rmap.c 53 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838
  1. /*
  2. * mm/rmap.c - physical to virtual reverse mappings
  3. *
  4. * Copyright 2001, Rik van Riel <riel@conectiva.com.br>
  5. * Released under the General Public License (GPL).
  6. *
  7. * Simple, low overhead reverse mapping scheme.
  8. * Please try to keep this thing as modular as possible.
  9. *
  10. * Provides methods for unmapping each kind of mapped page:
  11. * the anon methods track anonymous pages, and
  12. * the file methods track pages belonging to an inode.
  13. *
  14. * Original design by Rik van Riel <riel@conectiva.com.br> 2001
  15. * File methods by Dave McCracken <dmccr@us.ibm.com> 2003, 2004
  16. * Anonymous methods by Andrea Arcangeli <andrea@suse.de> 2004
  17. * Contributions by Hugh Dickins 2003, 2004
  18. */
  19. /*
  20. * Lock ordering in mm:
  21. *
  22. * inode->i_mutex (while writing or truncating, not reading or faulting)
  23. * mm->mmap_sem
  24. * page->flags PG_locked (lock_page)
  25. * mapping->i_mmap_mutex
  26. * anon_vma->mutex
  27. * mm->page_table_lock or pte_lock
  28. * zone->lru_lock (in mark_page_accessed, isolate_lru_page)
  29. * swap_lock (in swap_duplicate, swap_info_get)
  30. * mmlist_lock (in mmput, drain_mmlist and others)
  31. * mapping->private_lock (in __set_page_dirty_buffers)
  32. * inode->i_lock (in set_page_dirty's __mark_inode_dirty)
  33. * bdi.wb->list_lock (in set_page_dirty's __mark_inode_dirty)
  34. * sb_lock (within inode_lock in fs/fs-writeback.c)
  35. * mapping->tree_lock (widely used, in set_page_dirty,
  36. * in arch-dependent flush_dcache_mmap_lock,
  37. * within bdi.wb->list_lock in __sync_single_inode)
  38. *
  39. * anon_vma->mutex,mapping->i_mutex (memory_failure, collect_procs_anon)
  40. * ->tasklist_lock
  41. * pte map lock
  42. */
  43. #include <linux/mm.h>
  44. #include <linux/pagemap.h>
  45. #include <linux/swap.h>
  46. #include <linux/swapops.h>
  47. #include <linux/slab.h>
  48. #include <linux/init.h>
  49. #include <linux/ksm.h>
  50. #include <linux/rmap.h>
  51. #include <linux/rcupdate.h>
  52. #include <linux/export.h>
  53. #include <linux/memcontrol.h>
  54. #include <linux/mmu_notifier.h>
  55. #include <linux/migrate.h>
  56. #include <linux/hugetlb.h>
  57. #include <asm/tlbflush.h>
  58. #include "internal.h"
  59. static struct kmem_cache *anon_vma_cachep;
  60. static struct kmem_cache *anon_vma_chain_cachep;
  61. static inline struct anon_vma *anon_vma_alloc(void)
  62. {
  63. struct anon_vma *anon_vma;
  64. anon_vma = kmem_cache_alloc(anon_vma_cachep, GFP_KERNEL);
  65. if (anon_vma) {
  66. atomic_set(&anon_vma->refcount, 1);
  67. /*
  68. * Initialise the anon_vma root to point to itself. If called
  69. * from fork, the root will be reset to the parents anon_vma.
  70. */
  71. anon_vma->root = anon_vma;
  72. }
  73. return anon_vma;
  74. }
  75. static inline void anon_vma_free(struct anon_vma *anon_vma)
  76. {
  77. VM_BUG_ON(atomic_read(&anon_vma->refcount));
  78. /*
  79. * Synchronize against page_lock_anon_vma() such that
  80. * we can safely hold the lock without the anon_vma getting
  81. * freed.
  82. *
  83. * Relies on the full mb implied by the atomic_dec_and_test() from
  84. * put_anon_vma() against the acquire barrier implied by
  85. * mutex_trylock() from page_lock_anon_vma(). This orders:
  86. *
  87. * page_lock_anon_vma() VS put_anon_vma()
  88. * mutex_trylock() atomic_dec_and_test()
  89. * LOCK MB
  90. * atomic_read() mutex_is_locked()
  91. *
  92. * LOCK should suffice since the actual taking of the lock must
  93. * happen _before_ what follows.
  94. */
  95. if (mutex_is_locked(&anon_vma->root->mutex)) {
  96. anon_vma_lock(anon_vma);
  97. anon_vma_unlock(anon_vma);
  98. }
  99. kmem_cache_free(anon_vma_cachep, anon_vma);
  100. }
  101. static inline struct anon_vma_chain *anon_vma_chain_alloc(gfp_t gfp)
  102. {
  103. return kmem_cache_alloc(anon_vma_chain_cachep, gfp);
  104. }
  105. static void anon_vma_chain_free(struct anon_vma_chain *anon_vma_chain)
  106. {
  107. kmem_cache_free(anon_vma_chain_cachep, anon_vma_chain);
  108. }
  109. static void anon_vma_chain_link(struct vm_area_struct *vma,
  110. struct anon_vma_chain *avc,
  111. struct anon_vma *anon_vma)
  112. {
  113. avc->vma = vma;
  114. avc->anon_vma = anon_vma;
  115. list_add(&avc->same_vma, &vma->anon_vma_chain);
  116. /*
  117. * It's critical to add new vmas to the tail of the anon_vma,
  118. * see comment in huge_memory.c:__split_huge_page().
  119. */
  120. list_add_tail(&avc->same_anon_vma, &anon_vma->head);
  121. }
  122. /**
  123. * anon_vma_prepare - attach an anon_vma to a memory region
  124. * @vma: the memory region in question
  125. *
  126. * This makes sure the memory mapping described by 'vma' has
  127. * an 'anon_vma' attached to it, so that we can associate the
  128. * anonymous pages mapped into it with that anon_vma.
  129. *
  130. * The common case will be that we already have one, but if
  131. * not we either need to find an adjacent mapping that we
  132. * can re-use the anon_vma from (very common when the only
  133. * reason for splitting a vma has been mprotect()), or we
  134. * allocate a new one.
  135. *
  136. * Anon-vma allocations are very subtle, because we may have
  137. * optimistically looked up an anon_vma in page_lock_anon_vma()
  138. * and that may actually touch the spinlock even in the newly
  139. * allocated vma (it depends on RCU to make sure that the
  140. * anon_vma isn't actually destroyed).
  141. *
  142. * As a result, we need to do proper anon_vma locking even
  143. * for the new allocation. At the same time, we do not want
  144. * to do any locking for the common case of already having
  145. * an anon_vma.
  146. *
  147. * This must be called with the mmap_sem held for reading.
  148. */
  149. int anon_vma_prepare(struct vm_area_struct *vma)
  150. {
  151. struct anon_vma *anon_vma = vma->anon_vma;
  152. struct anon_vma_chain *avc;
  153. might_sleep();
  154. if (unlikely(!anon_vma)) {
  155. struct mm_struct *mm = vma->vm_mm;
  156. struct anon_vma *allocated;
  157. avc = anon_vma_chain_alloc(GFP_KERNEL);
  158. if (!avc)
  159. goto out_enomem;
  160. anon_vma = find_mergeable_anon_vma(vma);
  161. allocated = NULL;
  162. if (!anon_vma) {
  163. anon_vma = anon_vma_alloc();
  164. if (unlikely(!anon_vma))
  165. goto out_enomem_free_avc;
  166. allocated = anon_vma;
  167. }
  168. anon_vma_lock(anon_vma);
  169. /* page_table_lock to protect against threads */
  170. spin_lock(&mm->page_table_lock);
  171. if (likely(!vma->anon_vma)) {
  172. vma->anon_vma = anon_vma;
  173. anon_vma_chain_link(vma, avc, anon_vma);
  174. allocated = NULL;
  175. avc = NULL;
  176. }
  177. spin_unlock(&mm->page_table_lock);
  178. anon_vma_unlock(anon_vma);
  179. if (unlikely(allocated))
  180. put_anon_vma(allocated);
  181. if (unlikely(avc))
  182. anon_vma_chain_free(avc);
  183. }
  184. return 0;
  185. out_enomem_free_avc:
  186. anon_vma_chain_free(avc);
  187. out_enomem:
  188. return -ENOMEM;
  189. }
  190. /*
  191. * This is a useful helper function for locking the anon_vma root as
  192. * we traverse the vma->anon_vma_chain, looping over anon_vma's that
  193. * have the same vma.
  194. *
  195. * Such anon_vma's should have the same root, so you'd expect to see
  196. * just a single mutex_lock for the whole traversal.
