huge_memory.c 63 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456
  1. /*
  2. * Copyright (C) 2009 Red Hat, Inc.
  3. *
  4. * This work is licensed under the terms of the GNU GPL, version 2. See
  5. * the COPYING file in the top-level directory.
  6. */
  7. #include <linux/mm.h>
  8. #include <linux/sched.h>
  9. #include <linux/highmem.h>
  10. #include <linux/hugetlb.h>
  11. #include <linux/mmu_notifier.h>
  12. #include <linux/rmap.h>
  13. #include <linux/swap.h>
  14. #include <linux/mm_inline.h>
  15. #include <linux/kthread.h>
  16. #include <linux/khugepaged.h>
  17. #include <linux/freezer.h>
  18. #include <linux/mman.h>
  19. #include <asm/tlb.h>
  20. #include <asm/pgalloc.h>
  21. #include "internal.h"
  22. /*
  23. * By default transparent hugepage support is enabled for all mappings
  24. * and khugepaged scans all mappings. Defrag is only invoked by
  25. * khugepaged hugepage allocations and by page faults inside
  26. * MADV_HUGEPAGE regions to avoid the risk of slowing down short lived
  27. * allocations.
  28. */
  29. unsigned long transparent_hugepage_flags __read_mostly =
  30. #ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS
  31. (1<<TRANSPARENT_HUGEPAGE_FLAG)|
  32. #endif
  33. #ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE
  34. (1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)|
  35. #endif
  36. (1<<TRANSPARENT_HUGEPAGE_DEFRAG_FLAG)|
  37. (1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
  38. /* default scan 8*512 pte (or vmas) every 30 second */
  39. static unsigned int khugepaged_pages_to_scan __read_mostly = HPAGE_PMD_NR*8;
  40. static unsigned int khugepaged_pages_collapsed;
  41. static unsigned int khugepaged_full_scans;
  42. static unsigned int khugepaged_scan_sleep_millisecs __read_mostly = 10000;
  43. /* during fragmentation poll the hugepage allocator once every minute */
  44. static unsigned int khugepaged_alloc_sleep_millisecs __read_mostly = 60000;
  45. static struct task_struct *khugepaged_thread __read_mostly;
  46. static DEFINE_MUTEX(khugepaged_mutex);
  47. static DEFINE_SPINLOCK(khugepaged_mm_lock);
  48. static DECLARE_WAIT_QUEUE_HEAD(khugepaged_wait);
  49. /*
  50. * default collapse hugepages if there is at least one pte mapped like
  51. * it would have happened if the vma was large enough during page
  52. * fault.
  53. */
  54. static unsigned int khugepaged_max_ptes_none __read_mostly = HPAGE_PMD_NR-1;
  55. static int khugepaged(void *none);
  56. static int mm_slots_hash_init(void);
  57. static int khugepaged_slab_init(void);
  58. static void khugepaged_slab_free(void);
  59. #define MM_SLOTS_HASH_HEADS 1024
  60. static struct hlist_head *mm_slots_hash __read_mostly;
  61. static struct kmem_cache *mm_slot_cache __read_mostly;
  62. /**
  63. * struct mm_slot - hash lookup from mm to mm_slot
  64. * @hash: hash collision list
  65. * @mm_node: khugepaged scan list headed in khugepaged_scan.mm_head
  66. * @mm: the mm that this information is valid for
  67. */
  68. struct mm_slot {
  69. struct hlist_node hash;
  70. struct list_head mm_node;
  71. struct mm_struct *mm;
  72. };
  73. /**
  74. * struct khugepaged_scan - cursor for scanning
  75. * @mm_head: the head of the mm list to scan
  76. * @mm_slot: the current mm_slot we are scanning
  77. * @address: the next address inside that to be scanned
  78. *
  79. * There is only the one khugepaged_scan instance of this cursor structure.
  80. */
  81. struct khugepaged_scan {
  82. struct list_head mm_head;
  83. struct mm_slot *mm_slot;
  84. unsigned long address;
  85. };
  86. static struct khugepaged_scan khugepaged_scan = {
  87. .mm_head = LIST_HEAD_INIT(khugepaged_scan.mm_head),
  88. };
  89. static int set_recommended_min_free_kbytes(void)
  90. {
  91. struct zone *zone;
  92. int nr_zones = 0;
  93. unsigned long recommended_min;
  94. extern int min_free_kbytes;
  95. if (!test_bit(TRANSPARENT_HUGEPAGE_FLAG,
  96. &transparent_hugepage_flags) &&
  97. !test_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
  98. &transparent_hugepage_flags))
  99. return 0;
  100. for_each_populated_zone(zone)
  101. nr_zones++;
  102. /* Make sure at least 2 hugepages are free for MIGRATE_RESERVE */
  103. recommended_min = pageblock_nr_pages * nr_zones * 2;
  104. /*
  105. * Make sure that on average at least two pageblocks are almost free
  106. * of another type, one for a migratetype to fall back to and a
  107. * second to avoid subsequent fallbacks of other types There are 3
  108. * MIGRATE_TYPES we care about.
  109. */
  110. recommended_min += pageblock_nr_pages * nr_zones *
  111. MIGRATE_PCPTYPES * MIGRATE_PCPTYPES;
  112. /* don't ever allow to reserve more than 5% of the lowmem */
  113. recommended_min = min(recommended_min,
  114. (unsigned long) nr_free_buffer_pages() / 20);
  115. recommended_min <<= (PAGE_SHIFT-10);
  116. if (recommended_min > min_free_kbytes)
  117. min_free_kbytes = recommended_min;
  118. setup_per_zone_wmarks();
  119. return 0;
  120. }
  121. late_initcall(set_recommended_min_free_kbytes);
  122. static int start_khugepaged(void)
  123. {
  124. int err = 0;
  125. if (khugepaged_enabled()) {
  126. int wakeup;
  127. if (unlikely(!mm_slot_cache || !mm_slots_hash)) {
  128. err = -ENOMEM;
  129. goto out;
  130. }
  131. mutex_lock(&khugepaged_mutex);
  132. if (!khugepaged_thread)
  133. khugepaged_thread = kthread_run(khugepaged, NULL,
  134. "khugepaged");
  135. if (unlikely(IS_ERR(khugepaged_thread))) {
  136. printk(KERN_ERR
  137. "khugepaged: kthread_run(khugepaged) failed\n");
  138. err = PTR_ERR(khugepaged_thread);
  139. khugepaged_thread = NULL;
  140. }
  141. wakeup = !list_empty(&khugepaged_scan.mm_head);
  142. mutex_unlock(&khugepaged_mutex);
  143. if (wakeup)
  144. wake_up_interruptible(&khugepaged_wait);
  145. set_recommended_min_free_kbytes();
  146. } else
  147. /* wakeup to exit */
  148. wake_up_interruptible(&khugepaged_wait);
  149. out:
  150. return err;
  151. }
  152. #ifdef CONFIG_SYSFS
  153. static ssize_t double_flag_show(struct kobject *kobj,
  154. struct kobj_attribute *attr, char *buf,
  155. enum transparent_hugepage_flag enabled,
  156. enum transparent_hugepage_flag req_madv)
  157. {
  158. if (test_bit(enabled, &transparent_hugepage_flags)) {
  159. VM_BUG_ON(test_bit(req_madv, &transparent_hugepage_flags));
  160. return sprintf(buf, "[always] madvise never\n");
  161. } else if (test_bit(req_madv, &transparent_hugepage_flags))
  162. return sprintf(buf, "always [madvise] never\n");
  163. else
  164. return sprintf(buf, "always madvise [never]\n");
  165. }
  166. static ssize_t double_flag_store(struct kobject *kobj,
  167. struct kobj_attribute *attr,
  168. const char *buf, size_t count,
  169. enum transparent_hugepage_flag enabled,
  170. enum transparent_hugepage_flag req_madv)
  171. {
  172. if (!memcmp("always", buf,
  173. min(sizeof("always")-1, count))) {
  174. set_bit(enabled, &transparent_hugepage_flags);
  175. clear_bit(req_madv, &transparent_hugepage_flags);
  176. } else if (!memcmp("madvise", buf,
  177. min(sizeof("madvise")-1, count))) {
  178. clear_bit(enabled, &transparent_hugepage_flags);
  179. set_bit(req_madv, &transparent_hugepage_flags);
  180. } else if (!memcmp("never", buf,
  181. min(sizeof("never")-1, count))) {
  182. clear_bit(enabled, &transparent_hugepage_flags);
  183. clear_bit(req_madv, &transparent_hugepage_flags);
  184. } else
  185. return -EINVAL;
  186. return count;
  187. }
  188. static ssize_t enabled_show(struct kobject *kobj,
  189. struct kobj_attribute *attr, char *buf)
  190. {
  191. return double_flag_show(kobj, attr, buf,
  192. TRANSPARENT_HUGEPAGE_FLAG,
  193. TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG);
  194. }
  195. static ssize_t enabled_store(struct kobject *kobj,
  196. struct kobj_attribute *attr,
  197. const char *buf, size_t count)
  198. {
  199. ssize_t ret;
  200. ret = double_flag_store(kobj, attr, buf, count,
  201. TRANSPARENT_HUGEPAGE_FLAG,
  202. TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG);
  203. if (ret > 0) {
  204. int err = start_khugepaged();
  205. if (err)
  206. ret = err;
  207. }
  208. if (ret > 0 &&
  209. (test_bit(TRANSPARENT_HUGEPAGE_FLAG,
  210. &transparent_hugepage_flags) ||
  211. test_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
  212. &transparent_hugepage_flags)))
  213. set_recommended_min_free_kbytes();
  214. return ret;
  215. }
  216. static struct kobj_attribute enabled_attr =
  217. __ATTR(enabled, 0644, enabled_show, enabled_store);
  218. static ssize_t single_flag_show(struct kobject *kobj,
  219. struct kobj_attribute *attr, char *buf,
  220. enum transparent_hugepage_flag flag)
  221. {
  222. return sprintf(buf, "%d\n",
  223. !!test_bit(flag, &transparent_hugepage_flags));
  224. }
  225. static ssize_t single_flag_store(struct kobject *kobj,
  226. struct kobj_attribute *attr,
  227. const char *buf, size_t count,
  228. enum transparent_hugepage_flag flag)
  229. {
  230. unsigned long value;
  231. int ret;
  232. ret = kstrtoul(buf, 10, &value);
  233. if (ret < 0)
  234. return ret;
  235. if (value > 1)
  236. return -EINVAL;
  237. if (value)
  238. set_bit(flag, &transparent_hugepage_flags);
  239. else
  240. clear_bit(flag, &transparent_hugepage_flags);
  241. return count;
  242. }
  243. /*
  244. * Currently defrag only disables __GFP_NOWAIT for allocation. A blind
  245. * __GFP_REPEAT is too aggressive, it's never worth swapping tons of
  246. * memory just to allocate one more hugepage.
