dmapool.c 13 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507
  1. /*
  2. * DMA Pool allocator
  3. *
  4. * Copyright 2001 David Brownell
  5. * Copyright 2007 Intel Corporation
  6. * Author: Matthew Wilcox <willy@linux.intel.com>
  7. *
  8. * This software may be redistributed and/or modified under the terms of
  9. * the GNU General Public License ("GPL") version 2 as published by the
  10. * Free Software Foundation.
  11. *
  12. * This allocator returns small blocks of a given size which are DMA-able by
  13. * the given device. It uses the dma_alloc_coherent page allocator to get
  14. * new pages, then splits them up into blocks of the required size.
  15. * Many older drivers still have their own code to do this.
  16. *
  17. * The current design of this allocator is fairly simple. The pool is
  18. * represented by the 'struct dma_pool' which keeps a doubly-linked list of
  19. * allocated pages. Each page in the page_list is split into blocks of at
  20. * least 'size' bytes. Free blocks are tracked in an unsorted singly-linked
  21. * list of free blocks within the page. Used blocks aren't tracked, but we
  22. * keep a count of how many are currently allocated from each page.
  23. */
  24. #include <linux/device.h>
  25. #include <linux/dma-mapping.h>
  26. #include <linux/dmapool.h>
  27. #include <linux/kernel.h>
  28. #include <linux/list.h>
  29. #include <linux/export.h>
  30. #include <linux/mutex.h>
  31. #include <linux/poison.h>
  32. #include <linux/sched.h>
  33. #include <linux/slab.h>
  34. #include <linux/stat.h>
  35. #include <linux/spinlock.h>
  36. #include <linux/string.h>
  37. #include <linux/types.h>
  38. #include <linux/wait.h>
  39. #if defined(CONFIG_DEBUG_SLAB) || defined(CONFIG_SLUB_DEBUG_ON)
  40. #define DMAPOOL_DEBUG 1
  41. #endif
  42. struct dma_pool { /* the pool */
  43. struct list_head page_list;
  44. spinlock_t lock;
  45. size_t size;
  46. struct device *dev;
  47. size_t allocation;
  48. size_t boundary;
  49. char name[32];
  50. wait_queue_head_t waitq;
  51. struct list_head pools;
  52. };
  53. struct dma_page { /* cacheable header for 'allocation' bytes */
  54. struct list_head page_list;
  55. void *vaddr;
  56. dma_addr_t dma;
  57. unsigned int in_use;
  58. unsigned int offset;
  59. };
  60. #define POOL_TIMEOUT_JIFFIES ((100 /* msec */ * HZ) / 1000)
  61. static DEFINE_MUTEX(pools_lock);
  62. static ssize_t
  63. show_pools(struct device *dev, struct device_attribute *attr, char *buf)
  64. {
  65. unsigned temp;
  66. unsigned size;
  67. char *next;
  68. struct dma_page *page;
  69. struct dma_pool *pool;
  70. next = buf;
  71. size = PAGE_SIZE;
  72. temp = scnprintf(next, size, "poolinfo - 0.1\n");
  73. size -= temp;
  74. next += temp;
  75. mutex_lock(&pools_lock);
  76. list_for_each_entry(pool, &dev->dma_pools, pools) {
  77. unsigned pages = 0;
  78. unsigned blocks = 0;
  79. spin_lock_irq(&pool->lock);
  80. list_for_each_entry(page, &pool->page_list, page_list) {
  81. pages++;
  82. blocks += page->in_use;
  83. }
  84. spin_unlock_irq(&pool->lock);
  85. /* per-pool info, no real statistics yet */
  86. temp = scnprintf(next, size, "%-16s %4u %4Zu %4Zu %2u\n",
  87. pool->name, blocks,
  88. pages * (pool->allocation / pool->size),
  89. pool->size, pages);
  90. size -= temp;
  91. next += temp;
  92. }
  93. mutex_unlock(&pools_lock);
  94. return PAGE_SIZE - size;
  95. }
  96. static DEVICE_ATTR(pools, S_IRUGO, show_pools, NULL);
  97. /**
  98. * dma_pool_create - Creates a pool of consistent memory blocks, for dma.
  99. * @name: name of pool, for diagnostics
  100. * @dev: device that will be doing the DMA
  101. * @size: size of the blocks in this pool.
  102. * @align: alignment requirement for blocks; must be a power of two
  103. * @boundary: returned blocks won't cross this power of two boundary
  104. * Context: !in_interrupt()
  105. *
  106. * Returns a dma allocation pool with the requested characteristics, or
  107. * null if one can't be created. Given one of these pools, dma_pool_alloc()
  108. * may be used to allocate memory. Such memory will all have "consistent"
  109. * DMA mappings, accessible by the device and its driver without using
  110. * cache flushing primitives. The actual size of blocks allocated may be
  111. * larger than requested because of alignment.
