123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244 |
- /*
- * mm/page-writeback.c
- *
- * Copyright (C) 2002, Linus Torvalds.
- * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
- *
- * Contains functions related to writing back dirty pages at the
- * address_space level.
- *
- * 10Apr2002 Andrew Morton
- * Initial version
- */
- #include <linux/kernel.h>
- #include <linux/export.h>
- #include <linux/spinlock.h>
- #include <linux/fs.h>
- #include <linux/mm.h>
- #include <linux/swap.h>
- #include <linux/slab.h>
- #include <linux/pagemap.h>
- #include <linux/writeback.h>
- #include <linux/init.h>
- #include <linux/backing-dev.h>
- #include <linux/task_io_accounting_ops.h>
- #include <linux/blkdev.h>
- #include <linux/mpage.h>
- #include <linux/rmap.h>
- #include <linux/percpu.h>
- #include <linux/notifier.h>
- #include <linux/smp.h>
- #include <linux/sysctl.h>
- #include <linux/cpu.h>
- #include <linux/syscalls.h>
- #include <linux/buffer_head.h> /* __set_page_dirty_buffers */
- #include <linux/pagevec.h>
- #include <trace/events/writeback.h>
- /*
- * Sleep at most 200ms at a time in balance_dirty_pages().
- */
- #define MAX_PAUSE max(HZ/5, 1)
- /*
- * Try to keep balance_dirty_pages() call intervals higher than this many pages
- * by raising pause time to max_pause when falls below it.
- */
- #define DIRTY_POLL_THRESH (128 >> (PAGE_SHIFT - 10))
- /*
- * Estimate write bandwidth at 200ms intervals.
- */
- #define BANDWIDTH_INTERVAL max(HZ/5, 1)
- #define RATELIMIT_CALC_SHIFT 10
- /*
- * After a CPU has dirtied this many pages, balance_dirty_pages_ratelimited
- * will look to see if it needs to force writeback or throttling.
- */
- static long ratelimit_pages = 32;
- /* The following parameters are exported via /proc/sys/vm */
- /*
- * Start background writeback (via writeback threads) at this percentage
- */
- int dirty_background_ratio = 10;
- /*
- * dirty_background_bytes starts at 0 (disabled) so that it is a function of
- * dirty_background_ratio * the amount of dirtyable memory
- */
- unsigned long dirty_background_bytes;
- /*
- * free highmem will not be subtracted from the total free memory
- * for calculating free ratios if vm_highmem_is_dirtyable is true
- */
- int vm_highmem_is_dirtyable;
- /*
- * The generator of dirty data starts writeback at this percentage
- */
- int vm_dirty_ratio = 20;
- /*
- * vm_dirty_bytes starts at 0 (disabled) so that it is a function of
- * vm_dirty_ratio * the amount of dirtyable memory
- */
- unsigned long vm_dirty_bytes;
- /*
- * The interval between `kupdate'-style writebacks
- */
- unsigned int dirty_writeback_interval = 5 * 100; /* centiseconds */
- EXPORT_SYMBOL_GPL(dirty_writeback_interval);
- /*
- * The longest time for which data is allowed to remain dirty
- */
- unsigned int dirty_expire_interval = 30 * 100; /* centiseconds */
- /*
- * Flag that makes the machine dump writes/reads and block dirtyings.
- */
- int block_dump;
- /*
- * Flag that puts the machine in "laptop mode". Doubles as a timeout in jiffies:
- * a full sync is triggered after this time elapses without any disk activity.
- */
- int laptop_mode;
- EXPORT_SYMBOL(laptop_mode);
- /* End of sysctl-exported parameters */
- unsigned long global_dirty_limit;
- /*
- * Scale the writeback cache size proportional to the relative writeout speeds.
- *
- * We do this by keeping a floating proportion between BDIs, based on page
- * writeback completions [end_page_writeback()]. Those devices that write out
- * pages fastest will get the larger share, while the slower will get a smaller
- * share.
- *
- * We use page writeout completions because we are interested in getting rid of
- * dirty pages. Having them written out is the primary goal.
- *
- * We introduce a concept of time, a period over which we measure these events,
- * because demand can/will vary over time. The length of this period itself is
- * measured in page writeback completions.
- *
- */
- static struct prop_descriptor vm_completions;
- /*
- * Work out the current dirty-memory clamping and background writeout
- * thresholds.
- *
- * The main aim here is to lower them aggressively if there is a lot of mapped
- * memory around. To avoid stressing page reclaim with lots of unreclaimable
- * pages. It is better to clamp down on writers than to start swapping, and
- * performing lots of scanning.
- *
- * We only allow 1/2 of the currently-unmapped memory to be dirtied.
- *
- * We don't permit the clamping level to fall below 5% - that is getting rather
- * excessive.
- *
- * We make sure that the background writeout level is below the adjusted
- * clamping level.
- */
- /*
- * In a memory zone, there is a certain amount of pages we consider
- * available for the page cache, which is essentially the number of
- * free and reclaimable pages, minus some zone reserves to protect
- * lowmem and the ability to uphold the zone's watermarks without
- * requiring writeback.
- *
- * This number of dirtyable pages is the base value of which the
- * user-configurable dirty ratio is the effictive number of pages that
- * are allowed to be actually dirtied. Per individual zone, or
- * globally by using the sum of dirtyable pages over all zones.
- *
- * Because the user is allowed to specify the dirty limit globally as
- * absolute number of bytes, calculating the per-zone dirty limit can
- * require translating the configured limit into a percentage of
- * global dirtyable memory first.
- */
- static unsigned long highmem_dirtyable_memory(unsigned long total)
- {
- #ifdef CONFIG_HIGHMEM
- int node;
- unsigned long x = 0;
- for_each_node_state(node, N_HIGH_MEMORY) {
- struct zone *z =
- &NODE_DATA(node)->node_zones[ZONE_HIGHMEM];
- x += zone_page_state(z, NR_FREE_PAGES) +
- zone_reclaimable_pages(z) - z->dirty_balance_reserve;
- }
- /*
- * Make sure that the number of highmem pages is never larger
- * than the number of the total dirtyable memory. This can only
- * occur in very strange VM situations but we want to make sure
- * that this does not occur.
- */
- return min(x, total);
- #else
- return 0;
- #endif
- }
- /**
- * global_dirtyable_memory - number of globally dirtyable pages
- *
- * Returns the global number of pages potentially available for dirty
- * page cache. This is the base value for the global dirty limits.
- */
- unsigned long global_dirtyable_memory(void)
- {
- unsigned long x;
- x = global_page_state(NR_FREE_PAGES) + global_reclaimable_pages() -
- dirty_balance_reserve;
- if (!vm_highmem_is_dirtyable)
- x -= highmem_dirtyable_memory(x);
- return x + 1; /* Ensure that we never return 0 */
- }
- /*
- * global_dirty_limits - background-writeback and dirty-throttling thresholds
- *
- * Calculate the dirty thresholds based on sysctl parameters
- * - vm.dirty_background_ratio or vm.dirty_background_bytes
- * - vm.dirty_ratio or vm.dirty_bytes
- * The dirty limits will be lifted by 1/4 for PF_LESS_THROTTLE (ie. nfsd) and
- * real-time tasks.
- */
- void global_dirty_limits(unsigned long *pbackground, unsigned long *pdirty)
- {
- unsigned long background;
- unsigned long dirty;
- unsigned long uninitialized_var(available_memory);
- struct task_struct *tsk;
- if (!vm_dirty_bytes || !dirty_background_bytes)
- available_memory = global_dirtyable_memory();
- if (vm_dirty_bytes)
- dirty = DIV_ROUND_UP(vm_dirty_bytes, PAGE_SIZE);
- else
- dirty = (vm_dirty_ratio * available_memory) / 100;
- if (dirty_background_bytes)
- background = DIV_ROUND_UP(dirty_background_bytes, PAGE_SIZE);
- else
- background = (dirty_background_ratio * available_memory) / 100;
- if (background >= dirty)
- background = dirty / 2;
- tsk = current;
- if (tsk->flags & PF_LESS_THROTTLE || rt_task(tsk)) {
- background += background / 4;
- dirty += dirty / 4;
- }
- *pbackground = background;
- *pdirty = dirty;
- trace_global_dirty_state(background, dirty);
- }
- /**
- * zone_dirtyable_memory - number of dirtyable pages in a zone
- * @zone: the zone
- *
- * Returns the zone's number of pages potentially available for dirty
- * page cache. This is the base value for the per-zone dirty limits.
- */
- static unsigned long zone_dirtyable_memory(struct zone *zone)
- {
- /*
- * The effective global number of dirtyable pages may exclude
- * highmem as a big-picture measure to keep the ratio between
- * dirty memory and lowmem reasonable.
- *
- * But this function is purely about the individual zone and a
- * highmem zone can hold its share of dirty pages, so we don't
- * care about vm_highmem_is_dirtyable here.
- */
- return zone_page_state(zone, NR_FREE_PAGES) +
- zone_reclaimable_pages(zone) -
- zone->dirty_balance_reserve;
- }
- /**
- * zone_dirty_limit - maximum number of dirty pages allowed in a zone
- * @zone: the zone
- *
- * Returns the maximum number of dirty pages allowed in a zone, based
- * on the zone's dirtyable memory.
