compaction.c 21 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797
  1. /*
  2. * linux/mm/compaction.c
  3. *
  4. * Memory compaction for the reduction of external fragmentation. Note that
  5. * this heavily depends upon page migration to do all the real heavy
  6. * lifting
  7. *
  8. * Copyright IBM Corp. 2007-2010 Mel Gorman <mel@csn.ul.ie>
  9. */
  10. #include <linux/swap.h>
  11. #include <linux/migrate.h>
  12. #include <linux/compaction.h>
  13. #include <linux/mm_inline.h>
  14. #include <linux/backing-dev.h>
  15. #include <linux/sysctl.h>
  16. #include <linux/sysfs.h>
  17. #include "internal.h"
  18. #define CREATE_TRACE_POINTS
  19. #include <trace/events/compaction.h>
  20. /*
  21. * compact_control is used to track pages being migrated and the free pages
  22. * they are being migrated to during memory compaction. The free_pfn starts
  23. * at the end of a zone and migrate_pfn begins at the start. Movable pages
  24. * are moved to the end of a zone during a compaction run and the run
  25. * completes when free_pfn <= migrate_pfn
  26. */
  27. struct compact_control {
  28. struct list_head freepages; /* List of free pages to migrate to */
  29. struct list_head migratepages; /* List of pages being migrated */
  30. unsigned long nr_freepages; /* Number of isolated free pages */
  31. unsigned long nr_migratepages; /* Number of pages to migrate */
  32. unsigned long free_pfn; /* isolate_freepages search base */
  33. unsigned long migrate_pfn; /* isolate_migratepages search base */
  34. bool sync; /* Synchronous migration */
  35. int order; /* order a direct compactor needs */
  36. int migratetype; /* MOVABLE, RECLAIMABLE etc */
  37. struct zone *zone;
  38. };
  39. static unsigned long release_freepages(struct list_head *freelist)
  40. {
  41. struct page *page, *next;
  42. unsigned long count = 0;
  43. list_for_each_entry_safe(page, next, freelist, lru) {
  44. list_del(&page->lru);
  45. __free_page(page);
  46. count++;
  47. }
  48. return count;
  49. }
  50. /* Isolate free pages onto a private freelist. Must hold zone->lock */
  51. static unsigned long isolate_freepages_block(struct zone *zone,
  52. unsigned long blockpfn,
  53. struct list_head *freelist)
  54. {
  55. unsigned long zone_end_pfn, end_pfn;
  56. int nr_scanned = 0, total_isolated = 0;
  57. struct page *cursor;
  58. /* Get the last PFN we should scan for free pages at */
  59. zone_end_pfn = zone->zone_start_pfn + zone->spanned_pages;
  60. end_pfn = min(blockpfn + pageblock_nr_pages, zone_end_pfn);
  61. /* Find the first usable PFN in the block to initialse page cursor */
  62. for (; blockpfn < end_pfn; blockpfn++) {
  63. if (pfn_valid_within(blockpfn))
  64. break;
  65. }
  66. cursor = pfn_to_page(blockpfn);
  67. /* Isolate free pages. This assumes the block is valid */
  68. for (; blockpfn < end_pfn; blockpfn++, cursor++) {
  69. int isolated, i;
  70. struct page *page = cursor;
  71. if (!pfn_valid_within(blockpfn))
  72. continue;
  73. nr_scanned++;
  74. if (!PageBuddy(page))
  75. continue;
  76. /* Found a free page, break it into order-0 pages */
  77. isolated = split_free_page(page);
  78. total_isolated += isolated;
  79. for (i = 0; i < isolated; i++) {
  80. list_add(&page->lru, freelist);
  81. page++;
  82. }
  83. /* If a page was split, advance to the end of it */
  84. if (isolated) {
  85. blockpfn += isolated - 1;
  86. cursor += isolated - 1;
  87. }
  88. }
  89. trace_mm_compaction_isolate_freepages(nr_scanned, total_isolated);
  90. return total_isolated;
  91. }
  92. /* Returns true if the page is within a block suitable for migration to */
  93. static bool suitable_migration_target(struct page *page)
  94. {
  95. int migratetype = get_pageblock_migratetype(page);
  96. /* Don't interfere with memory hot-remove or the min_free_kbytes blocks */
  97. if (migratetype == MIGRATE_ISOLATE || migratetype == MIGRATE_RESERVE)
  98. return false;
  99. /* If the page is a large free page, then allow migration */
  100. if (PageBuddy(page) && page_order(page) >= pageblock_order)
  101. return true;
  102. /* If the block is MIGRATE_MOVABLE, allow migration */
  103. if (migratetype == MIGRATE_MOVABLE)
  104. return true;
  105. /* Otherwise skip the block */
  106. return false;
  107. }
  108. /*
  109. * Based on information in the current compact_control, find blocks
  110. * suitable for isolating free pages from and then isolate them.