  247. */
  248. static ssize_t defrag_show(struct kobject *kobj,
  249. struct kobj_attribute *attr, char *buf)
  250. {
  251. return double_flag_show(kobj, attr, buf,
  252. TRANSPARENT_HUGEPAGE_DEFRAG_FLAG,
  253. TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG);
  254. }
  255. static ssize_t defrag_store(struct kobject *kobj,
  256. struct kobj_attribute *attr,
  257. const char *buf, size_t count)
  258. {
  259. return double_flag_store(kobj, attr, buf, count,
  260. TRANSPARENT_HUGEPAGE_DEFRAG_FLAG,
  261. TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG);
  262. }
  263. static struct kobj_attribute defrag_attr =
  264. __ATTR(defrag, 0644, defrag_show, defrag_store);
  265. #ifdef CONFIG_DEBUG_VM
  266. static ssize_t debug_cow_show(struct kobject *kobj,
  267. struct kobj_attribute *attr, char *buf)
  268. {
  269. return single_flag_show(kobj, attr, buf,
  270. TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
  271. }
  272. static ssize_t debug_cow_store(struct kobject *kobj,
  273. struct kobj_attribute *attr,
  274. const char *buf, size_t count)
  275. {
  276. return single_flag_store(kobj, attr, buf, count,
  277. TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
  278. }
  279. static struct kobj_attribute debug_cow_attr =
  280. __ATTR(debug_cow, 0644, debug_cow_show, debug_cow_store);
  281. #endif /* CONFIG_DEBUG_VM */
  282. static struct attribute *hugepage_attr[] = {
  283. &enabled_attr.attr,
  284. &defrag_attr.attr,
  285. #ifdef CONFIG_DEBUG_VM
  286. &debug_cow_attr.attr,
  287. #endif
  288. NULL,
  289. };
  290. static struct attribute_group hugepage_attr_group = {
  291. .attrs = hugepage_attr,
  292. };
  293. static ssize_t scan_sleep_millisecs_show(struct kobject *kobj,
  294. struct kobj_attribute *attr,
  295. char *buf)
  296. {
  297. return sprintf(buf, "%u\n", khugepaged_scan_sleep_millisecs);
  298. }
  299. static ssize_t scan_sleep_millisecs_store(struct kobject *kobj,
  300. struct kobj_attribute *attr,
  301. const char *buf, size_t count)
  302. {
  303. unsigned long msecs;
  304. int err;
  305. err = strict_strtoul(buf, 10, &msecs);
  306. if (err || msecs > UINT_MAX)
  307. return -EINVAL;
  308. khugepaged_scan_sleep_millisecs = msecs;
  309. wake_up_interruptible(&khugepaged_wait);
  310. return count;
  311. }
  312. static struct kobj_attribute scan_sleep_millisecs_attr =
  313. __ATTR(scan_sleep_millisecs, 0644, scan_sleep_millisecs_show,
  314. scan_sleep_millisecs_store);
  315. static ssize_t alloc_sleep_millisecs_show(struct kobject *kobj,
  316. struct kobj_attribute *attr,
  317. char *buf)
  318. {
  319. return sprintf(buf, "%u\n", khugepaged_alloc_sleep_millisecs);
  320. }
  321. static ssize_t alloc_sleep_millisecs_store(struct kobject *kobj,
  322. struct kobj_attribute *attr,
  323. const char *buf, size_t count)
  324. {
  325. unsigned long msecs;
  326. int err;
  327. err = strict_strtoul(buf, 10, &msecs);
  328. if (err || msecs > UINT_MAX)
  329. return -EINVAL;
  330. khugepaged_alloc_sleep_millisecs = msecs;
  331. wake_up_interruptible(&khugepaged_wait);
  332. return count;
  333. }
  334. static struct kobj_attribute alloc_sleep_millisecs_attr =
  335. __ATTR(alloc_sleep_millisecs, 0644, alloc_sleep_millisecs_show,
  336. alloc_sleep_millisecs_store);
  337. static ssize_t pages_to_scan_show(struct kobject *kobj,
  338. struct kobj_attribute *attr,
  339. char *buf)
  340. {
  341. return sprintf(buf, "%u\n", khugepaged_pages_to_scan);
  342. }
  343. static ssize_t pages_to_scan_store(struct kobject *kobj,
  344. struct kobj_attribute *attr,
  345. const char *buf, size_t count)
  346. {
  347. int err;
  348. unsigned long pages;
  349. err = strict_strtoul(buf, 10, &pages);
  350. if (err || !pages || pages > UINT_MAX)
  351. return -EINVAL;
  352. khugepaged_pages_to_scan = pages;
  353. return count;
  354. }
  355. static struct kobj_attribute pages_to_scan_attr =
  356. __ATTR(pages_to_scan, 0644, pages_to_scan_show,
  357. pages_to_scan_store);
  358. static ssize_t pages_collapsed_show(struct kobject *kobj,
  359. struct kobj_attribute *attr,
  360. char *buf)
  361. {
  362. return sprintf(buf, "%u\n", khugepaged_pages_collapsed);
  363. }
  364. static struct kobj_attribute pages_collapsed_attr =
  365. __ATTR_RO(pages_collapsed);
  366. static ssize_t full_scans_show(struct kobject *kobj,
  367. struct kobj_attribute *attr,
  368. char *buf)
  369. {
  370. return sprintf(buf, "%u\n", khugepaged_full_scans);
  371. }
  372. static struct kobj_attribute full_scans_attr =
  373. __ATTR_RO(full_scans);
  374. static ssize_t khugepaged_defrag_show(struct kobject *kobj,
  375. struct kobj_attribute *attr, char *buf)
  376. {
  377. return single_flag_show(kobj, attr, buf,
  378. TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
  379. }
  380. static ssize_t khugepaged_defrag_store(struct kobject *kobj,
  381. struct kobj_attribute *attr,
  382. const char *buf, size_t count)
  383. {
  384. return single_flag_store(kobj, attr, buf, count,
  385. TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
  386. }
  387. static struct kobj_attribute khugepaged_defrag_attr =
  388. __ATTR(defrag, 0644, khugepaged_defrag_show,
  389. khugepaged_defrag_store);
  390. /*
  391. * max_ptes_none controls if khugepaged should collapse hugepages over
  392. * any unmapped ptes in turn potentially increasing the memory
  393. * footprint of the vmas. When max_ptes_none is 0 khugepaged will not
  394. * reduce the available free memory in the system as it
  395. * runs. Increasing max_ptes_none will instead potentially reduce the
  396. * free memory in the system during the khugepaged scan.
  397. */
  398. static ssize_t khugepaged_max_ptes_none_show(struct kobject *kobj,
  399. struct kobj_attribute *attr,
  400. char *buf)
  401. {
  402. return sprintf(buf, "%u\n", khugepaged_max_ptes_none);
  403. }
  404. static ssize_t khugepaged_max_ptes_none_store(struct kobject *kobj,
  405. struct kobj_attribute *attr,
  406. const char *buf, size_t count)
  407. {
  408. int err;
  409. unsigned long max_ptes_none;
  410. err = strict_strtoul(buf, 10, &max_ptes_none);
  411. if (err || max_ptes_none > HPAGE_PMD_NR-1)
  412. return -EINVAL;
  413. khugepaged_max_ptes_none = max_ptes_none;
  414. return count;
  415. }
  416. static struct kobj_attribute khugepaged_max_ptes_none_attr =
  417. __ATTR(max_ptes_none, 0644, khugepaged_max_ptes_none_show,
  418. khugepaged_max_ptes_none_store);
  419. static struct attribute *khugepaged_attr[] = {
  420. &khugepaged_defrag_attr.attr,
  421. &khugepaged_max_ptes_none_attr.attr,
  422. &pages_to_scan_attr.attr,
  423. &pages_collapsed_attr.attr,
  424. &full_scans_attr.attr,
  425. &scan_sleep_millisecs_attr.attr,
  426. &alloc_sleep_millisecs_attr.attr,
  427. NULL,
  428. };
  429. static struct attribute_group khugepaged_attr_group = {
  430. .attrs = khugepaged_attr,
  431. .name = "khugepaged",
  432. };
  433. static int __init hugepage_init_sysfs(struct kobject **hugepage_kobj)
  434. {
  435. int err;
  436. *hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj);
  437. if (unlikely(!*hugepage_kobj)) {
  438. printk(KERN_ERR "hugepage: failed kobject create\n");
  439. return -ENOMEM;
  440. }
  441. err = sysfs_create_group(*hugepage_kobj, &hugepage_attr_group);
  442. if (err) {
  443. printk(KERN_ERR "hugepage: failed register hugeage group\n");
  444. goto delete_obj;
  445. }
  446. err = sysfs_create_group(*hugepage_kobj, &khugepaged_attr_group);
  447. if (err) {
  448. printk(KERN_ERR "hugepage: failed register hugeage group\n");
  449. goto remove_hp_group;
  450. }
  451. return 0;
  452. remove_hp_group:
  453. sysfs_remove_group(*hugepage_kobj, &hugepage_attr_group);
  454. delete_obj:
  455. kobject_put(*hugepage_kobj);
  456. return err;
  457. }
  458. static void __init hugepage_exit_sysfs(struct kobject *hugepage_kobj)
  459. {
  460. sysfs_remove_group(hugepage_kobj, &khugepaged_attr_group);
  461. sysfs_remove_group(hugepage_kobj, &hugepage_attr_group);
  462. kobject_put(hugepage_kobj);
  463. }
  464. #else
  465. static inline int hugepage_init_sysfs(struct kobject **hugepage_kobj)
  466. {
  467. return 0;
  468. }
  469. static inline void hugepage_exit_sysfs(struct kobject *hugepage_kobj)
  470. {
  471. }
  472. #endif /* CONFIG_SYSFS */
  473. static int __init hugepage_init(void)
  474. {
  475. int err;
  476. struct kobject *hugepage_kobj;
  477. if (!has_transparent_hugepage()) {
  478. transparent_hugepage_flags = 0;
  479. return -EINVAL;
  480. }
  481. err = hugepage_init_sysfs(&hugepage_kobj);
  482. if (err)
  483. return err;
  484. err = khugepaged_slab_init();
  485. if (err)
  486. goto out;
  487. err = mm_slots_hash_init();
  488. if (err) {
  489. khugepaged_slab_free();
  490. goto out;
  491. }
  492. /*
  493. * By default disable transparent hugepages on smaller systems,
  494. * where the extra memory used could hurt more than TLB overhead
  495. * is likely to save. The admin can still enable it through /sys.
  496. */
  497. if (totalram_pages < (512 << (20 - PAGE_SHIFT)))
  498. transparent_hugepage_flags = 0;
  499. start_khugepaged();
  500. set_recommended_min_free_kbytes();
  501. return 0;
  502. out:
  503. hugepage_exit_sysfs(hugepage_kobj);
  504. return err;
  505. }
  506. module_init(hugepage_init)
  507. static int __init setup_transparent_hugepage(char *str)
  508. {
  509. int ret = 0;
  510. if (!str)
  511. goto out;
  512. if (!strcmp(str, "always")) {
  513. set_bit(TRANSPARENT_HUGEPAGE_FLAG,
  514. &transparent_hugepage_flags);
  515. clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
  516. &transparent_hugepage_flags);
  517. ret = 1;
  518. } else if (!strcmp(str, "madvise")) {
  519. clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
  520. &transparent_hugepage_flags);
  521. set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
  522. &transparent_hugepage_flags);
  523. ret = 1;
  524. } else if (!strcmp(str, "never")) {
  525. clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
  526. &transparent_hugepage_flags);
  527. clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
  528. &transparent_hugepage_flags);
  529. ret = 1;
  530. }
  531. out:
  532. if (!ret)
  533. printk(KERN_WARNING
  534. "transparent_hugepage= cannot parse, ignored\n");
  535. return ret;
  536. }
  537. __setup("transparent_hugepage=", setup_transparent_hugepage);
  538. static void prepare_pmd_huge_pte(pgtable_t pgtable,
  539. struct mm_struct *mm)
  540. {
  541. assert_spin_locked(&mm->page_table_lock);
  542. /* FIFO */
  543. if (!mm->pmd_huge_pte)
  544. INIT_LIST_HEAD(&pgtable->lru);
  545. else
  546. list_add(&pgtable->lru, &mm->pmd_huge_pte->lru);
  547. mm->pmd_huge_pte = pgtable;
  548. }
  549. static inline pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma)
  550. {
  551. if (likely(vma->vm_flags & VM_WRITE))
  552. pmd = pmd_mkwrite(pmd);
  553. return pmd;
  554. }
  555. static int __do_huge_pmd_anonymous_page(struct mm_struct *mm,
  556. struct vm_area_struct *vma,
  557. unsigned long haddr, pmd_t *pmd,
  558. struct page *page)
  559. {
  560. int ret = 0;
  561. pgtable_t pgtable;
  562. VM_BUG_ON(!PageCompound(page));
  563. pgtable = pte_alloc_one(mm, haddr);
  564. if (unlikely(!pgtable)) {
  565. mem_cgroup_uncharge_page(page);
  566. put_page(page);
  567. return VM_FAULT_OOM;
  568. }
  569. clear_huge_page(page, haddr, HPAGE_PMD_NR);
  570. __SetPageUptodate(page);
  571. spin_lock(&mm->page_table_lock);
  572. if (unlikely(!pmd_none(*pmd))) {
  573. spin_unlock(&mm->page_table_lock);
  574. mem_cgroup_uncharge_page(page);
  575. put_page(page);
  576. pte_free(mm, pgtable);
  577. } else {
  578. pmd_t entry;
  579. entry = mk_pmd(page, vma->vm_page_prot);
  580. entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
  581. entry = pmd_mkhuge(entry);
  582. /*
  583. * The spinlocking to take the lru_lock inside
  584. * page_add_new_anon_rmap() acts as a full memory
  585. * barrier to be sure clear_huge_page writes become
  586. * visible after the set_pmd_at() write.
