nobootmem.c 11 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407
  1. /*
  2. * bootmem - A boot-time physical memory allocator and configurator
  3. *
  4. * Copyright (C) 1999 Ingo Molnar
  5. * 1999 Kanoj Sarcar, SGI
  6. * 2008 Johannes Weiner
  7. *
  8. * Access to this subsystem has to be serialized externally (which is true
  9. * for the boot process anyway).
  10. */
  11. #include <linux/init.h>
  12. #include <linux/pfn.h>
  13. #include <linux/slab.h>
  14. #include <linux/bootmem.h>
  15. #include <linux/export.h>
  16. #include <linux/kmemleak.h>
  17. #include <linux/range.h>
  18. #include <linux/memblock.h>
  19. #include <asm/bug.h>
  20. #include <asm/io.h>
  21. #include <asm/processor.h>
  22. #include "internal.h"
  23. #ifndef CONFIG_NEED_MULTIPLE_NODES
  24. struct pglist_data __refdata contig_page_data;
  25. EXPORT_SYMBOL(contig_page_data);
  26. #endif
  27. unsigned long max_low_pfn;
  28. unsigned long min_low_pfn;
  29. unsigned long max_pfn;
  30. static void * __init __alloc_memory_core_early(int nid, u64 size, u64 align,
  31. u64 goal, u64 limit)
  32. {
  33. void *ptr;
  34. u64 addr;
  35. if (limit > memblock.current_limit)
  36. limit = memblock.current_limit;
  37. addr = memblock_find_in_range_node(goal, limit, size, align, nid);
  38. if (!addr)
  39. return NULL;
  40. ptr = phys_to_virt(addr);
  41. memset(ptr, 0, size);
  42. memblock_reserve(addr, size);
  43. /*
  44. * The min_count is set to 0 so that bootmem allocated blocks
  45. * are never reported as leaks.
  46. */
  47. kmemleak_alloc(ptr, size, 0, 0);
  48. return ptr;
  49. }
  50. /*
  51. * free_bootmem_late - free bootmem pages directly to page allocator
  52. * @addr: starting address of the range
  53. * @size: size of the range in bytes
  54. *
  55. * This is only useful when the bootmem allocator has already been torn
  56. * down, but we are still initializing the system. Pages are given directly
  57. * to the page allocator, no bootmem metadata is updated because it is gone.
  58. */
  59. void __init free_bootmem_late(unsigned long addr, unsigned long size)
  60. {
  61. unsigned long cursor, end;
  62. kmemleak_free_part(__va(addr), size);
  63. cursor = PFN_UP(addr);
  64. end = PFN_DOWN(addr + size);
  65. for (; cursor < end; cursor++) {
  66. __free_pages_bootmem(pfn_to_page(cursor), 0);
  67. totalram_pages++;
  68. }
  69. }
  70. static void __init __free_pages_memory(unsigned long start, unsigned long end)
  71. {
  72. int i;
  73. unsigned long start_aligned, end_aligned;
  74. int order = ilog2(BITS_PER_LONG);
  75. start_aligned = (start + (BITS_PER_LONG - 1)) & ~(BITS_PER_LONG - 1);
  76. end_aligned = end & ~(BITS_PER_LONG - 1);
  77. if (end_aligned <= start_aligned) {
  78. for (i = start; i < end; i++)
  79. __free_pages_bootmem(pfn_to_page(i), 0);
  80. return;
  81. }
  82. for (i = start; i < start_aligned; i++)
  83. __free_pages_bootmem(pfn_to_page(i), 0);
  84. for (i = start_aligned; i < end_aligned; i += BITS_PER_LONG)
  85. __free_pages_bootmem(pfn_to_page(i), order);
  86. for (i = end_aligned; i < end; i++)
  87. __free_pages_bootmem(pfn_to_page(i), 0);
  88. }
  89. unsigned long __init free_low_memory_core_early(int nodeid)
  90. {
  91. unsigned long count = 0;
  92. phys_addr_t start, end;
  93. u64 i;
  94. /* free reserved array temporarily so that it's treated as free area */
  95. memblock_free_reserved_regions();
  96. for_each_free_mem_range(i, MAX_NUMNODES, &start, &end, NULL) {
  97. unsigned long start_pfn = PFN_UP(start);
  98. unsigned long end_pfn = min_t(unsigned long,
  99. PFN_DOWN(end), max_low_pfn);
  100. if (start_pfn < end_pfn) {
  101. __free_pages_memory(start_pfn, end_pfn);
  102. count += end_pfn - start_pfn;
  103. }
  104. }
  105. /* put region array back? */
  106. memblock_reserve_reserved_regions();
  107. return count;
  108. }
  109. /**
  110. * free_all_bootmem_node - release a node's free pages to the buddy allocator
  111. * @pgdat: node to be released
  112. *
  113. * Returns the number of pages actually released.
