_sacks;) {
  3797. /* Check if the start of the sack is covered by RCV.NXT. */
  3798. if (!before(tp->rcv_nxt, sp->start_seq)) {
  3799. int i;
  3800. /* RCV.NXT must cover all the block! */
  3801. WARN_ON(before(tp->rcv_nxt, sp->end_seq));
  3802. /* Zap this SACK, by moving forward any other SACKS. */
  3803. for (i=this_sack+1; i < num_sacks; i++)
  3804. tp->selective_acks[i-1] = tp->selective_acks[i];
  3805. num_sacks--;
  3806. continue;
  3807. }
  3808. this_sack++;
  3809. sp++;
  3810. }
  3811. tp->rx_opt.num_sacks = num_sacks;
  3812. }
  3813. /* This one checks to see if we can put data from the
  3814. * out_of_order queue into the receive_queue.
  3815. */
  3816. static void tcp_ofo_queue(struct sock *sk)
  3817. {
  3818. struct tcp_sock *tp = tcp_sk(sk);
  3819. __u32 dsack_high = tp->rcv_nxt;
  3820. struct sk_buff *skb;
  3821. while ((skb = skb_peek(&tp->out_of_order_queue)) != NULL) {
  3822. if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
  3823. break;
  3824. if (before(TCP_SKB_CB(skb)->seq, dsack_high)) {
  3825. __u32 dsack = dsack_high;
  3826. if (before(TCP_SKB_CB(skb)->end_seq, dsack_high))
  3827. dsack_high = TCP_SKB_CB(skb)->end_seq;
  3828. tcp_dsack_extend(sk, TCP_SKB_CB(skb)->seq, dsack);
  3829. }
  3830. if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
  3831. SOCK_DEBUG(sk, "ofo packet was already received\n");
  3832. __skb_unlink(skb, &tp->out_of_order_queue);
  3833. __kfree_skb(skb);
  3834. continue;
  3835. }
  3836. SOCK_DEBUG(sk, "ofo requeuing : rcv_next %X seq %X - %X\n",
  3837. tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
  3838. TCP_SKB_CB(skb)->end_seq);
  3839. __skb_unlink(skb, &tp->out_of_order_queue);
  3840. __skb_queue_tail(&sk->sk_receive_queue, skb);
  3841. tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
  3842. if (tcp_hdr(skb)->fin)
  3843. tcp_fin(sk);
  3844. }
  3845. }
  3846. static int tcp_prune_ofo_queue(struct sock *sk);
  3847. static int tcp_prune_queue(struct sock *sk);
  3848. static inline int tcp_try_rmem_schedule(struct sock *sk, unsigned int size)
  3849. {
  3850. if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
  3851. !sk_rmem_schedule(sk, size)) {
  3852. if (tcp_prune_queue(sk) < 0)
  3853. return -1;
  3854. if (!sk_rmem_schedule(sk, size)) {
  3855. if (!tcp_prune_ofo_queue(sk))
  3856. return -1;
  3857. if (!sk_rmem_schedule(sk, size))
  3858. return -1;
  3859. }
  3860. }
  3861. return 0;
  3862. }
  3863. static void tcp_data_queue_ofo(struct sock *sk, struct sk_buff *skb)
  3864. {
  3865. struct tcp_sock *tp = tcp_sk(sk);
  3866. struct sk_buff *skb1;
  3867. u32 seq, end_seq;
  3868. TCP_ECN_check_ce(tp, skb);
  3869. if (tcp_try_rmem_schedule(sk, skb->truesize)) {
  3870. /* TODO: should increment a counter */
  3871. __kfree_skb(skb);
  3872. return;
  3873. }
  3874. /* Disable header prediction. */
  3875. tp->pred_flags = 0;
  3876. inet_csk_schedule_ack(sk);
  3877. SOCK_DEBUG(sk, "out of order segment: rcv_next %X seq %X - %X\n",
  3878. tp->rcv_nxt, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
  3879. skb1 = skb_peek_tail(&tp->out_of_order_queue);
  3880. if (!skb1) {
  3881. /* Initial out of order segment, build 1 SACK. */
  3882. if (tcp_is_sack(tp)) {
  3883. tp->rx_opt.num_sacks = 1;
  3884. tp->selective_acks[0].start_seq = TCP_SKB_CB(skb)->seq;
  3885. tp->selective_acks[0].end_seq =
  3886. TCP_SKB_CB(skb)->end_seq;
  3887. }
  3888. __skb_queue_head(&tp->out_of_order_queue, skb);
  3889. goto end;
  3890. }
  3891. seq = TCP_SKB_CB(skb)->seq;
  3892. end_seq = TCP_SKB_CB(skb)->end_seq;
  3893. if (seq == TCP_SKB_CB(skb1)->end_seq) {
  3894. /* Packets in ofo can stay in queue a long time.
  3895. * Better try to coalesce them right now
  3896. * to avoid future tcp_collapse_ofo_queue(),
  3897. * probably the most expensive function in tcp stack.
  3898. */
  3899. if (skb->len <= skb_tailroom(skb1) && !tcp_hdr(skb)->fin) {
  3900. NET_INC_STATS_BH(sock_net(sk),
  3901. LINUX_MIB_TCPRCVCOALESCE);
  3902. BUG_ON(skb_copy_bits(skb, 0,
  3903. skb_put(skb1, skb->len),
  3904. skb->len));
  3905. TCP_SKB_CB(skb1)->end_seq = end_seq;
  3906. TCP_SKB_CB(skb1)->ack_seq = TCP_SKB_CB(skb)->ack_seq;
  3907. __kfree_skb(skb);
  3908. skb = NULL;
  3909. } else {
  3910. __skb_queue_after(&tp->out_of_order_queue, skb1, skb);
  3911. }
  3912. if (!tp->rx_opt.num_sacks ||
  3913. tp->selective_acks[0].end_seq != seq)
  3914. goto add_sack;
  3915. /* Common case: data arrive in order after hole. */
  3916. tp->selective_acks[0].end_seq = end_seq;
  3917. goto end;
  3918. }
  3919. /* Find place to insert this segment. */
  3920. while (1) {
  3921. if (!after(TCP_SKB_CB(skb1)->seq, seq))
  3922. break;
  3923. if (skb_queue_is_first(&tp->out_of_order_queue, skb1)) {
  3924. skb1 = NULL;
  3925. break;
  3926. }
  3927. skb1 = skb_queue_prev(&tp->out_of_order_queue, skb1);
  3928. }
  3929. /* Do skb overlap to previous one? */
  3930. if (skb1 && before(seq, TCP_SKB_CB(skb1)->end_seq)) {
  3931. if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
  3932. /* All the bits are present. Drop. */
  3933. __kfree_skb(skb);
  3934. skb = NULL;
  3935. tcp_dsack_set(sk, seq, end_seq);
  3936. goto add_sack;
  3937. }
  3938. if (after(seq, TCP_SKB_CB(skb1)->seq)) {
  3939. /* Partial overlap. */
  3940. tcp_dsack_set(sk, seq,
  3941. TCP_SKB_CB(skb1)->end_seq);
  3942. } else {
  3943. if (skb_queue_is_first(&tp->out_of_order_queue,
  3944. skb1))
  3945. skb1 = NULL;
  3946. else
  3947. skb1 = skb_queue_prev(
  3948. &tp->out_of_order_queue,
  3949. skb1);
  3950. }
  3951. }
  3952. if (!skb1)
  3953. __skb_queue_head(&tp->out_of_order_queue, skb);
  3954. else
  3955. __skb_queue_after(&tp->out_of_order_queue, skb1, skb);
  3956. /* And clean segments covered by new one as whole. */
  3957. while (!skb_queue_is_last(&tp->out_of_order_queue, skb)) {
  3958. skb1 = skb_queue_next(&tp->out_of_order_queue, skb);
  3959. if (!after(end_seq, TCP_SKB_CB(skb1)->seq))
  3960. break;
  3961. if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
  3962. tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
  3963. end_seq);
  3964. break;
  3965. }
  3966. __skb_unlink(skb1, &tp->out_of_order_queue);
  3967. tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
  3968. TCP_SKB_CB(skb1)->end_seq);
  3969. __kfree_skb(skb1);
  3970. }
  3971. add_sack:
  3972. if (tcp_is_sack(tp))
  3973. tcp_sack_new_ofo_skb(sk, seq, end_seq);
  3974. end:
  3975. if (skb)
  3976. skb_set_owner_r(skb, sk);
  3977. }
  3978. static void tcp_data_queue(struct sock *sk, struct sk_buff *skb)
  3979. {
  3980. const struct tcphdr *th = tcp_hdr(skb);
  3981. struct tcp_sock *tp = tcp_sk(sk);
  3982. int eaten = -1;
  3983. if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq)
  3984. goto drop;
  3985. skb_dst_drop(skb);
  3986. __skb_pull(skb, th->doff * 4);
  3987. TCP_ECN_accept_cwr(tp, skb);
  3988. tp->rx_opt.dsack = 0;
  3989. /* Queue data for delivery to the user.