  111. */
  112. static void isolate_freepages(struct zone *zone,
  113. struct compact_control *cc)
  114. {
  115. struct page *page;
  116. unsigned long high_pfn, low_pfn, pfn;
  117. unsigned long flags;
  118. int nr_freepages = cc->nr_freepages;
  119. struct list_head *freelist = &cc->freepages;
  120. /*
  121. * Initialise the free scanner. The starting point is where we last
  122. * scanned from (or the end of the zone if starting). The low point
  123. * is the end of the pageblock the migration scanner is using.
  124. */
  125. pfn = cc->free_pfn;
  126. low_pfn = cc->migrate_pfn + pageblock_nr_pages;
  127. /*
  128. * Take care that if the migration scanner is at the end of the zone
  129. * that the free scanner does not accidentally move to the next zone
  130. * in the next isolation cycle.
  131. */
  132. high_pfn = min(low_pfn, pfn);
  133. /*
  134. * Isolate free pages until enough are available to migrate the
  135. * pages on cc->migratepages. We stop searching if the migrate
  136. * and free page scanners meet or enough free pages are isolated.
  137. */
  138. for (; pfn > low_pfn && cc->nr_migratepages > nr_freepages;
  139. pfn -= pageblock_nr_pages) {
  140. unsigned long isolated;
  141. if (!pfn_valid(pfn))
  142. continue;
  143. /*
  144. * Check for overlapping nodes/zones. It's possible on some
  145. * configurations to have a setup like
  146. * node0 node1 node0
  147. * i.e. it's possible that all pages within a zones range of
  148. * pages do not belong to a single zone.
  149. */
  150. page = pfn_to_page(pfn);
  151. if (page_zone(page) != zone)
  152. continue;
  153. /* Check the block is suitable for migration */
  154. if (!suitable_migration_target(page))
  155. continue;
  156. /*
  157. * Found a block suitable for isolating free pages from. Now
  158. * we disabled interrupts, double check things are ok and
  159. * isolate the pages. This is to minimise the time IRQs
  160. * are disabled
  161. */
  162. isolated = 0;
  163. spin_lock_irqsave(&zone->lock, flags);
  164. if (suitable_migration_target(page)) {
  165. isolated = isolate_freepages_block(zone, pfn, freelist);
  166. nr_freepages += isolated;
  167. }
  168. spin_unlock_irqrestore(&zone->lock, flags);
  169. /*
  170. * Record the highest PFN we isolated pages from. When next
  171. * looking for free pages, the search will restart here as
  172. * page migration may have returned some pages to the allocator
  173. */
  174. if (isolated)
  175. high_pfn = max(high_pfn, pfn);
  176. }
  177. /* split_free_page does not map the pages */
  178. list_for_each_entry(page, freelist, lru) {
  179. arch_alloc_page(page, 0);
  180. kernel_map_pages(page, 1, 1);
  181. }
  182. cc->free_pfn = high_pfn;
  183. cc->nr_freepages = nr_freepages;
  184. }
  185. /* Update the number of anon and file isolated pages in the zone */
  186. static void acct_isolated(struct zone *zone, struct compact_control *cc)
  187. {
  188. struct page *page;
  189. unsigned int count[2] = { 0, };
  190. list_for_each_entry(page, &cc->migratepages, lru)
  191. count[!!page_is_file_cache(page)]++;
  192. __mod_zone_page_state(zone, NR_ISOLATED_ANON, count[0]);
  193. __mod_zone_page_state(zone, NR_ISOLATED_FILE, count[1]);
  194. }
  195. /* Similar to reclaim, but different enough that they don't share logic */
  196. static bool too_many_isolated(struct zone *zone)
  197. {