  114. */
  115. unsigned long __init free_all_bootmem_node(pg_data_t *pgdat)
  116. {
  117. register_page_bootmem_info_node(pgdat);
  118. /* free_low_memory_core_early(MAX_NUMNODES) will be called later */
  119. return 0;
  120. }
  121. /**
  122. * free_all_bootmem - release free pages to the buddy allocator
  123. *
  124. * Returns the number of pages actually released.
  125. */
  126. unsigned long __init free_all_bootmem(void)
  127. {
  128. /*
  129. * We need to use MAX_NUMNODES instead of NODE_DATA(0)->node_id
  130. * because in some case like Node0 doesn't have RAM installed
  131. * low ram will be on Node1
  132. * Use MAX_NUMNODES will make sure all ranges in early_node_map[]
  133. * will be used instead of only Node0 related
  134. */
  135. return free_low_memory_core_early(MAX_NUMNODES);
  136. }
  137. /**
  138. * free_bootmem_node - mark a page range as usable
  139. * @pgdat: node the range resides on
  140. * @physaddr: starting address of the range
  141. * @size: size of the range in bytes
  142. *
  143. * Partial pages will be considered reserved and left as they are.
  144. *
  145. * The range must reside completely on the specified node.
  146. */
  147. void __init free_bootmem_node(pg_data_t *pgdat, unsigned long physaddr,
  148. unsigned long size)
  149. {
  150. kmemleak_free_part(__va(physaddr), size);
  151. memblock_free(physaddr, size);
  152. }
  153. /**
  154. * free_bootmem - mark a page range as usable
  155. * @addr: starting address of the range
  156. * @size: size of the range in bytes
  157. *
  158. * Partial pages will be considered reserved and left as they are.
  159. *
  160. * The range must be contiguous but may span node boundaries.
  161. */
  162. void __init free_bootmem(unsigned long addr, unsigned long size)
  163. {
  164. kmemleak_free_part(__va(addr), size);
  165. memblock_free(addr, size);
  166. }
  167. static void * __init ___alloc_bootmem_nopanic(unsigned long size,
  168. unsigned long align,
  169. unsigned long goal,
  170. unsigned long limit)
  171. {
  172. void *ptr;
  173. if (WARN_ON_ONCE(slab_is_available()))
  174. return kzalloc(size, GFP_NOWAIT);
  175. restart:
  176. ptr = __alloc_memory_core_early(MAX_NUMNODES, size, align, goal, limit);
  177. if (ptr)
  178. return ptr;
  179. if (goal != 0) {
  180. goal = 0;
  181. goto restart;
  182. }
  183. return NULL;
  184. }
  185. /**
  186. * __alloc_bootmem_nopanic - allocate boot memory without panicking
  187. * @size: size of the request in bytes
  188. * @align: alignment of the region
  189. * @goal: preferred starting address of the region
  190. *
  191. * The goal is dropped if it can not be satisfied and the allocation will
  192. * fall back to memory below @goal.
  193. *
  194. * Allocation may happen on any node in the system.
  195. *
  196. * Returns NULL on failure.
  197. */
  198. void * __init __alloc_bootmem_nopanic(unsigned long size, unsigned long align,
  199. unsigned long goal)
  200. {
  201. unsigned long limit = -1UL;
  202. return ___alloc_bootmem_nopanic(size, align, goal, limit);
  203. }
  204. static void * __init ___alloc_bootmem(unsigned long size, unsigned long align,
  205. unsigned long goal, unsigned long limit)
  206. {
  207. void *mem = ___alloc_bootmem_nopanic(size, align, goal, limit);
  208. if (mem)
  209. return mem;
  210. /*
  211. * Whoops, we cannot satisfy the allocation request.
  212. */
  213. printk(KERN_ALERT "bootmem alloc of %lu bytes failed!\n", size);
  214. panic("Out of memory");
  215. return NULL;
  216. }
  217. /**
  218. * __alloc_bootmem - allocate boot memory
  219. * @size: size of the request in bytes
  220. * @align: alignment of the region
  221. * @goal: preferred starting address of the region
  222. *
  223. * The goal is dropped if it can not be satisfied and the allocation will
  224. * fall back to memory below @goal.
  225. *
  226. * Allocation may happen on any node in the system.
  227. *
  228. * The function panics if the request can not be satisfied.
  229. */
  230. void * __init __alloc_bootmem(unsigned long size, unsigned long align,
  231. unsigned long goal)
  232. {
  233. unsigned long limit = -1UL;
  234. return ___alloc_bootmem(size, align, goal, limit);
  235. }
  236. /**
  237. * __alloc_bootmem_node - allocate boot memory from a specific node
  238. * @pgdat: node to allocate from
  239. * @size: size of the request in bytes
  240. * @align: alignment of the region
  241. * @goal: preferred starting address of the region
  242. *
  243. * The goal is dropped if it can not be satisfied and the allocation will
  244. * fall back to memory below @goal.