  3990. * Packets in sequence go to the receive queue.
  3991. * Out of sequence packets to the out_of_order_queue.
  3992. */
  3993. if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
  3994. if (tcp_receive_window(tp) == 0)
  3995. goto out_of_window;
  3996. /* Ok. In sequence. In window. */
  3997. if (tp->ucopy.task == current &&
  3998. tp->copied_seq == tp->rcv_nxt && tp->ucopy.len &&
  3999. sock_owned_by_user(sk) && !tp->urg_data) {
  4000. int chunk = min_t(unsigned int, skb->len,
  4001. tp->ucopy.len);
  4002. __set_current_state(TASK_RUNNING);
  4003. local_bh_enable();
  4004. if (!skb_copy_datagram_iovec(skb, 0, tp->ucopy.iov, chunk)) {
  4005. tp->ucopy.len -= chunk;
  4006. tp->copied_seq += chunk;
  4007. eaten = (chunk == skb->len);
  4008. tcp_rcv_space_adjust(sk);
  4009. }
  4010. local_bh_disable();
  4011. }
  4012. if (eaten <= 0) {
  4013. queue_and_out:
  4014. if (eaten < 0 &&
  4015. tcp_try_rmem_schedule(sk, skb->truesize))
  4016. goto drop;
  4017. skb_set_owner_r(skb, sk);
  4018. __skb_queue_tail(&sk->sk_receive_queue, skb);
  4019. }
  4020. tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
  4021. if (skb->len)
  4022. tcp_event_data_recv(sk, skb);
  4023. if (th->fin)
  4024. tcp_fin(sk);
  4025. if (!skb_queue_empty(&tp->out_of_order_queue)) {
  4026. tcp_ofo_queue(sk);
  4027. /* RFC2581. 4.2. SHOULD send immediate ACK, when
  4028. * gap in queue is filled.
  4029. */
  4030. if (skb_queue_empty(&tp->out_of_order_queue))
  4031. inet_csk(sk)->icsk_ack.pingpong = 0;
  4032. }
  4033. if (tp->rx_opt.num_sacks)
  4034. tcp_sack_remove(tp);
  4035. tcp_fast_path_check(sk);
  4036. if (eaten > 0)
  4037. __kfree_skb(skb);
  4038. else if (!sock_flag(sk, SOCK_DEAD))
  4039. sk->sk_data_ready(sk, 0);
  4040. return;
  4041. }
  4042. if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
  4043. /* A retransmit, 2nd most common case. Force an immediate ack. */
  4044. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
  4045. tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
  4046. out_of_window:
  4047. tcp_enter_quickack_mode(sk);
  4048. inet_csk_schedule_ack(sk);
  4049. drop:
  4050. __kfree_skb(skb);
  4051. return;
  4052. }
  4053. /* Out of window. F.e. zero window probe. */
  4054. if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt + tcp_receive_window(tp)))
  4055. goto out_of_window;
  4056. tcp_enter_quickack_mode(sk);
  4057. if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
  4058. /* Partial packet, seq < rcv_next < end_seq */
  4059. SOCK_DEBUG(sk, "partial packet: rcv_next %X seq %X - %X\n",
  4060. tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
  4061. TCP_SKB_CB(skb)->end_seq);
  4062. tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, tp->rcv_nxt);
  4063. /* If window is closed, drop tail of packet. But after
  4064. * remembering D-SACK for its head made in previous line.
  4065. */
  4066. if (!tcp_receive_window(tp))
  4067. goto out_of_window;
  4068. goto queue_and_out;
  4069. }
  4070. tcp_data_queue_ofo(sk, skb);
  4071. }
  4072. static struct sk_buff *tcp_collapse_one(struct sock *sk, struct sk_buff *skb,
  4073. struct sk_buff_head *list)
  4074. {
  4075. struct sk_buff *next = NULL;
  4076. if (!skb_queue_is_last(list, skb))
  4077. next = skb_queue_next(list, skb);
  4078. __skb_unlink(skb, list);
  4079. __kfree_skb(skb);
  4080. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPRCVCOLLAPSED);
  4081. return next;
  4082. }
  4083. /* Collapse contiguous sequence of skbs head..tail with
  4084. * sequence numbers start..end.
  4085. *
  4086. * If tail is NULL, this means until the end of the list.
  4087. *
  4088. * Segments with FIN/SYN are not collapsed (only because this
  4089. * simplifies code)
  4090. */
  4091. static void
  4092. tcp_collapse(struct sock *sk, struct sk_buff_head *list,
  4093. struct sk_buff *head, struct sk_buff *tail,
  4094. u32 start, u32 end)
  4095. {
  4096. struct sk_buff *skb, *n;
  4097. bool end_of_skbs;
  4098. /* First, check that queue is collapsible and find
  4099. * the point where collapsing can be useful. */
  4100. skb = head;
  4101. restart:
  4102. end_of_skbs = true;
  4103. skb_queue_walk_from_safe(list, skb, n) {
  4104. if (skb == tail)
  4105. break;
  4106. /* No new bits? It is possible on ofo queue. */
  4107. if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
  4108. skb = tcp_collapse_one(sk, skb, list);
  4109. if (!skb)
  4110. break;
  4111. goto restart;
  4112. }
  4113. /* The first skb to collapse is:
  4114. * - not SYN/FIN and
  4115. * - bloated or contains data before "start" or
  4116. * overlaps to the next one.