  197. */
  198. static inline struct anon_vma *lock_anon_vma_root(struct anon_vma *root, struct anon_vma *anon_vma)
  199. {
  200. struct anon_vma *new_root = anon_vma->root;
  201. if (new_root != root) {
  202. if (WARN_ON_ONCE(root))
  203. mutex_unlock(&root->mutex);
  204. root = new_root;
  205. mutex_lock(&root->mutex);
  206. }
  207. return root;
  208. }
  209. static inline void unlock_anon_vma_root(struct anon_vma *root)
  210. {
  211. if (root)
  212. mutex_unlock(&root->mutex);
  213. }
  214. /*
  215. * Attach the anon_vmas from src to dst.
  216. * Returns 0 on success, -ENOMEM on failure.
  217. */
  218. int anon_vma_clone(struct vm_area_struct *dst, struct vm_area_struct *src)
  219. {
  220. struct anon_vma_chain *avc, *pavc;
  221. struct anon_vma *root = NULL;
  222. list_for_each_entry_reverse(pavc, &src->anon_vma_chain, same_vma) {
  223. struct anon_vma *anon_vma;
  224. avc = anon_vma_chain_alloc(GFP_NOWAIT | __GFP_NOWARN);
  225. if (unlikely(!avc)) {
  226. unlock_anon_vma_root(root);
  227. root = NULL;
  228. avc = anon_vma_chain_alloc(GFP_KERNEL);
  229. if (!avc)
  230. goto enomem_failure;
  231. }
  232. anon_vma = pavc->anon_vma;
  233. root = lock_anon_vma_root(root, anon_vma);
  234. anon_vma_chain_link(dst, avc, anon_vma);
  235. }
  236. unlock_anon_vma_root(root);
  237. return 0;
  238. enomem_failure:
  239. unlink_anon_vmas(dst);
  240. return -ENOMEM;
  241. }
  242. /*
  243. * Some rmap walk that needs to find all ptes/hugepmds without false
  244. * negatives (like migrate and split_huge_page) running concurrent
  245. * with operations that copy or move pagetables (like mremap() and
  246. * fork()) to be safe. They depend on the anon_vma "same_anon_vma"
  247. * list to be in a certain order: the dst_vma must be placed after the
  248. * src_vma in the list. This is always guaranteed by fork() but
  249. * mremap() needs to call this function to enforce it in case the
  250. * dst_vma isn't newly allocated and chained with the anon_vma_clone()
  251. * function but just an extension of a pre-existing vma through
  252. * vma_merge.
  253. *
  254. * NOTE: the same_anon_vma list can still be changed by other
  255. * processes while mremap runs because mremap doesn't hold the
  256. * anon_vma mutex to prevent modifications to the list while it
  257. * runs. All we need to enforce is that the relative order of this
  258. * process vmas isn't changing (we don't care about other vmas
  259. * order). Each vma corresponds to an anon_vma_chain structure so
  260. * there's no risk that other processes calling anon_vma_moveto_tail()
  261. * and changing the same_anon_vma list under mremap() will screw with
  262. * the relative order of this process vmas in the list, because we
  263. * they can't alter the order of any vma that belongs to this
  264. * process. And there can't be another anon_vma_moveto_tail() running
  265. * concurrently with mremap() coming from this process because we hold
  266. * the mmap_sem for the whole mremap(). fork() ordering dependency
  267. * also shouldn't be affected because fork() only cares that the
  268. * parent vmas are placed in the list before the child vmas and
  269. * anon_vma_moveto_tail() won't reorder vmas from either the fork()
  270. * parent or child.
  271. */
  272. void anon_vma_moveto_tail(struct vm_area_struct *dst)
  273. {
  274. struct anon_vma_chain *pavc;
  275. struct anon_vma *root = NULL;
  276. list_for_each_entry_reverse(pavc, &dst->anon_vma_chain, same_vma) {
  277. struct anon_vma *anon_vma = pavc->anon_vma;
  278. VM_BUG_ON(pavc->vma != dst);
  279. root = lock_anon_vma_root(root, anon_vma);
  280. list_del(&pavc->same_anon_vma);
  281. list_add_tail(&pavc->same_anon_vma, &anon_vma->head);
  282. }
  283. unlock_anon_vma_root(root);
  284. }
  285. /*
  286. * Attach vma to its own anon_vma, as well as to the anon_vmas that
  287. * the corresponding VMA in the parent process is attached to.
  288. * Returns 0 on success, non-zero on failure.
  289. */
  290. int anon_vma_fork(struct vm_area_struct *vma, struct vm_area_struct *pvma)
  291. {
  292. struct anon_vma_chain *avc;
  293. struct anon_vma *anon_vma;
  294. /* Don't bother if the parent process has no anon_vma here. */
  295. if (!pvma->anon_vma)
  296. return 0;
  297. /*
  298. * First, attach the new VMA to the parent VMA's anon_vmas,
  299. * so rmap can find non-COWed pages in child processes.
  300. */
  301. if (anon_vma_clone(vma, pvma))
  302. return -ENOMEM;
  303. /* Then add our own anon_vma. */
  304. anon_vma = anon_vma_alloc();
  305. if (!anon_vma)
  306. goto out_error;
  307. avc = anon_vma_chain_alloc(GFP_KERNEL);
  308. if (!avc)
  309. goto out_error_free_anon_vma;
  310. /*
  311. * The root anon_vma's spinlock is the lock actually used when we
  312. * lock any of the anon_vmas in this anon_vma tree.
  313. */
  314. anon_vma->root = pvma->anon_vma->root;
  315. /*
  316. * With refcounts, an anon_vma can stay around longer than the
  317. * process it belongs to. The root anon_vma needs to be pinned until
  318. * this anon_vma is freed, because the lock lives in the root.
  319. */
  320. get_anon_vma(anon_vma->root);
  321. /* Mark this anon_vma as the one where our new (COWed) pages go. */
  322. vma->anon_vma = anon_vma;
  323. anon_vma_lock(anon_vma);
  324. anon_vma_chain_link(vma, avc, anon_vma);
  325. anon_vma_unlock(anon_vma);
  326. return 0;
  327. out_error_free_anon_vma:
  328. put_anon_vma(anon_vma);
  329. out_error:
  330. unlink_anon_vmas(vma);
  331. return -ENOMEM;
  332. }
  333. void unlink_anon_vmas(struct vm_area_struct *vma)
  334. {
  335. struct anon_vma_chain *avc, *next;
  336. struct anon_vma *root = NULL;
  337. /*
  338. * Unlink each anon_vma chained to the VMA. This list is ordered
  339. * from newest to oldest, ensuring the root anon_vma gets freed last.
  340. */
  341. list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) {
  342. struct anon_vma *anon_vma = avc->anon_vma;
  343. root = lock_anon_vma_root(root, anon_vma);
  344. list_del(&avc->same_anon_vma);
  345. /*
  346. * Leave empty anon_vmas on the list - we'll need
  347. * to free them outside the lock.
  348. */
  349. if (list_empty(&anon_vma->head))
  350. continue;
  351. list_del(&avc->same_vma);
  352. anon_vma_chain_free(avc);
  353. }
  354. unlock_anon_vma_root(root);
  355. /*
  356. * Iterate the list once more, it now only contains empty and unlinked
  357. * anon_vmas, destroy them. Could not do before due to __put_anon_vma()
  358. * needing to acquire the anon_vma->root->mutex.
  359. */
  360. list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) {
  361. struct anon_vma *anon_vma = avc->anon_vma;
  362. put_anon_vma(anon_vma);
  363. list_del(&avc->same_vma);
  364. anon_vma_chain_free(avc);
  365. }
  366. }
  367. static void anon_vma_ctor(void *data)
  368. {
  369. struct anon_vma *anon_vma = data;
  370. mutex_init(&anon_vma->mutex);
  371. atomic_set(&anon_vma->refcount, 0);
  372. INIT_LIST_HEAD(&anon_vma->head);
  373. }
  374. void __init anon_vma_init(void)
  375. {
  376. anon_vma_cachep = kmem_cache_create("anon_vma", sizeof(struct anon_vma),
  377. 0, SLAB_DESTROY_BY_RCU|SLAB_PANIC, anon_vma_ctor);
  378. anon_vma_chain_cachep = KMEM_CACHE(anon_vma_chain, SLAB_PANIC);
  379. }
  380. /*
  381. * Getting a lock on a stable anon_vma from a page off the LRU is tricky!
  382. *
  383. * Since there is no serialization what so ever against page_remove_rmap()
  384. * the best this function can do is return a locked anon_vma that might
  385. * have been relevant to this page.
  386. *
  387. * The page might have been remapped to a different anon_vma or the anon_vma
  388. * returned may already be freed (and even reused).
  389. *
  390. * In case it was remapped to a different anon_vma, the new anon_vma will be a
  391. * child of the old anon_vma, and the anon_vma lifetime rules will therefore
  392. * ensure that any anon_vma obtained from the page will still be valid for as
  393. * long as we observe page_mapped() [ hence all those page_mapped() tests ].
  394. *
  395. * All users of this function must be very careful when walking the anon_vma
  396. * chain and verify that the page in question is indeed mapped in it
  397. * [ something equivalent to page_mapped_in_vma() ].
