vlan_dev.c 20 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766
  1. /* -*- linux-c -*-
  2. * INET 802.1Q VLAN
  3. * Ethernet-type device handling.
  4. *
  5. * Authors: Ben Greear <greearb@candelatech.com>
  6. * Please send support related email to: netdev@vger.kernel.org
  7. * VLAN Home Page: http://www.candelatech.com/~greear/vlan.html
  8. *
  9. * Fixes: Mar 22 2001: Martin Bokaemper <mbokaemper@unispherenetworks.com>
  10. * - reset skb->pkt_type on incoming packets when MAC was changed
  11. * - see that changed MAC is saddr for outgoing packets
  12. * Oct 20, 2001: Ard van Breeman:
  13. * - Fix MC-list, finally.
  14. * - Flush MC-list on VLAN destroy.
  15. *
  16. *
  17. * This program is free software; you can redistribute it and/or
  18. * modify it under the terms of the GNU General Public License
  19. * as published by the Free Software Foundation; either version
  20. * 2 of the License, or (at your option) any later version.
  21. */
  22. #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  23. #include <linux/module.h>
  24. #include <linux/slab.h>
  25. #include <linux/skbuff.h>
  26. #include <linux/netdevice.h>
  27. #include <linux/etherdevice.h>
  28. #include <linux/ethtool.h>
  29. #include <net/arp.h>
  30. #include "vlan.h"
  31. #include "vlanproc.h"
  32. #include <linux/if_vlan.h>
  33. #include <linux/netpoll.h>
  34. /*
  35. * Rebuild the Ethernet MAC header. This is called after an ARP
  36. * (or in future other address resolution) has completed on this
  37. * sk_buff. We now let ARP fill in the other fields.
  38. *
  39. * This routine CANNOT use cached dst->neigh!
  40. * Really, it is used only when dst->neigh is wrong.
  41. *
  42. * TODO: This needs a checkup, I'm ignorant here. --BLG
  43. */
  44. static int vlan_dev_rebuild_header(struct sk_buff *skb)
  45. {
  46. struct net_device *dev = skb->dev;
  47. struct vlan_ethhdr *veth = (struct vlan_ethhdr *)(skb->data);
  48. switch (veth->h_vlan_encapsulated_proto) {
  49. #ifdef CONFIG_INET
  50. case htons(ETH_P_IP):
  51. /* TODO: Confirm this will work with VLAN headers... */
  52. return arp_find(veth->h_dest, skb);
  53. #endif
  54. default:
  55. pr_debug("%s: unable to resolve type %X addresses\n",
  56. dev->name, ntohs(veth->h_vlan_encapsulated_proto));
  57. memcpy(veth->h_source, dev->dev_addr, ETH_ALEN);
  58. break;
  59. }
  60. return 0;
  61. }
  62. static inline u16
  63. vlan_dev_get_egress_qos_mask(struct net_device *dev, struct sk_buff *skb)
  64. {
  65. struct vlan_priority_tci_mapping *mp;
  66. mp = vlan_dev_priv(dev)->egress_priority_map[(skb->priority & 0xF)];
  67. while (mp) {
  68. if (mp->priority == skb->priority) {
  69. return mp->vlan_qos; /* This should already be shifted
  70. * to mask correctly with the
  71. * VLAN's TCI */
  72. }
  73. mp = mp->next;
  74. }
  75. return 0;
  76. }
  77. /*
  78. * Create the VLAN header for an arbitrary protocol layer
  79. *
  80. * saddr=NULL means use device source address
  81. * daddr=NULL means leave destination address (eg unresolved arp)
  82. *
  83. * This is called when the SKB is moving down the stack towards the
  84. * physical devices.
