page_alloc.c 157 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696
  1. /*
  2. * linux/mm/page_alloc.c
  3. *
  4. * Manages the free list, the system allocates free pages here.
  5. * Note that kmalloc() lives in slab.c
  6. *
  7. * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
  8. * Swap reorganised 29.12.95, Stephen Tweedie
  9. * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
  10. * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
  11. * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
  12. * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
  13. * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
  14. * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
  15. */
  16. #include <linux/stddef.h>
  17. #include <linux/mm.h>
  18. #include <linux/swap.h>
  19. #include <linux/interrupt.h>
  20. #include <linux/pagemap.h>
  21. #include <linux/jiffies.h>
  22. #include <linux/bootmem.h>
  23. #include <linux/memblock.h>
  24. #include <linux/compiler.h>
  25. #include <linux/kernel.h>
  26. #include <linux/kmemcheck.h>
  27. #include <linux/module.h>
  28. #include <linux/suspend.h>
  29. #include <linux/pagevec.h>
  30. #include <linux/blkdev.h>
  31. #include <linux/slab.h>
  32. #include <linux/ratelimit.h>
  33. #include <linux/oom.h>
  34. #include <linux/notifier.h>
  35. #include <linux/topology.h>
  36. #include <linux/sysctl.h>
  37. #include <linux/cpu.h>
  38. #include <linux/cpuset.h>
  39. #include <linux/memory_hotplug.h>
  40. #include <linux/nodemask.h>
  41. #include <linux/vmalloc.h>
  42. #include <linux/vmstat.h>
  43. #include <linux/mempolicy.h>
  44. #include <linux/stop_machine.h>
  45. #include <linux/sort.h>
  46. #include <linux/pfn.h>
  47. #include <linux/backing-dev.h>
  48. #include <linux/fault-inject.h>
  49. #include <linux/page-isolation.h>
  50. #include <linux/page_cgroup.h>
  51. #include <linux/debugobjects.h>
  52. #include <linux/kmemleak.h>
  53. #include <linux/memory.h>
  54. #include <linux/compaction.h>
  55. #include <trace/events/kmem.h>
  56. #include <linux/ftrace_event.h>
  57. #include <linux/memcontrol.h>
  58. #include <linux/prefetch.h>
  59. #include <linux/page-debug-flags.h>
  60. #include <asm/tlbflush.h>
  61. #include <asm/div64.h>
  62. #include "internal.h"
  63. #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
  64. DEFINE_PER_CPU(int, numa_node);
  65. EXPORT_PER_CPU_SYMBOL(numa_node);
  66. #endif
  67. #ifdef CONFIG_HAVE_MEMORYLESS_NODES
  68. /*
  69. * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
  70. * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
  71. * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
  72. * defined in <linux/topology.h>.
  73. */
  74. DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */
  75. EXPORT_PER_CPU_SYMBOL(_numa_mem_);
  76. #endif
  77. /*
  78. * Array of node states.
  79. */
  80. nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
  81. [N_POSSIBLE] = NODE_MASK_ALL,
  82. [N_ONLINE] = { { [0] = 1UL } },
  83. #ifndef CONFIG_NUMA
  84. [N_NORMAL_MEMORY] = { { [0] = 1UL } },
  85. #ifdef CONFIG_HIGHMEM
  86. [N_HIGH_MEMORY] = { { [0] = 1UL } },
  87. #endif
  88. [N_CPU] = { { [0] = 1UL } },
  89. #endif /* NUMA */
  90. };
  91. EXPORT_SYMBOL(node_states);
  92. unsigned long totalram_pages __read_mostly;
  93. unsigned long totalreserve_pages __read_mostly;
  94. /*
  95. * When calculating the number of globally allowed dirty pages, there
  96. * is a certain number of per-zone reserves that should not be
  97. * considered dirtyable memory. This is the sum of those reserves
  98. * over all existing zones that contribute dirtyable memory.
  99. */
  100. unsigned long dirty_balance_reserve __read_mostly;
  101. int percpu_pagelist_fraction;
  102. gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
  103. #ifdef CONFIG_PM_SLEEP
  104. /*
  105. * The following functions are used by the suspend/hibernate code to temporarily
  106. * change gfp_allowed_mask in order to avoid using I/O during memory allocations
  107. * while devices are suspended. To avoid races with the suspend/hibernate code,
  108. * they should always be called with pm_mutex held (gfp_allowed_mask also should
  109. * only be modified with pm_mutex held, unless the suspend/hibernate code is
  110. * guaranteed not to run in parallel with that modification).
  111. */
  112. static gfp_t saved_gfp_mask;
  113. void pm_restore_gfp_mask(void)
  114. {
  115. WARN_ON(!mutex_is_locked(&pm_mutex));
  116. if (saved_gfp_mask) {
  117. gfp_allowed_mask = saved_gfp_mask;
  118. saved_gfp_mask = 0;
  119. }
  120. }
  121. void pm_restrict_gfp_mask(void)
  122. {
  123. WARN_ON(!mutex_is_locked(&pm_mutex));
  124. WARN_ON(saved_gfp_mask);
  125. saved_gfp_mask = gfp_allowed_mask;
  126. gfp_allowed_mask &= ~GFP_IOFS;
  127. }
  128. bool pm_suspended_storage(void)
  129. {
  130. if ((gfp_allowed_mask & GFP_IOFS) == GFP_IOFS)
  131. return false;
  132. return true;
  133. }
  134. #endif /* CONFIG_PM_SLEEP */
  135. #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
  136. int pageblock_order __read_mostly;
  137. #endif
  138. static void __free_pages_ok(struct page *page, unsigned int order);
  139. /*
  140. * results with 256, 32 in the lowmem_reserve sysctl:
  141. * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
  142. * 1G machine -> (16M dma, 784M normal, 224M high)
  143. * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
  144. * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
  145. * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
  146. *
  147. * TBD: should special case ZONE_DMA32 machines here - in those we normally
  148. * don't need any ZONE_NORMAL reservation
  149. */
  150. int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
  151. #ifdef CONFIG_ZONE_DMA
  152. 256,
  153. #endif
  154. #ifdef CONFIG_ZONE_DMA32
  155. 256,
  156. #endif
  157. #ifdef CONFIG_HIGHMEM
  158. 32,
  159. #endif
  160. 32,
  161. };
  162. EXPORT_SYMBOL(totalram_pages);
  163. static char * const zone_names[MAX_NR_ZONES] = {
  164. #ifdef CONFIG_ZONE_DMA
  165. "DMA",
  166. #endif
  167. #ifdef CONFIG_ZONE_DMA32
  168. "DMA32",
  169. #endif
  170. "Normal",
  171. #ifdef CONFIG_HIGHMEM
  172. "HighMem",
  173. #endif
  174. "Movable",
  175. };
  176. int min_free_kbytes = 1024;
  177. static unsigned long __meminitdata nr_kernel_pages;
  178. static unsigned long __meminitdata nr_all_pages;
  179. static unsigned long __meminitdata dma_reserve;
  180. #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
  181. static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
  182. static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
  183. static unsigned long __initdata required_kernelcore;
  184. static unsigned long __initdata required_movablecore;
  185. static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
  186. /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
  187. int movable_zone;
  188. EXPORT_SYMBOL(movable_zone);
  189. #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
  190. #if MAX_NUMNODES > 1
  191. int nr_node_ids __read_mostly = MAX_NUMNODES;
  192. int nr_online_nodes __read_mostly = 1;
  193. EXPORT_SYMBOL(nr_node_ids);
  194. EXPORT_SYMBOL(nr_online_nodes);
  195. #endif
  196. int page_group_by_mobility_disabled __read_mostly;
  197. static void set_pageblock_migratetype(struct page *page, int migratetype)
  198. {
  199. if (unlikely(page_group_by_mobility_disabled))
  200. migratetype = MIGRATE_UNMOVABLE;
  201. set_pageblock_flags_group(page, (unsigned long)migratetype,
  202. PB_migrate, PB_migrate_end);
  203. }
  204. bool oom_killer_disabled __read_mostly;
  205. #ifdef CONFIG_DEBUG_VM
  206. static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
  207. {
  208. int ret = 0;
  209. unsigned seq;
  210. unsigned long pfn = page_to_pfn(page);
  211. do {
  212. seq = zone_span_seqbegin(zone);
  213. if (pfn >= zone->zone_start_pfn + zone->spanned_pages)
  214. ret = 1;
  215. else if (pfn < zone->zone_start_pfn)
  216. ret = 1;
  217. } while (zone_span_seqretry(zone, seq));
  218. return ret;
  219. }
  220. static int page_is_consistent(struct zone *zone, struct page *page)
  221. {
  222. if (!pfn_valid_within(page_to_pfn(page)))
  223. return 0;
  224. if (zone != page_zone(page))
  225. return 0;
  226. return 1;
  227. }
  228. /*
  229. * Temporary debugging check for pages not lying within a given zone.
  230. */
  231. static int bad_range(struct zone *zone, struct page *page)
  232. {
  233. if (page_outside_zone_boundaries(zone, page))
  234. return 1;
  235. if (!page_is_consistent(zone, page))
  236. return 1;
  237. return 0;
  238. }
  239. #else
  240. static inline int bad_range(struct zone *zone, struct page *page)
  241. {
  242. return 0;
  243. }
  244. #endif
  245. static void bad_page(struct page *page)
  246. {
  247. static unsigned long resume;
  248. static unsigned long nr_shown;
  249. static unsigned long nr_unshown;
  250. /* Don't complain about poisoned pages */
  251. if (PageHWPoison(page)) {
  252. reset_page_mapcount(page); /* remove PageBuddy */
  253. return;
  254. }
  255. /*
  256. * Allow a burst of 60 reports, then keep quiet for that minute;
  257. * or allow a steady drip of one report per second.
  258. */
  259. if (nr_shown == 60) {
  260. if (time_before(jiffies, resume)) {
  261. nr_unshown++;
  262. goto out;
  263. }
  264. if (nr_unshown) {
  265. printk(KERN_ALERT
  266. "BUG: Bad page state: %lu messages suppressed\n",
  267. nr_unshown);
  268. nr_unshown = 0;
  269. }
  270. nr_shown = 0;
  271. }
  272. if (nr_shown++ == 0)
  273. resume = jiffies + 60 * HZ;
  274. printk(KERN_ALERT "BUG: Bad page state in process %s pfn:%05lx\n",
  275. current->comm, page_to_pfn(page));
  276. dump_page(page);
  277. print_modules();
  278. dump_stack();
  279. out:
  280. /* Leave bad fields for debug, except PageBuddy could make trouble */
  281. reset_page_mapcount(page); /* remove PageBuddy */
  282. add_taint(TAINT_BAD_PAGE);
  283. }
  284. /*
  285. * Higher-order pages are called "compound pages". They are structured thusly:
  286. *
  287. * The first PAGE_SIZE page is called the "head page".
  288. *
  289. * The remaining PAGE_SIZE pages are called "tail pages".
  290. *
  291. * All pages have PG_compound set. All tail pages have their ->first_page
  292. * pointing at the head page.
  293. *
  294. * The first tail page's ->lru.next holds the address of the compound page's
  295. * put_page() function. Its ->lru.prev holds the order of allocation.
  296. * This usage means that zero-order pages may not be compound.
  297. */
  298. static void free_compound_page(struct page *page)
  299. {
  300. __free_pages_ok(page, compound_order(page));
  301. }
  302. void prep_compound_page(struct page *page, unsigned long order)
  303. {
  304. int i;
  305. int nr_pages = 1 << order;
  306. set_compound_page_dtor(page, free_compound_page);
  307. set_compound_order(page, order);
  308. __SetPageHead(page);
  309. for (i = 1; i < nr_pages; i++) {
  310. struct page *p = page + i;
  311. __SetPageTail(p);
  312. set_page_count(p, 0);
  313. p->first_page = page;
  314. }
  315. }
  316. /* update __split_huge_page_refcount if you change this function */
  317. static int destroy_compound_page(struct page *page, unsigned long order)
  318. {
  319. int i;
  320. int nr_pages = 1 << order;
  321. int bad = 0;
  322. if (unlikely(compound_order(page) != order) ||
  323. unlikely(!PageHead(page))) {
  324. bad_page(page);
  325. bad++;
  326. }
  327. __ClearPageHead(page);
  328. for (i = 1; i < nr_pages; i++) {
  329. struct page *p = page + i;
  330. if (unlikely(!PageTail(p) || (p->first_page != page))) {
  331. bad_page(page);
  332. bad++;
  333. }
  334. __ClearPageTail(p);
  335. }
  336. return bad;
  337. }
  338. static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags)
  339. {
  340. int i;
  341. /*
  342. * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
  343. * and __GFP_HIGHMEM from hard or soft interrupt context.
  344. */
  345. VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt());
  346. for (i = 0; i < (1 << order); i++)
  347. clear_highpage(page + i);
  348. }
  349. #ifdef CONFIG_DEBUG_PAGEALLOC
  350. unsigned int _debug_guardpage_minorder;
  351. static int __init debug_guardpage_minorder_setup(char *buf)
  352. {
  353. unsigned long res;
  354. if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) {
  355. printk(KERN_ERR "Bad debug_guardpage_minorder value\n");
  356. return 0;
  357. }
  358. _debug_guardpage_minorder = res;
  359. printk(KERN_INFO "Setting debug_guardpage_minorder to %lu\n", res);
  360. return 0;
  361. }
  362. __setup("debug_guardpage_minorder=", debug_guardpage_minorder_setup);
  363. static inline void set_page_guard_flag(struct page *page)
  364. {
  365. __set_bit(PAGE_DEBUG_FLAG_GUARD, &page->debug_flags);
  366. }
  367. static inline void clear_page_guard_flag(struct page *page)
  368. {
  369. __clear_bit(PAGE_DEBUG_FLAG_GUARD, &page->debug_flags);
  370. }
  371. #else
  372. static inline void set_page_guard_flag(struct page *page) { }
  373. static inline void clear_page_guard_flag(struct page *page) { }
  374. #endif
  375. static inline void set_page_order(struct page *page, int order)
  376. {
  377. set_page_private(page, order);
  378. __SetPageBuddy(page);
  379. }
  380. static inline void rmv_page_order(struct page *page)
  381. {
  382. __ClearPageBuddy(page);
  383. set_page_private(page, 0);
  384. }
  385. /*
  386. * Locate the struct page for both the matching buddy in our
  387. * pair (buddy1) and the combined O(n+1) page they form (page).
  388. *
  389. * 1) Any buddy B1 will have an order O twin B2 which satisfies
  390. * the following equation:
  391. * B2 = B1 ^ (1 << O)
  392. * For example, if the starting buddy (buddy2) is #8 its order
  393. * 1 buddy is #10:
  394. * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
  395. *
  396. * 2) Any buddy B will have an order O+1 parent P which
  397. * satisfies the following equation:
  398. * P = B & ~(1 << O)
  399. *
  400. * Assumption: *_mem_map is contiguous at least up to MAX_ORDER
  401. */
  402. static inline unsigned long
  403. __find_buddy_index(unsigned long page_idx, unsigned int order)
  404. {
  405. return page_idx ^ (1 << order);
  406. }
  407. /*
  408. * This function checks whether a page is free && is the buddy
  409. * we can do coalesce a page and its buddy if
  410. * (a) the buddy is not in a hole &&
  411. * (b) the buddy is in the buddy system &&
  412. * (c) a page and its buddy have the same order &&
  413. * (d) a page and its buddy are in the same zone.
  414. *
  415. * For recording whether a page is in the buddy system, we set ->_mapcount -2.
  416. * Setting, clearing, and testing _mapcount -2 is serialized by zone->lock.
  417. *
  418. * For recording page's order, we use page_private(page).
  419. */
  420. static inline int page_is_buddy(struct page *page, struct page *buddy,
  421. int order)
  422. {
  423. if (!pfn_valid_within(page_to_pfn(buddy)))
  424. return 0;
  425. if (page_zone_id(page) != page_zone_id(buddy))
  426. return 0;
  427. if (page_is_guard(buddy) && page_order(buddy) == order) {
  428. VM_BUG_ON(page_count(buddy) != 0);
  429. return 1;
  430. }
  431. if (PageBuddy(buddy) && page_order(buddy) == order) {
  432. VM_BUG_ON(page_count(buddy) != 0);
  433. return 1;
  434. }
  435. return 0;
  436. }
  437. /*
  438. * Freeing function for a buddy system allocator.
  439. *
  440. * The concept of a buddy system is to maintain direct-mapped table
  441. * (containing bit values) for memory blocks of various "orders".
  442. * The bottom level table contains the map for the smallest allocatable
  443. * units of memory (here, pages), and each level above it describes
  444. * pairs of units from the levels below, hence, "buddies".
  445. * At a high level, all that happens here is marking the table entry
  446. * at the bottom level available, and propagating the changes upward
  447. * as necessary, plus some accounting needed to play nicely with other
  448. * parts of the VM system.
  449. * At each level, we keep a list of pages, which are heads of continuous
  450. * free pages of length of (1 << order) and marked with _mapcount -2. Page's
  451. * order is recorded in page_private(page) field.
  452. * So when we are allocating or freeing one, we can derive the state of the
  453. * other. That is, if we allocate a small block, and both were
  454. * free, the remainder of the region must be split into blocks.
  455. * If a block is freed, and its buddy is also free, then this
  456. * triggers coalescing into a block of larger size.
  457. *
  458. * -- wli
  459. */
  460. static inline void __free_one_page(struct page *page,
  461. struct zone *zone, unsigned int order,
  462. int migratetype)
  463. {
  464. unsigned long page_idx;
  465. unsigned long combined_idx;
  466. unsigned long uninitialized_var(buddy_idx);
  467. struct page *buddy;
  468. if (unlikely(PageCompound(page)))
  469. if (unlikely(destroy_compound_page(page, order)))
  470. return;
  471. VM_BUG_ON(migratetype == -1);
  472. page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1);
  473. VM_BUG_ON(page_idx & ((1 << order) - 1));
  474. VM_BUG_ON(bad_range(zone, page));
  475. while (order < MAX_ORDER-1) {
  476. buddy_idx = __find_buddy_index(page_idx, order);
  477. buddy = page + (buddy_idx - page_idx);
  478. if (!page_is_buddy(page, buddy, order))
  479. break;
  480. /*
  481. * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
  482. * merge with it and move up one order.
  483. */
  484. if (page_is_guard(buddy)) {
  485. clear_page_guard_flag(buddy);
  486. set_page_private(page, 0);
  487. __mod_zone_page_state(zone, NR_FREE_PAGES, 1 << order);
  488. } else {
  489. list_del(&buddy->lru);
  490. zone->free_area[order].nr_free--;
  491. rmv_page_order(buddy);
  492. }
  493. combined_idx = buddy_idx & page_idx;
  494. page = page + (combined_idx - page_idx);
  495. page_idx = combined_idx;
  496. order++;
  497. }
  498. set_page_order(page, order);
  499. /*
  500. * If this is not the largest possible page, check if the buddy
  501. * of the next-highest order is free. If it is, it's possible
  502. * that pages are being freed that will coalesce soon. In case,
  503. * that is happening, add the free page to the tail of the list
  504. * so it's less likely to be used soon and more likely to be merged
  505. * as a higher order page
  506. */
  507. if ((order < MAX_ORDER-2) && pfn_valid_within(page_to_pfn(buddy))) {
  508. struct page *higher_page, *higher_buddy;
  509. combined_idx = buddy_idx & page_idx;
  510. higher_page = page + (combined_idx - page_idx);
  511. buddy_idx = __find_buddy_index(combined_idx, order + 1);
  512. higher_buddy = page + (buddy_idx - combined_idx);
  513. if (page_is_buddy(higher_page, higher_buddy, order + 1)) {
  514. list_add_tail(&page->lru,
  515. &zone->free_area[order].free_list[migratetype]);
  516. goto out;
  517. }
  518. }
  519. list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
  520. out:
  521. zone->free_area[order].nr_free++;
  522. }
  523. /*
  524. * free_page_mlock() -- clean up attempts to free and mlocked() page.
  525. * Page should not be on lru, so no need to fix that up.
  526. * free_pages_check() will verify...
  527. */
  528. static inline void free_page_mlock(struct page *page)
  529. {
  530. __dec_zone_page_state(page, NR_MLOCK);
  531. __count_vm_event(UNEVICTABLE_MLOCKFREED);
  532. }
  533. static inline int free_pages_check(struct page *page)
  534. {
  535. if (unlikely(page_mapcount(page) |
  536. (page->mapping != NULL) |
  537. (atomic_read(&page->_count) != 0) |
  538. (page->flags & PAGE_FLAGS_CHECK_AT_FREE) |
  539. (mem_cgroup_bad_page_check(page)))) {
  540. bad_page(page);
  541. return 1;
  542. }
  543. if (page->flags & PAGE_FLAGS_CHECK_AT_PREP)
  544. page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
  545. return 0;
  546. }
  547. /*
  548. * Frees a number of pages from the PCP lists
  549. * Assumes all pages on list are in same zone, and of same order.
  550. * count is the number of pages to free.
  551. *
  552. * If the zone was previously in an "all pages pinned" state then look to
  553. * see if this freeing clears that state.
  554. *
  555. * And clear the zone's pages_scanned counter, to hold off the "all pages are
  556. * pinned" detection logic.
  557. */
  558. static void free_pcppages_bulk(struct zone *zone, int count,
  559. struct per_cpu_pages *pcp)
  560. {
  561. int migratetype = 0;
  562. int batch_free = 0;
  563. int to_free = count;
  564. spin_lock(&zone->lock);
  565. zone->all_unreclaimable = 0;
  566. zone->pages_scanned = 0;
  567. while (to_free) {
  568. struct page *page;
  569. struct list_head *list;
  570. /*
  571. * Remove pages from lists in a round-robin fashion. A
  572. * batch_free count is maintained that is incremented when an
  573. * empty list is encountered. This is so more pages are freed
  574. * off fuller lists instead of spinning excessively around empty
  575. * lists
  576. */
  577. do {
  578. batch_free++;
  579. if (++migratetype == MIGRATE_PCPTYPES)
  580. migratetype = 0;
  581. list = &pcp->lists[migratetype];
  582. } while (list_empty(list));
  583. /* This is the only non-empty list. Free them all. */
  584. if (batch_free == MIGRATE_PCPTYPES)
  585. batch_free = to_free;
  586. do {
  587. page = list_entry(list->prev, struct page, lru);
  588. /* must delete as __free_one_page list manipulates */
  589. list_del(&page->lru);
  590. /* MIGRATE_MOVABLE list may include MIGRATE_RESERVEs */
  591. __free_one_page(page, zone, 0, page_private(page));
  592. trace_mm_page_pcpu_drain(page, 0, page_private(page));
  593. } while (--to_free && --batch_free && !list_empty(list));
  594. }
  595. __mod_zone_page_state(zone, NR_FREE_PAGES, count);
  596. spin_unlock(&zone->lock);
  597. }
  598. static void free_one_page(struct zone *zone, struct page *page, int order,
  599. int migratetype)
  600. {
  601. spin_lock(&zone->lock);
  602. zone->all_unreclaimable = 0;
  603. zone->pages_scanned = 0;
  604. __free_one_page(page, zone, order, migratetype);
  605. __mod_zone_page_state(zone, NR_FREE_PAGES, 1 << order);
  606. spin_unlock(&zone->lock);
  607. }
  608. static bool free_pages_prepare(struct page *page, unsigned int order)
  609. {
  610. int i;
  611. int bad = 0;
  612. trace_mm_page_free(page, order);
  613. kmemcheck_free_shadow(page, order);
  614. if (PageAnon(page))
  615. page->mapping = NULL;
  616. for (i = 0; i < (1 << order); i++)
  617. bad += free_pages_check(page + i);
  618. if (bad)
  619. return false;
  620. if (!PageHighMem(page)) {
  621. debug_check_no_locks_freed(page_address(page),PAGE_SIZE<<order);
  622. debug_check_no_obj_freed(page_address(page),
  623. PAGE_SIZE << order);
  624. }
  625. arch_free_page(page, order);
  626. kernel_map_pages(page, 1 << order, 0);
  627. return true;
  628. }
  629. static void __free_pages_ok(struct page *page, unsigned int order)
  630. {
  631. unsigned long flags;
  632. int wasMlocked = __TestClearPageMlocked(page);
  633. if (!free_pages_prepare(page, order))
  634. return;
  635. local_irq_save(flags);
  636. if (unlikely(wasMlocked))
  637. free_page_mlock(page);
  638. __count_vm_events(PGFREE, 1 << order);
  639. free_one_page(page_zone(page), page, order,
  640. get_pageblock_migratetype(page));
  641. local_irq_restore(flags);
  642. }
  643. void __meminit __free_pages_bootmem(struct page *page, unsigned int order)
  644. {
  645. unsigned int nr_pages = 1 << order;
  646. unsigned int loop;
  647. prefetchw(page);
  648. for (loop = 0; loop < nr_pages; loop++) {
  649. struct page *p = &page[loop];
  650. if (loop + 1 < nr_pages)
  651. prefetchw(p + 1);
  652. __ClearPageReserved(p);
  653. set_page_count(p, 0);
  654. }
  655. set_page_refcounted(page);
  656. __free_pages(page, order);
  657. }
  658. /*
  659. * The order of subdivision here is critical for the IO subsystem.