  398. *
  399. * Since anon_vma's slab is DESTROY_BY_RCU and we know from page_remove_rmap()
  400. * that the anon_vma pointer from page->mapping is valid if there is a
  401. * mapcount, we can dereference the anon_vma after observing those.
  402. */
  403. struct anon_vma *page_get_anon_vma(struct page *page)
  404. {
  405. struct anon_vma *anon_vma = NULL;
  406. unsigned long anon_mapping;
  407. rcu_read_lock();
  408. anon_mapping = (unsigned long) ACCESS_ONCE(page->mapping);
  409. if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
  410. goto out;
  411. if (!page_mapped(page))
  412. goto out;
  413. anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
  414. if (!atomic_inc_not_zero(&anon_vma->refcount)) {
  415. anon_vma = NULL;
  416. goto out;
  417. }
  418. /*
  419. * If this page is still mapped, then its anon_vma cannot have been
  420. * freed. But if it has been unmapped, we have no security against the
  421. * anon_vma structure being freed and reused (for another anon_vma:
  422. * SLAB_DESTROY_BY_RCU guarantees that - so the atomic_inc_not_zero()
  423. * above cannot corrupt).
  424. */
  425. if (!page_mapped(page)) {
  426. put_anon_vma(anon_vma);
  427. anon_vma = NULL;
  428. }
  429. out:
  430. rcu_read_unlock();
  431. return anon_vma;
  432. }
  433. /*
  434. * Similar to page_get_anon_vma() except it locks the anon_vma.
  435. *
  436. * Its a little more complex as it tries to keep the fast path to a single
  437. * atomic op -- the trylock. If we fail the trylock, we fall back to getting a
  438. * reference like with page_get_anon_vma() and then block on the mutex.
  439. */
  440. struct anon_vma *page_lock_anon_vma(struct page *page)
  441. {
  442. struct anon_vma *anon_vma = NULL;
  443. struct anon_vma *root_anon_vma;
  444. unsigned long anon_mapping;
  445. rcu_read_lock();
  446. anon_mapping = (unsigned long) ACCESS_ONCE(page->mapping);
  447. if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
  448. goto out;
  449. if (!page_mapped(page))
  450. goto out;
  451. anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
  452. root_anon_vma = ACCESS_ONCE(anon_vma->root);
  453. if (mutex_trylock(&root_anon_vma->mutex)) {
  454. /*
  455. * If the page is still mapped, then this anon_vma is still
  456. * its anon_vma, and holding the mutex ensures that it will
  457. * not go away, see anon_vma_free().
  458. */
  459. if (!page_mapped(page)) {
  460. mutex_unlock(&root_anon_vma->mutex);
  461. anon_vma = NULL;
  462. }
  463. goto out;
  464. }
  465. /* trylock failed, we got to sleep */
  466. if (!atomic_inc_not_zero(&anon_vma->refcount)) {
  467. anon_vma = NULL;
  468. goto out;
  469. }
  470. if (!page_mapped(page)) {
  471. put_anon_vma(anon_vma);
  472. anon_vma = NULL;
  473. goto out;
  474. }
  475. /* we pinned the anon_vma, its safe to sleep */
  476. rcu_read_unlock();
  477. anon_vma_lock(anon_vma);
  478. if (atomic_dec_and_test(&anon_vma->refcount)) {
  479. /*
  480. * Oops, we held the last refcount, release the lock
  481. * and bail -- can't simply use put_anon_vma() because
  482. * we'll deadlock on the anon_vma_lock() recursion.
  483. */
  484. anon_vma_unlock(anon_vma);
  485. __put_anon_vma(anon_vma);
  486. anon_vma = NULL;
  487. }
  488. return anon_vma;
  489. out:
  490. rcu_read_unlock();
  491. return anon_vma;
  492. }
  493. void page_unlock_anon_vma(struct anon_vma *anon_vma)
  494. {
  495. anon_vma_unlock(anon_vma);
  496. }
  497. /*
  498. * At what user virtual address is page expected in @vma?
  499. * Returns virtual address or -EFAULT if page's index/offset is not
  500. * within the range mapped the @vma.
  501. */
  502. inline unsigned long
  503. vma_address(struct page *page, struct vm_area_struct *vma)
  504. {
  505. pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
  506. unsigned long address;
  507. if (unlikely(is_vm_hugetlb_page(vma)))
  508. pgoff = page->index << huge_page_order(page_hstate(page));
  509. address = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
  510. if (unlikely(address < vma->vm_start || address >= vma->vm_end)) {
  511. /* page should be within @vma mapping range */
  512. return -EFAULT;
  513. }
  514. return address;
  515. }
  516. /*
  517. * At what user virtual address is page expected in vma?
  518. * Caller should check the page is actually part of the vma.
  519. */
  520. unsigned long page_address_in_vma(struct page *page, struct vm_area_struct *vma)
  521. {
  522. if (PageAnon(page)) {
  523. struct anon_vma *page__anon_vma = page_anon_vma(page);
  524. /*
  525. * Note: swapoff's unuse_vma() is more efficient with this
  526. * check, and needs it to match anon_vma when KSM is active.
  527. */
  528. if (!vma->anon_vma || !page__anon_vma ||
  529. vma->anon_vma->root != page__anon_vma->root)
  530. return -EFAULT;
  531. } else if (page->mapping && !(vma->vm_flags & VM_NONLINEAR)) {
  532. if (!vma->vm_file ||
  533. vma->vm_file->f_mapping != page->mapping)
  534. return -EFAULT;
  535. } else
  536. return -EFAULT;
  537. return vma_address(page, vma);
  538. }
  539. /*
  540. * Check that @page is mapped at @address into @mm.
  541. *
  542. * If @sync is false, page_check_address may perform a racy check to avoid
  543. * the page table lock when the pte is not present (helpful when reclaiming
  544. * highly shared pages).
  545. *
  546. * On success returns with pte mapped and locked.
  547. */
  548. pte_t *__page_check_address(struct page *page, struct mm_struct *mm,
  549. unsigned long address, spinlock_t **ptlp, int sync)
  550. {
  551. pgd_t *pgd;
  552. pud_t *pud;
  553. pmd_t *pmd;
  554. pte_t *pte;
  555. spinlock_t *ptl;
  556. if (unlikely(PageHuge(page))) {
  557. pte = huge_pte_offset(mm, address);
  558. ptl = &mm->page_table_lock;
  559. goto check;
  560. }
  561. pgd = pgd_offset(mm, address);
  562. if (!pgd_present(*pgd))
  563. return NULL;
  564. pud = pud_offset(pgd, address);
  565. if (!pud_present(*pud))
  566. return NULL;
  567. pmd = pmd_offset(pud, address);
  568. if (!pmd_present(*pmd))
  569. return NULL;
  570. if (pmd_trans_huge(*pmd))
  571. return NULL;
  572. pte = pte_offset_map(pmd, address);
  573. /* Make a quick check before getting the lock */
  574. if (!sync && !pte_present(*pte)) {
  575. pte_unmap(pte);
  576. return NULL;
  577. }
  578. ptl = pte_lockptr(mm, pmd);
  579. check:
  580. spin_lock(ptl);
  581. if (pte_present(*pte) && page_to_pfn(page) == pte_pfn(*pte)) {
  582. *ptlp = ptl;
  583. return pte;
  584. }
  585. pte_unmap_unlock(pte, ptl);
  586. return NULL;
  587. }
  588. /**
  589. * page_mapped_in_vma - check whether a page is really mapped in a VMA
  590. * @page: the page to test
  591. * @vma: the VMA to test
  592. *
  593. * Returns 1 if the page is mapped into the page tables of the VMA, 0
  594. * if the page is not mapped into the page tables of this VMA. Only
  595. * valid for normal file or anonymous VMAs.
  596. */
  597. int page_mapped_in_vma(struct page *page, struct vm_area_struct *vma)
  598. {
  599. unsigned long address;
  600. pte_t *pte;
  601. spinlock_t *ptl;
  602. address = vma_address(page, vma);
  603. if (address == -EFAULT) /* out of vma range */
  604. return 0;
  605. pte = page_check_address(page, vma->vm_mm, address, &ptl, 1);
  606. if (!pte) /* the page is not in this mm */
  607. return 0;
  608. pte_unmap_unlock(pte, ptl);
  609. return 1;
  610. }
  611. /*
  612. * Subfunctions of page_referenced: page_referenced_one called
  613. * repeatedly from either page_referenced_anon or page_referenced_file.
  614. */
  615. int page_referenced_one(struct page *page, struct vm_area_struct *vma,
  616. unsigned long address, unsigned int *mapcount,
  617. unsigned long *vm_flags)
  618. {
  619. struct mm_struct *mm = vma->vm_mm;
  620. int referenced = 0;
  621. if (unlikely(PageTransHuge(page))) {
  622. pmd_t *pmd;
  623. spin_lock(&mm->page_table_lock);
  624. /*
  625. * rmap might return false positives; we must filter
  626. * these out using page_check_address_pmd().
