core.c 195 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223522452255226522752285229523052315232523352345235523652375238523952405241524252435244524552465247524852495250525152525253525452555256525752585259526052615262526352645265526652675268526952705271527252735274527552765277527852795280528152825283528452855286528752885289529052915292529352945295529652975298529953005301530253035304530553065307530853095310531153125313531453155316531753185319532053215322532353245325532653275328532953305331533253335334533553365337533853395340534153425343534453455346534753485349535053515352535353545355535653575358535953605361536253635364536553665367536853695370537153725373537453755376537753785379538053815382538353845385538653875388538953905391539253935394539553965397539853995400540154025403540454055406540754085409541054115412541354145415541654175418541954205421542254235424542554265427542854295430543154325433543454355436543754385439544054415442544354445445544654475448544954505451545254535454545554565457545854595460546154625463546454655466546754685469547054715472547354745475547654775478547954805481548254835484548554865487548854895490549154925493549454955496549754985499550055015502550355045505550655075508550955105511551255135514551555165517551855195520552155225523552455255526552755285529553055315532553355345535553655375538553955405541554255435544554555465547554855495550555155525553555455555556555755585559556055615562556355645565556655675568556955705571557255735574557555765577557855795580558155825583558455855586558755885589559055915592559355945595559655975598559956005601560256035604560556065607560856095610561156125613561456155616561756185619562056215622562356245625562656275628562956305631563256335634563556365637563856395640564156425643564456455646564756485649565056515652565356545655565656575658565956605661566256635664566556665667566856695670567156725673567456755676567756785679568056815682568356845685568656875688568956905691569256935694569556965697569856995700570157025703570457055706570757085709571057115712571357145715571657175718571957205721572257235724572557265727572857295730573157325733573457355736573757385739574057415742574357445745574657475748574957505751575257535754575557565757575857595760576157625763576457655766576757685769577057715772577357745775577657775778577957805781578257835784578557865787578857895790579157925793579457955796579757985799580058015802580358045805580658075808580958105811581258135814581558165817581858195820582158225823582458255826582758285829583058315832583358345835583658375838583958405841584258435844584558465847584858495850585158525853585458555856585758585859586058615862586358645865586658675868586958705871587258735874587558765877587858795880588158825883588458855886588758885889589058915892589358945895589658975898589959005901590259035904590559065907590859095910591159125913591459155916591759185919592059215922592359245925592659275928592959305931593259335934593559365937593859395940594159425943594459455946594759485949595059515952595359545955595659575958595959605961596259635964596559665967596859695970597159725973597459755976597759785979598059815982598359845985598659875988598959905991599259935994599559965997599859996000600160026003600460056006600760086009601060116012601360146015601660176018601960206021602260236024602560266027602860296030603160326033603460356036603760386039604060416042604360446045604660476048604960506051605260536054605560566057605860596060606160626063606460656066606760686069607060716072607360746075607660776078607960806081608260836084608560866087608860896090609160926093609460956096609760986099610061016102610361046105610661076108610961106111611261136114611561166117611861196120612161226123612461256126612761286129613061316132613361346135613661376138613961406141614261436144614561466147614861496150615161526153615461556156615761586159616061616162616361646165616661676168616961706171617261736174617561766177617861796180618161826183618461856186618761886189619061916192619361946195619661976198619962006201620262036204620562066207620862096210621162126213621462156216621762186219622062216222622362246225622662276228622962306231623262336234623562366237623862396240624162426243624462456246624762486249625062516252625362546255625662576258625962606261626262636264626562666267626862696270627162726273627462756276627762786279628062816282628362846285628662876288628962906291629262936294629562966297629862996300630163026303630463056306630763086309631063116312631363146315631663176318631963206321632263236324632563266327632863296330633163326333633463356336633763386339634063416342634363446345634663476348634963506351635263536354635563566357635863596360636163626363636463656366636763686369637063716372637363746375637663776378637963806381638263836384638563866387638863896390639163926393639463956396639763986399640064016402640364046405640664076408640964106411641264136414641564166417641864196420642164226423642464256426642764286429643064316432643364346435643664376438643964406441644264436444644564466447644864496450645164526453645464556456645764586459646064616462646364646465646664676468646964706471647264736474647564766477647864796480648164826483648464856486648764886489649064916492649364946495649664976498649965006501650265036504650565066507650865096510651165126513651465156516651765186519652065216522652365246525652665276528652965306531653265336534653565366537653865396540654165426543654465456546654765486549655065516552655365546555655665576558655965606561656265636564656565666567656865696570657165726573657465756576657765786579658065816582658365846585658665876588658965906591659265936594659565966597659865996600660166026603660466056606660766086609661066116612661366146615661666176618661966206621662266236624662566266627662866296630663166326633663466356636663766386639664066416642664366446645664666476648664966506651665266536654665566566657665866596660666166626663666466656666666766686669667066716672667366746675667666776678667966806681668266836684668566866687668866896690669166926693669466956696669766986699670067016702670367046705670667076708670967106711671267136714671567166717671867196720672167226723672467256726672767286729673067316732673367346735673667376738673967406741674267436744674567466747674867496750675167526753675467556756675767586759676067616762676367646765676667676768676967706771677267736774677567766777677867796780678167826783678467856786678767886789679067916792679367946795679667976798679968006801680268036804680568066807680868096810681168126813681468156816681768186819682068216822682368246825682668276828682968306831683268336834683568366837683868396840684168426843684468456846684768486849685068516852685368546855685668576858685968606861686268636864686568666867686868696870687168726873687468756876687768786879688068816882688368846885688668876888688968906891689268936894689568966897689868996900690169026903690469056906690769086909691069116912691369146915691669176918691969206921692269236924692569266927692869296930693169326933693469356936693769386939694069416942694369446945694669476948694969506951695269536954695569566957695869596960696169626963696469656966696769686969697069716972697369746975697669776978697969806981698269836984698569866987698869896990699169926993699469956996699769986999700070017002700370047005700670077008700970107011701270137014701570167017701870197020702170227023702470257026702770287029703070317032703370347035703670377038703970407041704270437044704570467047704870497050705170527053705470557056705770587059706070617062706370647065706670677068706970707071707270737074707570767077707870797080708170827083708470857086708770887089709070917092709370947095709670977098709971007101710271037104710571067107710871097110711171127113711471157116711771187119712071217122712371247125712671277128712971307131713271337134713571367137713871397140714171427143714471457146714771487149715071517152715371547155715671577158715971607161716271637164716571667167716871697170717171727173717471757176717771787179718071817182718371847185718671877188718971907191719271937194719571967197719871997200720172027203720472057206720772087209721072117212721372147215721672177218721972207221722272237224722572267227722872297230723172327233723472357236723772387239724072417242724372447245724672477248724972507251725272537254725572567257725872597260726172627263726472657266726772687269727072717272727372747275727672777278727972807281728272837284728572867287728872897290729172927293729472957296729772987299730073017302730373047305730673077308730973107311731273137314731573167317731873197320732173227323732473257326732773287329733073317332733373347335733673377338733973407341734273437344734573467347734873497350735173527353735473557356735773587359736073617362736373647365736673677368736973707371737273737374737573767377737873797380738173827383738473857386738773887389739073917392739373947395739673977398739974007401740274037404740574067407740874097410741174127413741474157416741774187419742074217422742374247425742674277428742974307431743274337434743574367437743874397440744174427443744474457446744774487449745074517452745374547455745674577458745974607461746274637464746574667467746874697470747174727473747474757476747774787479748074817482748374847485748674877488748974907491749274937494749574967497749874997500750175027503750475057506750775087509751075117512751375147515751675177518751975207521752275237524752575267527752875297530753175327533753475357536753775387539754075417542754375447545754675477548754975507551755275537554755575567557755875597560756175627563756475657566756775687569757075717572757375747575757675777578757975807581758275837584758575867587758875897590759175927593759475957596759775987599760076017602760376047605760676077608760976107611761276137614761576167617761876197620762176227623762476257626762776287629763076317632763376347635763676377638763976407641764276437644764576467647764876497650765176527653765476557656765776587659766076617662766376647665766676677668766976707671767276737674767576767677767876797680768176827683768476857686768776887689769076917692769376947695769676977698769977007701770277037704770577067707770877097710771177127713771477157716771777187719772077217722772377247725772677277728772977307731773277337734773577367737773877397740774177427743774477457746774777487749775077517752775377547755775677577758775977607761776277637764776577667767776877697770777177727773777477757776777777787779778077817782778377847785778677877788778977907791779277937794779577967797779877997800780178027803780478057806780778087809781078117812781378147815781678177818781978207821782278237824782578267827782878297830783178327833783478357836783778387839784078417842784378447845784678477848784978507851785278537854785578567857785878597860786178627863786478657866786778687869787078717872787378747875787678777878787978807881788278837884788578867887788878897890789178927893789478957896789778987899790079017902790379047905790679077908790979107911791279137914791579167917791879197920792179227923792479257926792779287929793079317932793379347935793679377938793979407941794279437944794579467947794879497950795179527953795479557956795779587959796079617962796379647965796679677968796979707971797279737974797579767977797879797980798179827983798479857986798779887989799079917992799379947995799679977998799980008001800280038004800580068007800880098010801180128013801480158016801780188019802080218022802380248025802680278028802980308031803280338034803580368037803880398040804180428043804480458046804780488049805080518052805380548055805680578058805980608061806280638064806580668067806880698070807180728073807480758076807780788079808080818082808380848085808680878088808980908091809280938094809580968097809880998100810181028103810481058106810781088109811081118112811381148115811681178118811981208121812281238124812581268127812881298130813181328133813481358136813781388139814081418142814381448145814681478148814981508151815281538154815581568157815881598160816181628163816481658166816781688169817081718172817381748175817681778178817981808181818281838184818581868187818881898190819181928193819481958196819781988199820082018202820382048205820682078208820982108211821282138214
  1. /*
  2. * kernel/sched/core.c
  3. *
  4. * Kernel scheduler and related syscalls
  5. *
  6. * Copyright (C) 1991-2002 Linus Torvalds
  7. *
  8. * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
  9. * make semaphores SMP safe
  10. * 1998-11-19 Implemented schedule_timeout() and related stuff
  11. * by Andrea Arcangeli
  12. * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
  13. * hybrid priority-list and round-robin design with
  14. * an array-switch method of distributing timeslices
  15. * and per-CPU runqueues. Cleanups and useful suggestions
  16. * by Davide Libenzi, preemptible kernel bits by Robert Love.
