sock.c 67 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687
  1. /*
  2. * INET An implementation of the TCP/IP protocol suite for the LINUX
  3. * operating system. INET is implemented using the BSD Socket
  4. * interface as the means of communication with the user level.
  5. *
  6. * Generic socket support routines. Memory allocators, socket lock/release
  7. * handler for protocols to use and generic option handler.
  8. *
  9. *
  10. * Authors: Ross Biro
  11. * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
  12. * Florian La Roche, <flla@stud.uni-sb.de>
  13. * Alan Cox, <A.Cox@swansea.ac.uk>
  14. *
  15. * Fixes:
  16. * Alan Cox : Numerous verify_area() problems
  17. * Alan Cox : Connecting on a connecting socket
  18. * now returns an error for tcp.
  19. * Alan Cox : sock->protocol is set correctly.
  20. * and is not sometimes left as 0.
  21. * Alan Cox : connect handles icmp errors on a
  22. * connect properly. Unfortunately there
  23. * is a restart syscall nasty there. I
  24. * can't match BSD without hacking the C
  25. * library. Ideas urgently sought!
  26. * Alan Cox : Disallow bind() to addresses that are
  27. * not ours - especially broadcast ones!!
  28. * Alan Cox : Socket 1024 _IS_ ok for users. (fencepost)
  29. * Alan Cox : sock_wfree/sock_rfree don't destroy sockets,
  30. * instead they leave that for the DESTROY timer.
  31. * Alan Cox : Clean up error flag in accept
  32. * Alan Cox : TCP ack handling is buggy, the DESTROY timer
  33. * was buggy. Put a remove_sock() in the handler
  34. * for memory when we hit 0. Also altered the timer
  35. * code. The ACK stuff can wait and needs major
  36. * TCP layer surgery.
  37. * Alan Cox : Fixed TCP ack bug, removed remove sock
  38. * and fixed timer/inet_bh race.
  39. * Alan Cox : Added zapped flag for TCP
  40. * Alan Cox : Move kfree_skb into skbuff.c and tidied up surplus code
  41. * Alan Cox : for new sk_buff allocations wmalloc/rmalloc now call alloc_skb
  42. * Alan Cox : kfree_s calls now are kfree_skbmem so we can track skb resources
  43. * Alan Cox : Supports socket option broadcast now as does udp. Packet and raw need fixing.
  44. * Alan Cox : Added RCVBUF,SNDBUF size setting. It suddenly occurred to me how easy it was so...
  45. * Rick Sladkey : Relaxed UDP rules for matching packets.
  46. * C.E.Hawkins : IFF_PROMISC/SIOCGHWADDR support
  47. * Pauline Middelink : identd support
  48. * Alan Cox : Fixed connect() taking signals I think.
  49. * Alan Cox : SO_LINGER supported
  50. * Alan Cox : Error reporting fixes
  51. * Anonymous : inet_create tidied up (sk->reuse setting)
  52. * Alan Cox : inet sockets don't set sk->type!
  53. * Alan Cox : Split socket option code
  54. * Alan Cox : Callbacks
  55. * Alan Cox : Nagle flag for Charles & Johannes stuff
  56. * Alex : Removed restriction on inet fioctl
  57. * Alan Cox : Splitting INET from NET core
  58. * Alan Cox : Fixed bogus SO_TYPE handling in getsockopt()
  59. * Adam Caldwell : Missing return in SO_DONTROUTE/SO_DEBUG code
  60. * Alan Cox : Split IP from generic code
  61. * Alan Cox : New kfree_skbmem()
  62. * Alan Cox : Make SO_DEBUG superuser only.
  63. * Alan Cox : Allow anyone to clear SO_DEBUG
  64. * (compatibility fix)
  65. * Alan Cox : Added optimistic memory grabbing for AF_UNIX throughput.
  66. * Alan Cox : Allocator for a socket is settable.
  67. * Alan Cox : SO_ERROR includes soft errors.
  68. * Alan Cox : Allow NULL arguments on some SO_ opts
  69. * Alan Cox : Generic socket allocation to make hooks
  70. * easier (suggested by Craig Metz).
  71. * Michael Pall : SO_ERROR returns positive errno again
  72. * Steve Whitehouse: Added default destructor to free
  73. * protocol private data.
  74. * Steve Whitehouse: Added various other default routines
  75. * common to several socket families.
  76. * Chris Evans : Call suser() check last on F_SETOWN
  77. * Jay Schulist : Added SO_ATTACH_FILTER and SO_DETACH_FILTER.
  78. * Andi Kleen : Add sock_kmalloc()/sock_kfree_s()
  79. * Andi Kleen : Fix write_space callback
  80. * Chris Evans : Security fixes - signedness again
  81. * Arnaldo C. Melo : cleanups, use skb_queue_purge
  82. *
  83. * To Fix:
  84. *
  85. *
  86. * This program is free software; you can redistribute it and/or
  87. * modify it under the terms of the GNU General Public License
  88. * as published by the Free Software Foundation; either version
  89. * 2 of the License, or (at your option) any later version.
  90. */
  91. #include <linux/capability.h>
  92. #include <linux/errno.h>
  93. #include <linux/types.h>
  94. #include <linux/socket.h>
  95. #include <linux/in.h>
  96. #include <linux/kernel.h>
  97. #include <linux/module.h>
  98. #include <linux/proc_fs.h>
  99. #include <linux/seq_file.h>
  100. #include <linux/sched.h>
  101. #include <linux/timer.h>
  102. #include <linux/string.h>
  103. #include <linux/sockios.h>
  104. #include <linux/net.h>
  105. #include <linux/mm.h>
  106. #include <linux/slab.h>
  107. #include <linux/interrupt.h>
  108. #include <linux/poll.h>
  109. #include <linux/tcp.h>
  110. #include <linux/init.h>
  111. #include <linux/highmem.h>
  112. #include <linux/user_namespace.h>
  113. #include <linux/static_key.h>
  114. #include <linux/memcontrol.h>
  115. #include <asm/uaccess.h>
  116. #include <linux/netdevice.h>
  117. #include <net/protocol.h>
  118. #include <linux/skbuff.h>
  119. #include <net/net_namespace.h>
  120. #include <net/request_sock.h>
  121. #include <net/sock.h>
  122. #include <linux/net_tstamp.h>
  123. #include <net/xfrm.h>
  124. #include <linux/ipsec.h>
  125. #include <net/cls_cgroup.h>
  126. #include <net/netprio_cgroup.h>
  127. #include <linux/filter.h>
  128. #include <trace/events/sock.h>
  129. #ifdef CONFIG_INET
  130. #include <net/tcp.h>
  131. #endif
  132. static DEFINE_MUTEX(proto_list_mutex);
  133. static LIST_HEAD(proto_list);
  134. #ifdef CONFIG_CGROUP_MEM_RES_CTLR_KMEM
  135. int mem_cgroup_sockets_init(struct cgroup *cgrp, struct cgroup_subsys *ss)
  136. {
  137. struct proto *proto;
  138. int ret = 0;
  139. mutex_lock(&proto_list_mutex);
  140. list_for_each_entry(proto, &proto_list, node) {
  141. if (proto->init_cgroup) {
  142. ret = proto->init_cgroup(cgrp, ss);
  143. if (ret)
  144. goto out;
  145. }
  146. }
  147. mutex_unlock(&proto_list_mutex);
  148. return ret;
  149. out:
  150. list_for_each_entry_continue_reverse(proto, &proto_list, node)
  151. if (proto->destroy_cgroup)
  152. proto->destroy_cgroup(cgrp);
  153. mutex_unlock(&proto_list_mutex);
  154. return ret;
  155. }
  156. void mem_cgroup_sockets_destroy(struct cgroup *cgrp)
  157. {
  158. struct proto *proto;
  159. mutex_lock(&proto_list_mutex);
  160. list_for_each_entry_reverse(proto, &proto_list, node)
  161. if (proto->destroy_cgroup)
  162. proto->destroy_cgroup(cgrp);
  163. mutex_unlock(&proto_list_mutex);
  164. }
  165. #endif
  166. /*
  167. * Each address family might have different locking rules, so we have
  168. * one slock key per address family:
  169. */
  170. static struct lock_class_key af_family_keys[AF_MAX];
  171. static struct lock_class_key af_family_slock_keys[AF_MAX];
  172. struct static_key memcg_socket_limit_enabled;
  173. EXPORT_SYMBOL(memcg_socket_limit_enabled);
  174. /*
  175. * Make lock validator output more readable. (we pre-construct these
  176. * strings build-time, so that runtime initialization of socket
  177. * locks is fast):
  178. */
  179. static const char *const af_family_key_strings[AF_MAX+1] = {
  180. "sk_lock-AF_UNSPEC", "sk_lock-AF_UNIX" , "sk_lock-AF_INET" ,
  181. "sk_lock-AF_AX25" , "sk_lock-AF_IPX" , "sk_lock-AF_APPLETALK",
  182. "sk_lock-AF_NETROM", "sk_lock-AF_BRIDGE" , "sk_lock-AF_ATMPVC" ,
  183. "sk_lock-AF_X25" , "sk_lock-AF_INET6" , "sk_lock-AF_ROSE" ,
  184. "sk_lock-AF_DECnet", "sk_lock-AF_NETBEUI" , "sk_lock-AF_SECURITY" ,
  185. "sk_lock-AF_KEY" , "sk_lock-AF_NETLINK" , "sk_lock-AF_PACKET" ,
  186. "sk_lock-AF_ASH" , "sk_lock-AF_ECONET" , "sk_lock-AF_ATMSVC" ,
  187. "sk_lock-AF_RDS" , "sk_lock-AF_SNA" , "sk_lock-AF_IRDA" ,
  188. "sk_lock-AF_PPPOX" , "sk_lock-AF_WANPIPE" , "sk_lock-AF_LLC" ,
  189. "sk_lock-27" , "sk_lock-28" , "sk_lock-AF_CAN" ,
  190. "sk_lock-AF_TIPC" , "sk_lock-AF_BLUETOOTH", "sk_lock-IUCV" ,
  191. "sk_lock-AF_RXRPC" , "sk_lock-AF_ISDN" , "sk_lock-AF_PHONET" ,
  192. "sk_lock-AF_IEEE802154", "sk_lock-AF_CAIF" , "sk_lock-AF_ALG" ,
  193. "sk_lock-AF_NFC" , "sk_lock-AF_MAX"
  194. };
  195. static const char *const af_family_slock_key_strings[AF_MAX+1] = {
  196. "slock-AF_UNSPEC", "slock-AF_UNIX" , "slock-AF_INET" ,
  197. "slock-AF_AX25" , "slock-AF_IPX" , "slock-AF_APPLETALK",
  198. "slock-AF_NETROM", "slock-AF_BRIDGE" , "slock-AF_ATMPVC" ,
  199. "slock-AF_X25" , "slock-AF_INET6" , "slock-AF_ROSE" ,
  200. "slock-AF_DECnet", "slock-AF_NETBEUI" , "slock-AF_SECURITY" ,
  201. "slock-AF_KEY" , "slock-AF_NETLINK" , "slock-AF_PACKET" ,
  202. "slock-AF_ASH" , "slock-AF_ECONET" , "slock-AF_ATMSVC" ,
  203. "slock-AF_RDS" , "slock-AF_SNA" , "slock-AF_IRDA" ,
  204. "slock-AF_PPPOX" , "slock-AF_WANPIPE" , "slock-AF_LLC" ,
  205. "slock-27" , "slock-28" , "slock-AF_CAN" ,
  206. "slock-AF_TIPC" , "slock-AF_BLUETOOTH", "slock-AF_IUCV" ,
  207. "slock-AF_RXRPC" , "slock-AF_ISDN" , "slock-AF_PHONET" ,
  208. "slock-AF_IEEE802154", "slock-AF_CAIF" , "slock-AF_ALG" ,
  209. "slock-AF_NFC" , "slock-AF_MAX"
  210. };
  211. static const char *const af_family_clock_key_strings[AF_MAX+1] = {
  212. "clock-AF_UNSPEC", "clock-AF_UNIX" , "clock-AF_INET" ,
  213. "clock-AF_AX25" , "clock-AF_IPX" , "clock-AF_APPLETALK",
  214. "clock-AF_NETROM", "clock-AF_BRIDGE" , "clock-AF_ATMPVC" ,
  215. "clock-AF_X25" , "clock-AF_INET6" , "clock-AF_ROSE" ,
  216. "clock-AF_DECnet", "clock-AF_NETBEUI" , "clock-AF_SECURITY" ,
  217. "clock-AF_KEY" , "clock-AF_NETLINK" , "clock-AF_PACKET" ,
  218. "clock-AF_ASH" , "clock-AF_ECONET" , "clock-AF_ATMSVC" ,
  219. "clock-AF_RDS" , "clock-AF_SNA" , "clock-AF_IRDA" ,
  220. "clock-AF_PPPOX" , "clock-AF_WANPIPE" , "clock-AF_LLC" ,
  221. "clock-27" , "clock-28" , "clock-AF_CAN" ,
  222. "clock-AF_TIPC" , "clock-AF_BLUETOOTH", "clock-AF_IUCV" ,
  223. "clock-AF_RXRPC" , "clock-AF_ISDN" , "clock-AF_PHONET" ,
  224. "clock-AF_IEEE802154", "clock-AF_CAIF" , "clock-AF_ALG" ,
  225. "clock-AF_NFC" , "clock-AF_MAX"
  226. };
  227. /*
  228. * sk_callback_lock locking rules are per-address-family,
  229. * so split the lock classes by using a per-AF key:
  230. */
  231. static struct lock_class_key af_callback_keys[AF_MAX];
  232. /* Take into consideration the size of the struct sk_buff overhead in the
  233. * determination of these values, since that is non-constant across
  234. * platforms. This makes socket queueing behavior and performance
  235. * not depend upon such differences.