  198. unsigned long active, inactive, isolated;
  199. inactive = zone_page_state(zone, NR_INACTIVE_FILE) +
  200. zone_page_state(zone, NR_INACTIVE_ANON);
  201. active = zone_page_state(zone, NR_ACTIVE_FILE) +
  202. zone_page_state(zone, NR_ACTIVE_ANON);
  203. isolated = zone_page_state(zone, NR_ISOLATED_FILE) +
  204. zone_page_state(zone, NR_ISOLATED_ANON);
  205. return isolated > (inactive + active) / 2;
  206. }
  207. /* possible outcome of isolate_migratepages */
  208. typedef enum {
  209. ISOLATE_ABORT, /* Abort compaction now */
  210. ISOLATE_NONE, /* No pages isolated, continue scanning */
  211. ISOLATE_SUCCESS, /* Pages isolated, migrate */
  212. } isolate_migrate_t;
  213. /*
  214. * Isolate all pages that can be migrated from the block pointed to by
  215. * the migrate scanner within compact_control.
  216. */
  217. static isolate_migrate_t isolate_migratepages(struct zone *zone,
  218. struct compact_control *cc)
  219. {
  220. unsigned long low_pfn, end_pfn;
  221. unsigned long last_pageblock_nr = 0, pageblock_nr;
  222. unsigned long nr_scanned = 0, nr_isolated = 0;
  223. struct list_head *migratelist = &cc->migratepages;
  224. isolate_mode_t mode = ISOLATE_ACTIVE|ISOLATE_INACTIVE;
  225. /* Do not scan outside zone boundaries */
  226. low_pfn = max(cc->migrate_pfn, zone->zone_start_pfn);
  227. /* Only scan within a pageblock boundary */
  228. end_pfn = ALIGN(low_pfn + pageblock_nr_pages, pageblock_nr_pages);
  229. /* Do not cross the free scanner or scan within a memory hole */
  230. if (end_pfn > cc->free_pfn || !pfn_valid(low_pfn)) {
  231. cc->migrate_pfn = end_pfn;
  232. return ISOLATE_NONE;
  233. }
  234. /*
  235. * Ensure that there are not too many pages isolated from the LRU
  236. * list by either parallel reclaimers or compaction. If there are,
  237. * delay for some time until fewer pages are isolated
  238. */
  239. while (unlikely(too_many_isolated(zone))) {
  240. /* async migration should just abort */
  241. if (!cc->sync)
  242. return ISOLATE_ABORT;
  243. congestion_wait(BLK_RW_ASYNC, HZ/10);
  244. if (fatal_signal_pending(current))
  245. return ISOLATE_ABORT;
  246. }
  247. /* Time to isolate some pages for migration */
  248. cond_resched();
  249. spin_lock_irq(&zone->lru_lock);
  250. for (; low_pfn < end_pfn; low_pfn++) {
  251. struct page *page;
  252. bool locked = true;
  253. /* give a chance to irqs before checking need_resched() */
  254. if (!((low_pfn+1) % SWAP_CLUSTER_MAX)) {
  255. spin_unlock_irq(&zone->lru_lock);
  256. locked = false;
  257. }
  258. if (need_resched() || spin_is_contended(&zone->lru_lock)) {
  259. if (locked)
  260. spin_unlock_irq(&zone->lru_lock);
  261. cond_resched();
  262. spin_lock_irq(&zone->lru_lock);
  263. if (fatal_signal_pending(current))
  264. break;
  265. } else if (!locked)
  266. spin_lock_irq(&zone->lru_lock);
  267. /*
  268. * migrate_pfn does not necessarily start aligned to a
  269. * pageblock. Ensure that pfn_valid is called when moving
  270. * into a new MAX_ORDER_NR_PAGES range in case of large
  271. * memory holes within the zone
  272. */
  273. if ((low_pfn & (MAX_ORDER_NR_PAGES - 1)) == 0) {
  274. if (!pfn_valid(low_pfn)) {
  275. low_pfn += MAX_ORDER_NR_PAGES - 1;
  276. continue;
  277. }
  278. }
  279. if (!pfn_valid_within(low_pfn))
  280. continue;
  281. nr_scanned++;
  282. /*
  283. * Get the page and ensure the page is within the same zone.