  17. * 2003-09-03 Interactivity tuning by Con Kolivas.
  18. * 2004-04-02 Scheduler domains code by Nick Piggin
  19. * 2007-04-15 Work begun on replacing all interactivity tuning with a
  20. * fair scheduling design by Con Kolivas.
  21. * 2007-05-05 Load balancing (smp-nice) and other improvements
  22. * by Peter Williams
  23. * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
  24. * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
  25. * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
  26. * Thomas Gleixner, Mike Kravetz
  27. */
  28. #include <linux/mm.h>
  29. #include <linux/module.h>
  30. #include <linux/nmi.h>
  31. #include <linux/init.h>
  32. #include <linux/uaccess.h>
  33. #include <linux/highmem.h>
  34. #include <asm/mmu_context.h>
  35. #include <linux/interrupt.h>
  36. #include <linux/capability.h>
  37. #include <linux/completion.h>
  38. #include <linux/kernel_stat.h>
  39. #include <linux/debug_locks.h>
  40. #include <linux/perf_event.h>
  41. #include <linux/security.h>
  42. #include <linux/notifier.h>
  43. #include <linux/profile.h>
  44. #include <linux/freezer.h>
  45. #include <linux/vmalloc.h>
  46. #include <linux/blkdev.h>
  47. #include <linux/delay.h>
  48. #include <linux/pid_namespace.h>
  49. #include <linux/smp.h>
  50. #include <linux/threads.h>
  51. #include <linux/timer.h>
  52. #include <linux/rcupdate.h>
  53. #include <linux/cpu.h>
  54. #include <linux/cpuset.h>
  55. #include <linux/percpu.h>
  56. #include <linux/proc_fs.h>
  57. #include <linux/seq_file.h>
  58. #include <linux/sysctl.h>
  59. #include <linux/syscalls.h>
  60. #include <linux/times.h>
  61. #include <linux/tsacct_kern.h>
  62. #include <linux/kprobes.h>
  63. #include <linux/delayacct.h>
  64. #include <linux/unistd.h>
  65. #include <linux/pagemap.h>
  66. #include <linux/hrtimer.h>
  67. #include <linux/tick.h>
  68. #include <linux/debugfs.h>
  69. #include <linux/ctype.h>
  70. #include <linux/ftrace.h>
  71. #include <linux/slab.h>
  72. #include <linux/init_task.h>
  73. #include <linux/binfmts.h>
  74. #include <asm/switch_to.h>
  75. #include <asm/tlb.h>
  76. #include <asm/irq_regs.h>
  77. #include <asm/mutex.h>
  78. #ifdef CONFIG_PARAVIRT
  79. #include <asm/paravirt.h>
  80. #endif
  81. #include "sched.h"
  82. #include "../workqueue_sched.h"
  83. #define CREATE_TRACE_POINTS
  84. #include <trace/events/sched.h>
  85. void start_bandwidth_timer(struct hrtimer *period_timer, ktime_t period)
  86. {
  87. unsigned long delta;
  88. ktime_t soft, hard, now;
  89. for (;;) {
  90. if (hrtimer_active(period_timer))
  91. break;
  92. now = hrtimer_cb_get_time(period_timer);
  93. hrtimer_forward(period_timer, now, period);
  94. soft = hrtimer_get_softexpires(period_timer);
  95. hard = hrtimer_get_expires(period_timer);
  96. delta = ktime_to_ns(ktime_sub(hard, soft));
  97. __hrtimer_start_range_ns(period_timer, soft, delta,
  98. HRTIMER_MODE_ABS_PINNED, 0);
  99. }
  100. }
  101. DEFINE_MUTEX(sched_domains_mutex);
  102. DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
  103. static void update_rq_clock_task(struct rq *rq, s64 delta);
  104. void update_rq_clock(struct rq *rq)
  105. {
  106. s64 delta;
  107. if (rq->skip_clock_update > 0)
  108. return;
  109. delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
  110. rq->clock += delta;
  111. update_rq_clock_task(rq, delta);
  112. }
  113. /*
  114. * Debugging: various feature bits
  115. */
  116. #define SCHED_FEAT(name, enabled) \
  117. (1UL << __SCHED_FEAT_##name) * enabled |
  118. const_debug unsigned int sysctl_sched_features =
  119. #include "features.h"
  120. 0;
  121. #undef SCHED_FEAT
  122. #ifdef CONFIG_SCHED_DEBUG
  123. #define SCHED_FEAT(name, enabled) \
  124. #name ,
  125. static __read_mostly char *sched_feat_names[] = {
  126. #include "features.h"
  127. NULL
  128. };
  129. #undef SCHED_FEAT
  130. static int sched_feat_show(struct seq_file *m, void *v)
  131. {
  132. int i;
  133. for (i = 0; i < __SCHED_FEAT_NR; i++) {
  134. if (!(sysctl_sched_features & (1UL << i)))
  135. seq_puts(m, "NO_");
  136. seq_printf(m, "%s ", sched_feat_names[i]);
  137. }
  138. seq_puts(m, "\n");
  139. return 0;
  140. }
  141. #ifdef HAVE_JUMP_LABEL
  142. #define jump_label_key__true STATIC_KEY_INIT_TRUE
  143. #define jump_label_key__false STATIC_KEY_INIT_FALSE
  144. #define SCHED_FEAT(name, enabled) \
  145. jump_label_key__##enabled ,
  146. struct static_key sched_feat_keys[__SCHED_FEAT_NR] = {
  147. #include "features.h"
  148. };
  149. #undef SCHED_FEAT
  150. static void sched_feat_disable(int i)
  151. {
  152. if (static_key_enabled(&sched_feat_keys[i]))
  153. static_key_slow_dec(&sched_feat_keys[i]);
  154. }
  155. static void sched_feat_enable(int i)
  156. {
  157. if (!static_key_enabled(&sched_feat_keys[i]))
  158. static_key_slow_inc(&sched_feat_keys[i]);
  159. }
  160. #else
  161. static void sched_feat_disable(int i) { };
  162. static void sched_feat_enable(int i) { };
  163. #endif /* HAVE_JUMP_LABEL */
  164. static ssize_t
  165. sched_feat_write(struct file *filp, const char __user *ubuf,
  166. size_t cnt, loff_t *ppos)
  167. {
  168. char buf[64];
  169. char *cmp;
  170. int neg = 0;
  171. int i;
  172. if (cnt > 63)
  173. cnt = 63;
  174. if (copy_from_user(&buf, ubuf, cnt))
  175. return -EFAULT;
  176. buf[cnt] = 0;
  177. cmp = strstrip(buf);
  178. if (strncmp(cmp, "NO_", 3) == 0) {
  179. neg = 1;
  180. cmp += 3;
  181. }
  182. for (i = 0; i < __SCHED_FEAT_NR; i++) {
  183. if (strcmp(cmp, sched_feat_names[i]) == 0) {
  184. if (neg) {
  185. sysctl_sched_features &= ~(1UL << i);
  186. sched_feat_disable(i);
  187. } else {
  188. sysctl_sched_features |= (1UL << i);
  189. sched_feat_enable(i);
  190. }
  191. break;
  192. }
  193. }
  194. if (i == __SCHED_FEAT_NR)
  195. return -EINVAL;
  196. *ppos += cnt;
  197. return cnt;
  198. }
  199. static int sched_feat_open(struct inode *inode, struct file *filp)
  200. {
  201. return single_open(filp, sched_feat_show, NULL);
  202. }
  203. static const struct file_operations sched_feat_fops = {
  204. .open = sched_feat_open,
  205. .write = sched_feat_write,
  206. .read = seq_read,
  207. .llseek = seq_lseek,
  208. .release = single_release,
  209. };
  210. static __init int sched_init_debug(void)
  211. {
  212. debugfs_create_file("sched_features", 0644, NULL, NULL,
  213. &sched_feat_fops);
  214. return 0;
  215. }
  216. late_initcall(sched_init_debug);
  217. #endif /* CONFIG_SCHED_DEBUG */
  218. /*
  219. * Number of tasks to iterate in a single balance run.
  220. * Limited because this is done with IRQs disabled.
  221. */
  222. const_debug unsigned int sysctl_sched_nr_migrate = 32;
  223. /*
  224. * period over which we average the RT time consumption, measured
  225. * in ms.
  226. *
  227. * default: 1s
  228. */
  229. const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
  230. /*
  231. * period over which we measure -rt task cpu usage in us.
  232. * default: 1s
  233. */
  234. unsigned int sysctl_sched_rt_period = 1000000;
  235. __read_mostly int scheduler_running;
  236. /*
  237. * part of the period that we allow rt tasks to run in us.
  238. * default: 0.95s
  239. */
  240. int sysctl_sched_rt_runtime = 950000;
  241. /*
  242. * __task_rq_lock - lock the rq @p resides on.
  243. */
  244. static inline struct rq *__task_rq_lock(struct task_struct *p)
  245. __acquires(rq->lock)
  246. {
  247. struct rq *rq;
  248. lockdep_assert_held(&p->pi_lock);
  249. for (;;) {
  250. rq = task_rq(p);
  251. raw_spin_lock(&rq->lock);
  252. if (likely(rq == task_rq(p)))
  253. return rq;
  254. raw_spin_unlock(&rq->lock);
  255. }
  256. }
  257. /*
  258. * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
  259. */
  260. static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
  261. __acquires(p->pi_lock)
  262. __acquires(rq->lock)
  263. {
  264. struct rq *rq;
  265. for (;;) {
  266. raw_spin_lock_irqsave(&p->pi_lock, *flags);
  267. rq = task_rq(p);
  268. raw_spin_lock(&rq->lock);
  269. if (likely(rq == task_rq(p)))
  270. return rq;
  271. raw_spin_unlock(&rq->lock);
  272. raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
  273. }
  274. }
  275. static void __task_rq_unlock(struct rq *rq)
  276. __releases(rq->lock)
  277. {
  278. raw_spin_unlock(&rq->lock);
  279. }
  280. static inline void
  281. task_rq_unlock(struct rq *rq, struct task_struct *p, unsigned long *flags)
  282. __releases(rq->lock)
  283. __releases(p->pi_lock)
  284. {
  285. raw_spin_unlock(&rq->lock);
  286. raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
  287. }
  288. /*
  289. * this_rq_lock - lock this runqueue and disable interrupts.