  627. */
  628. pmd = page_check_address_pmd(page, mm, address,
  629. PAGE_CHECK_ADDRESS_PMD_FLAG);
  630. if (!pmd) {
  631. spin_unlock(&mm->page_table_lock);
  632. goto out;
  633. }
  634. if (vma->vm_flags & VM_LOCKED) {
  635. spin_unlock(&mm->page_table_lock);
  636. *mapcount = 0; /* break early from loop */
  637. *vm_flags |= VM_LOCKED;
  638. goto out;
  639. }
  640. /* go ahead even if the pmd is pmd_trans_splitting() */
  641. if (pmdp_clear_flush_young_notify(vma, address, pmd))
  642. referenced++;
  643. spin_unlock(&mm->page_table_lock);
  644. } else {
  645. pte_t *pte;
  646. spinlock_t *ptl;
  647. /*
  648. * rmap might return false positives; we must filter
  649. * these out using page_check_address().
  650. */
  651. pte = page_check_address(page, mm, address, &ptl, 0);
  652. if (!pte)
  653. goto out;
  654. if (vma->vm_flags & VM_LOCKED) {
  655. pte_unmap_unlock(pte, ptl);
  656. *mapcount = 0; /* break early from loop */
  657. *vm_flags |= VM_LOCKED;
  658. goto out;
  659. }
  660. if (ptep_clear_flush_young_notify(vma, address, pte)) {
  661. /*
  662. * Don't treat a reference through a sequentially read
  663. * mapping as such. If the page has been used in
  664. * another mapping, we will catch it; if this other
  665. * mapping is already gone, the unmap path will have
  666. * set PG_referenced or activated the page.
  667. */
  668. if (likely(!VM_SequentialReadHint(vma)))
  669. referenced++;
  670. }
  671. pte_unmap_unlock(pte, ptl);
  672. }
  673. /* Pretend the page is referenced if the task has the
  674. swap token and is in the middle of a page fault. */
  675. if (mm != current->mm && has_swap_token(mm) &&
  676. rwsem_is_locked(&mm->mmap_sem))
  677. referenced++;
  678. (*mapcount)--;
  679. if (referenced)
  680. *vm_flags |= vma->vm_flags;
  681. out:
  682. return referenced;
  683. }
  684. static int page_referenced_anon(struct page *page,
  685. struct mem_cgroup *memcg,
  686. unsigned long *vm_flags)
  687. {
  688. unsigned int mapcount;
  689. struct anon_vma *anon_vma;
  690. struct anon_vma_chain *avc;
  691. int referenced = 0;
  692. anon_vma = page_lock_anon_vma(page);
  693. if (!anon_vma)
  694. return referenced;
  695. mapcount = page_mapcount(page);
  696. list_for_each_entry(avc, &anon_vma->head, same_anon_vma) {
  697. struct vm_area_struct *vma = avc->vma;
  698. unsigned long address = vma_address(page, vma);
  699. if (address == -EFAULT)
  700. continue;
  701. /*
  702. * If we are reclaiming on behalf of a cgroup, skip
  703. * counting on behalf of references from different
  704. * cgroups
  705. */
  706. if (memcg && !mm_match_cgroup(vma->vm_mm, memcg))
  707. continue;
  708. referenced += page_referenced_one(page, vma, address,
  709. &mapcount, vm_flags);
  710. if (!mapcount)
  711. break;
  712. }
  713. page_unlock_anon_vma(anon_vma);
  714. return referenced;
  715. }
  716. /**
  717. * page_referenced_file - referenced check for object-based rmap
  718. * @page: the page we're checking references on.
  719. * @memcg: target memory control group
  720. * @vm_flags: collect encountered vma->vm_flags who actually referenced the page
  721. *
  722. * For an object-based mapped page, find all the places it is mapped and
  723. * check/clear the referenced flag. This is done by following the page->mapping
  724. * pointer, then walking the chain of vmas it holds. It returns the number
  725. * of references it found.
  726. *
  727. * This function is only called from page_referenced for object-based pages.
  728. */
  729. static int page_referenced_file(struct page *page,
  730. struct mem_cgroup *memcg,
  731. unsigned long *vm_flags)
  732. {
  733. unsigned int mapcount;
  734. struct address_space *mapping = page->mapping;
  735. pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
  736. struct vm_area_struct *vma;
  737. struct prio_tree_iter iter;
  738. int referenced = 0;
  739. /*
  740. * The caller's checks on page->mapping and !PageAnon have made
  741. * sure that this is a file page: the check for page->mapping
  742. * excludes the case just before it gets set on an anon page.
  743. */
  744. BUG_ON(PageAnon(page));
  745. /*
  746. * The page lock not only makes sure that page->mapping cannot
  747. * suddenly be NULLified by truncation, it makes sure that the
  748. * structure at mapping cannot be freed and reused yet,
  749. * so we can safely take mapping->i_mmap_mutex.
  750. */
  751. BUG_ON(!PageLocked(page));
  752. mutex_lock(&mapping->i_mmap_mutex);
  753. /*
  754. * i_mmap_mutex does not stabilize mapcount at all, but mapcount
  755. * is more likely to be accurate if we note it after spinning.
  756. */
  757. mapcount = page_mapcount(page);
  758. vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
  759. unsigned long address = vma_address(page, vma);
  760. if (address == -EFAULT)
  761. continue;
  762. /*
  763. * If we are reclaiming on behalf of a cgroup, skip
  764. * counting on behalf of references from different
  765. * cgroups
  766. */
  767. if (memcg && !mm_match_cgroup(vma->vm_mm, memcg))
  768. continue;
  769. referenced += page_referenced_one(page, vma, address,
  770. &mapcount, vm_flags);
  771. if (!mapcount)
  772. break;
  773. }
  774. mutex_unlock(&mapping->i_mmap_mutex);
  775. return referenced;
  776. }
  777. /**
  778. * page_referenced - test if the page was referenced
  779. * @page: the page to test
  780. * @is_locked: caller holds lock on the page
  781. * @memcg: target memory cgroup
  782. * @vm_flags: collect encountered vma->vm_flags who actually referenced the page
  783. *
  784. * Quick test_and_clear_referenced for all mappings to a page,
  785. * returns the number of ptes which referenced the page.
  786. */
  787. int page_referenced(struct page *page,
  788. int is_locked,
  789. struct mem_cgroup *memcg,
  790. unsigned long *vm_flags)
  791. {
  792. int referenced = 0;
  793. int we_locked = 0;
  794. *vm_flags = 0;
  795. if (page_mapped(page) && page_rmapping(page)) {
  796. if (!is_locked && (!PageAnon(page) || PageKsm(page))) {
  797. we_locked = trylock_page(page);
  798. if (!we_locked) {
  799. referenced++;
  800. goto out;
  801. }
  802. }
  803. if (unlikely(PageKsm(page)))
  804. referenced += page_referenced_ksm(page, memcg,
  805. vm_flags);
  806. else if (PageAnon(page))
  807. referenced += page_referenced_anon(page, memcg,
  808. vm_flags);
  809. else if (page->mapping)
  810. referenced += page_referenced_file(page, memcg,
  811. vm_flags);
  812. if (we_locked)
  813. unlock_page(page);
  814. if (page_test_and_clear_young(page_to_pfn(page)))
  815. referenced++;
  816. }
  817. out:
  818. return referenced;
  819. }
  820. static int page_mkclean_one(struct page *page, struct vm_area_struct *vma,
  821. unsigned long address)
  822. {
  823. struct mm_struct *mm = vma->vm_mm;
  824. pte_t *pte;
  825. spinlock_t *ptl;
  826. int ret = 0;
  827. pte = page_check_address(page, mm, address, &ptl, 1);
  828. if (!pte)
  829. goto out;
  830. if (pte_dirty(*pte) || pte_write(*pte)) {
  831. pte_t entry;
  832. flush_cache_page(vma, address, pte_pfn(*pte));
  833. entry = ptep_clear_flush_notify(vma, address, pte);
  834. entry = pte_wrprotect(entry);
  835. entry = pte_mkclean(entry);
  836. set_pte_at(mm, address, pte, entry);
  837. ret = 1;
  838. }
  839. pte_unmap_unlock(pte, ptl);
  840. out:
  841. return ret;
  842. }
  843. static int page_mkclean_file(struct address_space *mapping, struct page *page)
  844. {
  845. pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
  846. struct vm_area_struct *vma;
  847. struct prio_tree_iter iter;
  848. int ret = 0;
  849. BUG_ON(PageAnon(page));
  850. mutex_lock(&mapping->i_mmap_mutex);
  851. vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
  852. if (vma->vm_flags & VM_SHARED) {
  853. unsigned long address = vma_address(page, vma);
  854. if (address == -EFAULT)
  855. continue;
  856. ret += page_mkclean_one(page, vma, address);
  857. }
  858. }
  859. mutex_unlock(&mapping->i_mmap_mutex);
  860. return ret;
  861. }
  862. int page_mkclean(struct page *page)
  863. {
  864. int ret = 0;
  865. BUG_ON(!PageLocked(page));
  866. if (page_mapped(page)) {
  867. struct address_space *mapping = page_mapping(page);
  868. if (mapping) {
  869. ret = page_mkclean_file(mapping, page);
  870. if (page_test_and_clear_dirty(page_to_pfn(page), 1))
  871. ret = 1;
  872. }
  873. }
  874. return ret;
  875. }
  876. EXPORT_SYMBOL_GPL(page_mkclean);
  877. /**
  878. * page_move_anon_rmap - move a page to our anon_vma
  879. * @page: the page to move to our anon_vma
  880. * @vma: the vma the page belongs to
  881. * @address: the user virtual address mapped
  882. *
  883. * When a page belongs exclusively to one process after a COW event,
  884. * that page can be moved into the anon_vma that belongs to just that
  885. * process, so the rmap code will not search the parent or sibling
  886. * processes.