- */
- static unsigned long zone_dirty_limit(struct zone *zone)
- {
- unsigned long zone_memory = zone_dirtyable_memory(zone);
- struct task_struct *tsk = current;
- unsigned long dirty;
- if (vm_dirty_bytes)
- dirty = DIV_ROUND_UP(vm_dirty_bytes, PAGE_SIZE) *
- zone_memory / global_dirtyable_memory();
- else
- dirty = vm_dirty_ratio * zone_memory / 100;
- if (tsk->flags & PF_LESS_THROTTLE || rt_task(tsk))
- dirty += dirty / 4;
- return dirty;
- }
- /**
- * zone_dirty_ok - tells whether a zone is within its dirty limits
- * @zone: the zone to check
- *
- * Returns %true when the dirty pages in @zone are within the zone's
- * dirty limit, %false if the limit is exceeded.
- */
- bool zone_dirty_ok(struct zone *zone)
- {
- unsigned long limit = zone_dirty_limit(zone);
- return zone_page_state(zone, NR_FILE_DIRTY) +
- zone_page_state(zone, NR_UNSTABLE_NFS) +
- zone_page_state(zone, NR_WRITEBACK) <= limit;
- }
- /*
- * couple the period to the dirty_ratio:
- *
- * period/2 ~ roundup_pow_of_two(dirty limit)
- */
- static int calc_period_shift(void)
- {
- unsigned long dirty_total;
- if (vm_dirty_bytes)
- dirty_total = vm_dirty_bytes / PAGE_SIZE;
- else
- dirty_total = (vm_dirty_ratio * global_dirtyable_memory()) /
- 100;
- return 2 + ilog2(dirty_total - 1);
- }
- /*
- * update the period when the dirty threshold changes.
- */
- static void update_completion_period(void)
- {
- int shift = calc_period_shift();
- prop_change_shift(&vm_completions, shift);
- writeback_set_ratelimit();
- }
- int dirty_background_ratio_handler(struct ctl_table *table, int write,
- void __user *buffer, size_t *lenp,
- loff_t *ppos)
- {
- int ret;
- ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
- if (ret == 0 && write)
- dirty_background_bytes = 0;
- return ret;
- }
- int dirty_background_bytes_handler(struct ctl_table *table, int write,
- void __user *buffer, size_t *lenp,
- loff_t *ppos)
- {
- int ret;
- ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
- if (ret == 0 && write)
- dirty_background_ratio = 0;
- return ret;
- }
- int dirty_ratio_handler(struct ctl_table *table, int write,
- void __user *buffer, size_t *lenp,
- loff_t *ppos)
- {
- int old_ratio = vm_dirty_ratio;
- int ret;
- ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
- if (ret == 0 && write && vm_dirty_ratio != old_ratio) {
- update_completion_period();
- vm_dirty_bytes = 0;
- }
- return ret;
- }
- int dirty_bytes_handler(struct ctl_table *table, int write,
- void __user *buffer, size_t *lenp,
- loff_t *ppos)
- {
- unsigned long old_bytes = vm_dirty_bytes;
- int ret;
- ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
- if (ret == 0 && write && vm_dirty_bytes != old_bytes) {
- update_completion_period();
- vm_dirty_ratio = 0;
- }
- return ret;
- }
- /*
- * Increment the BDI's writeout completion count and the global writeout
- * completion count. Called from test_clear_page_writeback().
- */
- static inline void __bdi_writeout_inc(struct backing_dev_info *bdi)
- {
- __inc_bdi_stat(bdi, BDI_WRITTEN);
- __prop_inc_percpu_max(&vm_completions, &bdi->completions,
- bdi->max_prop_frac);
- }
- void bdi_writeout_inc(struct backing_dev_info *bdi)
- {
- unsigned long flags;
- local_irq_save(flags);
- __bdi_writeout_inc(bdi);
- local_irq_restore(flags);
- }
- EXPORT_SYMBOL_GPL(bdi_writeout_inc);
- /*
- * Obtain an accurate fraction of the BDI's portion.
- */
- static void bdi_writeout_fraction(struct backing_dev_info *bdi,
- long *numerator, long *denominator)
- {
- prop_fraction_percpu(&vm_completions, &bdi->completions,
- numerator, denominator);
- }
- /*
- * bdi_min_ratio keeps the sum of the minimum dirty shares of all
- * registered backing devices, which, for obvious reasons, can not
- * exceed 100%.
- */
- static unsigned int bdi_min_ratio;
- int bdi_set_min_ratio(struct backing_dev_info *bdi, unsigned int min_ratio)
- {
- int ret = 0;
- spin_lock_bh(&bdi_lock);
- if (min_ratio > bdi->max_ratio) {
- ret = -EINVAL;
- } else {
- min_ratio -= bdi->min_ratio;
- if (bdi_min_ratio + min_ratio < 100) {
- bdi_min_ratio += min_ratio;
- bdi->min_ratio += min_ratio;
- } else {
- ret = -EINVAL;
- }
- }
- spin_unlock_bh(&bdi_lock);
- return ret;
- }
- int bdi_set_max_ratio(struct backing_dev_info *bdi, unsigned max_ratio)
- {
- int ret = 0;
- if (max_ratio > 100)
- return -EINVAL;
- spin_lock_bh(&bdi_lock);
- if (bdi->min_ratio > max_ratio) {
- ret = -EINVAL;
- } else {
- bdi->max_ratio = max_ratio;
- bdi->max_prop_frac = (PROP_FRAC_BASE * max_ratio) / 100;
- }
- spin_unlock_bh(&bdi_lock);
- return ret;
- }
- EXPORT_SYMBOL(bdi_set_max_ratio);
- static unsigned long dirty_freerun_ceiling(unsigned long thresh,
- unsigned long bg_thresh)
- {
- return (thresh + bg_thresh) / 2;
- }
- static unsigned long hard_dirty_limit(unsigned long thresh)
- {
- return max(thresh, global_dirty_limit);
- }
- /**
- * bdi_dirty_limit - @bdi's share of dirty throttling threshold
- * @bdi: the backing_dev_info to query
- * @dirty: global dirty limit in pages
- *
- * Returns @bdi's dirty limit in pages. The term "dirty" in the context of
- * dirty balancing includes all PG_dirty, PG_writeback and NFS unstable pages.
- *
- * Note that balance_dirty_pages() will only seriously take it as a hard limit
- * when sleeping max_pause per page is not enough to keep the dirty pages under
- * control. For example, when the device is completely stalled due to some error
- * conditions, or when there are 1000 dd tasks writing to a slow 10MB/s USB key.
- * In the other normal situations, it acts more gently by throttling the tasks
- * more (rather than completely block them) when the bdi dirty pages go high.
- *
- * It allocates high/low dirty limits to fast/slow devices, in order to prevent
- * - starving fast devices
- * - piling up dirty pages (that will take long time to sync) on slow devices
- *
- * The bdi's share of dirty limit will be adapting to its throughput and
- * bounded by the bdi->min_ratio and/or bdi->max_ratio parameters, if set.
- */
- unsigned long bdi_dirty_limit(struct backing_dev_info *bdi, unsigned long dirty)
- {
- u64 bdi_dirty;
- long numerator, denominator;
- /*
- * Calculate this BDI's share of the dirty ratio.
- */
- bdi_writeout_fraction(bdi, &numerator, &denominator);
- bdi_dirty = (dirty * (100 - bdi_min_ratio)) / 100;
- bdi_dirty *= numerator;
- do_div(bdi_dirty, denominator);
- bdi_dirty += (dirty * bdi->min_ratio) / 100;
- if (bdi_dirty > (dirty * bdi->max_ratio) / 100)
- bdi_dirty = dirty * bdi->max_ratio / 100;
- return bdi_dirty;
- }
- /*
- * Dirty position control.
- *
- * (o) global/bdi setpoints
- *
- * We want the dirty pages be balanced around the global/bdi setpoints.
- * When the number of dirty pages is higher/lower than the setpoint, the
- * dirty position control ratio (and hence task dirty ratelimit) will be
- * decreased/increased to bring the dirty pages back to the setpoint.
- *
- * pos_ratio = 1 << RATELIMIT_CALC_SHIFT
- *
- * if (dirty < setpoint) scale up pos_ratio
- * if (dirty > setpoint) scale down pos_ratio
- *
- * if (bdi_dirty < bdi_setpoint) scale up pos_ratio
- * if (bdi_dirty > bdi_setpoint) scale down pos_ratio
- *
- * task_ratelimit = dirty_ratelimit * pos_ratio >> RATELIMIT_CALC_SHIFT
- *
- * (o) global control line
- *
- * ^ pos_ratio
- * |
- * | |<===== global dirty control scope ======>|
- * 2.0 .............*
- * | .*
- * | . *
- * | . *
- * | . *
- * | . *
- * | . *
- * 1.0 ................................*
- * | . . *
- * | . . *
- * | . . *
- * | . . *
- * | . . *
- * 0 +------------.------------------.----------------------*------------->
- * freerun^ setpoint^ limit^ dirty pages
- *
- * (o) bdi control line
- *
- * ^ pos_ratio
- * |
- * | *
- * | *
- * | *
- * | *
- * | * |<=========== span ============>|
- * 1.0 .......................*
- * | . *
- * | . *
- * | . *
- * | . *
- * | . *
- * | . *
- * | . *
- * | . *
- * | . *
- * | . *
- * | . *
- * 1/4 ...............................................* * * * * * * * * * * *
- * | . .
- * | . .
- * | . .
- * 0 +----------------------.-------------------------------.------------->
- * bdi_setpoint^ x_intercept^
- *
- * The bdi control line won't drop below pos_ratio=1/4, so that bdi_dirty can
- * be smoothly throttled down to normal if it starts high in situations like
- * - start writing to a slow SD card and a fast disk at the same time. The SD
- * card's bdi_dirty may rush to many times higher than bdi_setpoint.