  290. */
  291. static struct rq *this_rq_lock(void)
  292. __acquires(rq->lock)
  293. {
  294. struct rq *rq;
  295. local_irq_disable();
  296. rq = this_rq();
  297. raw_spin_lock(&rq->lock);
  298. return rq;
  299. }
  300. #ifdef CONFIG_SCHED_HRTICK
  301. /*
  302. * Use HR-timers to deliver accurate preemption points.
  303. *
  304. * Its all a bit involved since we cannot program an hrt while holding the
  305. * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
  306. * reschedule event.
  307. *
  308. * When we get rescheduled we reprogram the hrtick_timer outside of the
  309. * rq->lock.
  310. */
  311. static void hrtick_clear(struct rq *rq)
  312. {
  313. if (hrtimer_active(&rq->hrtick_timer))
  314. hrtimer_cancel(&rq->hrtick_timer);
  315. }
  316. /*
  317. * High-resolution timer tick.
  318. * Runs from hardirq context with interrupts disabled.
  319. */
  320. static enum hrtimer_restart hrtick(struct hrtimer *timer)
  321. {
  322. struct rq *rq = container_of(timer, struct rq, hrtick_timer);
  323. WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
  324. raw_spin_lock(&rq->lock);
  325. update_rq_clock(rq);
  326. rq->curr->sched_class->task_tick(rq, rq->curr, 1);
  327. raw_spin_unlock(&rq->lock);
  328. return HRTIMER_NORESTART;
  329. }
  330. #ifdef CONFIG_SMP
  331. /*
  332. * called from hardirq (IPI) context
  333. */
  334. static void __hrtick_start(void *arg)
  335. {
  336. struct rq *rq = arg;
  337. raw_spin_lock(&rq->lock);
  338. hrtimer_restart(&rq->hrtick_timer);
  339. rq->hrtick_csd_pending = 0;
  340. raw_spin_unlock(&rq->lock);
  341. }
  342. /*
  343. * Called to set the hrtick timer state.
  344. *
  345. * called with rq->lock held and irqs disabled
  346. */
  347. void hrtick_start(struct rq *rq, u64 delay)
  348. {
  349. struct hrtimer *timer = &rq->hrtick_timer;
  350. ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
  351. hrtimer_set_expires(timer, time);
  352. if (rq == this_rq()) {
  353. hrtimer_restart(timer);
  354. } else if (!rq->hrtick_csd_pending) {
  355. __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
  356. rq->hrtick_csd_pending = 1;
  357. }
  358. }
  359. static int
  360. hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
  361. {
  362. int cpu = (int)(long)hcpu;
  363. switch (action) {
  364. case CPU_UP_CANCELED:
  365. case CPU_UP_CANCELED_FROZEN:
  366. case CPU_DOWN_PREPARE:
  367. case CPU_DOWN_PREPARE_FROZEN:
  368. case CPU_DEAD:
  369. case CPU_DEAD_FROZEN:
  370. hrtick_clear(cpu_rq(cpu));
  371. return NOTIFY_OK;
  372. }
  373. return NOTIFY_DONE;
  374. }
  375. static __init void init_hrtick(void)
  376. {
  377. hotcpu_notifier(hotplug_hrtick, 0);
  378. }
  379. #else
  380. /*
  381. * Called to set the hrtick timer state.
  382. *
  383. * called with rq->lock held and irqs disabled
  384. */
  385. void hrtick_start(struct rq *rq, u64 delay)
  386. {
  387. __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
  388. HRTIMER_MODE_REL_PINNED, 0);
  389. }
  390. static inline void init_hrtick(void)
  391. {
  392. }
  393. #endif /* CONFIG_SMP */
  394. static void init_rq_hrtick(struct rq *rq)
  395. {
  396. #ifdef CONFIG_SMP
  397. rq->hrtick_csd_pending = 0;
  398. rq->hrtick_csd.flags = 0;
  399. rq->hrtick_csd.func = __hrtick_start;
  400. rq->hrtick_csd.info = rq;
  401. #endif
  402. hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
  403. rq->hrtick_timer.function = hrtick;
  404. }
  405. #else /* CONFIG_SCHED_HRTICK */
  406. static inline void hrtick_clear(struct rq *rq)
  407. {
  408. }
  409. static inline void init_rq_hrtick(struct rq *rq)
  410. {
  411. }
  412. static inline void init_hrtick(void)
  413. {
  414. }
  415. #endif /* CONFIG_SCHED_HRTICK */
  416. /*
  417. * resched_task - mark a task 'to be rescheduled now'.
  418. *
  419. * On UP this means the setting of the need_resched flag, on SMP it
  420. * might also involve a cross-CPU call to trigger the scheduler on
  421. * the target CPU.
  422. */
  423. #ifdef CONFIG_SMP
  424. #ifndef tsk_is_polling
  425. #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
  426. #endif
  427. void resched_task(struct task_struct *p)
  428. {
  429. int cpu;
  430. assert_raw_spin_locked(&task_rq(p)->lock);
  431. if (test_tsk_need_resched(p))
  432. return;
  433. set_tsk_need_resched(p);
  434. cpu = task_cpu(p);
  435. if (cpu == smp_processor_id())
  436. return;
  437. /* NEED_RESCHED must be visible before we test polling */
  438. smp_mb();
  439. if (!tsk_is_polling(p))
  440. smp_send_reschedule(cpu);
  441. }
  442. void resched_cpu(int cpu)
  443. {
  444. struct rq *rq = cpu_rq(cpu);
  445. unsigned long flags;
  446. if (!raw_spin_trylock_irqsave(&rq->lock, flags))
  447. return;
  448. resched_task(cpu_curr(cpu));
  449. raw_spin_unlock_irqrestore(&rq->lock, flags);
  450. }
  451. #ifdef CONFIG_NO_HZ
  452. /*
  453. * In the semi idle case, use the nearest busy cpu for migrating timers
  454. * from an idle cpu. This is good for power-savings.
  455. *
  456. * We don't do similar optimization for completely idle system, as
  457. * selecting an idle cpu will add more delays to the timers than intended
  458. * (as that cpu's timer base may not be uptodate wrt jiffies etc).
  459. */
  460. int get_nohz_timer_target(void)
  461. {
  462. int cpu = smp_processor_id();
  463. int i;
  464. struct sched_domain *sd;
  465. rcu_read_lock();
  466. for_each_domain(cpu, sd) {
  467. for_each_cpu(i, sched_domain_span(sd)) {
  468. if (!idle_cpu(i)) {
  469. cpu = i;
  470. goto unlock;
  471. }
  472. }
  473. }
  474. unlock:
  475. rcu_read_unlock();
  476. return cpu;
  477. }
  478. /*
  479. * When add_timer_on() enqueues a timer into the timer wheel of an
  480. * idle CPU then this timer might expire before the next timer event
  481. * which is scheduled to wake up that CPU. In case of a completely
  482. * idle system the next event might even be infinite time into the
  483. * future. wake_up_idle_cpu() ensures that the CPU is woken up and
  484. * leaves the inner idle loop so the newly added timer is taken into
  485. * account when the CPU goes back to idle and evaluates the timer
  486. * wheel for the next timer event.
  487. */
  488. void wake_up_idle_cpu(int cpu)
  489. {
  490. struct rq *rq = cpu_rq(cpu);
  491. if (cpu == smp_processor_id())
  492. return;
  493. /*
  494. * This is safe, as this function is called with the timer
  495. * wheel base lock of (cpu) held. When the CPU is on the way
  496. * to idle and has not yet set rq->curr to idle then it will
  497. * be serialized on the timer wheel base lock and take the new
  498. * timer into account automatically.
  499. */
  500. if (rq->curr != rq->idle)
  501. return;
  502. /*
  503. * We can set TIF_RESCHED on the idle task of the other CPU
  504. * lockless. The worst case is that the other CPU runs the
  505. * idle task through an additional NOOP schedule()
  506. */
  507. set_tsk_need_resched(rq->idle);
  508. /* NEED_RESCHED must be visible before we test polling */
  509. smp_mb();
  510. if (!tsk_is_polling(rq->idle))
  511. smp_send_reschedule(cpu);
  512. }
  513. static inline bool got_nohz_idle_kick(void)
  514. {
  515. int cpu = smp_processor_id();
  516. return idle_cpu(cpu) && test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu));
  517. }
  518. #else /* CONFIG_NO_HZ */
  519. static inline bool got_nohz_idle_kick(void)
  520. {
  521. return false;
  522. }
  523. #endif /* CONFIG_NO_HZ */
  524. void sched_avg_update(struct rq *rq)
  525. {
  526. s64 period = sched_avg_period();
  527. while ((s64)(rq->clock - rq->age_stamp) > period) {
  528. /*
  529. * Inline assembly required to prevent the compiler
  530. * optimising this loop into a divmod call.
  531. * See __iter_div_u64_rem() for another example of this.
  532. */
  533. asm("" : "+rm" (rq->age_stamp));
  534. rq->age_stamp += period;
  535. rq->rt_avg /= 2;
  536. }
  537. }
  538. #else /* !CONFIG_SMP */
  539. void resched_task(struct task_struct *p)
  540. {
  541. assert_raw_spin_locked(&task_rq(p)->lock);
  542. set_tsk_need_resched(p);
  543. }
  544. #endif /* CONFIG_SMP */
  545. #if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
  546. (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
  547. /*
  548. * Iterate task_group tree rooted at *from, calling @down when first entering a
  549. * node and @up when leaving it for the final time.
  550. *
  551. * Caller must hold rcu_lock or sufficient equivalent.