  284. * See the comment in isolate_freepages about overlapping
  285. * nodes. It is deliberate that the new zone lock is not taken
  286. * as memory compaction should not move pages between nodes.
  287. */
  288. page = pfn_to_page(low_pfn);
  289. if (page_zone(page) != zone)
  290. continue;
  291. /* Skip if free */
  292. if (PageBuddy(page))
  293. continue;
  294. /*
  295. * For async migration, also only scan in MOVABLE blocks. Async
  296. * migration is optimistic to see if the minimum amount of work
  297. * satisfies the allocation
  298. */
  299. pageblock_nr = low_pfn >> pageblock_order;
  300. if (!cc->sync && last_pageblock_nr != pageblock_nr &&
  301. get_pageblock_migratetype(page) != MIGRATE_MOVABLE) {
  302. low_pfn += pageblock_nr_pages;
  303. low_pfn = ALIGN(low_pfn, pageblock_nr_pages) - 1;
  304. last_pageblock_nr = pageblock_nr;
  305. continue;
  306. }
  307. if (!PageLRU(page))
  308. continue;
  309. /*
  310. * PageLRU is set, and lru_lock excludes isolation,
  311. * splitting and collapsing (collapsing has already
  312. * happened if PageLRU is set).
  313. */
  314. if (PageTransHuge(page)) {
  315. low_pfn += (1 << compound_order(page)) - 1;
  316. continue;
  317. }
  318. if (!cc->sync)
  319. mode |= ISOLATE_ASYNC_MIGRATE;
  320. /* Try isolate the page */
  321. if (__isolate_lru_page(page, mode, 0) != 0)
  322. continue;
  323. VM_BUG_ON(PageTransCompound(page));
  324. /* Successfully isolated */
  325. del_page_from_lru_list(zone, page, page_lru(page));
  326. list_add(&page->lru, migratelist);
  327. cc->nr_migratepages++;
  328. nr_isolated++;
  329. /* Avoid isolating too much */
  330. if (cc->nr_migratepages == COMPACT_CLUSTER_MAX) {
  331. ++low_pfn;
  332. break;
  333. }
  334. }
  335. acct_isolated(zone, cc);
  336. spin_unlock_irq(&zone->lru_lock);
  337. cc->migrate_pfn = low_pfn;
  338. trace_mm_compaction_isolate_migratepages(nr_scanned, nr_isolated);
  339. return ISOLATE_SUCCESS;
  340. }
  341. /*
  342. * This is a migrate-callback that "allocates" freepages by taking pages
  343. * from the isolated freelists in the block we are migrating to.
  344. */
  345. static struct page *compaction_alloc(struct page *migratepage,
  346. unsigned long data,
  347. int **result)
  348. {
  349. struct compact_control *cc = (struct compact_control *)data;
  350. struct page *freepage;
  351. /* Isolate free pages if necessary */
  352. if (list_empty(&cc->freepages)) {
  353. isolate_freepages(cc->zone, cc);
  354. if (list_empty(&cc->freepages))
  355. return NULL;
  356. }
  357. freepage = list_entry(cc->freepages.next, struct page, lru);
  358. list_del(&freepage->lru);
  359. cc->nr_freepages--;
  360. return freepage;
  361. }
  362. /*
  363. * We cannot control nr_migratepages and nr_freepages fully when migration is
  364. * running as migrate_pages() has no knowledge of compact_control. When
  365. * migration is complete, we count the number of pages on the lists by hand.