  236. */
  237. #define _SK_MEM_PACKETS 256
  238. #define _SK_MEM_OVERHEAD SKB_TRUESIZE(256)
  239. #define SK_WMEM_MAX (_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
  240. #define SK_RMEM_MAX (_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
  241. /* Run time adjustable parameters. */
  242. __u32 sysctl_wmem_max __read_mostly = SK_WMEM_MAX;
  243. __u32 sysctl_rmem_max __read_mostly = SK_RMEM_MAX;
  244. __u32 sysctl_wmem_default __read_mostly = SK_WMEM_MAX;
  245. __u32 sysctl_rmem_default __read_mostly = SK_RMEM_MAX;
  246. /* Maximal space eaten by iovec or ancillary data plus some space */
  247. int sysctl_optmem_max __read_mostly = sizeof(unsigned long)*(2*UIO_MAXIOV+512);
  248. EXPORT_SYMBOL(sysctl_optmem_max);
  249. #if defined(CONFIG_CGROUPS)
  250. #if !defined(CONFIG_NET_CLS_CGROUP)
  251. int net_cls_subsys_id = -1;
  252. EXPORT_SYMBOL_GPL(net_cls_subsys_id);
  253. #endif
  254. #if !defined(CONFIG_NETPRIO_CGROUP)
  255. int net_prio_subsys_id = -1;
  256. EXPORT_SYMBOL_GPL(net_prio_subsys_id);
  257. #endif
  258. #endif
  259. static int sock_set_timeout(long *timeo_p, char __user *optval, int optlen)
  260. {
  261. struct timeval tv;
  262. if (optlen < sizeof(tv))
  263. return -EINVAL;
  264. if (copy_from_user(&tv, optval, sizeof(tv)))
  265. return -EFAULT;
  266. if (tv.tv_usec < 0 || tv.tv_usec >= USEC_PER_SEC)
  267. return -EDOM;
  268. if (tv.tv_sec < 0) {
  269. static int warned __read_mostly;
  270. *timeo_p = 0;
  271. if (warned < 10 && net_ratelimit()) {
  272. warned++;
  273. printk(KERN_INFO "sock_set_timeout: `%s' (pid %d) "
  274. "tries to set negative timeout\n",
  275. current->comm, task_pid_nr(current));
  276. }
  277. return 0;
  278. }
  279. *timeo_p = MAX_SCHEDULE_TIMEOUT;
  280. if (tv.tv_sec == 0 && tv.tv_usec == 0)
  281. return 0;
  282. if (tv.tv_sec < (MAX_SCHEDULE_TIMEOUT/HZ - 1))
  283. *timeo_p = tv.tv_sec*HZ + (tv.tv_usec+(1000000/HZ-1))/(1000000/HZ);
  284. return 0;
  285. }
  286. static void sock_warn_obsolete_bsdism(const char *name)
  287. {
  288. static int warned;
  289. static char warncomm[TASK_COMM_LEN];
  290. if (strcmp(warncomm, current->comm) && warned < 5) {
  291. strcpy(warncomm, current->comm);
  292. printk(KERN_WARNING "process `%s' is using obsolete "
  293. "%s SO_BSDCOMPAT\n", warncomm, name);
  294. warned++;
  295. }
  296. }
  297. #define SK_FLAGS_TIMESTAMP ((1UL << SOCK_TIMESTAMP) | (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE))
  298. static void sock_disable_timestamp(struct sock *sk, unsigned long flags)
  299. {
  300. if (sk->sk_flags & flags) {
  301. sk->sk_flags &= ~flags;
  302. if (!(sk->sk_flags & SK_FLAGS_TIMESTAMP))
  303. net_disable_timestamp();
  304. }
  305. }
  306. int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
  307. {
  308. int err;
  309. int skb_len;
  310. unsigned long flags;
  311. struct sk_buff_head *list = &sk->sk_receive_queue;
  312. if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf) {
  313. atomic_inc(&sk->sk_drops);
  314. trace_sock_rcvqueue_full(sk, skb);
  315. return -ENOMEM;
  316. }
  317. err = sk_filter(sk, skb);
  318. if (err)
  319. return err;
  320. if (!sk_rmem_schedule(sk, skb->truesize)) {
  321. atomic_inc(&sk->sk_drops);
  322. return -ENOBUFS;
  323. }
  324. skb->dev = NULL;
  325. skb_set_owner_r(skb, sk);
  326. /* Cache the SKB length before we tack it onto the receive
  327. * queue. Once it is added it no longer belongs to us and
  328. * may be freed by other threads of control pulling packets
  329. * from the queue.
  330. */
  331. skb_len = skb->len;
  332. /* we escape from rcu protected region, make sure we dont leak
  333. * a norefcounted dst
  334. */
  335. skb_dst_force(skb);
  336. spin_lock_irqsave(&list->lock, flags);
  337. skb->dropcount = atomic_read(&sk->sk_drops);
  338. __skb_queue_tail(list, skb);
  339. spin_unlock_irqrestore(&list->lock, flags);
  340. if (!sock_flag(sk, SOCK_DEAD))
  341. sk->sk_data_ready(sk, skb_len);
  342. return 0;
  343. }
  344. EXPORT_SYMBOL(sock_queue_rcv_skb);
  345. int sk_receive_skb(struct sock *sk, struct sk_buff *skb, const int nested)
  346. {
  347. int rc = NET_RX_SUCCESS;
  348. if (sk_filter(sk, skb))
  349. goto discard_and_relse;
  350. skb->dev = NULL;
  351. if (sk_rcvqueues_full(sk, skb)) {
  352. atomic_inc(&sk->sk_drops);
  353. goto discard_and_relse;
  354. }
  355. if (nested)
  356. bh_lock_sock_nested(sk);
  357. else
  358. bh_lock_sock(sk);
  359. if (!sock_owned_by_user(sk)) {
  360. /*
  361. * trylock + unlock semantics:
  362. */
  363. mutex_acquire(&sk->sk_lock.dep_map, 0, 1, _RET_IP_);
  364. rc = sk_backlog_rcv(sk, skb);
  365. mutex_release(&sk->sk_lock.dep_map, 1, _RET_IP_);
  366. } else if (sk_add_backlog(sk, skb)) {
  367. bh_unlock_sock(sk);
  368. atomic_inc(&sk->sk_drops);
  369. goto discard_and_relse;
  370. }
  371. bh_unlock_sock(sk);
  372. out:
  373. sock_put(sk);
  374. return rc;
  375. discard_and_relse:
  376. kfree_skb(skb);
  377. goto out;
  378. }
  379. EXPORT_SYMBOL(sk_receive_skb);
  380. void sk_reset_txq(struct sock *sk)
  381. {
  382. sk_tx_queue_clear(sk);
  383. }
  384. EXPORT_SYMBOL(sk_reset_txq);
  385. struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie)
  386. {
  387. struct dst_entry *dst = __sk_dst_get(sk);
  388. if (dst && dst->obsolete && dst->ops->check(dst, cookie) == NULL) {
  389. sk_tx_queue_clear(sk);
  390. RCU_INIT_POINTER(sk->sk_dst_cache, NULL);
  391. dst_release(dst);
  392. return NULL;
  393. }
  394. return dst;
  395. }
  396. EXPORT_SYMBOL(__sk_dst_check);
  397. struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie)
  398. {
  399. struct dst_entry *dst = sk_dst_get(sk);
  400. if (dst && dst->obsolete && dst->ops->check(dst, cookie) == NULL) {
  401. sk_dst_reset(sk);
  402. dst_release(dst);
  403. return NULL;
  404. }
  405. return dst;
  406. }
  407. EXPORT_SYMBOL(sk_dst_check);
  408. static int sock_bindtodevice(struct sock *sk, char __user *optval, int optlen)
  409. {
  410. int ret = -ENOPROTOOPT;
  411. #ifdef CONFIG_NETDEVICES
  412. struct net *net = sock_net(sk);
  413. char devname[IFNAMSIZ];
  414. int index;
  415. /* Sorry... */
  416. ret = -EPERM;
  417. if (!capable(CAP_NET_RAW))
  418. goto out;
  419. ret = -EINVAL;
  420. if (optlen < 0)
  421. goto out;
  422. /* Bind this socket to a particular device like "eth0",
  423. * as specified in the passed interface name. If the
  424. * name is "" or the option length is zero the socket
  425. * is not bound.
  426. */
  427. if (optlen > IFNAMSIZ - 1)
  428. optlen = IFNAMSIZ - 1;
  429. memset(devname, 0, sizeof(devname));
  430. ret = -EFAULT;
  431. if (copy_from_user(devname, optval, optlen))
  432. goto out;
  433. index = 0;
  434. if (devname[0] != '\0') {
  435. struct net_device *dev;
  436. rcu_read_lock();
  437. dev = dev_get_by_name_rcu(net, devname);
  438. if (dev)
  439. index = dev->ifindex;
  440. rcu_read_unlock();
  441. ret = -ENODEV;
  442. if (!dev)
  443. goto out;
  444. }
  445. lock_sock(sk);
  446. sk->sk_bound_dev_if = index;
  447. sk_dst_reset(sk);
  448. release_sock(sk);
  449. ret = 0;
  450. out:
  451. #endif
  452. return ret;
  453. }
  454. static inline void sock_valbool_flag(struct sock *sk, int bit, int valbool)
  455. {
  456. if (valbool)
  457. sock_set_flag(sk, bit);
  458. else
  459. sock_reset_flag(sk, bit);
  460. }
  461. /*
  462. * This is meant for all protocols to use and covers goings on
  463. * at the socket level. Everything here is generic.
  464. */
  465. int sock_setsockopt(struct socket *sock, int level, int optname,
  466. char __user *optval, unsigned int optlen)
  467. {
  468. struct sock *sk = sock->sk;
  469. int val;
  470. int valbool;
  471. struct linger ling;
  472. int ret = 0;
  473. /*
  474. * Options without arguments
  475. */
  476. if (optname == SO_BINDTODEVICE)
  477. return sock_bindtodevice(sk, optval, optlen);
  478. if (optlen < sizeof(int))
  479. return -EINVAL;
  480. if (get_user(val, (int __user *)optval))
  481. return -EFAULT;
  482. valbool = val ? 1 : 0;
  483. lock_sock(sk);
  484. switch (optname) {
  485. case SO_DEBUG:
  486. if (val && !capable(CAP_NET_ADMIN))
  487. ret = -EACCES;
  488. else
  489. sock_valbool_flag(sk, SOCK_DBG, valbool);
  490. break;
  491. case SO_REUSEADDR:
  492. sk->sk_reuse = valbool;
  493. break;
  494. case SO_TYPE:
  495. case SO_PROTOCOL:
  496. case SO_DOMAIN:
  497. case SO_ERROR:
  498. ret = -ENOPROTOOPT;
  499. break;
  500. case SO_DONTROUTE:
  501. sock_valbool_flag(sk, SOCK_LOCALROUTE, valbool);
  502. break;
  503. case SO_BROADCAST:
  504. sock_valbool_flag(sk, SOCK_BROADCAST, valbool);
  505. break;
  506. case SO_SNDBUF:
  507. /* Don't error on this BSD doesn't and if you think
  508. about it this is right. Otherwise apps have to
  509. play 'guess the biggest size' games. RCVBUF/SNDBUF
  510. are treated in BSD as hints */
  511. if (val > sysctl_wmem_max)
  512. val = sysctl_wmem_max;
  513. set_sndbuf:
  514. sk->sk_userlocks |= SOCK_SNDBUF_LOCK;
  515. if ((val * 2) < SOCK_MIN_SNDBUF)
  516. sk->sk_sndbuf = SOCK_MIN_SNDBUF;
  517. else
  518. sk->sk_sndbuf = val * 2;
  519. /*
  520. * Wake up sending tasks if we
  521. * upped the value.
  522. */
  523. sk->sk_write_space(sk);
  524. break;
  525. case SO_SNDBUFFORCE:
  526. if (!capable(CAP_NET_ADMIN)) {
  527. ret = -EPERM;
  528. break;
  529. }
  530. goto set_sndbuf;
  531. case SO_RCVBUF:
  532. /* Don't error on this BSD doesn't and if you think
  533. about it this is right. Otherwise apps have to
  534. play 'guess the biggest size' games. RCVBUF/SNDBUF
  535. are treated in BSD as hints */
  536. if (val > sysctl_rmem_max)
  537. val = sysctl_rmem_max;
  538. set_rcvbuf:
  539. sk->sk_userlocks |= SOCK_RCVBUF_LOCK;
  540. /*
  541. * We double it on the way in to account for
  542. * "struct sk_buff" etc. overhead. Applications
  543. * assume that the SO_RCVBUF setting they make will
  544. * allow that much actual data to be received on that
  545. * socket.