  552. */
  553. int walk_tg_tree_from(struct task_group *from,
  554. tg_visitor down, tg_visitor up, void *data)
  555. {
  556. struct task_group *parent, *child;
  557. int ret;
  558. parent = from;
  559. down:
  560. ret = (*down)(parent, data);
  561. if (ret)
  562. goto out;
  563. list_for_each_entry_rcu(child, &parent->children, siblings) {
  564. parent = child;
  565. goto down;
  566. up:
  567. continue;
  568. }
  569. ret = (*up)(parent, data);
  570. if (ret || parent == from)
  571. goto out;
  572. child = parent;
  573. parent = parent->parent;
  574. if (parent)
  575. goto up;
  576. out:
  577. return ret;
  578. }
  579. int tg_nop(struct task_group *tg, void *data)
  580. {
  581. return 0;
  582. }
  583. #endif
  584. void update_cpu_load(struct rq *this_rq);
  585. static void set_load_weight(struct task_struct *p)
  586. {
  587. int prio = p->static_prio - MAX_RT_PRIO;
  588. struct load_weight *load = &p->se.load;
  589. /*
  590. * SCHED_IDLE tasks get minimal weight:
  591. */
  592. if (p->policy == SCHED_IDLE) {
  593. load->weight = scale_load(WEIGHT_IDLEPRIO);
  594. load->inv_weight = WMULT_IDLEPRIO;
  595. return;
  596. }
  597. load->weight = scale_load(prio_to_weight[prio]);
  598. load->inv_weight = prio_to_wmult[prio];
  599. }
  600. static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
  601. {
  602. update_rq_clock(rq);
  603. sched_info_queued(p);
  604. p->sched_class->enqueue_task(rq, p, flags);
  605. }
  606. static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
  607. {
  608. update_rq_clock(rq);
  609. sched_info_dequeued(p);
  610. p->sched_class->dequeue_task(rq, p, flags);
  611. }
  612. void activate_task(struct rq *rq, struct task_struct *p, int flags)
  613. {
  614. if (task_contributes_to_load(p))
  615. rq->nr_uninterruptible--;
  616. enqueue_task(rq, p, flags);
  617. }
  618. void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
  619. {
  620. if (task_contributes_to_load(p))
  621. rq->nr_uninterruptible++;
  622. dequeue_task(rq, p, flags);
  623. }
  624. #ifdef CONFIG_IRQ_TIME_ACCOUNTING
  625. /*
  626. * There are no locks covering percpu hardirq/softirq time.
  627. * They are only modified in account_system_vtime, on corresponding CPU
  628. * with interrupts disabled. So, writes are safe.
  629. * They are read and saved off onto struct rq in update_rq_clock().
  630. * This may result in other CPU reading this CPU's irq time and can
  631. * race with irq/account_system_vtime on this CPU. We would either get old
  632. * or new value with a side effect of accounting a slice of irq time to wrong
  633. * task when irq is in progress while we read rq->clock. That is a worthy
  634. * compromise in place of having locks on each irq in account_system_time.
  635. */
  636. static DEFINE_PER_CPU(u64, cpu_hardirq_time);
  637. static DEFINE_PER_CPU(u64, cpu_softirq_time);
  638. static DEFINE_PER_CPU(u64, irq_start_time);
  639. static int sched_clock_irqtime;
  640. void enable_sched_clock_irqtime(void)
  641. {
  642. sched_clock_irqtime = 1;
  643. }
  644. void disable_sched_clock_irqtime(void)
  645. {
  646. sched_clock_irqtime = 0;
  647. }
  648. #ifndef CONFIG_64BIT
  649. static DEFINE_PER_CPU(seqcount_t, irq_time_seq);
  650. static inline void irq_time_write_begin(void)
  651. {
  652. __this_cpu_inc(irq_time_seq.sequence);
  653. smp_wmb();
  654. }
  655. static inline void irq_time_write_end(void)
  656. {
  657. smp_wmb();
  658. __this_cpu_inc(irq_time_seq.sequence);
  659. }
  660. static inline u64 irq_time_read(int cpu)
  661. {
  662. u64 irq_time;
  663. unsigned seq;
  664. do {
  665. seq = read_seqcount_begin(&per_cpu(irq_time_seq, cpu));
  666. irq_time = per_cpu(cpu_softirq_time, cpu) +
  667. per_cpu(cpu_hardirq_time, cpu);
  668. } while (read_seqcount_retry(&per_cpu(irq_time_seq, cpu), seq));
  669. return irq_time;
  670. }
  671. #else /* CONFIG_64BIT */
  672. static inline void irq_time_write_begin(void)
  673. {
  674. }
  675. static inline void irq_time_write_end(void)
  676. {
  677. }
  678. static inline u64 irq_time_read(int cpu)
  679. {
  680. return per_cpu(cpu_softirq_time, cpu) + per_cpu(cpu_hardirq_time, cpu);
  681. }
  682. #endif /* CONFIG_64BIT */
  683. /*
  684. * Called before incrementing preempt_count on {soft,}irq_enter
  685. * and before decrementing preempt_count on {soft,}irq_exit.
  686. */
  687. void account_system_vtime(struct task_struct *curr)
  688. {
  689. unsigned long flags;
  690. s64 delta;
  691. int cpu;
  692. if (!sched_clock_irqtime)
  693. return;
  694. local_irq_save(flags);
  695. cpu = smp_processor_id();
  696. delta = sched_clock_cpu(cpu) - __this_cpu_read(irq_start_time);
  697. __this_cpu_add(irq_start_time, delta);
  698. irq_time_write_begin();
  699. /*
  700. * We do not account for softirq time from ksoftirqd here.
  701. * We want to continue accounting softirq time to ksoftirqd thread
  702. * in that case, so as not to confuse scheduler with a special task
  703. * that do not consume any time, but still wants to run.
  704. */
  705. if (hardirq_count())
  706. __this_cpu_add(cpu_hardirq_time, delta);
  707. else if (in_serving_softirq() && curr != this_cpu_ksoftirqd())
  708. __this_cpu_add(cpu_softirq_time, delta);
  709. irq_time_write_end();
  710. local_irq_restore(flags);
  711. }
  712. EXPORT_SYMBOL_GPL(account_system_vtime);
  713. #endif /* CONFIG_IRQ_TIME_ACCOUNTING */
  714. #ifdef CONFIG_PARAVIRT
  715. static inline u64 steal_ticks(u64 steal)
  716. {
  717. if (unlikely(steal > NSEC_PER_SEC))
  718. return div_u64(steal, TICK_NSEC);
  719. return __iter_div_u64_rem(steal, TICK_NSEC, &steal);
  720. }
  721. #endif
  722. static void update_rq_clock_task(struct rq *rq, s64 delta)
  723. {
  724. /*
  725. * In theory, the compile should just see 0 here, and optimize out the call
  726. * to sched_rt_avg_update. But I don't trust it...
  727. */
  728. #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
  729. s64 steal = 0, irq_delta = 0;
  730. #endif
  731. #ifdef CONFIG_IRQ_TIME_ACCOUNTING
  732. irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
  733. /*
  734. * Since irq_time is only updated on {soft,}irq_exit, we might run into
  735. * this case when a previous update_rq_clock() happened inside a
  736. * {soft,}irq region.
  737. *
  738. * When this happens, we stop ->clock_task and only update the
  739. * prev_irq_time stamp to account for the part that fit, so that a next
  740. * update will consume the rest. This ensures ->clock_task is
  741. * monotonic.
  742. *
  743. * It does however cause some slight miss-attribution of {soft,}irq
  744. * time, a more accurate solution would be to update the irq_time using
  745. * the current rq->clock timestamp, except that would require using
  746. * atomic ops.
  747. */
  748. if (irq_delta > delta)
  749. irq_delta = delta;
  750. rq->prev_irq_time += irq_delta;
  751. delta -= irq_delta;
  752. #endif
  753. #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
  754. if (static_key_false((&paravirt_steal_rq_enabled))) {
  755. u64 st;
  756. steal = paravirt_steal_clock(cpu_of(rq));
  757. steal -= rq->prev_steal_time_rq;
  758. if (unlikely(steal > delta))
  759. steal = delta;
  760. st = steal_ticks(steal);
  761. steal = st * TICK_NSEC;
  762. rq->prev_steal_time_rq += steal;
  763. delta -= steal;
  764. }
  765. #endif
  766. rq->clock_task += delta;
  767. #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
  768. if ((irq_delta + steal) && sched_feat(NONTASK_POWER))
  769. sched_rt_avg_update(rq, irq_delta + steal);
  770. #endif
  771. }
  772. #ifdef CONFIG_IRQ_TIME_ACCOUNTING
  773. static int irqtime_account_hi_update(void)
  774. {
  775. u64 *cpustat = kcpustat_this_cpu->cpustat;
  776. unsigned long flags;
  777. u64 latest_ns;
  778. int ret = 0;
  779. local_irq_save(flags);
  780. latest_ns = this_cpu_read(cpu_hardirq_time);
  781. if (nsecs_to_cputime64(latest_ns) > cpustat[CPUTIME_IRQ])
  782. ret = 1;
  783. local_irq_restore(flags);
  784. return ret;
  785. }
  786. static int irqtime_account_si_update(void)
  787. {
  788. u64 *cpustat = kcpustat_this_cpu->cpustat;
  789. unsigned long flags;
  790. u64 latest_ns;
  791. int ret = 0;
  792. local_irq_save(flags);
  793. latest_ns = this_cpu_read(cpu_softirq_time);
  794. if (nsecs_to_cputime64(latest_ns) > cpustat[CPUTIME_SOFTIRQ])
  795. ret = 1;
  796. local_irq_restore(flags);
  797. return ret;
  798. }
  799. #else /* CONFIG_IRQ_TIME_ACCOUNTING */
  800. #define sched_clock_irqtime (0)
  801. #endif
  802. void sched_set_stop_task(int cpu, struct task_struct *stop)
  803. {
  804. struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
  805. struct task_struct *old_stop = cpu_rq(cpu)->stop;
  806. if (stop) {
  807. /*
  808. * Make it appear like a SCHED_FIFO task, its something
  809. * userspace knows about and won't get confused about.
  810. *
  811. * Also, it will make PI more or less work without too
  812. * much confusion -- but then, stop work should not
  813. * rely on PI working anyway.
  814. */
  815. sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
  816. stop->sched_class = &stop_sched_class;
  817. }
  818. cpu_rq(cpu)->stop = stop;
  819. if (old_stop) {
  820. /*
  821. * Reset it back to a normal scheduling class so that
  822. * it can die in pieces.
  823. */
  824. old_stop->sched_class = &rt_sched_class;
  825. }
  826. }
  827. /*
  828. * __normal_prio - return the priority that is based on the static prio
  829. */
  830. static inline int __normal_prio(struct task_struct *p)
  831. {
  832. return p->static_prio;
  833. }
  834. /*
  835. * Calculate the expected normal priority: i.e. priority
  836. * without taking RT-inheritance into account. Might be
  837. * boosted by interactivity modifiers. Changes upon fork,
  838. * setprio syscalls, and whenever the interactivity
  839. * estimator recalculates.