  887. */
  888. void page_move_anon_rmap(struct page *page,
  889. struct vm_area_struct *vma, unsigned long address)
  890. {
  891. struct anon_vma *anon_vma = vma->anon_vma;
  892. VM_BUG_ON(!PageLocked(page));
  893. VM_BUG_ON(!anon_vma);
  894. VM_BUG_ON(page->index != linear_page_index(vma, address));
  895. anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
  896. page->mapping = (struct address_space *) anon_vma;
  897. }
  898. /**
  899. * __page_set_anon_rmap - set up new anonymous rmap
  900. * @page: Page to add to rmap
  901. * @vma: VM area to add page to.
  902. * @address: User virtual address of the mapping
  903. * @exclusive: the page is exclusively owned by the current process
  904. */
  905. static void __page_set_anon_rmap(struct page *page,
  906. struct vm_area_struct *vma, unsigned long address, int exclusive)
  907. {
  908. struct anon_vma *anon_vma = vma->anon_vma;
  909. BUG_ON(!anon_vma);
  910. if (PageAnon(page))
  911. return;
  912. /*
  913. * If the page isn't exclusively mapped into this vma,
  914. * we must use the _oldest_ possible anon_vma for the
  915. * page mapping!
  916. */
  917. if (!exclusive)
  918. anon_vma = anon_vma->root;
  919. anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
  920. page->mapping = (struct address_space *) anon_vma;
  921. page->index = linear_page_index(vma, address);
  922. }
  923. /**
  924. * __page_check_anon_rmap - sanity check anonymous rmap addition
  925. * @page: the page to add the mapping to
  926. * @vma: the vm area in which the mapping is added
  927. * @address: the user virtual address mapped
  928. */
  929. static void __page_check_anon_rmap(struct page *page,
  930. struct vm_area_struct *vma, unsigned long address)
  931. {
  932. #ifdef CONFIG_DEBUG_VM
  933. /*
  934. * The page's anon-rmap details (mapping and index) are guaranteed to
  935. * be set up correctly at this point.
  936. *
  937. * We have exclusion against page_add_anon_rmap because the caller
  938. * always holds the page locked, except if called from page_dup_rmap,
  939. * in which case the page is already known to be setup.
  940. *
  941. * We have exclusion against page_add_new_anon_rmap because those pages
  942. * are initially only visible via the pagetables, and the pte is locked
  943. * over the call to page_add_new_anon_rmap.
  944. */
  945. BUG_ON(page_anon_vma(page)->root != vma->anon_vma->root);
  946. BUG_ON(page->index != linear_page_index(vma, address));
  947. #endif
  948. }
  949. /**
  950. * page_add_anon_rmap - add pte mapping to an anonymous page
  951. * @page: the page to add the mapping to
  952. * @vma: the vm area in which the mapping is added
  953. * @address: the user virtual address mapped
  954. *
  955. * The caller needs to hold the pte lock, and the page must be locked in
  956. * the anon_vma case: to serialize mapping,index checking after setting,
  957. * and to ensure that PageAnon is not being upgraded racily to PageKsm
  958. * (but PageKsm is never downgraded to PageAnon).
  959. */
  960. void page_add_anon_rmap(struct page *page,
  961. struct vm_area_struct *vma, unsigned long address)
  962. {
  963. do_page_add_anon_rmap(page, vma, address, 0);
  964. }
  965. /*
  966. * Special version of the above for do_swap_page, which often runs
  967. * into pages that are exclusively owned by the current process.
  968. * Everybody else should continue to use page_add_anon_rmap above.
  969. */
  970. void do_page_add_anon_rmap(struct page *page,
  971. struct vm_area_struct *vma, unsigned long address, int exclusive)
  972. {
  973. int first = atomic_inc_and_test(&page->_mapcount);
  974. if (first) {
  975. if (!PageTransHuge(page))
  976. __inc_zone_page_state(page, NR_ANON_PAGES);
  977. else
  978. __inc_zone_page_state(page,
  979. NR_ANON_TRANSPARENT_HUGEPAGES);
  980. }
  981. if (unlikely(PageKsm(page)))
  982. return;
  983. VM_BUG_ON(!PageLocked(page));
  984. /* address might be in next vma when migration races vma_adjust */
  985. if (first)
  986. __page_set_anon_rmap(page, vma, address, exclusive);
  987. else
  988. __page_check_anon_rmap(page, vma, address);
  989. }
  990. /**
  991. * page_add_new_anon_rmap - add pte mapping to a new anonymous page
  992. * @page: the page to add the mapping to
  993. * @vma: the vm area in which the mapping is added
  994. * @address: the user virtual address mapped
  995. *
  996. * Same as page_add_anon_rmap but must only be called on *new* pages.
  997. * This means the inc-and-test can be bypassed.
  998. * Page does not have to be locked.
  999. */
  1000. void page_add_new_anon_rmap(struct page *page,
  1001. struct vm_area_struct *vma, unsigned long address)
  1002. {
  1003. VM_BUG_ON(address < vma->vm_start || address >= vma->vm_end);
  1004. SetPageSwapBacked(page);
  1005. atomic_set(&page->_mapcount, 0); /* increment count (starts at -1) */
  1006. if (!PageTransHuge(page))
  1007. __inc_zone_page_state(page, NR_ANON_PAGES);
  1008. else
  1009. __inc_zone_page_state(page, NR_ANON_TRANSPARENT_HUGEPAGES);
  1010. __page_set_anon_rmap(page, vma, address, 1);
  1011. if (page_evictable(page, vma))
  1012. lru_cache_add_lru(page, LRU_ACTIVE_ANON);
  1013. else
  1014. add_page_to_unevictable_list(page);
  1015. }
  1016. /**
  1017. * page_add_file_rmap - add pte mapping to a file page
  1018. * @page: the page to add the mapping to
  1019. *
  1020. * The caller needs to hold the pte lock.
  1021. */
  1022. void page_add_file_rmap(struct page *page)
  1023. {
  1024. bool locked;
  1025. unsigned long flags;
  1026. mem_cgroup_begin_update_page_stat(page, &locked, &flags);
  1027. if (atomic_inc_and_test(&page->_mapcount)) {
  1028. __inc_zone_page_state(page, NR_FILE_MAPPED);
  1029. mem_cgroup_inc_page_stat(page, MEMCG_NR_FILE_MAPPED);
  1030. }
  1031. mem_cgroup_end_update_page_stat(page, &locked, &flags);
  1032. }
  1033. /**
  1034. * page_remove_rmap - take down pte mapping from a page
  1035. * @page: page to remove mapping from
  1036. *
  1037. * The caller needs to hold the pte lock.
  1038. */
  1039. void page_remove_rmap(struct page *page)
  1040. {
  1041. bool anon = PageAnon(page);
  1042. bool locked;
  1043. unsigned long flags;
  1044. /*
  1045. * The anon case has no mem_cgroup page_stat to update; but may
  1046. * uncharge_page() below, where the lock ordering can deadlock if
  1047. * we hold the lock against page_stat move: so avoid it on anon.
  1048. */
  1049. if (!anon)
  1050. mem_cgroup_begin_update_page_stat(page, &locked, &flags);
  1051. /* page still mapped by someone else? */
  1052. if (!atomic_add_negative(-1, &page->_mapcount))
  1053. goto out;
  1054. /*
  1055. * Now that the last pte has gone, s390 must transfer dirty
  1056. * flag from storage key to struct page. We can usually skip
  1057. * this if the page is anon, so about to be freed; but perhaps
  1058. * not if it's in swapcache - there might be another pte slot
  1059. * containing the swap entry, but page not yet written to swap.
  1060. */
  1061. if ((!anon || PageSwapCache(page)) &&
  1062. page_test_and_clear_dirty(page_to_pfn(page), 1))
  1063. set_page_dirty(page);
  1064. /*
  1065. * Hugepages are not counted in NR_ANON_PAGES nor NR_FILE_MAPPED
  1066. * and not charged by memcg for now.