  587. */
  588. page_add_new_anon_rmap(page, vma, haddr);
  589. set_pmd_at(mm, haddr, pmd, entry);
  590. prepare_pmd_huge_pte(pgtable, mm);
  591. add_mm_counter(mm, MM_ANONPAGES, HPAGE_PMD_NR);
  592. mm->nr_ptes++;
  593. spin_unlock(&mm->page_table_lock);
  594. }
  595. return ret;
  596. }
  597. static inline gfp_t alloc_hugepage_gfpmask(int defrag, gfp_t extra_gfp)
  598. {
  599. return (GFP_TRANSHUGE & ~(defrag ? 0 : __GFP_WAIT)) | extra_gfp;
  600. }
  601. static inline struct page *alloc_hugepage_vma(int defrag,
  602. struct vm_area_struct *vma,
  603. unsigned long haddr, int nd,
  604. gfp_t extra_gfp)
  605. {
  606. return alloc_pages_vma(alloc_hugepage_gfpmask(defrag, extra_gfp),
  607. HPAGE_PMD_ORDER, vma, haddr, nd);
  608. }
  609. #ifndef CONFIG_NUMA
  610. static inline struct page *alloc_hugepage(int defrag)
  611. {
  612. return alloc_pages(alloc_hugepage_gfpmask(defrag, 0),
  613. HPAGE_PMD_ORDER);
  614. }
  615. #endif
  616. int do_huge_pmd_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
  617. unsigned long address, pmd_t *pmd,
  618. unsigned int flags)
  619. {
  620. struct page *page;
  621. unsigned long haddr = address & HPAGE_PMD_MASK;
  622. pte_t *pte;
  623. if (haddr >= vma->vm_start && haddr + HPAGE_PMD_SIZE <= vma->vm_end) {
  624. if (unlikely(anon_vma_prepare(vma)))
  625. return VM_FAULT_OOM;
  626. if (unlikely(khugepaged_enter(vma)))
  627. return VM_FAULT_OOM;
  628. page = alloc_hugepage_vma(transparent_hugepage_defrag(vma),
  629. vma, haddr, numa_node_id(), 0);
  630. if (unlikely(!page)) {
  631. count_vm_event(THP_FAULT_FALLBACK);
  632. goto out;
  633. }
  634. count_vm_event(THP_FAULT_ALLOC);
  635. if (unlikely(mem_cgroup_newpage_charge(page, mm, GFP_KERNEL))) {
  636. put_page(page);
  637. goto out;
  638. }
  639. return __do_huge_pmd_anonymous_page(mm, vma, haddr, pmd, page);
  640. }
  641. out:
  642. /*
  643. * Use __pte_alloc instead of pte_alloc_map, because we can't
  644. * run pte_offset_map on the pmd, if an huge pmd could
  645. * materialize from under us from a different thread.
  646. */
  647. if (unlikely(__pte_alloc(mm, vma, pmd, address)))
  648. return VM_FAULT_OOM;
  649. /* if an huge pmd materialized from under us just retry later */
  650. if (unlikely(pmd_trans_huge(*pmd)))
  651. return 0;
  652. /*
  653. * A regular pmd is established and it can't morph into a huge pmd
  654. * from under us anymore at this point because we hold the mmap_sem
  655. * read mode and khugepaged takes it in write mode. So now it's
  656. * safe to run pte_offset_map().
  657. */
  658. pte = pte_offset_map(pmd, address);
  659. return handle_pte_fault(mm, vma, address, pte, pmd, flags);
  660. }
  661. int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm,
  662. pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
  663. struct vm_area_struct *vma)
  664. {
  665. struct page *src_page;
  666. pmd_t pmd;
  667. pgtable_t pgtable;
  668. int ret;
  669. ret = -ENOMEM;
  670. pgtable = pte_alloc_one(dst_mm, addr);
  671. if (unlikely(!pgtable))
  672. goto out;
  673. spin_lock(&dst_mm->page_table_lock);
  674. spin_lock_nested(&src_mm->page_table_lock, SINGLE_DEPTH_NESTING);
  675. ret = -EAGAIN;
  676. pmd = *src_pmd;
  677. if (unlikely(!pmd_trans_huge(pmd))) {
  678. pte_free(dst_mm, pgtable);
  679. goto out_unlock;
  680. }
  681. if (unlikely(pmd_trans_splitting(pmd))) {
  682. /* split huge page running from under us */
  683. spin_unlock(&src_mm->page_table_lock);
  684. spin_unlock(&dst_mm->page_table_lock);
  685. pte_free(dst_mm, pgtable);
  686. wait_split_huge_page(vma->anon_vma, src_pmd); /* src_vma */
  687. goto out;
  688. }
  689. src_page = pmd_page(pmd);
  690. VM_BUG_ON(!PageHead(src_page));
  691. get_page(src_page);
  692. page_dup_rmap(src_page);
  693. add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
  694. pmdp_set_wrprotect(src_mm, addr, src_pmd);
  695. pmd = pmd_mkold(pmd_wrprotect(pmd));
  696. set_pmd_at(dst_mm, addr, dst_pmd, pmd);
  697. prepare_pmd_huge_pte(pgtable, dst_mm);
  698. dst_mm->nr_ptes++;
  699. ret = 0;
  700. out_unlock:
  701. spin_unlock(&src_mm->page_table_lock);
  702. spin_unlock(&dst_mm->page_table_lock);
  703. out:
  704. return ret;
  705. }
  706. /* no "address" argument so destroys page coloring of some arch */
  707. pgtable_t get_pmd_huge_pte(struct mm_struct *mm)
  708. {
  709. pgtable_t pgtable;
  710. assert_spin_locked(&mm->page_table_lock);
  711. /* FIFO */
  712. pgtable = mm->pmd_huge_pte;
  713. if (list_empty(&pgtable->lru))
  714. mm->pmd_huge_pte = NULL;
  715. else {
  716. mm->pmd_huge_pte = list_entry(pgtable->lru.next,
  717. struct page, lru);
  718. list_del(&pgtable->lru);
  719. }
  720. return pgtable;
  721. }
  722. static int do_huge_pmd_wp_page_fallback(struct mm_struct *mm,
  723. struct vm_area_struct *vma,
  724. unsigned long address,
  725. pmd_t *pmd, pmd_t orig_pmd,
  726. struct page *page,
  727. unsigned long haddr)
  728. {
  729. pgtable_t pgtable;
  730. pmd_t _pmd;
  731. int ret = 0, i;
  732. struct page **pages;
  733. pages = kmalloc(sizeof(struct page *) * HPAGE_PMD_NR,
  734. GFP_KERNEL);
  735. if (unlikely(!pages)) {
  736. ret |= VM_FAULT_OOM;
  737. goto out;
  738. }
  739. for (i = 0; i < HPAGE_PMD_NR; i++) {
  740. pages[i] = alloc_page_vma_node(GFP_HIGHUSER_MOVABLE |
  741. __GFP_OTHER_NODE,
  742. vma, address, page_to_nid(page));
  743. if (unlikely(!pages[i] ||
  744. mem_cgroup_newpage_charge(pages[i], mm,
  745. GFP_KERNEL))) {
  746. if (pages[i])
  747. put_page(pages[i]);
  748. mem_cgroup_uncharge_start();
  749. while (--i >= 0) {
  750. mem_cgroup_uncharge_page(pages[i]);
  751. put_page(pages[i]);
  752. }
  753. mem_cgroup_uncharge_end();
  754. kfree(pages);
  755. ret |= VM_FAULT_OOM;
  756. goto out;
  757. }
  758. }
  759. for (i = 0; i < HPAGE_PMD_NR; i++) {
  760. copy_user_highpage(pages[i], page + i,
  761. haddr + PAGE_SIZE * i, vma);
  762. __SetPageUptodate(pages[i]);
  763. cond_resched();
  764. }
  765. spin_lock(&mm->page_table_lock);
  766. if (unlikely(!pmd_same(*pmd, orig_pmd)))
  767. goto out_free_pages;
  768. VM_BUG_ON(!PageHead(page));
  769. pmdp_clear_flush_notify(vma, haddr, pmd);
  770. /* leave pmd empty until pte is filled */
  771. pgtable = get_pmd_huge_pte(mm);
  772. pmd_populate(mm, &_pmd, pgtable);
  773. for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
  774. pte_t *pte, entry;
  775. entry = mk_pte(pages[i], vma->vm_page_prot);
  776. entry = maybe_mkwrite(pte_mkdirty(entry), vma);
  777. page_add_new_anon_rmap(pages[i], vma, haddr);
  778. pte = pte_offset_map(&_pmd, haddr);
  779. VM_BUG_ON(!pte_none(*pte));
  780. set_pte_at(mm, haddr, pte, entry);
  781. pte_unmap(pte);
  782. }
  783. kfree(pages);
  784. smp_wmb(); /* make pte visible before pmd */
  785. pmd_populate(mm, pmd, pgtable);
  786. page_remove_rmap(page);
  787. spin_unlock(&mm->page_table_lock);
  788. ret |= VM_FAULT_WRITE;
  789. put_page(page);
  790. out:
  791. return ret;
  792. out_free_pages:
  793. spin_unlock(&mm->page_table_lock);
  794. mem_cgroup_uncharge_start();
  795. for (i = 0; i < HPAGE_PMD_NR; i++) {
  796. mem_cgroup_uncharge_page(pages[i]);
  797. put_page(pages[i]);
  798. }
  799. mem_cgroup_uncharge_end();
  800. kfree(pages);
  801. goto out;
  802. }
  803. int do_huge_pmd_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
  804. unsigned long address, pmd_t *pmd, pmd_t orig_pmd)
  805. {
  806. int ret = 0;
  807. struct page *page, *new_page;
  808. unsigned long haddr;
  809. VM_BUG_ON(!vma->anon_vma);
  810. spin_lock(&mm->page_table_lock);
  811. if (unlikely(!pmd_same(*pmd, orig_pmd)))
  812. goto out_unlock;
  813. page = pmd_page(orig_pmd);
  814. VM_BUG_ON(!PageCompound(page) || !PageHead(page));
  815. haddr = address & HPAGE_PMD_MASK;
  816. if (page_mapcount(page) == 1) {
  817. pmd_t entry;
  818. entry = pmd_mkyoung(orig_pmd);
  819. entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
  820. if (pmdp_set_access_flags(vma, haddr, pmd, entry, 1))
  821. update_mmu_cache(vma, address, entry);
  822. ret |= VM_FAULT_WRITE;
  823. goto out_unlock;
  824. }
  825. get_page(page);
  826. spin_unlock(&mm->page_table_lock);
  827. if (transparent_hugepage_enabled(vma) &&
  828. !transparent_hugepage_debug_cow())
  829. new_page = alloc_hugepage_vma(transparent_hugepage_defrag(vma),
  830. vma, haddr, numa_node_id(), 0);
  831. else
  832. new_page = NULL;
  833. if (unlikely(!new_page)) {
  834. count_vm_event(THP_FAULT_FALLBACK);
  835. ret = do_huge_pmd_wp_page_fallback(mm, vma, address,
  836. pmd, orig_pmd, page, haddr);
  837. put_page(page);
  838. goto out;
  839. }
  840. count_vm_event(THP_FAULT_ALLOC);
  841. if (unlikely(mem_cgroup_newpage_charge(new_page, mm, GFP_KERNEL))) {
  842. put_page(new_page);
  843. put_page(page);
  844. ret |= VM_FAULT_OOM;
  845. goto out;
  846. }
  847. copy_user_huge_page(new_page, page, haddr, vma, HPAGE_PMD_NR);
  848. __SetPageUptodate(new_page);
  849. spin_lock(&mm->page_table_lock);
  850. put_page(page);
  851. if (unlikely(!pmd_same(*pmd, orig_pmd))) {
  852. mem_cgroup_uncharge_page(new_page);
  853. put_page(new_page);
  854. } else {
  855. pmd_t entry;
  856. VM_BUG_ON(!PageHead(page));
  857. entry = mk_pmd(new_page, vma->vm_page_prot);
  858. entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
  859. entry = pmd_mkhuge(entry);
  860. pmdp_clear_flush_notify(vma, haddr, pmd);
  861. page_add_new_anon_rmap(new_page, vma, haddr);
  862. set_pmd_at(mm, haddr, pmd, entry);
  863. update_mmu_cache(vma, address, entry);
  864. page_remove_rmap(page);
  865. put_page(page);
  866. ret |= VM_FAULT_WRITE;
  867. }
  868. out_unlock:
  869. spin_unlock(&mm->page_table_lock);
  870. out:
  871. return ret;
  872. }
  873. struct page *follow_trans_huge_pmd(struct mm_struct *mm,
  874. unsigned long addr,
  875. pmd_t *pmd,
  876. unsigned int flags)
  877. {
  878. struct page *page = NULL;
  879. assert_spin_locked(&mm->page_table_lock);
  880. if (flags & FOLL_WRITE && !pmd_write(*pmd))
  881. goto out;
  882. page = pmd_page(*pmd);
  883. VM_BUG_ON(!PageHead(page));
  884. if (flags & FOLL_TOUCH) {
  885. pmd_t _pmd;
  886. /*
  887. * We should set the dirty bit only for FOLL_WRITE but
  888. * for now the dirty bit in the pmd is meaningless.