  85. */
  86. static int vlan_dev_hard_header(struct sk_buff *skb, struct net_device *dev,
  87. unsigned short type,
  88. const void *daddr, const void *saddr,
  89. unsigned int len)
  90. {
  91. struct vlan_hdr *vhdr;
  92. unsigned int vhdrlen = 0;
  93. u16 vlan_tci = 0;
  94. int rc;
  95. if (!(vlan_dev_priv(dev)->flags & VLAN_FLAG_REORDER_HDR)) {
  96. vhdr = (struct vlan_hdr *) skb_push(skb, VLAN_HLEN);
  97. vlan_tci = vlan_dev_priv(dev)->vlan_id;
  98. vlan_tci |= vlan_dev_get_egress_qos_mask(dev, skb);
  99. vhdr->h_vlan_TCI = htons(vlan_tci);
  100. /*
  101. * Set the protocol type. For a packet of type ETH_P_802_3/2 we
  102. * put the length in here instead.
  103. */
  104. if (type != ETH_P_802_3 && type != ETH_P_802_2)
  105. vhdr->h_vlan_encapsulated_proto = htons(type);
  106. else
  107. vhdr->h_vlan_encapsulated_proto = htons(len);
  108. skb->protocol = htons(ETH_P_8021Q);
  109. type = ETH_P_8021Q;
  110. vhdrlen = VLAN_HLEN;
  111. }
  112. /* Before delegating work to the lower layer, enter our MAC-address */
  113. if (saddr == NULL)
  114. saddr = dev->dev_addr;
  115. /* Now make the underlying real hard header */
  116. dev = vlan_dev_priv(dev)->real_dev;
  117. rc = dev_hard_header(skb, dev, type, daddr, saddr, len + vhdrlen);
  118. if (rc > 0)
  119. rc += vhdrlen;
  120. return rc;
  121. }
  122. static netdev_tx_t vlan_dev_hard_start_xmit(struct sk_buff *skb,
  123. struct net_device *dev)
  124. {
  125. struct vlan_ethhdr *veth = (struct vlan_ethhdr *)(skb->data);
  126. unsigned int len;
  127. int ret;
  128. /* Handle non-VLAN frames if they are sent to us, for example by DHCP.
  129. *
  130. * NOTE: THIS ASSUMES DIX ETHERNET, SPECIFICALLY NOT SUPPORTING
  131. * OTHER THINGS LIKE FDDI/TokenRing/802.3 SNAPs...
  132. */
  133. if (veth->h_vlan_proto != htons(ETH_P_8021Q) ||
  134. vlan_dev_priv(dev)->flags & VLAN_FLAG_REORDER_HDR) {
  135. u16 vlan_tci;
  136. vlan_tci = vlan_dev_priv(dev)->vlan_id;
  137. vlan_tci |= vlan_dev_get_egress_qos_mask(dev, skb);
  138. skb = __vlan_hwaccel_put_tag(skb, vlan_tci);
  139. }
  140. skb_set_dev(skb, vlan_dev_priv(dev)->real_dev);
  141. len = skb->len;
  142. if (netpoll_tx_running(dev))
  143. return skb->dev->netdev_ops->ndo_start_xmit(skb, skb->dev);
  144. ret = dev_queue_xmit(skb);
  145. if (likely(ret == NET_XMIT_SUCCESS || ret == NET_XMIT_CN)) {
  146. struct vlan_pcpu_stats *stats;
  147. stats = this_cpu_ptr(vlan_dev_priv(dev)->vlan_pcpu_stats);
  148. u64_stats_update_begin(&stats->syncp);
  149. stats->tx_packets++;
  150. stats->tx_bytes += len;
  151. u64_stats_update_end(&stats->syncp);
  152. } else {
  153. this_cpu_inc(vlan_dev_priv(dev)->vlan_pcpu_stats->tx_dropped);
  154. }
  155. return ret;
  156. }
  157. static int vlan_dev_change_mtu(struct net_device *dev, int new_mtu)
  158. {
  159. /* TODO: gotta make sure the underlying layer can handle it,
  160. * maybe an IFF_VLAN_CAPABLE flag for devices?