  366. */
  367. static void update_nr_listpages(struct compact_control *cc)
  368. {
  369. int nr_migratepages = 0;
  370. int nr_freepages = 0;
  371. struct page *page;
  372. list_for_each_entry(page, &cc->migratepages, lru)
  373. nr_migratepages++;
  374. list_for_each_entry(page, &cc->freepages, lru)
  375. nr_freepages++;
  376. cc->nr_migratepages = nr_migratepages;
  377. cc->nr_freepages = nr_freepages;
  378. }
  379. static int compact_finished(struct zone *zone,
  380. struct compact_control *cc)
  381. {
  382. unsigned int order;
  383. unsigned long watermark;
  384. if (fatal_signal_pending(current))
  385. return COMPACT_PARTIAL;
  386. /* Compaction run completes if the migrate and free scanner meet */
  387. if (cc->free_pfn <= cc->migrate_pfn)
  388. return COMPACT_COMPLETE;
  389. /*
  390. * order == -1 is expected when compacting via
  391. * /proc/sys/vm/compact_memory
  392. */
  393. if (cc->order == -1)
  394. return COMPACT_CONTINUE;
  395. /* Compaction run is not finished if the watermark is not met */
  396. watermark = low_wmark_pages(zone);
  397. watermark += (1 << cc->order);
  398. if (!zone_watermark_ok(zone, cc->order, watermark, 0, 0))
  399. return COMPACT_CONTINUE;
  400. /* Direct compactor: Is a suitable page free? */
  401. for (order = cc->order; order < MAX_ORDER; order++) {
  402. /* Job done if page is free of the right migratetype */
  403. if (!list_empty(&zone->free_area[order].free_list[cc->migratetype]))
  404. return COMPACT_PARTIAL;
  405. /* Job done if allocation would set block type */
  406. if (order >= pageblock_order && zone->free_area[order].nr_free)
  407. return COMPACT_PARTIAL;
  408. }
  409. return COMPACT_CONTINUE;
  410. }
  411. /*
  412. * compaction_suitable: Is this suitable to run compaction on this zone now?
  413. * Returns
  414. * COMPACT_SKIPPED - If there are too few free pages for compaction
  415. * COMPACT_PARTIAL - If the allocation would succeed without compaction
  416. * COMPACT_CONTINUE - If compaction should run now
  417. */
  418. unsigned long compaction_suitable(struct zone *zone, int order)
  419. {
  420. int fragindex;
  421. unsigned long watermark;
  422. /*
  423. * order == -1 is expected when compacting via
  424. * /proc/sys/vm/compact_memory
  425. */
  426. if (order == -1)
  427. return COMPACT_CONTINUE;
  428. /*
  429. * Watermarks for order-0 must be met for compaction. Note the 2UL.
  430. * This is because during migration, copies of pages need to be
  431. * allocated and for a short time, the footprint is higher
  432. */
  433. watermark = low_wmark_pages(zone) + (2UL << order);
  434. if (!zone_watermark_ok(zone, 0, watermark, 0, 0))
  435. return COMPACT_SKIPPED;
  436. /*
  437. * fragmentation index determines if allocation failures are due to
  438. * low memory or external fragmentation
  439. *
  440. * index of -1000 implies allocations might succeed depending on
  441. * watermarks
  442. * index towards 0 implies failure is due to lack of memory
  443. * index towards 1000 implies failure is due to fragmentation
  444. *
  445. * Only compact if a failure would be due to fragmentation.