  889. * And if the dirty bit will become meaningful and
  890. * we'll only set it with FOLL_WRITE, an atomic
  891. * set_bit will be required on the pmd to set the
  892. * young bit, instead of the current set_pmd_at.
  893. */
  894. _pmd = pmd_mkyoung(pmd_mkdirty(*pmd));
  895. set_pmd_at(mm, addr & HPAGE_PMD_MASK, pmd, _pmd);
  896. }
  897. page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT;
  898. VM_BUG_ON(!PageCompound(page));
  899. if (flags & FOLL_GET)
  900. get_page_foll(page);
  901. out:
  902. return page;
  903. }
  904. int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
  905. pmd_t *pmd, unsigned long addr)
  906. {
  907. int ret = 0;
  908. if (__pmd_trans_huge_lock(pmd, vma) == 1) {
  909. struct page *page;
  910. pgtable_t pgtable;
  911. pgtable = get_pmd_huge_pte(tlb->mm);
  912. page = pmd_page(*pmd);
  913. pmd_clear(pmd);
  914. tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
  915. page_remove_rmap(page);
  916. VM_BUG_ON(page_mapcount(page) < 0);
  917. add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR);
  918. VM_BUG_ON(!PageHead(page));
  919. tlb->mm->nr_ptes--;
  920. spin_unlock(&tlb->mm->page_table_lock);
  921. tlb_remove_page(tlb, page);
  922. pte_free(tlb->mm, pgtable);
  923. ret = 1;
  924. }
  925. return ret;
  926. }
  927. int mincore_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
  928. unsigned long addr, unsigned long end,
  929. unsigned char *vec)
  930. {
  931. int ret = 0;
  932. if (__pmd_trans_huge_lock(pmd, vma) == 1) {
  933. /*
  934. * All logical pages in the range are present
  935. * if backed by a huge page.
  936. */
  937. spin_unlock(&vma->vm_mm->page_table_lock);
  938. memset(vec, 1, (end - addr) >> PAGE_SHIFT);
  939. ret = 1;
  940. }
  941. return ret;
  942. }
  943. int move_huge_pmd(struct vm_area_struct *vma, struct vm_area_struct *new_vma,
  944. unsigned long old_addr,
  945. unsigned long new_addr, unsigned long old_end,
  946. pmd_t *old_pmd, pmd_t *new_pmd)
  947. {
  948. int ret = 0;
  949. pmd_t pmd;
  950. struct mm_struct *mm = vma->vm_mm;
  951. if ((old_addr & ~HPAGE_PMD_MASK) ||
  952. (new_addr & ~HPAGE_PMD_MASK) ||
  953. old_end - old_addr < HPAGE_PMD_SIZE ||
  954. (new_vma->vm_flags & VM_NOHUGEPAGE))
  955. goto out;
  956. /*
  957. * The destination pmd shouldn't be established, free_pgtables()
  958. * should have release it.
  959. */
  960. if (WARN_ON(!pmd_none(*new_pmd))) {
  961. VM_BUG_ON(pmd_trans_huge(*new_pmd));
  962. goto out;
  963. }
  964. ret = __pmd_trans_huge_lock(old_pmd, vma);
  965. if (ret == 1) {
  966. pmd = pmdp_get_and_clear(mm, old_addr, old_pmd);
  967. VM_BUG_ON(!pmd_none(*new_pmd));
  968. set_pmd_at(mm, new_addr, new_pmd, pmd);
  969. spin_unlock(&mm->page_table_lock);
  970. }
  971. out:
  972. return ret;
  973. }
  974. int change_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
  975. unsigned long addr, pgprot_t newprot)
  976. {
  977. struct mm_struct *mm = vma->vm_mm;
  978. int ret = 0;
  979. if (__pmd_trans_huge_lock(pmd, vma) == 1) {
  980. pmd_t entry;
  981. entry = pmdp_get_and_clear(mm, addr, pmd);
  982. entry = pmd_modify(entry, newprot);
  983. set_pmd_at(mm, addr, pmd, entry);
  984. spin_unlock(&vma->vm_mm->page_table_lock);
  985. ret = 1;
  986. }
  987. return ret;
  988. }
  989. /*
  990. * Returns 1 if a given pmd maps a stable (not under splitting) thp.
  991. * Returns -1 if it maps a thp under splitting. Returns 0 otherwise.
  992. *
  993. * Note that if it returns 1, this routine returns without unlocking page
  994. * table locks. So callers must unlock them.
  995. */
  996. int __pmd_trans_huge_lock(pmd_t *pmd, struct vm_area_struct *vma)
  997. {
  998. spin_lock(&vma->vm_mm->page_table_lock);
  999. if (likely(pmd_trans_huge(*pmd))) {
  1000. if (unlikely(pmd_trans_splitting(*pmd))) {
  1001. spin_unlock(&vma->vm_mm->page_table_lock);
  1002. wait_split_huge_page(vma->anon_vma, pmd);
  1003. return -1;
  1004. } else {
  1005. /* Thp mapped by 'pmd' is stable, so we can
  1006. * handle it as it is. */
  1007. return 1;
  1008. }
  1009. }
  1010. spin_unlock(&vma->vm_mm->page_table_lock);
  1011. return 0;
  1012. }
  1013. pmd_t *page_check_address_pmd(struct page *page,
  1014. struct mm_struct *mm,
  1015. unsigned long address,
  1016. enum page_check_address_pmd_flag flag)
  1017. {
  1018. pgd_t *pgd;
  1019. pud_t *pud;
  1020. pmd_t *pmd, *ret = NULL;
  1021. if (address & ~HPAGE_PMD_MASK)
  1022. goto out;
  1023. pgd = pgd_offset(mm, address);
  1024. if (!pgd_present(*pgd))
  1025. goto out;
  1026. pud = pud_offset(pgd, address);
  1027. if (!pud_present(*pud))
  1028. goto out;
  1029. pmd = pmd_offset(pud, address);
  1030. if (pmd_none(*pmd))
  1031. goto out;
  1032. if (pmd_page(*pmd) != page)
  1033. goto out;
  1034. /*
  1035. * split_vma() may create temporary aliased mappings. There is
  1036. * no risk as long as all huge pmd are found and have their
  1037. * splitting bit set before __split_huge_page_refcount
  1038. * runs. Finding the same huge pmd more than once during the
  1039. * same rmap walk is not a problem.
  1040. */
  1041. if (flag == PAGE_CHECK_ADDRESS_PMD_NOTSPLITTING_FLAG &&
  1042. pmd_trans_splitting(*pmd))
  1043. goto out;
  1044. if (pmd_trans_huge(*pmd)) {
  1045. VM_BUG_ON(flag == PAGE_CHECK_ADDRESS_PMD_SPLITTING_FLAG &&
  1046. !pmd_trans_splitting(*pmd));
  1047. ret = pmd;
  1048. }
  1049. out:
  1050. return ret;
  1051. }
  1052. static int __split_huge_page_splitting(struct page *page,
  1053. struct vm_area_struct *vma,
  1054. unsigned long address)
  1055. {
  1056. struct mm_struct *mm = vma->vm_mm;
  1057. pmd_t *pmd;
  1058. int ret = 0;
  1059. spin_lock(&mm->page_table_lock);
  1060. pmd = page_check_address_pmd(page, mm, address,
  1061. PAGE_CHECK_ADDRESS_PMD_NOTSPLITTING_FLAG);
  1062. if (pmd) {
  1063. /*
  1064. * We can't temporarily set the pmd to null in order
  1065. * to split it, the pmd must remain marked huge at all
  1066. * times or the VM won't take the pmd_trans_huge paths
  1067. * and it won't wait on the anon_vma->root->mutex to
  1068. * serialize against split_huge_page*.
  1069. */
  1070. pmdp_splitting_flush_notify(vma, address, pmd);
  1071. ret = 1;
  1072. }
  1073. spin_unlock(&mm->page_table_lock);
  1074. return ret;
  1075. }
  1076. static void __split_huge_page_refcount(struct page *page)
  1077. {
  1078. int i;
  1079. struct zone *zone = page_zone(page);
  1080. int tail_count = 0;
  1081. /* prevent PageLRU to go away from under us, and freeze lru stats */
  1082. spin_lock_irq(&zone->lru_lock);
  1083. compound_lock(page);
  1084. /* complete memcg works before add pages to LRU */
  1085. mem_cgroup_split_huge_fixup(page);
  1086. for (i = HPAGE_PMD_NR - 1; i >= 1; i--) {
  1087. struct page *page_tail = page + i;
  1088. /* tail_page->_mapcount cannot change */
  1089. BUG_ON(page_mapcount(page_tail) < 0);
  1090. tail_count += page_mapcount(page_tail);
  1091. /* check for overflow */
  1092. BUG_ON(tail_count < 0);
  1093. BUG_ON(atomic_read(&page_tail->_count) != 0);
  1094. /*
  1095. * tail_page->_count is zero and not changing from
  1096. * under us. But get_page_unless_zero() may be running
  1097. * from under us on the tail_page. If we used
  1098. * atomic_set() below instead of atomic_add(), we
  1099. * would then run atomic_set() concurrently with
  1100. * get_page_unless_zero(), and atomic_set() is
  1101. * implemented in C not using locked ops. spin_unlock
  1102. * on x86 sometime uses locked ops because of PPro
  1103. * errata 66, 92, so unless somebody can guarantee
  1104. * atomic_set() here would be safe on all archs (and
  1105. * not only on x86), it's safer to use atomic_add().