  161. */
  162. if (vlan_dev_priv(dev)->real_dev->mtu < new_mtu)
  163. return -ERANGE;
  164. dev->mtu = new_mtu;
  165. return 0;
  166. }
  167. void vlan_dev_set_ingress_priority(const struct net_device *dev,
  168. u32 skb_prio, u16 vlan_prio)
  169. {
  170. struct vlan_dev_priv *vlan = vlan_dev_priv(dev);
  171. if (vlan->ingress_priority_map[vlan_prio & 0x7] && !skb_prio)
  172. vlan->nr_ingress_mappings--;
  173. else if (!vlan->ingress_priority_map[vlan_prio & 0x7] && skb_prio)
  174. vlan->nr_ingress_mappings++;
  175. vlan->ingress_priority_map[vlan_prio & 0x7] = skb_prio;
  176. }
  177. int vlan_dev_set_egress_priority(const struct net_device *dev,
  178. u32 skb_prio, u16 vlan_prio)
  179. {
  180. struct vlan_dev_priv *vlan = vlan_dev_priv(dev);
  181. struct vlan_priority_tci_mapping *mp = NULL;
  182. struct vlan_priority_tci_mapping *np;
  183. u32 vlan_qos = (vlan_prio << VLAN_PRIO_SHIFT) & VLAN_PRIO_MASK;
  184. /* See if a priority mapping exists.. */
  185. mp = vlan->egress_priority_map[skb_prio & 0xF];
  186. while (mp) {
  187. if (mp->priority == skb_prio) {
  188. if (mp->vlan_qos && !vlan_qos)
  189. vlan->nr_egress_mappings--;
  190. else if (!mp->vlan_qos && vlan_qos)
  191. vlan->nr_egress_mappings++;
  192. mp->vlan_qos = vlan_qos;
  193. return 0;
  194. }
  195. mp = mp->next;
  196. }
  197. /* Create a new mapping then. */
  198. mp = vlan->egress_priority_map[skb_prio & 0xF];
  199. np = kmalloc(sizeof(struct vlan_priority_tci_mapping), GFP_KERNEL);
  200. if (!np)
  201. return -ENOBUFS;
  202. np->next = mp;
  203. np->priority = skb_prio;
  204. np->vlan_qos = vlan_qos;
  205. vlan->egress_priority_map[skb_prio & 0xF] = np;
  206. if (vlan_qos)
  207. vlan->nr_egress_mappings++;
  208. return 0;
  209. }
  210. /* Flags are defined in the vlan_flags enum in include/linux/if_vlan.h file. */
  211. int vlan_dev_change_flags(const struct net_device *dev, u32 flags, u32 mask)
  212. {
  213. struct vlan_dev_priv *vlan = vlan_dev_priv(dev);
  214. u32 old_flags = vlan->flags;
  215. if (mask & ~(VLAN_FLAG_REORDER_HDR | VLAN_FLAG_GVRP |
  216. VLAN_FLAG_LOOSE_BINDING))
  217. return -EINVAL;
  218. vlan->flags = (old_flags & ~mask) | (flags & mask);
  219. if (netif_running(dev) && (vlan->flags ^ old_flags) & VLAN_FLAG_GVRP) {
  220. if (vlan->flags & VLAN_FLAG_GVRP)
  221. vlan_gvrp_request_join(dev);
  222. else
  223. vlan_gvrp_request_leave(dev);
  224. }
  225. return 0;
  226. }
  227. void vlan_dev_get_realdev_name(const struct net_device *dev, char *result)
  228. {
  229. strncpy(result, vlan_dev_priv(dev)->real_dev->name, 23);
  230. }
  231. static int vlan_dev_open(struct net_device *dev)
  232. {
  233. struct vlan_dev_priv *vlan = vlan_dev_priv(dev);
  234. struct net_device *real_dev = vlan->real_dev;
  235. int err;
  236. if (!(real_dev->flags & IFF_UP) &&
  237. !(vlan->flags & VLAN_FLAG_LOOSE_BINDING))
  238. return -ENETDOWN;
  239. if (compare_ether_addr(dev->dev_addr, real_dev->dev_addr)) {
  240. err = dev_uc_add(real_dev, dev->dev_addr);
  241. if (err < 0)
  242. goto out;
  243. }
  244. if (dev->flags & IFF_ALLMULTI) {