- * - the bdi dirty thresh drops quickly due to change of JBOD workload
- */
- static unsigned long bdi_position_ratio(struct backing_dev_info *bdi,
- unsigned long thresh,
- unsigned long bg_thresh,
- unsigned long dirty,
- unsigned long bdi_thresh,
- unsigned long bdi_dirty)
- {
- unsigned long write_bw = bdi->avg_write_bandwidth;
- unsigned long freerun = dirty_freerun_ceiling(thresh, bg_thresh);
- unsigned long limit = hard_dirty_limit(thresh);
- unsigned long x_intercept;
- unsigned long setpoint; /* dirty pages' target balance point */
- unsigned long bdi_setpoint;
- unsigned long span;
- long long pos_ratio; /* for scaling up/down the rate limit */
- long x;
- if (unlikely(dirty >= limit))
- return 0;
- /*
- * global setpoint
- *
- * setpoint - dirty 3
- * f(dirty) := 1.0 + (----------------)
- * limit - setpoint
- *
- * it's a 3rd order polynomial that subjects to
- *
- * (1) f(freerun) = 2.0 => rampup dirty_ratelimit reasonably fast
- * (2) f(setpoint) = 1.0 => the balance point
- * (3) f(limit) = 0 => the hard limit
- * (4) df/dx <= 0 => negative feedback control
- * (5) the closer to setpoint, the smaller |df/dx| (and the reverse)
- * => fast response on large errors; small oscillation near setpoint
- */
- setpoint = (freerun + limit) / 2;
- x = div_s64((setpoint - dirty) << RATELIMIT_CALC_SHIFT,
- limit - setpoint + 1);
- pos_ratio = x;
- pos_ratio = pos_ratio * x >> RATELIMIT_CALC_SHIFT;
- pos_ratio = pos_ratio * x >> RATELIMIT_CALC_SHIFT;
- pos_ratio += 1 << RATELIMIT_CALC_SHIFT;
- /*
- * We have computed basic pos_ratio above based on global situation. If
- * the bdi is over/under its share of dirty pages, we want to scale
- * pos_ratio further down/up. That is done by the following mechanism.
- */
- /*
- * bdi setpoint
- *
- * f(bdi_dirty) := 1.0 + k * (bdi_dirty - bdi_setpoint)
- *
- * x_intercept - bdi_dirty
- * := --------------------------
- * x_intercept - bdi_setpoint
- *
- * The main bdi control line is a linear function that subjects to
- *
- * (1) f(bdi_setpoint) = 1.0
- * (2) k = - 1 / (8 * write_bw) (in single bdi case)
- * or equally: x_intercept = bdi_setpoint + 8 * write_bw
- *
- * For single bdi case, the dirty pages are observed to fluctuate
- * regularly within range
- * [bdi_setpoint - write_bw/2, bdi_setpoint + write_bw/2]
- * for various filesystems, where (2) can yield in a reasonable 12.5%
- * fluctuation range for pos_ratio.
- *
- * For JBOD case, bdi_thresh (not bdi_dirty!) could fluctuate up to its
- * own size, so move the slope over accordingly and choose a slope that
- * yields 100% pos_ratio fluctuation on suddenly doubled bdi_thresh.
- */
- if (unlikely(bdi_thresh > thresh))
- bdi_thresh = thresh;
- /*
- * It's very possible that bdi_thresh is close to 0 not because the
- * device is slow, but that it has remained inactive for long time.
- * Honour such devices a reasonable good (hopefully IO efficient)
- * threshold, so that the occasional writes won't be blocked and active
- * writes can rampup the threshold quickly.
- */
- bdi_thresh = max(bdi_thresh, (limit - dirty) / 8);
- /*
- * scale global setpoint to bdi's:
- * bdi_setpoint = setpoint * bdi_thresh / thresh
- */
- x = div_u64((u64)bdi_thresh << 16, thresh + 1);
- bdi_setpoint = setpoint * (u64)x >> 16;
- /*
- * Use span=(8*write_bw) in single bdi case as indicated by
- * (thresh - bdi_thresh ~= 0) and transit to bdi_thresh in JBOD case.
- *
- * bdi_thresh thresh - bdi_thresh
- * span = ---------- * (8 * write_bw) + ------------------- * bdi_thresh
- * thresh thresh
- */
- span = (thresh - bdi_thresh + 8 * write_bw) * (u64)x >> 16;
- x_intercept = bdi_setpoint + span;
- if (bdi_dirty < x_intercept - span / 4) {
- pos_ratio = div_u64(pos_ratio * (x_intercept - bdi_dirty),
- x_intercept - bdi_setpoint + 1);
- } else
- pos_ratio /= 4;
- /*
- * bdi reserve area, safeguard against dirty pool underrun and disk idle
- * It may push the desired control point of global dirty pages higher
- * than setpoint.
- */
- x_intercept = bdi_thresh / 2;
- if (bdi_dirty < x_intercept) {
- if (bdi_dirty > x_intercept / 8)
- pos_ratio = div_u64(pos_ratio * x_intercept, bdi_dirty);
- else
- pos_ratio *= 8;
- }
- return pos_ratio;
- }
- static void bdi_update_write_bandwidth(struct backing_dev_info *bdi,
- unsigned long elapsed,
- unsigned long written)
- {
- const unsigned long period = roundup_pow_of_two(3 * HZ);
- unsigned long avg = bdi->avg_write_bandwidth;
- unsigned long old = bdi->write_bandwidth;
- u64 bw;
- /*
- * bw = written * HZ / elapsed
- *
- * bw * elapsed + write_bandwidth * (period - elapsed)
- * write_bandwidth = ---------------------------------------------------
- * period
- */
- bw = written - bdi->written_stamp;
- bw *= HZ;
- if (unlikely(elapsed > period)) {
- do_div(bw, elapsed);
- avg = bw;
- goto out;
- }
- bw += (u64)bdi->write_bandwidth * (period - elapsed);
- bw >>= ilog2(period);
- /*
- * one more level of smoothing, for filtering out sudden spikes
- */
- if (avg > old && old >= (unsigned long)bw)
- avg -= (avg - old) >> 3;
- if (avg < old && old <= (unsigned long)bw)
- avg += (old - avg) >> 3;
- out:
- bdi->write_bandwidth = bw;
- bdi->avg_write_bandwidth = avg;
- }
- /*
- * The global dirtyable memory and dirty threshold could be suddenly knocked
- * down by a large amount (eg. on the startup of KVM in a swapless system).
- * This may throw the system into deep dirty exceeded state and throttle
- * heavy/light dirtiers alike. To retain good responsiveness, maintain
- * global_dirty_limit for tracking slowly down to the knocked down dirty
- * threshold.
- */
- static void update_dirty_limit(unsigned long thresh, unsigned long dirty)
- {
- unsigned long limit = global_dirty_limit;
- /*
- * Follow up in one step.
- */
- if (limit < thresh) {
- limit = thresh;
- goto update;
- }
- /*
- * Follow down slowly. Use the higher one as the target, because thresh
- * may drop below dirty. This is exactly the reason to introduce
- * global_dirty_limit which is guaranteed to lie above the dirty pages.
- */
- thresh = max(thresh, dirty);
- if (limit > thresh) {
- limit -= (limit - thresh) >> 5;
- goto update;
- }
- return;
- update:
- global_dirty_limit = limit;
- }
- static void global_update_bandwidth(unsigned long thresh,
- unsigned long dirty,
- unsigned long now)
- {
- static DEFINE_SPINLOCK(dirty_lock);
- static unsigned long update_time;
- /*
- * check locklessly first to optimize away locking for the most time
- */
- if (time_before(now, update_time + BANDWIDTH_INTERVAL))
- return;
- spin_lock(&dirty_lock);
- if (time_after_eq(now, update_time + BANDWIDTH_INTERVAL)) {
- update_dirty_limit(thresh, dirty);
- update_time = now;
- }
- spin_unlock(&dirty_lock);
- }
- /*
- * Maintain bdi->dirty_ratelimit, the base dirty throttle rate.
- *
- * Normal bdi tasks will be curbed at or below it in long term.
- * Obviously it should be around (write_bw / N) when there are N dd tasks.
- */
- static void bdi_update_dirty_ratelimit(struct backing_dev_info *bdi,
- unsigned long thresh,
- unsigned long bg_thresh,
- unsigned long dirty,
- unsigned long bdi_thresh,
- unsigned long bdi_dirty,
- unsigned long dirtied,
- unsigned long elapsed)
- {
- unsigned long freerun = dirty_freerun_ceiling(thresh, bg_thresh);
- unsigned long limit = hard_dirty_limit(thresh);
- unsigned long setpoint = (freerun + limit) / 2;
- unsigned long write_bw = bdi->avg_write_bandwidth;
- unsigned long dirty_ratelimit = bdi->dirty_ratelimit;
- unsigned long dirty_rate;
- unsigned long task_ratelimit;
- unsigned long balanced_dirty_ratelimit;
- unsigned long pos_ratio;
- unsigned long step;
- unsigned long x;
- /*
- * The dirty rate will match the writeout rate in long term, except
- * when dirty pages are truncated by userspace or re-dirtied by FS.
- */
- dirty_rate = (dirtied - bdi->dirtied_stamp) * HZ / elapsed;
- pos_ratio = bdi_position_ratio(bdi, thresh, bg_thresh, dirty,
- bdi_thresh, bdi_dirty);
- /*
- * task_ratelimit reflects each dd's dirty rate for the past 200ms.