  1106. */
  1107. atomic_add(page_mapcount(page) + page_mapcount(page_tail) + 1,
  1108. &page_tail->_count);
  1109. /* after clearing PageTail the gup refcount can be released */
  1110. smp_mb();
  1111. /*
  1112. * retain hwpoison flag of the poisoned tail page:
  1113. * fix for the unsuitable process killed on Guest Machine(KVM)
  1114. * by the memory-failure.
  1115. */
  1116. page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP | __PG_HWPOISON;
  1117. page_tail->flags |= (page->flags &
  1118. ((1L << PG_referenced) |
  1119. (1L << PG_swapbacked) |
  1120. (1L << PG_mlocked) |
  1121. (1L << PG_uptodate)));
  1122. page_tail->flags |= (1L << PG_dirty);
  1123. /* clear PageTail before overwriting first_page */
  1124. smp_wmb();
  1125. /*
  1126. * __split_huge_page_splitting() already set the
  1127. * splitting bit in all pmd that could map this
  1128. * hugepage, that will ensure no CPU can alter the
  1129. * mapcount on the head page. The mapcount is only
  1130. * accounted in the head page and it has to be
  1131. * transferred to all tail pages in the below code. So
  1132. * for this code to be safe, the split the mapcount
  1133. * can't change. But that doesn't mean userland can't
  1134. * keep changing and reading the page contents while
  1135. * we transfer the mapcount, so the pmd splitting
  1136. * status is achieved setting a reserved bit in the
  1137. * pmd, not by clearing the present bit.
  1138. */
  1139. page_tail->_mapcount = page->_mapcount;
  1140. BUG_ON(page_tail->mapping);
  1141. page_tail->mapping = page->mapping;
  1142. page_tail->index = page->index + i;
  1143. BUG_ON(!PageAnon(page_tail));
  1144. BUG_ON(!PageUptodate(page_tail));
  1145. BUG_ON(!PageDirty(page_tail));
  1146. BUG_ON(!PageSwapBacked(page_tail));
  1147. lru_add_page_tail(zone, page, page_tail);
  1148. }
  1149. atomic_sub(tail_count, &page->_count);
  1150. BUG_ON(atomic_read(&page->_count) <= 0);
  1151. __dec_zone_page_state(page, NR_ANON_TRANSPARENT_HUGEPAGES);
  1152. __mod_zone_page_state(zone, NR_ANON_PAGES, HPAGE_PMD_NR);
  1153. ClearPageCompound(page);
  1154. compound_unlock(page);
  1155. spin_unlock_irq(&zone->lru_lock);
  1156. for (i = 1; i < HPAGE_PMD_NR; i++) {
  1157. struct page *page_tail = page + i;
  1158. BUG_ON(page_count(page_tail) <= 0);
  1159. /*
  1160. * Tail pages may be freed if there wasn't any mapping
  1161. * like if add_to_swap() is running on a lru page that
  1162. * had its mapping zapped. And freeing these pages
  1163. * requires taking the lru_lock so we do the put_page
  1164. * of the tail pages after the split is complete.
  1165. */
  1166. put_page(page_tail);
  1167. }
  1168. /*
  1169. * Only the head page (now become a regular page) is required
  1170. * to be pinned by the caller.
  1171. */
  1172. BUG_ON(page_count(page) <= 0);
  1173. }
  1174. static int __split_huge_page_map(struct page *page,
  1175. struct vm_area_struct *vma,
  1176. unsigned long address)
  1177. {
  1178. struct mm_struct *mm = vma->vm_mm;
  1179. pmd_t *pmd, _pmd;
  1180. int ret = 0, i;
  1181. pgtable_t pgtable;
  1182. unsigned long haddr;
  1183. spin_lock(&mm->page_table_lock);
  1184. pmd = page_check_address_pmd(page, mm, address,
  1185. PAGE_CHECK_ADDRESS_PMD_SPLITTING_FLAG);
  1186. if (pmd) {
  1187. pgtable = get_pmd_huge_pte(mm);
  1188. pmd_populate(mm, &_pmd, pgtable);
  1189. for (i = 0, haddr = address; i < HPAGE_PMD_NR;
  1190. i++, haddr += PAGE_SIZE) {
  1191. pte_t *pte, entry;
  1192. BUG_ON(PageCompound(page+i));
  1193. entry = mk_pte(page + i, vma->vm_page_prot);
  1194. entry = maybe_mkwrite(pte_mkdirty(entry), vma);
  1195. if (!pmd_write(*pmd))
  1196. entry = pte_wrprotect(entry);
  1197. else
  1198. BUG_ON(page_mapcount(page) != 1);
  1199. if (!pmd_young(*pmd))
  1200. entry = pte_mkold(entry);
  1201. pte = pte_offset_map(&_pmd, haddr);
  1202. BUG_ON(!pte_none(*pte));
  1203. set_pte_at(mm, haddr, pte, entry);
  1204. pte_unmap(pte);
  1205. }
  1206. smp_wmb(); /* make pte visible before pmd */
  1207. /*
  1208. * Up to this point the pmd is present and huge and
  1209. * userland has the whole access to the hugepage
  1210. * during the split (which happens in place). If we
  1211. * overwrite the pmd with the not-huge version
  1212. * pointing to the pte here (which of course we could
  1213. * if all CPUs were bug free), userland could trigger
  1214. * a small page size TLB miss on the small sized TLB
  1215. * while the hugepage TLB entry is still established
  1216. * in the huge TLB. Some CPU doesn't like that. See
  1217. * http://support.amd.com/us/Processor_TechDocs/41322.pdf,
  1218. * Erratum 383 on page 93. Intel should be safe but is
  1219. * also warns that it's only safe if the permission
  1220. * and cache attributes of the two entries loaded in
  1221. * the two TLB is identical (which should be the case
  1222. * here). But it is generally safer to never allow
  1223. * small and huge TLB entries for the same virtual
  1224. * address to be loaded simultaneously. So instead of
  1225. * doing "pmd_populate(); flush_tlb_range();" we first
  1226. * mark the current pmd notpresent (atomically because
  1227. * here the pmd_trans_huge and pmd_trans_splitting
  1228. * must remain set at all times on the pmd until the
  1229. * split is complete for this pmd), then we flush the
  1230. * SMP TLB and finally we write the non-huge version
  1231. * of the pmd entry with pmd_populate.
  1232. */
  1233. set_pmd_at(mm, address, pmd, pmd_mknotpresent(*pmd));
  1234. flush_tlb_range(vma, address, address + HPAGE_PMD_SIZE);
  1235. pmd_populate(mm, pmd, pgtable);
  1236. ret = 1;
  1237. }
  1238. spin_unlock(&mm->page_table_lock);
  1239. return ret;
  1240. }
  1241. /* must be called with anon_vma->root->mutex hold */
  1242. static void __split_huge_page(struct page *page,
  1243. struct anon_vma *anon_vma)
  1244. {
  1245. int mapcount, mapcount2;
  1246. struct anon_vma_chain *avc;
  1247. BUG_ON(!PageHead(page));
  1248. BUG_ON(PageTail(page));
  1249. mapcount = 0;
  1250. list_for_each_entry(avc, &anon_vma->head, same_anon_vma) {
  1251. struct vm_area_struct *vma = avc->vma;
  1252. unsigned long addr = vma_address(page, vma);
  1253. BUG_ON(is_vma_temporary_stack(vma));
  1254. if (addr == -EFAULT)
  1255. continue;
  1256. mapcount += __split_huge_page_splitting(page, vma, addr);
  1257. }
  1258. /*
  1259. * It is critical that new vmas are added to the tail of the
  1260. * anon_vma list. This guarantes that if copy_huge_pmd() runs
  1261. * and establishes a child pmd before
  1262. * __split_huge_page_splitting() freezes the parent pmd (so if
  1263. * we fail to prevent copy_huge_pmd() from running until the
  1264. * whole __split_huge_page() is complete), we will still see
  1265. * the newly established pmd of the child later during the
  1266. * walk, to be able to set it as pmd_trans_splitting too.
  1267. */
  1268. if (mapcount != page_mapcount(page))
  1269. printk(KERN_ERR "mapcount %d page_mapcount %d\n",
  1270. mapcount, page_mapcount(page));
  1271. BUG_ON(mapcount != page_mapcount(page));
  1272. __split_huge_page_refcount(page);
  1273. mapcount2 = 0;
  1274. list_for_each_entry(avc, &anon_vma->head, same_anon_vma) {
  1275. struct vm_area_struct *vma = avc->vma;
  1276. unsigned long addr = vma_address(page, vma);
  1277. BUG_ON(is_vma_temporary_stack(vma));
  1278. if (addr == -EFAULT)
  1279. continue;
  1280. mapcount2 += __split_huge_page_map(page, vma, addr);
  1281. }
  1282. if (mapcount != mapcount2)
  1283. printk(KERN_ERR "mapcount %d mapcount2 %d page_mapcount %d\n",
  1284. mapcount, mapcount2, page_mapcount(page));
  1285. BUG_ON(mapcount != mapcount2);
  1286. }
  1287. int split_huge_page(struct page *page)
  1288. {
  1289. struct anon_vma *anon_vma;
  1290. int ret = 1;
  1291. BUG_ON(!PageAnon(page));
  1292. anon_vma = page_lock_anon_vma(page);
  1293. if (!anon_vma)
  1294. goto out;
  1295. ret = 0;
  1296. if (!PageCompound(page))
  1297. goto out_unlock;
  1298. BUG_ON(!PageSwapBacked(page));
  1299. __split_huge_page(page, anon_vma);
  1300. count_vm_event(THP_SPLIT);
  1301. BUG_ON(PageCompound(page));
  1302. out_unlock:
  1303. page_unlock_anon_vma(anon_vma);
  1304. out:
  1305. return ret;
  1306. }
  1307. #define VM_NO_THP (VM_SPECIAL|VM_INSERTPAGE|VM_MIXEDMAP|VM_SAO| \
  1308. VM_HUGETLB|VM_SHARED|VM_MAYSHARE)
  1309. int hugepage_madvise(struct vm_area_struct *vma,
  1310. unsigned long *vm_flags, int advice)
  1311. {
  1312. switch (advice) {
  1313. case MADV_HUGEPAGE:
  1314. /*
  1315. * Be somewhat over-protective like KSM for now!
  1316. */
  1317. if (*vm_flags & (VM_HUGEPAGE | VM_NO_THP))
  1318. return -EINVAL;
  1319. *vm_flags &= ~VM_NOHUGEPAGE;
  1320. *vm_flags |= VM_HUGEPAGE;
  1321. /*
  1322. * If the vma become good for khugepaged to scan,
  1323. * register it here without waiting a page fault that
  1324. * may not happen any time soon.
  1325. */
  1326. if (unlikely(khugepaged_enter_vma_merge(vma)))
  1327. return -ENOMEM;
  1328. break;
  1329. case MADV_NOHUGEPAGE:
  1330. /*
  1331. * Be somewhat over-protective like KSM for now!
  1332. */
  1333. if (*vm_flags & (VM_NOHUGEPAGE | VM_NO_THP))
  1334. return -EINVAL;
  1335. *vm_flags &= ~VM_HUGEPAGE;
  1336. *vm_flags |= VM_NOHUGEPAGE;
  1337. /*
  1338. * Setting VM_NOHUGEPAGE will prevent khugepaged from scanning
  1339. * this vma even if we leave the mm registered in khugepaged if
  1340. * it got registered before VM_NOHUGEPAGE was set.