  245. err = dev_set_allmulti(real_dev, 1);
  246. if (err < 0)
  247. goto del_unicast;
  248. }
  249. if (dev->flags & IFF_PROMISC) {
  250. err = dev_set_promiscuity(real_dev, 1);
  251. if (err < 0)
  252. goto clear_allmulti;
  253. }
  254. memcpy(vlan->real_dev_addr, real_dev->dev_addr, ETH_ALEN);
  255. if (vlan->flags & VLAN_FLAG_GVRP)
  256. vlan_gvrp_request_join(dev);
  257. if (netif_carrier_ok(real_dev))
  258. netif_carrier_on(dev);
  259. return 0;
  260. clear_allmulti:
  261. if (dev->flags & IFF_ALLMULTI)
  262. dev_set_allmulti(real_dev, -1);
  263. del_unicast:
  264. if (compare_ether_addr(dev->dev_addr, real_dev->dev_addr))
  265. dev_uc_del(real_dev, dev->dev_addr);
  266. out:
  267. netif_carrier_off(dev);
  268. return err;
  269. }
  270. static int vlan_dev_stop(struct net_device *dev)
  271. {
  272. struct vlan_dev_priv *vlan = vlan_dev_priv(dev);
  273. struct net_device *real_dev = vlan->real_dev;
  274. dev_mc_unsync(real_dev, dev);
  275. dev_uc_unsync(real_dev, dev);
  276. if (dev->flags & IFF_ALLMULTI)
  277. dev_set_allmulti(real_dev, -1);
  278. if (dev->flags & IFF_PROMISC)
  279. dev_set_promiscuity(real_dev, -1);
  280. if (compare_ether_addr(dev->dev_addr, real_dev->dev_addr))
  281. dev_uc_del(real_dev, dev->dev_addr);
  282. netif_carrier_off(dev);
  283. return 0;
  284. }
  285. static int vlan_dev_set_mac_address(struct net_device *dev, void *p)
  286. {
  287. struct net_device *real_dev = vlan_dev_priv(dev)->real_dev;
  288. struct sockaddr *addr = p;
  289. int err;
  290. if (!is_valid_ether_addr(addr->sa_data))
  291. return -EADDRNOTAVAIL;
  292. if (!(dev->flags & IFF_UP))
  293. goto out;
  294. if (compare_ether_addr(addr->sa_data, real_dev->dev_addr)) {
  295. err = dev_uc_add(real_dev, addr->sa_data);
  296. if (err < 0)
  297. return err;
  298. }
  299. if (compare_ether_addr(dev->dev_addr, real_dev->dev_addr))
  300. dev_uc_del(real_dev, dev->dev_addr);
  301. out:
  302. memcpy(dev->dev_addr, addr->sa_data, ETH_ALEN);
  303. return 0;
  304. }
  305. static int vlan_dev_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
  306. {
  307. struct net_device *real_dev = vlan_dev_priv(dev)->real_dev;
  308. const struct net_device_ops *ops = real_dev->netdev_ops;
  309. struct ifreq ifrr;
  310. int err = -EOPNOTSUPP;
  311. strncpy(ifrr.ifr_name, real_dev->name, IFNAMSIZ);
  312. ifrr.ifr_ifru = ifr->ifr_ifru;
  313. switch (cmd) {
  314. case SIOCGMIIPHY:
  315. case SIOCGMIIREG:
  316. case SIOCSMIIREG:
  317. if (netif_device_present(real_dev) && ops->ndo_do_ioctl)
  318. err = ops->ndo_do_ioctl(real_dev, &ifrr, cmd);
  319. break;
  320. }
  321. if (!err)
  322. ifr->ifr_ifru = ifrr.ifr_ifru;
  323. return err;
  324. }
  325. static int vlan_dev_neigh_setup(struct net_device *dev, struct neigh_parms *pa)
  326. {
  327. struct net_device *real_dev = vlan_dev_priv(dev)->real_dev;
  328. const struct net_device_ops *ops = real_dev->netdev_ops;
  329. int err = 0;
  330. if (netif_device_present(real_dev) && ops->ndo_neigh_setup)
  331. err = ops->ndo_neigh_setup(real_dev, pa);
  332. return err;
  333. }