- */
- task_ratelimit = (u64)dirty_ratelimit *
- pos_ratio >> RATELIMIT_CALC_SHIFT;
- task_ratelimit++; /* it helps rampup dirty_ratelimit from tiny values */
- /*
- * A linear estimation of the "balanced" throttle rate. The theory is,
- * if there are N dd tasks, each throttled at task_ratelimit, the bdi's
- * dirty_rate will be measured to be (N * task_ratelimit). So the below
- * formula will yield the balanced rate limit (write_bw / N).
- *
- * Note that the expanded form is not a pure rate feedback:
- * rate_(i+1) = rate_(i) * (write_bw / dirty_rate) (1)
- * but also takes pos_ratio into account:
- * rate_(i+1) = rate_(i) * (write_bw / dirty_rate) * pos_ratio (2)
- *
- * (1) is not realistic because pos_ratio also takes part in balancing
- * the dirty rate. Consider the state
- * pos_ratio = 0.5 (3)
- * rate = 2 * (write_bw / N) (4)
- * If (1) is used, it will stuck in that state! Because each dd will
- * be throttled at
- * task_ratelimit = pos_ratio * rate = (write_bw / N) (5)
- * yielding
- * dirty_rate = N * task_ratelimit = write_bw (6)
- * put (6) into (1) we get
- * rate_(i+1) = rate_(i) (7)
- *
- * So we end up using (2) to always keep
- * rate_(i+1) ~= (write_bw / N) (8)
- * regardless of the value of pos_ratio. As long as (8) is satisfied,
- * pos_ratio is able to drive itself to 1.0, which is not only where
- * the dirty count meet the setpoint, but also where the slope of
- * pos_ratio is most flat and hence task_ratelimit is least fluctuated.
- */
- balanced_dirty_ratelimit = div_u64((u64)task_ratelimit * write_bw,
- dirty_rate | 1);
- /*
- * balanced_dirty_ratelimit ~= (write_bw / N) <= write_bw
- */
- if (unlikely(balanced_dirty_ratelimit > write_bw))
- balanced_dirty_ratelimit = write_bw;
- /*
- * We could safely do this and return immediately:
- *
- * bdi->dirty_ratelimit = balanced_dirty_ratelimit;
- *
- * However to get a more stable dirty_ratelimit, the below elaborated
- * code makes use of task_ratelimit to filter out sigular points and
- * limit the step size.
- *
- * The below code essentially only uses the relative value of
- *
- * task_ratelimit - dirty_ratelimit
- * = (pos_ratio - 1) * dirty_ratelimit
- *
- * which reflects the direction and size of dirty position error.
- */
- /*
- * dirty_ratelimit will follow balanced_dirty_ratelimit iff
- * task_ratelimit is on the same side of dirty_ratelimit, too.
- * For example, when
- * - dirty_ratelimit > balanced_dirty_ratelimit
- * - dirty_ratelimit > task_ratelimit (dirty pages are above setpoint)
- * lowering dirty_ratelimit will help meet both the position and rate
- * control targets. Otherwise, don't update dirty_ratelimit if it will
- * only help meet the rate target. After all, what the users ultimately
- * feel and care are stable dirty rate and small position error.
- *
- * |task_ratelimit - dirty_ratelimit| is used to limit the step size
- * and filter out the sigular points of balanced_dirty_ratelimit. Which
- * keeps jumping around randomly and can even leap far away at times
- * due to the small 200ms estimation period of dirty_rate (we want to
- * keep that period small to reduce time lags).
- */
- step = 0;
- if (dirty < setpoint) {
- x = min(bdi->balanced_dirty_ratelimit,
- min(balanced_dirty_ratelimit, task_ratelimit));
- if (dirty_ratelimit < x)
- step = x - dirty_ratelimit;
- } else {
- x = max(bdi->balanced_dirty_ratelimit,
- max(balanced_dirty_ratelimit, task_ratelimit));
- if (dirty_ratelimit > x)
- step = dirty_ratelimit - x;
- }
- /*
- * Don't pursue 100% rate matching. It's impossible since the balanced
- * rate itself is constantly fluctuating. So decrease the track speed
- * when it gets close to the target. Helps eliminate pointless tremors.
- */
- step >>= dirty_ratelimit / (2 * step + 1);
- /*
- * Limit the tracking speed to avoid overshooting.
- */
- step = (step + 7) / 8;
- if (dirty_ratelimit < balanced_dirty_ratelimit)
- dirty_ratelimit += step;
- else
- dirty_ratelimit -= step;
- bdi->dirty_ratelimit = max(dirty_ratelimit, 1UL);
- bdi->balanced_dirty_ratelimit = balanced_dirty_ratelimit;
- trace_bdi_dirty_ratelimit(bdi, dirty_rate, task_ratelimit);
- }
- void __bdi_update_bandwidth(struct backing_dev_info *bdi,
- unsigned long thresh,
- unsigned long bg_thresh,
- unsigned long dirty,
- unsigned long bdi_thresh,
- unsigned long bdi_dirty,
- unsigned long start_time)
- {
- unsigned long now = jiffies;
- unsigned long elapsed = now - bdi->bw_time_stamp;
- unsigned long dirtied;
- unsigned long written;
- /*
- * rate-limit, only update once every 200ms.
- */
- if (elapsed < BANDWIDTH_INTERVAL)
- return;
- dirtied = percpu_counter_read(&bdi->bdi_stat[BDI_DIRTIED]);
- written = percpu_counter_read(&bdi->bdi_stat[BDI_WRITTEN]);
- /*
- * Skip quiet periods when disk bandwidth is under-utilized.
- * (at least 1s idle time between two flusher runs)
- */
- if (elapsed > HZ && time_before(bdi->bw_time_stamp, start_time))
- goto snapshot;
- if (thresh) {
- global_update_bandwidth(thresh, dirty, now);
- bdi_update_dirty_ratelimit(bdi, thresh, bg_thresh, dirty,
- bdi_thresh, bdi_dirty,
- dirtied, elapsed);
- }
- bdi_update_write_bandwidth(bdi, elapsed, written);
- snapshot:
- bdi->dirtied_stamp = dirtied;
- bdi->written_stamp = written;
- bdi->bw_time_stamp = now;
- }
- static void bdi_update_bandwidth(struct backing_dev_info *bdi,
- unsigned long thresh,
- unsigned long bg_thresh,
- unsigned long dirty,
- unsigned long bdi_thresh,
- unsigned long bdi_dirty,
- unsigned long start_time)
- {
- if (time_is_after_eq_jiffies(bdi->bw_time_stamp + BANDWIDTH_INTERVAL))
- return;
- spin_lock(&bdi->wb.list_lock);
- __bdi_update_bandwidth(bdi, thresh, bg_thresh, dirty,
- bdi_thresh, bdi_dirty, start_time);
- spin_unlock(&bdi->wb.list_lock);
- }
- /*
- * After a task dirtied this many pages, balance_dirty_pages_ratelimited_nr()
- * will look to see if it needs to start dirty throttling.
- *
- * If dirty_poll_interval is too low, big NUMA machines will call the expensive
- * global_page_state() too often. So scale it near-sqrt to the safety margin
- * (the number of pages we may dirty without exceeding the dirty limits).
- */
- static unsigned long dirty_poll_interval(unsigned long dirty,
- unsigned long thresh)
- {
- if (thresh > dirty)
- return 1UL << (ilog2(thresh - dirty) >> 1);
- return 1;
- }
- static long bdi_max_pause(struct backing_dev_info *bdi,
- unsigned long bdi_dirty)
- {
- long bw = bdi->avg_write_bandwidth;
- long t;
- /*
- * Limit pause time for small memory systems. If sleeping for too long
- * time, a small pool of dirty/writeback pages may go empty and disk go
- * idle.
- *
- * 8 serves as the safety ratio.
- */
- t = bdi_dirty / (1 + bw / roundup_pow_of_two(1 + HZ / 8));
- t++;
- return min_t(long, t, MAX_PAUSE);
- }
- static long bdi_min_pause(struct backing_dev_info *bdi,
- long max_pause,
- unsigned long task_ratelimit,
- unsigned long dirty_ratelimit,
- int *nr_dirtied_pause)
- {
- long hi = ilog2(bdi->avg_write_bandwidth);
- long lo = ilog2(bdi->dirty_ratelimit);
- long t; /* target pause */
- long pause; /* estimated next pause */
- int pages; /* target nr_dirtied_pause */
- /* target for 10ms pause on 1-dd case */
- t = max(1, HZ / 100);
- /*
- * Scale up pause time for concurrent dirtiers in order to reduce CPU
- * overheads.
- *
- * (N * 10ms) on 2^N concurrent tasks.
- */
- if (hi > lo)
- t += (hi - lo) * (10 * HZ) / 1024;
- /*
- * This is a bit convoluted. We try to base the next nr_dirtied_pause
- * on the much more stable dirty_ratelimit. However the next pause time
- * will be computed based on task_ratelimit and the two rate limits may
- * depart considerably at some time. Especially if task_ratelimit goes
- * below dirty_ratelimit/2 and the target pause is max_pause, the next
- * pause time will be max_pause*2 _trimmed down_ to max_pause. As a
- * result task_ratelimit won't be executed faithfully, which could
- * eventually bring down dirty_ratelimit.
- *
- * We apply two rules to fix it up:
- * 1) try to estimate the next pause time and if necessary, use a lower
- * nr_dirtied_pause so as not to exceed max_pause. When this happens,
- * nr_dirtied_pause will be "dancing" with task_ratelimit.