  1067. */
  1068. if (unlikely(PageHuge(page)))
  1069. goto out;
  1070. if (anon) {
  1071. mem_cgroup_uncharge_page(page);
  1072. if (!PageTransHuge(page))
  1073. __dec_zone_page_state(page, NR_ANON_PAGES);
  1074. else
  1075. __dec_zone_page_state(page,
  1076. NR_ANON_TRANSPARENT_HUGEPAGES);
  1077. } else {
  1078. __dec_zone_page_state(page, NR_FILE_MAPPED);
  1079. mem_cgroup_dec_page_stat(page, MEMCG_NR_FILE_MAPPED);
  1080. }
  1081. /*
  1082. * It would be tidy to reset the PageAnon mapping here,
  1083. * but that might overwrite a racing page_add_anon_rmap
  1084. * which increments mapcount after us but sets mapping
  1085. * before us: so leave the reset to free_hot_cold_page,
  1086. * and remember that it's only reliable while mapped.
  1087. * Leaving it set also helps swapoff to reinstate ptes
  1088. * faster for those pages still in swapcache.
  1089. */
  1090. out:
  1091. if (!anon)
  1092. mem_cgroup_end_update_page_stat(page, &locked, &flags);
  1093. }
  1094. /*
  1095. * Subfunctions of try_to_unmap: try_to_unmap_one called
  1096. * repeatedly from try_to_unmap_ksm, try_to_unmap_anon or try_to_unmap_file.
  1097. */
  1098. int try_to_unmap_one(struct page *page, struct vm_area_struct *vma,
  1099. unsigned long address, enum ttu_flags flags)
  1100. {
  1101. struct mm_struct *mm = vma->vm_mm;
  1102. pte_t *pte;
  1103. pte_t pteval;
  1104. spinlock_t *ptl;
  1105. int ret = SWAP_AGAIN;
  1106. pte = page_check_address(page, mm, address, &ptl, 0);
  1107. if (!pte)
  1108. goto out;
  1109. /*
  1110. * If the page is mlock()d, we cannot swap it out.
  1111. * If it's recently referenced (perhaps page_referenced
  1112. * skipped over this mm) then we should reactivate it.
  1113. */
  1114. if (!(flags & TTU_IGNORE_MLOCK)) {
  1115. if (vma->vm_flags & VM_LOCKED)
  1116. goto out_mlock;
  1117. if (TTU_ACTION(flags) == TTU_MUNLOCK)
  1118. goto out_unmap;
  1119. }
  1120. if (!(flags & TTU_IGNORE_ACCESS)) {
  1121. if (ptep_clear_flush_young_notify(vma, address, pte)) {
  1122. ret = SWAP_FAIL;
  1123. goto out_unmap;
  1124. }
  1125. }
  1126. /* Nuke the page table entry. */
  1127. flush_cache_page(vma, address, page_to_pfn(page));
  1128. pteval = ptep_clear_flush_notify(vma, address, pte);
  1129. /* Move the dirty bit to the physical page now the pte is gone. */
  1130. if (pte_dirty(pteval))
  1131. set_page_dirty(page);
  1132. /* Update high watermark before we lower rss */
  1133. update_hiwater_rss(mm);
  1134. if (PageHWPoison(page) && !(flags & TTU_IGNORE_HWPOISON)) {
  1135. if (PageAnon(page))
  1136. dec_mm_counter(mm, MM_ANONPAGES);
  1137. else
  1138. dec_mm_counter(mm, MM_FILEPAGES);
  1139. set_pte_at(mm, address, pte,
  1140. swp_entry_to_pte(make_hwpoison_entry(page)));
  1141. } else if (PageAnon(page)) {
  1142. swp_entry_t entry = { .val = page_private(page) };
  1143. if (PageSwapCache(page)) {
  1144. /*
  1145. * Store the swap location in the pte.
  1146. * See handle_pte_fault() ...
  1147. */
  1148. if (swap_duplicate(entry) < 0) {
  1149. set_pte_at(mm, address, pte, pteval);
  1150. ret = SWAP_FAIL;
  1151. goto out_unmap;
  1152. }
  1153. if (list_empty(&mm->mmlist)) {
  1154. spin_lock(&mmlist_lock);
  1155. if (list_empty(&mm->mmlist))
  1156. list_add(&mm->mmlist, &init_mm.mmlist);
  1157. spin_unlock(&mmlist_lock);
  1158. }
  1159. dec_mm_counter(mm, MM_ANONPAGES);
  1160. inc_mm_counter(mm, MM_SWAPENTS);
  1161. } else if (IS_ENABLED(CONFIG_MIGRATION)) {
  1162. /*
  1163. * Store the pfn of the page in a special migration
  1164. * pte. do_swap_page() will wait until the migration
  1165. * pte is removed and then restart fault handling.
  1166. */
  1167. BUG_ON(TTU_ACTION(flags) != TTU_MIGRATION);
  1168. entry = make_migration_entry(page, pte_write(pteval));
  1169. }
  1170. set_pte_at(mm, address, pte, swp_entry_to_pte(entry));
  1171. BUG_ON(pte_file(*pte));
  1172. } else if (IS_ENABLED(CONFIG_MIGRATION) &&
  1173. (TTU_ACTION(flags) == TTU_MIGRATION)) {
  1174. /* Establish migration entry for a file page */
  1175. swp_entry_t entry;
  1176. entry = make_migration_entry(page, pte_write(pteval));
  1177. set_pte_at(mm, address, pte, swp_entry_to_pte(entry));
  1178. } else
  1179. dec_mm_counter(mm, MM_FILEPAGES);
  1180. page_remove_rmap(page);
  1181. page_cache_release(page);
  1182. out_unmap:
  1183. pte_unmap_unlock(pte, ptl);
  1184. out:
  1185. return ret;
  1186. out_mlock:
  1187. pte_unmap_unlock(pte, ptl);
  1188. /*
  1189. * We need mmap_sem locking, Otherwise VM_LOCKED check makes
  1190. * unstable result and race. Plus, We can't wait here because
  1191. * we now hold anon_vma->mutex or mapping->i_mmap_mutex.
  1192. * if trylock failed, the page remain in evictable lru and later
  1193. * vmscan could retry to move the page to unevictable lru if the
  1194. * page is actually mlocked.
  1195. */
  1196. if (down_read_trylock(&vma->vm_mm->mmap_sem)) {
  1197. if (vma->vm_flags & VM_LOCKED) {
  1198. mlock_vma_page(page);
  1199. ret = SWAP_MLOCK;
  1200. }
  1201. up_read(&vma->vm_mm->mmap_sem);
  1202. }
  1203. return ret;
  1204. }
  1205. /*
  1206. * objrmap doesn't work for nonlinear VMAs because the assumption that
  1207. * offset-into-file correlates with offset-into-virtual-addresses does not hold.
  1208. * Consequently, given a particular page and its ->index, we cannot locate the
  1209. * ptes which are mapping that page without an exhaustive linear search.
  1210. *
  1211. * So what this code does is a mini "virtual scan" of each nonlinear VMA which
  1212. * maps the file to which the target page belongs. The ->vm_private_data field
  1213. * holds the current cursor into that scan. Successive searches will circulate
  1214. * around the vma's virtual address space.
  1215. *
  1216. * So as more replacement pressure is applied to the pages in a nonlinear VMA,
  1217. * more scanning pressure is placed against them as well. Eventually pages
  1218. * will become fully unmapped and are eligible for eviction.
  1219. *
  1220. * For very sparsely populated VMAs this is a little inefficient - chances are
  1221. * there there won't be many ptes located within the scan cluster. In this case
  1222. * maybe we could scan further - to the end of the pte page, perhaps.
  1223. *
  1224. * Mlocked pages: check VM_LOCKED under mmap_sem held for read, if we can
  1225. * acquire it without blocking. If vma locked, mlock the pages in the cluster,
  1226. * rather than unmapping them. If we encounter the "check_page" that vmscan is
  1227. * trying to unmap, return SWAP_MLOCK, else default SWAP_AGAIN.
  1228. */
  1229. #define CLUSTER_SIZE min(32*PAGE_SIZE, PMD_SIZE)
  1230. #define CLUSTER_MASK (~(CLUSTER_SIZE - 1))
  1231. static int try_to_unmap_cluster(unsigned long cursor, unsigned int *mapcount,
  1232. struct vm_area_struct *vma, struct page *check_page)
  1233. {
  1234. struct mm_struct *mm = vma->vm_mm;
  1235. pgd_t *pgd;
  1236. pud_t *pud;
  1237. pmd_t *pmd;
  1238. pte_t *pte;
  1239. pte_t pteval;
  1240. spinlock_t *ptl;
  1241. struct page *page;
  1242. unsigned long address;
  1243. unsigned long end;
  1244. int ret = SWAP_AGAIN;
  1245. int locked_vma = 0;
  1246. address = (vma->vm_start + cursor) & CLUSTER_MASK;
  1247. end = address + CLUSTER_SIZE;
  1248. if (address < vma->vm_start)
  1249. address = vma->vm_start;
  1250. if (end > vma->vm_end)
  1251. end = vma->vm_end;
  1252. pgd = pgd_offset(mm, address);
  1253. if (!pgd_present(*pgd))
  1254. return ret;
  1255. pud = pud_offset(pgd, address);
  1256. if (!pud_present(*pud))
  1257. return ret;
  1258. pmd = pmd_offset(pud, address);
  1259. if (!pmd_present(*pmd))
  1260. return ret;
  1261. /*
  1262. * If we can acquire the mmap_sem for read, and vma is VM_LOCKED,
  1263. * keep the sem while scanning the cluster for mlocking pages.