  334. #if defined(CONFIG_FCOE) || defined(CONFIG_FCOE_MODULE)
  335. static int vlan_dev_fcoe_ddp_setup(struct net_device *dev, u16 xid,
  336. struct scatterlist *sgl, unsigned int sgc)
  337. {
  338. struct net_device *real_dev = vlan_dev_priv(dev)->real_dev;
  339. const struct net_device_ops *ops = real_dev->netdev_ops;
  340. int rc = 0;
  341. if (ops->ndo_fcoe_ddp_setup)
  342. rc = ops->ndo_fcoe_ddp_setup(real_dev, xid, sgl, sgc);
  343. return rc;
  344. }
  345. static int vlan_dev_fcoe_ddp_done(struct net_device *dev, u16 xid)
  346. {
  347. struct net_device *real_dev = vlan_dev_priv(dev)->real_dev;
  348. const struct net_device_ops *ops = real_dev->netdev_ops;
  349. int len = 0;
  350. if (ops->ndo_fcoe_ddp_done)
  351. len = ops->ndo_fcoe_ddp_done(real_dev, xid);
  352. return len;
  353. }
  354. static int vlan_dev_fcoe_enable(struct net_device *dev)
  355. {
  356. struct net_device *real_dev = vlan_dev_priv(dev)->real_dev;
  357. const struct net_device_ops *ops = real_dev->netdev_ops;
  358. int rc = -EINVAL;
  359. if (ops->ndo_fcoe_enable)
  360. rc = ops->ndo_fcoe_enable(real_dev);
  361. return rc;
  362. }
  363. static int vlan_dev_fcoe_disable(struct net_device *dev)
  364. {
  365. struct net_device *real_dev = vlan_dev_priv(dev)->real_dev;
  366. const struct net_device_ops *ops = real_dev->netdev_ops;
  367. int rc = -EINVAL;
  368. if (ops->ndo_fcoe_disable)
  369. rc = ops->ndo_fcoe_disable(real_dev);
  370. return rc;
  371. }
  372. static int vlan_dev_fcoe_get_wwn(struct net_device *dev, u64 *wwn, int type)
  373. {
  374. struct net_device *real_dev = vlan_dev_priv(dev)->real_dev;
  375. const struct net_device_ops *ops = real_dev->netdev_ops;
  376. int rc = -EINVAL;
  377. if (ops->ndo_fcoe_get_wwn)
  378. rc = ops->ndo_fcoe_get_wwn(real_dev, wwn, type);
  379. return rc;
  380. }
  381. static int vlan_dev_fcoe_ddp_target(struct net_device *dev, u16 xid,
  382. struct scatterlist *sgl, unsigned int sgc)
  383. {
  384. struct net_device *real_dev = vlan_dev_priv(dev)->real_dev;
  385. const struct net_device_ops *ops = real_dev->netdev_ops;
  386. int rc = 0;
  387. if (ops->ndo_fcoe_ddp_target)
  388. rc = ops->ndo_fcoe_ddp_target(real_dev, xid, sgl, sgc);
  389. return rc;
  390. }
  391. #endif
  392. static void vlan_dev_change_rx_flags(struct net_device *dev, int change)
  393. {
  394. struct net_device *real_dev = vlan_dev_priv(dev)->real_dev;
  395. if (dev->flags & IFF_UP) {
  396. if (change & IFF_ALLMULTI)
  397. dev_set_allmulti(real_dev, dev->flags & IFF_ALLMULTI ? 1 : -1);
  398. if (change & IFF_PROMISC)
  399. dev_set_promiscuity(real_dev, dev->flags & IFF_PROMISC ? 1 : -1);
  400. }
  401. }
  402. static void vlan_dev_set_rx_mode(struct net_device *vlan_dev)
  403. {
  404. dev_mc_sync(vlan_dev_priv(vlan_dev)->real_dev, vlan_dev);
  405. dev_uc_sync(vlan_dev_priv(vlan_dev)->real_dev, vlan_dev);
  406. }
  407. /*
  408. * vlan network devices have devices nesting below it, and are a special
  409. * "super class" of normal network devices; split their locks off into a
  410. * separate class since they always nest.