  112. *
  113. * If @boundary is nonzero, objects returned from dma_pool_alloc() won't
  114. * cross that size boundary. This is useful for devices which have
  115. * addressing restrictions on individual DMA transfers, such as not crossing
  116. * boundaries of 4KBytes.
  117. */
  118. struct dma_pool *dma_pool_create(const char *name, struct device *dev,
  119. size_t size, size_t align, size_t boundary)
  120. {
  121. struct dma_pool *retval;
  122. size_t allocation;
  123. if (align == 0) {
  124. align = 1;
  125. } else if (align & (align - 1)) {
  126. return NULL;
  127. }
  128. if (size == 0) {
  129. return NULL;
  130. } else if (size < 4) {
  131. size = 4;
  132. }
  133. if ((size % align) != 0)
  134. size = ALIGN(size, align);
  135. allocation = max_t(size_t, size, PAGE_SIZE);
  136. if (!boundary) {
  137. boundary = allocation;
  138. } else if ((boundary < size) || (boundary & (boundary - 1))) {
  139. return NULL;
  140. }
  141. retval = kmalloc_node(sizeof(*retval), GFP_KERNEL, dev_to_node(dev));
  142. if (!retval)
  143. return retval;
  144. strlcpy(retval->name, name, sizeof(retval->name));
  145. retval->dev = dev;
  146. INIT_LIST_HEAD(&retval->page_list);
  147. spin_lock_init(&retval->lock);
  148. retval->size = size;
  149. retval->boundary = boundary;
  150. retval->allocation = allocation;
  151. init_waitqueue_head(&retval->waitq);
  152. if (dev) {
  153. int ret;
  154. mutex_lock(&pools_lock);
  155. if (list_empty(&dev->dma_pools))
  156. ret = device_create_file(dev, &dev_attr_pools);
  157. else
  158. ret = 0;
  159. /* note: not currently insisting "name" be unique */
  160. if (!ret)
  161. list_add(&retval->pools, &dev->dma_pools);
  162. else {
  163. kfree(retval);
  164. retval = NULL;
  165. }
  166. mutex_unlock(&pools_lock);
  167. } else
  168. INIT_LIST_HEAD(&retval->pools);
  169. return retval;
  170. }
  171. EXPORT_SYMBOL(dma_pool_create);
  172. static void pool_initialise_page(struct dma_pool *pool, struct dma_page *page)
  173. {
  174. unsigned int offset = 0;
  175. unsigned int next_boundary = pool->boundary;
  176. do {
  177. unsigned int next = offset + pool->size;
  178. if (unlikely((next + pool->size) >= next_boundary)) {
  179. next = next_boundary;
  180. next_boundary += pool->boundary;
  181. }
  182. *(int *)(page->vaddr + offset) = next;
  183. offset = next;
  184. } while (offset < pool->allocation);
  185. }
  186. static struct dma_page *pool_alloc_page(struct dma_pool *pool, gfp_t mem_flags)
  187. {
  188. struct dma_page *page;
  189. page = kmalloc(sizeof(*page), mem_flags);
  190. if (!page)
  191. return NULL;
  192. page->vaddr = dma_alloc_coherent(pool->dev, pool->allocation,
  193. &page->dma, mem_flags);
  194. if (page->vaddr) {
  195. #ifdef DMAPOOL_DEBUG
  196. memset(page->vaddr, POOL_POISON_FREED, pool->allocation);
  197. #endif
  198. pool_initialise_page(pool, page);
  199. list_add(&page->page_list, &pool->page_list);
  200. page->in_use = 0;
  201. page->offset = 0;
  202. } else {
  203. kfree(page);
  204. page = NULL;
  205. }
  206. return page;
  207. }
  208. static inline int is_page_busy(struct dma_page *page)
  209. {
  210. return page->in_use != 0;
  211. }
  212. static void pool_free_page(struct dma_pool *pool, struct dma_page *page)
  213. {
  214. dma_addr_t dma = page->dma;
  215. #ifdef DMAPOOL_DEBUG
  216. memset(page->vaddr, POOL_POISON_FREED, pool->allocation);
  217. #endif
  218. dma_free_coherent(pool->dev, pool->allocation, page->vaddr, dma);
  219. list_del(&page->page_list);
  220. kfree(page);
  221. }
  222. /**
  223. * dma_pool_destroy - destroys a pool of dma memory blocks.