  660. * Please do not alter this order without good reasons and regression
  661. * testing. Specifically, as large blocks of memory are subdivided,
  662. * the order in which smaller blocks are delivered depends on the order
  663. * they're subdivided in this function. This is the primary factor
  664. * influencing the order in which pages are delivered to the IO
  665. * subsystem according to empirical testing, and this is also justified
  666. * by considering the behavior of a buddy system containing a single
  667. * large block of memory acted on by a series of small allocations.
  668. * This behavior is a critical factor in sglist merging's success.
  669. *
  670. * -- wli
  671. */
  672. static inline void expand(struct zone *zone, struct page *page,
  673. int low, int high, struct free_area *area,
  674. int migratetype)
  675. {
  676. unsigned long size = 1 << high;
  677. while (high > low) {
  678. area--;
  679. high--;
  680. size >>= 1;
  681. VM_BUG_ON(bad_range(zone, &page[size]));
  682. #ifdef CONFIG_DEBUG_PAGEALLOC
  683. if (high < debug_guardpage_minorder()) {
  684. /*
  685. * Mark as guard pages (or page), that will allow to
  686. * merge back to allocator when buddy will be freed.
  687. * Corresponding page table entries will not be touched,
  688. * pages will stay not present in virtual address space
  689. */
  690. INIT_LIST_HEAD(&page[size].lru);
  691. set_page_guard_flag(&page[size]);
  692. set_page_private(&page[size], high);
  693. /* Guard pages are not available for any usage */
  694. __mod_zone_page_state(zone, NR_FREE_PAGES, -(1 << high));
  695. continue;
  696. }
  697. #endif
  698. list_add(&page[size].lru, &area->free_list[migratetype]);
  699. area->nr_free++;
  700. set_page_order(&page[size], high);
  701. }
  702. }
  703. /*
  704. * This page is about to be returned from the page allocator
  705. */
  706. static inline int check_new_page(struct page *page)
  707. {
  708. if (unlikely(page_mapcount(page) |
  709. (page->mapping != NULL) |
  710. (atomic_read(&page->_count) != 0) |
  711. (page->flags & PAGE_FLAGS_CHECK_AT_PREP) |
  712. (mem_cgroup_bad_page_check(page)))) {
  713. bad_page(page);
  714. return 1;
  715. }
  716. return 0;
  717. }
  718. static int prep_new_page(struct page *page, int order, gfp_t gfp_flags)
  719. {
  720. int i;
  721. for (i = 0; i < (1 << order); i++) {
  722. struct page *p = page + i;
  723. if (unlikely(check_new_page(p)))
  724. return 1;
  725. }
  726. set_page_private(page, 0);
  727. set_page_refcounted(page);
  728. arch_alloc_page(page, order);
  729. kernel_map_pages(page, 1 << order, 1);
  730. if (gfp_flags & __GFP_ZERO)
  731. prep_zero_page(page, order, gfp_flags);
  732. if (order && (gfp_flags & __GFP_COMP))
  733. prep_compound_page(page, order);
  734. return 0;
  735. }
  736. /*
  737. * Go through the free lists for the given migratetype and remove
  738. * the smallest available page from the freelists
  739. */
  740. static inline
  741. struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
  742. int migratetype)
  743. {
  744. unsigned int current_order;
  745. struct free_area * area;
  746. struct page *page;
  747. /* Find a page of the appropriate size in the preferred list */
  748. for (current_order = order; current_order < MAX_ORDER; ++current_order) {
  749. area = &(zone->free_area[current_order]);
  750. if (list_empty(&area->free_list[migratetype]))
  751. continue;
  752. page = list_entry(area->free_list[migratetype].next,
  753. struct page, lru);
  754. list_del(&page->lru);
  755. rmv_page_order(page);
  756. area->nr_free--;
  757. expand(zone, page, order, current_order, area, migratetype);
  758. return page;
  759. }
  760. return NULL;
  761. }
  762. /*
  763. * This array describes the order lists are fallen back to when
  764. * the free lists for the desirable migrate type are depleted
  765. */
  766. static int fallbacks[MIGRATE_TYPES][MIGRATE_TYPES-1] = {
  767. [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
  768. [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
  769. [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
  770. [MIGRATE_RESERVE] = { MIGRATE_RESERVE, MIGRATE_RESERVE, MIGRATE_RESERVE }, /* Never used */
  771. };
  772. /*
  773. * Move the free pages in a range to the free lists of the requested type.
  774. * Note that start_page and end_pages are not aligned on a pageblock
  775. * boundary. If alignment is required, use move_freepages_block()
  776. */
  777. static int move_freepages(struct zone *zone,
  778. struct page *start_page, struct page *end_page,
  779. int migratetype)
  780. {
  781. struct page *page;
  782. unsigned long order;
  783. int pages_moved = 0;
  784. #ifndef CONFIG_HOLES_IN_ZONE
  785. /*
  786. * page_zone is not safe to call in this context when
  787. * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
  788. * anyway as we check zone boundaries in move_freepages_block().
  789. * Remove at a later date when no bug reports exist related to
  790. * grouping pages by mobility
  791. */
  792. BUG_ON(page_zone(start_page) != page_zone(end_page));
  793. #endif
  794. for (page = start_page; page <= end_page;) {
  795. /* Make sure we are not inadvertently changing nodes */
  796. VM_BUG_ON(page_to_nid(page) != zone_to_nid(zone));
  797. if (!pfn_valid_within(page_to_pfn(page))) {
  798. page++;
  799. continue;
  800. }
  801. if (!PageBuddy(page)) {
  802. page++;
  803. continue;
  804. }
  805. order = page_order(page);
  806. list_move(&page->lru,
  807. &zone->free_area[order].free_list[migratetype]);
  808. page += 1 << order;
  809. pages_moved += 1 << order;
  810. }
  811. return pages_moved;
  812. }
  813. static int move_freepages_block(struct zone *zone, struct page *page,
  814. int migratetype)
  815. {
  816. unsigned long start_pfn, end_pfn;
  817. struct page *start_page, *end_page;
  818. start_pfn = page_to_pfn(page);
  819. start_pfn = start_pfn & ~(pageblock_nr_pages-1);
  820. start_page = pfn_to_page(start_pfn);
  821. end_page = start_page + pageblock_nr_pages - 1;
  822. end_pfn = start_pfn + pageblock_nr_pages - 1;
  823. /* Do not cross zone boundaries */
  824. if (start_pfn < zone->zone_start_pfn)
  825. start_page = page;
  826. if (end_pfn >= zone->zone_start_pfn + zone->spanned_pages)
  827. return 0;
  828. return move_freepages(zone, start_page, end_page, migratetype);
  829. }
  830. static void change_pageblock_range(struct page *pageblock_page,
  831. int start_order, int migratetype)
  832. {
  833. int nr_pageblocks = 1 << (start_order - pageblock_order);
  834. while (nr_pageblocks--) {
  835. set_pageblock_migratetype(pageblock_page, migratetype);
  836. pageblock_page += pageblock_nr_pages;
  837. }
  838. }
  839. /* Remove an element from the buddy allocator from the fallback list */
  840. static inline struct page *
  841. __rmqueue_fallback(struct zone *zone, int order, int start_migratetype)
  842. {
  843. struct free_area * area;
  844. int current_order;
  845. struct page *page;
  846. int migratetype, i;
  847. /* Find the largest possible block of pages in the other list */
  848. for (current_order = MAX_ORDER-1; current_order >= order;
  849. --current_order) {
  850. for (i = 0; i < MIGRATE_TYPES - 1; i++) {
  851. migratetype = fallbacks[start_migratetype][i];
  852. /* MIGRATE_RESERVE handled later if necessary */
  853. if (migratetype == MIGRATE_RESERVE)
  854. continue;
  855. area = &(zone->free_area[current_order]);
  856. if (list_empty(&area->free_list[migratetype]))
  857. continue;
  858. page = list_entry(area->free_list[migratetype].next,
  859. struct page, lru);
  860. area->nr_free--;
  861. /*
  862. * If breaking a large block of pages, move all free
  863. * pages to the preferred allocation list. If falling
  864. * back for a reclaimable kernel allocation, be more
  865. * aggressive about taking ownership of free pages
  866. */
  867. if (unlikely(current_order >= (pageblock_order >> 1)) ||
  868. start_migratetype == MIGRATE_RECLAIMABLE ||
  869. page_group_by_mobility_disabled) {
  870. unsigned long pages;
  871. pages = move_freepages_block(zone, page,
  872. start_migratetype);
  873. /* Claim the whole block if over half of it is free */
  874. if (pages >= (1 << (pageblock_order-1)) ||
  875. page_group_by_mobility_disabled)
  876. set_pageblock_migratetype(page,
  877. start_migratetype);
  878. migratetype = start_migratetype;
  879. }
  880. /* Remove the page from the freelists */
  881. list_del(&page->lru);
  882. rmv_page_order(page);
  883. /* Take ownership for orders >= pageblock_order */
  884. if (current_order >= pageblock_order)
  885. change_pageblock_range(page, current_order,
  886. start_migratetype);
  887. expand(zone, page, order, current_order, area, migratetype);
  888. trace_mm_page_alloc_extfrag(page, order, current_order,
  889. start_migratetype, migratetype);
  890. return page;
  891. }
  892. }
  893. return NULL;
  894. }
  895. /*
  896. * Do the hard work of removing an element from the buddy allocator.
  897. * Call me with the zone->lock already held.
  898. */
  899. static struct page *__rmqueue(struct zone *zone, unsigned int order,
  900. int migratetype)
  901. {
  902. struct page *page;
  903. retry_reserve:
  904. page = __rmqueue_smallest(zone, order, migratetype);
  905. if (unlikely(!page) && migratetype != MIGRATE_RESERVE) {
  906. page = __rmqueue_fallback(zone, order, migratetype);
  907. /*
  908. * Use MIGRATE_RESERVE rather than fail an allocation. goto
  909. * is used because __rmqueue_smallest is an inline function
  910. * and we want just one call site
  911. */
  912. if (!page) {
  913. migratetype = MIGRATE_RESERVE;
  914. goto retry_reserve;
  915. }
  916. }
  917. trace_mm_page_alloc_zone_locked(page, order, migratetype);
  918. return page;
  919. }
  920. /*
  921. * Obtain a specified number of elements from the buddy allocator, all under
  922. * a single hold of the lock, for efficiency. Add them to the supplied list.
  923. * Returns the number of new pages which were placed at *list.
  924. */
  925. static int rmqueue_bulk(struct zone *zone, unsigned int order,
  926. unsigned long count, struct list_head *list,
  927. int migratetype, int cold)
  928. {
  929. int i;
  930. spin_lock(&zone->lock);
  931. for (i = 0; i < count; ++i) {
  932. struct page *page = __rmqueue(zone, order, migratetype);
  933. if (unlikely(page == NULL))
  934. break;
  935. /*
  936. * Split buddy pages returned by expand() are received here
  937. * in physical page order. The page is added to the callers and
  938. * list and the list head then moves forward. From the callers
  939. * perspective, the linked list is ordered by page number in
  940. * some conditions. This is useful for IO devices that can
  941. * merge IO requests if the physical pages are ordered
  942. * properly.
  943. */
  944. if (likely(cold == 0))
  945. list_add(&page->lru, list);
  946. else
  947. list_add_tail(&page->lru, list);
  948. set_page_private(page, migratetype);
  949. list = &page->lru;
  950. }
  951. __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
  952. spin_unlock(&zone->lock);
  953. return i;
  954. }
  955. #ifdef CONFIG_NUMA
  956. /*
  957. * Called from the vmstat counter updater to drain pagesets of this
  958. * currently executing processor on remote nodes after they have
  959. * expired.
  960. *
  961. * Note that this function must be called with the thread pinned to
  962. * a single processor.
  963. */
  964. void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
  965. {
  966. unsigned long flags;
  967. int to_drain;
  968. local_irq_save(flags);
  969. if (pcp->count >= pcp->batch)
  970. to_drain = pcp->batch;
  971. else
  972. to_drain = pcp->count;
  973. free_pcppages_bulk(zone, to_drain, pcp);
  974. pcp->count -= to_drain;
  975. local_irq_restore(flags);
  976. }
  977. #endif
  978. /*
  979. * Drain pages of the indicated processor.
  980. *
  981. * The processor must either be the current processor and the
  982. * thread pinned to the current processor or a processor that
  983. * is not online.
  984. */
  985. static void drain_pages(unsigned int cpu)
  986. {
  987. unsigned long flags;
  988. struct zone *zone;
  989. for_each_populated_zone(zone) {
  990. struct per_cpu_pageset *pset;
  991. struct per_cpu_pages *pcp;
  992. local_irq_save(flags);
  993. pset = per_cpu_ptr(zone->pageset, cpu);
  994. pcp = &pset->pcp;
  995. if (pcp->count) {
  996. free_pcppages_bulk(zone, pcp->count, pcp);
  997. pcp->count = 0;
  998. }
  999. local_irq_restore(flags);
  1000. }
  1001. }
  1002. /*
  1003. * Spill all of this CPU's per-cpu pages back into the buddy allocator.
  1004. */
  1005. void drain_local_pages(void *arg)
  1006. {
  1007. drain_pages(smp_processor_id());
  1008. }
  1009. /*
  1010. * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
  1011. *
  1012. * Note that this code is protected against sending an IPI to an offline
  1013. * CPU but does not guarantee sending an IPI to newly hotplugged CPUs:
  1014. * on_each_cpu_mask() blocks hotplug and won't talk to offlined CPUs but
  1015. * nothing keeps CPUs from showing up after we populated the cpumask and
  1016. * before the call to on_each_cpu_mask().
  1017. */
  1018. void drain_all_pages(void)
  1019. {
  1020. int cpu;
  1021. struct per_cpu_pageset *pcp;
  1022. struct zone *zone;
  1023. /*
  1024. * Allocate in the BSS so we wont require allocation in
  1025. * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
  1026. */
  1027. static cpumask_t cpus_with_pcps;
  1028. /*
  1029. * We don't care about racing with CPU hotplug event
  1030. * as offline notification will cause the notified
  1031. * cpu to drain that CPU pcps and on_each_cpu_mask
  1032. * disables preemption as part of its processing
  1033. */
  1034. for_each_online_cpu(cpu) {
  1035. bool has_pcps = false;
  1036. for_each_populated_zone(zone) {
  1037. pcp = per_cpu_ptr(zone->pageset, cpu);
  1038. if (pcp->pcp.count) {
  1039. has_pcps = true;
  1040. break;
  1041. }
  1042. }
  1043. if (has_pcps)
  1044. cpumask_set_cpu(cpu, &cpus_with_pcps);
  1045. else
  1046. cpumask_clear_cpu(cpu, &cpus_with_pcps);
  1047. }
  1048. on_each_cpu_mask(&cpus_with_pcps, drain_local_pages, NULL, 1);
  1049. }
  1050. #ifdef CONFIG_HIBERNATION
  1051. void mark_free_pages(struct zone *zone)
  1052. {
  1053. unsigned long pfn, max_zone_pfn;
  1054. unsigned long flags;
  1055. int order, t;
  1056. struct list_head *curr;
  1057. if (!zone->spanned_pages)
  1058. return;
  1059. spin_lock_irqsave(&zone->lock, flags);
  1060. max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
  1061. for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
  1062. if (pfn_valid(pfn)) {
  1063. struct page *page = pfn_to_page(pfn);
  1064. if (!swsusp_page_is_forbidden(page))
  1065. swsusp_unset_page_free(page);
  1066. }
  1067. for_each_migratetype_order(order, t) {
  1068. list_for_each(curr, &zone->free_area[order].free_list[t]) {
  1069. unsigned long i;
  1070. pfn = page_to_pfn(list_entry(curr, struct page, lru));
  1071. for (i = 0; i < (1UL << order); i++)
  1072. swsusp_set_page_free(pfn_to_page(pfn + i));
  1073. }
  1074. }
  1075. spin_unlock_irqrestore(&zone->lock, flags);
  1076. }
  1077. #endif /* CONFIG_PM */
  1078. /*
  1079. * Free a 0-order page
  1080. * cold == 1 ? free a cold page : free a hot page
  1081. */
  1082. void free_hot_cold_page(struct page *page, int cold)
  1083. {
  1084. struct zone *zone = page_zone(page);
  1085. struct per_cpu_pages *pcp;
  1086. unsigned long flags;
  1087. int migratetype;
  1088. int wasMlocked = __TestClearPageMlocked(page);
  1089. if (!free_pages_prepare(page, 0))
  1090. return;
  1091. migratetype = get_pageblock_migratetype(page);
  1092. set_page_private(page, migratetype);
  1093. local_irq_save(flags);
  1094. if (unlikely(wasMlocked))
  1095. free_page_mlock(page);
  1096. __count_vm_event(PGFREE);
  1097. /*
  1098. * We only track unmovable, reclaimable and movable on pcp lists.
  1099. * Free ISOLATE pages back to the allocator because they are being
  1100. * offlined but treat RESERVE as movable pages so we can get those
  1101. * areas back if necessary. Otherwise, we may have to free
  1102. * excessively into the page allocator
  1103. */
  1104. if (migratetype >= MIGRATE_PCPTYPES) {
  1105. if (unlikely(migratetype == MIGRATE_ISOLATE)) {
  1106. free_one_page(zone, page, 0, migratetype);
  1107. goto out;
  1108. }
  1109. migratetype = MIGRATE_MOVABLE;
  1110. }
  1111. pcp = &this_cpu_ptr(zone->pageset)->pcp;
  1112. if (cold)
  1113. list_add_tail(&page->lru, &pcp->lists[migratetype]);
  1114. else
  1115. list_add(&page->lru, &pcp->lists[migratetype]);
  1116. pcp->count++;
  1117. if (pcp->count >= pcp->high) {
  1118. free_pcppages_bulk(zone, pcp->batch, pcp);
  1119. pcp->count -= pcp->batch;
  1120. }
  1121. out:
  1122. local_irq_restore(flags);
  1123. }
  1124. /*
  1125. * Free a list of 0-order pages
  1126. */
  1127. void free_hot_cold_page_list(struct list_head *list, int cold)
  1128. {
  1129. struct page *page, *next;
  1130. list_for_each_entry_safe(page, next, list, lru) {
  1131. trace_mm_page_free_batched(page, cold);
  1132. free_hot_cold_page(page, cold);
  1133. }
  1134. }
  1135. /*
  1136. * split_page takes a non-compound higher-order page, and splits it into
  1137. * n (1<<order) sub-pages: page[0..n]
  1138. * Each sub-page must be freed individually.
  1139. *
  1140. * Note: this is probably too low level an operation for use in drivers.
  1141. * Please consult with lkml before using this in your driver.
  1142. */
  1143. void split_page(struct page *page, unsigned int order)
  1144. {
  1145. int i;
  1146. VM_BUG_ON(PageCompound(page));
  1147. VM_BUG_ON(!page_count(page));
  1148. #ifdef CONFIG_KMEMCHECK
  1149. /*
  1150. * Split shadow pages too, because free(page[0]) would
  1151. * otherwise free the whole shadow.
  1152. */
  1153. if (kmemcheck_page_is_tracked(page))
  1154. split_page(virt_to_page(page[0].shadow), order);
  1155. #endif
  1156. for (i = 1; i < (1 << order); i++)
  1157. set_page_refcounted(page + i);
  1158. }
  1159. /*
  1160. * Similar to split_page except the page is already free. As this is only
  1161. * being used for migration, the migratetype of the block also changes.
  1162. * As this is called with interrupts disabled, the caller is responsible
  1163. * for calling arch_alloc_page() and kernel_map_page() after interrupts
  1164. * are enabled.
  1165. *
  1166. * Note: this is probably too low level an operation for use in drivers.
  1167. * Please consult with lkml before using this in your driver.
  1168. */
  1169. int split_free_page(struct page *page)
  1170. {
  1171. unsigned int order;
  1172. unsigned long watermark;
  1173. struct zone *zone;
  1174. BUG_ON(!PageBuddy(page));
  1175. zone = page_zone(page);
  1176. order = page_order(page);
  1177. /* Obey watermarks as if the page was being allocated */
  1178. watermark = low_wmark_pages(zone) + (1 << order);
  1179. if (!zone_watermark_ok(zone, 0, watermark, 0, 0))
  1180. return 0;
  1181. /* Remove page from free list */
  1182. list_del(&page->lru);
  1183. zone->free_area[order].nr_free--;
  1184. rmv_page_order(page);
  1185. __mod_zone_page_state(zone, NR_FREE_PAGES, -(1UL << order));
  1186. /* Split into individual pages */
  1187. set_page_refcounted(page);
  1188. split_page(page, order);
  1189. if (order >= pageblock_order - 1) {
  1190. struct page *endpage = page + (1 << order) - 1;
  1191. for (; page < endpage; page += pageblock_nr_pages)
  1192. set_pageblock_migratetype(page, MIGRATE_MOVABLE);
  1193. }
  1194. return 1 << order;
  1195. }
  1196. /*
  1197. * Really, prep_compound_page() should be called from __rmqueue_bulk(). But
  1198. * we cheat by calling it from here, in the order > 0 path. Saves a branch
  1199. * or two.
  1200. */
  1201. static inline
  1202. struct page *buffered_rmqueue(struct zone *preferred_zone,
  1203. struct zone *zone, int order, gfp_t gfp_flags,
  1204. int migratetype)
  1205. {
  1206. unsigned long flags;
  1207. struct page *page;
  1208. int cold = !!(gfp_flags & __GFP_COLD);
  1209. again:
  1210. if (likely(order == 0)) {
  1211. struct per_cpu_pages *pcp;
  1212. struct list_head *list;
  1213. local_irq_save(flags);
  1214. pcp = &this_cpu_ptr(zone->pageset)->pcp;
  1215. list = &pcp->lists[migratetype];
  1216. if (list_empty(list)) {
  1217. pcp->count += rmqueue_bulk(zone, 0,
  1218. pcp->batch, list,
  1219. migratetype, cold);
  1220. if (unlikely(list_empty(list)))
  1221. goto failed;
  1222. }
  1223. if (cold)
  1224. page = list_entry(list->prev, struct page, lru);
  1225. else
  1226. page = list_entry(list->next, struct page, lru);
  1227. list_del(&page->lru);
  1228. pcp->count--;
  1229. } else {
  1230. if (unlikely(gfp_flags & __GFP_NOFAIL)) {
  1231. /*
  1232. * __GFP_NOFAIL is not to be used in new code.
  1233. *
  1234. * All __GFP_NOFAIL callers should be fixed so that they
  1235. * properly detect and handle allocation failures.
  1236. *
  1237. * We most definitely don't want callers attempting to
  1238. * allocate greater than order-1 page units with
  1239. * __GFP_NOFAIL.
  1240. */
  1241. WARN_ON_ONCE(order > 1);
  1242. }
  1243. spin_lock_irqsave(&zone->lock, flags);
  1244. page = __rmqueue(zone, order, migratetype);
  1245. spin_unlock(&zone->lock);
  1246. if (!page)
  1247. goto failed;
  1248. __mod_zone_page_state(zone, NR_FREE_PAGES, -(1 << order));
  1249. }
  1250. __count_zone_vm_events(PGALLOC, zone, 1 << order);
  1251. zone_statistics(preferred_zone, zone, gfp_flags);
  1252. local_irq_restore(flags);
  1253. VM_BUG_ON(bad_range(zone, page));
  1254. if (prep_new_page(page, order, gfp_flags))
  1255. goto again;
  1256. return page;
  1257. failed:
  1258. local_irq_restore(flags);
  1259. return NULL;
  1260. }
  1261. /* The ALLOC_WMARK bits are used as an index to zone->watermark */
  1262. #define ALLOC_WMARK_MIN WMARK_MIN
  1263. #define ALLOC_WMARK_LOW WMARK_LOW
  1264. #define ALLOC_WMARK_HIGH WMARK_HIGH
  1265. #define ALLOC_NO_WATERMARKS 0x04 /* don't check watermarks at all */
  1266. /* Mask to get the watermark bits */
  1267. #define ALLOC_WMARK_MASK (ALLOC_NO_WATERMARKS-1)
  1268. #define ALLOC_HARDER 0x10 /* try to alloc harder */
  1269. #define ALLOC_HIGH 0x20 /* __GFP_HIGH set */
  1270. #define ALLOC_CPUSET 0x40 /* check for correct cpuset */
  1271. #ifdef CONFIG_FAIL_PAGE_ALLOC
  1272. static struct {
  1273. struct fault_attr attr;
  1274. u32 ignore_gfp_highmem;
  1275. u32 ignore_gfp_wait;
  1276. u32 min_order;
  1277. } fail_page_alloc = {
  1278. .attr = FAULT_ATTR_INITIALIZER,
  1279. .ignore_gfp_wait = 1,
  1280. .ignore_gfp_highmem = 1,
  1281. .min_order = 1,
  1282. };
  1283. static int __init setup_fail_page_alloc(char *str)
  1284. {
  1285. return setup_fault_attr(&fail_page_alloc.attr, str);
  1286. }
  1287. __setup("fail_page_alloc=", setup_fail_page_alloc);
  1288. static int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
  1289. {
  1290. if (order < fail_page_alloc.min_order)
  1291. return 0;
  1292. if (gfp_mask & __GFP_NOFAIL)
  1293. return 0;
  1294. if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
  1295. return 0;
  1296. if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT))
  1297. return 0;
  1298. return should_fail(&fail_page_alloc.attr, 1 << order);
  1299. }
  1300. #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
  1301. static int __init fail_page_alloc_debugfs(void)
  1302. {
  1303. umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
  1304. struct dentry *dir;
  1305. dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
  1306. &fail_page_alloc.attr);
  1307. if (IS_ERR(dir))
  1308. return PTR_ERR(dir);
  1309. if (!debugfs_create_bool("ignore-gfp-wait", mode, dir,
  1310. &fail_page_alloc.ignore_gfp_wait))
  1311. goto fail;
  1312. if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir,
  1313. &fail_page_alloc.ignore_gfp_highmem))
  1314. goto fail;
  1315. if (!debugfs_create_u32("min-order", mode, dir,
  1316. &fail_page_alloc.min_order))
  1317. goto fail;
  1318. return 0;
  1319. fail:
  1320. debugfs_remove_recursive(dir);
  1321. return -ENOMEM;
  1322. }
  1323. late_initcall(fail_page_alloc_debugfs);
  1324. #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
  1325. #else /* CONFIG_FAIL_PAGE_ALLOC */
  1326. static inline int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
  1327. {
  1328. return 0;
  1329. }
  1330. #endif /* CONFIG_FAIL_PAGE_ALLOC */
  1331. /*
  1332. * Return true if free pages are above 'mark'. This takes into account the order
  1333. * of the allocation.