  1264. */
  1265. if (down_read_trylock(&vma->vm_mm->mmap_sem)) {
  1266. locked_vma = (vma->vm_flags & VM_LOCKED);
  1267. if (!locked_vma)
  1268. up_read(&vma->vm_mm->mmap_sem); /* don't need it */
  1269. }
  1270. pte = pte_offset_map_lock(mm, pmd, address, &ptl);
  1271. /* Update high watermark before we lower rss */
  1272. update_hiwater_rss(mm);
  1273. for (; address < end; pte++, address += PAGE_SIZE) {
  1274. if (!pte_present(*pte))
  1275. continue;
  1276. page = vm_normal_page(vma, address, *pte);
  1277. BUG_ON(!page || PageAnon(page));
  1278. if (locked_vma) {
  1279. mlock_vma_page(page); /* no-op if already mlocked */
  1280. if (page == check_page)
  1281. ret = SWAP_MLOCK;
  1282. continue; /* don't unmap */
  1283. }
  1284. if (ptep_clear_flush_young_notify(vma, address, pte))
  1285. continue;
  1286. /* Nuke the page table entry. */
  1287. flush_cache_page(vma, address, pte_pfn(*pte));
  1288. pteval = ptep_clear_flush_notify(vma, address, pte);
  1289. /* If nonlinear, store the file page offset in the pte. */
  1290. if (page->index != linear_page_index(vma, address))
  1291. set_pte_at(mm, address, pte, pgoff_to_pte(page->index));
  1292. /* Move the dirty bit to the physical page now the pte is gone. */
  1293. if (pte_dirty(pteval))
  1294. set_page_dirty(page);
  1295. page_remove_rmap(page);
  1296. page_cache_release(page);
  1297. dec_mm_counter(mm, MM_FILEPAGES);
  1298. (*mapcount)--;
  1299. }
  1300. pte_unmap_unlock(pte - 1, ptl);
  1301. if (locked_vma)
  1302. up_read(&vma->vm_mm->mmap_sem);
  1303. return ret;
  1304. }
  1305. bool is_vma_temporary_stack(struct vm_area_struct *vma)
  1306. {
  1307. int maybe_stack = vma->vm_flags & (VM_GROWSDOWN | VM_GROWSUP);
  1308. if (!maybe_stack)
  1309. return false;
  1310. if ((vma->vm_flags & VM_STACK_INCOMPLETE_SETUP) ==
  1311. VM_STACK_INCOMPLETE_SETUP)
  1312. return true;
  1313. return false;
  1314. }
  1315. /**
  1316. * try_to_unmap_anon - unmap or unlock anonymous page using the object-based
  1317. * rmap method
  1318. * @page: the page to unmap/unlock
  1319. * @flags: action and flags
  1320. *
  1321. * Find all the mappings of a page using the mapping pointer and the vma chains
  1322. * contained in the anon_vma struct it points to.
  1323. *
  1324. * This function is only called from try_to_unmap/try_to_munlock for
  1325. * anonymous pages.
  1326. * When called from try_to_munlock(), the mmap_sem of the mm containing the vma
  1327. * where the page was found will be held for write. So, we won't recheck
  1328. * vm_flags for that VMA. That should be OK, because that vma shouldn't be
  1329. * 'LOCKED.
  1330. */
  1331. static int try_to_unmap_anon(struct page *page, enum ttu_flags flags)
  1332. {
  1333. struct anon_vma *anon_vma;
  1334. struct anon_vma_chain *avc;
  1335. int ret = SWAP_AGAIN;
  1336. anon_vma = page_lock_anon_vma(page);
  1337. if (!anon_vma)
  1338. return ret;
  1339. list_for_each_entry(avc, &anon_vma->head, same_anon_vma) {
  1340. struct vm_area_struct *vma = avc->vma;
  1341. unsigned long address;
  1342. /*
  1343. * During exec, a temporary VMA is setup and later moved.
  1344. * The VMA is moved under the anon_vma lock but not the
  1345. * page tables leading to a race where migration cannot
  1346. * find the migration ptes. Rather than increasing the
  1347. * locking requirements of exec(), migration skips
  1348. * temporary VMAs until after exec() completes.
  1349. */
  1350. if (IS_ENABLED(CONFIG_MIGRATION) && (flags & TTU_MIGRATION) &&
  1351. is_vma_temporary_stack(vma))
  1352. continue;
  1353. address = vma_address(page, vma);
  1354. if (address == -EFAULT)
  1355. continue;
  1356. ret = try_to_unmap_one(page, vma, address, flags);
  1357. if (ret != SWAP_AGAIN || !page_mapped(page))
  1358. break;
  1359. }
  1360. page_unlock_anon_vma(anon_vma);
  1361. return ret;
  1362. }
  1363. /**
  1364. * try_to_unmap_file - unmap/unlock file page using the object-based rmap method
  1365. * @page: the page to unmap/unlock
  1366. * @flags: action and flags
  1367. *
  1368. * Find all the mappings of a page using the mapping pointer and the vma chains
  1369. * contained in the address_space struct it points to.
  1370. *
  1371. * This function is only called from try_to_unmap/try_to_munlock for
  1372. * object-based pages.
  1373. * When called from try_to_munlock(), the mmap_sem of the mm containing the vma
  1374. * where the page was found will be held for write. So, we won't recheck
  1375. * vm_flags for that VMA. That should be OK, because that vma shouldn't be
  1376. * 'LOCKED.
  1377. */
  1378. static int try_to_unmap_file(struct page *page, enum ttu_flags flags)
  1379. {
  1380. struct address_space *mapping = page->mapping;
  1381. pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
  1382. struct vm_area_struct *vma;
  1383. struct prio_tree_iter iter;
  1384. int ret = SWAP_AGAIN;
  1385. unsigned long cursor;
  1386. unsigned long max_nl_cursor = 0;
  1387. unsigned long max_nl_size = 0;
  1388. unsigned int mapcount;
  1389. mutex_lock(&mapping->i_mmap_mutex);
  1390. vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
  1391. unsigned long address = vma_address(page, vma);
  1392. if (address == -EFAULT)
  1393. continue;
  1394. ret = try_to_unmap_one(page, vma, address, flags);
  1395. if (ret != SWAP_AGAIN || !page_mapped(page))
  1396. goto out;
  1397. }
  1398. if (list_empty(&mapping->i_mmap_nonlinear))
  1399. goto out;
  1400. /*
  1401. * We don't bother to try to find the munlocked page in nonlinears.
  1402. * It's costly. Instead, later, page reclaim logic may call
  1403. * try_to_unmap(TTU_MUNLOCK) and recover PG_mlocked lazily.
  1404. */
  1405. if (TTU_ACTION(flags) == TTU_MUNLOCK)
  1406. goto out;
  1407. list_for_each_entry(vma, &mapping->i_mmap_nonlinear,
  1408. shared.vm_set.list) {
  1409. cursor = (unsigned long) vma->vm_private_data;
  1410. if (cursor > max_nl_cursor)
  1411. max_nl_cursor = cursor;
  1412. cursor = vma->vm_end - vma->vm_start;
  1413. if (cursor > max_nl_size)
  1414. max_nl_size = cursor;
  1415. }
  1416. if (max_nl_size == 0) { /* all nonlinears locked or reserved ? */
  1417. ret = SWAP_FAIL;
  1418. goto out;
  1419. }
  1420. /*
  1421. * We don't try to search for this page in the nonlinear vmas,
  1422. * and page_referenced wouldn't have found it anyway. Instead
  1423. * just walk the nonlinear vmas trying to age and unmap some.
  1424. * The mapcount of the page we came in with is irrelevant,
  1425. * but even so use it as a guide to how hard we should try?
  1426. */
  1427. mapcount = page_mapcount(page);
  1428. if (!mapcount)
  1429. goto out;
  1430. cond_resched();
  1431. max_nl_size = (max_nl_size + CLUSTER_SIZE - 1) & CLUSTER_MASK;
  1432. if (max_nl_cursor == 0)
  1433. max_nl_cursor = CLUSTER_SIZE;
  1434. do {
  1435. list_for_each_entry(vma, &mapping->i_mmap_nonlinear,
  1436. shared.vm_set.list) {
  1437. cursor = (unsigned long) vma->vm_private_data;
  1438. while ( cursor < max_nl_cursor &&
  1439. cursor < vma->vm_end - vma->vm_start) {
  1440. if (try_to_unmap_cluster(cursor, &mapcount,
  1441. vma, page) == SWAP_MLOCK)
  1442. ret = SWAP_MLOCK;
  1443. cursor += CLUSTER_SIZE;
  1444. vma->vm_private_data = (void *) cursor;
  1445. if ((int)mapcount <= 0)
  1446. goto out;
  1447. }
  1448. vma->vm_private_data = (void *) max_nl_cursor;
  1449. }
  1450. cond_resched();
  1451. max_nl_cursor += CLUSTER_SIZE;
  1452. } while (max_nl_cursor <= max_nl_size);
  1453. /*
  1454. * Don't loop forever (perhaps all the remaining pages are
  1455. * in locked vmas). Reset cursor on all unreserved nonlinear
  1456. * vmas, now forgetting on which ones it had fallen behind.