  840. */
  841. static inline int normal_prio(struct task_struct *p)
  842. {
  843. int prio;
  844. if (task_has_rt_policy(p))
  845. prio = MAX_RT_PRIO-1 - p->rt_priority;
  846. else
  847. prio = __normal_prio(p);
  848. return prio;
  849. }
  850. /*
  851. * Calculate the current priority, i.e. the priority
  852. * taken into account by the scheduler. This value might
  853. * be boosted by RT tasks, or might be boosted by
  854. * interactivity modifiers. Will be RT if the task got
  855. * RT-boosted. If not then it returns p->normal_prio.
  856. */
  857. static int effective_prio(struct task_struct *p)
  858. {
  859. p->normal_prio = normal_prio(p);
  860. /*
  861. * If we are RT tasks or we were boosted to RT priority,
  862. * keep the priority unchanged. Otherwise, update priority
  863. * to the normal priority:
  864. */
  865. if (!rt_prio(p->prio))
  866. return p->normal_prio;
  867. return p->prio;
  868. }
  869. /**
  870. * task_curr - is this task currently executing on a CPU?
  871. * @p: the task in question.
  872. */
  873. inline int task_curr(const struct task_struct *p)
  874. {
  875. return cpu_curr(task_cpu(p)) == p;
  876. }
  877. static inline void check_class_changed(struct rq *rq, struct task_struct *p,
  878. const struct sched_class *prev_class,
  879. int oldprio)
  880. {
  881. if (prev_class != p->sched_class) {
  882. if (prev_class->switched_from)
  883. prev_class->switched_from(rq, p);
  884. p->sched_class->switched_to(rq, p);
  885. } else if (oldprio != p->prio)
  886. p->sched_class->prio_changed(rq, p, oldprio);
  887. }
  888. void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
  889. {
  890. const struct sched_class *class;
  891. if (p->sched_class == rq->curr->sched_class) {
  892. rq->curr->sched_class->check_preempt_curr(rq, p, flags);
  893. } else {
  894. for_each_class(class) {
  895. if (class == rq->curr->sched_class)
  896. break;
  897. if (class == p->sched_class) {
  898. resched_task(rq->curr);
  899. break;
  900. }
  901. }
  902. }
  903. /*
  904. * A queue event has occurred, and we're going to schedule. In
  905. * this case, we can save a useless back to back clock update.
  906. */
  907. if (rq->curr->on_rq && test_tsk_need_resched(rq->curr))
  908. rq->skip_clock_update = 1;
  909. }
  910. #ifdef CONFIG_SMP
  911. void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
  912. {
  913. #ifdef CONFIG_SCHED_DEBUG
  914. /*
  915. * We should never call set_task_cpu() on a blocked task,
  916. * ttwu() will sort out the placement.
  917. */
  918. WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
  919. !(task_thread_info(p)->preempt_count & PREEMPT_ACTIVE));
  920. #ifdef CONFIG_LOCKDEP
  921. /*
  922. * The caller should hold either p->pi_lock or rq->lock, when changing
  923. * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
  924. *
  925. * sched_move_task() holds both and thus holding either pins the cgroup,
  926. * see set_task_rq().
  927. *
  928. * Furthermore, all task_rq users should acquire both locks, see
  929. * task_rq_lock().
  930. */
  931. WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
  932. lockdep_is_held(&task_rq(p)->lock)));
  933. #endif
  934. #endif
  935. trace_sched_migrate_task(p, new_cpu);
  936. if (task_cpu(p) != new_cpu) {
  937. p->se.nr_migrations++;
  938. perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, NULL, 0);
  939. }
  940. __set_task_cpu(p, new_cpu);
  941. }
  942. struct migration_arg {
  943. struct task_struct *task;
  944. int dest_cpu;
  945. };
  946. static int migration_cpu_stop(void *data);
  947. /*
  948. * wait_task_inactive - wait for a thread to unschedule.
  949. *
  950. * If @match_state is nonzero, it's the @p->state value just checked and
  951. * not expected to change. If it changes, i.e. @p might have woken up,
  952. * then return zero. When we succeed in waiting for @p to be off its CPU,
  953. * we return a positive number (its total switch count). If a second call
  954. * a short while later returns the same number, the caller can be sure that
  955. * @p has remained unscheduled the whole time.
  956. *
  957. * The caller must ensure that the task *will* unschedule sometime soon,
  958. * else this function might spin for a *long* time. This function can't
  959. * be called with interrupts off, or it may introduce deadlock with
  960. * smp_call_function() if an IPI is sent by the same process we are
  961. * waiting to become inactive.
  962. */
  963. unsigned long wait_task_inactive(struct task_struct *p, long match_state)
  964. {
  965. unsigned long flags;
  966. int running, on_rq;
  967. unsigned long ncsw;
  968. struct rq *rq;
  969. for (;;) {
  970. /*
  971. * We do the initial early heuristics without holding
  972. * any task-queue locks at all. We'll only try to get
  973. * the runqueue lock when things look like they will
  974. * work out!
  975. */
  976. rq = task_rq(p);
  977. /*
  978. * If the task is actively running on another CPU
  979. * still, just relax and busy-wait without holding
  980. * any locks.
  981. *
  982. * NOTE! Since we don't hold any locks, it's not
  983. * even sure that "rq" stays as the right runqueue!
  984. * But we don't care, since "task_running()" will
  985. * return false if the runqueue has changed and p
  986. * is actually now running somewhere else!
  987. */
  988. while (task_running(rq, p)) {
  989. if (match_state && unlikely(p->state != match_state))
  990. return 0;
  991. cpu_relax();
  992. }
  993. /*
  994. * Ok, time to look more closely! We need the rq
  995. * lock now, to be *sure*. If we're wrong, we'll
  996. * just go back and repeat.
  997. */
  998. rq = task_rq_lock(p, &flags);
  999. trace_sched_wait_task(p);
  1000. running = task_running(rq, p);
  1001. on_rq = p->on_rq;
  1002. ncsw = 0;
  1003. if (!match_state || p->state == match_state)
  1004. ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
  1005. task_rq_unlock(rq, p, &flags);
  1006. /*
  1007. * If it changed from the expected state, bail out now.
  1008. */
  1009. if (unlikely(!ncsw))
  1010. break;
  1011. /*
  1012. * Was it really running after all now that we
  1013. * checked with the proper locks actually held?
  1014. *
  1015. * Oops. Go back and try again..
  1016. */
  1017. if (unlikely(running)) {
  1018. cpu_relax();
  1019. continue;
  1020. }
  1021. /*
  1022. * It's not enough that it's not actively running,
  1023. * it must be off the runqueue _entirely_, and not
  1024. * preempted!
  1025. *
  1026. * So if it was still runnable (but just not actively
  1027. * running right now), it's preempted, and we should
  1028. * yield - it could be a while.
  1029. */
  1030. if (unlikely(on_rq)) {
  1031. ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);
  1032. set_current_state(TASK_UNINTERRUPTIBLE);
  1033. schedule_hrtimeout(&to, HRTIMER_MODE_REL);
  1034. continue;
  1035. }
  1036. /*
  1037. * Ahh, all good. It wasn't running, and it wasn't
  1038. * runnable, which means that it will never become
  1039. * running in the future either. We're all done!
  1040. */
  1041. break;
  1042. }
  1043. return ncsw;
  1044. }
  1045. /***
  1046. * kick_process - kick a running thread to enter/exit the kernel
  1047. * @p: the to-be-kicked thread
  1048. *
  1049. * Cause a process which is running on another CPU to enter
  1050. * kernel-mode, without any delay. (to get signals handled.)
  1051. *
  1052. * NOTE: this function doesn't have to take the runqueue lock,
  1053. * because all it wants to ensure is that the remote task enters
  1054. * the kernel. If the IPI races and the task has been migrated
  1055. * to another CPU then no harm is done and the purpose has been
  1056. * achieved as well.
  1057. */
  1058. void kick_process(struct task_struct *p)
  1059. {
  1060. int cpu;
  1061. preempt_disable();
  1062. cpu = task_cpu(p);
  1063. if ((cpu != smp_processor_id()) && task_curr(p))
  1064. smp_send_reschedule(cpu);
  1065. preempt_enable();
  1066. }
  1067. EXPORT_SYMBOL_GPL(kick_process);
  1068. #endif /* CONFIG_SMP */
  1069. #ifdef CONFIG_SMP
  1070. /*
  1071. * ->cpus_allowed is protected by both rq->lock and p->pi_lock
  1072. */
  1073. static int select_fallback_rq(int cpu, struct task_struct *p)
  1074. {
  1075. const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(cpu));
  1076. enum { cpuset, possible, fail } state = cpuset;
  1077. int dest_cpu;
  1078. /* Look for allowed, online CPU in same node. */
  1079. for_each_cpu(dest_cpu, nodemask) {
  1080. if (!cpu_online(dest_cpu))
  1081. continue;
  1082. if (!cpu_active(dest_cpu))
  1083. continue;
  1084. if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
  1085. return dest_cpu;
  1086. }
  1087. for (;;) {
  1088. /* Any allowed, online CPU? */
  1089. for_each_cpu(dest_cpu, tsk_cpus_allowed(p)) {
  1090. if (!cpu_online(dest_cpu))
  1091. continue;
  1092. if (!cpu_active(dest_cpu))
  1093. continue;
  1094. goto out;
  1095. }
  1096. switch (state) {
  1097. case cpuset:
  1098. /* No more Mr. Nice Guy. */
  1099. cpuset_cpus_allowed_fallback(p);
  1100. state = possible;
  1101. break;
  1102. case possible:
  1103. do_set_cpus_allowed(p, cpu_possible_mask);
  1104. state = fail;
  1105. break;
  1106. case fail:
  1107. BUG();
  1108. break;
  1109. }
  1110. }
  1111. out:
  1112. if (state != cpuset) {
  1113. /*
  1114. * Don't tell them about moving exiting tasks or
  1115. * kernel threads (both mm NULL), since they never
  1116. * leave kernel.
  1117. */
  1118. if (p->mm && printk_ratelimit()) {
  1119. printk_sched("process %d (%s) no longer affine to cpu%d\n",
  1120. task_pid_nr(p), p->comm, cpu);
  1121. }
  1122. }
  1123. return dest_cpu;
  1124. }
  1125. /*
  1126. * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
  1127. */
  1128. static inline
  1129. int select_task_rq(struct task_struct *p, int sd_flags, int wake_flags)
  1130. {
  1131. int cpu = p->sched_class->select_task_rq(p, sd_flags, wake_flags);
  1132. /*
  1133. * In order not to call set_task_cpu() on a blocking task we need
  1134. * to rely on ttwu() to place the task on a valid ->cpus_allowed
  1135. * cpu.