  1334. */
  1335. static bool __zone_watermark_ok(struct zone *z, int order, unsigned long mark,
  1336. int classzone_idx, int alloc_flags, long free_pages)
  1337. {
  1338. /* free_pages my go negative - that's OK */
  1339. long min = mark;
  1340. int o;
  1341. free_pages -= (1 << order) - 1;
  1342. if (alloc_flags & ALLOC_HIGH)
  1343. min -= min / 2;
  1344. if (alloc_flags & ALLOC_HARDER)
  1345. min -= min / 4;
  1346. if (free_pages <= min + z->lowmem_reserve[classzone_idx])
  1347. return false;
  1348. for (o = 0; o < order; o++) {
  1349. /* At the next order, this order's pages become unavailable */
  1350. free_pages -= z->free_area[o].nr_free << o;
  1351. /* Require fewer higher order pages to be free */
  1352. min >>= 1;
  1353. if (free_pages <= min)
  1354. return false;
  1355. }
  1356. return true;
  1357. }
  1358. bool zone_watermark_ok(struct zone *z, int order, unsigned long mark,
  1359. int classzone_idx, int alloc_flags)
  1360. {
  1361. return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
  1362. zone_page_state(z, NR_FREE_PAGES));
  1363. }
  1364. bool zone_watermark_ok_safe(struct zone *z, int order, unsigned long mark,
  1365. int classzone_idx, int alloc_flags)
  1366. {
  1367. long free_pages = zone_page_state(z, NR_FREE_PAGES);
  1368. if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
  1369. free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
  1370. return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
  1371. free_pages);
  1372. }
  1373. #ifdef CONFIG_NUMA
  1374. /*
  1375. * zlc_setup - Setup for "zonelist cache". Uses cached zone data to
  1376. * skip over zones that are not allowed by the cpuset, or that have
  1377. * been recently (in last second) found to be nearly full. See further
  1378. * comments in mmzone.h. Reduces cache footprint of zonelist scans
  1379. * that have to skip over a lot of full or unallowed zones.
  1380. *
  1381. * If the zonelist cache is present in the passed in zonelist, then
  1382. * returns a pointer to the allowed node mask (either the current
  1383. * tasks mems_allowed, or node_states[N_HIGH_MEMORY].)
  1384. *
  1385. * If the zonelist cache is not available for this zonelist, does
  1386. * nothing and returns NULL.
  1387. *
  1388. * If the fullzones BITMAP in the zonelist cache is stale (more than
  1389. * a second since last zap'd) then we zap it out (clear its bits.)
  1390. *
  1391. * We hold off even calling zlc_setup, until after we've checked the
  1392. * first zone in the zonelist, on the theory that most allocations will
  1393. * be satisfied from that first zone, so best to examine that zone as
  1394. * quickly as we can.
  1395. */
  1396. static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
  1397. {
  1398. struct zonelist_cache *zlc; /* cached zonelist speedup info */
  1399. nodemask_t *allowednodes; /* zonelist_cache approximation */
  1400. zlc = zonelist->zlcache_ptr;
  1401. if (!zlc)
  1402. return NULL;
  1403. if (time_after(jiffies, zlc->last_full_zap + HZ)) {
  1404. bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
  1405. zlc->last_full_zap = jiffies;
  1406. }
  1407. allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ?
  1408. &cpuset_current_mems_allowed :
  1409. &node_states[N_HIGH_MEMORY];
  1410. return allowednodes;
  1411. }
  1412. /*
  1413. * Given 'z' scanning a zonelist, run a couple of quick checks to see
  1414. * if it is worth looking at further for free memory:
  1415. * 1) Check that the zone isn't thought to be full (doesn't have its
  1416. * bit set in the zonelist_cache fullzones BITMAP).
  1417. * 2) Check that the zones node (obtained from the zonelist_cache
  1418. * z_to_n[] mapping) is allowed in the passed in allowednodes mask.
  1419. * Return true (non-zero) if zone is worth looking at further, or
  1420. * else return false (zero) if it is not.
  1421. *
  1422. * This check -ignores- the distinction between various watermarks,
  1423. * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ... If a zone is
  1424. * found to be full for any variation of these watermarks, it will
  1425. * be considered full for up to one second by all requests, unless
  1426. * we are so low on memory on all allowed nodes that we are forced
  1427. * into the second scan of the zonelist.
  1428. *
  1429. * In the second scan we ignore this zonelist cache and exactly
  1430. * apply the watermarks to all zones, even it is slower to do so.
  1431. * We are low on memory in the second scan, and should leave no stone
  1432. * unturned looking for a free page.
  1433. */
  1434. static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
  1435. nodemask_t *allowednodes)
  1436. {
  1437. struct zonelist_cache *zlc; /* cached zonelist speedup info */
  1438. int i; /* index of *z in zonelist zones */
  1439. int n; /* node that zone *z is on */
  1440. zlc = zonelist->zlcache_ptr;
  1441. if (!zlc)
  1442. return 1;
  1443. i = z - zonelist->_zonerefs;
  1444. n = zlc->z_to_n[i];
  1445. /* This zone is worth trying if it is allowed but not full */
  1446. return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones);
  1447. }
  1448. /*
  1449. * Given 'z' scanning a zonelist, set the corresponding bit in
  1450. * zlc->fullzones, so that subsequent attempts to allocate a page
  1451. * from that zone don't waste time re-examining it.
  1452. */
  1453. static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
  1454. {
  1455. struct zonelist_cache *zlc; /* cached zonelist speedup info */
  1456. int i; /* index of *z in zonelist zones */
  1457. zlc = zonelist->zlcache_ptr;
  1458. if (!zlc)
  1459. return;
  1460. i = z - zonelist->_zonerefs;
  1461. set_bit(i, zlc->fullzones);
  1462. }
  1463. /*
  1464. * clear all zones full, called after direct reclaim makes progress so that
  1465. * a zone that was recently full is not skipped over for up to a second
  1466. */
  1467. static void zlc_clear_zones_full(struct zonelist *zonelist)
  1468. {
  1469. struct zonelist_cache *zlc; /* cached zonelist speedup info */
  1470. zlc = zonelist->zlcache_ptr;
  1471. if (!zlc)
  1472. return;
  1473. bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
  1474. }
  1475. #else /* CONFIG_NUMA */
  1476. static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
  1477. {
  1478. return NULL;
  1479. }
  1480. static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
  1481. nodemask_t *allowednodes)
  1482. {
  1483. return 1;
  1484. }
  1485. static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
  1486. {
  1487. }
  1488. static void zlc_clear_zones_full(struct zonelist *zonelist)
  1489. {
  1490. }
  1491. #endif /* CONFIG_NUMA */
  1492. /*
  1493. * get_page_from_freelist goes through the zonelist trying to allocate
  1494. * a page.
  1495. */
  1496. static struct page *
  1497. get_page_from_freelist(gfp_t gfp_mask, nodemask_t *nodemask, unsigned int order,
  1498. struct zonelist *zonelist, int high_zoneidx, int alloc_flags,
  1499. struct zone *preferred_zone, int migratetype)
  1500. {
  1501. struct zoneref *z;
  1502. struct page *page = NULL;
  1503. int classzone_idx;
  1504. struct zone *zone;
  1505. nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */
  1506. int zlc_active = 0; /* set if using zonelist_cache */
  1507. int did_zlc_setup = 0; /* just call zlc_setup() one time */
  1508. classzone_idx = zone_idx(preferred_zone);
  1509. zonelist_scan:
  1510. /*
  1511. * Scan zonelist, looking for a zone with enough free.
  1512. * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
  1513. */
  1514. for_each_zone_zonelist_nodemask(zone, z, zonelist,
  1515. high_zoneidx, nodemask) {
  1516. if (NUMA_BUILD && zlc_active &&
  1517. !zlc_zone_worth_trying(zonelist, z, allowednodes))
  1518. continue;
  1519. if ((alloc_flags & ALLOC_CPUSET) &&
  1520. !cpuset_zone_allowed_softwall(zone, gfp_mask))
  1521. continue;
  1522. /*
  1523. * When allocating a page cache page for writing, we
  1524. * want to get it from a zone that is within its dirty
  1525. * limit, such that no single zone holds more than its
  1526. * proportional share of globally allowed dirty pages.
  1527. * The dirty limits take into account the zone's
  1528. * lowmem reserves and high watermark so that kswapd
  1529. * should be able to balance it without having to
  1530. * write pages from its LRU list.
  1531. *
  1532. * This may look like it could increase pressure on
  1533. * lower zones by failing allocations in higher zones
  1534. * before they are full. But the pages that do spill
  1535. * over are limited as the lower zones are protected
  1536. * by this very same mechanism. It should not become
  1537. * a practical burden to them.
  1538. *
  1539. * XXX: For now, allow allocations to potentially
  1540. * exceed the per-zone dirty limit in the slowpath
  1541. * (ALLOC_WMARK_LOW unset) before going into reclaim,
  1542. * which is important when on a NUMA setup the allowed
  1543. * zones are together not big enough to reach the
  1544. * global limit. The proper fix for these situations
  1545. * will require awareness of zones in the
  1546. * dirty-throttling and the flusher threads.
  1547. */
  1548. if ((alloc_flags & ALLOC_WMARK_LOW) &&
  1549. (gfp_mask & __GFP_WRITE) && !zone_dirty_ok(zone))
  1550. goto this_zone_full;
  1551. BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
  1552. if (!(alloc_flags & ALLOC_NO_WATERMARKS)) {
  1553. unsigned long mark;
  1554. int ret;
  1555. mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
  1556. if (zone_watermark_ok(zone, order, mark,
  1557. classzone_idx, alloc_flags))
  1558. goto try_this_zone;
  1559. if (NUMA_BUILD && !did_zlc_setup && nr_online_nodes > 1) {
  1560. /*
  1561. * we do zlc_setup if there are multiple nodes
  1562. * and before considering the first zone allowed
  1563. * by the cpuset.
  1564. */
  1565. allowednodes = zlc_setup(zonelist, alloc_flags);
  1566. zlc_active = 1;
  1567. did_zlc_setup = 1;
  1568. }
  1569. if (zone_reclaim_mode == 0)
  1570. goto this_zone_full;
  1571. /*
  1572. * As we may have just activated ZLC, check if the first
  1573. * eligible zone has failed zone_reclaim recently.
  1574. */
  1575. if (NUMA_BUILD && zlc_active &&
  1576. !zlc_zone_worth_trying(zonelist, z, allowednodes))
  1577. continue;
  1578. ret = zone_reclaim(zone, gfp_mask, order);
  1579. switch (ret) {
  1580. case ZONE_RECLAIM_NOSCAN:
  1581. /* did not scan */
  1582. continue;
  1583. case ZONE_RECLAIM_FULL:
  1584. /* scanned but unreclaimable */
  1585. continue;
  1586. default:
  1587. /* did we reclaim enough */
  1588. if (!zone_watermark_ok(zone, order, mark,
  1589. classzone_idx, alloc_flags))
  1590. goto this_zone_full;
  1591. }
  1592. }
  1593. try_this_zone:
  1594. page = buffered_rmqueue(preferred_zone, zone, order,
  1595. gfp_mask, migratetype);
  1596. if (page)
  1597. break;
  1598. this_zone_full:
  1599. if (NUMA_BUILD)
  1600. zlc_mark_zone_full(zonelist, z);
  1601. }
  1602. if (unlikely(NUMA_BUILD && page == NULL && zlc_active)) {
  1603. /* Disable zlc cache for second zonelist scan */
  1604. zlc_active = 0;
  1605. goto zonelist_scan;
  1606. }
  1607. return page;
  1608. }
  1609. /*
  1610. * Large machines with many possible nodes should not always dump per-node
  1611. * meminfo in irq context.
  1612. */
  1613. static inline bool should_suppress_show_mem(void)
  1614. {
  1615. bool ret = false;
  1616. #if NODES_SHIFT > 8
  1617. ret = in_interrupt();
  1618. #endif
  1619. return ret;
  1620. }
  1621. static DEFINE_RATELIMIT_STATE(nopage_rs,
  1622. DEFAULT_RATELIMIT_INTERVAL,
  1623. DEFAULT_RATELIMIT_BURST);
  1624. void warn_alloc_failed(gfp_t gfp_mask, int order, const char *fmt, ...)
  1625. {
  1626. unsigned int filter = SHOW_MEM_FILTER_NODES;
  1627. if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs) ||
  1628. debug_guardpage_minorder() > 0)
  1629. return;
  1630. /*
  1631. * This documents exceptions given to allocations in certain
  1632. * contexts that are allowed to allocate outside current's set
  1633. * of allowed nodes.
  1634. */
  1635. if (!(gfp_mask & __GFP_NOMEMALLOC))
  1636. if (test_thread_flag(TIF_MEMDIE) ||
  1637. (current->flags & (PF_MEMALLOC | PF_EXITING)))
  1638. filter &= ~SHOW_MEM_FILTER_NODES;
  1639. if (in_interrupt() || !(gfp_mask & __GFP_WAIT))
  1640. filter &= ~SHOW_MEM_FILTER_NODES;
  1641. if (fmt) {
  1642. struct va_format vaf;
  1643. va_list args;
  1644. va_start(args, fmt);
  1645. vaf.fmt = fmt;
  1646. vaf.va = &args;
  1647. pr_warn("%pV", &vaf);
  1648. va_end(args);
  1649. }
  1650. pr_warn("%s: page allocation failure: order:%d, mode:0x%x\n",
  1651. current->comm, order, gfp_mask);
  1652. dump_stack();
  1653. if (!should_suppress_show_mem())
  1654. show_mem(filter);
  1655. }
  1656. static inline int
  1657. should_alloc_retry(gfp_t gfp_mask, unsigned int order,
  1658. unsigned long did_some_progress,
  1659. unsigned long pages_reclaimed)
  1660. {
  1661. /* Do not loop if specifically requested */
  1662. if (gfp_mask & __GFP_NORETRY)
  1663. return 0;
  1664. /* Always retry if specifically requested */
  1665. if (gfp_mask & __GFP_NOFAIL)
  1666. return 1;
  1667. /*
  1668. * Suspend converts GFP_KERNEL to __GFP_WAIT which can prevent reclaim
  1669. * making forward progress without invoking OOM. Suspend also disables
  1670. * storage devices so kswapd will not help. Bail if we are suspending.
  1671. */
  1672. if (!did_some_progress && pm_suspended_storage())
  1673. return 0;
  1674. /*
  1675. * In this implementation, order <= PAGE_ALLOC_COSTLY_ORDER
  1676. * means __GFP_NOFAIL, but that may not be true in other
  1677. * implementations.
  1678. */
  1679. if (order <= PAGE_ALLOC_COSTLY_ORDER)
  1680. return 1;
  1681. /*
  1682. * For order > PAGE_ALLOC_COSTLY_ORDER, if __GFP_REPEAT is
  1683. * specified, then we retry until we no longer reclaim any pages
  1684. * (above), or we've reclaimed an order of pages at least as
  1685. * large as the allocation's order. In both cases, if the
  1686. * allocation still fails, we stop retrying.
  1687. */
  1688. if (gfp_mask & __GFP_REPEAT && pages_reclaimed < (1 << order))
  1689. return 1;
  1690. return 0;
  1691. }
  1692. static inline struct page *
  1693. __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
  1694. struct zonelist *zonelist, enum zone_type high_zoneidx,
  1695. nodemask_t *nodemask, struct zone *preferred_zone,
  1696. int migratetype)
  1697. {
  1698. struct page *page;
  1699. /* Acquire the OOM killer lock for the zones in zonelist */
  1700. if (!try_set_zonelist_oom(zonelist, gfp_mask)) {
  1701. schedule_timeout_uninterruptible(1);
  1702. return NULL;
  1703. }
  1704. /*
  1705. * Go through the zonelist yet one more time, keep very high watermark
  1706. * here, this is only to catch a parallel oom killing, we must fail if
  1707. * we're still under heavy pressure.
  1708. */
  1709. page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask,
  1710. order, zonelist, high_zoneidx,
  1711. ALLOC_WMARK_HIGH|ALLOC_CPUSET,
  1712. preferred_zone, migratetype);
  1713. if (page)
  1714. goto out;
  1715. if (!(gfp_mask & __GFP_NOFAIL)) {
  1716. /* The OOM killer will not help higher order allocs */
  1717. if (order > PAGE_ALLOC_COSTLY_ORDER)
  1718. goto out;
  1719. /* The OOM killer does not needlessly kill tasks for lowmem */
  1720. if (high_zoneidx < ZONE_NORMAL)
  1721. goto out;
  1722. /*
  1723. * GFP_THISNODE contains __GFP_NORETRY and we never hit this.
  1724. * Sanity check for bare calls of __GFP_THISNODE, not real OOM.
  1725. * The caller should handle page allocation failure by itself if
  1726. * it specifies __GFP_THISNODE.
  1727. * Note: Hugepage uses it but will hit PAGE_ALLOC_COSTLY_ORDER.
  1728. */
  1729. if (gfp_mask & __GFP_THISNODE)
  1730. goto out;
  1731. }
  1732. /* Exhausted what can be done so it's blamo time */
  1733. out_of_memory(zonelist, gfp_mask, order, nodemask, false);
  1734. out:
  1735. clear_zonelist_oom(zonelist, gfp_mask);
  1736. return page;
  1737. }
  1738. #ifdef CONFIG_COMPACTION
  1739. /* Try memory compaction for high-order allocations before reclaim */
  1740. static struct page *
  1741. __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
  1742. struct zonelist *zonelist, enum zone_type high_zoneidx,
  1743. nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
  1744. int migratetype, bool sync_migration,
  1745. bool *deferred_compaction,
  1746. unsigned long *did_some_progress)
  1747. {
  1748. struct page *page;
  1749. if (!order)
  1750. return NULL;
  1751. if (compaction_deferred(preferred_zone, order)) {
  1752. *deferred_compaction = true;
  1753. return NULL;
  1754. }
  1755. current->flags |= PF_MEMALLOC;
  1756. *did_some_progress = try_to_compact_pages(zonelist, order, gfp_mask,
  1757. nodemask, sync_migration);
  1758. current->flags &= ~PF_MEMALLOC;
  1759. if (*did_some_progress != COMPACT_SKIPPED) {
  1760. /* Page migration frees to the PCP lists but we want merging */
  1761. drain_pages(get_cpu());
  1762. put_cpu();
  1763. page = get_page_from_freelist(gfp_mask, nodemask,
  1764. order, zonelist, high_zoneidx,
  1765. alloc_flags, preferred_zone,
  1766. migratetype);
  1767. if (page) {
  1768. preferred_zone->compact_considered = 0;
  1769. preferred_zone->compact_defer_shift = 0;
  1770. if (order >= preferred_zone->compact_order_failed)
  1771. preferred_zone->compact_order_failed = order + 1;
  1772. count_vm_event(COMPACTSUCCESS);
  1773. return page;
  1774. }
  1775. /*
  1776. * It's bad if compaction run occurs and fails.
  1777. * The most likely reason is that pages exist,
  1778. * but not enough to satisfy watermarks.
  1779. */
  1780. count_vm_event(COMPACTFAIL);
  1781. /*
  1782. * As async compaction considers a subset of pageblocks, only
  1783. * defer if the failure was a sync compaction failure.
  1784. */
  1785. if (sync_migration)
  1786. defer_compaction(preferred_zone, order);
  1787. cond_resched();
  1788. }
  1789. return NULL;
  1790. }
  1791. #else
  1792. static inline struct page *
  1793. __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
  1794. struct zonelist *zonelist, enum zone_type high_zoneidx,
  1795. nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
  1796. int migratetype, bool sync_migration,
  1797. bool *deferred_compaction,
  1798. unsigned long *did_some_progress)
  1799. {
  1800. return NULL;
  1801. }
  1802. #endif /* CONFIG_COMPACTION */
  1803. /* The really slow allocator path where we enter direct reclaim */
  1804. static inline struct page *
  1805. __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
  1806. struct zonelist *zonelist, enum zone_type high_zoneidx,
  1807. nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
  1808. int migratetype, unsigned long *did_some_progress)
  1809. {
  1810. struct page *page = NULL;
  1811. struct reclaim_state reclaim_state;
  1812. bool drained = false;
  1813. cond_resched();
  1814. /* We now go into synchronous reclaim */
  1815. cpuset_memory_pressure_bump();
  1816. current->flags |= PF_MEMALLOC;
  1817. lockdep_set_current_reclaim_state(gfp_mask);
  1818. reclaim_state.reclaimed_slab = 0;
  1819. current->reclaim_state = &reclaim_state;
  1820. *did_some_progress = try_to_free_pages(zonelist, order, gfp_mask, nodemask);
  1821. current->reclaim_state = NULL;
  1822. lockdep_clear_current_reclaim_state();
  1823. current->flags &= ~PF_MEMALLOC;
  1824. cond_resched();
  1825. if (unlikely(!(*did_some_progress)))
  1826. return NULL;
  1827. /* After successful reclaim, reconsider all zones for allocation */
  1828. if (NUMA_BUILD)
  1829. zlc_clear_zones_full(zonelist);
  1830. retry:
  1831. page = get_page_from_freelist(gfp_mask, nodemask, order,
  1832. zonelist, high_zoneidx,
  1833. alloc_flags, preferred_zone,
  1834. migratetype);
  1835. /*
  1836. * If an allocation failed after direct reclaim, it could be because
  1837. * pages are pinned on the per-cpu lists. Drain them and try again
  1838. */
  1839. if (!page && !drained) {
  1840. drain_all_pages();
  1841. drained = true;
  1842. goto retry;
  1843. }
  1844. return page;
  1845. }
  1846. /*
  1847. * This is called in the allocator slow-path if the allocation request is of
  1848. * sufficient urgency to ignore watermarks and take other desperate measures
  1849. */
  1850. static inline struct page *
  1851. __alloc_pages_high_priority(gfp_t gfp_mask, unsigned int order,
  1852. struct zonelist *zonelist, enum zone_type high_zoneidx,
  1853. nodemask_t *nodemask, struct zone *preferred_zone,
  1854. int migratetype)
  1855. {
  1856. struct page *page;
  1857. do {
  1858. page = get_page_from_freelist(gfp_mask, nodemask, order,
  1859. zonelist, high_zoneidx, ALLOC_NO_WATERMARKS,
  1860. preferred_zone, migratetype);
  1861. if (!page && gfp_mask & __GFP_NOFAIL)
  1862. wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/50);
  1863. } while (!page && (gfp_mask & __GFP_NOFAIL));
  1864. return page;
  1865. }
  1866. static inline
  1867. void wake_all_kswapd(unsigned int order, struct zonelist *zonelist,
  1868. enum zone_type high_zoneidx,
  1869. enum zone_type classzone_idx)
  1870. {
  1871. struct zoneref *z;
  1872. struct zone *zone;
  1873. for_each_zone_zonelist(zone, z, zonelist, high_zoneidx)
  1874. wakeup_kswapd(zone, order, classzone_idx);
  1875. }
  1876. static inline int
  1877. gfp_to_alloc_flags(gfp_t gfp_mask)
  1878. {
  1879. int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
  1880. const gfp_t wait = gfp_mask & __GFP_WAIT;
  1881. /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
  1882. BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
  1883. /*
  1884. * The caller may dip into page reserves a bit more if the caller
  1885. * cannot run direct reclaim, or if the caller has realtime scheduling
  1886. * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
  1887. * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH).
  1888. */
  1889. alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
  1890. if (!wait) {
  1891. /*
  1892. * Not worth trying to allocate harder for
  1893. * __GFP_NOMEMALLOC even if it can't schedule.