  411. */
  412. static struct lock_class_key vlan_netdev_xmit_lock_key;
  413. static struct lock_class_key vlan_netdev_addr_lock_key;
  414. static void vlan_dev_set_lockdep_one(struct net_device *dev,
  415. struct netdev_queue *txq,
  416. void *_subclass)
  417. {
  418. lockdep_set_class_and_subclass(&txq->_xmit_lock,
  419. &vlan_netdev_xmit_lock_key,
  420. *(int *)_subclass);
  421. }
  422. static void vlan_dev_set_lockdep_class(struct net_device *dev, int subclass)
  423. {
  424. lockdep_set_class_and_subclass(&dev->addr_list_lock,
  425. &vlan_netdev_addr_lock_key,
  426. subclass);
  427. netdev_for_each_tx_queue(dev, vlan_dev_set_lockdep_one, &subclass);
  428. }
  429. static const struct header_ops vlan_header_ops = {
  430. .create = vlan_dev_hard_header,
  431. .rebuild = vlan_dev_rebuild_header,
  432. .parse = eth_header_parse,
  433. };
  434. static const struct net_device_ops vlan_netdev_ops;
  435. static int vlan_dev_init(struct net_device *dev)
  436. {
  437. struct net_device *real_dev = vlan_dev_priv(dev)->real_dev;
  438. int subclass = 0;
  439. netif_carrier_off(dev);
  440. /* IFF_BROADCAST|IFF_MULTICAST; ??? */
  441. dev->flags = real_dev->flags & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI |
  442. IFF_MASTER | IFF_SLAVE);
  443. dev->iflink = real_dev->ifindex;
  444. dev->state = (real_dev->state & ((1<<__LINK_STATE_NOCARRIER) |
  445. (1<<__LINK_STATE_DORMANT))) |
  446. (1<<__LINK_STATE_PRESENT);
  447. dev->hw_features = NETIF_F_ALL_CSUM | NETIF_F_SG |
  448. NETIF_F_FRAGLIST | NETIF_F_ALL_TSO |
  449. NETIF_F_HIGHDMA | NETIF_F_SCTP_CSUM |
  450. NETIF_F_ALL_FCOE;
  451. dev->features |= real_dev->vlan_features | NETIF_F_LLTX;
  452. dev->gso_max_size = real_dev->gso_max_size;
  453. /* ipv6 shared card related stuff */
  454. dev->dev_id = real_dev->dev_id;
  455. if (is_zero_ether_addr(dev->dev_addr))
  456. memcpy(dev->dev_addr, real_dev->dev_addr, dev->addr_len);
  457. if (is_zero_ether_addr(dev->broadcast))
  458. memcpy(dev->broadcast, real_dev->broadcast, dev->addr_len);
  459. #if defined(CONFIG_FCOE) || defined(CONFIG_FCOE_MODULE)
  460. dev->fcoe_ddp_xid = real_dev->fcoe_ddp_xid;
  461. #endif
  462. dev->needed_headroom = real_dev->needed_headroom;
  463. if (real_dev->features & NETIF_F_HW_VLAN_TX) {
  464. dev->header_ops = real_dev->header_ops;
  465. dev->hard_header_len = real_dev->hard_header_len;
  466. } else {
  467. dev->header_ops = &vlan_header_ops;
  468. dev->hard_header_len = real_dev->hard_header_len + VLAN_HLEN;
  469. }
  470. dev->netdev_ops = &vlan_netdev_ops;
  471. if (is_vlan_dev(real_dev))
  472. subclass = 1;
  473. vlan_dev_set_lockdep_class(dev, subclass);
  474. vlan_dev_priv(dev)->vlan_pcpu_stats = alloc_percpu(struct vlan_pcpu_stats);
  475. if (!vlan_dev_priv(dev)->vlan_pcpu_stats)
  476. return -ENOMEM;
  477. return 0;
  478. }