  546. *
  547. * Applications are unaware that "struct sk_buff" and
  548. * other overheads allocate from the receive buffer
  549. * during socket buffer allocation.
  550. *
  551. * And after considering the possible alternatives,
  552. * returning the value we actually used in getsockopt
  553. * is the most desirable behavior.
  554. */
  555. if ((val * 2) < SOCK_MIN_RCVBUF)
  556. sk->sk_rcvbuf = SOCK_MIN_RCVBUF;
  557. else
  558. sk->sk_rcvbuf = val * 2;
  559. break;
  560. case SO_RCVBUFFORCE:
  561. if (!capable(CAP_NET_ADMIN)) {
  562. ret = -EPERM;
  563. break;
  564. }
  565. goto set_rcvbuf;
  566. case SO_KEEPALIVE:
  567. #ifdef CONFIG_INET
  568. if (sk->sk_protocol == IPPROTO_TCP)
  569. tcp_set_keepalive(sk, valbool);
  570. #endif
  571. sock_valbool_flag(sk, SOCK_KEEPOPEN, valbool);
  572. break;
  573. case SO_OOBINLINE:
  574. sock_valbool_flag(sk, SOCK_URGINLINE, valbool);
  575. break;
  576. case SO_NO_CHECK:
  577. sk->sk_no_check = valbool;
  578. break;
  579. case SO_PRIORITY:
  580. if ((val >= 0 && val <= 6) || capable(CAP_NET_ADMIN))
  581. sk->sk_priority = val;
  582. else
  583. ret = -EPERM;
  584. break;
  585. case SO_LINGER:
  586. if (optlen < sizeof(ling)) {
  587. ret = -EINVAL; /* 1003.1g */
  588. break;
  589. }
  590. if (copy_from_user(&ling, optval, sizeof(ling))) {
  591. ret = -EFAULT;
  592. break;
  593. }
  594. if (!ling.l_onoff)
  595. sock_reset_flag(sk, SOCK_LINGER);
  596. else {
  597. #if (BITS_PER_LONG == 32)
  598. if ((unsigned int)ling.l_linger >= MAX_SCHEDULE_TIMEOUT/HZ)
  599. sk->sk_lingertime = MAX_SCHEDULE_TIMEOUT;
  600. else
  601. #endif
  602. sk->sk_lingertime = (unsigned int)ling.l_linger * HZ;
  603. sock_set_flag(sk, SOCK_LINGER);
  604. }
  605. break;
  606. case SO_BSDCOMPAT:
  607. sock_warn_obsolete_bsdism("setsockopt");
  608. break;
  609. case SO_PASSCRED:
  610. if (valbool)
  611. set_bit(SOCK_PASSCRED, &sock->flags);
  612. else
  613. clear_bit(SOCK_PASSCRED, &sock->flags);
  614. break;
  615. case SO_TIMESTAMP:
  616. case SO_TIMESTAMPNS:
  617. if (valbool) {
  618. if (optname == SO_TIMESTAMP)
  619. sock_reset_flag(sk, SOCK_RCVTSTAMPNS);
  620. else
  621. sock_set_flag(sk, SOCK_RCVTSTAMPNS);
  622. sock_set_flag(sk, SOCK_RCVTSTAMP);
  623. sock_enable_timestamp(sk, SOCK_TIMESTAMP);
  624. } else {
  625. sock_reset_flag(sk, SOCK_RCVTSTAMP);
  626. sock_reset_flag(sk, SOCK_RCVTSTAMPNS);
  627. }
  628. break;
  629. case SO_TIMESTAMPING:
  630. if (val & ~SOF_TIMESTAMPING_MASK) {
  631. ret = -EINVAL;
  632. break;
  633. }
  634. sock_valbool_flag(sk, SOCK_TIMESTAMPING_TX_HARDWARE,
  635. val & SOF_TIMESTAMPING_TX_HARDWARE);
  636. sock_valbool_flag(sk, SOCK_TIMESTAMPING_TX_SOFTWARE,
  637. val & SOF_TIMESTAMPING_TX_SOFTWARE);
  638. sock_valbool_flag(sk, SOCK_TIMESTAMPING_RX_HARDWARE,
  639. val & SOF_TIMESTAMPING_RX_HARDWARE);
  640. if (val & SOF_TIMESTAMPING_RX_SOFTWARE)
  641. sock_enable_timestamp(sk,
  642. SOCK_TIMESTAMPING_RX_SOFTWARE);
  643. else
  644. sock_disable_timestamp(sk,
  645. (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE));
  646. sock_valbool_flag(sk, SOCK_TIMESTAMPING_SOFTWARE,
  647. val & SOF_TIMESTAMPING_SOFTWARE);
  648. sock_valbool_flag(sk, SOCK_TIMESTAMPING_SYS_HARDWARE,
  649. val & SOF_TIMESTAMPING_SYS_HARDWARE);
  650. sock_valbool_flag(sk, SOCK_TIMESTAMPING_RAW_HARDWARE,
  651. val & SOF_TIMESTAMPING_RAW_HARDWARE);
  652. break;
  653. case SO_RCVLOWAT:
  654. if (val < 0)
  655. val = INT_MAX;
  656. sk->sk_rcvlowat = val ? : 1;
  657. break;
  658. case SO_RCVTIMEO:
  659. ret = sock_set_timeout(&sk->sk_rcvtimeo, optval, optlen);
  660. break;
  661. case SO_SNDTIMEO:
  662. ret = sock_set_timeout(&sk->sk_sndtimeo, optval, optlen);
  663. break;
  664. case SO_ATTACH_FILTER:
  665. ret = -EINVAL;
  666. if (optlen == sizeof(struct sock_fprog)) {
  667. struct sock_fprog fprog;
  668. ret = -EFAULT;
  669. if (copy_from_user(&fprog, optval, sizeof(fprog)))
  670. break;
  671. ret = sk_attach_filter(&fprog, sk);
  672. }
  673. break;
  674. case SO_DETACH_FILTER:
  675. ret = sk_detach_filter(sk);
  676. break;
  677. case SO_PASSSEC:
  678. if (valbool)
  679. set_bit(SOCK_PASSSEC, &sock->flags);
  680. else
  681. clear_bit(SOCK_PASSSEC, &sock->flags);
  682. break;
  683. case SO_MARK:
  684. if (!capable(CAP_NET_ADMIN))
  685. ret = -EPERM;
  686. else
  687. sk->sk_mark = val;
  688. break;
  689. /* We implement the SO_SNDLOWAT etc to
  690. not be settable (1003.1g 5.3) */
  691. case SO_RXQ_OVFL:
  692. sock_valbool_flag(sk, SOCK_RXQ_OVFL, valbool);
  693. break;
  694. case SO_WIFI_STATUS:
  695. sock_valbool_flag(sk, SOCK_WIFI_STATUS, valbool);
  696. break;
  697. case SO_PEEK_OFF:
  698. if (sock->ops->set_peek_off)
  699. sock->ops->set_peek_off(sk, val);
  700. else
  701. ret = -EOPNOTSUPP;
  702. break;
  703. case SO_NOFCS:
  704. sock_valbool_flag(sk, SOCK_NOFCS, valbool);
  705. break;
  706. default:
  707. ret = -ENOPROTOOPT;
  708. break;
  709. }
  710. release_sock(sk);
  711. return ret;
  712. }
  713. EXPORT_SYMBOL(sock_setsockopt);
  714. void cred_to_ucred(struct pid *pid, const struct cred *cred,
  715. struct ucred *ucred)
  716. {
  717. ucred->pid = pid_vnr(pid);
  718. ucred->uid = ucred->gid = -1;
  719. if (cred) {
  720. struct user_namespace *current_ns = current_user_ns();
  721. ucred->uid = user_ns_map_uid(current_ns, cred, cred->euid);
  722. ucred->gid = user_ns_map_gid(current_ns, cred, cred->egid);
  723. }
  724. }
  725. EXPORT_SYMBOL_GPL(cred_to_ucred);
  726. int sock_getsockopt(struct socket *sock, int level, int optname,
  727. char __user *optval, int __user *optlen)
  728. {
  729. struct sock *sk = sock->sk;
  730. union {
  731. int val;
  732. struct linger ling;
  733. struct timeval tm;
  734. } v;
  735. int lv = sizeof(int);
  736. int len;
  737. if (get_user(len, optlen))
  738. return -EFAULT;
  739. if (len < 0)
  740. return -EINVAL;
  741. memset(&v, 0, sizeof(v));
  742. switch (optname) {
  743. case SO_DEBUG:
  744. v.val = sock_flag(sk, SOCK_DBG);
  745. break;
  746. case SO_DONTROUTE:
  747. v.val = sock_flag(sk, SOCK_LOCALROUTE);
  748. break;
  749. case SO_BROADCAST:
  750. v.val = !!sock_flag(sk, SOCK_BROADCAST);
  751. break;
  752. case SO_SNDBUF:
  753. v.val = sk->sk_sndbuf;
  754. break;
  755. case SO_RCVBUF:
  756. v.val = sk->sk_rcvbuf;
  757. break;
  758. case SO_REUSEADDR:
  759. v.val = sk->sk_reuse;
  760. break;
  761. case SO_KEEPALIVE:
  762. v.val = !!sock_flag(sk, SOCK_KEEPOPEN);
  763. break;
  764. case SO_TYPE:
  765. v.val = sk->sk_type;
  766. break;
  767. case SO_PROTOCOL:
  768. v.val = sk->sk_protocol;
  769. break;
  770. case SO_DOMAIN:
  771. v.val = sk->sk_family;
  772. break;
  773. case SO_ERROR:
  774. v.val = -sock_error(sk);
  775. if (v.val == 0)
  776. v.val = xchg(&sk->sk_err_soft, 0);
  777. break;
  778. case SO_OOBINLINE:
  779. v.val = !!sock_flag(sk, SOCK_URGINLINE);
  780. break;
  781. case SO_NO_CHECK:
  782. v.val = sk->sk_no_check;
  783. break;
  784. case SO_PRIORITY:
  785. v.val = sk->sk_priority;
  786. break;
  787. case SO_LINGER:
  788. lv = sizeof(v.ling);
  789. v.ling.l_onoff = !!sock_flag(sk, SOCK_LINGER);
  790. v.ling.l_linger = sk->sk_lingertime / HZ;
  791. break;
  792. case SO_BSDCOMPAT:
  793. sock_warn_obsolete_bsdism("getsockopt");
  794. break;
  795. case SO_TIMESTAMP:
  796. v.val = sock_flag(sk, SOCK_RCVTSTAMP) &&
  797. !sock_flag(sk, SOCK_RCVTSTAMPNS);
  798. break;
  799. case SO_TIMESTAMPNS:
  800. v.val = sock_flag(sk, SOCK_RCVTSTAMPNS);
  801. break;
  802. case SO_TIMESTAMPING:
  803. v.val = 0;
  804. if (sock_flag(sk, SOCK_TIMESTAMPING_TX_HARDWARE))
  805. v.val |= SOF_TIMESTAMPING_TX_HARDWARE;
  806. if (sock_flag(sk, SOCK_TIMESTAMPING_TX_SOFTWARE))
  807. v.val |= SOF_TIMESTAMPING_TX_SOFTWARE;
  808. if (sock_flag(sk, SOCK_TIMESTAMPING_RX_HARDWARE))
  809. v.val |= SOF_TIMESTAMPING_RX_HARDWARE;
  810. if (sock_flag(sk, SOCK_TIMESTAMPING_RX_SOFTWARE))
  811. v.val |= SOF_TIMESTAMPING_RX_SOFTWARE;
  812. if (sock_flag(sk, SOCK_TIMESTAMPING_SOFTWARE))
  813. v.val |= SOF_TIMESTAMPING_SOFTWARE;
  814. if (sock_flag(sk, SOCK_TIMESTAMPING_SYS_HARDWARE))
  815. v.val |= SOF_TIMESTAMPING_SYS_HARDWARE;
  816. if (sock_flag(sk, SOCK_TIMESTAMPING_RAW_HARDWARE))
  817. v.val |= SOF_TIMESTAMPING_RAW_HARDWARE;
  818. break;
  819. case SO_RCVTIMEO:
  820. lv = sizeof(struct timeval);
  821. if (sk->sk_rcvtimeo == MAX_SCHEDULE_TIMEOUT) {
  822. v.tm.tv_sec = 0;
  823. v.tm.tv_usec = 0;
  824. } else {
  825. v.tm.tv_sec = sk->sk_rcvtimeo / HZ;
  826. v.tm.tv_usec = ((sk->sk_rcvtimeo % HZ) * 1000000) / HZ;
  827. }
  828. break;
  829. case SO_SNDTIMEO:
  830. lv = sizeof(struct timeval);
  831. if (sk->sk_sndtimeo == MAX_SCHEDULE_TIMEOUT) {
  832. v.tm.tv_sec = 0;
  833. v.tm.tv_usec = 0;
  834. } else {
  835. v.tm.tv_sec = sk->sk_sndtimeo / HZ;
  836. v.tm.tv_usec = ((sk->sk_sndtimeo % HZ) * 1000000) / HZ;
  837. }
  838. break;
  839. case SO_RCVLOWAT:
  840. v.val = sk->sk_rcvlowat;
  841. break;
  842. case SO_SNDLOWAT:
  843. v.val = 1;
  844. break;
  845. case SO_PASSCRED:
  846. v.val = test_bit(SOCK_PASSCRED, &sock->flags) ? 1 : 0;
  847. break;
  848. case SO_PEERCRED:
  849. {
  850. struct ucred peercred;
  851. if (len > sizeof(peercred))
  852. len = sizeof(peercred);
  853. cred_to_ucred(sk->sk_peer_pid, sk->sk_peer_cred, &peercred);
  854. if (copy_to_user(optval, &peercred, len))
  855. return -EFAULT;
  856. goto lenout;
  857. }
  858. case SO_PEERNAME:
  859. {
  860. char address[128];
  861. if (sock->ops->getname(sock, (struct sockaddr *)address, &lv, 2))
  862. return -ENOTCONN;
  863. if (lv < len)
  864. return -EINVAL;
  865. if (copy_to_user(optval, address, len))
  866. return -EFAULT;
  867. goto lenout;
  868. }
  869. /* Dubious BSD thing... Probably nobody even uses it, but
  870. * the UNIX standard wants it for whatever reason... -DaveM
  871. */
  872. case SO_ACCEPTCONN:
  873. v.val = sk->sk_state == TCP_LISTEN;
  874. break;
  875. case SO_PASSSEC:
  876. v.val = test_bit(SOCK_PASSSEC, &sock->flags) ? 1 : 0;
  877. break;
  878. case SO_PEERSEC:
  879. return security_socket_getpeersec_stream(sock, optval, optlen, len);
  880. case SO_MARK:
  881. v.val = sk->sk_mark;
  882. break;
  883. case SO_RXQ_OVFL:
  884. v.val = !!sock_flag(sk, SOCK_RXQ_OVFL);
  885. break;
  886. case SO_WIFI_STATUS:
  887. v.val = !!sock_flag(sk, SOCK_WIFI_STATUS);
  888. break;
  889. case SO_PEEK_OFF:
  890. if (!sock->ops->set_peek_off)
  891. return -EOPNOTSUPP;
  892. v.val = sk->sk_peek_off;
  893. break;
  894. case SO_NOFCS:
  895. v.val = !!sock_flag(sk, SOCK_NOFCS);
  896. break;
  897. default:
  898. return -ENOPROTOOPT;
  899. }
  900. if (len > lv)
  901. len = lv;
  902. if (copy_to_user(optval, &v, len))
  903. return -EFAULT;
  904. lenout:
  905. if (put_user(len, optlen))
  906. return -EFAULT;
  907. return 0;
  908. }
  909. /*
  910. * Initialize an sk_lock.