  245. *
  246. * Allocation may fall back to any node in the system if the specified node
  247. * can not hold the requested memory.
  248. *
  249. * The function panics if the request can not be satisfied.
  250. */
  251. void * __init __alloc_bootmem_node(pg_data_t *pgdat, unsigned long size,
  252. unsigned long align, unsigned long goal)
  253. {
  254. void *ptr;
  255. if (WARN_ON_ONCE(slab_is_available()))
  256. return kzalloc_node(size, GFP_NOWAIT, pgdat->node_id);
  257. ptr = __alloc_memory_core_early(pgdat->node_id, size, align,
  258. goal, -1ULL);
  259. if (ptr)
  260. return ptr;
  261. return __alloc_memory_core_early(MAX_NUMNODES, size, align,
  262. goal, -1ULL);
  263. }
  264. void * __init __alloc_bootmem_node_high(pg_data_t *pgdat, unsigned long size,
  265. unsigned long align, unsigned long goal)
  266. {
  267. return __alloc_bootmem_node(pgdat, size, align, goal);
  268. }
  269. #ifdef CONFIG_SPARSEMEM
  270. /**
  271. * alloc_bootmem_section - allocate boot memory from a specific section
  272. * @size: size of the request in bytes
  273. * @section_nr: sparse map section to allocate from
  274. *
  275. * Return NULL on failure.
  276. */
  277. void * __init alloc_bootmem_section(unsigned long size,
  278. unsigned long section_nr)
  279. {
  280. unsigned long pfn, goal, limit;
  281. pfn = section_nr_to_pfn(section_nr);
  282. goal = pfn << PAGE_SHIFT;
  283. limit = section_nr_to_pfn(section_nr + 1) << PAGE_SHIFT;
  284. return __alloc_memory_core_early(early_pfn_to_nid(pfn), size,
  285. SMP_CACHE_BYTES, goal, limit);
  286. }
  287. #endif
  288. void * __init __alloc_bootmem_node_nopanic(pg_data_t *pgdat, unsigned long size,
  289. unsigned long align, unsigned long goal)
  290. {
  291. void *ptr;
  292. if (WARN_ON_ONCE(slab_is_available()))
  293. return kzalloc_node(size, GFP_NOWAIT, pgdat->node_id);
  294. ptr = __alloc_memory_core_early(pgdat->node_id, size, align,
  295. goal, -1ULL);
  296. if (ptr)
  297. return ptr;
  298. return __alloc_bootmem_nopanic(size, align, goal);
  299. }
  300. #ifndef ARCH_LOW_ADDRESS_LIMIT
  301. #define ARCH_LOW_ADDRESS_LIMIT 0xffffffffUL
  302. #endif
  303. /**
  304. * __alloc_bootmem_low - allocate low boot memory
  305. * @size: size of the request in bytes
  306. * @align: alignment of the region
  307. * @goal: preferred starting address of the region
  308. *
  309. * The goal is dropped if it can not be satisfied and the allocation will
  310. * fall back to memory below @goal.
  311. *
  312. * Allocation may happen on any node in the system.
  313. *
  314. * The function panics if the request can not be satisfied.
  315. */
  316. void * __init __alloc_bootmem_low(unsigned long size, unsigned long align,
  317. unsigned long goal)
  318. {
  319. return ___alloc_bootmem(size, align, goal, ARCH_LOW_ADDRESS_LIMIT);
  320. }
  321. /**
  322. * __alloc_bootmem_low_node - allocate low boot memory from a specific node
  323. * @pgdat: node to allocate from
  324. * @size: size of the request in bytes
  325. * @align: alignment of the region
  326. * @goal: preferred starting address of the region
  327. *
  328. * The goal is dropped if it can not be satisfied and the allocation will
  329. * fall back to memory below @goal.
  330. *
  331. * Allocation may fall back to any node in the system if the specified node
  332. * can not hold the requested memory.
  333. *
  334. * The function panics if the request can not be satisfied.
  335. */
  336. void * __init __alloc_bootmem_low_node(pg_data_t *pgdat, unsigned long size,
  337. unsigned long align, unsigned long goal)
  338. {
  339. void *ptr;
  340. if (WARN_ON_ONCE(slab_is_available()))
  341. return kzalloc_node(size, GFP_NOWAIT, pgdat->node_id);
  342. ptr = __alloc_memory_core_early(pgdat->node_id, size, align,
  343. goal, ARCH_LOW_ADDRESS_LIMIT);
  344. if (ptr)
  345. return ptr;
  346. return __alloc_memory_core_early(MAX_NUMNODES, size, align,
  347. goal, ARCH_LOW_ADDRESS_LIMIT);
  348. }