  1136. *
  1137. * Since this is common to all placement strategies, this lives here.
  1138. *
  1139. * [ this allows ->select_task() to simply return task_cpu(p) and
  1140. * not worry about this generic constraint ]
  1141. */
  1142. if (unlikely(!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)) ||
  1143. !cpu_online(cpu)))
  1144. cpu = select_fallback_rq(task_cpu(p), p);
  1145. return cpu;
  1146. }
  1147. static void update_avg(u64 *avg, u64 sample)
  1148. {
  1149. s64 diff = sample - *avg;
  1150. *avg += diff >> 3;
  1151. }
  1152. #endif
  1153. static void
  1154. ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
  1155. {
  1156. #ifdef CONFIG_SCHEDSTATS
  1157. struct rq *rq = this_rq();
  1158. #ifdef CONFIG_SMP
  1159. int this_cpu = smp_processor_id();
  1160. if (cpu == this_cpu) {
  1161. schedstat_inc(rq, ttwu_local);
  1162. schedstat_inc(p, se.statistics.nr_wakeups_local);
  1163. } else {
  1164. struct sched_domain *sd;
  1165. schedstat_inc(p, se.statistics.nr_wakeups_remote);
  1166. rcu_read_lock();
  1167. for_each_domain(this_cpu, sd) {
  1168. if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
  1169. schedstat_inc(sd, ttwu_wake_remote);
  1170. break;
  1171. }
  1172. }
  1173. rcu_read_unlock();
  1174. }
  1175. if (wake_flags & WF_MIGRATED)
  1176. schedstat_inc(p, se.statistics.nr_wakeups_migrate);
  1177. #endif /* CONFIG_SMP */
  1178. schedstat_inc(rq, ttwu_count);
  1179. schedstat_inc(p, se.statistics.nr_wakeups);
  1180. if (wake_flags & WF_SYNC)
  1181. schedstat_inc(p, se.statistics.nr_wakeups_sync);
  1182. #endif /* CONFIG_SCHEDSTATS */
  1183. }
  1184. static void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
  1185. {
  1186. activate_task(rq, p, en_flags);
  1187. p->on_rq = 1;
  1188. /* if a worker is waking up, notify workqueue */
  1189. if (p->flags & PF_WQ_WORKER)
  1190. wq_worker_waking_up(p, cpu_of(rq));
  1191. }
  1192. /*
  1193. * Mark the task runnable and perform wakeup-preemption.
  1194. */
  1195. static void
  1196. ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
  1197. {
  1198. trace_sched_wakeup(p, true);
  1199. check_preempt_curr(rq, p, wake_flags);
  1200. p->state = TASK_RUNNING;
  1201. #ifdef CONFIG_SMP
  1202. if (p->sched_class->task_woken)
  1203. p->sched_class->task_woken(rq, p);
  1204. if (rq->idle_stamp) {
  1205. u64 delta = rq->clock - rq->idle_stamp;
  1206. u64 max = 2*sysctl_sched_migration_cost;
  1207. if (delta > max)
  1208. rq->avg_idle = max;
  1209. else
  1210. update_avg(&rq->avg_idle, delta);
  1211. rq->idle_stamp = 0;
  1212. }
  1213. #endif
  1214. }
  1215. static void
  1216. ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags)
  1217. {
  1218. #ifdef CONFIG_SMP
  1219. if (p->sched_contributes_to_load)
  1220. rq->nr_uninterruptible--;
  1221. #endif
  1222. ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_WAKING);
  1223. ttwu_do_wakeup(rq, p, wake_flags);
  1224. }
  1225. /*
  1226. * Called in case the task @p isn't fully descheduled from its runqueue,
  1227. * in this case we must do a remote wakeup. Its a 'light' wakeup though,
  1228. * since all we need to do is flip p->state to TASK_RUNNING, since
  1229. * the task is still ->on_rq.
  1230. */
  1231. static int ttwu_remote(struct task_struct *p, int wake_flags)
  1232. {
  1233. struct rq *rq;
  1234. int ret = 0;
  1235. rq = __task_rq_lock(p);
  1236. if (p->on_rq) {
  1237. ttwu_do_wakeup(rq, p, wake_flags);
  1238. ret = 1;
  1239. }
  1240. __task_rq_unlock(rq);
  1241. return ret;
  1242. }
  1243. #ifdef CONFIG_SMP
  1244. static void sched_ttwu_pending(void)
  1245. {
  1246. struct rq *rq = this_rq();
  1247. struct llist_node *llist = llist_del_all(&rq->wake_list);
  1248. struct task_struct *p;
  1249. raw_spin_lock(&rq->lock);
  1250. while (llist) {
  1251. p = llist_entry(llist, struct task_struct, wake_entry);
  1252. llist = llist_next(llist);
  1253. ttwu_do_activate(rq, p, 0);
  1254. }
  1255. raw_spin_unlock(&rq->lock);
  1256. }
  1257. void scheduler_ipi(void)
  1258. {
  1259. if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick())
  1260. return;
  1261. /*
  1262. * Not all reschedule IPI handlers call irq_enter/irq_exit, since
  1263. * traditionally all their work was done from the interrupt return
  1264. * path. Now that we actually do some work, we need to make sure
  1265. * we do call them.
  1266. *
  1267. * Some archs already do call them, luckily irq_enter/exit nest
  1268. * properly.
  1269. *
  1270. * Arguably we should visit all archs and update all handlers,
  1271. * however a fair share of IPIs are still resched only so this would
  1272. * somewhat pessimize the simple resched case.
  1273. */
  1274. irq_enter();
  1275. sched_ttwu_pending();
  1276. /*
  1277. * Check if someone kicked us for doing the nohz idle load balance.
  1278. */
  1279. if (unlikely(got_nohz_idle_kick() && !need_resched())) {
  1280. this_rq()->idle_balance = 1;
  1281. raise_softirq_irqoff(SCHED_SOFTIRQ);
  1282. }
  1283. irq_exit();
  1284. }
  1285. static void ttwu_queue_remote(struct task_struct *p, int cpu)
  1286. {
  1287. if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list))
  1288. smp_send_reschedule(cpu);
  1289. }
  1290. #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  1291. static int ttwu_activate_remote(struct task_struct *p, int wake_flags)
  1292. {
  1293. struct rq *rq;
  1294. int ret = 0;
  1295. rq = __task_rq_lock(p);
  1296. if (p->on_cpu) {
  1297. ttwu_activate(rq, p, ENQUEUE_WAKEUP);
  1298. ttwu_do_wakeup(rq, p, wake_flags);
  1299. ret = 1;
  1300. }
  1301. __task_rq_unlock(rq);
  1302. return ret;
  1303. }
  1304. #endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
  1305. bool cpus_share_cache(int this_cpu, int that_cpu)
  1306. {
  1307. return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
  1308. }
  1309. #endif /* CONFIG_SMP */
  1310. static void ttwu_queue(struct task_struct *p, int cpu)
  1311. {
  1312. struct rq *rq = cpu_rq(cpu);
  1313. #if defined(CONFIG_SMP)
  1314. if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
  1315. sched_clock_cpu(cpu); /* sync clocks x-cpu */
  1316. ttwu_queue_remote(p, cpu);
  1317. return;
  1318. }
  1319. #endif
  1320. raw_spin_lock(&rq->lock);
  1321. ttwu_do_activate(rq, p, 0);
  1322. raw_spin_unlock(&rq->lock);
  1323. }
  1324. /**
  1325. * try_to_wake_up - wake up a thread
  1326. * @p: the thread to be awakened
  1327. * @state: the mask of task states that can be woken
  1328. * @wake_flags: wake modifier flags (WF_*)
  1329. *
  1330. * Put it on the run-queue if it's not already there. The "current"
  1331. * thread is always on the run-queue (except when the actual
  1332. * re-schedule is in progress), and as such you're allowed to do
  1333. * the simpler "current->state = TASK_RUNNING" to mark yourself
  1334. * runnable without the overhead of this.
  1335. *
  1336. * Returns %true if @p was woken up, %false if it was already running
  1337. * or @state didn't match @p's state.
  1338. */
  1339. static int
  1340. try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
  1341. {
  1342. unsigned long flags;
  1343. int cpu, success = 0;
  1344. smp_wmb();
  1345. raw_spin_lock_irqsave(&p->pi_lock, flags);
  1346. if (!(p->state & state))
  1347. goto out;
  1348. success = 1; /* we're going to change ->state */
  1349. cpu = task_cpu(p);
  1350. if (p->on_rq && ttwu_remote(p, wake_flags))
  1351. goto stat;
  1352. #ifdef CONFIG_SMP
  1353. /*
  1354. * If the owning (remote) cpu is still in the middle of schedule() with
  1355. * this task as prev, wait until its done referencing the task.
  1356. */
  1357. while (p->on_cpu) {
  1358. #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  1359. /*
  1360. * In case the architecture enables interrupts in
  1361. * context_switch(), we cannot busy wait, since that
  1362. * would lead to deadlocks when an interrupt hits and
  1363. * tries to wake up @prev. So bail and do a complete
  1364. * remote wakeup.
  1365. */
  1366. if (ttwu_activate_remote(p, wake_flags))
  1367. goto stat;
  1368. #else
  1369. cpu_relax();
  1370. #endif
  1371. }
  1372. /*
  1373. * Pairs with the smp_wmb() in finish_lock_switch().
  1374. */
  1375. smp_rmb();
  1376. p->sched_contributes_to_load = !!task_contributes_to_load(p);
  1377. p->state = TASK_WAKING;
  1378. if (p->sched_class->task_waking)
  1379. p->sched_class->task_waking(p);
  1380. cpu = select_task_rq(p, SD_BALANCE_WAKE, wake_flags);
  1381. if (task_cpu(p) != cpu) {
  1382. wake_flags |= WF_MIGRATED;
  1383. set_task_cpu(p, cpu);
  1384. }
  1385. #endif /* CONFIG_SMP */
  1386. ttwu_queue(p, cpu);
  1387. stat:
  1388. ttwu_stat(p, cpu, wake_flags);
  1389. out:
  1390. raw_spin_unlock_irqrestore(&p->pi_lock, flags);
  1391. return success;
  1392. }
  1393. /**
  1394. * try_to_wake_up_local - try to wake up a local task with rq lock held
  1395. * @p: the thread to be awakened
  1396. *
  1397. * Put @p on the run-queue if it's not already there. The caller must
  1398. * ensure that this_rq() is locked, @p is bound to this_rq() and not
  1399. * the current task.