  1457. */
  1458. list_for_each_entry(vma, &mapping->i_mmap_nonlinear, shared.vm_set.list)
  1459. vma->vm_private_data = NULL;
  1460. out:
  1461. mutex_unlock(&mapping->i_mmap_mutex);
  1462. return ret;
  1463. }
  1464. /**
  1465. * try_to_unmap - try to remove all page table mappings to a page
  1466. * @page: the page to get unmapped
  1467. * @flags: action and flags
  1468. *
  1469. * Tries to remove all the page table entries which are mapping this
  1470. * page, used in the pageout path. Caller must hold the page lock.
  1471. * Return values are:
  1472. *
  1473. * SWAP_SUCCESS - we succeeded in removing all mappings
  1474. * SWAP_AGAIN - we missed a mapping, try again later
  1475. * SWAP_FAIL - the page is unswappable
  1476. * SWAP_MLOCK - page is mlocked.
  1477. */
  1478. int try_to_unmap(struct page *page, enum ttu_flags flags)
  1479. {
  1480. int ret;
  1481. BUG_ON(!PageLocked(page));
  1482. VM_BUG_ON(!PageHuge(page) && PageTransHuge(page));
  1483. if (unlikely(PageKsm(page)))
  1484. ret = try_to_unmap_ksm(page, flags);
  1485. else if (PageAnon(page))
  1486. ret = try_to_unmap_anon(page, flags);
  1487. else
  1488. ret = try_to_unmap_file(page, flags);
  1489. if (ret != SWAP_MLOCK && !page_mapped(page))
  1490. ret = SWAP_SUCCESS;
  1491. return ret;
  1492. }
  1493. /**
  1494. * try_to_munlock - try to munlock a page
  1495. * @page: the page to be munlocked
  1496. *
  1497. * Called from munlock code. Checks all of the VMAs mapping the page
  1498. * to make sure nobody else has this page mlocked. The page will be
  1499. * returned with PG_mlocked cleared if no other vmas have it mlocked.
  1500. *
  1501. * Return values are:
  1502. *
  1503. * SWAP_AGAIN - no vma is holding page mlocked, or,
  1504. * SWAP_AGAIN - page mapped in mlocked vma -- couldn't acquire mmap sem
  1505. * SWAP_FAIL - page cannot be located at present
  1506. * SWAP_MLOCK - page is now mlocked.
  1507. */
  1508. int try_to_munlock(struct page *page)
  1509. {
  1510. VM_BUG_ON(!PageLocked(page) || PageLRU(page));
  1511. if (unlikely(PageKsm(page)))
  1512. return try_to_unmap_ksm(page, TTU_MUNLOCK);
  1513. else if (PageAnon(page))
  1514. return try_to_unmap_anon(page, TTU_MUNLOCK);
  1515. else
  1516. return try_to_unmap_file(page, TTU_MUNLOCK);
  1517. }
  1518. void __put_anon_vma(struct anon_vma *anon_vma)
  1519. {
  1520. struct anon_vma *root = anon_vma->root;
  1521. if (root != anon_vma && atomic_dec_and_test(&root->refcount))
  1522. anon_vma_free(root);
  1523. anon_vma_free(anon_vma);
  1524. }
  1525. #ifdef CONFIG_MIGRATION
  1526. /*
  1527. * rmap_walk() and its helpers rmap_walk_anon() and rmap_walk_file():
  1528. * Called by migrate.c to remove migration ptes, but might be used more later.
  1529. */
  1530. static int rmap_walk_anon(struct page *page, int (*rmap_one)(struct page *,
  1531. struct vm_area_struct *, unsigned long, void *), void *arg)
  1532. {
  1533. struct anon_vma *anon_vma;
  1534. struct anon_vma_chain *avc;
  1535. int ret = SWAP_AGAIN;
  1536. /*
  1537. * Note: remove_migration_ptes() cannot use page_lock_anon_vma()
  1538. * because that depends on page_mapped(); but not all its usages
  1539. * are holding mmap_sem. Users without mmap_sem are required to
  1540. * take a reference count to prevent the anon_vma disappearing
  1541. */
  1542. anon_vma = page_anon_vma(page);
  1543. if (!anon_vma)
  1544. return ret;
  1545. anon_vma_lock(anon_vma);
  1546. list_for_each_entry(avc, &anon_vma->head, same_anon_vma) {
  1547. struct vm_area_struct *vma = avc->vma;
  1548. unsigned long address = vma_address(page, vma);
  1549. if (address == -EFAULT)
  1550. continue;
  1551. ret = rmap_one(page, vma, address, arg);
  1552. if (ret != SWAP_AGAIN)
  1553. break;
  1554. }
  1555. anon_vma_unlock(anon_vma);
  1556. return ret;
  1557. }
  1558. static int rmap_walk_file(struct page *page, int (*rmap_one)(struct page *,
  1559. struct vm_area_struct *, unsigned long, void *), void *arg)
  1560. {
  1561. struct address_space *mapping = page->mapping;
  1562. pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
  1563. struct vm_area_struct *vma;
  1564. struct prio_tree_iter iter;
  1565. int ret = SWAP_AGAIN;
  1566. if (!mapping)
  1567. return ret;
  1568. mutex_lock(&mapping->i_mmap_mutex);
  1569. vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
  1570. unsigned long address = vma_address(page, vma);
  1571. if (address == -EFAULT)
  1572. continue;
  1573. ret = rmap_one(page, vma, address, arg);
  1574. if (ret != SWAP_AGAIN)
  1575. break;
  1576. }
  1577. /*
  1578. * No nonlinear handling: being always shared, nonlinear vmas
  1579. * never contain migration ptes. Decide what to do about this
  1580. * limitation to linear when we need rmap_walk() on nonlinear.
  1581. */
  1582. mutex_unlock(&mapping->i_mmap_mutex);
  1583. return ret;
  1584. }
  1585. int rmap_walk(struct page *page, int (*rmap_one)(struct page *,
  1586. struct vm_area_struct *, unsigned long, void *), void *arg)
  1587. {
  1588. VM_BUG_ON(!PageLocked(page));
  1589. if (unlikely(PageKsm(page)))
  1590. return rmap_walk_ksm(page, rmap_one, arg);
  1591. else if (PageAnon(page))
  1592. return rmap_walk_anon(page, rmap_one, arg);
  1593. else
  1594. return rmap_walk_file(page, rmap_one, arg);
  1595. }
  1596. #endif /* CONFIG_MIGRATION */
  1597. #ifdef CONFIG_HUGETLB_PAGE
  1598. /*
  1599. * The following three functions are for anonymous (private mapped) hugepages.
  1600. * Unlike common anonymous pages, anonymous hugepages have no accounting code
  1601. * and no lru code, because we handle hugepages differently from common pages.
  1602. */
  1603. static void __hugepage_set_anon_rmap(struct page *page,
  1604. struct vm_area_struct *vma, unsigned long address, int exclusive)
  1605. {
  1606. struct anon_vma *anon_vma = vma->anon_vma;
  1607. BUG_ON(!anon_vma);
  1608. if (PageAnon(page))
  1609. return;
  1610. if (!exclusive)
  1611. anon_vma = anon_vma->root;
  1612. anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
  1613. page->mapping = (struct address_space *) anon_vma;
  1614. page->index = linear_page_index(vma, address);
  1615. }
  1616. void hugepage_add_anon_rmap(struct page *page,
  1617. struct vm_area_struct *vma, unsigned long address)
  1618. {
  1619. struct anon_vma *anon_vma = vma->anon_vma;
  1620. int first;
  1621. BUG_ON(!PageLocked(page));
  1622. BUG_ON(!anon_vma);
  1623. /* address might be in next vma when migration races vma_adjust */
  1624. first = atomic_inc_and_test(&page->_mapcount);
  1625. if (first)
  1626. __hugepage_set_anon_rmap(page, vma, address, 0);
  1627. }
  1628. void hugepage_add_new_anon_rmap(struct page *page,
  1629. struct vm_area_struct *vma, unsigned long address)
  1630. {
  1631. BUG_ON(address < vma->vm_start || address >= vma->vm_end);
  1632. atomic_set(&page->_mapcount, 0);
  1633. __hugepage_set_anon_rmap(page, vma, address, 1);
  1634. }
  1635. #endif /* CONFIG_HUGETLB_PAGE */