  911. *
  912. * (We also register the sk_lock with the lock validator.)
  913. */
  914. static inline void sock_lock_init(struct sock *sk)
  915. {
  916. sock_lock_init_class_and_name(sk,
  917. af_family_slock_key_strings[sk->sk_family],
  918. af_family_slock_keys + sk->sk_family,
  919. af_family_key_strings[sk->sk_family],
  920. af_family_keys + sk->sk_family);
  921. }
  922. /*
  923. * Copy all fields from osk to nsk but nsk->sk_refcnt must not change yet,
  924. * even temporarly, because of RCU lookups. sk_node should also be left as is.
  925. * We must not copy fields between sk_dontcopy_begin and sk_dontcopy_end
  926. */
  927. static void sock_copy(struct sock *nsk, const struct sock *osk)
  928. {
  929. #ifdef CONFIG_SECURITY_NETWORK
  930. void *sptr = nsk->sk_security;
  931. #endif
  932. memcpy(nsk, osk, offsetof(struct sock, sk_dontcopy_begin));
  933. memcpy(&nsk->sk_dontcopy_end, &osk->sk_dontcopy_end,
  934. osk->sk_prot->obj_size - offsetof(struct sock, sk_dontcopy_end));
  935. #ifdef CONFIG_SECURITY_NETWORK
  936. nsk->sk_security = sptr;
  937. security_sk_clone(osk, nsk);
  938. #endif
  939. }
  940. /*
  941. * caches using SLAB_DESTROY_BY_RCU should let .next pointer from nulls nodes
  942. * un-modified. Special care is taken when initializing object to zero.
  943. */
  944. static inline void sk_prot_clear_nulls(struct sock *sk, int size)
  945. {
  946. if (offsetof(struct sock, sk_node.next) != 0)
  947. memset(sk, 0, offsetof(struct sock, sk_node.next));
  948. memset(&sk->sk_node.pprev, 0,
  949. size - offsetof(struct sock, sk_node.pprev));
  950. }
  951. void sk_prot_clear_portaddr_nulls(struct sock *sk, int size)
  952. {
  953. unsigned long nulls1, nulls2;
  954. nulls1 = offsetof(struct sock, __sk_common.skc_node.next);
  955. nulls2 = offsetof(struct sock, __sk_common.skc_portaddr_node.next);
  956. if (nulls1 > nulls2)
  957. swap(nulls1, nulls2);
  958. if (nulls1 != 0)
  959. memset((char *)sk, 0, nulls1);
  960. memset((char *)sk + nulls1 + sizeof(void *), 0,
  961. nulls2 - nulls1 - sizeof(void *));
  962. memset((char *)sk + nulls2 + sizeof(void *), 0,
  963. size - nulls2 - sizeof(void *));
  964. }
  965. EXPORT_SYMBOL(sk_prot_clear_portaddr_nulls);
  966. static struct sock *sk_prot_alloc(struct proto *prot, gfp_t priority,
  967. int family)
  968. {
  969. struct sock *sk;
  970. struct kmem_cache *slab;
  971. slab = prot->slab;
  972. if (slab != NULL) {
  973. sk = kmem_cache_alloc(slab, priority & ~__GFP_ZERO);
  974. if (!sk)
  975. return sk;
  976. if (priority & __GFP_ZERO) {
  977. if (prot->clear_sk)
  978. prot->clear_sk(sk, prot->obj_size);
  979. else
  980. sk_prot_clear_nulls(sk, prot->obj_size);
  981. }
  982. } else
  983. sk = kmalloc(prot->obj_size, priority);
  984. if (sk != NULL) {
  985. kmemcheck_annotate_bitfield(sk, flags);
  986. if (security_sk_alloc(sk, family, priority))
  987. goto out_free;
  988. if (!try_module_get(prot->owner))
  989. goto out_free_sec;
  990. sk_tx_queue_clear(sk);
  991. }
  992. return sk;
  993. out_free_sec:
  994. security_sk_free(sk);
  995. out_free:
  996. if (slab != NULL)
  997. kmem_cache_free(slab, sk);
  998. else
  999. kfree(sk);
  1000. return NULL;
  1001. }
  1002. static void sk_prot_free(struct proto *prot, struct sock *sk)
  1003. {
  1004. struct kmem_cache *slab;
  1005. struct module *owner;
  1006. owner = prot->owner;
  1007. slab = prot->slab;
  1008. security_sk_free(sk);
  1009. if (slab != NULL)
  1010. kmem_cache_free(slab, sk);
  1011. else
  1012. kfree(sk);
  1013. module_put(owner);
  1014. }
  1015. #ifdef CONFIG_CGROUPS
  1016. void sock_update_classid(struct sock *sk)
  1017. {
  1018. u32 classid;
  1019. rcu_read_lock(); /* doing current task, which cannot vanish. */
  1020. classid = task_cls_classid(current);
  1021. rcu_read_unlock();
  1022. if (classid && classid != sk->sk_classid)
  1023. sk->sk_classid = classid;
  1024. }
  1025. EXPORT_SYMBOL(sock_update_classid);
  1026. void sock_update_netprioidx(struct sock *sk)
  1027. {
  1028. if (in_interrupt())
  1029. return;
  1030. sk->sk_cgrp_prioidx = task_netprioidx(current);
  1031. }
  1032. EXPORT_SYMBOL_GPL(sock_update_netprioidx);
  1033. #endif
  1034. /**
  1035. * sk_alloc - All socket objects are allocated here
  1036. * @net: the applicable net namespace
  1037. * @family: protocol family
  1038. * @priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc)
  1039. * @prot: struct proto associated with this new sock instance
  1040. */
  1041. struct sock *sk_alloc(struct net *net, int family, gfp_t priority,
  1042. struct proto *prot)
  1043. {
  1044. struct sock *sk;
  1045. sk = sk_prot_alloc(prot, priority | __GFP_ZERO, family);
  1046. if (sk) {
  1047. sk->sk_family = family;
  1048. /*
  1049. * See comment in struct sock definition to understand
  1050. * why we need sk_prot_creator -acme
  1051. */
  1052. sk->sk_prot = sk->sk_prot_creator = prot;
  1053. sock_lock_init(sk);
  1054. sock_net_set(sk, get_net(net));
  1055. atomic_set(&sk->sk_wmem_alloc, 1);
  1056. sock_update_classid(sk);
  1057. sock_update_netprioidx(sk);
  1058. }
  1059. return sk;
  1060. }
  1061. EXPORT_SYMBOL(sk_alloc);
  1062. static void __sk_free(struct sock *sk)
  1063. {
  1064. struct sk_filter *filter;
  1065. if (sk->sk_destruct)
  1066. sk->sk_destruct(sk);
  1067. filter = rcu_dereference_check(sk->sk_filter,
  1068. atomic_read(&sk->sk_wmem_alloc) == 0);
  1069. if (filter) {
  1070. sk_filter_uncharge(sk, filter);
  1071. RCU_INIT_POINTER(sk->sk_filter, NULL);
  1072. }
  1073. sock_disable_timestamp(sk, SK_FLAGS_TIMESTAMP);
  1074. if (atomic_read(&sk->sk_omem_alloc))
  1075. printk(KERN_DEBUG "%s: optmem leakage (%d bytes) detected.\n",
  1076. __func__, atomic_read(&sk->sk_omem_alloc));
  1077. if (sk->sk_peer_cred)
  1078. put_cred(sk->sk_peer_cred);
  1079. put_pid(sk->sk_peer_pid);
  1080. put_net(sock_net(sk));
  1081. sk_prot_free(sk->sk_prot_creator, sk);
  1082. }
  1083. void sk_free(struct sock *sk)
  1084. {
  1085. /*
  1086. * We subtract one from sk_wmem_alloc and can know if
  1087. * some packets are still in some tx queue.
  1088. * If not null, sock_wfree() will call __sk_free(sk) later
  1089. */
  1090. if (atomic_dec_and_test(&sk->sk_wmem_alloc))
  1091. __sk_free(sk);
  1092. }
  1093. EXPORT_SYMBOL(sk_free);
  1094. /*
  1095. * Last sock_put should drop reference to sk->sk_net. It has already
  1096. * been dropped in sk_change_net. Taking reference to stopping namespace
  1097. * is not an option.
  1098. * Take reference to a socket to remove it from hash _alive_ and after that
  1099. * destroy it in the context of init_net.