  1894. */
  1895. if (!(gfp_mask & __GFP_NOMEMALLOC))
  1896. alloc_flags |= ALLOC_HARDER;
  1897. /*
  1898. * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
  1899. * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
  1900. */
  1901. alloc_flags &= ~ALLOC_CPUSET;
  1902. } else if (unlikely(rt_task(current)) && !in_interrupt())
  1903. alloc_flags |= ALLOC_HARDER;
  1904. if (likely(!(gfp_mask & __GFP_NOMEMALLOC))) {
  1905. if (!in_interrupt() &&
  1906. ((current->flags & PF_MEMALLOC) ||
  1907. unlikely(test_thread_flag(TIF_MEMDIE))))
  1908. alloc_flags |= ALLOC_NO_WATERMARKS;
  1909. }
  1910. return alloc_flags;
  1911. }
  1912. static inline struct page *
  1913. __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
  1914. struct zonelist *zonelist, enum zone_type high_zoneidx,
  1915. nodemask_t *nodemask, struct zone *preferred_zone,
  1916. int migratetype)
  1917. {
  1918. const gfp_t wait = gfp_mask & __GFP_WAIT;
  1919. struct page *page = NULL;
  1920. int alloc_flags;
  1921. unsigned long pages_reclaimed = 0;
  1922. unsigned long did_some_progress;
  1923. bool sync_migration = false;
  1924. bool deferred_compaction = false;
  1925. /*
  1926. * In the slowpath, we sanity check order to avoid ever trying to
  1927. * reclaim >= MAX_ORDER areas which will never succeed. Callers may
  1928. * be using allocators in order of preference for an area that is
  1929. * too large.
  1930. */
  1931. if (order >= MAX_ORDER) {
  1932. WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
  1933. return NULL;
  1934. }
  1935. /*
  1936. * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and
  1937. * __GFP_NOWARN set) should not cause reclaim since the subsystem
  1938. * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim
  1939. * using a larger set of nodes after it has established that the
  1940. * allowed per node queues are empty and that nodes are
  1941. * over allocated.
  1942. */
  1943. if (NUMA_BUILD && (gfp_mask & GFP_THISNODE) == GFP_THISNODE)
  1944. goto nopage;
  1945. restart:
  1946. if (!(gfp_mask & __GFP_NO_KSWAPD))
  1947. wake_all_kswapd(order, zonelist, high_zoneidx,
  1948. zone_idx(preferred_zone));
  1949. /*
  1950. * OK, we're below the kswapd watermark and have kicked background
  1951. * reclaim. Now things get more complex, so set up alloc_flags according
  1952. * to how we want to proceed.
  1953. */
  1954. alloc_flags = gfp_to_alloc_flags(gfp_mask);
  1955. /*
  1956. * Find the true preferred zone if the allocation is unconstrained by
  1957. * cpusets.
  1958. */
  1959. if (!(alloc_flags & ALLOC_CPUSET) && !nodemask)
  1960. first_zones_zonelist(zonelist, high_zoneidx, NULL,
  1961. &preferred_zone);
  1962. rebalance:
  1963. /* This is the last chance, in general, before the goto nopage. */
  1964. page = get_page_from_freelist(gfp_mask, nodemask, order, zonelist,
  1965. high_zoneidx, alloc_flags & ~ALLOC_NO_WATERMARKS,
  1966. preferred_zone, migratetype);
  1967. if (page)
  1968. goto got_pg;
  1969. /* Allocate without watermarks if the context allows */
  1970. if (alloc_flags & ALLOC_NO_WATERMARKS) {
  1971. page = __alloc_pages_high_priority(gfp_mask, order,
  1972. zonelist, high_zoneidx, nodemask,
  1973. preferred_zone, migratetype);
  1974. if (page)
  1975. goto got_pg;
  1976. }
  1977. /* Atomic allocations - we can't balance anything */
  1978. if (!wait)
  1979. goto nopage;
  1980. /* Avoid recursion of direct reclaim */
  1981. if (current->flags & PF_MEMALLOC)
  1982. goto nopage;
  1983. /* Avoid allocations with no watermarks from looping endlessly */
  1984. if (test_thread_flag(TIF_MEMDIE) && !(gfp_mask & __GFP_NOFAIL))
  1985. goto nopage;
  1986. /*
  1987. * Try direct compaction. The first pass is asynchronous. Subsequent
  1988. * attempts after direct reclaim are synchronous
  1989. */
  1990. page = __alloc_pages_direct_compact(gfp_mask, order,
  1991. zonelist, high_zoneidx,
  1992. nodemask,
  1993. alloc_flags, preferred_zone,
  1994. migratetype, sync_migration,
  1995. &deferred_compaction,
  1996. &did_some_progress);
  1997. if (page)
  1998. goto got_pg;
  1999. sync_migration = true;
  2000. /*
  2001. * If compaction is deferred for high-order allocations, it is because
  2002. * sync compaction recently failed. In this is the case and the caller
  2003. * has requested the system not be heavily disrupted, fail the
  2004. * allocation now instead of entering direct reclaim
  2005. */
  2006. if (deferred_compaction && (gfp_mask & __GFP_NO_KSWAPD))
  2007. goto nopage;
  2008. /* Try direct reclaim and then allocating */
  2009. page = __alloc_pages_direct_reclaim(gfp_mask, order,
  2010. zonelist, high_zoneidx,
  2011. nodemask,
  2012. alloc_flags, preferred_zone,
  2013. migratetype, &did_some_progress);
  2014. if (page)
  2015. goto got_pg;
  2016. /*
  2017. * If we failed to make any progress reclaiming, then we are
  2018. * running out of options and have to consider going OOM
  2019. */
  2020. if (!did_some_progress) {
  2021. if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) {
  2022. if (oom_killer_disabled)
  2023. goto nopage;
  2024. /* Coredumps can quickly deplete all memory reserves */
  2025. if ((current->flags & PF_DUMPCORE) &&
  2026. !(gfp_mask & __GFP_NOFAIL))
  2027. goto nopage;
  2028. page = __alloc_pages_may_oom(gfp_mask, order,
  2029. zonelist, high_zoneidx,
  2030. nodemask, preferred_zone,
  2031. migratetype);
  2032. if (page)
  2033. goto got_pg;
  2034. if (!(gfp_mask & __GFP_NOFAIL)) {
  2035. /*
  2036. * The oom killer is not called for high-order
  2037. * allocations that may fail, so if no progress
  2038. * is being made, there are no other options and
  2039. * retrying is unlikely to help.
  2040. */
  2041. if (order > PAGE_ALLOC_COSTLY_ORDER)
  2042. goto nopage;
  2043. /*
  2044. * The oom killer is not called for lowmem
  2045. * allocations to prevent needlessly killing
  2046. * innocent tasks.
  2047. */
  2048. if (high_zoneidx < ZONE_NORMAL)
  2049. goto nopage;
  2050. }
  2051. goto restart;
  2052. }
  2053. }
  2054. /* Check if we should retry the allocation */
  2055. pages_reclaimed += did_some_progress;
  2056. if (should_alloc_retry(gfp_mask, order, did_some_progress,
  2057. pages_reclaimed)) {
  2058. /* Wait for some write requests to complete then retry */
  2059. wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/50);
  2060. goto rebalance;
  2061. } else {
  2062. /*
  2063. * High-order allocations do not necessarily loop after
  2064. * direct reclaim and reclaim/compaction depends on compaction
  2065. * being called after reclaim so call directly if necessary
  2066. */
  2067. page = __alloc_pages_direct_compact(gfp_mask, order,
  2068. zonelist, high_zoneidx,
  2069. nodemask,
  2070. alloc_flags, preferred_zone,
  2071. migratetype, sync_migration,
  2072. &deferred_compaction,
  2073. &did_some_progress);
  2074. if (page)
  2075. goto got_pg;
  2076. }
  2077. nopage:
  2078. warn_alloc_failed(gfp_mask, order, NULL);
  2079. return page;
  2080. got_pg:
  2081. if (kmemcheck_enabled)
  2082. kmemcheck_pagealloc_alloc(page, order, gfp_mask);
  2083. return page;
  2084. }
  2085. /*
  2086. * This is the 'heart' of the zoned buddy allocator.
  2087. */
  2088. struct page *
  2089. __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,
  2090. struct zonelist *zonelist, nodemask_t *nodemask)
  2091. {
  2092. enum zone_type high_zoneidx = gfp_zone(gfp_mask);
  2093. struct zone *preferred_zone;
  2094. struct page *page = NULL;
  2095. int migratetype = allocflags_to_migratetype(gfp_mask);
  2096. unsigned int cpuset_mems_cookie;
  2097. gfp_mask &= gfp_allowed_mask;
  2098. lockdep_trace_alloc(gfp_mask);
  2099. might_sleep_if(gfp_mask & __GFP_WAIT);
  2100. if (should_fail_alloc_page(gfp_mask, order))
  2101. return NULL;
  2102. /*
  2103. * Check the zones suitable for the gfp_mask contain at least one
  2104. * valid zone. It's possible to have an empty zonelist as a result
  2105. * of GFP_THISNODE and a memoryless node
  2106. */
  2107. if (unlikely(!zonelist->_zonerefs->zone))
  2108. return NULL;
  2109. retry_cpuset:
  2110. cpuset_mems_cookie = get_mems_allowed();
  2111. /* The preferred zone is used for statistics later */
  2112. first_zones_zonelist(zonelist, high_zoneidx,
  2113. nodemask ? : &cpuset_current_mems_allowed,
  2114. &preferred_zone);
  2115. if (!preferred_zone)
  2116. goto out;
  2117. /* First allocation attempt */
  2118. page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask, order,
  2119. zonelist, high_zoneidx, ALLOC_WMARK_LOW|ALLOC_CPUSET,
  2120. preferred_zone, migratetype);
  2121. if (unlikely(!page))
  2122. page = __alloc_pages_slowpath(gfp_mask, order,
  2123. zonelist, high_zoneidx, nodemask,
  2124. preferred_zone, migratetype);
  2125. trace_mm_page_alloc(page, order, gfp_mask, migratetype);
  2126. out:
  2127. /*
  2128. * When updating a task's mems_allowed, it is possible to race with
  2129. * parallel threads in such a way that an allocation can fail while
  2130. * the mask is being updated. If a page allocation is about to fail,
  2131. * check if the cpuset changed during allocation and if so, retry.
  2132. */
  2133. if (unlikely(!put_mems_allowed(cpuset_mems_cookie) && !page))
  2134. goto retry_cpuset;
  2135. return page;
  2136. }
  2137. EXPORT_SYMBOL(__alloc_pages_nodemask);
  2138. /*
  2139. * Common helper functions.
  2140. */
  2141. unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
  2142. {
  2143. struct page *page;
  2144. /*
  2145. * __get_free_pages() returns a 32-bit address, which cannot represent
  2146. * a highmem page
  2147. */
  2148. VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
  2149. page = alloc_pages(gfp_mask, order);
  2150. if (!page)
  2151. return 0;
  2152. return (unsigned long) page_address(page);
  2153. }
  2154. EXPORT_SYMBOL(__get_free_pages);
  2155. unsigned long get_zeroed_page(gfp_t gfp_mask)
  2156. {
  2157. return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
  2158. }
  2159. EXPORT_SYMBOL(get_zeroed_page);
  2160. void __free_pages(struct page *page, unsigned int order)
  2161. {
  2162. if (put_page_testzero(page)) {
  2163. if (order == 0)
  2164. free_hot_cold_page(page, 0);
  2165. else
  2166. __free_pages_ok(page, order);
  2167. }
  2168. }
  2169. EXPORT_SYMBOL(__free_pages);
  2170. void free_pages(unsigned long addr, unsigned int order)
  2171. {
  2172. if (addr != 0) {
  2173. VM_BUG_ON(!virt_addr_valid((void *)addr));
  2174. __free_pages(virt_to_page((void *)addr), order);
  2175. }
  2176. }
  2177. EXPORT_SYMBOL(free_pages);
  2178. static void *make_alloc_exact(unsigned long addr, unsigned order, size_t size)
  2179. {
  2180. if (addr) {
  2181. unsigned long alloc_end = addr + (PAGE_SIZE << order);
  2182. unsigned long used = addr + PAGE_ALIGN(size);
  2183. split_page(virt_to_page((void *)addr), order);
  2184. while (used < alloc_end) {
  2185. free_page(used);
  2186. used += PAGE_SIZE;
  2187. }
  2188. }
  2189. return (void *)addr;
  2190. }
  2191. /**
  2192. * alloc_pages_exact - allocate an exact number physically-contiguous pages.
  2193. * @size: the number of bytes to allocate
  2194. * @gfp_mask: GFP flags for the allocation
  2195. *
  2196. * This function is similar to alloc_pages(), except that it allocates the
  2197. * minimum number of pages to satisfy the request. alloc_pages() can only
  2198. * allocate memory in power-of-two pages.
  2199. *
  2200. * This function is also limited by MAX_ORDER.
  2201. *
  2202. * Memory allocated by this function must be released by free_pages_exact().
  2203. */
  2204. void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
  2205. {
  2206. unsigned int order = get_order(size);
  2207. unsigned long addr;
  2208. addr = __get_free_pages(gfp_mask, order);
  2209. return make_alloc_exact(addr, order, size);
  2210. }
  2211. EXPORT_SYMBOL(alloc_pages_exact);
  2212. /**
  2213. * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
  2214. * pages on a node.
  2215. * @nid: the preferred node ID where memory should be allocated
  2216. * @size: the number of bytes to allocate
  2217. * @gfp_mask: GFP flags for the allocation
  2218. *
  2219. * Like alloc_pages_exact(), but try to allocate on node nid first before falling
  2220. * back.
  2221. * Note this is not alloc_pages_exact_node() which allocates on a specific node,
  2222. * but is not exact.
  2223. */
  2224. void *alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
  2225. {
  2226. unsigned order = get_order(size);
  2227. struct page *p = alloc_pages_node(nid, gfp_mask, order);
  2228. if (!p)
  2229. return NULL;
  2230. return make_alloc_exact((unsigned long)page_address(p), order, size);
  2231. }
  2232. EXPORT_SYMBOL(alloc_pages_exact_nid);
  2233. /**
  2234. * free_pages_exact - release memory allocated via alloc_pages_exact()
  2235. * @virt: the value returned by alloc_pages_exact.
  2236. * @size: size of allocation, same value as passed to alloc_pages_exact().
  2237. *
  2238. * Release the memory allocated by a previous call to alloc_pages_exact.
  2239. */
  2240. void free_pages_exact(void *virt, size_t size)
  2241. {
  2242. unsigned long addr = (unsigned long)virt;
  2243. unsigned long end = addr + PAGE_ALIGN(size);
  2244. while (addr < end) {
  2245. free_page(addr);
  2246. addr += PAGE_SIZE;
  2247. }
  2248. }
  2249. EXPORT_SYMBOL(free_pages_exact);
  2250. static unsigned int nr_free_zone_pages(int offset)
  2251. {
  2252. struct zoneref *z;
  2253. struct zone *zone;
  2254. /* Just pick one node, since fallback list is circular */
  2255. unsigned int sum = 0;
  2256. struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
  2257. for_each_zone_zonelist(zone, z, zonelist, offset) {
  2258. unsigned long size = zone->present_pages;
  2259. unsigned long high = high_wmark_pages(zone);
  2260. if (size > high)
  2261. sum += size - high;
  2262. }
  2263. return sum;
  2264. }
  2265. /*
  2266. * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL
  2267. */
  2268. unsigned int nr_free_buffer_pages(void)
  2269. {
  2270. return nr_free_zone_pages(gfp_zone(GFP_USER));
  2271. }
  2272. EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
  2273. /*
  2274. * Amount of free RAM allocatable within all zones
  2275. */
  2276. unsigned int nr_free_pagecache_pages(void)
  2277. {
  2278. return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
  2279. }
  2280. static inline void show_node(struct zone *zone)
  2281. {
  2282. if (NUMA_BUILD)
  2283. printk("Node %d ", zone_to_nid(zone));
  2284. }
  2285. void si_meminfo(struct sysinfo *val)
  2286. {
  2287. val->totalram = totalram_pages;
  2288. val->sharedram = 0;
  2289. val->freeram = global_page_state(NR_FREE_PAGES);
  2290. val->bufferram = nr_blockdev_pages();
  2291. val->totalhigh = totalhigh_pages;
  2292. val->freehigh = nr_free_highpages();
  2293. val->mem_unit = PAGE_SIZE;
  2294. }
  2295. EXPORT_SYMBOL(si_meminfo);
  2296. #ifdef CONFIG_NUMA
  2297. void si_meminfo_node(struct sysinfo *val, int nid)
  2298. {
  2299. pg_data_t *pgdat = NODE_DATA(nid);
  2300. val->totalram = pgdat->node_present_pages;
  2301. val->freeram = node_page_state(nid, NR_FREE_PAGES);
  2302. #ifdef CONFIG_HIGHMEM
  2303. val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].present_pages;
  2304. val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM],
  2305. NR_FREE_PAGES);
  2306. #else
  2307. val->totalhigh = 0;
  2308. val->freehigh = 0;
  2309. #endif
  2310. val->mem_unit = PAGE_SIZE;
  2311. }
  2312. #endif
  2313. /*
  2314. * Determine whether the node should be displayed or not, depending on whether
  2315. * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
  2316. */
  2317. bool skip_free_areas_node(unsigned int flags, int nid)
  2318. {
  2319. bool ret = false;
  2320. unsigned int cpuset_mems_cookie;
  2321. if (!(flags & SHOW_MEM_FILTER_NODES))
  2322. goto out;
  2323. do {
  2324. cpuset_mems_cookie = get_mems_allowed();
  2325. ret = !node_isset(nid, cpuset_current_mems_allowed);
  2326. } while (!put_mems_allowed(cpuset_mems_cookie));
  2327. out:
  2328. return ret;
  2329. }
  2330. #define K(x) ((x) << (PAGE_SHIFT-10))
  2331. /*
  2332. * Show free area list (used inside shift_scroll-lock stuff)
  2333. * We also calculate the percentage fragmentation. We do this by counting the
  2334. * memory on each free list with the exception of the first item on the list.
  2335. * Suppresses nodes that are not allowed by current's cpuset if
  2336. * SHOW_MEM_FILTER_NODES is passed.
  2337. */
  2338. void show_free_areas(unsigned int filter)
  2339. {
  2340. int cpu;
  2341. struct zone *zone;
  2342. for_each_populated_zone(zone) {
  2343. if (skip_free_areas_node(filter, zone_to_nid(zone)))
  2344. continue;
  2345. show_node(zone);
  2346. printk("%s per-cpu:\n", zone->name);
  2347. for_each_online_cpu(cpu) {
  2348. struct per_cpu_pageset *pageset;
  2349. pageset = per_cpu_ptr(zone->pageset, cpu);
  2350. printk("CPU %4d: hi:%5d, btch:%4d usd:%4d\n",
  2351. cpu, pageset->pcp.high,
  2352. pageset->pcp.batch, pageset->pcp.count);
  2353. }
  2354. }
  2355. printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
  2356. " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
  2357. " unevictable:%lu"
  2358. " dirty:%lu writeback:%lu unstable:%lu\n"
  2359. " free:%lu slab_reclaimable:%lu slab_unreclaimable:%lu\n"
  2360. " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n",
  2361. global_page_state(NR_ACTIVE_ANON),
  2362. global_page_state(NR_INACTIVE_ANON),
  2363. global_page_state(NR_ISOLATED_ANON),
  2364. global_page_state(NR_ACTIVE_FILE),
  2365. global_page_state(NR_INACTIVE_FILE),
  2366. global_page_state(NR_ISOLATED_FILE),
  2367. global_page_state(NR_UNEVICTABLE),
  2368. global_page_state(NR_FILE_DIRTY),
  2369. global_page_state(NR_WRITEBACK),
  2370. global_page_state(NR_UNSTABLE_NFS),
  2371. global_page_state(NR_FREE_PAGES),
  2372. global_page_state(NR_SLAB_RECLAIMABLE),
  2373. global_page_state(NR_SLAB_UNRECLAIMABLE),
  2374. global_page_state(NR_FILE_MAPPED),
  2375. global_page_state(NR_SHMEM),
  2376. global_page_state(NR_PAGETABLE),
  2377. global_page_state(NR_BOUNCE));
  2378. for_each_populated_zone(zone) {
  2379. int i;
  2380. if (skip_free_areas_node(filter, zone_to_nid(zone)))
  2381. continue;
  2382. show_node(zone);
  2383. printk("%s"
  2384. " free:%lukB"
  2385. " min:%lukB"
  2386. " low:%lukB"
  2387. " high:%lukB"
  2388. " active_anon:%lukB"
  2389. " inactive_anon:%lukB"
  2390. " active_file:%lukB"
  2391. " inactive_file:%lukB"
  2392. " unevictable:%lukB"
  2393. " isolated(anon):%lukB"
  2394. " isolated(file):%lukB"
  2395. " present:%lukB"
  2396. " mlocked:%lukB"
  2397. " dirty:%lukB"
  2398. " writeback:%lukB"
  2399. " mapped:%lukB"
  2400. " shmem:%lukB"
  2401. " slab_reclaimable:%lukB"
  2402. " slab_unreclaimable:%lukB"
  2403. " kernel_stack:%lukB"
  2404. " pagetables:%lukB"
  2405. " unstable:%lukB"
  2406. " bounce:%lukB"
  2407. " writeback_tmp:%lukB"
  2408. " pages_scanned:%lu"
  2409. " all_unreclaimable? %s"
  2410. "\n",
  2411. zone->name,
  2412. K(zone_page_state(zone, NR_FREE_PAGES)),
  2413. K(min_wmark_pages(zone)),
  2414. K(low_wmark_pages(zone)),
  2415. K(high_wmark_pages(zone)),
  2416. K(zone_page_state(zone, NR_ACTIVE_ANON)),
  2417. K(zone_page_state(zone, NR_INACTIVE_ANON)),
  2418. K(zone_page_state(zone, NR_ACTIVE_FILE)),
  2419. K(zone_page_state(zone, NR_INACTIVE_FILE)),
  2420. K(zone_page_state(zone, NR_UNEVICTABLE)),
  2421. K(zone_page_state(zone, NR_ISOLATED_ANON)),
  2422. K(zone_page_state(zone, NR_ISOLATED_FILE)),
  2423. K(zone->present_pages),
  2424. K(zone_page_state(zone, NR_MLOCK)),
  2425. K(zone_page_state(zone, NR_FILE_DIRTY)),
  2426. K(zone_page_state(zone, NR_WRITEBACK)),
  2427. K(zone_page_state(zone, NR_FILE_MAPPED)),
  2428. K(zone_page_state(zone, NR_SHMEM)),
  2429. K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)),
  2430. K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)),
  2431. zone_page_state(zone, NR_KERNEL_STACK) *
  2432. THREAD_SIZE / 1024,
  2433. K(zone_page_state(zone, NR_PAGETABLE)),
  2434. K(zone_page_state(zone, NR_UNSTABLE_NFS)),
  2435. K(zone_page_state(zone, NR_BOUNCE)),
  2436. K(zone_page_state(zone, NR_WRITEBACK_TEMP)),
  2437. zone->pages_scanned,
  2438. (zone->all_unreclaimable ? "yes" : "no")
  2439. );
  2440. printk("lowmem_reserve[]:");
  2441. for (i = 0; i < MAX_NR_ZONES; i++)
  2442. printk(" %lu", zone->lowmem_reserve[i]);
  2443. printk("\n");
  2444. }
  2445. for_each_populated_zone(zone) {
  2446. unsigned long nr[MAX_ORDER], flags, order, total = 0;
  2447. if (skip_free_areas_node(filter, zone_to_nid(zone)))
  2448. continue;
  2449. show_node(zone);
  2450. printk("%s: ", zone->name);
  2451. spin_lock_irqsave(&zone->lock, flags);
  2452. for (order = 0; order < MAX_ORDER; order++) {
  2453. nr[order] = zone->free_area[order].nr_free;
  2454. total += nr[order] << order;
  2455. }
  2456. spin_unlock_irqrestore(&zone->lock, flags);
  2457. for (order = 0; order < MAX_ORDER; order++)
  2458. printk("%lu*%lukB ", nr[order], K(1UL) << order);
  2459. printk("= %lukB\n", K(total));
  2460. }
  2461. printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES));
  2462. show_swap_cache_info();
  2463. }
  2464. static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
  2465. {
  2466. zoneref->zone = zone;
  2467. zoneref->zone_idx = zone_idx(zone);
  2468. }
  2469. /*
  2470. * Builds allocation fallback zone lists.
  2471. *
  2472. * Add all populated zones of a node to the zonelist.
  2473. */
  2474. static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
  2475. int nr_zones, enum zone_type zone_type)
  2476. {
  2477. struct zone *zone;
  2478. BUG_ON(zone_type >= MAX_NR_ZONES);
  2479. zone_type++;
  2480. do {
  2481. zone_type--;
  2482. zone = pgdat->node_zones + zone_type;
  2483. if (populated_zone(zone)) {
  2484. zoneref_set_zone(zone,
  2485. &zonelist->_zonerefs[nr_zones++]);
  2486. check_highest_zone(zone_type);
  2487. }
  2488. } while (zone_type);
  2489. return nr_zones;
  2490. }
  2491. /*
  2492. * zonelist_order:
  2493. * 0 = automatic detection of better ordering.
  2494. * 1 = order by ([node] distance, -zonetype)
  2495. * 2 = order by (-zonetype, [node] distance)
  2496. *
  2497. * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
  2498. * the same zonelist. So only NUMA can configure this param.
  2499. */
  2500. #define ZONELIST_ORDER_DEFAULT 0
  2501. #define ZONELIST_ORDER_NODE 1
  2502. #define ZONELIST_ORDER_ZONE 2
  2503. /* zonelist order in the kernel.
  2504. * set_zonelist_order() will set this to NODE or ZONE.