  224. * @pool: dma pool that will be destroyed
  225. * Context: !in_interrupt()
  226. *
  227. * Caller guarantees that no more memory from the pool is in use,
  228. * and that nothing will try to use the pool after this call.
  229. */
  230. void dma_pool_destroy(struct dma_pool *pool)
  231. {
  232. mutex_lock(&pools_lock);
  233. list_del(&pool->pools);
  234. if (pool->dev && list_empty(&pool->dev->dma_pools))
  235. device_remove_file(pool->dev, &dev_attr_pools);
  236. mutex_unlock(&pools_lock);
  237. while (!list_empty(&pool->page_list)) {
  238. struct dma_page *page;
  239. page = list_entry(pool->page_list.next,
  240. struct dma_page, page_list);
  241. if (is_page_busy(page)) {
  242. if (pool->dev)
  243. dev_err(pool->dev,
  244. "dma_pool_destroy %s, %p busy\n",
  245. pool->name, page->vaddr);
  246. else
  247. printk(KERN_ERR
  248. "dma_pool_destroy %s, %p busy\n",
  249. pool->name, page->vaddr);
  250. /* leak the still-in-use consistent memory */
  251. list_del(&page->page_list);
  252. kfree(page);
  253. } else
  254. pool_free_page(pool, page);
  255. }
  256. kfree(pool);
  257. }
  258. EXPORT_SYMBOL(dma_pool_destroy);
  259. /**
  260. * dma_pool_alloc - get a block of consistent memory
  261. * @pool: dma pool that will produce the block
  262. * @mem_flags: GFP_* bitmask
  263. * @handle: pointer to dma address of block
  264. *
  265. * This returns the kernel virtual address of a currently unused block,
  266. * and reports its dma address through the handle.
  267. * If such a memory block can't be allocated, %NULL is returned.
  268. */
  269. void *dma_pool_alloc(struct dma_pool *pool, gfp_t mem_flags,
  270. dma_addr_t *handle)
  271. {
  272. unsigned long flags;
  273. struct dma_page *page;
  274. size_t offset;
  275. void *retval;
  276. might_sleep_if(mem_flags & __GFP_WAIT);
  277. spin_lock_irqsave(&pool->lock, flags);
  278. restart:
  279. list_for_each_entry(page, &pool->page_list, page_list) {
  280. if (page->offset < pool->allocation)
  281. goto ready;
  282. }
  283. page = pool_alloc_page(pool, GFP_ATOMIC);
  284. if (!page) {
  285. if (mem_flags & __GFP_WAIT) {
  286. DECLARE_WAITQUEUE(wait, current);
  287. __set_current_state(TASK_UNINTERRUPTIBLE);
  288. __add_wait_queue(&pool->waitq, &wait);
  289. spin_unlock_irqrestore(&pool->lock, flags);
  290. schedule_timeout(POOL_TIMEOUT_JIFFIES);
  291. spin_lock_irqsave(&pool->lock, flags);
  292. __remove_wait_queue(&pool->waitq, &wait);
  293. goto restart;
  294. }
  295. retval = NULL;
  296. goto done;
  297. }
  298. ready:
  299. page->in_use++;
  300. offset = page->offset;
  301. page->offset = *(int *)(page->vaddr + offset);
  302. retval = offset + page->vaddr;
  303. *handle = offset + page->dma;
  304. #ifdef DMAPOOL_DEBUG
  305. memset(retval, POOL_POISON_ALLOCATED, pool->size);
  306. #endif
  307. done:
  308. spin_unlock_irqrestore(&pool->lock, flags);
  309. return retval;
  310. }
  311. EXPORT_SYMBOL(dma_pool_alloc);
  312. static struct dma_page *pool_find_page(struct dma_pool *pool, dma_addr_t dma)
  313. {
  314. struct dma_page *page;
  315. list_for_each_entry(page, &pool->page_list, page_list) {
  316. if (dma < page->dma)
  317. continue;
  318. if (dma < (page->dma + pool->allocation))
  319. return page;
  320. }
  321. return NULL;
  322. }
  323. /**
  324. * dma_pool_free - put block back into dma pool
  325. * @pool: the dma pool holding the block
  326. * @vaddr: virtual address of block
  327. * @dma: dma address of block
  328. *
  329. * Caller promises neither device nor driver will again touch this block
  330. * unless it is first re-allocated.