  1341. */
  1342. break;
  1343. }
  1344. return 0;
  1345. }
  1346. static int __init khugepaged_slab_init(void)
  1347. {
  1348. mm_slot_cache = kmem_cache_create("khugepaged_mm_slot",
  1349. sizeof(struct mm_slot),
  1350. __alignof__(struct mm_slot), 0, NULL);
  1351. if (!mm_slot_cache)
  1352. return -ENOMEM;
  1353. return 0;
  1354. }
  1355. static void __init khugepaged_slab_free(void)
  1356. {
  1357. kmem_cache_destroy(mm_slot_cache);
  1358. mm_slot_cache = NULL;
  1359. }
  1360. static inline struct mm_slot *alloc_mm_slot(void)
  1361. {
  1362. if (!mm_slot_cache) /* initialization failed */
  1363. return NULL;
  1364. return kmem_cache_zalloc(mm_slot_cache, GFP_KERNEL);
  1365. }
  1366. static inline void free_mm_slot(struct mm_slot *mm_slot)
  1367. {
  1368. kmem_cache_free(mm_slot_cache, mm_slot);
  1369. }
  1370. static int __init mm_slots_hash_init(void)
  1371. {
  1372. mm_slots_hash = kzalloc(MM_SLOTS_HASH_HEADS * sizeof(struct hlist_head),
  1373. GFP_KERNEL);
  1374. if (!mm_slots_hash)
  1375. return -ENOMEM;
  1376. return 0;
  1377. }
  1378. #if 0
  1379. static void __init mm_slots_hash_free(void)
  1380. {
  1381. kfree(mm_slots_hash);
  1382. mm_slots_hash = NULL;
  1383. }
  1384. #endif
  1385. static struct mm_slot *get_mm_slot(struct mm_struct *mm)
  1386. {
  1387. struct mm_slot *mm_slot;
  1388. struct hlist_head *bucket;
  1389. struct hlist_node *node;
  1390. bucket = &mm_slots_hash[((unsigned long)mm / sizeof(struct mm_struct))
  1391. % MM_SLOTS_HASH_HEADS];
  1392. hlist_for_each_entry(mm_slot, node, bucket, hash) {
  1393. if (mm == mm_slot->mm)
  1394. return mm_slot;
  1395. }
  1396. return NULL;
  1397. }
  1398. static void insert_to_mm_slots_hash(struct mm_struct *mm,
  1399. struct mm_slot *mm_slot)
  1400. {
  1401. struct hlist_head *bucket;
  1402. bucket = &mm_slots_hash[((unsigned long)mm / sizeof(struct mm_struct))
  1403. % MM_SLOTS_HASH_HEADS];
  1404. mm_slot->mm = mm;
  1405. hlist_add_head(&mm_slot->hash, bucket);
  1406. }
  1407. static inline int khugepaged_test_exit(struct mm_struct *mm)
  1408. {
  1409. return atomic_read(&mm->mm_users) == 0;
  1410. }
  1411. int __khugepaged_enter(struct mm_struct *mm)
  1412. {
  1413. struct mm_slot *mm_slot;
  1414. int wakeup;
  1415. mm_slot = alloc_mm_slot();
  1416. if (!mm_slot)
  1417. return -ENOMEM;
  1418. /* __khugepaged_exit() must not run from under us */
  1419. VM_BUG_ON(khugepaged_test_exit(mm));
  1420. if (unlikely(test_and_set_bit(MMF_VM_HUGEPAGE, &mm->flags))) {
  1421. free_mm_slot(mm_slot);
  1422. return 0;
  1423. }
  1424. spin_lock(&khugepaged_mm_lock);
  1425. insert_to_mm_slots_hash(mm, mm_slot);
  1426. /*
  1427. * Insert just behind the scanning cursor, to let the area settle
  1428. * down a little.
  1429. */
  1430. wakeup = list_empty(&khugepaged_scan.mm_head);
  1431. list_add_tail(&mm_slot->mm_node, &khugepaged_scan.mm_head);
  1432. spin_unlock(&khugepaged_mm_lock);
  1433. atomic_inc(&mm->mm_count);
  1434. if (wakeup)
  1435. wake_up_interruptible(&khugepaged_wait);
  1436. return 0;
  1437. }
  1438. int khugepaged_enter_vma_merge(struct vm_area_struct *vma)
  1439. {
  1440. unsigned long hstart, hend;
  1441. if (!vma->anon_vma)
  1442. /*
  1443. * Not yet faulted in so we will register later in the
  1444. * page fault if needed.
  1445. */
  1446. return 0;
  1447. if (vma->vm_ops)
  1448. /* khugepaged not yet working on file or special mappings */
  1449. return 0;
  1450. /*
  1451. * If is_pfn_mapping() is true is_learn_pfn_mapping() must be
  1452. * true too, verify it here.
  1453. */
  1454. VM_BUG_ON(is_linear_pfn_mapping(vma) || vma->vm_flags & VM_NO_THP);
  1455. hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
  1456. hend = vma->vm_end & HPAGE_PMD_MASK;
  1457. if (hstart < hend)
  1458. return khugepaged_enter(vma);
  1459. return 0;
  1460. }
  1461. void __khugepaged_exit(struct mm_struct *mm)
  1462. {
  1463. struct mm_slot *mm_slot;
  1464. int free = 0;
  1465. spin_lock(&khugepaged_mm_lock);
  1466. mm_slot = get_mm_slot(mm);
  1467. if (mm_slot && khugepaged_scan.mm_slot != mm_slot) {
  1468. hlist_del(&mm_slot->hash);
  1469. list_del(&mm_slot->mm_node);
  1470. free = 1;
  1471. }
  1472. spin_unlock(&khugepaged_mm_lock);
  1473. if (free) {
  1474. clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
  1475. free_mm_slot(mm_slot);
  1476. mmdrop(mm);
  1477. } else if (mm_slot) {
  1478. /*
  1479. * This is required to serialize against
  1480. * khugepaged_test_exit() (which is guaranteed to run
  1481. * under mmap sem read mode). Stop here (after we
  1482. * return all pagetables will be destroyed) until
  1483. * khugepaged has finished working on the pagetables
  1484. * under the mmap_sem.
  1485. */
  1486. down_write(&mm->mmap_sem);
  1487. up_write(&mm->mmap_sem);
  1488. }
  1489. }
  1490. static void release_pte_page(struct page *page)
  1491. {
  1492. /* 0 stands for page_is_file_cache(page) == false */
  1493. dec_zone_page_state(page, NR_ISOLATED_ANON + 0);
  1494. unlock_page(page);
  1495. putback_lru_page(page);
  1496. }
  1497. static void release_pte_pages(pte_t *pte, pte_t *_pte)
  1498. {
  1499. while (--_pte >= pte) {
  1500. pte_t pteval = *_pte;
  1501. if (!pte_none(pteval))
  1502. release_pte_page(pte_page(pteval));
  1503. }
  1504. }
  1505. static void release_all_pte_pages(pte_t *pte)
  1506. {
  1507. release_pte_pages(pte, pte + HPAGE_PMD_NR);
  1508. }
  1509. static int __collapse_huge_page_isolate(struct vm_area_struct *vma,
  1510. unsigned long address,
  1511. pte_t *pte)
  1512. {
  1513. struct page *page;
  1514. pte_t *_pte;
  1515. int referenced = 0, isolated = 0, none = 0;
  1516. for (_pte = pte; _pte < pte+HPAGE_PMD_NR;
  1517. _pte++, address += PAGE_SIZE) {
  1518. pte_t pteval = *_pte;
  1519. if (pte_none(pteval)) {
  1520. if (++none <= khugepaged_max_ptes_none)
  1521. continue;
  1522. else {
  1523. release_pte_pages(pte, _pte);
  1524. goto out;
  1525. }
  1526. }
  1527. if (!pte_present(pteval) || !pte_write(pteval)) {
  1528. release_pte_pages(pte, _pte);
  1529. goto out;
  1530. }
  1531. page = vm_normal_page(vma, address, pteval);
  1532. if (unlikely(!page)) {
  1533. release_pte_pages(pte, _pte);
  1534. goto out;
  1535. }
  1536. VM_BUG_ON(PageCompound(page));
  1537. BUG_ON(!PageAnon(page));
  1538. VM_BUG_ON(!PageSwapBacked(page));
  1539. /* cannot use mapcount: can't collapse if there's a gup pin */
  1540. if (page_count(page) != 1) {
  1541. release_pte_pages(pte, _pte);
  1542. goto out;
  1543. }
  1544. /*
  1545. * We can do it before isolate_lru_page because the
  1546. * page can't be freed from under us. NOTE: PG_lock
  1547. * is needed to serialize against split_huge_page
  1548. * when invoked from the VM.
  1549. */
  1550. if (!trylock_page(page)) {
  1551. release_pte_pages(pte, _pte);
  1552. goto out;
  1553. }
  1554. /*
  1555. * Isolate the page to avoid collapsing an hugepage
  1556. * currently in use by the VM.
  1557. */
  1558. if (isolate_lru_page(page)) {
  1559. unlock_page(page);
  1560. release_pte_pages(pte, _pte);
  1561. goto out;
  1562. }
  1563. /* 0 stands for page_is_file_cache(page) == false */
  1564. inc_zone_page_state(page, NR_ISOLATED_ANON + 0);
  1565. VM_BUG_ON(!PageLocked(page));
  1566. VM_BUG_ON(PageLRU(page));
  1567. /* If there is no mapped pte young don't collapse the page */
  1568. if (pte_young(pteval) || PageReferenced(page) ||
  1569. mmu_notifier_test_young(vma->vm_mm, address))
  1570. referenced = 1;
  1571. }
  1572. if (unlikely(!referenced))
  1573. release_all_pte_pages(pte);
  1574. else
  1575. isolated = 1;
  1576. out:
  1577. return isolated;
  1578. }
  1579. static void __collapse_huge_page_copy(pte_t *pte, struct page *page,
  1580. struct vm_area_struct *vma,
  1581. unsigned long address,
  1582. spinlock_t *ptl)
  1583. {
  1584. pte_t *_pte;
  1585. for (_pte = pte; _pte < pte+HPAGE_PMD_NR; _pte++) {
  1586. pte_t pteval = *_pte;
  1587. struct page *src_page;
  1588. if (pte_none(pteval)) {
  1589. clear_user_highpage(page, address);
  1590. add_mm_counter(vma->vm_mm, MM_ANONPAGES, 1);
  1591. } else {
  1592. src_page = pte_page(pteval);
  1593. copy_user_highpage(page, src_page, address, vma);
  1594. VM_BUG_ON(page_mapcount(src_page) != 1);
  1595. VM_BUG_ON(page_count(src_page) != 2);
  1596. release_pte_page(src_page);
  1597. /*
  1598. * ptl mostly unnecessary, but preempt has to
  1599. * be disabled to update the per-cpu stats
  1600. * inside page_remove_rmap().
  1601. */
  1602. spin_lock(ptl);
  1603. /*
  1604. * paravirt calls inside pte_clear here are
  1605. * superfluous.