- * 2) limit the target pause time to max_pause/2, so that the normal
- * small fluctuations of task_ratelimit won't trigger rule (1) and
- * nr_dirtied_pause will remain as stable as dirty_ratelimit.
- */
- t = min(t, 1 + max_pause / 2);
- pages = dirty_ratelimit * t / roundup_pow_of_two(HZ);
- /*
- * Tiny nr_dirtied_pause is found to hurt I/O performance in the test
- * case fio-mmap-randwrite-64k, which does 16*{sync read, async write}.
- * When the 16 consecutive reads are often interrupted by some dirty
- * throttling pause during the async writes, cfq will go into idles
- * (deadline is fine). So push nr_dirtied_pause as high as possible
- * until reaches DIRTY_POLL_THRESH=32 pages.
- */
- if (pages < DIRTY_POLL_THRESH) {
- t = max_pause;
- pages = dirty_ratelimit * t / roundup_pow_of_two(HZ);
- if (pages > DIRTY_POLL_THRESH) {
- pages = DIRTY_POLL_THRESH;
- t = HZ * DIRTY_POLL_THRESH / dirty_ratelimit;
- }
- }
- pause = HZ * pages / (task_ratelimit + 1);
- if (pause > max_pause) {
- t = max_pause;
- pages = task_ratelimit * t / roundup_pow_of_two(HZ);
- }
- *nr_dirtied_pause = pages;
- /*
- * The minimal pause time will normally be half the target pause time.
- */
- return pages >= DIRTY_POLL_THRESH ? 1 + t / 2 : t;
- }
- /*
- * balance_dirty_pages() must be called by processes which are generating dirty
- * data. It looks at the number of dirty pages in the machine and will force
- * the caller to wait once crossing the (background_thresh + dirty_thresh) / 2.
- * If we're over `background_thresh' then the writeback threads are woken to
- * perform some writeout.
- */
- static void balance_dirty_pages(struct address_space *mapping,
- unsigned long pages_dirtied)
- {
- unsigned long nr_reclaimable; /* = file_dirty + unstable_nfs */
- unsigned long bdi_reclaimable;
- unsigned long nr_dirty; /* = file_dirty + writeback + unstable_nfs */
- unsigned long bdi_dirty;
- unsigned long freerun;
- unsigned long background_thresh;
- unsigned long dirty_thresh;
- unsigned long bdi_thresh;
- long period;
- long pause;
- long max_pause;
- long min_pause;
- int nr_dirtied_pause;
- bool dirty_exceeded = false;
- unsigned long task_ratelimit;
- unsigned long dirty_ratelimit;
- unsigned long pos_ratio;
- struct backing_dev_info *bdi = mapping->backing_dev_info;
- unsigned long start_time = jiffies;
- for (;;) {
- unsigned long now = jiffies;
- /*
- * Unstable writes are a feature of certain networked
- * filesystems (i.e. NFS) in which data may have been
- * written to the server's write cache, but has not yet
- * been flushed to permanent storage.
- */
- nr_reclaimable = global_page_state(NR_FILE_DIRTY) +
- global_page_state(NR_UNSTABLE_NFS);
- nr_dirty = nr_reclaimable + global_page_state(NR_WRITEBACK);
- global_dirty_limits(&background_thresh, &dirty_thresh);
- /*
- * Throttle it only when the background writeback cannot
- * catch-up. This avoids (excessively) small writeouts
- * when the bdi limits are ramping up.
- */
- freerun = dirty_freerun_ceiling(dirty_thresh,
- background_thresh);
- if (nr_dirty <= freerun) {
- current->dirty_paused_when = now;
- current->nr_dirtied = 0;
- current->nr_dirtied_pause =
- dirty_poll_interval(nr_dirty, dirty_thresh);
- break;
- }
- if (unlikely(!writeback_in_progress(bdi)))
- bdi_start_background_writeback(bdi);
- /*
- * bdi_thresh is not treated as some limiting factor as
- * dirty_thresh, due to reasons
- * - in JBOD setup, bdi_thresh can fluctuate a lot
- * - in a system with HDD and USB key, the USB key may somehow
- * go into state (bdi_dirty >> bdi_thresh) either because
- * bdi_dirty starts high, or because bdi_thresh drops low.
- * In this case we don't want to hard throttle the USB key
- * dirtiers for 100 seconds until bdi_dirty drops under
- * bdi_thresh. Instead the auxiliary bdi control line in
- * bdi_position_ratio() will let the dirtier task progress
- * at some rate <= (write_bw / 2) for bringing down bdi_dirty.
- */
- bdi_thresh = bdi_dirty_limit(bdi, dirty_thresh);
- /*
- * In order to avoid the stacked BDI deadlock we need
- * to ensure we accurately count the 'dirty' pages when
- * the threshold is low.
- *
- * Otherwise it would be possible to get thresh+n pages
- * reported dirty, even though there are thresh-m pages
- * actually dirty; with m+n sitting in the percpu
- * deltas.
- */
- if (bdi_thresh < 2 * bdi_stat_error(bdi)) {
- bdi_reclaimable = bdi_stat_sum(bdi, BDI_RECLAIMABLE);
- bdi_dirty = bdi_reclaimable +
- bdi_stat_sum(bdi, BDI_WRITEBACK);
- } else {
- bdi_reclaimable = bdi_stat(bdi, BDI_RECLAIMABLE);
- bdi_dirty = bdi_reclaimable +
- bdi_stat(bdi, BDI_WRITEBACK);
- }
- dirty_exceeded = (bdi_dirty > bdi_thresh) &&
- (nr_dirty > dirty_thresh);
- if (dirty_exceeded && !bdi->dirty_exceeded)
- bdi->dirty_exceeded = 1;
- bdi_update_bandwidth(bdi, dirty_thresh, background_thresh,
- nr_dirty, bdi_thresh, bdi_dirty,
- start_time);
- dirty_ratelimit = bdi->dirty_ratelimit;
- pos_ratio = bdi_position_ratio(bdi, dirty_thresh,
- background_thresh, nr_dirty,
- bdi_thresh, bdi_dirty);
- task_ratelimit = ((u64)dirty_ratelimit * pos_ratio) >>
- RATELIMIT_CALC_SHIFT;
- max_pause = bdi_max_pause(bdi, bdi_dirty);
- min_pause = bdi_min_pause(bdi, max_pause,
- task_ratelimit, dirty_ratelimit,
- &nr_dirtied_pause);
- if (unlikely(task_ratelimit == 0)) {
- period = max_pause;
- pause = max_pause;
- goto pause;
- }
- period = HZ * pages_dirtied / task_ratelimit;
- pause = period;
- if (current->dirty_paused_when)
- pause -= now - current->dirty_paused_when;
- /*
- * For less than 1s think time (ext3/4 may block the dirtier
- * for up to 800ms from time to time on 1-HDD; so does xfs,
- * however at much less frequency), try to compensate it in
- * future periods by updating the virtual time; otherwise just
- * do a reset, as it may be a light dirtier.
- */
- if (pause < min_pause) {
- trace_balance_dirty_pages(bdi,
- dirty_thresh,
- background_thresh,
- nr_dirty,
- bdi_thresh,
- bdi_dirty,
- dirty_ratelimit,
- task_ratelimit,
- pages_dirtied,
- period,
- min(pause, 0L),
- start_time);
- if (pause < -HZ) {
- current->dirty_paused_when = now;
- current->nr_dirtied = 0;
- } else if (period) {
- current->dirty_paused_when += period;
- current->nr_dirtied = 0;
- } else if (current->nr_dirtied_pause <= pages_dirtied)
- current->nr_dirtied_pause += pages_dirtied;
- break;
- }
- if (unlikely(pause > max_pause)) {
- /* for occasional dropped task_ratelimit */
- now += min(pause - max_pause, max_pause);
- pause = max_pause;
- }
- pause:
- trace_balance_dirty_pages(bdi,
- dirty_thresh,
- background_thresh,
- nr_dirty,
- bdi_thresh,
- bdi_dirty,
- dirty_ratelimit,
- task_ratelimit,
- pages_dirtied,
- period,
- pause,
- start_time);
- __set_current_state(TASK_KILLABLE);
- io_schedule_timeout(pause);
- current->dirty_paused_when = now + pause;
- current->nr_dirtied = 0;
- current->nr_dirtied_pause = nr_dirtied_pause;
- /*
- * This is typically equal to (nr_dirty < dirty_thresh) and can
- * also keep "1000+ dd on a slow USB stick" under control.
- */
- if (task_ratelimit)
- break;
- /*
- * In the case of an unresponding NFS server and the NFS dirty
- * pages exceeds dirty_thresh, give the other good bdi's a pipe
- * to go through, so that tasks on them still remain responsive.
- *
- * In theory 1 page is enough to keep the comsumer-producer
- * pipe going: the flusher cleans 1 page => the task dirties 1
- * more page. However bdi_dirty has accounting errors. So use
- * the larger and more IO friendly bdi_stat_error.
- */
- if (bdi_dirty <= bdi_stat_error(bdi))
- break;
- if (fatal_signal_pending(current))
- break;
- }
- if (!dirty_exceeded && bdi->dirty_exceeded)
- bdi->dirty_exceeded = 0;
- if (writeback_in_progress(bdi))
- return;
- /*
- * In laptop mode, we wait until hitting the higher threshold before
- * starting background writeout, and then write out all the way down
- * to the lower threshold. So slow writers cause minimal disk activity.
- *
- * In normal mode, we start background writeout at the lower
- * background_thresh, to keep the amount of dirty memory low.