  1100. */
  1101. void sk_release_kernel(struct sock *sk)
  1102. {
  1103. if (sk == NULL || sk->sk_socket == NULL)
  1104. return;
  1105. sock_hold(sk);
  1106. sock_release(sk->sk_socket);
  1107. release_net(sock_net(sk));
  1108. sock_net_set(sk, get_net(&init_net));
  1109. sock_put(sk);
  1110. }
  1111. EXPORT_SYMBOL(sk_release_kernel);
  1112. static void sk_update_clone(const struct sock *sk, struct sock *newsk)
  1113. {
  1114. if (mem_cgroup_sockets_enabled && sk->sk_cgrp)
  1115. sock_update_memcg(newsk);
  1116. }
  1117. /**
  1118. * sk_clone_lock - clone a socket, and lock its clone
  1119. * @sk: the socket to clone
  1120. * @priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc)
  1121. *
  1122. * Caller must unlock socket even in error path (bh_unlock_sock(newsk))
  1123. */
  1124. struct sock *sk_clone_lock(const struct sock *sk, const gfp_t priority)
  1125. {
  1126. struct sock *newsk;
  1127. newsk = sk_prot_alloc(sk->sk_prot, priority, sk->sk_family);
  1128. if (newsk != NULL) {
  1129. struct sk_filter *filter;
  1130. sock_copy(newsk, sk);
  1131. /* SANITY */
  1132. get_net(sock_net(newsk));
  1133. sk_node_init(&newsk->sk_node);
  1134. sock_lock_init(newsk);
  1135. bh_lock_sock(newsk);
  1136. newsk->sk_backlog.head = newsk->sk_backlog.tail = NULL;
  1137. newsk->sk_backlog.len = 0;
  1138. atomic_set(&newsk->sk_rmem_alloc, 0);
  1139. /*
  1140. * sk_wmem_alloc set to one (see sk_free() and sock_wfree())
  1141. */
  1142. atomic_set(&newsk->sk_wmem_alloc, 1);
  1143. atomic_set(&newsk->sk_omem_alloc, 0);
  1144. skb_queue_head_init(&newsk->sk_receive_queue);
  1145. skb_queue_head_init(&newsk->sk_write_queue);
  1146. #ifdef CONFIG_NET_DMA
  1147. skb_queue_head_init(&newsk->sk_async_wait_queue);
  1148. #endif
  1149. spin_lock_init(&newsk->sk_dst_lock);
  1150. rwlock_init(&newsk->sk_callback_lock);
  1151. lockdep_set_class_and_name(&newsk->sk_callback_lock,
  1152. af_callback_keys + newsk->sk_family,
  1153. af_family_clock_key_strings[newsk->sk_family]);
  1154. newsk->sk_dst_cache = NULL;
  1155. newsk->sk_wmem_queued = 0;
  1156. newsk->sk_forward_alloc = 0;
  1157. newsk->sk_send_head = NULL;
  1158. newsk->sk_userlocks = sk->sk_userlocks & ~SOCK_BINDPORT_LOCK;
  1159. sock_reset_flag(newsk, SOCK_DONE);
  1160. skb_queue_head_init(&newsk->sk_error_queue);
  1161. filter = rcu_dereference_protected(newsk->sk_filter, 1);
  1162. if (filter != NULL)
  1163. sk_filter_charge(newsk, filter);
  1164. if (unlikely(xfrm_sk_clone_policy(newsk))) {
  1165. /* It is still raw copy of parent, so invalidate
  1166. * destructor and make plain sk_free() */
  1167. newsk->sk_destruct = NULL;
  1168. bh_unlock_sock(newsk);
  1169. sk_free(newsk);
  1170. newsk = NULL;
  1171. goto out;
  1172. }
  1173. newsk->sk_err = 0;
  1174. newsk->sk_priority = 0;
  1175. /*
  1176. * Before updating sk_refcnt, we must commit prior changes to memory
  1177. * (Documentation/RCU/rculist_nulls.txt for details)
  1178. */
  1179. smp_wmb();
  1180. atomic_set(&newsk->sk_refcnt, 2);
  1181. /*
  1182. * Increment the counter in the same struct proto as the master
  1183. * sock (sk_refcnt_debug_inc uses newsk->sk_prot->socks, that
  1184. * is the same as sk->sk_prot->socks, as this field was copied
  1185. * with memcpy).
  1186. *
  1187. * This _changes_ the previous behaviour, where
  1188. * tcp_create_openreq_child always was incrementing the
  1189. * equivalent to tcp_prot->socks (inet_sock_nr), so this have
  1190. * to be taken into account in all callers. -acme
  1191. */
  1192. sk_refcnt_debug_inc(newsk);
  1193. sk_set_socket(newsk, NULL);
  1194. newsk->sk_wq = NULL;
  1195. sk_update_clone(sk, newsk);
  1196. if (newsk->sk_prot->sockets_allocated)
  1197. sk_sockets_allocated_inc(newsk);
  1198. if (newsk->sk_flags & SK_FLAGS_TIMESTAMP)
  1199. net_enable_timestamp();
  1200. }
  1201. out:
  1202. return newsk;
  1203. }
  1204. EXPORT_SYMBOL_GPL(sk_clone_lock);
  1205. void sk_setup_caps(struct sock *sk, struct dst_entry *dst)
  1206. {
  1207. __sk_dst_set(sk, dst);
  1208. sk->sk_route_caps = dst->dev->features;
  1209. if (sk->sk_route_caps & NETIF_F_GSO)
  1210. sk->sk_route_caps |= NETIF_F_GSO_SOFTWARE;
  1211. sk->sk_route_caps &= ~sk->sk_route_nocaps;
  1212. if (sk_can_gso(sk)) {
  1213. if (dst->header_len) {
  1214. sk->sk_route_caps &= ~NETIF_F_GSO_MASK;
  1215. } else {
  1216. sk->sk_route_caps |= NETIF_F_SG | NETIF_F_HW_CSUM;
  1217. sk->sk_gso_max_size = dst->dev->gso_max_size;
  1218. }
  1219. }
  1220. }
  1221. EXPORT_SYMBOL_GPL(sk_setup_caps);
  1222. void __init sk_init(void)
  1223. {
  1224. if (totalram_pages <= 4096) {
  1225. sysctl_wmem_max = 32767;
  1226. sysctl_rmem_max = 32767;
  1227. sysctl_wmem_default = 32767;
  1228. sysctl_rmem_default = 32767;
  1229. } else if (totalram_pages >= 131072) {
  1230. sysctl_wmem_max = 131071;
  1231. sysctl_rmem_max = 131071;
  1232. }
  1233. }
  1234. /*
  1235. * Simple resource managers for sockets.
  1236. */
  1237. /*
  1238. * Write buffer destructor automatically called from kfree_skb.
  1239. */
  1240. void sock_wfree(struct sk_buff *skb)
  1241. {
  1242. struct sock *sk = skb->sk;
  1243. unsigned int len = skb->truesize;
  1244. if (!sock_flag(sk, SOCK_USE_WRITE_QUEUE)) {
  1245. /*
  1246. * Keep a reference on sk_wmem_alloc, this will be released
  1247. * after sk_write_space() call
  1248. */
  1249. atomic_sub(len - 1, &sk->sk_wmem_alloc);
  1250. sk->sk_write_space(sk);
  1251. len = 1;
  1252. }
  1253. /*
  1254. * if sk_wmem_alloc reaches 0, we must finish what sk_free()
  1255. * could not do because of in-flight packets
  1256. */
  1257. if (atomic_sub_and_test(len, &sk->sk_wmem_alloc))
  1258. __sk_free(sk);
  1259. }
  1260. EXPORT_SYMBOL(sock_wfree);
  1261. /*
  1262. * Read buffer destructor automatically called from kfree_skb.
  1263. */
  1264. void sock_rfree(struct sk_buff *skb)
  1265. {
  1266. struct sock *sk = skb->sk;
  1267. unsigned int len = skb->truesize;
  1268. atomic_sub(len, &sk->sk_rmem_alloc);
  1269. sk_mem_uncharge(sk, len);
  1270. }
  1271. EXPORT_SYMBOL(sock_rfree);
  1272. int sock_i_uid(struct sock *sk)
  1273. {
  1274. int uid;
  1275. read_lock_bh(&sk->sk_callback_lock);
  1276. uid = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_uid : 0;
  1277. read_unlock_bh(&sk->sk_callback_lock);
  1278. return uid;
  1279. }
  1280. EXPORT_SYMBOL(sock_i_uid);
  1281. unsigned long sock_i_ino(struct sock *sk)
  1282. {
  1283. unsigned long ino;
  1284. read_lock_bh(&sk->sk_callback_lock);
  1285. ino = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_ino : 0;
  1286. read_unlock_bh(&sk->sk_callback_lock);
  1287. return ino;
  1288. }
  1289. EXPORT_SYMBOL(sock_i_ino);
  1290. /*
  1291. * Allocate a skb from the socket's send buffer.
  1292. */
  1293. struct sk_buff *sock_wmalloc(struct sock *sk, unsigned long size, int force,
  1294. gfp_t priority)
  1295. {
  1296. if (force || atomic_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf) {
  1297. struct sk_buff *skb = alloc_skb(size, priority);
  1298. if (skb) {
  1299. skb_set_owner_w(skb, sk);
  1300. return skb;
  1301. }
  1302. }
  1303. return NULL;
  1304. }
  1305. EXPORT_SYMBOL(sock_wmalloc);
  1306. /*
  1307. * Allocate a skb from the socket's receive buffer.
  1308. */
  1309. struct sk_buff *sock_rmalloc(struct sock *sk, unsigned long size, int force,
  1310. gfp_t priority)
  1311. {
  1312. if (force || atomic_read(&sk->sk_rmem_alloc) < sk->sk_rcvbuf) {
  1313. struct sk_buff *skb = alloc_skb(size, priority);
  1314. if (skb) {
  1315. skb_set_owner_r(skb, sk);
  1316. return skb;
  1317. }
  1318. }
  1319. return NULL;
  1320. }
  1321. /*
  1322. * Allocate a memory block from the socket's option memory buffer.
  1323. */
  1324. void *sock_kmalloc(struct sock *sk, int size, gfp_t priority)
  1325. {
  1326. if ((unsigned)size <= sysctl_optmem_max &&
  1327. atomic_read(&sk->sk_omem_alloc) + size < sysctl_optmem_max) {
  1328. void *mem;
  1329. /* First do the add, to avoid the race if kmalloc
  1330. * might sleep.
  1331. */
  1332. atomic_add(size, &sk->sk_omem_alloc);
  1333. mem = kmalloc(size, priority);
  1334. if (mem)
  1335. return mem;
  1336. atomic_sub(size, &sk->sk_omem_alloc);
  1337. }
  1338. return NULL;
  1339. }
  1340. EXPORT_SYMBOL(sock_kmalloc);
  1341. /*
  1342. * Free an option memory block.
  1343. */
  1344. void sock_kfree_s(struct sock *sk, void *mem, int size)
  1345. {
  1346. kfree(mem);
  1347. atomic_sub(size, &sk->sk_omem_alloc);
  1348. }
  1349. EXPORT_SYMBOL(sock_kfree_s);
  1350. /* It is almost wait_for_tcp_memory minus release_sock/lock_sock.
  1351. I think, these locks should be removed for datagram sockets.
  1352. */
  1353. static long sock_wait_for_wmem(struct sock *sk, long timeo)
  1354. {
  1355. DEFINE_WAIT(wait);
  1356. clear_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
  1357. for (;;) {
  1358. if (!timeo)
  1359. break;
  1360. if (signal_pending(current))
  1361. break;
  1362. set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
  1363. prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
  1364. if (atomic_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf)
  1365. break;
  1366. if (sk->sk_shutdown & SEND_SHUTDOWN)
  1367. break;
  1368. if (sk->sk_err)
  1369. break;
  1370. timeo = schedule_timeout(timeo);
  1371. }
  1372. finish_wait(sk_sleep(sk), &wait);
  1373. return timeo;
  1374. }
  1375. /*
  1376. * Generic send/receive buffer handlers
  1377. */
  1378. struct sk_buff *sock_alloc_send_pskb(struct sock *sk, unsigned long header_len,
  1379. unsigned long data_len, int noblock,
  1380. int *errcode)
  1381. {
  1382. struct sk_buff *skb;
  1383. gfp_t gfp_mask;
  1384. long timeo;
  1385. int err;
  1386. gfp_mask = sk->sk_allocation;
  1387. if (gfp_mask & __GFP_WAIT)
  1388. gfp_mask |= __GFP_REPEAT;
  1389. timeo = sock_sndtimeo(sk, noblock);
  1390. while (1) {
  1391. err = sock_error(sk);
  1392. if (err != 0)
  1393. goto failure;
  1394. err = -EPIPE;
  1395. if (sk->sk_shutdown & SEND_SHUTDOWN)
  1396. goto failure;
  1397. if (atomic_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf) {
  1398. skb = alloc_skb(header_len, gfp_mask);
  1399. if (skb) {
  1400. int npages;
  1401. int i;
  1402. /* No pages, we're done... */
  1403. if (!data_len)
  1404. break;
  1405. npages = (data_len + (PAGE_SIZE - 1)) >> PAGE_SHIFT;
  1406. skb->truesize += data_len;
  1407. skb_shinfo(skb)->nr_frags = npages;
  1408. for (i = 0; i < npages; i++) {
  1409. struct page *page;
  1410. page = alloc_pages(sk->sk_allocation, 0);
  1411. if (!page) {
  1412. err = -ENOBUFS;
  1413. skb_shinfo(skb)->nr_frags = i;
  1414. kfree_skb(skb);
  1415. goto failure;
  1416. }
  1417. __skb_fill_page_desc(skb, i,
  1418. page, 0,
  1419. (data_len >= PAGE_SIZE ?