  4117. */
  4118. if (!tcp_hdr(skb)->syn && !tcp_hdr(skb)->fin &&
  4119. (tcp_win_from_space(skb->truesize) > skb->len ||
  4120. before(TCP_SKB_CB(skb)->seq, start))) {
  4121. end_of_skbs = false;
  4122. break;
  4123. }
  4124. if (!skb_queue_is_last(list, skb)) {
  4125. struct sk_buff *next = skb_queue_next(list, skb);
  4126. if (next != tail &&
  4127. TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(next)->seq) {
  4128. end_of_skbs = false;
  4129. break;
  4130. }
  4131. }
  4132. /* Decided to skip this, advance start seq. */
  4133. start = TCP_SKB_CB(skb)->end_seq;
  4134. }
  4135. if (end_of_skbs || tcp_hdr(skb)->syn || tcp_hdr(skb)->fin)
  4136. return;
  4137. while (before(start, end)) {
  4138. struct sk_buff *nskb;
  4139. unsigned int header = skb_headroom(skb);
  4140. int copy = SKB_MAX_ORDER(header, 0);
  4141. /* Too big header? This can happen with IPv6. */
  4142. if (copy < 0)
  4143. return;
  4144. if (end - start < copy)
  4145. copy = end - start;
  4146. nskb = alloc_skb(copy + header, GFP_ATOMIC);
  4147. if (!nskb)
  4148. return;
  4149. skb_set_mac_header(nskb, skb_mac_header(skb) - skb->head);
  4150. skb_set_network_header(nskb, (skb_network_header(skb) -
  4151. skb->head));
  4152. skb_set_transport_header(nskb, (skb_transport_header(skb) -
  4153. skb->head));
  4154. skb_reserve(nskb, header);
  4155. memcpy(nskb->head, skb->head, header);
  4156. memcpy(nskb->cb, skb->cb, sizeof(skb->cb));
  4157. TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start;
  4158. __skb_queue_before(list, skb, nskb);
  4159. skb_set_owner_r(nskb, sk);
  4160. /* Copy data, releasing collapsed skbs. */
  4161. while (copy > 0) {
  4162. int offset = start - TCP_SKB_CB(skb)->seq;
  4163. int size = TCP_SKB_CB(skb)->end_seq - start;
  4164. BUG_ON(offset < 0);
  4165. if (size > 0) {
  4166. size = min(copy, size);
  4167. if (skb_copy_bits(skb, offset, skb_put(nskb, size), size))
  4168. BUG();
  4169. TCP_SKB_CB(nskb)->end_seq += size;
  4170. copy -= size;
  4171. start += size;
  4172. }
  4173. if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
  4174. skb = tcp_collapse_one(sk, skb, list);
  4175. if (!skb ||
  4176. skb == tail ||
  4177. tcp_hdr(skb)->syn ||
  4178. tcp_hdr(skb)->fin)
  4179. return;
  4180. }
  4181. }
  4182. }
  4183. }
  4184. /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs
  4185. * and tcp_collapse() them until all the queue is collapsed.
  4186. */
  4187. static void tcp_collapse_ofo_queue(struct sock *sk)
  4188. {
  4189. struct tcp_sock *tp = tcp_sk(sk);
  4190. struct sk_buff *skb = skb_peek(&tp->out_of_order_queue);
  4191. struct sk_buff *head;
  4192. u32 start, end;
  4193. if (skb == NULL)
  4194. return;
  4195. start = TCP_SKB_CB(skb)->seq;
  4196. end = TCP_SKB_CB(skb)->end_seq;
  4197. head = skb;
  4198. for (;;) {
  4199. struct sk_buff *next = NULL;
  4200. if (!skb_queue_is_last(&tp->out_of_order_queue, skb))
  4201. next = skb_queue_next(&tp->out_of_order_queue, skb);
  4202. skb = next;
  4203. /* Segment is terminated when we see gap or when
  4204. * we are at the end of all the queue. */
  4205. if (!skb ||
  4206. after(TCP_SKB_CB(skb)->seq, end) ||
  4207. before(TCP_SKB_CB(skb)->end_seq, start)) {
  4208. tcp_collapse(sk, &tp->out_of_order_queue,
  4209. head, skb, start, end);
  4210. head = skb;
  4211. if (!skb)
  4212. break;
  4213. /* Start new segment */
  4214. start = TCP_SKB_CB(skb)->seq;
  4215. end = TCP_SKB_CB(skb)->end_seq;
  4216. } else {
  4217. if (before(TCP_SKB_CB(skb)->seq, start))
  4218. start = TCP_SKB_CB(skb)->seq;
  4219. if (after(TCP_SKB_CB(skb)->end_seq, end))
  4220. end = TCP_SKB_CB(skb)->end_seq;
  4221. }
  4222. }
  4223. }
  4224. /*
  4225. * Purge the out-of-order queue.
  4226. * Return true if queue was pruned.
  4227. */
  4228. static int tcp_prune_ofo_queue(struct sock *sk)
  4229. {
  4230. struct tcp_sock *tp = tcp_sk(sk);
  4231. int res = 0;
  4232. if (!skb_queue_empty(&tp->out_of_order_queue)) {
  4233. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_OFOPRUNED);
  4234. __skb_queue_purge(&tp->out_of_order_queue);
  4235. /* Reset SACK state. A conforming SACK implementation will
  4236. * do the same at a timeout based retransmit. When a connection
  4237. * is in a sad state like this, we care only about integrity
  4238. * of the connection not performance.
  4239. */
  4240. if (tp->rx_opt.sack_ok)
  4241. tcp_sack_reset(&tp->rx_opt);
  4242. sk_mem_reclaim(sk);
  4243. res = 1;
  4244. }
  4245. return res;
  4246. }
  4247. /* Reduce allocated memory if we can, trying to get
  4248. * the socket within its memory limits again.
  4249. *
  4250. * Return less than zero if we should start dropping frames
  4251. * until the socket owning process reads some of the data
  4252. * to stabilize the situation.
  4253. */
  4254. static int tcp_prune_queue(struct sock *sk)
  4255. {
  4256. struct tcp_sock *tp = tcp_sk(sk);
  4257. SOCK_DEBUG(sk, "prune_queue: c=%x\n", tp->copied_seq);
  4258. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PRUNECALLED);
  4259. if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
  4260. tcp_clamp_window(sk);
  4261. else if (sk_under_memory_pressure(sk))
  4262. tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss);
  4263. tcp_collapse_ofo_queue(sk);
  4264. if (!skb_queue_empty(&sk->sk_receive_queue))
  4265. tcp_collapse(sk, &sk->sk_receive_queue,
  4266. skb_peek(&sk->sk_receive_queue),
  4267. NULL,
  4268. tp->copied_seq, tp->rcv_nxt);
  4269. sk_mem_reclaim(sk);
  4270. if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
  4271. return 0;
  4272. /* Collapsing did not help, destructive actions follow.
  4273. * This must not ever occur. */
  4274. tcp_prune_ofo_queue(sk);
  4275. if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
  4276. return 0;
  4277. /* If we are really being abused, tell the caller to silently
  4278. * drop receive data on the floor. It will get retransmitted
  4279. * and hopefully then we'll have sufficient space.
  4280. */
  4281. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_RCVPRUNED);
  4282. /* Massive buffer overcommit. */
  4283. tp->pred_flags = 0;
  4284. return -1;
  4285. }
  4286. /* RFC2861, slow part. Adjust cwnd, after it was not full during one rto.
  4287. * As additional protections, we do not touch cwnd in retransmission phases,
  4288. * and if application hit its sndbuf limit recently.
  4289. */
  4290. void tcp_cwnd_application_limited(struct sock *sk)
  4291. {
  4292. struct tcp_sock *tp = tcp_sk(sk);
  4293. if (inet_csk(sk)->icsk_ca_state == TCP_CA_Open &&
  4294. sk->sk_socket && !test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
  4295. /* Limited by application or receiver window. */
  4296. u32 init_win = tcp_init_cwnd(tp, __sk_dst_get(sk));
  4297. u32 win_used = max(tp->snd_cwnd_used, init_win);
  4298. if (win_used < tp->snd_cwnd) {
  4299. tp->snd_ssthresh = tcp_current_ssthresh(sk);
  4300. tp->snd_cwnd = (tp->snd_cwnd + win_used) >> 1;
  4301. }
  4302. tp->snd_cwnd_used = 0;
  4303. }
  4304. tp->snd_cwnd_stamp = tcp_time_stamp;
  4305. }
  4306. static int tcp_should_expand_sndbuf(const struct sock *sk)
  4307. {
  4308. const struct tcp_sock *tp = tcp_sk(sk);
  4309. /* If the user specified a specific send buffer setting, do
  4310. * not modify it.