  2505. */
  2506. static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
  2507. static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
  2508. #ifdef CONFIG_NUMA
  2509. /* The value user specified ....changed by config */
  2510. static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
  2511. /* string for sysctl */
  2512. #define NUMA_ZONELIST_ORDER_LEN 16
  2513. char numa_zonelist_order[16] = "default";
  2514. /*
  2515. * interface for configure zonelist ordering.
  2516. * command line option "numa_zonelist_order"
  2517. * = "[dD]efault - default, automatic configuration.
  2518. * = "[nN]ode - order by node locality, then by zone within node
  2519. * = "[zZ]one - order by zone, then by locality within zone
  2520. */
  2521. static int __parse_numa_zonelist_order(char *s)
  2522. {
  2523. if (*s == 'd' || *s == 'D') {
  2524. user_zonelist_order = ZONELIST_ORDER_DEFAULT;
  2525. } else if (*s == 'n' || *s == 'N') {
  2526. user_zonelist_order = ZONELIST_ORDER_NODE;
  2527. } else if (*s == 'z' || *s == 'Z') {
  2528. user_zonelist_order = ZONELIST_ORDER_ZONE;
  2529. } else {
  2530. printk(KERN_WARNING
  2531. "Ignoring invalid numa_zonelist_order value: "
  2532. "%s\n", s);
  2533. return -EINVAL;
  2534. }
  2535. return 0;
  2536. }
  2537. static __init int setup_numa_zonelist_order(char *s)
  2538. {
  2539. int ret;
  2540. if (!s)
  2541. return 0;
  2542. ret = __parse_numa_zonelist_order(s);
  2543. if (ret == 0)
  2544. strlcpy(numa_zonelist_order, s, NUMA_ZONELIST_ORDER_LEN);
  2545. return ret;
  2546. }
  2547. early_param("numa_zonelist_order", setup_numa_zonelist_order);
  2548. /*
  2549. * sysctl handler for numa_zonelist_order
  2550. */
  2551. int numa_zonelist_order_handler(ctl_table *table, int write,
  2552. void __user *buffer, size_t *length,
  2553. loff_t *ppos)
  2554. {
  2555. char saved_string[NUMA_ZONELIST_ORDER_LEN];
  2556. int ret;
  2557. static DEFINE_MUTEX(zl_order_mutex);
  2558. mutex_lock(&zl_order_mutex);
  2559. if (write)
  2560. strcpy(saved_string, (char*)table->data);
  2561. ret = proc_dostring(table, write, buffer, length, ppos);
  2562. if (ret)
  2563. goto out;
  2564. if (write) {
  2565. int oldval = user_zonelist_order;
  2566. if (__parse_numa_zonelist_order((char*)table->data)) {
  2567. /*
  2568. * bogus value. restore saved string
  2569. */
  2570. strncpy((char*)table->data, saved_string,
  2571. NUMA_ZONELIST_ORDER_LEN);
  2572. user_zonelist_order = oldval;
  2573. } else if (oldval != user_zonelist_order) {
  2574. mutex_lock(&zonelists_mutex);
  2575. build_all_zonelists(NULL);
  2576. mutex_unlock(&zonelists_mutex);
  2577. }
  2578. }
  2579. out:
  2580. mutex_unlock(&zl_order_mutex);
  2581. return ret;
  2582. }
  2583. #define MAX_NODE_LOAD (nr_online_nodes)
  2584. static int node_load[MAX_NUMNODES];
  2585. /**
  2586. * find_next_best_node - find the next node that should appear in a given node's fallback list
  2587. * @node: node whose fallback list we're appending
  2588. * @used_node_mask: nodemask_t of already used nodes
  2589. *
  2590. * We use a number of factors to determine which is the next node that should
  2591. * appear on a given node's fallback list. The node should not have appeared
  2592. * already in @node's fallback list, and it should be the next closest node
  2593. * according to the distance array (which contains arbitrary distance values
  2594. * from each node to each node in the system), and should also prefer nodes
  2595. * with no CPUs, since presumably they'll have very little allocation pressure
  2596. * on them otherwise.
  2597. * It returns -1 if no node is found.
  2598. */
  2599. static int find_next_best_node(int node, nodemask_t *used_node_mask)
  2600. {
  2601. int n, val;
  2602. int min_val = INT_MAX;
  2603. int best_node = -1;
  2604. const struct cpumask *tmp = cpumask_of_node(0);
  2605. /* Use the local node if we haven't already */
  2606. if (!node_isset(node, *used_node_mask)) {
  2607. node_set(node, *used_node_mask);
  2608. return node;
  2609. }
  2610. for_each_node_state(n, N_HIGH_MEMORY) {
  2611. /* Don't want a node to appear more than once */
  2612. if (node_isset(n, *used_node_mask))
  2613. continue;
  2614. /* Use the distance array to find the distance */
  2615. val = node_distance(node, n);
  2616. /* Penalize nodes under us ("prefer the next node") */
  2617. val += (n < node);
  2618. /* Give preference to headless and unused nodes */
  2619. tmp = cpumask_of_node(n);
  2620. if (!cpumask_empty(tmp))
  2621. val += PENALTY_FOR_NODE_WITH_CPUS;
  2622. /* Slight preference for less loaded node */
  2623. val *= (MAX_NODE_LOAD*MAX_NUMNODES);
  2624. val += node_load[n];
  2625. if (val < min_val) {
  2626. min_val = val;
  2627. best_node = n;
  2628. }
  2629. }
  2630. if (best_node >= 0)
  2631. node_set(best_node, *used_node_mask);
  2632. return best_node;
  2633. }
  2634. /*
  2635. * Build zonelists ordered by node and zones within node.
  2636. * This results in maximum locality--normal zone overflows into local
  2637. * DMA zone, if any--but risks exhausting DMA zone.
  2638. */
  2639. static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
  2640. {
  2641. int j;
  2642. struct zonelist *zonelist;
  2643. zonelist = &pgdat->node_zonelists[0];
  2644. for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
  2645. ;
  2646. j = build_zonelists_node(NODE_DATA(node), zonelist, j,
  2647. MAX_NR_ZONES - 1);
  2648. zonelist->_zonerefs[j].zone = NULL;
  2649. zonelist->_zonerefs[j].zone_idx = 0;
  2650. }
  2651. /*
  2652. * Build gfp_thisnode zonelists
  2653. */
  2654. static void build_thisnode_zonelists(pg_data_t *pgdat)
  2655. {
  2656. int j;
  2657. struct zonelist *zonelist;
  2658. zonelist = &pgdat->node_zonelists[1];
  2659. j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
  2660. zonelist->_zonerefs[j].zone = NULL;
  2661. zonelist->_zonerefs[j].zone_idx = 0;
  2662. }
  2663. /*
  2664. * Build zonelists ordered by zone and nodes within zones.
  2665. * This results in conserving DMA zone[s] until all Normal memory is
  2666. * exhausted, but results in overflowing to remote node while memory
  2667. * may still exist in local DMA zone.
  2668. */
  2669. static int node_order[MAX_NUMNODES];
  2670. static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
  2671. {
  2672. int pos, j, node;
  2673. int zone_type; /* needs to be signed */
  2674. struct zone *z;
  2675. struct zonelist *zonelist;
  2676. zonelist = &pgdat->node_zonelists[0];
  2677. pos = 0;
  2678. for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
  2679. for (j = 0; j < nr_nodes; j++) {
  2680. node = node_order[j];
  2681. z = &NODE_DATA(node)->node_zones[zone_type];
  2682. if (populated_zone(z)) {
  2683. zoneref_set_zone(z,
  2684. &zonelist->_zonerefs[pos++]);
  2685. check_highest_zone(zone_type);
  2686. }
  2687. }
  2688. }
  2689. zonelist->_zonerefs[pos].zone = NULL;
  2690. zonelist->_zonerefs[pos].zone_idx = 0;
  2691. }
  2692. static int default_zonelist_order(void)
  2693. {
  2694. int nid, zone_type;
  2695. unsigned long low_kmem_size,total_size;
  2696. struct zone *z;
  2697. int average_size;
  2698. /*
  2699. * ZONE_DMA and ZONE_DMA32 can be very small area in the system.
  2700. * If they are really small and used heavily, the system can fall
  2701. * into OOM very easily.
  2702. * This function detect ZONE_DMA/DMA32 size and configures zone order.
  2703. */
  2704. /* Is there ZONE_NORMAL ? (ex. ppc has only DMA zone..) */
  2705. low_kmem_size = 0;
  2706. total_size = 0;
  2707. for_each_online_node(nid) {
  2708. for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
  2709. z = &NODE_DATA(nid)->node_zones[zone_type];
  2710. if (populated_zone(z)) {
  2711. if (zone_type < ZONE_NORMAL)
  2712. low_kmem_size += z->present_pages;
  2713. total_size += z->present_pages;
  2714. } else if (zone_type == ZONE_NORMAL) {
  2715. /*
  2716. * If any node has only lowmem, then node order
  2717. * is preferred to allow kernel allocations
  2718. * locally; otherwise, they can easily infringe
  2719. * on other nodes when there is an abundance of
  2720. * lowmem available to allocate from.
  2721. */
  2722. return ZONELIST_ORDER_NODE;
  2723. }
  2724. }
  2725. }
  2726. if (!low_kmem_size || /* there are no DMA area. */
  2727. low_kmem_size > total_size/2) /* DMA/DMA32 is big. */
  2728. return ZONELIST_ORDER_NODE;
  2729. /*
  2730. * look into each node's config.
  2731. * If there is a node whose DMA/DMA32 memory is very big area on
  2732. * local memory, NODE_ORDER may be suitable.
  2733. */
  2734. average_size = total_size /
  2735. (nodes_weight(node_states[N_HIGH_MEMORY]) + 1);
  2736. for_each_online_node(nid) {
  2737. low_kmem_size = 0;
  2738. total_size = 0;
  2739. for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
  2740. z = &NODE_DATA(nid)->node_zones[zone_type];
  2741. if (populated_zone(z)) {
  2742. if (zone_type < ZONE_NORMAL)
  2743. low_kmem_size += z->present_pages;
  2744. total_size += z->present_pages;
  2745. }
  2746. }
  2747. if (low_kmem_size &&
  2748. total_size > average_size && /* ignore small node */
  2749. low_kmem_size > total_size * 70/100)
  2750. return ZONELIST_ORDER_NODE;
  2751. }
  2752. return ZONELIST_ORDER_ZONE;
  2753. }
  2754. static void set_zonelist_order(void)
  2755. {
  2756. if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
  2757. current_zonelist_order = default_zonelist_order();
  2758. else
  2759. current_zonelist_order = user_zonelist_order;
  2760. }
  2761. static void build_zonelists(pg_data_t *pgdat)
  2762. {
  2763. int j, node, load;
  2764. enum zone_type i;
  2765. nodemask_t used_mask;
  2766. int local_node, prev_node;
  2767. struct zonelist *zonelist;
  2768. int order = current_zonelist_order;
  2769. /* initialize zonelists */
  2770. for (i = 0; i < MAX_ZONELISTS; i++) {
  2771. zonelist = pgdat->node_zonelists + i;
  2772. zonelist->_zonerefs[0].zone = NULL;
  2773. zonelist->_zonerefs[0].zone_idx = 0;
  2774. }
  2775. /* NUMA-aware ordering of nodes */
  2776. local_node = pgdat->node_id;
  2777. load = nr_online_nodes;
  2778. prev_node = local_node;
  2779. nodes_clear(used_mask);
  2780. memset(node_order, 0, sizeof(node_order));
  2781. j = 0;
  2782. while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
  2783. int distance = node_distance(local_node, node);
  2784. /*
  2785. * If another node is sufficiently far away then it is better
  2786. * to reclaim pages in a zone before going off node.
  2787. */
  2788. if (distance > RECLAIM_DISTANCE)
  2789. zone_reclaim_mode = 1;
  2790. /*
  2791. * We don't want to pressure a particular node.
  2792. * So adding penalty to the first node in same
  2793. * distance group to make it round-robin.
  2794. */
  2795. if (distance != node_distance(local_node, prev_node))
  2796. node_load[node] = load;
  2797. prev_node = node;
  2798. load--;
  2799. if (order == ZONELIST_ORDER_NODE)
  2800. build_zonelists_in_node_order(pgdat, node);
  2801. else
  2802. node_order[j++] = node; /* remember order */
  2803. }
  2804. if (order == ZONELIST_ORDER_ZONE) {
  2805. /* calculate node order -- i.e., DMA last! */
  2806. build_zonelists_in_zone_order(pgdat, j);
  2807. }
  2808. build_thisnode_zonelists(pgdat);
  2809. }
  2810. /* Construct the zonelist performance cache - see further mmzone.h */
  2811. static void build_zonelist_cache(pg_data_t *pgdat)
  2812. {
  2813. struct zonelist *zonelist;
  2814. struct zonelist_cache *zlc;
  2815. struct zoneref *z;
  2816. zonelist = &pgdat->node_zonelists[0];
  2817. zonelist->zlcache_ptr = zlc = &zonelist->zlcache;
  2818. bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
  2819. for (z = zonelist->_zonerefs; z->zone; z++)
  2820. zlc->z_to_n[z - zonelist->_zonerefs] = zonelist_node_idx(z);
  2821. }
  2822. #ifdef CONFIG_HAVE_MEMORYLESS_NODES
  2823. /*
  2824. * Return node id of node used for "local" allocations.
  2825. * I.e., first node id of first zone in arg node's generic zonelist.
  2826. * Used for initializing percpu 'numa_mem', which is used primarily
  2827. * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
  2828. */
  2829. int local_memory_node(int node)
  2830. {
  2831. struct zone *zone;
  2832. (void)first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
  2833. gfp_zone(GFP_KERNEL),
  2834. NULL,
  2835. &zone);
  2836. return zone->node;
  2837. }
  2838. #endif
  2839. #else /* CONFIG_NUMA */
  2840. static void set_zonelist_order(void)
  2841. {
  2842. current_zonelist_order = ZONELIST_ORDER_ZONE;
  2843. }
  2844. static void build_zonelists(pg_data_t *pgdat)
  2845. {
  2846. int node, local_node;
  2847. enum zone_type j;
  2848. struct zonelist *zonelist;
  2849. local_node = pgdat->node_id;
  2850. zonelist = &pgdat->node_zonelists[0];
  2851. j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
  2852. /*
  2853. * Now we build the zonelist so that it contains the zones
  2854. * of all the other nodes.
  2855. * We don't want to pressure a particular node, so when
  2856. * building the zones for node N, we make sure that the
  2857. * zones coming right after the local ones are those from
  2858. * node N+1 (modulo N)
  2859. */
  2860. for (node = local_node + 1; node < MAX_NUMNODES; node++) {
  2861. if (!node_online(node))
  2862. continue;
  2863. j = build_zonelists_node(NODE_DATA(node), zonelist, j,
  2864. MAX_NR_ZONES - 1);
  2865. }
  2866. for (node = 0; node < local_node; node++) {
  2867. if (!node_online(node))
  2868. continue;
  2869. j = build_zonelists_node(NODE_DATA(node), zonelist, j,
  2870. MAX_NR_ZONES - 1);
  2871. }
  2872. zonelist->_zonerefs[j].zone = NULL;
  2873. zonelist->_zonerefs[j].zone_idx = 0;
  2874. }
  2875. /* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */
  2876. static void build_zonelist_cache(pg_data_t *pgdat)
  2877. {
  2878. pgdat->node_zonelists[0].zlcache_ptr = NULL;
  2879. }
  2880. #endif /* CONFIG_NUMA */
  2881. /*
  2882. * Boot pageset table. One per cpu which is going to be used for all
  2883. * zones and all nodes. The parameters will be set in such a way
  2884. * that an item put on a list will immediately be handed over to
  2885. * the buddy list. This is safe since pageset manipulation is done
  2886. * with interrupts disabled.
  2887. *
  2888. * The boot_pagesets must be kept even after bootup is complete for
  2889. * unused processors and/or zones. They do play a role for bootstrapping
  2890. * hotplugged processors.
  2891. *
  2892. * zoneinfo_show() and maybe other functions do
  2893. * not check if the processor is online before following the pageset pointer.
  2894. * Other parts of the kernel may not check if the zone is available.
  2895. */
  2896. static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
  2897. static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
  2898. static void setup_zone_pageset(struct zone *zone);
  2899. /*
  2900. * Global mutex to protect against size modification of zonelists
  2901. * as well as to serialize pageset setup for the new populated zone.
  2902. */
  2903. DEFINE_MUTEX(zonelists_mutex);
  2904. /* return values int ....just for stop_machine() */
  2905. static __init_refok int __build_all_zonelists(void *data)
  2906. {
  2907. int nid;
  2908. int cpu;
  2909. #ifdef CONFIG_NUMA
  2910. memset(node_load, 0, sizeof(node_load));
  2911. #endif
  2912. for_each_online_node(nid) {
  2913. pg_data_t *pgdat = NODE_DATA(nid);
  2914. build_zonelists(pgdat);
  2915. build_zonelist_cache(pgdat);
  2916. }
  2917. /*
  2918. * Initialize the boot_pagesets that are going to be used
  2919. * for bootstrapping processors. The real pagesets for
  2920. * each zone will be allocated later when the per cpu
  2921. * allocator is available.
  2922. *
  2923. * boot_pagesets are used also for bootstrapping offline
  2924. * cpus if the system is already booted because the pagesets
  2925. * are needed to initialize allocators on a specific cpu too.
  2926. * F.e. the percpu allocator needs the page allocator which
  2927. * needs the percpu allocator in order to allocate its pagesets
  2928. * (a chicken-egg dilemma).
  2929. */
  2930. for_each_possible_cpu(cpu) {
  2931. setup_pageset(&per_cpu(boot_pageset, cpu), 0);
  2932. #ifdef CONFIG_HAVE_MEMORYLESS_NODES
  2933. /*
  2934. * We now know the "local memory node" for each node--
  2935. * i.e., the node of the first zone in the generic zonelist.
  2936. * Set up numa_mem percpu variable for on-line cpus. During
  2937. * boot, only the boot cpu should be on-line; we'll init the
  2938. * secondary cpus' numa_mem as they come on-line. During
  2939. * node/memory hotplug, we'll fixup all on-line cpus.
  2940. */
  2941. if (cpu_online(cpu))
  2942. set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
  2943. #endif
  2944. }
  2945. return 0;
  2946. }
  2947. /*
  2948. * Called with zonelists_mutex held always
  2949. * unless system_state == SYSTEM_BOOTING.
  2950. */
  2951. void __ref build_all_zonelists(void *data)
  2952. {
  2953. set_zonelist_order();
  2954. if (system_state == SYSTEM_BOOTING) {
  2955. __build_all_zonelists(NULL);
  2956. mminit_verify_zonelist();
  2957. cpuset_init_current_mems_allowed();
  2958. } else {
  2959. /* we have to stop all cpus to guarantee there is no user
  2960. of zonelist */
  2961. #ifdef CONFIG_MEMORY_HOTPLUG
  2962. if (data)
  2963. setup_zone_pageset((struct zone *)data);
  2964. #endif
  2965. stop_machine(__build_all_zonelists, NULL, NULL);
  2966. /* cpuset refresh routine should be here */
  2967. }
  2968. vm_total_pages = nr_free_pagecache_pages();
  2969. /*
  2970. * Disable grouping by mobility if the number of pages in the
  2971. * system is too low to allow the mechanism to work. It would be
  2972. * more accurate, but expensive to check per-zone. This check is
  2973. * made on memory-hotadd so a system can start with mobility
  2974. * disabled and enable it later
  2975. */
  2976. if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
  2977. page_group_by_mobility_disabled = 1;
  2978. else
  2979. page_group_by_mobility_disabled = 0;
  2980. printk("Built %i zonelists in %s order, mobility grouping %s. "
  2981. "Total pages: %ld\n",
  2982. nr_online_nodes,
  2983. zonelist_order_name[current_zonelist_order],
  2984. page_group_by_mobility_disabled ? "off" : "on",
  2985. vm_total_pages);
  2986. #ifdef CONFIG_NUMA
  2987. printk("Policy zone: %s\n", zone_names[policy_zone]);
  2988. #endif
  2989. }
  2990. /*
  2991. * Helper functions to size the waitqueue hash table.
  2992. * Essentially these want to choose hash table sizes sufficiently
  2993. * large so that collisions trying to wait on pages are rare.
  2994. * But in fact, the number of active page waitqueues on typical
  2995. * systems is ridiculously low, less than 200. So this is even
  2996. * conservative, even though it seems large.
  2997. *
  2998. * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
  2999. * waitqueues, i.e. the size of the waitq table given the number of pages.
  3000. */
  3001. #define PAGES_PER_WAITQUEUE 256
  3002. #ifndef CONFIG_MEMORY_HOTPLUG
  3003. static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
  3004. {
  3005. unsigned long size = 1;
  3006. pages /= PAGES_PER_WAITQUEUE;
  3007. while (size < pages)
  3008. size <<= 1;
  3009. /*
  3010. * Once we have dozens or even hundreds of threads sleeping
  3011. * on IO we've got bigger problems than wait queue collision.
  3012. * Limit the size of the wait table to a reasonable size.
  3013. */
  3014. size = min(size, 4096UL);
  3015. return max(size, 4UL);
  3016. }
  3017. #else
  3018. /*
  3019. * A zone's size might be changed by hot-add, so it is not possible to determine
  3020. * a suitable size for its wait_table. So we use the maximum size now.
  3021. *
  3022. * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie:
  3023. *
  3024. * i386 (preemption config) : 4096 x 16 = 64Kbyte.
  3025. * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
  3026. * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte.
  3027. *
  3028. * The maximum entries are prepared when a zone's memory is (512K + 256) pages
  3029. * or more by the traditional way. (See above). It equals:
  3030. *
  3031. * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte.
  3032. * ia64(16K page size) : = ( 8G + 4M)byte.
  3033. * powerpc (64K page size) : = (32G +16M)byte.
  3034. */
  3035. static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
  3036. {
  3037. return 4096UL;
  3038. }
  3039. #endif
  3040. /*
  3041. * This is an integer logarithm so that shifts can be used later
  3042. * to extract the more random high bits from the multiplicative
  3043. * hash function before the remainder is taken.
  3044. */
  3045. static inline unsigned long wait_table_bits(unsigned long size)
  3046. {
  3047. return ffz(~size);
  3048. }
  3049. #define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))
  3050. /*
  3051. * Check if a pageblock contains reserved pages
  3052. */
  3053. static int pageblock_is_reserved(unsigned long start_pfn, unsigned long end_pfn)
  3054. {
  3055. unsigned long pfn;
  3056. for (pfn = start_pfn; pfn < end_pfn; pfn++) {
  3057. if (!pfn_valid_within(pfn) || PageReserved(pfn_to_page(pfn)))
  3058. return 1;
  3059. }
  3060. return 0;
  3061. }
  3062. /*
  3063. * Mark a number of pageblocks as MIGRATE_RESERVE. The number
  3064. * of blocks reserved is based on min_wmark_pages(zone). The memory within
  3065. * the reserve will tend to store contiguous free pages. Setting min_free_kbytes
  3066. * higher will lead to a bigger reserve which will get freed as contiguous
  3067. * blocks as reclaim kicks in
  3068. */
  3069. static void setup_zone_migrate_reserve(struct zone *zone)
  3070. {
  3071. unsigned long start_pfn, pfn, end_pfn, block_end_pfn;
  3072. struct page *page;
  3073. unsigned long block_migratetype;
  3074. int reserve;
  3075. /*
  3076. * Get the start pfn, end pfn and the number of blocks to reserve
  3077. * We have to be careful to be aligned to pageblock_nr_pages to
  3078. * make sure that we always check pfn_valid for the first page in
  3079. * the block.
  3080. */
  3081. start_pfn = zone->zone_start_pfn;
  3082. end_pfn = start_pfn + zone->spanned_pages;
  3083. start_pfn = roundup(start_pfn, pageblock_nr_pages);
  3084. reserve = roundup(min_wmark_pages(zone), pageblock_nr_pages) >>
  3085. pageblock_order;
  3086. /*
  3087. * Reserve blocks are generally in place to help high-order atomic
  3088. * allocations that are short-lived. A min_free_kbytes value that
  3089. * would result in more than 2 reserve blocks for atomic allocations
  3090. * is assumed to be in place to help anti-fragmentation for the
  3091. * future allocation of hugepages at runtime.
  3092. */
  3093. reserve = min(2, reserve);
  3094. for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
  3095. if (!pfn_valid(pfn))
  3096. continue;
  3097. page = pfn_to_page(pfn);
  3098. /* Watch out for overlapping nodes */
  3099. if (page_to_nid(page) != zone_to_nid(zone))
  3100. continue;
  3101. block_migratetype = get_pageblock_migratetype(page);
  3102. /* Only test what is necessary when the reserves are not met */
  3103. if (reserve > 0) {
  3104. /*
  3105. * Blocks with reserved pages will never free, skip
  3106. * them.