  1606. */
  1607. pte_clear(vma->vm_mm, address, _pte);
  1608. page_remove_rmap(src_page);
  1609. spin_unlock(ptl);
  1610. free_page_and_swap_cache(src_page);
  1611. }
  1612. address += PAGE_SIZE;
  1613. page++;
  1614. }
  1615. }
  1616. static void collapse_huge_page(struct mm_struct *mm,
  1617. unsigned long address,
  1618. struct page **hpage,
  1619. struct vm_area_struct *vma,
  1620. int node)
  1621. {
  1622. pgd_t *pgd;
  1623. pud_t *pud;
  1624. pmd_t *pmd, _pmd;
  1625. pte_t *pte;
  1626. pgtable_t pgtable;
  1627. struct page *new_page;
  1628. spinlock_t *ptl;
  1629. int isolated;
  1630. unsigned long hstart, hend;
  1631. VM_BUG_ON(address & ~HPAGE_PMD_MASK);
  1632. #ifndef CONFIG_NUMA
  1633. up_read(&mm->mmap_sem);
  1634. VM_BUG_ON(!*hpage);
  1635. new_page = *hpage;
  1636. #else
  1637. VM_BUG_ON(*hpage);
  1638. /*
  1639. * Allocate the page while the vma is still valid and under
  1640. * the mmap_sem read mode so there is no memory allocation
  1641. * later when we take the mmap_sem in write mode. This is more
  1642. * friendly behavior (OTOH it may actually hide bugs) to
  1643. * filesystems in userland with daemons allocating memory in
  1644. * the userland I/O paths. Allocating memory with the
  1645. * mmap_sem in read mode is good idea also to allow greater
  1646. * scalability.
  1647. */
  1648. new_page = alloc_hugepage_vma(khugepaged_defrag(), vma, address,
  1649. node, __GFP_OTHER_NODE);
  1650. /*
  1651. * After allocating the hugepage, release the mmap_sem read lock in
  1652. * preparation for taking it in write mode.
  1653. */
  1654. up_read(&mm->mmap_sem);
  1655. if (unlikely(!new_page)) {
  1656. count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
  1657. *hpage = ERR_PTR(-ENOMEM);
  1658. return;
  1659. }
  1660. #endif
  1661. count_vm_event(THP_COLLAPSE_ALLOC);
  1662. if (unlikely(mem_cgroup_newpage_charge(new_page, mm, GFP_KERNEL))) {
  1663. #ifdef CONFIG_NUMA
  1664. put_page(new_page);
  1665. #endif
  1666. return;
  1667. }
  1668. /*
  1669. * Prevent all access to pagetables with the exception of
  1670. * gup_fast later hanlded by the ptep_clear_flush and the VM
  1671. * handled by the anon_vma lock + PG_lock.
  1672. */
  1673. down_write(&mm->mmap_sem);
  1674. if (unlikely(khugepaged_test_exit(mm)))
  1675. goto out;
  1676. vma = find_vma(mm, address);
  1677. hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
  1678. hend = vma->vm_end & HPAGE_PMD_MASK;
  1679. if (address < hstart || address + HPAGE_PMD_SIZE > hend)
  1680. goto out;
  1681. if ((!(vma->vm_flags & VM_HUGEPAGE) && !khugepaged_always()) ||
  1682. (vma->vm_flags & VM_NOHUGEPAGE))
  1683. goto out;
  1684. if (!vma->anon_vma || vma->vm_ops)
  1685. goto out;
  1686. if (is_vma_temporary_stack(vma))
  1687. goto out;
  1688. /*
  1689. * If is_pfn_mapping() is true is_learn_pfn_mapping() must be
  1690. * true too, verify it here.
  1691. */
  1692. VM_BUG_ON(is_linear_pfn_mapping(vma) || vma->vm_flags & VM_NO_THP);
  1693. pgd = pgd_offset(mm, address);
  1694. if (!pgd_present(*pgd))
  1695. goto out;
  1696. pud = pud_offset(pgd, address);
  1697. if (!pud_present(*pud))
  1698. goto out;
  1699. pmd = pmd_offset(pud, address);
  1700. /* pmd can't go away or become huge under us */
  1701. if (!pmd_present(*pmd) || pmd_trans_huge(*pmd))
  1702. goto out;
  1703. anon_vma_lock(vma->anon_vma);
  1704. pte = pte_offset_map(pmd, address);
  1705. ptl = pte_lockptr(mm, pmd);
  1706. spin_lock(&mm->page_table_lock); /* probably unnecessary */
  1707. /*
  1708. * After this gup_fast can't run anymore. This also removes
  1709. * any huge TLB entry from the CPU so we won't allow
  1710. * huge and small TLB entries for the same virtual address
  1711. * to avoid the risk of CPU bugs in that area.
  1712. */
  1713. _pmd = pmdp_clear_flush_notify(vma, address, pmd);
  1714. spin_unlock(&mm->page_table_lock);
  1715. spin_lock(ptl);
  1716. isolated = __collapse_huge_page_isolate(vma, address, pte);
  1717. spin_unlock(ptl);
  1718. if (unlikely(!isolated)) {
  1719. pte_unmap(pte);
  1720. spin_lock(&mm->page_table_lock);
  1721. BUG_ON(!pmd_none(*pmd));
  1722. set_pmd_at(mm, address, pmd, _pmd);
  1723. spin_unlock(&mm->page_table_lock);
  1724. anon_vma_unlock(vma->anon_vma);
  1725. goto out;
  1726. }
  1727. /*
  1728. * All pages are isolated and locked so anon_vma rmap
  1729. * can't run anymore.
  1730. */
  1731. anon_vma_unlock(vma->anon_vma);
  1732. __collapse_huge_page_copy(pte, new_page, vma, address, ptl);
  1733. pte_unmap(pte);
  1734. __SetPageUptodate(new_page);
  1735. pgtable = pmd_pgtable(_pmd);
  1736. VM_BUG_ON(page_count(pgtable) != 1);
  1737. VM_BUG_ON(page_mapcount(pgtable) != 0);
  1738. _pmd = mk_pmd(new_page, vma->vm_page_prot);
  1739. _pmd = maybe_pmd_mkwrite(pmd_mkdirty(_pmd), vma);
  1740. _pmd = pmd_mkhuge(_pmd);
  1741. /*
  1742. * spin_lock() below is not the equivalent of smp_wmb(), so
  1743. * this is needed to avoid the copy_huge_page writes to become
  1744. * visible after the set_pmd_at() write.
  1745. */
  1746. smp_wmb();
  1747. spin_lock(&mm->page_table_lock);
  1748. BUG_ON(!pmd_none(*pmd));
  1749. page_add_new_anon_rmap(new_page, vma, address);
  1750. set_pmd_at(mm, address, pmd, _pmd);
  1751. update_mmu_cache(vma, address, _pmd);
  1752. prepare_pmd_huge_pte(pgtable, mm);
  1753. spin_unlock(&mm->page_table_lock);
  1754. #ifndef CONFIG_NUMA
  1755. *hpage = NULL;
  1756. #endif
  1757. khugepaged_pages_collapsed++;
  1758. out_up_write:
  1759. up_write(&mm->mmap_sem);
  1760. return;
  1761. out:
  1762. mem_cgroup_uncharge_page(new_page);
  1763. #ifdef CONFIG_NUMA
  1764. put_page(new_page);
  1765. #endif
  1766. goto out_up_write;
  1767. }
  1768. static int khugepaged_scan_pmd(struct mm_struct *mm,
  1769. struct vm_area_struct *vma,
  1770. unsigned long address,
  1771. struct page **hpage)
  1772. {
  1773. pgd_t *pgd;
  1774. pud_t *pud;
  1775. pmd_t *pmd;
  1776. pte_t *pte, *_pte;
  1777. int ret = 0, referenced = 0, none = 0;
  1778. struct page *page;
  1779. unsigned long _address;
  1780. spinlock_t *ptl;
  1781. int node = -1;
  1782. VM_BUG_ON(address & ~HPAGE_PMD_MASK);
  1783. pgd = pgd_offset(mm, address);
  1784. if (!pgd_present(*pgd))
  1785. goto out;
  1786. pud = pud_offset(pgd, address);
  1787. if (!pud_present(*pud))
  1788. goto out;
  1789. pmd = pmd_offset(pud, address);
  1790. if (!pmd_present(*pmd) || pmd_trans_huge(*pmd))
  1791. goto out;
  1792. pte = pte_offset_map_lock(mm, pmd, address, &ptl);
  1793. for (_address = address, _pte = pte; _pte < pte+HPAGE_PMD_NR;
  1794. _pte++, _address += PAGE_SIZE) {
  1795. pte_t pteval = *_pte;
  1796. if (pte_none(pteval)) {
  1797. if (++none <= khugepaged_max_ptes_none)
  1798. continue;
  1799. else
  1800. goto out_unmap;
  1801. }
  1802. if (!pte_present(pteval) || !pte_write(pteval))
  1803. goto out_unmap;
  1804. page = vm_normal_page(vma, _address, pteval);
  1805. if (unlikely(!page))
  1806. goto out_unmap;
  1807. /*
  1808. * Chose the node of the first page. This could
  1809. * be more sophisticated and look at more pages,
  1810. * but isn't for now.
  1811. */
  1812. if (node == -1)
  1813. node = page_to_nid(page);
  1814. VM_BUG_ON(PageCompound(page));
  1815. if (!PageLRU(page) || PageLocked(page) || !PageAnon(page))
  1816. goto out_unmap;
  1817. /* cannot use mapcount: can't collapse if there's a gup pin */
  1818. if (page_count(page) != 1)
  1819. goto out_unmap;
  1820. if (pte_young(pteval) || PageReferenced(page) ||
  1821. mmu_notifier_test_young(vma->vm_mm, address))
  1822. referenced = 1;
  1823. }
  1824. if (referenced)
  1825. ret = 1;
  1826. out_unmap:
  1827. pte_unmap_unlock(pte, ptl);
  1828. if (ret)
  1829. /* collapse_huge_page will return with the mmap_sem released */
  1830. collapse_huge_page(mm, address, hpage, vma, node);
  1831. out:
  1832. return ret;
  1833. }
  1834. static void collect_mm_slot(struct mm_slot *mm_slot)
  1835. {
  1836. struct mm_struct *mm = mm_slot->mm;
  1837. VM_BUG_ON(NR_CPUS != 1 && !spin_is_locked(&khugepaged_mm_lock));
  1838. if (khugepaged_test_exit(mm)) {
  1839. /* free mm_slot */
  1840. hlist_del(&mm_slot->hash);
  1841. list_del(&mm_slot->mm_node);
  1842. /*
  1843. * Not strictly needed because the mm exited already.
  1844. *
  1845. * clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
  1846. */
  1847. /* khugepaged_mm_lock actually not necessary for the below */
  1848. free_mm_slot(mm_slot);
  1849. mmdrop(mm);
  1850. }
  1851. }
  1852. static unsigned int khugepaged_scan_mm_slot(unsigned int pages,
  1853. struct page **hpage)
  1854. __releases(&khugepaged_mm_lock)
  1855. __acquires(&khugepaged_mm_lock)
  1856. {
  1857. struct mm_slot *mm_slot;
  1858. struct mm_struct *mm;
  1859. struct vm_area_struct *vma;
  1860. int progress = 0;
  1861. VM_BUG_ON(!pages);
  1862. VM_BUG_ON(NR_CPUS != 1 && !spin_is_locked(&khugepaged_mm_lock));
  1863. if (khugepaged_scan.mm_slot)
  1864. mm_slot = khugepaged_scan.mm_slot;
  1865. else {
  1866. mm_slot = list_entry(khugepaged_scan.mm_head.next,
  1867. struct mm_slot, mm_node);
  1868. khugepaged_scan.address = 0;
  1869. khugepaged_scan.mm_slot = mm_slot;
  1870. }
  1871. spin_unlock(&khugepaged_mm_lock);
  1872. mm = mm_slot->mm;
  1873. down_read(&mm->mmap_sem);
  1874. if (unlikely(khugepaged_test_exit(mm)))
  1875. vma = NULL;
  1876. else
  1877. vma = find_vma(mm, khugepaged_scan.address);
  1878. progress++;
  1879. for (; vma; vma = vma->vm_next) {
  1880. unsigned long hstart, hend;
  1881. cond_resched();
  1882. if (unlikely(khugepaged_test_exit(mm))) {
  1883. progress++;
  1884. break;
  1885. }
  1886. if ((!(vma->vm_flags & VM_HUGEPAGE) &&
  1887. !khugepaged_always()) ||
  1888. (vma->vm_flags & VM_NOHUGEPAGE)) {
  1889. skip:
  1890. progress++;
  1891. continue;
  1892. }
  1893. if (!vma->anon_vma || vma->vm_ops)
  1894. goto skip;
  1895. if (is_vma_temporary_stack(vma))
  1896. goto skip;
  1897. /*
  1898. * If is_pfn_mapping() is true is_learn_pfn_mapping()
  1899. * must be true too, verify it here.