- */
- if (laptop_mode)
- return;
- if (nr_reclaimable > background_thresh)
- bdi_start_background_writeback(bdi);
- }
- void set_page_dirty_balance(struct page *page, int page_mkwrite)
- {
- if (set_page_dirty(page) || page_mkwrite) {
- struct address_space *mapping = page_mapping(page);
- if (mapping)
- balance_dirty_pages_ratelimited(mapping);
- }
- }
- static DEFINE_PER_CPU(int, bdp_ratelimits);
- /*
- * Normal tasks are throttled by
- * loop {
- * dirty tsk->nr_dirtied_pause pages;
- * take a snap in balance_dirty_pages();
- * }
- * However there is a worst case. If every task exit immediately when dirtied
- * (tsk->nr_dirtied_pause - 1) pages, balance_dirty_pages() will never be
- * called to throttle the page dirties. The solution is to save the not yet
- * throttled page dirties in dirty_throttle_leaks on task exit and charge them
- * randomly into the running tasks. This works well for the above worst case,
- * as the new task will pick up and accumulate the old task's leaked dirty
- * count and eventually get throttled.
- */
- DEFINE_PER_CPU(int, dirty_throttle_leaks) = 0;
- /**
- * balance_dirty_pages_ratelimited_nr - balance dirty memory state
- * @mapping: address_space which was dirtied
- * @nr_pages_dirtied: number of pages which the caller has just dirtied
- *
- * Processes which are dirtying memory should call in here once for each page
- * which was newly dirtied. The function will periodically check the system's
- * dirty state and will initiate writeback if needed.
- *
- * On really big machines, get_writeback_state is expensive, so try to avoid
- * calling it too often (ratelimiting). But once we're over the dirty memory
- * limit we decrease the ratelimiting by a lot, to prevent individual processes
- * from overshooting the limit by (ratelimit_pages) each.
- */
- void balance_dirty_pages_ratelimited_nr(struct address_space *mapping,
- unsigned long nr_pages_dirtied)
- {
- struct backing_dev_info *bdi = mapping->backing_dev_info;
- int ratelimit;
- int *p;
- if (!bdi_cap_account_dirty(bdi))
- return;
- ratelimit = current->nr_dirtied_pause;
- if (bdi->dirty_exceeded)
- ratelimit = min(ratelimit, 32 >> (PAGE_SHIFT - 10));
- preempt_disable();
- /*
- * This prevents one CPU to accumulate too many dirtied pages without
- * calling into balance_dirty_pages(), which can happen when there are
- * 1000+ tasks, all of them start dirtying pages at exactly the same
- * time, hence all honoured too large initial task->nr_dirtied_pause.
- */
- p = &__get_cpu_var(bdp_ratelimits);
- if (unlikely(current->nr_dirtied >= ratelimit))
- *p = 0;
- else if (unlikely(*p >= ratelimit_pages)) {
- *p = 0;
- ratelimit = 0;
- }
- /*
- * Pick up the dirtied pages by the exited tasks. This avoids lots of
- * short-lived tasks (eg. gcc invocations in a kernel build) escaping
- * the dirty throttling and livelock other long-run dirtiers.
- */
- p = &__get_cpu_var(dirty_throttle_leaks);
- if (*p > 0 && current->nr_dirtied < ratelimit) {
- nr_pages_dirtied = min(*p, ratelimit - current->nr_dirtied);
- *p -= nr_pages_dirtied;
- current->nr_dirtied += nr_pages_dirtied;
- }
- preempt_enable();
- if (unlikely(current->nr_dirtied >= ratelimit))
- balance_dirty_pages(mapping, current->nr_dirtied);
- }
- EXPORT_SYMBOL(balance_dirty_pages_ratelimited_nr);
- void throttle_vm_writeout(gfp_t gfp_mask)
- {
- unsigned long background_thresh;
- unsigned long dirty_thresh;
- for ( ; ; ) {
- global_dirty_limits(&background_thresh, &dirty_thresh);
- dirty_thresh = hard_dirty_limit(dirty_thresh);
- /*
- * Boost the allowable dirty threshold a bit for page
- * allocators so they don't get DoS'ed by heavy writers
- */
- dirty_thresh += dirty_thresh / 10; /* wheeee... */
- if (global_page_state(NR_UNSTABLE_NFS) +
- global_page_state(NR_WRITEBACK) <= dirty_thresh)
- break;
- congestion_wait(BLK_RW_ASYNC, HZ/10);
- /*
- * The caller might hold locks which can prevent IO completion
- * or progress in the filesystem. So we cannot just sit here
- * waiting for IO to complete.
- */
- if ((gfp_mask & (__GFP_FS|__GFP_IO)) != (__GFP_FS|__GFP_IO))
- break;
- }
- }
- /*
- * sysctl handler for /proc/sys/vm/dirty_writeback_centisecs
- */
- int dirty_writeback_centisecs_handler(ctl_table *table, int write,
- void __user *buffer, size_t *length, loff_t *ppos)
- {
- proc_dointvec(table, write, buffer, length, ppos);
- bdi_arm_supers_timer();
- return 0;
- }
- #ifdef CONFIG_BLOCK
- void laptop_mode_timer_fn(unsigned long data)
- {
- struct request_queue *q = (struct request_queue *)data;
- int nr_pages = global_page_state(NR_FILE_DIRTY) +
- global_page_state(NR_UNSTABLE_NFS);
- /*
- * We want to write everything out, not just down to the dirty
- * threshold
- */
- if (bdi_has_dirty_io(&q->backing_dev_info))
- bdi_start_writeback(&q->backing_dev_info, nr_pages,
- WB_REASON_LAPTOP_TIMER);
- }
- /*
- * We've spun up the disk and we're in laptop mode: schedule writeback
- * of all dirty data a few seconds from now. If the flush is already scheduled
- * then push it back - the user is still using the disk.
- */
- void laptop_io_completion(struct backing_dev_info *info)
- {
- mod_timer(&info->laptop_mode_wb_timer, jiffies + laptop_mode);
- }
- /*
- * We're in laptop mode and we've just synced. The sync's writes will have
- * caused another writeback to be scheduled by laptop_io_completion.
- * Nothing needs to be written back anymore, so we unschedule the writeback.
- */
- void laptop_sync_completion(void)
- {
- struct backing_dev_info *bdi;
- rcu_read_lock();
- list_for_each_entry_rcu(bdi, &bdi_list, bdi_list)
- del_timer(&bdi->laptop_mode_wb_timer);
- rcu_read_unlock();
- }
- #endif
- /*
- * If ratelimit_pages is too high then we can get into dirty-data overload
- * if a large number of processes all perform writes at the same time.
- * If it is too low then SMP machines will call the (expensive)
- * get_writeback_state too often.
- *
- * Here we set ratelimit_pages to a level which ensures that when all CPUs are
- * dirtying in parallel, we cannot go more than 3% (1/32) over the dirty memory
- * thresholds.
- */
- void writeback_set_ratelimit(void)
- {
- unsigned long background_thresh;
- unsigned long dirty_thresh;
- global_dirty_limits(&background_thresh, &dirty_thresh);
- ratelimit_pages = dirty_thresh / (num_online_cpus() * 32);
- if (ratelimit_pages < 16)
- ratelimit_pages = 16;
- }
- static int __cpuinit
- ratelimit_handler(struct notifier_block *self, unsigned long u, void *v)
- {
- writeback_set_ratelimit();
- return NOTIFY_DONE;
- }
- static struct notifier_block __cpuinitdata ratelimit_nb = {
- .notifier_call = ratelimit_handler,
- .next = NULL,
- };
- /*
- * Called early on to tune the page writeback dirty limits.
- *
- * We used to scale dirty pages according to how total memory
- * related to pages that could be allocated for buffers (by
- * comparing nr_free_buffer_pages() to vm_total_pages.
- *
- * However, that was when we used "dirty_ratio" to scale with
- * all memory, and we don't do that any more. "dirty_ratio"
- * is now applied to total non-HIGHPAGE memory (by subtracting
- * totalhigh_pages from vm_total_pages), and as such we can't
- * get into the old insane situation any more where we had
- * large amounts of dirty pages compared to a small amount of
- * non-HIGHMEM memory.
- *
- * But we might still want to scale the dirty_ratio by how
- * much memory the box has..
- */
- void __init page_writeback_init(void)
- {
- int shift;
- writeback_set_ratelimit();
- register_cpu_notifier(&ratelimit_nb);
- shift = calc_period_shift();
- prop_descriptor_init(&vm_completions, shift);
- }
- /**
- * tag_pages_for_writeback - tag pages to be written by write_cache_pages
- * @mapping: address space structure to write
- * @start: starting page index
- * @end: ending page index (inclusive)
- *
- * This function scans the page range from @start to @end (inclusive) and tags
- * all pages that have DIRTY tag set with a special TOWRITE tag. The idea is
- * that write_cache_pages (or whoever calls this function) will then use
- * TOWRITE tag to identify pages eligible for writeback. This mechanism is
- * used to avoid livelocking of writeback by a process steadily creating new
- * dirty pages in the file (thus it is important for this function to be quick
- * so that it can tag pages faster than a dirtying process can create them).
- */
- /*
- * We tag pages in batches of WRITEBACK_TAG_BATCH to reduce tree_lock latency.