  1420. PAGE_SIZE :
  1421. data_len));
  1422. data_len -= PAGE_SIZE;
  1423. }
  1424. /* Full success... */
  1425. break;
  1426. }
  1427. err = -ENOBUFS;
  1428. goto failure;
  1429. }
  1430. set_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
  1431. set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
  1432. err = -EAGAIN;
  1433. if (!timeo)
  1434. goto failure;
  1435. if (signal_pending(current))
  1436. goto interrupted;
  1437. timeo = sock_wait_for_wmem(sk, timeo);
  1438. }
  1439. skb_set_owner_w(skb, sk);
  1440. return skb;
  1441. interrupted:
  1442. err = sock_intr_errno(timeo);
  1443. failure:
  1444. *errcode = err;
  1445. return NULL;
  1446. }
  1447. EXPORT_SYMBOL(sock_alloc_send_pskb);
  1448. struct sk_buff *sock_alloc_send_skb(struct sock *sk, unsigned long size,
  1449. int noblock, int *errcode)
  1450. {
  1451. return sock_alloc_send_pskb(sk, size, 0, noblock, errcode);
  1452. }
  1453. EXPORT_SYMBOL(sock_alloc_send_skb);
  1454. static void __lock_sock(struct sock *sk)
  1455. __releases(&sk->sk_lock.slock)
  1456. __acquires(&sk->sk_lock.slock)
  1457. {
  1458. DEFINE_WAIT(wait);
  1459. for (;;) {
  1460. prepare_to_wait_exclusive(&sk->sk_lock.wq, &wait,
  1461. TASK_UNINTERRUPTIBLE);
  1462. spin_unlock_bh(&sk->sk_lock.slock);
  1463. schedule();
  1464. spin_lock_bh(&sk->sk_lock.slock);
  1465. if (!sock_owned_by_user(sk))
  1466. break;
  1467. }
  1468. finish_wait(&sk->sk_lock.wq, &wait);
  1469. }
  1470. static void __release_sock(struct sock *sk)
  1471. __releases(&sk->sk_lock.slock)
  1472. __acquires(&sk->sk_lock.slock)
  1473. {
  1474. struct sk_buff *skb = sk->sk_backlog.head;
  1475. do {
  1476. sk->sk_backlog.head = sk->sk_backlog.tail = NULL;
  1477. bh_unlock_sock(sk);
  1478. do {
  1479. struct sk_buff *next = skb->next;
  1480. WARN_ON_ONCE(skb_dst_is_noref(skb));
  1481. skb->next = NULL;
  1482. sk_backlog_rcv(sk, skb);
  1483. /*
  1484. * We are in process context here with softirqs
  1485. * disabled, use cond_resched_softirq() to preempt.
  1486. * This is safe to do because we've taken the backlog
  1487. * queue private:
  1488. */
  1489. cond_resched_softirq();
  1490. skb = next;
  1491. } while (skb != NULL);
  1492. bh_lock_sock(sk);
  1493. } while ((skb = sk->sk_backlog.head) != NULL);
  1494. /*
  1495. * Doing the zeroing here guarantee we can not loop forever
  1496. * while a wild producer attempts to flood us.
  1497. */
  1498. sk->sk_backlog.len = 0;
  1499. }
  1500. /**
  1501. * sk_wait_data - wait for data to arrive at sk_receive_queue
  1502. * @sk: sock to wait on
  1503. * @timeo: for how long
  1504. *
  1505. * Now socket state including sk->sk_err is changed only under lock,
  1506. * hence we may omit checks after joining wait queue.
  1507. * We check receive queue before schedule() only as optimization;
  1508. * it is very likely that release_sock() added new data.
  1509. */
  1510. int sk_wait_data(struct sock *sk, long *timeo)
  1511. {
  1512. int rc;
  1513. DEFINE_WAIT(wait);
  1514. prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
  1515. set_bit(SOCK_ASYNC_WAITDATA, &sk->sk_socket->flags);
  1516. rc = sk_wait_event(sk, timeo, !skb_queue_empty(&sk->sk_receive_queue));
  1517. clear_bit(SOCK_ASYNC_WAITDATA, &sk->sk_socket->flags);
  1518. finish_wait(sk_sleep(sk), &wait);
  1519. return rc;
  1520. }
  1521. EXPORT_SYMBOL(sk_wait_data);
  1522. /**
  1523. * __sk_mem_schedule - increase sk_forward_alloc and memory_allocated
  1524. * @sk: socket
  1525. * @size: memory size to allocate
  1526. * @kind: allocation type
  1527. *
  1528. * If kind is SK_MEM_SEND, it means wmem allocation. Otherwise it means
  1529. * rmem allocation. This function assumes that protocols which have
  1530. * memory_pressure use sk_wmem_queued as write buffer accounting.
  1531. */
  1532. int __sk_mem_schedule(struct sock *sk, int size, int kind)
  1533. {
  1534. struct proto *prot = sk->sk_prot;
  1535. int amt = sk_mem_pages(size);
  1536. long allocated;
  1537. int parent_status = UNDER_LIMIT;
  1538. sk->sk_forward_alloc += amt * SK_MEM_QUANTUM;
  1539. allocated = sk_memory_allocated_add(sk, amt, &parent_status);
  1540. /* Under limit. */
  1541. if (parent_status == UNDER_LIMIT &&
  1542. allocated <= sk_prot_mem_limits(sk, 0)) {
  1543. sk_leave_memory_pressure(sk);
  1544. return 1;
  1545. }
  1546. /* Under pressure. (we or our parents) */
  1547. if ((parent_status > SOFT_LIMIT) ||
  1548. allocated > sk_prot_mem_limits(sk, 1))
  1549. sk_enter_memory_pressure(sk);
  1550. /* Over hard limit (we or our parents) */
  1551. if ((parent_status == OVER_LIMIT) ||
  1552. (allocated > sk_prot_mem_limits(sk, 2)))
  1553. goto suppress_allocation;
  1554. /* guarantee minimum buffer size under pressure */
  1555. if (kind == SK_MEM_RECV) {
  1556. if (atomic_read(&sk->sk_rmem_alloc) < prot->sysctl_rmem[0])
  1557. return 1;
  1558. } else { /* SK_MEM_SEND */
  1559. if (sk->sk_type == SOCK_STREAM) {
  1560. if (sk->sk_wmem_queued < prot->sysctl_wmem[0])
  1561. return 1;
  1562. } else if (atomic_read(&sk->sk_wmem_alloc) <
  1563. prot->sysctl_wmem[0])
  1564. return 1;
  1565. }
  1566. if (sk_has_memory_pressure(sk)) {
  1567. int alloc;
  1568. if (!sk_under_memory_pressure(sk))
  1569. return 1;
  1570. alloc = sk_sockets_allocated_read_positive(sk);
  1571. if (sk_prot_mem_limits(sk, 2) > alloc *
  1572. sk_mem_pages(sk->sk_wmem_queued +
  1573. atomic_read(&sk->sk_rmem_alloc) +
  1574. sk->sk_forward_alloc))
  1575. return 1;
  1576. }
  1577. suppress_allocation:
  1578. if (kind == SK_MEM_SEND && sk->sk_type == SOCK_STREAM) {
  1579. sk_stream_moderate_sndbuf(sk);
  1580. /* Fail only if socket is _under_ its sndbuf.
  1581. * In this case we cannot block, so that we have to fail.
  1582. */
  1583. if (sk->sk_wmem_queued + size >= sk->sk_sndbuf)
  1584. return 1;
  1585. }
  1586. trace_sock_exceed_buf_limit(sk, prot, allocated);
  1587. /* Alas. Undo changes. */
  1588. sk->sk_forward_alloc -= amt * SK_MEM_QUANTUM;
  1589. sk_memory_allocated_sub(sk, amt);
  1590. return 0;
  1591. }
  1592. EXPORT_SYMBOL(__sk_mem_schedule);
  1593. /**
  1594. * __sk_reclaim - reclaim memory_allocated
  1595. * @sk: socket
  1596. */
  1597. void __sk_mem_reclaim(struct sock *sk)
  1598. {
  1599. sk_memory_allocated_sub(sk,
  1600. sk->sk_forward_alloc >> SK_MEM_QUANTUM_SHIFT);
  1601. sk->sk_forward_alloc &= SK_MEM_QUANTUM - 1;
  1602. if (sk_under_memory_pressure(sk) &&
  1603. (sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)))
  1604. sk_leave_memory_pressure(sk);
  1605. }
  1606. EXPORT_SYMBOL(__sk_mem_reclaim);
  1607. /*
  1608. * Set of default routines for initialising struct proto_ops when
  1609. * the protocol does not support a particular function. In certain
  1610. * cases where it makes no sense for a protocol to have a "do nothing"
  1611. * function, some default processing is provided.
  1612. */
  1613. int sock_no_bind(struct socket *sock, struct sockaddr *saddr, int len)
  1614. {
  1615. return -EOPNOTSUPP;
  1616. }
  1617. EXPORT_SYMBOL(sock_no_bind);
  1618. int sock_no_connect(struct socket *sock, struct sockaddr *saddr,
  1619. int len, int flags)
  1620. {
  1621. return -EOPNOTSUPP;
  1622. }
  1623. EXPORT_SYMBOL(sock_no_connect);
  1624. int sock_no_socketpair(struct socket *sock1, struct socket *sock2)
  1625. {
  1626. return -EOPNOTSUPP;
  1627. }
  1628. EXPORT_SYMBOL(sock_no_socketpair);
  1629. int sock_no_accept(struct socket *sock, struct socket *newsock, int flags)
  1630. {
  1631. return -EOPNOTSUPP;
  1632. }
  1633. EXPORT_SYMBOL(sock_no_accept);
  1634. int sock_no_getname(struct socket *sock, struct sockaddr *saddr,
  1635. int *len, int peer)
  1636. {
  1637. return -EOPNOTSUPP;
  1638. }
  1639. EXPORT_SYMBOL(sock_no_getname);
  1640. unsigned int sock_no_poll(struct file *file, struct socket *sock, poll_table *pt)
  1641. {
  1642. return 0;
  1643. }
  1644. EXPORT_SYMBOL(sock_no_poll);
  1645. int sock_no_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg)
  1646. {
  1647. return -EOPNOTSUPP;
  1648. }
  1649. EXPORT_SYMBOL(sock_no_ioctl);
  1650. int sock_no_listen(struct socket *sock, int backlog)
  1651. {
  1652. return -EOPNOTSUPP;
  1653. }
  1654. EXPORT_SYMBOL(sock_no_listen);
  1655. int sock_no_shutdown(struct socket *sock, int how)
  1656. {
  1657. return -EOPNOTSUPP;
  1658. }
  1659. EXPORT_SYMBOL(sock_no_shutdown);
  1660. int sock_no_setsockopt(struct socket *sock, int level, int optname,
  1661. char __user *optval, unsigned int optlen)
  1662. {
  1663. return -EOPNOTSUPP;
  1664. }
  1665. EXPORT_SYMBOL(sock_no_setsockopt);
  1666. int sock_no_getsockopt(struct socket *sock, int level, int optname,
  1667. char __user *optval, int __user *optlen)
  1668. {
  1669. return -EOPNOTSUPP;
  1670. }
  1671. EXPORT_SYMBOL(sock_no_getsockopt);
  1672. int sock_no_sendmsg(struct kiocb *iocb, struct socket *sock, struct msghdr *m,
  1673. size_t len)
  1674. {
  1675. return -EOPNOTSUPP;
  1676. }
  1677. EXPORT_SYMBOL(sock_no_sendmsg);
  1678. int sock_no_recvmsg(struct kiocb *iocb, struct socket *sock, struct msghdr *m,
  1679. size_t len, int flags)
  1680. {
  1681. return -EOPNOTSUPP;
  1682. }
  1683. EXPORT_SYMBOL(sock_no_recvmsg);
  1684. int sock_no_mmap(struct file *file, struct socket *sock, struct vm_area_struct *vma)
  1685. {
  1686. /* Mirror missing mmap method error code */
  1687. return -ENODEV;
  1688. }
  1689. EXPORT_SYMBOL(sock_no_mmap);
  1690. ssize_t sock_no_sendpage(struct socket *sock, struct page *page, int offset, size_t size, int flags)
  1691. {
  1692. ssize_t res;
  1693. struct msghdr msg = {.msg_flags = flags};
  1694. struct kvec iov;
  1695. char *kaddr = kmap(page);
  1696. iov.iov_base = kaddr + offset;
  1697. iov.iov_len = size;
  1698. res = kernel_sendmsg(sock, &msg, &iov, 1, size);
  1699. kunmap(page);
  1700. return res;
  1701. }
  1702. EXPORT_SYMBOL(sock_no_sendpage);
  1703. /*
  1704. * Default Socket Callbacks
  1705. */
  1706. static void sock_def_wakeup(struct sock *sk)
  1707. {
  1708. struct socket_wq *wq;
  1709. rcu_read_lock();
  1710. wq = rcu_dereference(sk->sk_wq);
  1711. if (wq_has_sleeper(wq))
  1712. wake_up_interruptible_all(&wq->wait);
  1713. rcu_read_unlock();
  1714. }
  1715. static void sock_def_error_report(struct sock *sk)
  1716. {
  1717. struct socket_wq *wq;
  1718. rcu_read_lock();
  1719. wq = rcu_dereference(sk->sk_wq);
  1720. if (wq_has_sleeper(wq))
  1721. wake_up_interruptible_poll(&wq->wait, POLLERR);
  1722. sk_wake_async(sk, SOCK_WAKE_IO, POLL_ERR);
  1723. rcu_read_unlock();
  1724. }
  1725. static void sock_def_readable(struct sock *sk, int len)
  1726. {