  1900. */
  1901. VM_BUG_ON(is_linear_pfn_mapping(vma) ||
  1902. vma->vm_flags & VM_NO_THP);
  1903. hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
  1904. hend = vma->vm_end & HPAGE_PMD_MASK;
  1905. if (hstart >= hend)
  1906. goto skip;
  1907. if (khugepaged_scan.address > hend)
  1908. goto skip;
  1909. if (khugepaged_scan.address < hstart)
  1910. khugepaged_scan.address = hstart;
  1911. VM_BUG_ON(khugepaged_scan.address & ~HPAGE_PMD_MASK);
  1912. while (khugepaged_scan.address < hend) {
  1913. int ret;
  1914. cond_resched();
  1915. if (unlikely(khugepaged_test_exit(mm)))
  1916. goto breakouterloop;
  1917. VM_BUG_ON(khugepaged_scan.address < hstart ||
  1918. khugepaged_scan.address + HPAGE_PMD_SIZE >
  1919. hend);
  1920. ret = khugepaged_scan_pmd(mm, vma,
  1921. khugepaged_scan.address,
  1922. hpage);
  1923. /* move to next address */
  1924. khugepaged_scan.address += HPAGE_PMD_SIZE;
  1925. progress += HPAGE_PMD_NR;
  1926. if (ret)
  1927. /* we released mmap_sem so break loop */
  1928. goto breakouterloop_mmap_sem;
  1929. if (progress >= pages)
  1930. goto breakouterloop;
  1931. }
  1932. }
  1933. breakouterloop:
  1934. up_read(&mm->mmap_sem); /* exit_mmap will destroy ptes after this */
  1935. breakouterloop_mmap_sem:
  1936. spin_lock(&khugepaged_mm_lock);
  1937. VM_BUG_ON(khugepaged_scan.mm_slot != mm_slot);
  1938. /*
  1939. * Release the current mm_slot if this mm is about to die, or
  1940. * if we scanned all vmas of this mm.
  1941. */
  1942. if (khugepaged_test_exit(mm) || !vma) {
  1943. /*
  1944. * Make sure that if mm_users is reaching zero while
  1945. * khugepaged runs here, khugepaged_exit will find
  1946. * mm_slot not pointing to the exiting mm.
  1947. */
  1948. if (mm_slot->mm_node.next != &khugepaged_scan.mm_head) {
  1949. khugepaged_scan.mm_slot = list_entry(
  1950. mm_slot->mm_node.next,
  1951. struct mm_slot, mm_node);
  1952. khugepaged_scan.address = 0;
  1953. } else {
  1954. khugepaged_scan.mm_slot = NULL;
  1955. khugepaged_full_scans++;
  1956. }
  1957. collect_mm_slot(mm_slot);
  1958. }
  1959. return progress;
  1960. }
  1961. static int khugepaged_has_work(void)
  1962. {
  1963. return !list_empty(&khugepaged_scan.mm_head) &&
  1964. khugepaged_enabled();
  1965. }
  1966. static int khugepaged_wait_event(void)
  1967. {
  1968. return !list_empty(&khugepaged_scan.mm_head) ||
  1969. !khugepaged_enabled();
  1970. }
  1971. static void khugepaged_do_scan(struct page **hpage)
  1972. {
  1973. unsigned int progress = 0, pass_through_head = 0;
  1974. unsigned int pages = khugepaged_pages_to_scan;
  1975. barrier(); /* write khugepaged_pages_to_scan to local stack */
  1976. while (progress < pages) {
  1977. cond_resched();
  1978. #ifndef CONFIG_NUMA
  1979. if (!*hpage) {
  1980. *hpage = alloc_hugepage(khugepaged_defrag());
  1981. if (unlikely(!*hpage)) {
  1982. count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
  1983. break;
  1984. }
  1985. count_vm_event(THP_COLLAPSE_ALLOC);
  1986. }
  1987. #else
  1988. if (IS_ERR(*hpage))
  1989. break;
  1990. #endif
  1991. if (unlikely(kthread_should_stop() || freezing(current)))
  1992. break;
  1993. spin_lock(&khugepaged_mm_lock);
  1994. if (!khugepaged_scan.mm_slot)
  1995. pass_through_head++;
  1996. if (khugepaged_has_work() &&
  1997. pass_through_head < 2)
  1998. progress += khugepaged_scan_mm_slot(pages - progress,
  1999. hpage);
  2000. else
  2001. progress = pages;
  2002. spin_unlock(&khugepaged_mm_lock);
  2003. }
  2004. }
  2005. static void khugepaged_alloc_sleep(void)
  2006. {
  2007. wait_event_freezable_timeout(khugepaged_wait, false,
  2008. msecs_to_jiffies(khugepaged_alloc_sleep_millisecs));
  2009. }
  2010. #ifndef CONFIG_NUMA
  2011. static struct page *khugepaged_alloc_hugepage(void)
  2012. {
  2013. struct page *hpage;
  2014. do {
  2015. hpage = alloc_hugepage(khugepaged_defrag());
  2016. if (!hpage) {
  2017. count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
  2018. khugepaged_alloc_sleep();
  2019. } else
  2020. count_vm_event(THP_COLLAPSE_ALLOC);
  2021. } while (unlikely(!hpage) &&
  2022. likely(khugepaged_enabled()));
  2023. return hpage;
  2024. }
  2025. #endif
  2026. static void khugepaged_loop(void)
  2027. {
  2028. struct page *hpage;
  2029. #ifdef CONFIG_NUMA
  2030. hpage = NULL;
  2031. #endif
  2032. while (likely(khugepaged_enabled())) {
  2033. #ifndef CONFIG_NUMA
  2034. hpage = khugepaged_alloc_hugepage();
  2035. if (unlikely(!hpage))
  2036. break;
  2037. #else
  2038. if (IS_ERR(hpage)) {
  2039. khugepaged_alloc_sleep();
  2040. hpage = NULL;
  2041. }
  2042. #endif
  2043. khugepaged_do_scan(&hpage);
  2044. #ifndef CONFIG_NUMA
  2045. if (hpage)
  2046. put_page(hpage);
  2047. #endif
  2048. try_to_freeze();
  2049. if (unlikely(kthread_should_stop()))
  2050. break;
  2051. if (khugepaged_has_work()) {
  2052. if (!khugepaged_scan_sleep_millisecs)
  2053. continue;
  2054. wait_event_freezable_timeout(khugepaged_wait, false,
  2055. msecs_to_jiffies(khugepaged_scan_sleep_millisecs));
  2056. } else if (khugepaged_enabled())
  2057. wait_event_freezable(khugepaged_wait,
  2058. khugepaged_wait_event());
  2059. }
  2060. }
  2061. static int khugepaged(void *none)
  2062. {
  2063. struct mm_slot *mm_slot;
  2064. set_freezable();
  2065. set_user_nice(current, 19);
  2066. /* serialize with start_khugepaged() */
  2067. mutex_lock(&khugepaged_mutex);
  2068. for (;;) {
  2069. mutex_unlock(&khugepaged_mutex);
  2070. VM_BUG_ON(khugepaged_thread != current);
  2071. khugepaged_loop();
  2072. VM_BUG_ON(khugepaged_thread != current);
  2073. mutex_lock(&khugepaged_mutex);
  2074. if (!khugepaged_enabled())
  2075. break;
  2076. if (unlikely(kthread_should_stop()))
  2077. break;
  2078. }
  2079. spin_lock(&khugepaged_mm_lock);
  2080. mm_slot = khugepaged_scan.mm_slot;
  2081. khugepaged_scan.mm_slot = NULL;
  2082. if (mm_slot)
  2083. collect_mm_slot(mm_slot);
  2084. spin_unlock(&khugepaged_mm_lock);
  2085. khugepaged_thread = NULL;
  2086. mutex_unlock(&khugepaged_mutex);
  2087. return 0;
  2088. }
  2089. void __split_huge_page_pmd(struct mm_struct *mm, pmd_t *pmd)
  2090. {
  2091. struct page *page;
  2092. spin_lock(&mm->page_table_lock);
  2093. if (unlikely(!pmd_trans_huge(*pmd))) {
  2094. spin_unlock(&mm->page_table_lock);
  2095. return;
  2096. }
  2097. page = pmd_page(*pmd);
  2098. VM_BUG_ON(!page_count(page));
  2099. get_page(page);
  2100. spin_unlock(&mm->page_table_lock);
  2101. split_huge_page(page);
  2102. put_page(page);
  2103. BUG_ON(pmd_trans_huge(*pmd));
  2104. }
  2105. static void split_huge_page_address(struct mm_struct *mm,
  2106. unsigned long address)
  2107. {
  2108. pgd_t *pgd;
  2109. pud_t *pud;
  2110. pmd_t *pmd;
  2111. VM_BUG_ON(!(address & ~HPAGE_PMD_MASK));
  2112. pgd = pgd_offset(mm, address);
  2113. if (!pgd_present(*pgd))
  2114. return;
  2115. pud = pud_offset(pgd, address);
  2116. if (!pud_present(*pud))
  2117. return;
  2118. pmd = pmd_offset(pud, address);
  2119. if (!pmd_present(*pmd))
  2120. return;
  2121. /*
  2122. * Caller holds the mmap_sem write mode, so a huge pmd cannot
  2123. * materialize from under us.
  2124. */
  2125. split_huge_page_pmd(mm, pmd);
  2126. }
  2127. void __vma_adjust_trans_huge(struct vm_area_struct *vma,
  2128. unsigned long start,
  2129. unsigned long end,
  2130. long adjust_next)
  2131. {
  2132. /*
  2133. * If the new start address isn't hpage aligned and it could
  2134. * previously contain an hugepage: check if we need to split
  2135. * an huge pmd.
  2136. */
  2137. if (start & ~HPAGE_PMD_MASK &&
  2138. (start & HPAGE_PMD_MASK) >= vma->vm_start &&
  2139. (start & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
  2140. split_huge_page_address(vma->vm_mm, start);
  2141. /*
  2142. * If the new end address isn't hpage aligned and it could
  2143. * previously contain an hugepage: check if we need to split
  2144. * an huge pmd.
  2145. */
  2146. if (end & ~HPAGE_PMD_MASK &&
  2147. (end & HPAGE_PMD_MASK) >= vma->vm_start &&
  2148. (end & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
  2149. split_huge_page_address(vma->vm_mm, end);
  2150. /*
  2151. * If we're also updating the vma->vm_next->vm_start, if the new
  2152. * vm_next->vm_start isn't page aligned and it could previously
  2153. * contain an hugepage: check if we need to split an huge pmd.
  2154. */
  2155. if (adjust_next > 0) {
  2156. struct vm_area_struct *next = vma->vm_next;
  2157. unsigned long nstart = next->vm_start;
  2158. nstart += adjust_next << PAGE_SHIFT;
  2159. if (nstart & ~HPAGE_PMD_MASK &&
  2160. (nstart & HPAGE_PMD_MASK) >= next->vm_start &&
  2161. (nstart & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= next->vm_end)
  2162. split_huge_page_address(next->vm_mm, nstart);
  2163. }
  2164. }