  3107. */
  3108. block_end_pfn = min(pfn + pageblock_nr_pages, end_pfn);
  3109. if (pageblock_is_reserved(pfn, block_end_pfn))
  3110. continue;
  3111. /* If this block is reserved, account for it */
  3112. if (block_migratetype == MIGRATE_RESERVE) {
  3113. reserve--;
  3114. continue;
  3115. }
  3116. /* Suitable for reserving if this block is movable */
  3117. if (block_migratetype == MIGRATE_MOVABLE) {
  3118. set_pageblock_migratetype(page,
  3119. MIGRATE_RESERVE);
  3120. move_freepages_block(zone, page,
  3121. MIGRATE_RESERVE);
  3122. reserve--;
  3123. continue;
  3124. }
  3125. }
  3126. /*
  3127. * If the reserve is met and this is a previous reserved block,
  3128. * take it back
  3129. */
  3130. if (block_migratetype == MIGRATE_RESERVE) {
  3131. set_pageblock_migratetype(page, MIGRATE_MOVABLE);
  3132. move_freepages_block(zone, page, MIGRATE_MOVABLE);
  3133. }
  3134. }
  3135. }
  3136. /*
  3137. * Initially all pages are reserved - free ones are freed
  3138. * up by free_all_bootmem() once the early boot process is
  3139. * done. Non-atomic initialization, single-pass.
  3140. */
  3141. void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
  3142. unsigned long start_pfn, enum memmap_context context)
  3143. {
  3144. struct page *page;
  3145. unsigned long end_pfn = start_pfn + size;
  3146. unsigned long pfn;
  3147. struct zone *z;
  3148. if (highest_memmap_pfn < end_pfn - 1)
  3149. highest_memmap_pfn = end_pfn - 1;
  3150. z = &NODE_DATA(nid)->node_zones[zone];
  3151. for (pfn = start_pfn; pfn < end_pfn; pfn++) {
  3152. /*
  3153. * There can be holes in boot-time mem_map[]s
  3154. * handed to this function. They do not
  3155. * exist on hotplugged memory.
  3156. */
  3157. if (context == MEMMAP_EARLY) {
  3158. if (!early_pfn_valid(pfn))
  3159. continue;
  3160. if (!early_pfn_in_nid(pfn, nid))
  3161. continue;
  3162. }
  3163. page = pfn_to_page(pfn);
  3164. set_page_links(page, zone, nid, pfn);
  3165. mminit_verify_page_links(page, zone, nid, pfn);
  3166. init_page_count(page);
  3167. reset_page_mapcount(page);
  3168. SetPageReserved(page);
  3169. /*
  3170. * Mark the block movable so that blocks are reserved for
  3171. * movable at startup. This will force kernel allocations
  3172. * to reserve their blocks rather than leaking throughout
  3173. * the address space during boot when many long-lived
  3174. * kernel allocations are made. Later some blocks near
  3175. * the start are marked MIGRATE_RESERVE by
  3176. * setup_zone_migrate_reserve()
  3177. *
  3178. * bitmap is created for zone's valid pfn range. but memmap
  3179. * can be created for invalid pages (for alignment)
  3180. * check here not to call set_pageblock_migratetype() against
  3181. * pfn out of zone.
  3182. */
  3183. if ((z->zone_start_pfn <= pfn)
  3184. && (pfn < z->zone_start_pfn + z->spanned_pages)
  3185. && !(pfn & (pageblock_nr_pages - 1)))
  3186. set_pageblock_migratetype(page, MIGRATE_MOVABLE);
  3187. INIT_LIST_HEAD(&page->lru);
  3188. #ifdef WANT_PAGE_VIRTUAL
  3189. /* The shift won't overflow because ZONE_NORMAL is below 4G. */
  3190. if (!is_highmem_idx(zone))
  3191. set_page_address(page, __va(pfn << PAGE_SHIFT));
  3192. #endif
  3193. }
  3194. }
  3195. static void __meminit zone_init_free_lists(struct zone *zone)
  3196. {
  3197. int order, t;
  3198. for_each_migratetype_order(order, t) {
  3199. INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
  3200. zone->free_area[order].nr_free = 0;
  3201. }
  3202. }
  3203. #ifndef __HAVE_ARCH_MEMMAP_INIT
  3204. #define memmap_init(size, nid, zone, start_pfn) \
  3205. memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
  3206. #endif
  3207. static int zone_batchsize(struct zone *zone)
  3208. {
  3209. #ifdef CONFIG_MMU
  3210. int batch;
  3211. /*
  3212. * The per-cpu-pages pools are set to around 1000th of the
  3213. * size of the zone. But no more than 1/2 of a meg.
  3214. *
  3215. * OK, so we don't know how big the cache is. So guess.
  3216. */
  3217. batch = zone->present_pages / 1024;
  3218. if (batch * PAGE_SIZE > 512 * 1024)
  3219. batch = (512 * 1024) / PAGE_SIZE;
  3220. batch /= 4; /* We effectively *= 4 below */
  3221. if (batch < 1)
  3222. batch = 1;
  3223. /*
  3224. * Clamp the batch to a 2^n - 1 value. Having a power
  3225. * of 2 value was found to be more likely to have
  3226. * suboptimal cache aliasing properties in some cases.
  3227. *
  3228. * For example if 2 tasks are alternately allocating
  3229. * batches of pages, one task can end up with a lot
  3230. * of pages of one half of the possible page colors
  3231. * and the other with pages of the other colors.
  3232. */
  3233. batch = rounddown_pow_of_two(batch + batch/2) - 1;
  3234. return batch;
  3235. #else
  3236. /* The deferral and batching of frees should be suppressed under NOMMU
  3237. * conditions.
  3238. *
  3239. * The problem is that NOMMU needs to be able to allocate large chunks
  3240. * of contiguous memory as there's no hardware page translation to
  3241. * assemble apparent contiguous memory from discontiguous pages.
  3242. *
  3243. * Queueing large contiguous runs of pages for batching, however,
  3244. * causes the pages to actually be freed in smaller chunks. As there
  3245. * can be a significant delay between the individual batches being
  3246. * recycled, this leads to the once large chunks of space being
  3247. * fragmented and becoming unavailable for high-order allocations.
  3248. */
  3249. return 0;
  3250. #endif
  3251. }
  3252. static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
  3253. {
  3254. struct per_cpu_pages *pcp;
  3255. int migratetype;
  3256. memset(p, 0, sizeof(*p));
  3257. pcp = &p->pcp;
  3258. pcp->count = 0;
  3259. pcp->high = 6 * batch;
  3260. pcp->batch = max(1UL, 1 * batch);
  3261. for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
  3262. INIT_LIST_HEAD(&pcp->lists[migratetype]);
  3263. }
  3264. /*
  3265. * setup_pagelist_highmark() sets the high water mark for hot per_cpu_pagelist
  3266. * to the value high for the pageset p.
  3267. */
  3268. static void setup_pagelist_highmark(struct per_cpu_pageset *p,
  3269. unsigned long high)
  3270. {
  3271. struct per_cpu_pages *pcp;
  3272. pcp = &p->pcp;
  3273. pcp->high = high;
  3274. pcp->batch = max(1UL, high/4);
  3275. if ((high/4) > (PAGE_SHIFT * 8))
  3276. pcp->batch = PAGE_SHIFT * 8;
  3277. }
  3278. static void setup_zone_pageset(struct zone *zone)
  3279. {
  3280. int cpu;
  3281. zone->pageset = alloc_percpu(struct per_cpu_pageset);
  3282. for_each_possible_cpu(cpu) {
  3283. struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
  3284. setup_pageset(pcp, zone_batchsize(zone));
  3285. if (percpu_pagelist_fraction)
  3286. setup_pagelist_highmark(pcp,
  3287. (zone->present_pages /
  3288. percpu_pagelist_fraction));
  3289. }
  3290. }
  3291. /*
  3292. * Allocate per cpu pagesets and initialize them.
  3293. * Before this call only boot pagesets were available.
  3294. */
  3295. void __init setup_per_cpu_pageset(void)
  3296. {
  3297. struct zone *zone;
  3298. for_each_populated_zone(zone)
  3299. setup_zone_pageset(zone);
  3300. }
  3301. static noinline __init_refok
  3302. int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
  3303. {
  3304. int i;
  3305. struct pglist_data *pgdat = zone->zone_pgdat;
  3306. size_t alloc_size;
  3307. /*
  3308. * The per-page waitqueue mechanism uses hashed waitqueues
  3309. * per zone.
  3310. */
  3311. zone->wait_table_hash_nr_entries =
  3312. wait_table_hash_nr_entries(zone_size_pages);
  3313. zone->wait_table_bits =
  3314. wait_table_bits(zone->wait_table_hash_nr_entries);
  3315. alloc_size = zone->wait_table_hash_nr_entries
  3316. * sizeof(wait_queue_head_t);
  3317. if (!slab_is_available()) {
  3318. zone->wait_table = (wait_queue_head_t *)
  3319. alloc_bootmem_node_nopanic(pgdat, alloc_size);
  3320. } else {
  3321. /*
  3322. * This case means that a zone whose size was 0 gets new memory
  3323. * via memory hot-add.
  3324. * But it may be the case that a new node was hot-added. In
  3325. * this case vmalloc() will not be able to use this new node's
  3326. * memory - this wait_table must be initialized to use this new
  3327. * node itself as well.
  3328. * To use this new node's memory, further consideration will be
  3329. * necessary.
  3330. */
  3331. zone->wait_table = vmalloc(alloc_size);
  3332. }
  3333. if (!zone->wait_table)
  3334. return -ENOMEM;
  3335. for(i = 0; i < zone->wait_table_hash_nr_entries; ++i)
  3336. init_waitqueue_head(zone->wait_table + i);
  3337. return 0;
  3338. }
  3339. static int __zone_pcp_update(void *data)
  3340. {
  3341. struct zone *zone = data;
  3342. int cpu;
  3343. unsigned long batch = zone_batchsize(zone), flags;
  3344. for_each_possible_cpu(cpu) {
  3345. struct per_cpu_pageset *pset;
  3346. struct per_cpu_pages *pcp;
  3347. pset = per_cpu_ptr(zone->pageset, cpu);
  3348. pcp = &pset->pcp;
  3349. local_irq_save(flags);
  3350. free_pcppages_bulk(zone, pcp->count, pcp);
  3351. setup_pageset(pset, batch);
  3352. local_irq_restore(flags);
  3353. }
  3354. return 0;
  3355. }
  3356. void zone_pcp_update(struct zone *zone)
  3357. {
  3358. stop_machine(__zone_pcp_update, zone, NULL);
  3359. }
  3360. static __meminit void zone_pcp_init(struct zone *zone)
  3361. {
  3362. /*
  3363. * per cpu subsystem is not up at this point. The following code
  3364. * relies on the ability of the linker to provide the
  3365. * offset of a (static) per cpu variable into the per cpu area.
  3366. */
  3367. zone->pageset = &boot_pageset;
  3368. if (zone->present_pages)
  3369. printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n",
  3370. zone->name, zone->present_pages,
  3371. zone_batchsize(zone));
  3372. }
  3373. __meminit int init_currently_empty_zone(struct zone *zone,
  3374. unsigned long zone_start_pfn,
  3375. unsigned long size,
  3376. enum memmap_context context)
  3377. {
  3378. struct pglist_data *pgdat = zone->zone_pgdat;
  3379. int ret;
  3380. ret = zone_wait_table_init(zone, size);
  3381. if (ret)
  3382. return ret;
  3383. pgdat->nr_zones = zone_idx(zone) + 1;
  3384. zone->zone_start_pfn = zone_start_pfn;
  3385. mminit_dprintk(MMINIT_TRACE, "memmap_init",
  3386. "Initialising map node %d zone %lu pfns %lu -> %lu\n",
  3387. pgdat->node_id,
  3388. (unsigned long)zone_idx(zone),
  3389. zone_start_pfn, (zone_start_pfn + size));
  3390. zone_init_free_lists(zone);
  3391. return 0;
  3392. }
  3393. #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
  3394. #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
  3395. /*
  3396. * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
  3397. * Architectures may implement their own version but if add_active_range()
  3398. * was used and there are no special requirements, this is a convenient
  3399. * alternative
  3400. */
  3401. int __meminit __early_pfn_to_nid(unsigned long pfn)
  3402. {
  3403. unsigned long start_pfn, end_pfn;
  3404. int i, nid;
  3405. for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
  3406. if (start_pfn <= pfn && pfn < end_pfn)
  3407. return nid;
  3408. /* This is a memory hole */
  3409. return -1;
  3410. }
  3411. #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
  3412. int __meminit early_pfn_to_nid(unsigned long pfn)
  3413. {
  3414. int nid;
  3415. nid = __early_pfn_to_nid(pfn);
  3416. if (nid >= 0)
  3417. return nid;
  3418. /* just returns 0 */
  3419. return 0;
  3420. }
  3421. #ifdef CONFIG_NODES_SPAN_OTHER_NODES
  3422. bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
  3423. {
  3424. int nid;
  3425. nid = __early_pfn_to_nid(pfn);
  3426. if (nid >= 0 && nid != node)
  3427. return false;
  3428. return true;
  3429. }
  3430. #endif
  3431. /**
  3432. * free_bootmem_with_active_regions - Call free_bootmem_node for each active range
  3433. * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
  3434. * @max_low_pfn: The highest PFN that will be passed to free_bootmem_node
  3435. *
  3436. * If an architecture guarantees that all ranges registered with
  3437. * add_active_ranges() contain no holes and may be freed, this
  3438. * this function may be used instead of calling free_bootmem() manually.
  3439. */
  3440. void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn)
  3441. {
  3442. unsigned long start_pfn, end_pfn;
  3443. int i, this_nid;
  3444. for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) {
  3445. start_pfn = min(start_pfn, max_low_pfn);
  3446. end_pfn = min(end_pfn, max_low_pfn);
  3447. if (start_pfn < end_pfn)
  3448. free_bootmem_node(NODE_DATA(this_nid),
  3449. PFN_PHYS(start_pfn),
  3450. (end_pfn - start_pfn) << PAGE_SHIFT);
  3451. }
  3452. }
  3453. /**
  3454. * sparse_memory_present_with_active_regions - Call memory_present for each active range
  3455. * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
  3456. *
  3457. * If an architecture guarantees that all ranges registered with
  3458. * add_active_ranges() contain no holes and may be freed, this
  3459. * function may be used instead of calling memory_present() manually.
  3460. */
  3461. void __init sparse_memory_present_with_active_regions(int nid)
  3462. {
  3463. unsigned long start_pfn, end_pfn;
  3464. int i, this_nid;
  3465. for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid)
  3466. memory_present(this_nid, start_pfn, end_pfn);
  3467. }
  3468. /**
  3469. * get_pfn_range_for_nid - Return the start and end page frames for a node
  3470. * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
  3471. * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
  3472. * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
  3473. *
  3474. * It returns the start and end page frame of a node based on information
  3475. * provided by an arch calling add_active_range(). If called for a node
  3476. * with no available memory, a warning is printed and the start and end
  3477. * PFNs will be 0.
  3478. */
  3479. void __meminit get_pfn_range_for_nid(unsigned int nid,
  3480. unsigned long *start_pfn, unsigned long *end_pfn)
  3481. {
  3482. unsigned long this_start_pfn, this_end_pfn;
  3483. int i;
  3484. *start_pfn = -1UL;
  3485. *end_pfn = 0;
  3486. for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
  3487. *start_pfn = min(*start_pfn, this_start_pfn);
  3488. *end_pfn = max(*end_pfn, this_end_pfn);
  3489. }
  3490. if (*start_pfn == -1UL)
  3491. *start_pfn = 0;
  3492. }
  3493. /*
  3494. * This finds a zone that can be used for ZONE_MOVABLE pages. The
  3495. * assumption is made that zones within a node are ordered in monotonic
  3496. * increasing memory addresses so that the "highest" populated zone is used
  3497. */
  3498. static void __init find_usable_zone_for_movable(void)
  3499. {
  3500. int zone_index;
  3501. for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
  3502. if (zone_index == ZONE_MOVABLE)
  3503. continue;
  3504. if (arch_zone_highest_possible_pfn[zone_index] >
  3505. arch_zone_lowest_possible_pfn[zone_index])
  3506. break;
  3507. }
  3508. VM_BUG_ON(zone_index == -1);
  3509. movable_zone = zone_index;
  3510. }
  3511. /*
  3512. * The zone ranges provided by the architecture do not include ZONE_MOVABLE
  3513. * because it is sized independent of architecture. Unlike the other zones,
  3514. * the starting point for ZONE_MOVABLE is not fixed. It may be different
  3515. * in each node depending on the size of each node and how evenly kernelcore
  3516. * is distributed. This helper function adjusts the zone ranges
  3517. * provided by the architecture for a given node by using the end of the
  3518. * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
  3519. * zones within a node are in order of monotonic increases memory addresses
  3520. */
  3521. static void __meminit adjust_zone_range_for_zone_movable(int nid,
  3522. unsigned long zone_type,
  3523. unsigned long node_start_pfn,
  3524. unsigned long node_end_pfn,
  3525. unsigned long *zone_start_pfn,
  3526. unsigned long *zone_end_pfn)
  3527. {
  3528. /* Only adjust if ZONE_MOVABLE is on this node */
  3529. if (zone_movable_pfn[nid]) {
  3530. /* Size ZONE_MOVABLE */
  3531. if (zone_type == ZONE_MOVABLE) {
  3532. *zone_start_pfn = zone_movable_pfn[nid];
  3533. *zone_end_pfn = min(node_end_pfn,
  3534. arch_zone_highest_possible_pfn[movable_zone]);
  3535. /* Adjust for ZONE_MOVABLE starting within this range */
  3536. } else if (*zone_start_pfn < zone_movable_pfn[nid] &&
  3537. *zone_end_pfn > zone_movable_pfn[nid]) {
  3538. *zone_end_pfn = zone_movable_pfn[nid];
  3539. /* Check if this whole range is within ZONE_MOVABLE */
  3540. } else if (*zone_start_pfn >= zone_movable_pfn[nid])
  3541. *zone_start_pfn = *zone_end_pfn;
  3542. }
  3543. }
  3544. /*
  3545. * Return the number of pages a zone spans in a node, including holes
  3546. * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
  3547. */
  3548. static unsigned long __meminit zone_spanned_pages_in_node(int nid,
  3549. unsigned long zone_type,
  3550. unsigned long *ignored)
  3551. {
  3552. unsigned long node_start_pfn, node_end_pfn;
  3553. unsigned long zone_start_pfn, zone_end_pfn;
  3554. /* Get the start and end of the node and zone */
  3555. get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
  3556. zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
  3557. zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
  3558. adjust_zone_range_for_zone_movable(nid, zone_type,
  3559. node_start_pfn, node_end_pfn,
  3560. &zone_start_pfn, &zone_end_pfn);
  3561. /* Check that this node has pages within the zone's required range */
  3562. if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn)
  3563. return 0;
  3564. /* Move the zone boundaries inside the node if necessary */
  3565. zone_end_pfn = min(zone_end_pfn, node_end_pfn);
  3566. zone_start_pfn = max(zone_start_pfn, node_start_pfn);
  3567. /* Return the spanned pages */
  3568. return zone_end_pfn - zone_start_pfn;
  3569. }
  3570. /*
  3571. * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
  3572. * then all holes in the requested range will be accounted for.
  3573. */
  3574. unsigned long __meminit __absent_pages_in_range(int nid,
  3575. unsigned long range_start_pfn,
  3576. unsigned long range_end_pfn)
  3577. {
  3578. unsigned long nr_absent = range_end_pfn - range_start_pfn;
  3579. unsigned long start_pfn, end_pfn;
  3580. int i;
  3581. for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
  3582. start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
  3583. end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
  3584. nr_absent -= end_pfn - start_pfn;
  3585. }
  3586. return nr_absent;
  3587. }
  3588. /**
  3589. * absent_pages_in_range - Return number of page frames in holes within a range
  3590. * @start_pfn: The start PFN to start searching for holes
  3591. * @end_pfn: The end PFN to stop searching for holes
  3592. *
  3593. * It returns the number of pages frames in memory holes within a range.
  3594. */
  3595. unsigned long __init absent_pages_in_range(unsigned long start_pfn,
  3596. unsigned long end_pfn)
  3597. {
  3598. return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
  3599. }
  3600. /* Return the number of page frames in holes in a zone on a node */
  3601. static unsigned long __meminit zone_absent_pages_in_node(int nid,
  3602. unsigned long zone_type,
  3603. unsigned long *ignored)
  3604. {
  3605. unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
  3606. unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
  3607. unsigned long node_start_pfn, node_end_pfn;
  3608. unsigned long zone_start_pfn, zone_end_pfn;
  3609. get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
  3610. zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
  3611. zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
  3612. adjust_zone_range_for_zone_movable(nid, zone_type,
  3613. node_start_pfn, node_end_pfn,
  3614. &zone_start_pfn, &zone_end_pfn);
  3615. return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
  3616. }
  3617. #else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
  3618. static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
  3619. unsigned long zone_type,
  3620. unsigned long *zones_size)
  3621. {
  3622. return zones_size[zone_type];
  3623. }
  3624. static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
  3625. unsigned long zone_type,
  3626. unsigned long *zholes_size)
  3627. {
  3628. if (!zholes_size)
  3629. return 0;
  3630. return zholes_size[zone_type];
  3631. }
  3632. #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
  3633. static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
  3634. unsigned long *zones_size, unsigned long *zholes_size)
  3635. {
  3636. unsigned long realtotalpages, totalpages = 0;
  3637. enum zone_type i;
  3638. for (i = 0; i < MAX_NR_ZONES; i++)
  3639. totalpages += zone_spanned_pages_in_node(pgdat->node_id, i,
  3640. zones_size);
  3641. pgdat->node_spanned_pages = totalpages;
  3642. realtotalpages = totalpages;
  3643. for (i = 0; i < MAX_NR_ZONES; i++)
  3644. realtotalpages -=
  3645. zone_absent_pages_in_node(pgdat->node_id, i,
  3646. zholes_size);
  3647. pgdat->node_present_pages = realtotalpages;
  3648. printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
  3649. realtotalpages);
  3650. }
  3651. #ifndef CONFIG_SPARSEMEM
  3652. /*
  3653. * Calculate the size of the zone->blockflags rounded to an unsigned long
  3654. * Start by making sure zonesize is a multiple of pageblock_order by rounding
  3655. * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
  3656. * round what is now in bits to nearest long in bits, then return it in
  3657. * bytes.
  3658. */
  3659. static unsigned long __init usemap_size(unsigned long zonesize)
  3660. {
  3661. unsigned long usemapsize;
  3662. usemapsize = roundup(zonesize, pageblock_nr_pages);
  3663. usemapsize = usemapsize >> pageblock_order;
  3664. usemapsize *= NR_PAGEBLOCK_BITS;
  3665. usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
  3666. return usemapsize / 8;
  3667. }
  3668. static void __init setup_usemap(struct pglist_data *pgdat,
  3669. struct zone *zone, unsigned long zonesize)
  3670. {
  3671. unsigned long usemapsize = usemap_size(zonesize);
  3672. zone->pageblock_flags = NULL;
  3673. if (usemapsize)
  3674. zone->pageblock_flags = alloc_bootmem_node_nopanic(pgdat,
  3675. usemapsize);
  3676. }
  3677. #else
  3678. static inline void setup_usemap(struct pglist_data *pgdat,
  3679. struct zone *zone, unsigned long zonesize) {}
  3680. #endif /* CONFIG_SPARSEMEM */
  3681. #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
  3682. /* Return a sensible default order for the pageblock size. */
  3683. static inline int pageblock_default_order(void)
  3684. {
  3685. if (HPAGE_SHIFT > PAGE_SHIFT)
  3686. return HUGETLB_PAGE_ORDER;
  3687. return MAX_ORDER-1;
  3688. }
  3689. /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
  3690. static inline void __init set_pageblock_order(unsigned int order)
  3691. {
  3692. /* Check that pageblock_nr_pages has not already been setup */
  3693. if (pageblock_order)
  3694. return;
  3695. /*
  3696. * Assume the largest contiguous order of interest is a huge page.