  479. static void vlan_dev_uninit(struct net_device *dev)
  480. {
  481. struct vlan_priority_tci_mapping *pm;
  482. struct vlan_dev_priv *vlan = vlan_dev_priv(dev);
  483. int i;
  484. free_percpu(vlan->vlan_pcpu_stats);
  485. vlan->vlan_pcpu_stats = NULL;
  486. for (i = 0; i < ARRAY_SIZE(vlan->egress_priority_map); i++) {
  487. while ((pm = vlan->egress_priority_map[i]) != NULL) {
  488. vlan->egress_priority_map[i] = pm->next;
  489. kfree(pm);
  490. }
  491. }
  492. }
  493. static netdev_features_t vlan_dev_fix_features(struct net_device *dev,
  494. netdev_features_t features)
  495. {
  496. struct net_device *real_dev = vlan_dev_priv(dev)->real_dev;
  497. u32 old_features = features;
  498. features &= real_dev->vlan_features;
  499. features |= NETIF_F_RXCSUM;
  500. features &= real_dev->features;
  501. features |= old_features & NETIF_F_SOFT_FEATURES;
  502. features |= NETIF_F_LLTX;
  503. return features;
  504. }
  505. static int vlan_ethtool_get_settings(struct net_device *dev,
  506. struct ethtool_cmd *cmd)
  507. {
  508. const struct vlan_dev_priv *vlan = vlan_dev_priv(dev);
  509. return __ethtool_get_settings(vlan->real_dev, cmd);
  510. }
  511. static void vlan_ethtool_get_drvinfo(struct net_device *dev,
  512. struct ethtool_drvinfo *info)
  513. {
  514. strcpy(info->driver, vlan_fullname);
  515. strcpy(info->version, vlan_version);
  516. strcpy(info->fw_version, "N/A");
  517. }
  518. static struct rtnl_link_stats64 *vlan_dev_get_stats64(struct net_device *dev, struct rtnl_link_stats64 *stats)
  519. {
  520. if (vlan_dev_priv(dev)->vlan_pcpu_stats) {
  521. struct vlan_pcpu_stats *p;
  522. u32 rx_errors = 0, tx_dropped = 0;
  523. int i;
  524. for_each_possible_cpu(i) {
  525. u64 rxpackets, rxbytes, rxmulticast, txpackets, txbytes;
  526. unsigned int start;
  527. p = per_cpu_ptr(vlan_dev_priv(dev)->vlan_pcpu_stats, i);
  528. do {
  529. start = u64_stats_fetch_begin_bh(&p->syncp);
  530. rxpackets = p->rx_packets;
  531. rxbytes = p->rx_bytes;
  532. rxmulticast = p->rx_multicast;
  533. txpackets = p->tx_packets;
  534. txbytes = p->tx_bytes;
  535. } while (u64_stats_fetch_retry_bh(&p->syncp, start));
  536. stats->rx_packets += rxpackets;
  537. stats->rx_bytes += rxbytes;
  538. stats->multicast += rxmulticast;
  539. stats->tx_packets += txpackets;
  540. stats->tx_bytes += txbytes;
  541. /* rx_errors & tx_dropped are u32 */
  542. rx_errors += p->rx_errors;
  543. tx_dropped += p->tx_dropped;
  544. }
  545. stats->rx_errors = rx_errors;
  546. stats->tx_dropped = tx_dropped;
  547. }
  548. return stats;
  549. }
  550. #ifdef CONFIG_NET_POLL_CONTROLLER
  551. static void vlan_dev_poll_controller(struct net_device *dev)
  552. {
  553. return;
  554. }
  555. static int vlan_dev_netpoll_setup(struct net_device *dev, struct netpoll_info *npinfo)
  556. {
  557. struct vlan_dev_priv *info = vlan_dev_priv(dev);