  1727. struct socket_wq *wq;
  1728. rcu_read_lock();
  1729. wq = rcu_dereference(sk->sk_wq);
  1730. if (wq_has_sleeper(wq))
  1731. wake_up_interruptible_sync_poll(&wq->wait, POLLIN | POLLPRI |
  1732. POLLRDNORM | POLLRDBAND);
  1733. sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
  1734. rcu_read_unlock();
  1735. }
  1736. static void sock_def_write_space(struct sock *sk)
  1737. {
  1738. struct socket_wq *wq;
  1739. rcu_read_lock();
  1740. /* Do not wake up a writer until he can make "significant"
  1741. * progress. --DaveM
  1742. */
  1743. if ((atomic_read(&sk->sk_wmem_alloc) << 1) <= sk->sk_sndbuf) {
  1744. wq = rcu_dereference(sk->sk_wq);
  1745. if (wq_has_sleeper(wq))
  1746. wake_up_interruptible_sync_poll(&wq->wait, POLLOUT |
  1747. POLLWRNORM | POLLWRBAND);
  1748. /* Should agree with poll, otherwise some programs break */
  1749. if (sock_writeable(sk))
  1750. sk_wake_async(sk, SOCK_WAKE_SPACE, POLL_OUT);
  1751. }
  1752. rcu_read_unlock();
  1753. }
  1754. static void sock_def_destruct(struct sock *sk)
  1755. {
  1756. kfree(sk->sk_protinfo);
  1757. }
  1758. void sk_send_sigurg(struct sock *sk)
  1759. {
  1760. if (sk->sk_socket && sk->sk_socket->file)
  1761. if (send_sigurg(&sk->sk_socket->file->f_owner))
  1762. sk_wake_async(sk, SOCK_WAKE_URG, POLL_PRI);
  1763. }
  1764. EXPORT_SYMBOL(sk_send_sigurg);
  1765. void sk_reset_timer(struct sock *sk, struct timer_list* timer,
  1766. unsigned long expires)
  1767. {
  1768. if (!mod_timer(timer, expires))
  1769. sock_hold(sk);
  1770. }
  1771. EXPORT_SYMBOL(sk_reset_timer);
  1772. void sk_stop_timer(struct sock *sk, struct timer_list* timer)
  1773. {
  1774. if (timer_pending(timer) && del_timer(timer))
  1775. __sock_put(sk);
  1776. }
  1777. EXPORT_SYMBOL(sk_stop_timer);
  1778. void sock_init_data(struct socket *sock, struct sock *sk)
  1779. {
  1780. skb_queue_head_init(&sk->sk_receive_queue);
  1781. skb_queue_head_init(&sk->sk_write_queue);
  1782. skb_queue_head_init(&sk->sk_error_queue);
  1783. #ifdef CONFIG_NET_DMA
  1784. skb_queue_head_init(&sk->sk_async_wait_queue);
  1785. #endif
  1786. sk->sk_send_head = NULL;
  1787. init_timer(&sk->sk_timer);
  1788. sk->sk_allocation = GFP_KERNEL;
  1789. sk->sk_rcvbuf = sysctl_rmem_default;
  1790. sk->sk_sndbuf = sysctl_wmem_default;
  1791. sk->sk_state = TCP_CLOSE;
  1792. sk_set_socket(sk, sock);
  1793. sock_set_flag(sk, SOCK_ZAPPED);
  1794. if (sock) {
  1795. sk->sk_type = sock->type;
  1796. sk->sk_wq = sock->wq;
  1797. sock->sk = sk;
  1798. } else
  1799. sk->sk_wq = NULL;
  1800. spin_lock_init(&sk->sk_dst_lock);
  1801. rwlock_init(&sk->sk_callback_lock);
  1802. lockdep_set_class_and_name(&sk->sk_callback_lock,
  1803. af_callback_keys + sk->sk_family,
  1804. af_family_clock_key_strings[sk->sk_family]);
  1805. sk->sk_state_change = sock_def_wakeup;
  1806. sk->sk_data_ready = sock_def_readable;
  1807. sk->sk_write_space = sock_def_write_space;
  1808. sk->sk_error_report = sock_def_error_report;
  1809. sk->sk_destruct = sock_def_destruct;
  1810. sk->sk_sndmsg_page = NULL;
  1811. sk->sk_sndmsg_off = 0;
  1812. sk->sk_peek_off = -1;
  1813. sk->sk_peer_pid = NULL;
  1814. sk->sk_peer_cred = NULL;
  1815. sk->sk_write_pending = 0;
  1816. sk->sk_rcvlowat = 1;
  1817. sk->sk_rcvtimeo = MAX_SCHEDULE_TIMEOUT;
  1818. sk->sk_sndtimeo = MAX_SCHEDULE_TIMEOUT;
  1819. sk->sk_stamp = ktime_set(-1L, 0);
  1820. /*
  1821. * Before updating sk_refcnt, we must commit prior changes to memory
  1822. * (Documentation/RCU/rculist_nulls.txt for details)
  1823. */
  1824. smp_wmb();
  1825. atomic_set(&sk->sk_refcnt, 1);
  1826. atomic_set(&sk->sk_drops, 0);
  1827. }
  1828. EXPORT_SYMBOL(sock_init_data);
  1829. void lock_sock_nested(struct sock *sk, int subclass)
  1830. {
  1831. might_sleep();
  1832. spin_lock_bh(&sk->sk_lock.slock);
  1833. if (sk->sk_lock.owned)
  1834. __lock_sock(sk);
  1835. sk->sk_lock.owned = 1;
  1836. spin_unlock(&sk->sk_lock.slock);
  1837. /*
  1838. * The sk_lock has mutex_lock() semantics here:
  1839. */
  1840. mutex_acquire(&sk->sk_lock.dep_map, subclass, 0, _RET_IP_);
  1841. local_bh_enable();
  1842. }
  1843. EXPORT_SYMBOL(lock_sock_nested);
  1844. void release_sock(struct sock *sk)
  1845. {
  1846. /*
  1847. * The sk_lock has mutex_unlock() semantics:
  1848. */
  1849. mutex_release(&sk->sk_lock.dep_map, 1, _RET_IP_);
  1850. spin_lock_bh(&sk->sk_lock.slock);
  1851. if (sk->sk_backlog.tail)
  1852. __release_sock(sk);
  1853. sk->sk_lock.owned = 0;
  1854. if (waitqueue_active(&sk->sk_lock.wq))
  1855. wake_up(&sk->sk_lock.wq);
  1856. spin_unlock_bh(&sk->sk_lock.slock);
  1857. }
  1858. EXPORT_SYMBOL(release_sock);
  1859. /**
  1860. * lock_sock_fast - fast version of lock_sock
  1861. * @sk: socket
  1862. *
  1863. * This version should be used for very small section, where process wont block
  1864. * return false if fast path is taken
  1865. * sk_lock.slock locked, owned = 0, BH disabled
  1866. * return true if slow path is taken
  1867. * sk_lock.slock unlocked, owned = 1, BH enabled
  1868. */
  1869. bool lock_sock_fast(struct sock *sk)
  1870. {
  1871. might_sleep();
  1872. spin_lock_bh(&sk->sk_lock.slock);
  1873. if (!sk->sk_lock.owned)
  1874. /*
  1875. * Note : We must disable BH
  1876. */
  1877. return false;
  1878. __lock_sock(sk);
  1879. sk->sk_lock.owned = 1;
  1880. spin_unlock(&sk->sk_lock.slock);
  1881. /*
  1882. * The sk_lock has mutex_lock() semantics here:
  1883. */
  1884. mutex_acquire(&sk->sk_lock.dep_map, 0, 0, _RET_IP_);
  1885. local_bh_enable();
  1886. return true;
  1887. }
  1888. EXPORT_SYMBOL(lock_sock_fast);
  1889. int sock_get_timestamp(struct sock *sk, struct timeval __user *userstamp)
  1890. {
  1891. struct timeval tv;
  1892. if (!sock_flag(sk, SOCK_TIMESTAMP))
  1893. sock_enable_timestamp(sk, SOCK_TIMESTAMP);
  1894. tv = ktime_to_timeval(sk->sk_stamp);
  1895. if (tv.tv_sec == -1)
  1896. return -ENOENT;
  1897. if (tv.tv_sec == 0) {
  1898. sk->sk_stamp = ktime_get_real();
  1899. tv = ktime_to_timeval(sk->sk_stamp);
  1900. }
  1901. return copy_to_user(userstamp, &tv, sizeof(tv)) ? -EFAULT : 0;
  1902. }
  1903. EXPORT_SYMBOL(sock_get_timestamp);
  1904. int sock_get_timestampns(struct sock *sk, struct timespec __user *userstamp)
  1905. {
  1906. struct timespec ts;
  1907. if (!sock_flag(sk, SOCK_TIMESTAMP))
  1908. sock_enable_timestamp(sk, SOCK_TIMESTAMP);
  1909. ts = ktime_to_timespec(sk->sk_stamp);
  1910. if (ts.tv_sec == -1)
  1911. return -ENOENT;
  1912. if (ts.tv_sec == 0) {
  1913. sk->sk_stamp = ktime_get_real();
  1914. ts = ktime_to_timespec(sk->sk_stamp);
  1915. }
  1916. return copy_to_user(userstamp, &ts, sizeof(ts)) ? -EFAULT : 0;
  1917. }
  1918. EXPORT_SYMBOL(sock_get_timestampns);
  1919. void sock_enable_timestamp(struct sock *sk, int flag)
  1920. {
  1921. if (!sock_flag(sk, flag)) {
  1922. unsigned long previous_flags = sk->sk_flags;
  1923. sock_set_flag(sk, flag);
  1924. /*
  1925. * we just set one of the two flags which require net
  1926. * time stamping, but time stamping might have been on
  1927. * already because of the other one
  1928. */
  1929. if (!(previous_flags & SK_FLAGS_TIMESTAMP))
  1930. net_enable_timestamp();
  1931. }
  1932. }
  1933. /*
  1934. * Get a socket option on an socket.
  1935. *
  1936. * FIX: POSIX 1003.1g is very ambiguous here. It states that
  1937. * asynchronous errors should be reported by getsockopt. We assume
  1938. * this means if you specify SO_ERROR (otherwise whats the point of it).
  1939. */
  1940. int sock_common_getsockopt(struct socket *sock, int level, int optname,
  1941. char __user *optval, int __user *optlen)
  1942. {
  1943. struct sock *sk = sock->sk;
  1944. return sk->sk_prot->getsockopt(sk, level, optname, optval, optlen);
  1945. }
  1946. EXPORT_SYMBOL(sock_common_getsockopt);
  1947. #ifdef CONFIG_COMPAT
  1948. int compat_sock_common_getsockopt(struct socket *sock, int level, int optname,
  1949. char __user *optval, int __user *optlen)
  1950. {
  1951. struct sock *sk = sock->sk;
  1952. if (sk->sk_prot->compat_getsockopt != NULL)
  1953. return sk->sk_prot->compat_getsockopt(sk, level, optname,
  1954. optval, optlen);
  1955. return sk->sk_prot->getsockopt(sk, level, optname, optval, optlen);
  1956. }
  1957. EXPORT_SYMBOL(compat_sock_common_getsockopt);
  1958. #endif
  1959. int sock_common_recvmsg(struct kiocb *iocb, struct socket *sock,
  1960. struct msghdr *msg, size_t size, int flags)
  1961. {
  1962. struct sock *sk = sock->sk;
  1963. int addr_len = 0;
  1964. int err;
  1965. err = sk->sk_prot->recvmsg(iocb, sk, msg, size, flags & MSG_DONTWAIT,
  1966. flags & ~MSG_DONTWAIT, &addr_len);
  1967. if (err >= 0)
  1968. msg->msg_namelen = addr_len;
  1969. return err;
  1970. }
  1971. EXPORT_SYMBOL(sock_common_recvmsg);
  1972. /*
  1973. * Set socket options on an inet socket.
  1974. */
  1975. int sock_common_setsockopt(struct socket *sock, int level, int optname,
  1976. char __user *optval, unsigned int optlen)
  1977. {
  1978. struct sock *sk = sock->sk;
  1979. return sk->sk_prot->setsockopt(sk, level, optname, optval, optlen);
  1980. }
  1981. EXPORT_SYMBOL(sock_common_setsockopt);
  1982. #ifdef CONFIG_COMPAT
  1983. int compat_sock_common_setsockopt(struct socket *sock, int level, int optname,
  1984. char __user *optval, unsigned int optlen)
  1985. {
  1986. struct sock *sk = sock->sk;
  1987. if (sk->sk_prot->compat_setsockopt != NULL)
  1988. return sk->sk_prot->compat_setsockopt(sk, level, optname,
  1989. optval, optlen);
  1990. return sk->sk_prot->setsockopt(sk, level, optname, optval, optlen);
  1991. }
  1992. EXPORT_SYMBOL(compat_sock_common_setsockopt);
  1993. #endif
  1994. void sk_common_release(struct sock *sk)
  1995. {
  1996. if (sk->sk_prot->destroy)
  1997. sk->sk_prot->destroy(sk);
  1998. /*
  1999. * Observation: when sock_common_release is called, processes have
  2000. * no access to socket. But net still has.
  2001. * Step one, detach it from networking:
  2002. *
  2003. * A. Remove from hash tables.
  2004. */
  2005. sk->sk_prot->unhash(sk);
  2006. /*
  2007. * In this point socket cannot receive new packets, but it is possible
  2008. * that some packets are in flight because some CPU runs receiver and
  2009. * did hash table lookup before we unhashed socket. They will achieve
  2010. * receive queue and will be purged by socket destructor.
  2011. *
  2012. * Also we still have packets pending on receive queue and probably,
  2013. * our own packets waiting in device queues. sock_destroy will drain
  2014. * receive queue, but transmitted packets will delay socket destruction
  2015. * until the last reference will be released.