  4311. */
  4312. if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
  4313. return 0;
  4314. /* If we are under global TCP memory pressure, do not expand. */
  4315. if (sk_under_memory_pressure(sk))
  4316. return 0;
  4317. /* If we are under soft global TCP memory pressure, do not expand. */
  4318. if (sk_memory_allocated(sk) >= sk_prot_mem_limits(sk, 0))
  4319. return 0;
  4320. /* If we filled the congestion window, do not expand. */
  4321. if (tp->packets_out >= tp->snd_cwnd)
  4322. return 0;
  4323. return 1;
  4324. }
  4325. /* When incoming ACK allowed to free some skb from write_queue,
  4326. * we remember this event in flag SOCK_QUEUE_SHRUNK and wake up socket
  4327. * on the exit from tcp input handler.
  4328. *
  4329. * PROBLEM: sndbuf expansion does not work well with largesend.
  4330. */
  4331. static void tcp_new_space(struct sock *sk)
  4332. {
  4333. struct tcp_sock *tp = tcp_sk(sk);
  4334. if (tcp_should_expand_sndbuf(sk)) {
  4335. int sndmem = SKB_TRUESIZE(max_t(u32,
  4336. tp->rx_opt.mss_clamp,
  4337. tp->mss_cache) +
  4338. MAX_TCP_HEADER);
  4339. int demanded = max_t(unsigned int, tp->snd_cwnd,
  4340. tp->reordering + 1);
  4341. sndmem *= 2 * demanded;
  4342. if (sndmem > sk->sk_sndbuf)
  4343. sk->sk_sndbuf = min(sndmem, sysctl_tcp_wmem[2]);
  4344. tp->snd_cwnd_stamp = tcp_time_stamp;
  4345. }
  4346. sk->sk_write_space(sk);
  4347. }
  4348. static void tcp_check_space(struct sock *sk)
  4349. {
  4350. if (sock_flag(sk, SOCK_QUEUE_SHRUNK)) {
  4351. sock_reset_flag(sk, SOCK_QUEUE_SHRUNK);
  4352. if (sk->sk_socket &&
  4353. test_bit(SOCK_NOSPACE, &sk->sk_socket->flags))
  4354. tcp_new_space(sk);
  4355. }
  4356. }
  4357. static inline void tcp_data_snd_check(struct sock *sk)
  4358. {
  4359. tcp_push_pending_frames(sk);
  4360. tcp_check_space(sk);
  4361. }
  4362. /*
  4363. * Check if sending an ack is needed.
  4364. */
  4365. static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible)
  4366. {
  4367. struct tcp_sock *tp = tcp_sk(sk);
  4368. /* More than one full frame received... */
  4369. if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss &&
  4370. /* ... and right edge of window advances far enough.
  4371. * (tcp_recvmsg() will send ACK otherwise). Or...
  4372. */
  4373. __tcp_select_window(sk) >= tp->rcv_wnd) ||
  4374. /* We ACK each frame or... */
  4375. tcp_in_quickack_mode(sk) ||
  4376. /* We have out of order data. */
  4377. (ofo_possible && skb_peek(&tp->out_of_order_queue))) {
  4378. /* Then ack it now */
  4379. tcp_send_ack(sk);
  4380. } else {
  4381. /* Else, send delayed ack. */
  4382. tcp_send_delayed_ack(sk);
  4383. }
  4384. }
  4385. static inline void tcp_ack_snd_check(struct sock *sk)
  4386. {
  4387. if (!inet_csk_ack_scheduled(sk)) {
  4388. /* We sent a data segment already. */
  4389. return;
  4390. }
  4391. __tcp_ack_snd_check(sk, 1);
  4392. }
  4393. /*
  4394. * This routine is only called when we have urgent data
  4395. * signaled. Its the 'slow' part of tcp_urg. It could be
  4396. * moved inline now as tcp_urg is only called from one
  4397. * place. We handle URGent data wrong. We have to - as
  4398. * BSD still doesn't use the correction from RFC961.
  4399. * For 1003.1g we should support a new option TCP_STDURG to permit
  4400. * either form (or just set the sysctl tcp_stdurg).
  4401. */
  4402. static void tcp_check_urg(struct sock *sk, const struct tcphdr *th)
  4403. {
  4404. struct tcp_sock *tp = tcp_sk(sk);
  4405. u32 ptr = ntohs(th->urg_ptr);
  4406. if (ptr && !sysctl_tcp_stdurg)
  4407. ptr--;
  4408. ptr += ntohl(th->seq);
  4409. /* Ignore urgent data that we've already seen and read. */
  4410. if (after(tp->copied_seq, ptr))
  4411. return;
  4412. /* Do not replay urg ptr.
  4413. *
  4414. * NOTE: interesting situation not covered by specs.
  4415. * Misbehaving sender may send urg ptr, pointing to segment,
  4416. * which we already have in ofo queue. We are not able to fetch
  4417. * such data and will stay in TCP_URG_NOTYET until will be eaten
  4418. * by recvmsg(). Seems, we are not obliged to handle such wicked
  4419. * situations. But it is worth to think about possibility of some
  4420. * DoSes using some hypothetical application level deadlock.
  4421. */
  4422. if (before(ptr, tp->rcv_nxt))
  4423. return;
  4424. /* Do we already have a newer (or duplicate) urgent pointer? */
  4425. if (tp->urg_data && !after(ptr, tp->urg_seq))
  4426. return;
  4427. /* Tell the world about our new urgent pointer. */
  4428. sk_send_sigurg(sk);
  4429. /* We may be adding urgent data when the last byte read was
  4430. * urgent. To do this requires some care. We cannot just ignore
  4431. * tp->copied_seq since we would read the last urgent byte again
  4432. * as data, nor can we alter copied_seq until this data arrives
  4433. * or we break the semantics of SIOCATMARK (and thus sockatmark())
  4434. *
  4435. * NOTE. Double Dutch. Rendering to plain English: author of comment
  4436. * above did something sort of send("A", MSG_OOB); send("B", MSG_OOB);
  4437. * and expect that both A and B disappear from stream. This is _wrong_.
  4438. * Though this happens in BSD with high probability, this is occasional.
  4439. * Any application relying on this is buggy. Note also, that fix "works"
  4440. * only in this artificial test. Insert some normal data between A and B and we will
  4441. * decline of BSD again. Verdict: it is better to remove to trap
  4442. * buggy users.