  558. struct net_device *real_dev = info->real_dev;
  559. struct netpoll *netpoll;
  560. int err = 0;
  561. netpoll = kzalloc(sizeof(*netpoll), GFP_KERNEL);
  562. err = -ENOMEM;
  563. if (!netpoll)
  564. goto out;
  565. netpoll->dev = real_dev;
  566. strlcpy(netpoll->dev_name, real_dev->name, IFNAMSIZ);
  567. err = __netpoll_setup(netpoll);
  568. if (err) {
  569. kfree(netpoll);
  570. goto out;
  571. }
  572. info->netpoll = netpoll;
  573. out:
  574. return err;
  575. }
  576. static void vlan_dev_netpoll_cleanup(struct net_device *dev)
  577. {
  578. struct vlan_dev_priv *info = vlan_dev_priv(dev);
  579. struct netpoll *netpoll = info->netpoll;
  580. if (!netpoll)
  581. return;
  582. info->netpoll = NULL;
  583. /* Wait for transmitting packets to finish before freeing. */
  584. synchronize_rcu_bh();
  585. __netpoll_cleanup(netpoll);
  586. kfree(netpoll);
  587. }
  588. #endif /* CONFIG_NET_POLL_CONTROLLER */
  589. static const struct ethtool_ops vlan_ethtool_ops = {
  590. .get_settings = vlan_ethtool_get_settings,
  591. .get_drvinfo = vlan_ethtool_get_drvinfo,
  592. .get_link = ethtool_op_get_link,
  593. };
  594. static const struct net_device_ops vlan_netdev_ops = {
  595. .ndo_change_mtu = vlan_dev_change_mtu,
  596. .ndo_init = vlan_dev_init,
  597. .ndo_uninit = vlan_dev_uninit,
  598. .ndo_open = vlan_dev_open,
  599. .ndo_stop = vlan_dev_stop,
  600. .ndo_start_xmit = vlan_dev_hard_start_xmit,
  601. .ndo_validate_addr = eth_validate_addr,
  602. .ndo_set_mac_address = vlan_dev_set_mac_address,
  603. .ndo_set_rx_mode = vlan_dev_set_rx_mode,
  604. .ndo_change_rx_flags = vlan_dev_change_rx_flags,
  605. .ndo_do_ioctl = vlan_dev_ioctl,
  606. .ndo_neigh_setup = vlan_dev_neigh_setup,
  607. .ndo_get_stats64 = vlan_dev_get_stats64,
  608. #if defined(CONFIG_FCOE) || defined(CONFIG_FCOE_MODULE)
  609. .ndo_fcoe_ddp_setup = vlan_dev_fcoe_ddp_setup,
  610. .ndo_fcoe_ddp_done = vlan_dev_fcoe_ddp_done,
  611. .ndo_fcoe_enable = vlan_dev_fcoe_enable,
  612. .ndo_fcoe_disable = vlan_dev_fcoe_disable,
  613. .ndo_fcoe_get_wwn = vlan_dev_fcoe_get_wwn,
  614. .ndo_fcoe_ddp_target = vlan_dev_fcoe_ddp_target,
  615. #endif
  616. #ifdef CONFIG_NET_POLL_CONTROLLER
  617. .ndo_poll_controller = vlan_dev_poll_controller,
  618. .ndo_netpoll_setup = vlan_dev_netpoll_setup,
  619. .ndo_netpoll_cleanup = vlan_dev_netpoll_cleanup,
  620. #endif
  621. .ndo_fix_features = vlan_dev_fix_features,
  622. };
  623. void vlan_setup(struct net_device *dev)
  624. {
  625. ether_setup(dev);
  626. dev->priv_flags |= IFF_802_1Q_VLAN;
  627. dev->priv_flags &= ~(IFF_XMIT_DST_RELEASE | IFF_TX_SKB_SHARING);
  628. dev->tx_queue_len = 0;
  629. dev->netdev_ops = &vlan_netdev_ops;
  630. dev->destructor = free_netdev;
  631. dev->ethtool_ops = &vlan_ethtool_ops;
  632. memset(dev->broadcast, 0, ETH_ALEN);
  633. }