  2016. */
  2017. sock_orphan(sk);
  2018. xfrm_sk_free_policy(sk);
  2019. sk_refcnt_debug_release(sk);
  2020. sock_put(sk);
  2021. }
  2022. EXPORT_SYMBOL(sk_common_release);
  2023. #ifdef CONFIG_PROC_FS
  2024. #define PROTO_INUSE_NR 64 /* should be enough for the first time */
  2025. struct prot_inuse {
  2026. int val[PROTO_INUSE_NR];
  2027. };
  2028. static DECLARE_BITMAP(proto_inuse_idx, PROTO_INUSE_NR);
  2029. #ifdef CONFIG_NET_NS
  2030. void sock_prot_inuse_add(struct net *net, struct proto *prot, int val)
  2031. {
  2032. __this_cpu_add(net->core.inuse->val[prot->inuse_idx], val);
  2033. }
  2034. EXPORT_SYMBOL_GPL(sock_prot_inuse_add);
  2035. int sock_prot_inuse_get(struct net *net, struct proto *prot)
  2036. {
  2037. int cpu, idx = prot->inuse_idx;
  2038. int res = 0;
  2039. for_each_possible_cpu(cpu)
  2040. res += per_cpu_ptr(net->core.inuse, cpu)->val[idx];
  2041. return res >= 0 ? res : 0;
  2042. }
  2043. EXPORT_SYMBOL_GPL(sock_prot_inuse_get);
  2044. static int __net_init sock_inuse_init_net(struct net *net)
  2045. {
  2046. net->core.inuse = alloc_percpu(struct prot_inuse);
  2047. return net->core.inuse ? 0 : -ENOMEM;
  2048. }
  2049. static void __net_exit sock_inuse_exit_net(struct net *net)
  2050. {
  2051. free_percpu(net->core.inuse);
  2052. }
  2053. static struct pernet_operations net_inuse_ops = {
  2054. .init = sock_inuse_init_net,
  2055. .exit = sock_inuse_exit_net,
  2056. };
  2057. static __init int net_inuse_init(void)
  2058. {
  2059. if (register_pernet_subsys(&net_inuse_ops))
  2060. panic("Cannot initialize net inuse counters");
  2061. return 0;
  2062. }
  2063. core_initcall(net_inuse_init);
  2064. #else
  2065. static DEFINE_PER_CPU(struct prot_inuse, prot_inuse);
  2066. void sock_prot_inuse_add(struct net *net, struct proto *prot, int val)
  2067. {
  2068. __this_cpu_add(prot_inuse.val[prot->inuse_idx], val);
  2069. }
  2070. EXPORT_SYMBOL_GPL(sock_prot_inuse_add);
  2071. int sock_prot_inuse_get(struct net *net, struct proto *prot)
  2072. {
  2073. int cpu, idx = prot->inuse_idx;
  2074. int res = 0;
  2075. for_each_possible_cpu(cpu)
  2076. res += per_cpu(prot_inuse, cpu).val[idx];
  2077. return res >= 0 ? res : 0;
  2078. }
  2079. EXPORT_SYMBOL_GPL(sock_prot_inuse_get);
  2080. #endif
  2081. static void assign_proto_idx(struct proto *prot)
  2082. {
  2083. prot->inuse_idx = find_first_zero_bit(proto_inuse_idx, PROTO_INUSE_NR);
  2084. if (unlikely(prot->inuse_idx == PROTO_INUSE_NR - 1)) {
  2085. printk(KERN_ERR "PROTO_INUSE_NR exhausted\n");
  2086. return;
  2087. }
  2088. set_bit(prot->inuse_idx, proto_inuse_idx);
  2089. }
  2090. static void release_proto_idx(struct proto *prot)
  2091. {
  2092. if (prot->inuse_idx != PROTO_INUSE_NR - 1)
  2093. clear_bit(prot->inuse_idx, proto_inuse_idx);
  2094. }
  2095. #else
  2096. static inline void assign_proto_idx(struct proto *prot)
  2097. {
  2098. }
  2099. static inline void release_proto_idx(struct proto *prot)
  2100. {
  2101. }
  2102. #endif
  2103. int proto_register(struct proto *prot, int alloc_slab)
  2104. {
  2105. if (alloc_slab) {
  2106. prot->slab = kmem_cache_create(prot->name, prot->obj_size, 0,
  2107. SLAB_HWCACHE_ALIGN | prot->slab_flags,
  2108. NULL);
  2109. if (prot->slab == NULL) {
  2110. printk(KERN_CRIT "%s: Can't create sock SLAB cache!\n",
  2111. prot->name);
  2112. goto out;
  2113. }
  2114. if (prot->rsk_prot != NULL) {
  2115. prot->rsk_prot->slab_name = kasprintf(GFP_KERNEL, "request_sock_%s", prot->name);
  2116. if (prot->rsk_prot->slab_name == NULL)
  2117. goto out_free_sock_slab;
  2118. prot->rsk_prot->slab = kmem_cache_create(prot->rsk_prot->slab_name,
  2119. prot->rsk_prot->obj_size, 0,
  2120. SLAB_HWCACHE_ALIGN, NULL);
  2121. if (prot->rsk_prot->slab == NULL) {
  2122. printk(KERN_CRIT "%s: Can't create request sock SLAB cache!\n",
  2123. prot->name);
  2124. goto out_free_request_sock_slab_name;
  2125. }
  2126. }
  2127. if (prot->twsk_prot != NULL) {
  2128. prot->twsk_prot->twsk_slab_name = kasprintf(GFP_KERNEL, "tw_sock_%s", prot->name);
  2129. if (prot->twsk_prot->twsk_slab_name == NULL)
  2130. goto out_free_request_sock_slab;
  2131. prot->twsk_prot->twsk_slab =
  2132. kmem_cache_create(prot->twsk_prot->twsk_slab_name,
  2133. prot->twsk_prot->twsk_obj_size,
  2134. 0,
  2135. SLAB_HWCACHE_ALIGN |
  2136. prot->slab_flags,
  2137. NULL);
  2138. if (prot->twsk_prot->twsk_slab == NULL)
  2139. goto out_free_timewait_sock_slab_name;
  2140. }
  2141. }
  2142. mutex_lock(&proto_list_mutex);
  2143. list_add(&prot->node, &proto_list);
  2144. assign_proto_idx(prot);
  2145. mutex_unlock(&proto_list_mutex);
  2146. return 0;
  2147. out_free_timewait_sock_slab_name:
  2148. kfree(prot->twsk_prot->twsk_slab_name);
  2149. out_free_request_sock_slab:
  2150. if (prot->rsk_prot && prot->rsk_prot->slab) {
  2151. kmem_cache_destroy(prot->rsk_prot->slab);
  2152. prot->rsk_prot->slab = NULL;
  2153. }
  2154. out_free_request_sock_slab_name:
  2155. if (prot->rsk_prot)
  2156. kfree(prot->rsk_prot->slab_name);
  2157. out_free_sock_slab:
  2158. kmem_cache_destroy(prot->slab);
  2159. prot->slab = NULL;
  2160. out:
  2161. return -ENOBUFS;
  2162. }
  2163. EXPORT_SYMBOL(proto_register);
  2164. void proto_unregister(struct proto *prot)
  2165. {
  2166. mutex_lock(&proto_list_mutex);
  2167. release_proto_idx(prot);
  2168. list_del(&prot->node);
  2169. mutex_unlock(&proto_list_mutex);
  2170. if (prot->slab != NULL) {
  2171. kmem_cache_destroy(prot->slab);
  2172. prot->slab = NULL;
  2173. }
  2174. if (prot->rsk_prot != NULL && prot->rsk_prot->slab != NULL) {
  2175. kmem_cache_destroy(prot->rsk_prot->slab);
  2176. kfree(prot->rsk_prot->slab_name);
  2177. prot->rsk_prot->slab = NULL;
  2178. }
  2179. if (prot->twsk_prot != NULL && prot->twsk_prot->twsk_slab != NULL) {
  2180. kmem_cache_destroy(prot->twsk_prot->twsk_slab);
  2181. kfree(prot->twsk_prot->twsk_slab_name);
  2182. prot->twsk_prot->twsk_slab = NULL;
  2183. }
  2184. }
  2185. EXPORT_SYMBOL(proto_unregister);
  2186. #ifdef CONFIG_PROC_FS
  2187. static void *proto_seq_start(struct seq_file *seq, loff_t *pos)
  2188. __acquires(proto_list_mutex)
  2189. {
  2190. mutex_lock(&proto_list_mutex);
  2191. return seq_list_start_head(&proto_list, *pos);
  2192. }
  2193. static void *proto_seq_next(struct seq_file *seq, void *v, loff_t *pos)
  2194. {
  2195. return seq_list_next(v, &proto_list, pos);
  2196. }
  2197. static void proto_seq_stop(struct seq_file *seq, void *v)
  2198. __releases(proto_list_mutex)
  2199. {
  2200. mutex_unlock(&proto_list_mutex);
  2201. }
  2202. static char proto_method_implemented(const void *method)
  2203. {
  2204. return method == NULL ? 'n' : 'y';
  2205. }
  2206. static long sock_prot_memory_allocated(struct proto *proto)
  2207. {
  2208. return proto->memory_allocated != NULL ? proto_memory_allocated(proto): -1L;
  2209. }
  2210. static char *sock_prot_memory_pressure(struct proto *proto)
  2211. {
  2212. return proto->memory_pressure != NULL ?
  2213. proto_memory_pressure(proto) ? "yes" : "no" : "NI";
  2214. }
  2215. static void proto_seq_printf(struct seq_file *seq, struct proto *proto)
  2216. {
  2217. seq_printf(seq, "%-9s %4u %6d %6ld %-3s %6u %-3s %-10s "
  2218. "%2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c\n",
  2219. proto->name,
  2220. proto->obj_size,
  2221. sock_prot_inuse_get(seq_file_net(seq), proto),
  2222. sock_prot_memory_allocated(proto),
  2223. sock_prot_memory_pressure(proto),
  2224. proto->max_header,
  2225. proto->slab == NULL ? "no" : "yes",
  2226. module_name(proto->owner),
  2227. proto_method_implemented(proto->close),
  2228. proto_method_implemented(proto->connect),
  2229. proto_method_implemented(proto->disconnect),
  2230. proto_method_implemented(proto->accept),
  2231. proto_method_implemented(proto->ioctl),
  2232. proto_method_implemented(proto->init),
  2233. proto_method_implemented(proto->destroy),
  2234. proto_method_implemented(proto->shutdown),
  2235. proto_method_implemented(proto->setsockopt),
  2236. proto_method_implemented(proto->getsockopt),
  2237. proto_method_implemented(proto->sendmsg),
  2238. proto_method_implemented(proto->recvmsg),
  2239. proto_method_implemented(proto->sendpage),
  2240. proto_method_implemented(proto->bind),
  2241. proto_method_implemented(proto->backlog_rcv),
  2242. proto_method_implemented(proto->hash),
  2243. proto_method_implemented(proto->unhash),
  2244. proto_method_implemented(proto->get_port),
  2245. proto_method_implemented(proto->enter_memory_pressure));
  2246. }
  2247. static int proto_seq_show(struct seq_file *seq, void *v)
  2248. {
  2249. if (v == &proto_list)
  2250. seq_printf(seq, "%-9s %-4s %-8s %-6s %-5s %-7s %-4s %-10s %s",
  2251. "protocol",
  2252. "size",
  2253. "sockets",
  2254. "memory",
  2255. "press",
  2256. "maxhdr",
  2257. "slab",
  2258. "module",
  2259. "cl co di ac io in de sh ss gs se re sp bi br ha uh gp em\n");
  2260. else
  2261. proto_seq_printf(seq, list_entry(v, struct proto, node));
  2262. return 0;
  2263. }
  2264. static const struct seq_operations proto_seq_ops = {
  2265. .start = proto_seq_start,
  2266. .next = proto_seq_next,
  2267. .stop = proto_seq_stop,
  2268. .show = proto_seq_show,
  2269. };
  2270. static int proto_seq_open(struct inode *inode, struct file *file)
  2271. {
  2272. return seq_open_net(inode, file, &proto_seq_ops,
  2273. sizeof(struct seq_net_private));
  2274. }
  2275. static const struct file_operations proto_seq_fops = {
  2276. .owner = THIS_MODULE,
  2277. .open = proto_seq_open,
  2278. .read = seq_read,
  2279. .llseek = seq_lseek,
  2280. .release = seq_release_net,
  2281. };
  2282. static __net_init int proto_init_net(struct net *net)
  2283. {
  2284. if (!proc_net_fops_create(net, "protocols", S_IRUGO, &proto_seq_fops))
  2285. return -ENOMEM;
  2286. return 0;
  2287. }
  2288. static __net_exit void proto_exit_net(struct net *net)
  2289. {
  2290. proc_net_remove(net, "protocols");
  2291. }
  2292. static __net_initdata struct pernet_operations proto_net_ops = {
  2293. .init = proto_init_net,
  2294. .exit = proto_exit_net,
  2295. };
  2296. static int __init proto_init(void)
  2297. {
  2298. return register_pernet_subsys(&proto_net_ops);
  2299. }
  2300. subsys_initcall(proto_init);
  2301. #endif /* PROC_FS */