  4443. */
  4444. if (tp->urg_seq == tp->copied_seq && tp->urg_data &&
  4445. !sock_flag(sk, SOCK_URGINLINE) && tp->copied_seq != tp->rcv_nxt) {
  4446. struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
  4447. tp->copied_seq++;
  4448. if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) {
  4449. __skb_unlink(skb, &sk->sk_receive_queue);
  4450. __kfree_skb(skb);
  4451. }
  4452. }
  4453. tp->urg_data = TCP_URG_NOTYET;
  4454. tp->urg_seq = ptr;
  4455. /* Disable header prediction. */
  4456. tp->pred_flags = 0;
  4457. }
  4458. /* This is the 'fast' part of urgent handling. */
  4459. static void tcp_urg(struct sock *sk, struct sk_buff *skb, const struct tcphdr *th)
  4460. {
  4461. struct tcp_sock *tp = tcp_sk(sk);
  4462. /* Check if we get a new urgent pointer - normally not. */
  4463. if (th->urg)
  4464. tcp_check_urg(sk, th);
  4465. /* Do we wait for any urgent data? - normally not... */
  4466. if (tp->urg_data == TCP_URG_NOTYET) {
  4467. u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) -
  4468. th->syn;
  4469. /* Is the urgent pointer pointing into this packet? */
  4470. if (ptr < skb->len) {
  4471. u8 tmp;
  4472. if (skb_copy_bits(skb, ptr, &tmp, 1))
  4473. BUG();
  4474. tp->urg_data = TCP_URG_VALID | tmp;
  4475. if (!sock_flag(sk, SOCK_DEAD))
  4476. sk->sk_data_ready(sk, 0);
  4477. }
  4478. }
  4479. }
  4480. static int tcp_copy_to_iovec(struct sock *sk, struct sk_buff *skb, int hlen)
  4481. {
  4482. struct tcp_sock *tp = tcp_sk(sk);
  4483. int chunk = skb->len - hlen;
  4484. int err;
  4485. local_bh_enable();
  4486. if (skb_csum_unnecessary(skb))
  4487. err = skb_copy_datagram_iovec(skb, hlen, tp->ucopy.iov, chunk);
  4488. else
  4489. err = skb_copy_and_csum_datagram_iovec(skb, hlen,
  4490. tp->ucopy.iov);
  4491. if (!err) {
  4492. tp->ucopy.len -= chunk;
  4493. tp->copied_seq += chunk;
  4494. tcp_rcv_space_adjust(sk);
  4495. }
  4496. local_bh_disable();
  4497. return err;
  4498. }
  4499. static __sum16 __tcp_checksum_complete_user(struct sock *sk,
  4500. struct sk_buff *skb)
  4501. {
  4502. __sum16 result;
  4503. if (sock_owned_by_user(sk)) {
  4504. local_bh_enable();
  4505. result = __tcp_checksum_complete(skb);
  4506. local_bh_disable();
  4507. } else {
  4508. result = __tcp_checksum_complete(skb);
  4509. }
  4510. return result;
  4511. }
  4512. static inline int tcp_checksum_complete_user(struct sock *sk,
  4513. struct sk_buff *skb)
  4514. {
  4515. return !skb_csum_unnecessary(skb) &&
  4516. __tcp_checksum_complete_user(sk, skb);
  4517. }
  4518. #ifdef CONFIG_NET_DMA
  4519. static int tcp_dma_try_early_copy(struct sock *sk, struct sk_buff *skb,
  4520. int hlen)
  4521. {
  4522. struct tcp_sock *tp = tcp_sk(sk);
  4523. int chunk = skb->len - hlen;
  4524. int dma_cookie;
  4525. int copied_early = 0;
  4526. if (tp->ucopy.wakeup)
  4527. return 0;
  4528. if (!tp->ucopy.dma_chan && tp->ucopy.pinned_list)
  4529. tp->ucopy.dma_chan = dma_find_channel(DMA_MEMCPY);
  4530. if (tp->ucopy.dma_chan && skb_csum_unnecessary(skb)) {
  4531. dma_cookie = dma_skb_copy_datagram_iovec(tp->ucopy.dma_chan,
  4532. skb, hlen,
  4533. tp->ucopy.iov, chunk,
  4534. tp->ucopy.pinned_list);
  4535. if (dma_cookie < 0)
  4536. goto out;
  4537. tp->ucopy.dma_cookie = dma_cookie;
  4538. copied_early = 1;
  4539. tp->ucopy.len -= chunk;
  4540. tp->copied_seq += chunk;
  4541. tcp_rcv_space_adjust(sk);
  4542. if ((tp->ucopy.len == 0) ||
  4543. (tcp_flag_word(tcp_hdr(skb)) & TCP_FLAG_PSH) ||
  4544. (atomic_read(&sk->sk_rmem_alloc) > (sk->sk_rcvbuf >> 1))) {
  4545. tp->ucopy.wakeup = 1;
  4546. sk->sk_data_ready(sk, 0);
  4547. }
  4548. } else if (chunk > 0) {
  4549. tp->ucopy.wakeup = 1;
  4550. sk->sk_data_ready(sk, 0);
  4551. }
  4552. out:
  4553. return copied_early;
  4554. }
  4555. #endif /* CONFIG_NET_DMA */
  4556. /* Does PAWS and seqno based validation of an incoming segment, flags will
  4557. * play significant role here.
  4558. */
  4559. static int tcp_validate_incoming(struct sock *sk, struct sk_buff *skb,
  4560. const struct tcphdr *th, int syn_inerr)
  4561. {
  4562. const u8 *hash_location;
  4563. struct tcp_sock *tp = tcp_sk(sk);
  4564. /* RFC1323: H1. Apply PAWS check first. */
  4565. if (tcp_fast_parse_options(skb, th, tp, &hash_location) &&
  4566. tp->rx_opt.saw_tstamp &&
  4567. tcp_paws_discard(sk, skb)) {
  4568. if (!th->rst) {
  4569. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED);
  4570. tcp_send_dupack(sk, skb);
  4571. goto discard;
  4572. }
  4573. /* Reset is accepted even if it did not pass PAWS. */
  4574. }
  4575. /* Step 1: check sequence number */
  4576. if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
  4577. /* RFC793, page 37: "In all states except SYN-SENT, all reset
  4578. * (RST) segments are validated by checking their SEQ-fields."
  4579. * And page 69: "If an incoming segment is not acceptable,
  4580. * an acknowledgment should be sent in reply (unless the RST
  4581. * bit is set, if so drop the segment and return)".
  4582. */
  4583. if (!th->rst)
  4584. tcp_send_dupack(sk, skb);
  4585. goto discard;
  4586. }
  4587. /* Step 2: check RST bit */
  4588. if (th->rst) {
  4589. tcp_reset(sk);
  4590. goto discard;
  4591. }
  4592. /* ts_recent update must be made after we are sure that the packet
  4593. * is in window.
  4594. */
  4595. tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
  4596. /* step 3: check security and precedence [ignored] */
  4597. /* step 4: Check for a SYN in window. */
  4598. if (th->syn && !before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
  4599. if (syn_inerr)
  4600. TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
  4601. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONSYN);
  4602. tcp_reset(sk);
  4603. return -1;
  4604. }
  4605. return 1;
  4606. discard:
  4607. __kfree_skb(skb);
  4608. return 0;
  4609. }
  4610. /*
  4611. * TCP receive function for the ESTABLISHED state.
  4612. *
  4613. * It is split into a fast path and a slow path. The fast path is
  4614. * disabled when:
  4615. * - A zero window was announced from us - zero window probing
  4616. * is only handled properly in the slow path.
  4617. * - Out of order segments arrived.
  4618. * - Urgent data is expected.
  4619. * - There is no buffer space left
  4620. * - Unexpected TCP flags/window values/header lengths are received
  4621. * (detected by checking the TCP header against pred_flags)
  4622. * - Data is sent in both directions. Fast path only supports pure senders
  4623. * or pure receivers (this means either the sequence number or the ack
  4624. * value must stay constant)
  4625. * - Unexpected TCP option.
  4626. *
  4627. * When these conditions are not satisfied it drops into a standard
  4628. * receive procedure patterned after RFC793 to handle all cases.
  4629. * The first three cases are guaranteed by proper pred_flags setting,
  4630. * the rest is checked inline. Fast processing is turned on in
  4631. * tcp_data_queue when everything is OK.
  4632. */
  4633. int tcp_rcv_established(struct sock *sk, struct sk_buff *skb,
  4634. const struct tcphdr *th, unsigned int len)
  4635. {
  4636. struct tcp_sock *tp = tcp_sk(sk);
  4637. int res;
  4638. /*
  4639. * Header prediction.
  4640. * The code loosely follows the one in the famous
  4641. * "30 instruction TCP receive" Van Jacobson mail.
  4642. *
  4643. * Van's trick is to deposit buffers into socket queue
  4644. * on a device interrupt, to call tcp_recv function
  4645. * on the receive process context and checksum and copy
  4646. * the buffer to user space. smart...
  4647. *
  4648. * Our current scheme is not silly either but we take the
  4649. * extra cost of the net_bh soft interrupt processing...
  4650. * We do checksum and copy also but from device to kernel.
  4651. */
  4652. tp->rx_opt.saw_tstamp = 0;
  4653. /* pred_flags is 0xS?10 << 16 + snd_wnd
  4654. * if header_prediction is to be made
  4655. * 'S' will always be tp->tcp_header_len >> 2
  4656. * '?' will be 0 for the fast path, otherwise pred_flags is 0 to
  4657. * turn it off (when there are holes in the receive
  4658. * space for instance)
  4659. * PSH flag is ignored.