  3697. * This value may be variable depending on boot parameters on IA64
  3698. */
  3699. pageblock_order = order;
  3700. }
  3701. #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
  3702. /*
  3703. * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
  3704. * and pageblock_default_order() are unused as pageblock_order is set
  3705. * at compile-time. See include/linux/pageblock-flags.h for the values of
  3706. * pageblock_order based on the kernel config
  3707. */
  3708. static inline int pageblock_default_order(unsigned int order)
  3709. {
  3710. return MAX_ORDER-1;
  3711. }
  3712. #define set_pageblock_order(x) do {} while (0)
  3713. #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
  3714. /*
  3715. * Set up the zone data structures:
  3716. * - mark all pages reserved
  3717. * - mark all memory queues empty
  3718. * - clear the memory bitmaps
  3719. */
  3720. static void __paginginit free_area_init_core(struct pglist_data *pgdat,
  3721. unsigned long *zones_size, unsigned long *zholes_size)
  3722. {
  3723. enum zone_type j;
  3724. int nid = pgdat->node_id;
  3725. unsigned long zone_start_pfn = pgdat->node_start_pfn;
  3726. int ret;
  3727. pgdat_resize_init(pgdat);
  3728. pgdat->nr_zones = 0;
  3729. init_waitqueue_head(&pgdat->kswapd_wait);
  3730. pgdat->kswapd_max_order = 0;
  3731. pgdat_page_cgroup_init(pgdat);
  3732. for (j = 0; j < MAX_NR_ZONES; j++) {
  3733. struct zone *zone = pgdat->node_zones + j;
  3734. unsigned long size, realsize, memmap_pages;
  3735. enum lru_list lru;
  3736. size = zone_spanned_pages_in_node(nid, j, zones_size);
  3737. realsize = size - zone_absent_pages_in_node(nid, j,
  3738. zholes_size);
  3739. /*
  3740. * Adjust realsize so that it accounts for how much memory
  3741. * is used by this zone for memmap. This affects the watermark
  3742. * and per-cpu initialisations
  3743. */
  3744. memmap_pages =
  3745. PAGE_ALIGN(size * sizeof(struct page)) >> PAGE_SHIFT;
  3746. if (realsize >= memmap_pages) {
  3747. realsize -= memmap_pages;
  3748. if (memmap_pages)
  3749. printk(KERN_DEBUG
  3750. " %s zone: %lu pages used for memmap\n",
  3751. zone_names[j], memmap_pages);
  3752. } else
  3753. printk(KERN_WARNING
  3754. " %s zone: %lu pages exceeds realsize %lu\n",
  3755. zone_names[j], memmap_pages, realsize);
  3756. /* Account for reserved pages */
  3757. if (j == 0 && realsize > dma_reserve) {
  3758. realsize -= dma_reserve;
  3759. printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
  3760. zone_names[0], dma_reserve);
  3761. }
  3762. if (!is_highmem_idx(j))
  3763. nr_kernel_pages += realsize;
  3764. nr_all_pages += realsize;
  3765. zone->spanned_pages = size;
  3766. zone->present_pages = realsize;
  3767. #ifdef CONFIG_NUMA
  3768. zone->node = nid;
  3769. zone->min_unmapped_pages = (realsize*sysctl_min_unmapped_ratio)
  3770. / 100;
  3771. zone->min_slab_pages = (realsize * sysctl_min_slab_ratio) / 100;
  3772. #endif
  3773. zone->name = zone_names[j];
  3774. spin_lock_init(&zone->lock);
  3775. spin_lock_init(&zone->lru_lock);
  3776. zone_seqlock_init(zone);
  3777. zone->zone_pgdat = pgdat;
  3778. zone_pcp_init(zone);
  3779. for_each_lru(lru)
  3780. INIT_LIST_HEAD(&zone->lruvec.lists[lru]);
  3781. zone->reclaim_stat.recent_rotated[0] = 0;
  3782. zone->reclaim_stat.recent_rotated[1] = 0;
  3783. zone->reclaim_stat.recent_scanned[0] = 0;
  3784. zone->reclaim_stat.recent_scanned[1] = 0;
  3785. zap_zone_vm_stats(zone);
  3786. zone->flags = 0;
  3787. if (!size)
  3788. continue;
  3789. set_pageblock_order(pageblock_default_order());
  3790. setup_usemap(pgdat, zone, size);
  3791. ret = init_currently_empty_zone(zone, zone_start_pfn,
  3792. size, MEMMAP_EARLY);
  3793. BUG_ON(ret);
  3794. memmap_init(size, nid, j, zone_start_pfn);
  3795. zone_start_pfn += size;
  3796. }
  3797. }
  3798. static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
  3799. {
  3800. /* Skip empty nodes */
  3801. if (!pgdat->node_spanned_pages)
  3802. return;
  3803. #ifdef CONFIG_FLAT_NODE_MEM_MAP
  3804. /* ia64 gets its own node_mem_map, before this, without bootmem */
  3805. if (!pgdat->node_mem_map) {
  3806. unsigned long size, start, end;
  3807. struct page *map;
  3808. /*
  3809. * The zone's endpoints aren't required to be MAX_ORDER
  3810. * aligned but the node_mem_map endpoints must be in order
  3811. * for the buddy allocator to function correctly.
  3812. */
  3813. start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
  3814. end = pgdat->node_start_pfn + pgdat->node_spanned_pages;
  3815. end = ALIGN(end, MAX_ORDER_NR_PAGES);
  3816. size = (end - start) * sizeof(struct page);
  3817. map = alloc_remap(pgdat->node_id, size);
  3818. if (!map)
  3819. map = alloc_bootmem_node_nopanic(pgdat, size);
  3820. pgdat->node_mem_map = map + (pgdat->node_start_pfn - start);
  3821. }
  3822. #ifndef CONFIG_NEED_MULTIPLE_NODES
  3823. /*
  3824. * With no DISCONTIG, the global mem_map is just set as node 0's
  3825. */
  3826. if (pgdat == NODE_DATA(0)) {
  3827. mem_map = NODE_DATA(0)->node_mem_map;
  3828. #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
  3829. if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
  3830. mem_map -= (pgdat->node_start_pfn - ARCH_PFN_OFFSET);
  3831. #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
  3832. }
  3833. #endif
  3834. #endif /* CONFIG_FLAT_NODE_MEM_MAP */
  3835. }
  3836. void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
  3837. unsigned long node_start_pfn, unsigned long *zholes_size)
  3838. {
  3839. pg_data_t *pgdat = NODE_DATA(nid);
  3840. pgdat->node_id = nid;
  3841. pgdat->node_start_pfn = node_start_pfn;
  3842. calculate_node_totalpages(pgdat, zones_size, zholes_size);
  3843. alloc_node_mem_map(pgdat);
  3844. #ifdef CONFIG_FLAT_NODE_MEM_MAP
  3845. printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
  3846. nid, (unsigned long)pgdat,
  3847. (unsigned long)pgdat->node_mem_map);
  3848. #endif
  3849. free_area_init_core(pgdat, zones_size, zholes_size);
  3850. }
  3851. #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
  3852. #if MAX_NUMNODES > 1
  3853. /*
  3854. * Figure out the number of possible node ids.
  3855. */
  3856. static void __init setup_nr_node_ids(void)
  3857. {
  3858. unsigned int node;
  3859. unsigned int highest = 0;
  3860. for_each_node_mask(node, node_possible_map)
  3861. highest = node;
  3862. nr_node_ids = highest + 1;
  3863. }
  3864. #else
  3865. static inline void setup_nr_node_ids(void)
  3866. {
  3867. }
  3868. #endif
  3869. /**
  3870. * node_map_pfn_alignment - determine the maximum internode alignment
  3871. *
  3872. * This function should be called after node map is populated and sorted.
  3873. * It calculates the maximum power of two alignment which can distinguish
  3874. * all the nodes.
  3875. *
  3876. * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
  3877. * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the
  3878. * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is
  3879. * shifted, 1GiB is enough and this function will indicate so.
  3880. *
  3881. * This is used to test whether pfn -> nid mapping of the chosen memory
  3882. * model has fine enough granularity to avoid incorrect mapping for the
  3883. * populated node map.
  3884. *
  3885. * Returns the determined alignment in pfn's. 0 if there is no alignment
  3886. * requirement (single node).
  3887. */
  3888. unsigned long __init node_map_pfn_alignment(void)
  3889. {
  3890. unsigned long accl_mask = 0, last_end = 0;
  3891. unsigned long start, end, mask;
  3892. int last_nid = -1;
  3893. int i, nid;
  3894. for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
  3895. if (!start || last_nid < 0 || last_nid == nid) {
  3896. last_nid = nid;
  3897. last_end = end;
  3898. continue;
  3899. }
  3900. /*
  3901. * Start with a mask granular enough to pin-point to the
  3902. * start pfn and tick off bits one-by-one until it becomes
  3903. * too coarse to separate the current node from the last.
  3904. */
  3905. mask = ~((1 << __ffs(start)) - 1);
  3906. while (mask && last_end <= (start & (mask << 1)))
  3907. mask <<= 1;
  3908. /* accumulate all internode masks */
  3909. accl_mask |= mask;
  3910. }
  3911. /* convert mask to number of pages */
  3912. return ~accl_mask + 1;
  3913. }
  3914. /* Find the lowest pfn for a node */
  3915. static unsigned long __init find_min_pfn_for_node(int nid)
  3916. {
  3917. unsigned long min_pfn = ULONG_MAX;
  3918. unsigned long start_pfn;
  3919. int i;
  3920. for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL)
  3921. min_pfn = min(min_pfn, start_pfn);
  3922. if (min_pfn == ULONG_MAX) {
  3923. printk(KERN_WARNING
  3924. "Could not find start_pfn for node %d\n", nid);
  3925. return 0;
  3926. }
  3927. return min_pfn;
  3928. }
  3929. /**
  3930. * find_min_pfn_with_active_regions - Find the minimum PFN registered
  3931. *
  3932. * It returns the minimum PFN based on information provided via
  3933. * add_active_range().
  3934. */
  3935. unsigned long __init find_min_pfn_with_active_regions(void)
  3936. {
  3937. return find_min_pfn_for_node(MAX_NUMNODES);
  3938. }
  3939. /*
  3940. * early_calculate_totalpages()
  3941. * Sum pages in active regions for movable zone.
  3942. * Populate N_HIGH_MEMORY for calculating usable_nodes.
  3943. */
  3944. static unsigned long __init early_calculate_totalpages(void)
  3945. {
  3946. unsigned long totalpages = 0;
  3947. unsigned long start_pfn, end_pfn;
  3948. int i, nid;
  3949. for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
  3950. unsigned long pages = end_pfn - start_pfn;
  3951. totalpages += pages;
  3952. if (pages)
  3953. node_set_state(nid, N_HIGH_MEMORY);
  3954. }
  3955. return totalpages;
  3956. }
  3957. /*
  3958. * Find the PFN the Movable zone begins in each node. Kernel memory
  3959. * is spread evenly between nodes as long as the nodes have enough
  3960. * memory. When they don't, some nodes will have more kernelcore than
  3961. * others
  3962. */
  3963. static void __init find_zone_movable_pfns_for_nodes(void)
  3964. {
  3965. int i, nid;
  3966. unsigned long usable_startpfn;
  3967. unsigned long kernelcore_node, kernelcore_remaining;
  3968. /* save the state before borrow the nodemask */
  3969. nodemask_t saved_node_state = node_states[N_HIGH_MEMORY];
  3970. unsigned long totalpages = early_calculate_totalpages();
  3971. int usable_nodes = nodes_weight(node_states[N_HIGH_MEMORY]);
  3972. /*
  3973. * If movablecore was specified, calculate what size of
  3974. * kernelcore that corresponds so that memory usable for
  3975. * any allocation type is evenly spread. If both kernelcore
  3976. * and movablecore are specified, then the value of kernelcore
  3977. * will be used for required_kernelcore if it's greater than
  3978. * what movablecore would have allowed.
  3979. */
  3980. if (required_movablecore) {
  3981. unsigned long corepages;
  3982. /*
  3983. * Round-up so that ZONE_MOVABLE is at least as large as what
  3984. * was requested by the user
  3985. */
  3986. required_movablecore =
  3987. roundup(required_movablecore, MAX_ORDER_NR_PAGES);
  3988. corepages = totalpages - required_movablecore;
  3989. required_kernelcore = max(required_kernelcore, corepages);
  3990. }
  3991. /* If kernelcore was not specified, there is no ZONE_MOVABLE */
  3992. if (!required_kernelcore)
  3993. goto out;
  3994. /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
  3995. find_usable_zone_for_movable();
  3996. usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
  3997. restart:
  3998. /* Spread kernelcore memory as evenly as possible throughout nodes */
  3999. kernelcore_node = required_kernelcore / usable_nodes;
  4000. for_each_node_state(nid, N_HIGH_MEMORY) {
  4001. unsigned long start_pfn, end_pfn;
  4002. /*
  4003. * Recalculate kernelcore_node if the division per node
  4004. * now exceeds what is necessary to satisfy the requested
  4005. * amount of memory for the kernel
  4006. */
  4007. if (required_kernelcore < kernelcore_node)
  4008. kernelcore_node = required_kernelcore / usable_nodes;
  4009. /*
  4010. * As the map is walked, we track how much memory is usable
  4011. * by the kernel using kernelcore_remaining. When it is
  4012. * 0, the rest of the node is usable by ZONE_MOVABLE
  4013. */
  4014. kernelcore_remaining = kernelcore_node;
  4015. /* Go through each range of PFNs within this node */
  4016. for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
  4017. unsigned long size_pages;
  4018. start_pfn = max(start_pfn, zone_movable_pfn[nid]);
  4019. if (start_pfn >= end_pfn)
  4020. continue;
  4021. /* Account for what is only usable for kernelcore */
  4022. if (start_pfn < usable_startpfn) {
  4023. unsigned long kernel_pages;
  4024. kernel_pages = min(end_pfn, usable_startpfn)
  4025. - start_pfn;
  4026. kernelcore_remaining -= min(kernel_pages,
  4027. kernelcore_remaining);
  4028. required_kernelcore -= min(kernel_pages,
  4029. required_kernelcore);
  4030. /* Continue if range is now fully accounted */
  4031. if (end_pfn <= usable_startpfn) {
  4032. /*
  4033. * Push zone_movable_pfn to the end so
  4034. * that if we have to rebalance
  4035. * kernelcore across nodes, we will
  4036. * not double account here
  4037. */
  4038. zone_movable_pfn[nid] = end_pfn;
  4039. continue;
  4040. }
  4041. start_pfn = usable_startpfn;
  4042. }
  4043. /*
  4044. * The usable PFN range for ZONE_MOVABLE is from
  4045. * start_pfn->end_pfn. Calculate size_pages as the
  4046. * number of pages used as kernelcore
  4047. */
  4048. size_pages = end_pfn - start_pfn;
  4049. if (size_pages > kernelcore_remaining)
  4050. size_pages = kernelcore_remaining;
  4051. zone_movable_pfn[nid] = start_pfn + size_pages;
  4052. /*
  4053. * Some kernelcore has been met, update counts and
  4054. * break if the kernelcore for this node has been
  4055. * satisified
  4056. */
  4057. required_kernelcore -= min(required_kernelcore,
  4058. size_pages);
  4059. kernelcore_remaining -= size_pages;
  4060. if (!kernelcore_remaining)
  4061. break;
  4062. }
  4063. }
  4064. /*
  4065. * If there is still required_kernelcore, we do another pass with one
  4066. * less node in the count. This will push zone_movable_pfn[nid] further
  4067. * along on the nodes that still have memory until kernelcore is
  4068. * satisified
  4069. */
  4070. usable_nodes--;
  4071. if (usable_nodes && required_kernelcore > usable_nodes)
  4072. goto restart;
  4073. /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
  4074. for (nid = 0; nid < MAX_NUMNODES; nid++)
  4075. zone_movable_pfn[nid] =
  4076. roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
  4077. out:
  4078. /* restore the node_state */
  4079. node_states[N_HIGH_MEMORY] = saved_node_state;
  4080. }
  4081. /* Any regular memory on that node ? */
  4082. static void check_for_regular_memory(pg_data_t *pgdat)
  4083. {
  4084. #ifdef CONFIG_HIGHMEM
  4085. enum zone_type zone_type;
  4086. for (zone_type = 0; zone_type <= ZONE_NORMAL; zone_type++) {
  4087. struct zone *zone = &pgdat->node_zones[zone_type];
  4088. if (zone->present_pages) {
  4089. node_set_state(zone_to_nid(zone), N_NORMAL_MEMORY);
  4090. break;
  4091. }
  4092. }
  4093. #endif
  4094. }
  4095. /**
  4096. * free_area_init_nodes - Initialise all pg_data_t and zone data
  4097. * @max_zone_pfn: an array of max PFNs for each zone
  4098. *
  4099. * This will call free_area_init_node() for each active node in the system.
  4100. * Using the page ranges provided by add_active_range(), the size of each
  4101. * zone in each node and their holes is calculated. If the maximum PFN
  4102. * between two adjacent zones match, it is assumed that the zone is empty.
  4103. * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
  4104. * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
  4105. * starts where the previous one ended. For example, ZONE_DMA32 starts
  4106. * at arch_max_dma_pfn.
  4107. */
  4108. void __init free_area_init_nodes(unsigned long *max_zone_pfn)
  4109. {
  4110. unsigned long start_pfn, end_pfn;
  4111. int i, nid;
  4112. /* Record where the zone boundaries are */
  4113. memset(arch_zone_lowest_possible_pfn, 0,
  4114. sizeof(arch_zone_lowest_possible_pfn));
  4115. memset(arch_zone_highest_possible_pfn, 0,
  4116. sizeof(arch_zone_highest_possible_pfn));
  4117. arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
  4118. arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
  4119. for (i = 1; i < MAX_NR_ZONES; i++) {
  4120. if (i == ZONE_MOVABLE)
  4121. continue;
  4122. arch_zone_lowest_possible_pfn[i] =
  4123. arch_zone_highest_possible_pfn[i-1];
  4124. arch_zone_highest_possible_pfn[i] =
  4125. max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
  4126. }
  4127. arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
  4128. arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
  4129. /* Find the PFNs that ZONE_MOVABLE begins at in each node */
  4130. memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
  4131. find_zone_movable_pfns_for_nodes();
  4132. /* Print out the zone ranges */
  4133. printk("Zone PFN ranges:\n");
  4134. for (i = 0; i < MAX_NR_ZONES; i++) {
  4135. if (i == ZONE_MOVABLE)
  4136. continue;
  4137. printk(" %-8s ", zone_names[i]);
  4138. if (arch_zone_lowest_possible_pfn[i] ==
  4139. arch_zone_highest_possible_pfn[i])
  4140. printk("empty\n");
  4141. else
  4142. printk("%0#10lx -> %0#10lx\n",
  4143. arch_zone_lowest_possible_pfn[i],
  4144. arch_zone_highest_possible_pfn[i]);
  4145. }
  4146. /* Print out the PFNs ZONE_MOVABLE begins at in each node */
  4147. printk("Movable zone start PFN for each node\n");
  4148. for (i = 0; i < MAX_NUMNODES; i++) {
  4149. if (zone_movable_pfn[i])
  4150. printk(" Node %d: %lu\n", i, zone_movable_pfn[i]);
  4151. }
  4152. /* Print out the early_node_map[] */
  4153. printk("Early memory PFN ranges\n");
  4154. for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
  4155. printk(" %3d: %0#10lx -> %0#10lx\n", nid, start_pfn, end_pfn);
  4156. /* Initialise every node */
  4157. mminit_verify_pageflags_layout();
  4158. setup_nr_node_ids();
  4159. for_each_online_node(nid) {
  4160. pg_data_t *pgdat = NODE_DATA(nid);
  4161. free_area_init_node(nid, NULL,
  4162. find_min_pfn_for_node(nid), NULL);
  4163. /* Any memory on that node */
  4164. if (pgdat->node_present_pages)
  4165. node_set_state(nid, N_HIGH_MEMORY);
  4166. check_for_regular_memory(pgdat);
  4167. }
  4168. }
  4169. static int __init cmdline_parse_core(char *p, unsigned long *core)
  4170. {
  4171. unsigned long long coremem;
  4172. if (!p)
  4173. return -EINVAL;
  4174. coremem = memparse(p, &p);
  4175. *core = coremem >> PAGE_SHIFT;
  4176. /* Paranoid check that UL is enough for the coremem value */
  4177. WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
  4178. return 0;
  4179. }
  4180. /*
  4181. * kernelcore=size sets the amount of memory for use for allocations that
  4182. * cannot be reclaimed or migrated.
  4183. */
  4184. static int __init cmdline_parse_kernelcore(char *p)
  4185. {
  4186. return cmdline_parse_core(p, &required_kernelcore);
  4187. }
  4188. /*
  4189. * movablecore=size sets the amount of memory for use for allocations that
  4190. * can be reclaimed or migrated.
  4191. */
  4192. static int __init cmdline_parse_movablecore(char *p)
  4193. {
  4194. return cmdline_parse_core(p, &required_movablecore);
  4195. }
  4196. early_param("kernelcore", cmdline_parse_kernelcore);
  4197. early_param("movablecore", cmdline_parse_movablecore);
  4198. #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
  4199. /**
  4200. * set_dma_reserve - set the specified number of pages reserved in the first zone
  4201. * @new_dma_reserve: The number of pages to mark reserved
  4202. *
  4203. * The per-cpu batchsize and zone watermarks are determined by present_pages.
  4204. * In the DMA zone, a significant percentage may be consumed by kernel image
  4205. * and other unfreeable allocations which can skew the watermarks badly. This
  4206. * function may optionally be used to account for unfreeable pages in the
  4207. * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
  4208. * smaller per-cpu batchsize.
  4209. */
  4210. void __init set_dma_reserve(unsigned long new_dma_reserve)
  4211. {
  4212. dma_reserve = new_dma_reserve;
  4213. }
  4214. void __init free_area_init(unsigned long *zones_size)
  4215. {
  4216. free_area_init_node(0, zones_size,
  4217. __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
  4218. }
  4219. static int page_alloc_cpu_notify(struct notifier_block *self,
  4220. unsigned long action, void *hcpu)
  4221. {
  4222. int cpu = (unsigned long)hcpu;
  4223. if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
  4224. lru_add_drain_cpu(cpu);
  4225. drain_pages(cpu);
  4226. /*
  4227. * Spill the event counters of the dead processor
  4228. * into the current processors event counters.
  4229. * This artificially elevates the count of the current
  4230. * processor.
  4231. */
  4232. vm_events_fold_cpu(cpu);
  4233. /*
  4234. * Zero the differential counters of the dead processor
  4235. * so that the vm statistics are consistent.
  4236. *
  4237. * This is only okay since the processor is dead and cannot
  4238. * race with what we are doing.
  4239. */
  4240. refresh_cpu_vm_stats(cpu);
  4241. }
  4242. return NOTIFY_OK;
  4243. }
  4244. void __init page_alloc_init(void)
  4245. {
  4246. hotcpu_notifier(page_alloc_cpu_notify, 0);
  4247. }
  4248. /*
  4249. * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
  4250. * or min_free_kbytes changes.
  4251. */
  4252. static void calculate_totalreserve_pages(void)
  4253. {
  4254. struct pglist_data *pgdat;
  4255. unsigned long reserve_pages = 0;
  4256. enum zone_type i, j;
  4257. for_each_online_pgdat(pgdat) {
  4258. for (i = 0; i < MAX_NR_ZONES; i++) {
  4259. struct zone *zone = pgdat->node_zones + i;
  4260. unsigned long max = 0;
  4261. /* Find valid and maximum lowmem_reserve in the zone */
  4262. for (j = i; j < MAX_NR_ZONES; j++) {
  4263. if (zone->lowmem_reserve[j] > max)
  4264. max = zone->lowmem_reserve[j];
  4265. }
  4266. /* we treat the high watermark as reserved pages. */
  4267. max += high_wmark_pages(zone);
  4268. if (max > zone->present_pages)
  4269. max = zone->present_pages;
  4270. reserve_pages += max;
  4271. /*
  4272. * Lowmem reserves are not available to
  4273. * GFP_HIGHUSER page cache allocations and
  4274. * kswapd tries to balance zones to their high
  4275. * watermark. As a result, neither should be
  4276. * regarded as dirtyable memory, to prevent a
  4277. * situation where reclaim has to clean pages
  4278. * in order to balance the zones.
  4279. */
  4280. zone->dirty_balance_reserve = max;
  4281. }
  4282. }
  4283. dirty_balance_reserve = reserve_pages;
  4284. totalreserve_pages = reserve_pages;
  4285. }
  4286. /*
  4287. * setup_per_zone_lowmem_reserve - called whenever
  4288. * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone
  4289. * has a correct pages reserved value, so an adequate number of
  4290. * pages are left in the zone after a successful __alloc_pages().
  4291. */
  4292. static void setup_per_zone_lowmem_reserve(void)
  4293. {
  4294. struct pglist_data *pgdat;
  4295. enum zone_type j, idx;
  4296. for_each_online_pgdat(pgdat) {
  4297. for (j = 0; j < MAX_NR_ZONES; j++) {
  4298. struct zone *zone = pgdat->node_zones + j;
  4299. unsigned long present_pages = zone->present_pages;
  4300. zone->lowmem_reserve[j] = 0;
  4301. idx = j;
  4302. while (idx) {
  4303. struct zone *lower_zone;
  4304. idx--;
  4305. if (sysctl_lowmem_reserve_ratio[idx] < 1)
  4306. sysctl_lowmem_reserve_ratio[idx] = 1;
  4307. lower_zone = pgdat->node_zones + idx;
  4308. lower_zone->lowmem_reserve[j] = present_pages /
  4309. sysctl_lowmem_reserve_ratio[idx];
  4310. present_pages += lower_zone->present_pages;
  4311. }
  4312. }
  4313. }
  4314. /* update totalreserve_pages */
  4315. calculate_totalreserve_pages();
  4316. }
  4317. /**
  4318. * setup_per_zone_wmarks - called when min_free_kbytes changes
  4319. * or when memory is hot-{added|removed}
  4320. *
  4321. * Ensures that the watermark[min,low,high] values for each zone are set
  4322. * correctly with respect to min_free_kbytes.
  4323. */
  4324. void setup_per_zone_wmarks(void)
  4325. {
  4326. unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
  4327. unsigned long lowmem_pages = 0;
  4328. struct zone *zone;
  4329. unsigned long flags;
  4330. /* Calculate total number of !ZONE_HIGHMEM pages */
  4331. for_each_zone(zone) {
  4332. if (!is_highmem(zone))
  4333. lowmem_pages += zone->present_pages;
  4334. }
  4335. for_each_zone(zone) {
  4336. u64 tmp;
  4337. spin_lock_irqsave(&zone->lock, flags);
  4338. tmp = (u64)pages_min * zone->present_pages;
  4339. do_div(tmp, lowmem_pages);
  4340. if (is_highmem(zone)) {
  4341. /*
  4342. * __GFP_HIGH and PF_MEMALLOC allocations usually don't
  4343. * need highmem pages, so cap pages_min to a small
  4344. * value here.