  331. */
  332. void dma_pool_free(struct dma_pool *pool, void *vaddr, dma_addr_t dma)
  333. {
  334. struct dma_page *page;
  335. unsigned long flags;
  336. unsigned int offset;
  337. spin_lock_irqsave(&pool->lock, flags);
  338. page = pool_find_page(pool, dma);
  339. if (!page) {
  340. spin_unlock_irqrestore(&pool->lock, flags);
  341. if (pool->dev)
  342. dev_err(pool->dev,
  343. "dma_pool_free %s, %p/%lx (bad dma)\n",
  344. pool->name, vaddr, (unsigned long)dma);
  345. else
  346. printk(KERN_ERR "dma_pool_free %s, %p/%lx (bad dma)\n",
  347. pool->name, vaddr, (unsigned long)dma);
  348. return;
  349. }
  350. offset = vaddr - page->vaddr;
  351. #ifdef DMAPOOL_DEBUG
  352. if ((dma - page->dma) != offset) {
  353. spin_unlock_irqrestore(&pool->lock, flags);
  354. if (pool->dev)
  355. dev_err(pool->dev,
  356. "dma_pool_free %s, %p (bad vaddr)/%Lx\n",
  357. pool->name, vaddr, (unsigned long long)dma);
  358. else
  359. printk(KERN_ERR
  360. "dma_pool_free %s, %p (bad vaddr)/%Lx\n",
  361. pool->name, vaddr, (unsigned long long)dma);
  362. return;
  363. }
  364. {
  365. unsigned int chain = page->offset;
  366. while (chain < pool->allocation) {
  367. if (chain != offset) {
  368. chain = *(int *)(page->vaddr + chain);
  369. continue;
  370. }
  371. spin_unlock_irqrestore(&pool->lock, flags);
  372. if (pool->dev)
  373. dev_err(pool->dev, "dma_pool_free %s, dma %Lx "
  374. "already free\n", pool->name,
  375. (unsigned long long)dma);
  376. else
  377. printk(KERN_ERR "dma_pool_free %s, dma %Lx "
  378. "already free\n", pool->name,
  379. (unsigned long long)dma);
  380. return;
  381. }
  382. }
  383. memset(vaddr, POOL_POISON_FREED, pool->size);
  384. #endif
  385. page->in_use--;
  386. *(int *)vaddr = page->offset;
  387. page->offset = offset;
  388. if (waitqueue_active(&pool->waitq))
  389. wake_up_locked(&pool->waitq);
  390. /*
  391. * Resist a temptation to do
  392. * if (!is_page_busy(page)) pool_free_page(pool, page);
  393. * Better have a few empty pages hang around.
  394. */
  395. spin_unlock_irqrestore(&pool->lock, flags);
  396. }
  397. EXPORT_SYMBOL(dma_pool_free);
  398. /*
  399. * Managed DMA pool
  400. */
  401. static void dmam_pool_release(struct device *dev, void *res)
  402. {
  403. struct dma_pool *pool = *(struct dma_pool **)res;
  404. dma_pool_destroy(pool);
  405. }
  406. static int dmam_pool_match(struct device *dev, void *res, void *match_data)
  407. {
  408. return *(struct dma_pool **)res == match_data;
  409. }
  410. /**
  411. * dmam_pool_create - Managed dma_pool_create()
  412. * @name: name of pool, for diagnostics
  413. * @dev: device that will be doing the DMA
  414. * @size: size of the blocks in this pool.
  415. * @align: alignment requirement for blocks; must be a power of two
  416. * @allocation: returned blocks won't cross this boundary (or zero)
  417. *
  418. * Managed dma_pool_create(). DMA pool created with this function is
  419. * automatically destroyed on driver detach.
  420. */
  421. struct dma_pool *dmam_pool_create(const char *name, struct device *dev,
  422. size_t size, size_t align, size_t allocation)
  423. {
  424. struct dma_pool **ptr, *pool;
  425. ptr = devres_alloc(dmam_pool_release, sizeof(*ptr), GFP_KERNEL);
  426. if (!ptr)
  427. return NULL;
  428. pool = *ptr = dma_pool_create(name, dev, size, align, allocation);
  429. if (pool)
  430. devres_add(dev, ptr);
  431. else
  432. devres_free(ptr);
  433. return pool;
  434. }
  435. EXPORT_SYMBOL(dmam_pool_create);
  436. /**
  437. * dmam_pool_destroy - Managed dma_pool_destroy()
  438. * @pool: dma pool that will be destroyed
  439. *
  440. * Managed dma_pool_destroy().
  441. */
  442. void dmam_pool_destroy(struct dma_pool *pool)
  443. {
  444. struct device *dev = pool->dev;
  445. WARN_ON(devres_destroy(dev, dmam_pool_release, dmam_pool_match, pool));
  446. dma_pool_destroy(pool);
  447. }
  448. EXPORT_SYMBOL(dmam_pool_destroy);