  4660. */
  4661. if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags &&
  4662. TCP_SKB_CB(skb)->seq == tp->rcv_nxt &&
  4663. !after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) {
  4664. int tcp_header_len = tp->tcp_header_len;
  4665. /* Timestamp header prediction: tcp_header_len
  4666. * is automatically equal to th->doff*4 due to pred_flags
  4667. * match.
  4668. */
  4669. /* Check timestamp */
  4670. if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) {
  4671. /* No? Slow path! */
  4672. if (!tcp_parse_aligned_timestamp(tp, th))
  4673. goto slow_path;
  4674. /* If PAWS failed, check it more carefully in slow path */
  4675. if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0)
  4676. goto slow_path;
  4677. /* DO NOT update ts_recent here, if checksum fails
  4678. * and timestamp was corrupted part, it will result
  4679. * in a hung connection since we will drop all
  4680. * future packets due to the PAWS test.
  4681. */
  4682. }
  4683. if (len <= tcp_header_len) {
  4684. /* Bulk data transfer: sender */
  4685. if (len == tcp_header_len) {
  4686. /* Predicted packet is in window by definition.
  4687. * seq == rcv_nxt and rcv_wup <= rcv_nxt.
  4688. * Hence, check seq<=rcv_wup reduces to:
  4689. */
  4690. if (tcp_header_len ==
  4691. (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
  4692. tp->rcv_nxt == tp->rcv_wup)
  4693. tcp_store_ts_recent(tp);
  4694. /* We know that such packets are checksummed
  4695. * on entry.
  4696. */
  4697. tcp_ack(sk, skb, 0);
  4698. __kfree_skb(skb);
  4699. tcp_data_snd_check(sk);
  4700. return 0;
  4701. } else { /* Header too small */
  4702. TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
  4703. goto discard;
  4704. }
  4705. } else {
  4706. int eaten = 0;
  4707. int copied_early = 0;
  4708. if (tp->copied_seq == tp->rcv_nxt &&
  4709. len - tcp_header_len <= tp->ucopy.len) {
  4710. #ifdef CONFIG_NET_DMA
  4711. if (tcp_dma_try_early_copy(sk, skb, tcp_header_len)) {
  4712. copied_early = 1;
  4713. eaten = 1;
  4714. }
  4715. #endif
  4716. if (tp->ucopy.task == current &&
  4717. sock_owned_by_user(sk) && !copied_early) {
  4718. __set_current_state(TASK_RUNNING);
  4719. if (!tcp_copy_to_iovec(sk, skb, tcp_header_len))
  4720. eaten = 1;
  4721. }
  4722. if (eaten) {
  4723. /* Predicted packet is in window by definition.
  4724. * seq == rcv_nxt and rcv_wup <= rcv_nxt.
  4725. * Hence, check seq<=rcv_wup reduces to:
  4726. */
  4727. if (tcp_header_len ==
  4728. (sizeof(struct tcphdr) +
  4729. TCPOLEN_TSTAMP_ALIGNED) &&
  4730. tp->rcv_nxt == tp->rcv_wup)
  4731. tcp_store_ts_recent(tp);
  4732. tcp_rcv_rtt_measure_ts(sk, skb);
  4733. __skb_pull(skb, tcp_header_len);
  4734. tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
  4735. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPHITSTOUSER);
  4736. }
  4737. if (copied_early)
  4738. tcp_cleanup_rbuf(sk, skb->len);
  4739. }
  4740. if (!eaten) {
  4741. if (tcp_checksum_complete_user(sk, skb))
  4742. goto csum_error;
  4743. /* Predicted packet is in window by definition.
  4744. * seq == rcv_nxt and rcv_wup <= rcv_nxt.
  4745. * Hence, check seq<=rcv_wup reduces to:
  4746. */
  4747. if (tcp_header_len ==
  4748. (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
  4749. tp->rcv_nxt == tp->rcv_wup)
  4750. tcp_store_ts_recent(tp);
  4751. tcp_rcv_rtt_measure_ts(sk, skb);
  4752. if ((int)skb->truesize > sk->sk_forward_alloc)
  4753. goto step5;
  4754. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPHITS);
  4755. /* Bulk data transfer: receiver */
  4756. __skb_pull(skb, tcp_header_len);
  4757. __skb_queue_tail(&sk->sk_receive_queue, skb);
  4758. skb_set_owner_r(skb, sk);
  4759. tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
  4760. }
  4761. tcp_event_data_recv(sk, skb);
  4762. if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) {
  4763. /* Well, only one small jumplet in fast path... */
  4764. tcp_ack(sk, skb, FLAG_DATA);
  4765. tcp_data_snd_check(sk);
  4766. if (!inet_csk_ack_scheduled(sk))
  4767. goto no_ack;
  4768. }
  4769. if (!copied_early || tp->rcv_nxt != tp->rcv_wup)
  4770. __tcp_ack_snd_check(sk, 0);
  4771. no_ack:
  4772. #ifdef CONFIG_NET_DMA
  4773. if (copied_early)
  4774. __skb_queue_tail(&sk->sk_async_wait_queue, skb);
  4775. else
  4776. #endif
  4777. if (eaten)
  4778. __kfree_skb(skb);
  4779. else
  4780. sk->sk_data_ready(sk, 0);
  4781. return 0;
  4782. }
  4783. }
  4784. slow_path:
  4785. if (len < (th->doff << 2) || tcp_checksum_complete_user(sk, skb))
  4786. goto csum_error;
  4787. /*
  4788. * Standard slow path.
  4789. */
  4790. res = tcp_validate_incoming(sk, skb, th, 1);
  4791. if (res <= 0)
  4792. return -res;
  4793. step5:
  4794. if (th->ack && tcp_ack(sk, skb, FLAG_SLOWPATH) < 0)
  4795. goto discard;
  4796. tcp_rcv_rtt_measure_ts(sk, skb);
  4797. /* Process urgent data. */
  4798. tcp_urg(sk, skb, th);
  4799. /* step 7: process the segment text */
  4800. tcp_data_queue(sk, skb);
  4801. tcp_data_snd_check(sk);
  4802. tcp_ack_snd_check(sk);
  4803. return 0;
  4804. csum_error:
  4805. TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
  4806. discard:
  4807. __kfree_skb(skb);
  4808. return 0;
  4809. }
  4810. EXPORT_SYMBOL(tcp_rcv_established);
  4811. static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb,
  4812. const struct tcphdr *th, unsigned int len)
  4813. {
  4814. const u8 *hash_location;
  4815. struct inet_connection_sock *icsk = inet_csk(sk);
  4816. struct tcp_sock *tp = tcp_sk(sk);
  4817. struct tcp_cookie_values *cvp = tp->cookie_values;
  4818. int saved_clamp = tp->rx_opt.mss_clamp;
  4819. tcp_parse_options(skb, &tp->rx_opt, &hash_location, 0);
  4820. if (th->ack) {
  4821. /* rfc793:
  4822. * "If the state is SYN-SENT then
  4823. * first check the ACK bit
  4824. * If the ACK bit is set
  4825. * If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send
  4826. * a reset (unless the RST bit is set, if so drop
  4827. * the segment and return)"
  4828. *
  4829. * We do not send data with SYN, so that RFC-correct
  4830. * test reduces to:
  4831. */
  4832. if (TCP_SKB_CB(skb)->ack_seq != tp->snd_nxt)
  4833. goto reset_and_undo;
  4834. if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
  4835. !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp,
  4836. tcp_time_stamp)) {
  4837. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSACTIVEREJECTED);
  4838. goto reset_and_undo;
  4839. }
  4840. /* Now ACK is acceptable.
  4841. *
  4842. * "If the RST bit is set
  4843. * If the ACK was acceptable then signal the user "error:
  4844. * connection reset", drop the segment, enter CLOSED state,
  4845. * delete TCB, and return."