  446. */
  447. fragindex = fragmentation_index(zone, order);
  448. if (fragindex >= 0 && fragindex <= sysctl_extfrag_threshold)
  449. return COMPACT_SKIPPED;
  450. if (fragindex == -1000 && zone_watermark_ok(zone, order, watermark,
  451. 0, 0))
  452. return COMPACT_PARTIAL;
  453. return COMPACT_CONTINUE;
  454. }
  455. static int compact_zone(struct zone *zone, struct compact_control *cc)
  456. {
  457. int ret;
  458. ret = compaction_suitable(zone, cc->order);
  459. switch (ret) {
  460. case COMPACT_PARTIAL:
  461. case COMPACT_SKIPPED:
  462. /* Compaction is likely to fail */
  463. return ret;
  464. case COMPACT_CONTINUE:
  465. /* Fall through to compaction */
  466. ;
  467. }
  468. /* Setup to move all movable pages to the end of the zone */
  469. cc->migrate_pfn = zone->zone_start_pfn;
  470. cc->free_pfn = cc->migrate_pfn + zone->spanned_pages;
  471. cc->free_pfn &= ~(pageblock_nr_pages-1);
  472. migrate_prep_local();
  473. while ((ret = compact_finished(zone, cc)) == COMPACT_CONTINUE) {
  474. unsigned long nr_migrate, nr_remaining;
  475. int err;
  476. switch (isolate_migratepages(zone, cc)) {
  477. case ISOLATE_ABORT:
  478. ret = COMPACT_PARTIAL;
  479. goto out;
  480. case ISOLATE_NONE:
  481. continue;
  482. case ISOLATE_SUCCESS:
  483. ;
  484. }
  485. nr_migrate = cc->nr_migratepages;
  486. err = migrate_pages(&cc->migratepages, compaction_alloc,
  487. (unsigned long)cc, false,
  488. cc->sync ? MIGRATE_SYNC_LIGHT : MIGRATE_ASYNC);
  489. update_nr_listpages(cc);
  490. nr_remaining = cc->nr_migratepages;
  491. count_vm_event(COMPACTBLOCKS);
  492. count_vm_events(COMPACTPAGES, nr_migrate - nr_remaining);
  493. if (nr_remaining)
  494. count_vm_events(COMPACTPAGEFAILED, nr_remaining);
  495. trace_mm_compaction_migratepages(nr_migrate - nr_remaining,
  496. nr_remaining);
  497. /* Release LRU pages not migrated */
  498. if (err) {
  499. putback_lru_pages(&cc->migratepages);
  500. cc->nr_migratepages = 0;
  501. }
  502. }
  503. out:
  504. /* Release free pages and check accounting */
  505. cc->nr_freepages -= release_freepages(&cc->freepages);
  506. VM_BUG_ON(cc->nr_freepages != 0);
  507. return ret;
  508. }
  509. static unsigned long compact_zone_order(struct zone *zone,
  510. int order, gfp_t gfp_mask,
  511. bool sync)
  512. {
  513. struct compact_control cc = {
  514. .nr_freepages = 0,
  515. .nr_migratepages = 0,
  516. .order = order,
  517. .migratetype = allocflags_to_migratetype(gfp_mask),
  518. .zone = zone,
  519. .sync = sync,
  520. };
  521. INIT_LIST_HEAD(&cc.freepages);
  522. INIT_LIST_HEAD(&cc.migratepages);
  523. return compact_zone(zone, &cc);
  524. }
  525. int sysctl_extfrag_threshold = 500;
  526. /**
  527. * try_to_compact_pages - Direct compact to satisfy a high-order allocation
  528. * @zonelist: The zonelist used for the current allocation
  529. * @order: The order of the current allocation
  530. * @gfp_mask: The GFP mask of the current allocation
  531. * @nodemask: The allowed nodes to allocate from
  532. * @sync: Whether migration is synchronous or not
  533. *
  534. * This is the main entry point for direct page compaction.