- */
- void tag_pages_for_writeback(struct address_space *mapping,
- pgoff_t start, pgoff_t end)
- {
- #define WRITEBACK_TAG_BATCH 4096
- unsigned long tagged;
- do {
- spin_lock_irq(&mapping->tree_lock);
- tagged = radix_tree_range_tag_if_tagged(&mapping->page_tree,
- &start, end, WRITEBACK_TAG_BATCH,
- PAGECACHE_TAG_DIRTY, PAGECACHE_TAG_TOWRITE);
- spin_unlock_irq(&mapping->tree_lock);
- WARN_ON_ONCE(tagged > WRITEBACK_TAG_BATCH);
- cond_resched();
- /* We check 'start' to handle wrapping when end == ~0UL */
- } while (tagged >= WRITEBACK_TAG_BATCH && start);
- }
- EXPORT_SYMBOL(tag_pages_for_writeback);
- /**
- * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
- * @mapping: address space structure to write
- * @wbc: subtract the number of written pages from *@wbc->nr_to_write
- * @writepage: function called for each page
- * @data: data passed to writepage function
- *
- * If a page is already under I/O, write_cache_pages() skips it, even
- * if it's dirty. This is desirable behaviour for memory-cleaning writeback,
- * but it is INCORRECT for data-integrity system calls such as fsync(). fsync()
- * and msync() need to guarantee that all the data which was dirty at the time
- * the call was made get new I/O started against them. If wbc->sync_mode is
- * WB_SYNC_ALL then we were called for data integrity and we must wait for
- * existing IO to complete.
- *
- * To avoid livelocks (when other process dirties new pages), we first tag
- * pages which should be written back with TOWRITE tag and only then start
- * writing them. For data-integrity sync we have to be careful so that we do
- * not miss some pages (e.g., because some other process has cleared TOWRITE
- * tag we set). The rule we follow is that TOWRITE tag can be cleared only
- * by the process clearing the DIRTY tag (and submitting the page for IO).
- */
- int write_cache_pages(struct address_space *mapping,
- struct writeback_control *wbc, writepage_t writepage,
- void *data)
- {
- int ret = 0;
- int done = 0;
- struct pagevec pvec;
- int nr_pages;
- pgoff_t uninitialized_var(writeback_index);
- pgoff_t index;
- pgoff_t end; /* Inclusive */
- pgoff_t done_index;
- int cycled;
- int range_whole = 0;
- int tag;
- pagevec_init(&pvec, 0);
- if (wbc->range_cyclic) {
- writeback_index = mapping->writeback_index; /* prev offset */
- index = writeback_index;
- if (index == 0)
- cycled = 1;
- else
- cycled = 0;
- end = -1;
- } else {
- index = wbc->range_start >> PAGE_CACHE_SHIFT;
- end = wbc->range_end >> PAGE_CACHE_SHIFT;
- if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
- range_whole = 1;
- cycled = 1; /* ignore range_cyclic tests */
- }
- if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
- tag = PAGECACHE_TAG_TOWRITE;
- else
- tag = PAGECACHE_TAG_DIRTY;
- retry:
- if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
- tag_pages_for_writeback(mapping, index, end);
- done_index = index;
- while (!done && (index <= end)) {
- int i;
- nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
- min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
- if (nr_pages == 0)
- break;
- for (i = 0; i < nr_pages; i++) {
- struct page *page = pvec.pages[i];
- /*
- * At this point, the page may be truncated or
- * invalidated (changing page->mapping to NULL), or
- * even swizzled back from swapper_space to tmpfs file
- * mapping. However, page->index will not change
- * because we have a reference on the page.
- */
- if (page->index > end) {
- /*
- * can't be range_cyclic (1st pass) because
- * end == -1 in that case.
- */
- done = 1;
- break;
- }
- done_index = page->index;
- lock_page(page);
- /*
- * Page truncated or invalidated. We can freely skip it
- * then, even for data integrity operations: the page
- * has disappeared concurrently, so there could be no
- * real expectation of this data interity operation
- * even if there is now a new, dirty page at the same
- * pagecache address.
- */
- if (unlikely(page->mapping != mapping)) {
- continue_unlock:
- unlock_page(page);
- continue;
- }
- if (!PageDirty(page)) {
- /* someone wrote it for us */
- goto continue_unlock;
- }
- if (PageWriteback(page)) {
- if (wbc->sync_mode != WB_SYNC_NONE)
- wait_on_page_writeback(page);
- else
- goto continue_unlock;
- }
- BUG_ON(PageWriteback(page));
- if (!clear_page_dirty_for_io(page))
- goto continue_unlock;
- trace_wbc_writepage(wbc, mapping->backing_dev_info);
- ret = (*writepage)(page, wbc, data);
- if (unlikely(ret)) {
- if (ret == AOP_WRITEPAGE_ACTIVATE) {
- unlock_page(page);
- ret = 0;
- } else {
- /*
- * done_index is set past this page,
- * so media errors will not choke
- * background writeout for the entire
- * file. This has consequences for
- * range_cyclic semantics (ie. it may
- * not be suitable for data integrity
- * writeout).
- */
- done_index = page->index + 1;
- done = 1;
- break;
- }
- }
- /*
- * We stop writing back only if we are not doing
- * integrity sync. In case of integrity sync we have to
- * keep going until we have written all the pages
- * we tagged for writeback prior to entering this loop.
- */
- if (--wbc->nr_to_write <= 0 &&
- wbc->sync_mode == WB_SYNC_NONE) {
- done = 1;
- break;
- }
- }
- pagevec_release(&pvec);
- cond_resched();
- }
- if (!cycled && !done) {
- /*
- * range_cyclic:
- * We hit the last page and there is more work to be done: wrap
- * back to the start of the file
- */
- cycled = 1;
- index = 0;
- end = writeback_index - 1;
- goto retry;
- }
- if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
- mapping->writeback_index = done_index;
- return ret;
- }
- EXPORT_SYMBOL(write_cache_pages);
- /*
- * Function used by generic_writepages to call the real writepage
- * function and set the mapping flags on error
- */
- static int __writepage(struct page *page, struct writeback_control *wbc,
- void *data)
- {
- struct address_space *mapping = data;
- int ret = mapping->a_ops->writepage(page, wbc);
- mapping_set_error(mapping, ret);
- return ret;
- }
- /**
- * generic_writepages - walk the list of dirty pages of the given address space and writepage() all of them.
- * @mapping: address space structure to write
- * @wbc: subtract the number of written pages from *@wbc->nr_to_write
- *
- * This is a library function, which implements the writepages()
- * address_space_operation.
- */
- int generic_writepages(struct address_space *mapping,
- struct writeback_control *wbc)
- {
- struct blk_plug plug;
- int ret;
- /* deal with chardevs and other special file */
- if (!mapping->a_ops->writepage)
- return 0;
- blk_start_plug(&plug);
- ret = write_cache_pages(mapping, wbc, __writepage, mapping);
- blk_finish_plug(&plug);
- return ret;
- }
- EXPORT_SYMBOL(generic_writepages);
- int do_writepages(struct address_space *mapping, struct writeback_control *wbc)
- {
- int ret;
- if (wbc->nr_to_write <= 0)
- return 0;
- if (mapping->a_ops->writepages)
- ret = mapping->a_ops->writepages(mapping, wbc);
- else
- ret = generic_writepages(mapping, wbc);
- return ret;
- }
- /**
- * write_one_page - write out a single page and optionally wait on I/O
- * @page: the page to write
- * @wait: if true, wait on writeout
- *
- * The page must be locked by the caller and will be unlocked upon return.
- *
- * write_one_page() returns a negative error code if I/O failed.
- */
- int write_one_page(struct page *page, int wait)
- {
- struct address_space *mapping = page->mapping;
- int ret = 0;
- struct writeback_control wbc = {
- .sync_mode = WB_SYNC_ALL,
- .nr_to_write = 1,
- };
- BUG_ON(!PageLocked(page));
- if (wait)
- wait_on_page_writeback(page);
- if (clear_page_dirty_for_io(page)) {
- page_cache_get(page);
- ret = mapping->a_ops->writepage(page, &wbc);
- if (ret == 0 && wait) {
- wait_on_page_writeback(page);
- if (PageError(page))
- ret = -EIO;
- }
- page_cache_release(page);
- } else {
- unlock_page(page);
- }
- return ret;
- }
- EXPORT_SYMBOL(write_one_page);
- /*
- * For address_spaces which do not use buffers nor write back.
- */
- int __set_page_dirty_no_writeback(struct page *page)
- {
- if (!PageDirty(page))
- return !TestSetPageDirty(page);
- return 0;
- }
- /*
- * Helper function for set_page_dirty family.
- * NOTE: This relies on being atomic wrt interrupts.
- */
- void account_page_dirtied(struct page *page, struct address_space *mapping)
- {
- if (mapping_cap_account_dirty(mapping)) {
- __inc_zone_page_state(page, NR_FILE_DIRTY);
- __inc_zone_page_state(page, NR_DIRTIED);
- __inc_bdi_stat(mapping->backing_dev_info, BDI_RECLAIMABLE);
- __inc_bdi_stat(mapping->backing_dev_info, BDI_DIRTIED);
- task_io_account_write(PAGE_CACHE_SIZE);
- current->nr_dirtied++;
- this_cpu_inc(bdp_ratelimits);
- }
- }
- EXPORT_SYMBOL(account_page_dirtied);
- /*
- * Helper function for set_page_writeback family.
- * NOTE: Unlike account_page_dirtied this does not rely on being atomic
- * wrt interrupts.
- */
- void account_page_writeback(struct page *page)
- {
- inc_zone_page_state(page, NR_WRITEBACK);
- }
- EXPORT_SYMBOL(account_page_writeback);
- /*
- * For address_spaces which do not use buffers. Just tag the page as dirty in
- * its radix tree.