  4345. *
  4346. * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
  4347. * deltas controls asynch page reclaim, and so should
  4348. * not be capped for highmem.
  4349. */
  4350. int min_pages;
  4351. min_pages = zone->present_pages / 1024;
  4352. if (min_pages < SWAP_CLUSTER_MAX)
  4353. min_pages = SWAP_CLUSTER_MAX;
  4354. if (min_pages > 128)
  4355. min_pages = 128;
  4356. zone->watermark[WMARK_MIN] = min_pages;
  4357. } else {
  4358. /*
  4359. * If it's a lowmem zone, reserve a number of pages
  4360. * proportionate to the zone's size.
  4361. */
  4362. zone->watermark[WMARK_MIN] = tmp;
  4363. }
  4364. zone->watermark[WMARK_LOW] = min_wmark_pages(zone) + (tmp >> 2);
  4365. zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + (tmp >> 1);
  4366. setup_zone_migrate_reserve(zone);
  4367. spin_unlock_irqrestore(&zone->lock, flags);
  4368. }
  4369. /* update totalreserve_pages */
  4370. calculate_totalreserve_pages();
  4371. }
  4372. /*
  4373. * The inactive anon list should be small enough that the VM never has to
  4374. * do too much work, but large enough that each inactive page has a chance
  4375. * to be referenced again before it is swapped out.
  4376. *
  4377. * The inactive_anon ratio is the target ratio of ACTIVE_ANON to
  4378. * INACTIVE_ANON pages on this zone's LRU, maintained by the
  4379. * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of
  4380. * the anonymous pages are kept on the inactive list.
  4381. *
  4382. * total target max
  4383. * memory ratio inactive anon
  4384. * -------------------------------------
  4385. * 10MB 1 5MB
  4386. * 100MB 1 50MB
  4387. * 1GB 3 250MB
  4388. * 10GB 10 0.9GB
  4389. * 100GB 31 3GB
  4390. * 1TB 101 10GB
  4391. * 10TB 320 32GB
  4392. */
  4393. static void __meminit calculate_zone_inactive_ratio(struct zone *zone)
  4394. {
  4395. unsigned int gb, ratio;
  4396. /* Zone size in gigabytes */
  4397. gb = zone->present_pages >> (30 - PAGE_SHIFT);
  4398. if (gb)
  4399. ratio = int_sqrt(10 * gb);
  4400. else
  4401. ratio = 1;
  4402. zone->inactive_ratio = ratio;
  4403. }
  4404. static void __meminit setup_per_zone_inactive_ratio(void)
  4405. {
  4406. struct zone *zone;
  4407. for_each_zone(zone)
  4408. calculate_zone_inactive_ratio(zone);
  4409. }
  4410. /*
  4411. * Initialise min_free_kbytes.
  4412. *
  4413. * For small machines we want it small (128k min). For large machines
  4414. * we want it large (64MB max). But it is not linear, because network
  4415. * bandwidth does not increase linearly with machine size. We use
  4416. *
  4417. * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
  4418. * min_free_kbytes = sqrt(lowmem_kbytes * 16)
  4419. *
  4420. * which yields
  4421. *
  4422. * 16MB: 512k
  4423. * 32MB: 724k
  4424. * 64MB: 1024k
  4425. * 128MB: 1448k
  4426. * 256MB: 2048k
  4427. * 512MB: 2896k
  4428. * 1024MB: 4096k
  4429. * 2048MB: 5792k
  4430. * 4096MB: 8192k
  4431. * 8192MB: 11584k
  4432. * 16384MB: 16384k
  4433. */
  4434. int __meminit init_per_zone_wmark_min(void)
  4435. {
  4436. unsigned long lowmem_kbytes;
  4437. lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
  4438. min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
  4439. if (min_free_kbytes < 128)
  4440. min_free_kbytes = 128;
  4441. if (min_free_kbytes > 65536)
  4442. min_free_kbytes = 65536;
  4443. setup_per_zone_wmarks();
  4444. refresh_zone_stat_thresholds();
  4445. setup_per_zone_lowmem_reserve();
  4446. setup_per_zone_inactive_ratio();
  4447. return 0;
  4448. }
  4449. module_init(init_per_zone_wmark_min)
  4450. /*
  4451. * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
  4452. * that we can call two helper functions whenever min_free_kbytes
  4453. * changes.
  4454. */
  4455. int min_free_kbytes_sysctl_handler(ctl_table *table, int write,
  4456. void __user *buffer, size_t *length, loff_t *ppos)
  4457. {
  4458. proc_dointvec(table, write, buffer, length, ppos);
  4459. if (write)
  4460. setup_per_zone_wmarks();
  4461. return 0;
  4462. }
  4463. #ifdef CONFIG_NUMA
  4464. int sysctl_min_unmapped_ratio_sysctl_handler(ctl_table *table, int write,
  4465. void __user *buffer, size_t *length, loff_t *ppos)
  4466. {
  4467. struct zone *zone;
  4468. int rc;
  4469. rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
  4470. if (rc)
  4471. return rc;
  4472. for_each_zone(zone)
  4473. zone->min_unmapped_pages = (zone->present_pages *
  4474. sysctl_min_unmapped_ratio) / 100;
  4475. return 0;
  4476. }
  4477. int sysctl_min_slab_ratio_sysctl_handler(ctl_table *table, int write,
  4478. void __user *buffer, size_t *length, loff_t *ppos)
  4479. {
  4480. struct zone *zone;
  4481. int rc;
  4482. rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
  4483. if (rc)
  4484. return rc;
  4485. for_each_zone(zone)
  4486. zone->min_slab_pages = (zone->present_pages *
  4487. sysctl_min_slab_ratio) / 100;
  4488. return 0;
  4489. }
  4490. #endif
  4491. /*
  4492. * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
  4493. * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
  4494. * whenever sysctl_lowmem_reserve_ratio changes.
  4495. *
  4496. * The reserve ratio obviously has absolutely no relation with the
  4497. * minimum watermarks. The lowmem reserve ratio can only make sense
  4498. * if in function of the boot time zone sizes.
  4499. */
  4500. int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write,
  4501. void __user *buffer, size_t *length, loff_t *ppos)
  4502. {
  4503. proc_dointvec_minmax(table, write, buffer, length, ppos);
  4504. setup_per_zone_lowmem_reserve();
  4505. return 0;
  4506. }
  4507. /*
  4508. * percpu_pagelist_fraction - changes the pcp->high for each zone on each
  4509. * cpu. It is the fraction of total pages in each zone that a hot per cpu pagelist
  4510. * can have before it gets flushed back to buddy allocator.
  4511. */
  4512. int percpu_pagelist_fraction_sysctl_handler(ctl_table *table, int write,
  4513. void __user *buffer, size_t *length, loff_t *ppos)
  4514. {
  4515. struct zone *zone;
  4516. unsigned int cpu;
  4517. int ret;
  4518. ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
  4519. if (!write || (ret == -EINVAL))
  4520. return ret;
  4521. for_each_populated_zone(zone) {
  4522. for_each_possible_cpu(cpu) {
  4523. unsigned long high;
  4524. high = zone->present_pages / percpu_pagelist_fraction;
  4525. setup_pagelist_highmark(
  4526. per_cpu_ptr(zone->pageset, cpu), high);
  4527. }
  4528. }
  4529. return 0;
  4530. }
  4531. int hashdist = HASHDIST_DEFAULT;
  4532. #ifdef CONFIG_NUMA
  4533. static int __init set_hashdist(char *str)
  4534. {
  4535. if (!str)
  4536. return 0;
  4537. hashdist = simple_strtoul(str, &str, 0);
  4538. return 1;
  4539. }
  4540. __setup("hashdist=", set_hashdist);
  4541. #endif
  4542. /*
  4543. * allocate a large system hash table from bootmem
  4544. * - it is assumed that the hash table must contain an exact power-of-2
  4545. * quantity of entries
  4546. * - limit is the number of hash buckets, not the total allocation size
  4547. */
  4548. void *__init alloc_large_system_hash(const char *tablename,
  4549. unsigned long bucketsize,
  4550. unsigned long numentries,
  4551. int scale,
  4552. int flags,
  4553. unsigned int *_hash_shift,
  4554. unsigned int *_hash_mask,
  4555. unsigned long limit)
  4556. {
  4557. unsigned long long max = limit;
  4558. unsigned long log2qty, size;
  4559. void *table = NULL;
  4560. /* allow the kernel cmdline to have a say */
  4561. if (!numentries) {
  4562. /* round applicable memory size up to nearest megabyte */
  4563. numentries = nr_kernel_pages;
  4564. numentries += (1UL << (20 - PAGE_SHIFT)) - 1;
  4565. numentries >>= 20 - PAGE_SHIFT;
  4566. numentries <<= 20 - PAGE_SHIFT;
  4567. /* limit to 1 bucket per 2^scale bytes of low memory */
  4568. if (scale > PAGE_SHIFT)
  4569. numentries >>= (scale - PAGE_SHIFT);
  4570. else
  4571. numentries <<= (PAGE_SHIFT - scale);
  4572. /* Make sure we've got at least a 0-order allocation.. */
  4573. if (unlikely(flags & HASH_SMALL)) {
  4574. /* Makes no sense without HASH_EARLY */
  4575. WARN_ON(!(flags & HASH_EARLY));
  4576. if (!(numentries >> *_hash_shift)) {
  4577. numentries = 1UL << *_hash_shift;
  4578. BUG_ON(!numentries);
  4579. }
  4580. } else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
  4581. numentries = PAGE_SIZE / bucketsize;
  4582. }
  4583. numentries = roundup_pow_of_two(numentries);
  4584. /* limit allocation size to 1/16 total memory by default */
  4585. if (max == 0) {
  4586. max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
  4587. do_div(max, bucketsize);
  4588. }
  4589. max = min(max, 0x80000000ULL);
  4590. if (numentries > max)
  4591. numentries = max;
  4592. log2qty = ilog2(numentries);
  4593. do {
  4594. size = bucketsize << log2qty;
  4595. if (flags & HASH_EARLY)
  4596. table = alloc_bootmem_nopanic(size);
  4597. else if (hashdist)
  4598. table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
  4599. else {
  4600. /*
  4601. * If bucketsize is not a power-of-two, we may free
  4602. * some pages at the end of hash table which
  4603. * alloc_pages_exact() automatically does
  4604. */
  4605. if (get_order(size) < MAX_ORDER) {
  4606. table = alloc_pages_exact(size, GFP_ATOMIC);
  4607. kmemleak_alloc(table, size, 1, GFP_ATOMIC);
  4608. }
  4609. }
  4610. } while (!table && size > PAGE_SIZE && --log2qty);
  4611. if (!table)
  4612. panic("Failed to allocate %s hash table\n", tablename);
  4613. printk(KERN_INFO "%s hash table entries: %ld (order: %d, %lu bytes)\n",
  4614. tablename,
  4615. (1UL << log2qty),
  4616. ilog2(size) - PAGE_SHIFT,
  4617. size);
  4618. if (_hash_shift)
  4619. *_hash_shift = log2qty;
  4620. if (_hash_mask)
  4621. *_hash_mask = (1 << log2qty) - 1;
  4622. return table;
  4623. }
  4624. /* Return a pointer to the bitmap storing bits affecting a block of pages */
  4625. static inline unsigned long *get_pageblock_bitmap(struct zone *zone,
  4626. unsigned long pfn)
  4627. {
  4628. #ifdef CONFIG_SPARSEMEM
  4629. return __pfn_to_section(pfn)->pageblock_flags;
  4630. #else
  4631. return zone->pageblock_flags;
  4632. #endif /* CONFIG_SPARSEMEM */
  4633. }
  4634. static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn)
  4635. {
  4636. #ifdef CONFIG_SPARSEMEM
  4637. pfn &= (PAGES_PER_SECTION-1);
  4638. return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
  4639. #else
  4640. pfn = pfn - zone->zone_start_pfn;
  4641. return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
  4642. #endif /* CONFIG_SPARSEMEM */
  4643. }
  4644. /**
  4645. * get_pageblock_flags_group - Return the requested group of flags for the pageblock_nr_pages block of pages
  4646. * @page: The page within the block of interest
  4647. * @start_bitidx: The first bit of interest to retrieve
  4648. * @end_bitidx: The last bit of interest
  4649. * returns pageblock_bits flags
  4650. */
  4651. unsigned long get_pageblock_flags_group(struct page *page,
  4652. int start_bitidx, int end_bitidx)
  4653. {
  4654. struct zone *zone;
  4655. unsigned long *bitmap;
  4656. unsigned long pfn, bitidx;
  4657. unsigned long flags = 0;
  4658. unsigned long value = 1;
  4659. zone = page_zone(page);
  4660. pfn = page_to_pfn(page);
  4661. bitmap = get_pageblock_bitmap(zone, pfn);
  4662. bitidx = pfn_to_bitidx(zone, pfn);
  4663. for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
  4664. if (test_bit(bitidx + start_bitidx, bitmap))
  4665. flags |= value;
  4666. return flags;
  4667. }
  4668. /**
  4669. * set_pageblock_flags_group - Set the requested group of flags for a pageblock_nr_pages block of pages
  4670. * @page: The page within the block of interest
  4671. * @start_bitidx: The first bit of interest
  4672. * @end_bitidx: The last bit of interest
  4673. * @flags: The flags to set
  4674. */
  4675. void set_pageblock_flags_group(struct page *page, unsigned long flags,
  4676. int start_bitidx, int end_bitidx)
  4677. {
  4678. struct zone *zone;
  4679. unsigned long *bitmap;
  4680. unsigned long pfn, bitidx;
  4681. unsigned long value = 1;
  4682. zone = page_zone(page);
  4683. pfn = page_to_pfn(page);
  4684. bitmap = get_pageblock_bitmap(zone, pfn);
  4685. bitidx = pfn_to_bitidx(zone, pfn);
  4686. VM_BUG_ON(pfn < zone->zone_start_pfn);
  4687. VM_BUG_ON(pfn >= zone->zone_start_pfn + zone->spanned_pages);
  4688. for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
  4689. if (flags & value)
  4690. __set_bit(bitidx + start_bitidx, bitmap);
  4691. else
  4692. __clear_bit(bitidx + start_bitidx, bitmap);
  4693. }
  4694. /*
  4695. * This is designed as sub function...plz see page_isolation.c also.
  4696. * set/clear page block's type to be ISOLATE.
  4697. * page allocater never alloc memory from ISOLATE block.
  4698. */
  4699. static int
  4700. __count_immobile_pages(struct zone *zone, struct page *page, int count)
  4701. {
  4702. unsigned long pfn, iter, found;
  4703. /*
  4704. * For avoiding noise data, lru_add_drain_all() should be called
  4705. * If ZONE_MOVABLE, the zone never contains immobile pages
  4706. */
  4707. if (zone_idx(zone) == ZONE_MOVABLE)
  4708. return true;
  4709. if (get_pageblock_migratetype(page) == MIGRATE_MOVABLE)
  4710. return true;
  4711. pfn = page_to_pfn(page);
  4712. for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) {
  4713. unsigned long check = pfn + iter;
  4714. if (!pfn_valid_within(check))
  4715. continue;
  4716. page = pfn_to_page(check);
  4717. if (!page_count(page)) {
  4718. if (PageBuddy(page))
  4719. iter += (1 << page_order(page)) - 1;
  4720. continue;
  4721. }
  4722. if (!PageLRU(page))
  4723. found++;
  4724. /*
  4725. * If there are RECLAIMABLE pages, we need to check it.
  4726. * But now, memory offline itself doesn't call shrink_slab()
  4727. * and it still to be fixed.
  4728. */
  4729. /*
  4730. * If the page is not RAM, page_count()should be 0.
  4731. * we don't need more check. This is an _used_ not-movable page.
  4732. *
  4733. * The problematic thing here is PG_reserved pages. PG_reserved
  4734. * is set to both of a memory hole page and a _used_ kernel
  4735. * page at boot.
  4736. */
  4737. if (found > count)
  4738. return false;
  4739. }
  4740. return true;
  4741. }
  4742. bool is_pageblock_removable_nolock(struct page *page)
  4743. {
  4744. struct zone *zone;
  4745. unsigned long pfn;
  4746. /*
  4747. * We have to be careful here because we are iterating over memory
  4748. * sections which are not zone aware so we might end up outside of
  4749. * the zone but still within the section.
  4750. * We have to take care about the node as well. If the node is offline
  4751. * its NODE_DATA will be NULL - see page_zone.
  4752. */
  4753. if (!node_online(page_to_nid(page)))
  4754. return false;
  4755. zone = page_zone(page);
  4756. pfn = page_to_pfn(page);
  4757. if (zone->zone_start_pfn > pfn ||
  4758. zone->zone_start_pfn + zone->spanned_pages <= pfn)
  4759. return false;
  4760. return __count_immobile_pages(zone, page, 0);
  4761. }
  4762. int set_migratetype_isolate(struct page *page)
  4763. {
  4764. struct zone *zone;
  4765. unsigned long flags, pfn;
  4766. struct memory_isolate_notify arg;
  4767. int notifier_ret;
  4768. int ret = -EBUSY;
  4769. zone = page_zone(page);
  4770. spin_lock_irqsave(&zone->lock, flags);
  4771. pfn = page_to_pfn(page);
  4772. arg.start_pfn = pfn;
  4773. arg.nr_pages = pageblock_nr_pages;
  4774. arg.pages_found = 0;
  4775. /*
  4776. * It may be possible to isolate a pageblock even if the
  4777. * migratetype is not MIGRATE_MOVABLE. The memory isolation
  4778. * notifier chain is used by balloon drivers to return the
  4779. * number of pages in a range that are held by the balloon
  4780. * driver to shrink memory. If all the pages are accounted for
  4781. * by balloons, are free, or on the LRU, isolation can continue.
  4782. * Later, for example, when memory hotplug notifier runs, these
  4783. * pages reported as "can be isolated" should be isolated(freed)
  4784. * by the balloon driver through the memory notifier chain.
  4785. */
  4786. notifier_ret = memory_isolate_notify(MEM_ISOLATE_COUNT, &arg);
  4787. notifier_ret = notifier_to_errno(notifier_ret);
  4788. if (notifier_ret)
  4789. goto out;
  4790. /*
  4791. * FIXME: Now, memory hotplug doesn't call shrink_slab() by itself.
  4792. * We just check MOVABLE pages.
  4793. */
  4794. if (__count_immobile_pages(zone, page, arg.pages_found))
  4795. ret = 0;
  4796. /*
  4797. * immobile means "not-on-lru" paes. If immobile is larger than
  4798. * removable-by-driver pages reported by notifier, we'll fail.
  4799. */
  4800. out:
  4801. if (!ret) {
  4802. set_pageblock_migratetype(page, MIGRATE_ISOLATE);
  4803. move_freepages_block(zone, page, MIGRATE_ISOLATE);
  4804. }
  4805. spin_unlock_irqrestore(&zone->lock, flags);
  4806. if (!ret)
  4807. drain_all_pages();
  4808. return ret;
  4809. }
  4810. void unset_migratetype_isolate(struct page *page)
  4811. {
  4812. struct zone *zone;
  4813. unsigned long flags;
  4814. zone = page_zone(page);
  4815. spin_lock_irqsave(&zone->lock, flags);
  4816. if (get_pageblock_migratetype(page) != MIGRATE_ISOLATE)
  4817. goto out;
  4818. set_pageblock_migratetype(page, MIGRATE_MOVABLE);
  4819. move_freepages_block(zone, page, MIGRATE_MOVABLE);
  4820. out:
  4821. spin_unlock_irqrestore(&zone->lock, flags);
  4822. }
  4823. #ifdef CONFIG_MEMORY_HOTREMOVE
  4824. /*
  4825. * All pages in the range must be isolated before calling this.
  4826. */
  4827. void
  4828. __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
  4829. {
  4830. struct page *page;
  4831. struct zone *zone;
  4832. int order, i;
  4833. unsigned long pfn;
  4834. unsigned long flags;
  4835. /* find the first valid pfn */
  4836. for (pfn = start_pfn; pfn < end_pfn; pfn++)
  4837. if (pfn_valid(pfn))
  4838. break;
  4839. if (pfn == end_pfn)
  4840. return;
  4841. zone = page_zone(pfn_to_page(pfn));
  4842. spin_lock_irqsave(&zone->lock, flags);
  4843. pfn = start_pfn;
  4844. while (pfn < end_pfn) {
  4845. if (!pfn_valid(pfn)) {
  4846. pfn++;
  4847. continue;
  4848. }
  4849. page = pfn_to_page(pfn);
  4850. BUG_ON(page_count(page));
  4851. BUG_ON(!PageBuddy(page));
  4852. order = page_order(page);
  4853. #ifdef CONFIG_DEBUG_VM
  4854. printk(KERN_INFO "remove from free list %lx %d %lx\n",
  4855. pfn, 1 << order, end_pfn);
  4856. #endif
  4857. list_del(&page->lru);
  4858. rmv_page_order(page);
  4859. zone->free_area[order].nr_free--;
  4860. __mod_zone_page_state(zone, NR_FREE_PAGES,
  4861. - (1UL << order));
  4862. for (i = 0; i < (1 << order); i++)
  4863. SetPageReserved((page+i));
  4864. pfn += (1 << order);
  4865. }
  4866. spin_unlock_irqrestore(&zone->lock, flags);
  4867. }
  4868. #endif
  4869. #ifdef CONFIG_MEMORY_FAILURE
  4870. bool is_free_buddy_page(struct page *page)
  4871. {
  4872. struct zone *zone = page_zone(page);
  4873. unsigned long pfn = page_to_pfn(page);
  4874. unsigned long flags;
  4875. int order;
  4876. spin_lock_irqsave(&zone->lock, flags);
  4877. for (order = 0; order < MAX_ORDER; order++) {
  4878. struct page *page_head = page - (pfn & ((1 << order) - 1));
  4879. if (PageBuddy(page_head) && page_order(page_head) >= order)
  4880. break;
  4881. }
  4882. spin_unlock_irqrestore(&zone->lock, flags);
  4883. return order < MAX_ORDER;
  4884. }
  4885. #endif
  4886. static struct trace_print_flags pageflag_names[] = {
  4887. {1UL << PG_locked, "locked" },
  4888. {1UL << PG_error, "error" },
  4889. {1UL << PG_referenced, "referenced" },
  4890. {1UL << PG_uptodate, "uptodate" },
  4891. {1UL << PG_dirty, "dirty" },
  4892. {1UL << PG_lru, "lru" },
  4893. {1UL << PG_active, "active" },
  4894. {1UL << PG_slab, "slab" },
  4895. {1UL << PG_owner_priv_1, "owner_priv_1" },
  4896. {1UL << PG_arch_1, "arch_1" },
  4897. {1UL << PG_reserved, "reserved" },
  4898. {1UL << PG_private, "private" },
  4899. {1UL << PG_private_2, "private_2" },
  4900. {1UL << PG_writeback, "writeback" },
  4901. #ifdef CONFIG_PAGEFLAGS_EXTENDED
  4902. {1UL << PG_head, "head" },
  4903. {1UL << PG_tail, "tail" },
  4904. #else
  4905. {1UL << PG_compound, "compound" },
  4906. #endif
  4907. {1UL << PG_swapcache, "swapcache" },
  4908. {1UL << PG_mappedtodisk, "mappedtodisk" },
  4909. {1UL << PG_reclaim, "reclaim" },
  4910. {1UL << PG_swapbacked, "swapbacked" },
  4911. {1UL << PG_unevictable, "unevictable" },
  4912. #ifdef CONFIG_MMU
  4913. {1UL << PG_mlocked, "mlocked" },
  4914. #endif
  4915. #ifdef CONFIG_ARCH_USES_PG_UNCACHED
  4916. {1UL << PG_uncached, "uncached" },
  4917. #endif
  4918. #ifdef CONFIG_MEMORY_FAILURE
  4919. {1UL << PG_hwpoison, "hwpoison" },
  4920. #endif
  4921. {-1UL, NULL },
  4922. };
  4923. static void dump_page_flags(unsigned long flags)
  4924. {
  4925. const char *delim = "";
  4926. unsigned long mask;
  4927. int i;
  4928. printk(KERN_ALERT "page flags: %#lx(", flags);
  4929. /* remove zone id */
  4930. flags &= (1UL << NR_PAGEFLAGS) - 1;
  4931. for (i = 0; pageflag_names[i].name && flags; i++) {
  4932. mask = pageflag_names[i].mask;
  4933. if ((flags & mask) != mask)
  4934. continue;
  4935. flags &= ~mask;
  4936. printk("%s%s", delim, pageflag_names[i].name);
  4937. delim = "|";
  4938. }
  4939. /* check for left over flags */
  4940. if (flags)
  4941. printk("%s%#lx", delim, flags);
  4942. printk(")\n");
  4943. }
  4944. void dump_page(struct page *page)
  4945. {
  4946. printk(KERN_ALERT
  4947. "page:%p count:%d mapcount:%d mapping:%p index:%#lx\n",
  4948. page, atomic_read(&page->_count), page_mapcount(page),
  4949. page->mapping, page->index);
  4950. dump_page_flags(page->flags);
  4951. mem_cgroup_print_bad_page(page);
  4952. }