  4846. */
  4847. if (th->rst) {
  4848. tcp_reset(sk);
  4849. goto discard;
  4850. }
  4851. /* rfc793:
  4852. * "fifth, if neither of the SYN or RST bits is set then
  4853. * drop the segment and return."
  4854. *
  4855. * See note below!
  4856. * --ANK(990513)
  4857. */
  4858. if (!th->syn)
  4859. goto discard_and_undo;
  4860. /* rfc793:
  4861. * "If the SYN bit is on ...
  4862. * are acceptable then ...
  4863. * (our SYN has been ACKed), change the connection
  4864. * state to ESTABLISHED..."
  4865. */
  4866. TCP_ECN_rcv_synack(tp, th);
  4867. tp->snd_wl1 = TCP_SKB_CB(skb)->seq;
  4868. tcp_ack(sk, skb, FLAG_SLOWPATH);
  4869. /* Ok.. it's good. Set up sequence numbers and
  4870. * move to established.
  4871. */
  4872. tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
  4873. tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
  4874. /* RFC1323: The window in SYN & SYN/ACK segments is
  4875. * never scaled.
  4876. */
  4877. tp->snd_wnd = ntohs(th->window);
  4878. tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
  4879. if (!tp->rx_opt.wscale_ok) {
  4880. tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0;
  4881. tp->window_clamp = min(tp->window_clamp, 65535U);
  4882. }
  4883. if (tp->rx_opt.saw_tstamp) {
  4884. tp->rx_opt.tstamp_ok = 1;
  4885. tp->tcp_header_len =
  4886. sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
  4887. tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
  4888. tcp_store_ts_recent(tp);
  4889. } else {
  4890. tp->tcp_header_len = sizeof(struct tcphdr);
  4891. }
  4892. if (tcp_is_sack(tp) && sysctl_tcp_fack)
  4893. tcp_enable_fack(tp);
  4894. tcp_mtup_init(sk);
  4895. tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
  4896. tcp_initialize_rcv_mss(sk);
  4897. /* Remember, tcp_poll() does not lock socket!
  4898. * Change state from SYN-SENT only after copied_seq
  4899. * is initialized. */
  4900. tp->copied_seq = tp->rcv_nxt;
  4901. if (cvp != NULL &&
  4902. cvp->cookie_pair_size > 0 &&
  4903. tp->rx_opt.cookie_plus > 0) {
  4904. int cookie_size = tp->rx_opt.cookie_plus
  4905. - TCPOLEN_COOKIE_BASE;
  4906. int cookie_pair_size = cookie_size
  4907. + cvp->cookie_desired;
  4908. /* A cookie extension option was sent and returned.
  4909. * Note that each incoming SYNACK replaces the
  4910. * Responder cookie. The initial exchange is most
  4911. * fragile, as protection against spoofing relies
  4912. * entirely upon the sequence and timestamp (above).
  4913. * This replacement strategy allows the correct pair to
  4914. * pass through, while any others will be filtered via
  4915. * Responder verification later.
  4916. */
  4917. if (sizeof(cvp->cookie_pair) >= cookie_pair_size) {
  4918. memcpy(&cvp->cookie_pair[cvp->cookie_desired],
  4919. hash_location, cookie_size);
  4920. cvp->cookie_pair_size = cookie_pair_size;
  4921. }
  4922. }
  4923. smp_mb();
  4924. tcp_set_state(sk, TCP_ESTABLISHED);
  4925. security_inet_conn_established(sk, skb);
  4926. /* Make sure socket is routed, for correct metrics. */
  4927. icsk->icsk_af_ops->rebuild_header(sk);
  4928. tcp_init_metrics(sk);
  4929. tcp_init_congestion_control(sk);
  4930. /* Prevent spurious tcp_cwnd_restart() on first data
  4931. * packet.
  4932. */
  4933. tp->lsndtime = tcp_time_stamp;
  4934. tcp_init_buffer_space(sk);
  4935. if (sock_flag(sk, SOCK_KEEPOPEN))
  4936. inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp));
  4937. if (!tp->rx_opt.snd_wscale)
  4938. __tcp_fast_path_on(tp, tp->snd_wnd);
  4939. else
  4940. tp->pred_flags = 0;
  4941. if (!sock_flag(sk, SOCK_DEAD)) {
  4942. sk->sk_state_change(sk);
  4943. sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
  4944. }
  4945. if (sk->sk_write_pending ||
  4946. icsk->icsk_accept_queue.rskq_defer_accept ||
  4947. icsk->icsk_ack.pingpong) {
  4948. /* Save one ACK. Data will be ready after
  4949. * several ticks, if write_pending is set.
  4950. *
  4951. * It may be deleted, but with this feature tcpdumps
  4952. * look so _wonderfully_ clever, that I was not able
  4953. * to stand against the temptation 8) --ANK
  4954. */
  4955. inet_csk_schedule_ack(sk);
  4956. icsk->icsk_ack.lrcvtime = tcp_time_stamp;
  4957. icsk->icsk_ack.ato = TCP_ATO_MIN;
  4958. tcp_incr_quickack(sk);
  4959. tcp_enter_quickack_mode(sk);
  4960. inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
  4961. TCP_DELACK_MAX, TCP_RTO_MAX);
  4962. discard:
  4963. __kfree_skb(skb);
  4964. return 0;
  4965. } else {
  4966. tcp_send_ack(sk);
  4967. }
  4968. return -1;
  4969. }
  4970. /* No ACK in the segment */
  4971. if (th->rst) {
  4972. /* rfc793:
  4973. * "If the RST bit is set
  4974. *
  4975. * Otherwise (no ACK) drop the segment and return."
  4976. */
  4977. goto discard_and_undo;
  4978. }
  4979. /* PAWS check. */
  4980. if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp &&
  4981. tcp_paws_reject(&tp->rx_opt, 0))
  4982. goto discard_and_undo;
  4983. if (th->syn) {
  4984. /* We see SYN without ACK. It is attempt of
  4985. * simultaneous connect with crossed SYNs.
  4986. * Particularly, it can be connect to self.
  4987. */
  4988. tcp_set_state(sk, TCP_SYN_RECV);
  4989. if (tp->rx_opt.saw_tstamp) {
  4990. tp->rx_opt.tstamp_ok = 1;
  4991. tcp_store_ts_recent(tp);
  4992. tp->tcp_header_len =
  4993. sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
  4994. } else {
  4995. tp->tcp_header_len = sizeof(struct tcphdr);
  4996. }
  4997. tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
  4998. tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
  4999. /* RFC1323: The window in SYN & SYN/ACK segments is
  5000. * never scaled.
  5001. */
  5002. tp->snd_wnd = ntohs(th->window);
  5003. tp->snd_wl1 = TCP_SKB_CB(skb)->seq;
  5004. tp->max_window = tp->snd_wnd;
  5005. TCP_ECN_rcv_syn(tp, th);
  5006. tcp_mtup_init(sk);
  5007. tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
  5008. tcp_initialize_rcv_mss(sk);
  5009. tcp_send_synack(sk);
  5010. #if 0
  5011. /* Note, we could accept data and URG from this segment.
  5012. * There are no obstacles to make this.
  5013. *
  5014. * However, if we ignore data in ACKless segments sometimes,
  5015. * we have no reasons to accept it sometimes.
  5016. * Also, seems the code doing it in step6 of tcp_rcv_state_process
  5017. * is not flawless. So, discard packet for sanity.
  5018. * Uncomment this return to process the data.
  5019. */
  5020. return -1;
  5021. #else
  5022. goto discard;
  5023. #endif
  5024. }
  5025. /* "fifth, if neither of the SYN or RST bits is set then
  5026. * drop the segment and return."