  1400. */
  1401. static void try_to_wake_up_local(struct task_struct *p)
  1402. {
  1403. struct rq *rq = task_rq(p);
  1404. BUG_ON(rq != this_rq());
  1405. BUG_ON(p == current);
  1406. lockdep_assert_held(&rq->lock);
  1407. if (!raw_spin_trylock(&p->pi_lock)) {
  1408. raw_spin_unlock(&rq->lock);
  1409. raw_spin_lock(&p->pi_lock);
  1410. raw_spin_lock(&rq->lock);
  1411. }
  1412. if (!(p->state & TASK_NORMAL))
  1413. goto out;
  1414. if (!p->on_rq)
  1415. ttwu_activate(rq, p, ENQUEUE_WAKEUP);
  1416. ttwu_do_wakeup(rq, p, 0);
  1417. ttwu_stat(p, smp_processor_id(), 0);
  1418. out:
  1419. raw_spin_unlock(&p->pi_lock);
  1420. }
  1421. /**
  1422. * wake_up_process - Wake up a specific process
  1423. * @p: The process to be woken up.
  1424. *
  1425. * Attempt to wake up the nominated process and move it to the set of runnable
  1426. * processes. Returns 1 if the process was woken up, 0 if it was already
  1427. * running.
  1428. *
  1429. * It may be assumed that this function implies a write memory barrier before
  1430. * changing the task state if and only if any tasks are woken up.
  1431. */
  1432. int wake_up_process(struct task_struct *p)
  1433. {
  1434. return try_to_wake_up(p, TASK_ALL, 0);
  1435. }
  1436. EXPORT_SYMBOL(wake_up_process);
  1437. int wake_up_state(struct task_struct *p, unsigned int state)
  1438. {
  1439. return try_to_wake_up(p, state, 0);
  1440. }
  1441. /*
  1442. * Perform scheduler related setup for a newly forked process p.
  1443. * p is forked by current.
  1444. *
  1445. * __sched_fork() is basic setup used by init_idle() too:
  1446. */
  1447. static void __sched_fork(struct task_struct *p)
  1448. {
  1449. p->on_rq = 0;
  1450. p->se.on_rq = 0;
  1451. p->se.exec_start = 0;
  1452. p->se.sum_exec_runtime = 0;
  1453. p->se.prev_sum_exec_runtime = 0;
  1454. p->se.nr_migrations = 0;
  1455. p->se.vruntime = 0;
  1456. INIT_LIST_HEAD(&p->se.group_node);
  1457. #ifdef CONFIG_SCHEDSTATS
  1458. memset(&p->se.statistics, 0, sizeof(p->se.statistics));
  1459. #endif
  1460. INIT_LIST_HEAD(&p->rt.run_list);
  1461. #ifdef CONFIG_PREEMPT_NOTIFIERS
  1462. INIT_HLIST_HEAD(&p->preempt_notifiers);
  1463. #endif
  1464. }
  1465. /*
  1466. * fork()/clone()-time setup:
  1467. */
  1468. void sched_fork(struct task_struct *p)
  1469. {
  1470. unsigned long flags;
  1471. int cpu = get_cpu();
  1472. __sched_fork(p);
  1473. /*
  1474. * We mark the process as running here. This guarantees that
  1475. * nobody will actually run it, and a signal or other external
  1476. * event cannot wake it up and insert it on the runqueue either.
  1477. */
  1478. p->state = TASK_RUNNING;
  1479. /*
  1480. * Make sure we do not leak PI boosting priority to the child.
  1481. */
  1482. p->prio = current->normal_prio;
  1483. /*
  1484. * Revert to default priority/policy on fork if requested.
  1485. */
  1486. if (unlikely(p->sched_reset_on_fork)) {
  1487. if (task_has_rt_policy(p)) {
  1488. p->policy = SCHED_NORMAL;
  1489. p->static_prio = NICE_TO_PRIO(0);
  1490. p->rt_priority = 0;
  1491. } else if (PRIO_TO_NICE(p->static_prio) < 0)
  1492. p->static_prio = NICE_TO_PRIO(0);
  1493. p->prio = p->normal_prio = __normal_prio(p);
  1494. set_load_weight(p);
  1495. /*
  1496. * We don't need the reset flag anymore after the fork. It has
  1497. * fulfilled its duty:
  1498. */
  1499. p->sched_reset_on_fork = 0;
  1500. }
  1501. if (!rt_prio(p->prio))
  1502. p->sched_class = &fair_sched_class;
  1503. if (p->sched_class->task_fork)
  1504. p->sched_class->task_fork(p);
  1505. /*
  1506. * The child is not yet in the pid-hash so no cgroup attach races,
  1507. * and the cgroup is pinned to this child due to cgroup_fork()
  1508. * is ran before sched_fork().
  1509. *
  1510. * Silence PROVE_RCU.
  1511. */
  1512. raw_spin_lock_irqsave(&p->pi_lock, flags);
  1513. set_task_cpu(p, cpu);
  1514. raw_spin_unlock_irqrestore(&p->pi_lock, flags);
  1515. #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
  1516. if (likely(sched_info_on()))
  1517. memset(&p->sched_info, 0, sizeof(p->sched_info));
  1518. #endif
  1519. #if defined(CONFIG_SMP)
  1520. p->on_cpu = 0;
  1521. #endif
  1522. #ifdef CONFIG_PREEMPT_COUNT
  1523. /* Want to start with kernel preemption disabled. */
  1524. task_thread_info(p)->preempt_count = 1;
  1525. #endif
  1526. #ifdef CONFIG_SMP
  1527. plist_node_init(&p->pushable_tasks, MAX_PRIO);
  1528. #endif
  1529. put_cpu();
  1530. }
  1531. /*
  1532. * wake_up_new_task - wake up a newly created task for the first time.
  1533. *
  1534. * This function will do some initial scheduler statistics housekeeping
  1535. * that must be done for every newly created context, then puts the task
  1536. * on the runqueue and wakes it.
  1537. */
  1538. void wake_up_new_task(struct task_struct *p)
  1539. {
  1540. unsigned long flags;
  1541. struct rq *rq;
  1542. raw_spin_lock_irqsave(&p->pi_lock, flags);
  1543. #ifdef CONFIG_SMP
  1544. /*
  1545. * Fork balancing, do it here and not earlier because:
  1546. * - cpus_allowed can change in the fork path
  1547. * - any previously selected cpu might disappear through hotplug
  1548. */
  1549. set_task_cpu(p, select_task_rq(p, SD_BALANCE_FORK, 0));
  1550. #endif
  1551. rq = __task_rq_lock(p);
  1552. activate_task(rq, p, 0);
  1553. p->on_rq = 1;
  1554. trace_sched_wakeup_new(p, true);
  1555. check_preempt_curr(rq, p, WF_FORK);
  1556. #ifdef CONFIG_SMP
  1557. if (p->sched_class->task_woken)
  1558. p->sched_class->task_woken(rq, p);
  1559. #endif
  1560. task_rq_unlock(rq, p, &flags);
  1561. }
  1562. #ifdef CONFIG_PREEMPT_NOTIFIERS
  1563. /**
  1564. * preempt_notifier_register - tell me when current is being preempted & rescheduled
  1565. * @notifier: notifier struct to register
  1566. */
  1567. void preempt_notifier_register(struct preempt_notifier *notifier)
  1568. {
  1569. hlist_add_head(&notifier->link, &current->preempt_notifiers);
  1570. }
  1571. EXPORT_SYMBOL_GPL(preempt_notifier_register);
  1572. /**
  1573. * preempt_notifier_unregister - no longer interested in preemption notifications
  1574. * @notifier: notifier struct to unregister
  1575. *
  1576. * This is safe to call from within a preemption notifier.
  1577. */
  1578. void preempt_notifier_unregister(struct preempt_notifier *notifier)
  1579. {
  1580. hlist_del(&notifier->link);
  1581. }
  1582. EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
  1583. static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
  1584. {
  1585. struct preempt_notifier *notifier;
  1586. struct hlist_node *node;
  1587. hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
  1588. notifier->ops->sched_in(notifier, raw_smp_processor_id());
  1589. }
  1590. static void
  1591. fire_sched_out_preempt_notifiers(struct task_struct *curr,
  1592. struct task_struct *next)
  1593. {
  1594. struct preempt_notifier *notifier;
  1595. struct hlist_node *node;
  1596. hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
  1597. notifier->ops->sched_out(notifier, next);
  1598. }
  1599. #else /* !CONFIG_PREEMPT_NOTIFIERS */
  1600. static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
  1601. {
  1602. }
  1603. static void
  1604. fire_sched_out_preempt_notifiers(struct task_struct *curr,
  1605. struct task_struct *next)
  1606. {
  1607. }
  1608. #endif /* CONFIG_PREEMPT_NOTIFIERS */
  1609. /**
  1610. * prepare_task_switch - prepare to switch tasks
  1611. * @rq: the runqueue preparing to switch
  1612. * @prev: the current task that is being switched out
  1613. * @next: the task we are going to switch to.
  1614. *
  1615. * This is called with the rq lock held and interrupts off. It must
  1616. * be paired with a subsequent finish_task_switch after the context
  1617. * switch.
  1618. *
  1619. * prepare_task_switch sets up locking and calls architecture specific
  1620. * hooks.
  1621. */
  1622. static inline void
  1623. prepare_task_switch(struct rq *rq, struct task_struct *prev,
  1624. struct task_struct *next)
  1625. {
  1626. sched_info_switch(prev, next);
  1627. perf_event_task_sched_out(prev, next);
  1628. fire_sched_out_preempt_notifiers(prev, next);
  1629. prepare_lock_switch(rq, next);
  1630. prepare_arch_switch(next);
  1631. trace_sched_switch(prev, next);
  1632. }
  1633. /**
  1634. * finish_task_switch - clean up after a task-switch
  1635. * @rq: runqueue associated with task-switch
  1636. * @prev: the thread we just switched away from.
  1637. *
  1638. * finish_task_switch must be called after the context switch, paired
  1639. * with a prepare_task_switch call before the context switch.