- *
- * This is also used when a single buffer is being dirtied: we want to set the
- * page dirty in that case, but not all the buffers. This is a "bottom-up"
- * dirtying, whereas __set_page_dirty_buffers() is a "top-down" dirtying.
- *
- * Most callers have locked the page, which pins the address_space in memory.
- * But zap_pte_range() does not lock the page, however in that case the
- * mapping is pinned by the vma's ->vm_file reference.
- *
- * We take care to handle the case where the page was truncated from the
- * mapping by re-checking page_mapping() inside tree_lock.
- */
- int __set_page_dirty_nobuffers(struct page *page)
- {
- if (!TestSetPageDirty(page)) {
- struct address_space *mapping = page_mapping(page);
- struct address_space *mapping2;
- if (!mapping)
- return 1;
- spin_lock_irq(&mapping->tree_lock);
- mapping2 = page_mapping(page);
- if (mapping2) { /* Race with truncate? */
- BUG_ON(mapping2 != mapping);
- WARN_ON_ONCE(!PagePrivate(page) && !PageUptodate(page));
- account_page_dirtied(page, mapping);
- radix_tree_tag_set(&mapping->page_tree,
- page_index(page), PAGECACHE_TAG_DIRTY);
- }
- spin_unlock_irq(&mapping->tree_lock);
- if (mapping->host) {
- /* !PageAnon && !swapper_space */
- __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
- }
- return 1;
- }
- return 0;
- }
- EXPORT_SYMBOL(__set_page_dirty_nobuffers);
- /*
- * Call this whenever redirtying a page, to de-account the dirty counters
- * (NR_DIRTIED, BDI_DIRTIED, tsk->nr_dirtied), so that they match the written
- * counters (NR_WRITTEN, BDI_WRITTEN) in long term. The mismatches will lead to
- * systematic errors in balanced_dirty_ratelimit and the dirty pages position
- * control.
- */
- void account_page_redirty(struct page *page)
- {
- struct address_space *mapping = page->mapping;
- if (mapping && mapping_cap_account_dirty(mapping)) {
- current->nr_dirtied--;
- dec_zone_page_state(page, NR_DIRTIED);
- dec_bdi_stat(mapping->backing_dev_info, BDI_DIRTIED);
- }
- }
- EXPORT_SYMBOL(account_page_redirty);
- /*
- * When a writepage implementation decides that it doesn't want to write this
- * page for some reason, it should redirty the locked page via
- * redirty_page_for_writepage() and it should then unlock the page and return 0
- */
- int redirty_page_for_writepage(struct writeback_control *wbc, struct page *page)
- {
- wbc->pages_skipped++;
- account_page_redirty(page);
- return __set_page_dirty_nobuffers(page);
- }
- EXPORT_SYMBOL(redirty_page_for_writepage);
- /*
- * Dirty a page.
- *
- * For pages with a mapping this should be done under the page lock
- * for the benefit of asynchronous memory errors who prefer a consistent
- * dirty state. This rule can be broken in some special cases,
- * but should be better not to.
- *
- * If the mapping doesn't provide a set_page_dirty a_op, then
- * just fall through and assume that it wants buffer_heads.
- */
- int set_page_dirty(struct page *page)
- {
- struct address_space *mapping = page_mapping(page);
- if (likely(mapping)) {
- int (*spd)(struct page *) = mapping->a_ops->set_page_dirty;
- /*
- * readahead/lru_deactivate_page could remain
- * PG_readahead/PG_reclaim due to race with end_page_writeback
- * About readahead, if the page is written, the flags would be
- * reset. So no problem.
- * About lru_deactivate_page, if the page is redirty, the flag
- * will be reset. So no problem. but if the page is used by readahead
- * it will confuse readahead and make it restart the size rampup
- * process. But it's a trivial problem.
- */
- ClearPageReclaim(page);
- #ifdef CONFIG_BLOCK
- if (!spd)
- spd = __set_page_dirty_buffers;
- #endif
- return (*spd)(page);
- }
- if (!PageDirty(page)) {
- if (!TestSetPageDirty(page))
- return 1;
- }
- return 0;
- }
- EXPORT_SYMBOL(set_page_dirty);
- /*
- * set_page_dirty() is racy if the caller has no reference against
- * page->mapping->host, and if the page is unlocked. This is because another
- * CPU could truncate the page off the mapping and then free the mapping.
- *
- * Usually, the page _is_ locked, or the caller is a user-space process which
- * holds a reference on the inode by having an open file.
- *
- * In other cases, the page should be locked before running set_page_dirty().
- */
- int set_page_dirty_lock(struct page *page)
- {
- int ret;
- lock_page(page);
- ret = set_page_dirty(page);
- unlock_page(page);
- return ret;
- }
- EXPORT_SYMBOL(set_page_dirty_lock);
- /*
- * Clear a page's dirty flag, while caring for dirty memory accounting.
- * Returns true if the page was previously dirty.
- *
- * This is for preparing to put the page under writeout. We leave the page
- * tagged as dirty in the radix tree so that a concurrent write-for-sync
- * can discover it via a PAGECACHE_TAG_DIRTY walk. The ->writepage
- * implementation will run either set_page_writeback() or set_page_dirty(),
- * at which stage we bring the page's dirty flag and radix-tree dirty tag
- * back into sync.
- *
- * This incoherency between the page's dirty flag and radix-tree tag is
- * unfortunate, but it only exists while the page is locked.
- */
- int clear_page_dirty_for_io(struct page *page)
- {
- struct address_space *mapping = page_mapping(page);
- BUG_ON(!PageLocked(page));
- if (mapping && mapping_cap_account_dirty(mapping)) {
- /*
- * Yes, Virginia, this is indeed insane.
- *
- * We use this sequence to make sure that
- * (a) we account for dirty stats properly
- * (b) we tell the low-level filesystem to
- * mark the whole page dirty if it was
- * dirty in a pagetable. Only to then
- * (c) clean the page again and return 1 to
- * cause the writeback.
- *
- * This way we avoid all nasty races with the
- * dirty bit in multiple places and clearing
- * them concurrently from different threads.
- *
- * Note! Normally the "set_page_dirty(page)"
- * has no effect on the actual dirty bit - since
- * that will already usually be set. But we
- * need the side effects, and it can help us
- * avoid races.
- *
- * We basically use the page "master dirty bit"
- * as a serialization point for all the different
- * threads doing their things.
- */
- if (page_mkclean(page))
- set_page_dirty(page);
- /*
- * We carefully synchronise fault handlers against
- * installing a dirty pte and marking the page dirty
- * at this point. We do this by having them hold the
- * page lock at some point after installing their
- * pte, but before marking the page dirty.
- * Pages are always locked coming in here, so we get
- * the desired exclusion. See mm/memory.c:do_wp_page()
- * for more comments.
- */
- if (TestClearPageDirty(page)) {
- dec_zone_page_state(page, NR_FILE_DIRTY);
- dec_bdi_stat(mapping->backing_dev_info,
- BDI_RECLAIMABLE);
- return 1;
- }
- return 0;
- }
- return TestClearPageDirty(page);
- }
- EXPORT_SYMBOL(clear_page_dirty_for_io);
- int test_clear_page_writeback(struct page *page)
- {
- struct address_space *mapping = page_mapping(page);
- int ret;
- if (mapping) {
- struct backing_dev_info *bdi = mapping->backing_dev_info;
- unsigned long flags;
- spin_lock_irqsave(&mapping->tree_lock, flags);
- ret = TestClearPageWriteback(page);
- if (ret) {
- radix_tree_tag_clear(&mapping->page_tree,
- page_index(page),
- PAGECACHE_TAG_WRITEBACK);
- if (bdi_cap_account_writeback(bdi)) {
- __dec_bdi_stat(bdi, BDI_WRITEBACK);
- __bdi_writeout_inc(bdi);
- }
- }
- spin_unlock_irqrestore(&mapping->tree_lock, flags);
- } else {
- ret = TestClearPageWriteback(page);
- }
- if (ret) {
- dec_zone_page_state(page, NR_WRITEBACK);
- inc_zone_page_state(page, NR_WRITTEN);
- }
- return ret;
- }
- int test_set_page_writeback(struct page *page)
- {
- struct address_space *mapping = page_mapping(page);
- int ret;
- if (mapping) {
- struct backing_dev_info *bdi = mapping->backing_dev_info;
- unsigned long flags;
- spin_lock_irqsave(&mapping->tree_lock, flags);
- ret = TestSetPageWriteback(page);
- if (!ret) {
- radix_tree_tag_set(&mapping->page_tree,
- page_index(page),
- PAGECACHE_TAG_WRITEBACK);
- if (bdi_cap_account_writeback(bdi))
- __inc_bdi_stat(bdi, BDI_WRITEBACK);
- }
- if (!PageDirty(page))
- radix_tree_tag_clear(&mapping->page_tree,
- page_index(page),
- PAGECACHE_TAG_DIRTY);
- radix_tree_tag_clear(&mapping->page_tree,
- page_index(page),
- PAGECACHE_TAG_TOWRITE);
- spin_unlock_irqrestore(&mapping->tree_lock, flags);
- } else {
- ret = TestSetPageWriteback(page);
- }
- if (!ret)
- account_page_writeback(page);
- return ret;
- }
- EXPORT_SYMBOL(test_set_page_writeback);
- /*
- * Return true if any of the pages in the mapping are marked with the
- * passed tag.
- */
- int mapping_tagged(struct address_space *mapping, int tag)
- {
- return radix_tree_tagged(&mapping->page_tree, tag);
- }
- EXPORT_SYMBOL(mapping_tagged);
|