  5027. */
  5028. discard_and_undo:
  5029. tcp_clear_options(&tp->rx_opt);
  5030. tp->rx_opt.mss_clamp = saved_clamp;
  5031. goto discard;
  5032. reset_and_undo:
  5033. tcp_clear_options(&tp->rx_opt);
  5034. tp->rx_opt.mss_clamp = saved_clamp;
  5035. return 1;
  5036. }
  5037. /*
  5038. * This function implements the receiving procedure of RFC 793 for
  5039. * all states except ESTABLISHED and TIME_WAIT.
  5040. * It's called from both tcp_v4_rcv and tcp_v6_rcv and should be
  5041. * address independent.
  5042. */
  5043. int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb,
  5044. const struct tcphdr *th, unsigned int len)
  5045. {
  5046. struct tcp_sock *tp = tcp_sk(sk);
  5047. struct inet_connection_sock *icsk = inet_csk(sk);
  5048. int queued = 0;
  5049. int res;
  5050. tp->rx_opt.saw_tstamp = 0;
  5051. switch (sk->sk_state) {
  5052. case TCP_CLOSE:
  5053. goto discard;
  5054. case TCP_LISTEN:
  5055. if (th->ack)
  5056. return 1;
  5057. if (th->rst)
  5058. goto discard;
  5059. if (th->syn) {
  5060. if (th->fin)
  5061. goto discard;
  5062. if (icsk->icsk_af_ops->conn_request(sk, skb) < 0)
  5063. return 1;
  5064. /* Now we have several options: In theory there is
  5065. * nothing else in the frame. KA9Q has an option to
  5066. * send data with the syn, BSD accepts data with the
  5067. * syn up to the [to be] advertised window and
  5068. * Solaris 2.1 gives you a protocol error. For now
  5069. * we just ignore it, that fits the spec precisely
  5070. * and avoids incompatibilities. It would be nice in
  5071. * future to drop through and process the data.
  5072. *
  5073. * Now that TTCP is starting to be used we ought to
  5074. * queue this data.
  5075. * But, this leaves one open to an easy denial of
  5076. * service attack, and SYN cookies can't defend
  5077. * against this problem. So, we drop the data
  5078. * in the interest of security over speed unless
  5079. * it's still in use.
  5080. */
  5081. kfree_skb(skb);
  5082. return 0;
  5083. }
  5084. goto discard;
  5085. case TCP_SYN_SENT:
  5086. queued = tcp_rcv_synsent_state_process(sk, skb, th, len);
  5087. if (queued >= 0)
  5088. return queued;
  5089. /* Do step6 onward by hand. */
  5090. tcp_urg(sk, skb, th);
  5091. __kfree_skb(skb);
  5092. tcp_data_snd_check(sk);
  5093. return 0;
  5094. }
  5095. res = tcp_validate_incoming(sk, skb, th, 0);
  5096. if (res <= 0)
  5097. return -res;
  5098. /* step 5: check the ACK field */
  5099. if (th->ack) {
  5100. int acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH) > 0;
  5101. switch (sk->sk_state) {
  5102. case TCP_SYN_RECV:
  5103. if (acceptable) {
  5104. tp->copied_seq = tp->rcv_nxt;
  5105. smp_mb();
  5106. tcp_set_state(sk, TCP_ESTABLISHED);
  5107. sk->sk_state_change(sk);
  5108. /* Note, that this wakeup is only for marginal
  5109. * crossed SYN case. Passively open sockets
  5110. * are not waked up, because sk->sk_sleep ==
  5111. * NULL and sk->sk_socket == NULL.
  5112. */
  5113. if (sk->sk_socket)
  5114. sk_wake_async(sk,
  5115. SOCK_WAKE_IO, POLL_OUT);
  5116. tp->snd_una = TCP_SKB_CB(skb)->ack_seq;
  5117. tp->snd_wnd = ntohs(th->window) <<
  5118. tp->rx_opt.snd_wscale;
  5119. tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
  5120. if (tp->rx_opt.tstamp_ok)
  5121. tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
  5122. /* Make sure socket is routed, for
  5123. * correct metrics.
  5124. */
  5125. icsk->icsk_af_ops->rebuild_header(sk);
  5126. tcp_init_metrics(sk);
  5127. tcp_init_congestion_control(sk);
  5128. /* Prevent spurious tcp_cwnd_restart() on
  5129. * first data packet.
  5130. */
  5131. tp->lsndtime = tcp_time_stamp;
  5132. tcp_mtup_init(sk);
  5133. tcp_initialize_rcv_mss(sk);
  5134. tcp_init_buffer_space(sk);
  5135. tcp_fast_path_on(tp);
  5136. } else {
  5137. return 1;
  5138. }
  5139. break;
  5140. case TCP_FIN_WAIT1:
  5141. if (tp->snd_una == tp->write_seq) {
  5142. tcp_set_state(sk, TCP_FIN_WAIT2);
  5143. sk->sk_shutdown |= SEND_SHUTDOWN;
  5144. dst_confirm(__sk_dst_get(sk));
  5145. if (!sock_flag(sk, SOCK_DEAD))
  5146. /* Wake up lingering close() */
  5147. sk->sk_state_change(sk);
  5148. else {
  5149. int tmo;
  5150. if (tp->linger2 < 0 ||
  5151. (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
  5152. after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt))) {
  5153. tcp_done(sk);
  5154. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
  5155. return 1;
  5156. }
  5157. tmo = tcp_fin_time(sk);
  5158. if (tmo > TCP_TIMEWAIT_LEN) {
  5159. inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN);
  5160. } else if (th->fin || sock_owned_by_user(sk)) {
  5161. /* Bad case. We could lose such FIN otherwise.
  5162. * It is not a big problem, but it looks confusing
  5163. * and not so rare event. We still can lose it now,
  5164. * if it spins in bh_lock_sock(), but it is really
  5165. * marginal case.
  5166. */
  5167. inet_csk_reset_keepalive_timer(sk, tmo);
  5168. } else {
  5169. tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
  5170. goto discard;
  5171. }
  5172. }
  5173. }
  5174. break;
  5175. case TCP_CLOSING:
  5176. if (tp->snd_una == tp->write_seq) {
  5177. tcp_time_wait(sk, TCP_TIME_WAIT, 0);
  5178. goto discard;
  5179. }
  5180. break;
  5181. case TCP_LAST_ACK:
  5182. if (tp->snd_una == tp->write_seq) {
  5183. tcp_update_metrics(sk);
  5184. tcp_done(sk);
  5185. goto discard;
  5186. }
  5187. break;
  5188. }
  5189. } else
  5190. goto discard;
  5191. /* step 6: check the URG bit */
  5192. tcp_urg(sk, skb, th);
  5193. /* step 7: process the segment text */
  5194. switch (sk->sk_state) {
  5195. case TCP_CLOSE_WAIT:
  5196. case TCP_CLOSING:
  5197. case TCP_LAST_ACK:
  5198. if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
  5199. break;
  5200. case TCP_FIN_WAIT1:
  5201. case TCP_FIN_WAIT2:
  5202. /* RFC 793 says to queue data in these states,
  5203. * RFC 1122 says we MUST send a reset.
  5204. * BSD 4.4 also does reset.
  5205. */
  5206. if (sk->sk_shutdown & RCV_SHUTDOWN) {
  5207. if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
  5208. after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
  5209. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
  5210. tcp_reset(sk);
  5211. return 1;
  5212. }
  5213. }
  5214. /* Fall through */
  5215. case TCP_ESTABLISHED:
  5216. tcp_data_queue(sk, skb);
  5217. queued = 1;
  5218. break;
  5219. }
  5220. /* tcp_data could move socket to TIME-WAIT */
  5221. if (sk->sk_state != TCP_CLOSE) {
  5222. tcp_data_snd_check(sk);
  5223. tcp_ack_snd_check(sk);
  5224. }
  5225. if (!queued) {
  5226. discard:
  5227. __kfree_skb(skb);
  5228. }
  5229. return 0;
  5230. }
  5231. EXPORT_SYMBOL(tcp_rcv_state_process);