  535. */
  536. unsigned long try_to_compact_pages(struct zonelist *zonelist,
  537. int order, gfp_t gfp_mask, nodemask_t *nodemask,
  538. bool sync)
  539. {
  540. enum zone_type high_zoneidx = gfp_zone(gfp_mask);
  541. int may_enter_fs = gfp_mask & __GFP_FS;
  542. int may_perform_io = gfp_mask & __GFP_IO;
  543. struct zoneref *z;
  544. struct zone *zone;
  545. int rc = COMPACT_SKIPPED;
  546. /*
  547. * Check whether it is worth even starting compaction. The order check is
  548. * made because an assumption is made that the page allocator can satisfy
  549. * the "cheaper" orders without taking special steps
  550. */
  551. if (!order || !may_enter_fs || !may_perform_io)
  552. return rc;
  553. count_vm_event(COMPACTSTALL);
  554. /* Compact each zone in the list */
  555. for_each_zone_zonelist_nodemask(zone, z, zonelist, high_zoneidx,
  556. nodemask) {
  557. int status;
  558. status = compact_zone_order(zone, order, gfp_mask, sync);
  559. rc = max(status, rc);
  560. /* If a normal allocation would succeed, stop compacting */
  561. if (zone_watermark_ok(zone, order, low_wmark_pages(zone), 0, 0))
  562. break;
  563. }
  564. return rc;
  565. }
  566. /* Compact all zones within a node */
  567. static int __compact_pgdat(pg_data_t *pgdat, struct compact_control *cc)
  568. {
  569. int zoneid;
  570. struct zone *zone;
  571. for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
  572. zone = &pgdat->node_zones[zoneid];
  573. if (!populated_zone(zone))
  574. continue;
  575. cc->nr_freepages = 0;
  576. cc->nr_migratepages = 0;
  577. cc->zone = zone;
  578. INIT_LIST_HEAD(&cc->freepages);
  579. INIT_LIST_HEAD(&cc->migratepages);
  580. if (cc->order == -1 || !compaction_deferred(zone, cc->order))
  581. compact_zone(zone, cc);
  582. if (cc->order > 0) {
  583. int ok = zone_watermark_ok(zone, cc->order,
  584. low_wmark_pages(zone), 0, 0);
  585. if (ok && cc->order > zone->compact_order_failed)
  586. zone->compact_order_failed = cc->order + 1;
  587. /* Currently async compaction is never deferred. */
  588. else if (!ok && cc->sync)
  589. defer_compaction(zone, cc->order);
  590. }
  591. VM_BUG_ON(!list_empty(&cc->freepages));
  592. VM_BUG_ON(!list_empty(&cc->migratepages));
  593. }
  594. return 0;
  595. }
  596. int compact_pgdat(pg_data_t *pgdat, int order)
  597. {
  598. struct compact_control cc = {
  599. .order = order,
  600. .sync = false,
  601. };
  602. return __compact_pgdat(pgdat, &cc);
  603. }
  604. static int compact_node(int nid)
  605. {
  606. struct compact_control cc = {
  607. .order = -1,
  608. .sync = true,
  609. };
  610. return __compact_pgdat(NODE_DATA(nid), &cc);
  611. }
  612. /* Compact all nodes in the system */
  613. static int compact_nodes(void)
  614. {
  615. int nid;
  616. /* Flush pending updates to the LRU lists */
  617. lru_add_drain_all();
  618. for_each_online_node(nid)
  619. compact_node(nid);
  620. return COMPACT_COMPLETE;
  621. }
  622. /* The written value is actually unused, all memory is compacted */
  623. int sysctl_compact_memory;
  624. /* This is the entry point for compacting all nodes via /proc/sys/vm */
  625. int sysctl_compaction_handler(struct ctl_table *table, int write,
  626. void __user *buffer, size_t *length, loff_t *ppos)
  627. {
  628. if (write)
  629. return compact_nodes();
  630. return 0;
  631. }
  632. int sysctl_extfrag_handler(struct ctl_table *table, int write,
  633. void __user *buffer, size_t *length, loff_t *ppos)
  634. {
  635. proc_dointvec_minmax(table, write, buffer, length, ppos);
  636. return 0;
  637. }
  638. #if defined(CONFIG_SYSFS) && defined(CONFIG_NUMA)
  639. ssize_t sysfs_compact_node(struct device *dev,
  640. struct device_attribute *attr,
  641. const char *buf, size_t count)
  642. {
  643. int nid = dev->id;
  644. if (nid >= 0 && nid < nr_node_ids && node_online(nid)) {
  645. /* Flush pending updates to the LRU lists */
  646. lru_add_drain_all();
  647. compact_node(nid);
  648. }
  649. return count;
  650. }
  651. static DEVICE_ATTR(compact, S_IWUSR, NULL, sysfs_compact_node);
  652. int compaction_register_node(struct node *node)
  653. {
  654. return device_create_file(&node->dev, &dev_attr_compact);
  655. }
  656. void compaction_unregister_node(struct node *node)
  657. {
  658. return device_remove_file(&node->dev, &dev_attr_compact);
  659. }
  660. #endif /* CONFIG_SYSFS && CONFIG_NUMA */