  1640. * finish_task_switch will reconcile locking set up by prepare_task_switch,
  1641. * and do any other architecture-specific cleanup actions.
  1642. *
  1643. * Note that we may have delayed dropping an mm in context_switch(). If
  1644. * so, we finish that here outside of the runqueue lock. (Doing it
  1645. * with the lock held can cause deadlocks; see schedule() for
  1646. * details.)
  1647. */
  1648. static void finish_task_switch(struct rq *rq, struct task_struct *prev)
  1649. __releases(rq->lock)
  1650. {
  1651. struct mm_struct *mm = rq->prev_mm;
  1652. long prev_state;
  1653. rq->prev_mm = NULL;
  1654. /*
  1655. * A task struct has one reference for the use as "current".
  1656. * If a task dies, then it sets TASK_DEAD in tsk->state and calls
  1657. * schedule one last time. The schedule call will never return, and
  1658. * the scheduled task must drop that reference.
  1659. * The test for TASK_DEAD must occur while the runqueue locks are
  1660. * still held, otherwise prev could be scheduled on another cpu, die
  1661. * there before we look at prev->state, and then the reference would
  1662. * be dropped twice.
  1663. * Manfred Spraul <manfred@colorfullife.com>
  1664. */
  1665. prev_state = prev->state;
  1666. finish_arch_switch(prev);
  1667. #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  1668. local_irq_disable();
  1669. #endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
  1670. perf_event_task_sched_in(prev, current);
  1671. #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  1672. local_irq_enable();
  1673. #endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
  1674. finish_lock_switch(rq, prev);
  1675. finish_arch_post_lock_switch();
  1676. fire_sched_in_preempt_notifiers(current);
  1677. if (mm)
  1678. mmdrop(mm);
  1679. if (unlikely(prev_state == TASK_DEAD)) {
  1680. /*
  1681. * Remove function-return probe instances associated with this
  1682. * task and put them back on the free list.
  1683. */
  1684. kprobe_flush_task(prev);
  1685. put_task_struct(prev);
  1686. }
  1687. }
  1688. #ifdef CONFIG_SMP
  1689. /* assumes rq->lock is held */
  1690. static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
  1691. {
  1692. if (prev->sched_class->pre_schedule)
  1693. prev->sched_class->pre_schedule(rq, prev);
  1694. }
  1695. /* rq->lock is NOT held, but preemption is disabled */
  1696. static inline void post_schedule(struct rq *rq)
  1697. {
  1698. if (rq->post_schedule) {
  1699. unsigned long flags;
  1700. raw_spin_lock_irqsave(&rq->lock, flags);
  1701. if (rq->curr->sched_class->post_schedule)
  1702. rq->curr->sched_class->post_schedule(rq);
  1703. raw_spin_unlock_irqrestore(&rq->lock, flags);
  1704. rq->post_schedule = 0;
  1705. }
  1706. }
  1707. #else
  1708. static inline void pre_schedule(struct rq *rq, struct task_struct *p)
  1709. {
  1710. }
  1711. static inline void post_schedule(struct rq *rq)
  1712. {
  1713. }
  1714. #endif
  1715. /**
  1716. * schedule_tail - first thing a freshly forked thread must call.
  1717. * @prev: the thread we just switched away from.
  1718. */
  1719. asmlinkage void schedule_tail(struct task_struct *prev)
  1720. __releases(rq->lock)
  1721. {
  1722. struct rq *rq = this_rq();
  1723. finish_task_switch(rq, prev);
  1724. /*
  1725. * FIXME: do we need to worry about rq being invalidated by the
  1726. * task_switch?
  1727. */
  1728. post_schedule(rq);
  1729. #ifdef __ARCH_WANT_UNLOCKED_CTXSW
  1730. /* In this case, finish_task_switch does not reenable preemption */
  1731. preempt_enable();
  1732. #endif
  1733. if (current->set_child_tid)
  1734. put_user(task_pid_vnr(current), current->set_child_tid);
  1735. }
  1736. /*
  1737. * context_switch - switch to the new MM and the new
  1738. * thread's register state.
  1739. */
  1740. static inline void
  1741. context_switch(struct rq *rq, struct task_struct *prev,
  1742. struct task_struct *next)
  1743. {
  1744. struct mm_struct *mm, *oldmm;
  1745. prepare_task_switch(rq, prev, next);
  1746. mm = next->mm;
  1747. oldmm = prev->active_mm;
  1748. /*
  1749. * For paravirt, this is coupled with an exit in switch_to to
  1750. * combine the page table reload and the switch backend into
  1751. * one hypercall.
  1752. */
  1753. arch_start_context_switch(prev);
  1754. if (!mm) {
  1755. next->active_mm = oldmm;
  1756. atomic_inc(&oldmm->mm_count);
  1757. enter_lazy_tlb(oldmm, next);
  1758. } else
  1759. switch_mm(oldmm, mm, next);
  1760. if (!prev->mm) {
  1761. prev->active_mm = NULL;
  1762. rq->prev_mm = oldmm;
  1763. }
  1764. /*
  1765. * Since the runqueue lock will be released by the next
  1766. * task (which is an invalid locking op but in the case
  1767. * of the scheduler it's an obvious special-case), so we
  1768. * do an early lockdep release here:
  1769. */
  1770. #ifndef __ARCH_WANT_UNLOCKED_CTXSW
  1771. spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
  1772. #endif
  1773. /* Here we just switch the register state and the stack. */
  1774. switch_to(prev, next, prev);
  1775. barrier();
  1776. /*
  1777. * this_rq must be evaluated again because prev may have moved
  1778. * CPUs since it called schedule(), thus the 'rq' on its stack
  1779. * frame will be invalid.
  1780. */
  1781. finish_task_switch(this_rq(), prev);
  1782. }
  1783. /*
  1784. * nr_running, nr_uninterruptible and nr_context_switches:
  1785. *
  1786. * externally visible scheduler statistics: current number of runnable
  1787. * threads, current number of uninterruptible-sleeping threads, total
  1788. * number of context switches performed since bootup.
  1789. */
  1790. unsigned long nr_running(void)
  1791. {
  1792. unsigned long i, sum = 0;
  1793. for_each_online_cpu(i)
  1794. sum += cpu_rq(i)->nr_running;
  1795. return sum;
  1796. }
  1797. unsigned long nr_uninterruptible(void)
  1798. {
  1799. unsigned long i, sum = 0;
  1800. for_each_possible_cpu(i)
  1801. sum += cpu_rq(i)->nr_uninterruptible;
  1802. /*
  1803. * Since we read the counters lockless, it might be slightly
  1804. * inaccurate. Do not allow it to go below zero though:
  1805. */
  1806. if (unlikely((long)sum < 0))
  1807. sum = 0;
  1808. return sum;
  1809. }
  1810. unsigned long long nr_context_switches(void)
  1811. {
  1812. int i;
  1813. unsigned long long sum = 0;
  1814. for_each_possible_cpu(i)
  1815. sum += cpu_rq(i)->nr_switches;
  1816. return sum;
  1817. }
  1818. unsigned long nr_iowait(void)
  1819. {
  1820. unsigned long i, sum = 0;
  1821. for_each_possible_cpu(i)
  1822. sum += atomic_read(&cpu_rq(i)->nr_iowait);
  1823. return sum;
  1824. }
  1825. unsigned long nr_iowait_cpu(int cpu)
  1826. {
  1827. struct rq *this = cpu_rq(cpu);
  1828. return atomic_read(&this->nr_iowait);
  1829. }
  1830. unsigned long this_cpu_load(void)
  1831. {
  1832. struct rq *this = this_rq();
  1833. return this->cpu_load[0];
  1834. }
  1835. /* Variables and functions for calc_load */
  1836. static atomic_long_t calc_load_tasks;
  1837. static unsigned long calc_load_update;
  1838. unsigned long avenrun[3];
  1839. EXPORT_SYMBOL(avenrun);
  1840. static long calc_load_fold_active(struct rq *this_rq)
  1841. {
  1842. long nr_active, delta = 0;
  1843. nr_active = this_rq->nr_running;
  1844. nr_active += (long) this_rq->nr_uninterruptible;
  1845. if (nr_active != this_rq->calc_load_active) {
  1846. delta = nr_active - this_rq->calc_load_active;
  1847. this_rq->calc_load_active = nr_active;
  1848. }
  1849. return delta;
  1850. }
  1851. static unsigned long
  1852. calc_load(unsigned long load, unsigned long exp, unsigned long active)
  1853. {
  1854. load *= exp;
  1855. load += active * (FIXED_1 - exp);
  1856. load += 1UL << (FSHIFT - 1);
  1857. return load >> FSHIFT;
  1858. }
  1859. #ifdef CONFIG_NO_HZ
  1860. /*
  1861. * For NO_HZ we delay the active fold to the next LOAD_FREQ update.
  1862. *
  1863. * When making the ILB scale, we should try to pull this in as well.
  1864. */
  1865. static atomic_long_t calc_load_tasks_idle;
  1866. void calc_load_account_idle(struct rq *this_rq)
  1867. {
  1868. long delta;
  1869. delta = calc_load_fold_active(this_rq);
  1870. if (delta)
  1871. atomic_long_add(delta, &calc_load_tasks_idle);
  1872. }
  1873. static long calc_load_fold_idle(void)
  1874. {
  1875. long delta = 0;
  1876. /*
  1877. * Its got a race, we don't care...
  1878. */
  1879. if (atomic_long_read(&calc_load_tasks_idle))
  1880. delta = atomic_long_xchg(&calc_load_tasks_idle, 0);
  1881. return delta;
  1882. }
  1883. /**
  1884. * fixed_power_int - compute: x^n, in O(log n) time
  1885. *
  1886. * @x: base of the power
  1887. * @frac_bits: fractional bits of @x
  1888. * @n: power to raise @x to.
  1889. *
  1890. * By exploiting the relation between the definition of the natural power
  1891. * function: x^n := x*x*...*x (x multiplied by itself for n times), and
  1892. * the binary encoding of numbers used by computers: n := \Sum n_i * 2^i,
  1893. * (where: n_i \elem {0, 1}, the binary vector representing n),
  1894. * we find: x^n := x^(\Sum n_i * 2^i) := \Prod x^(n_i * 2^i), which is
  1895. * of course trivially computable in O(log_2 n), the length of our binary
  1896. * vector.
  1897. */
  1898. static unsigned long
  1899. fixed_power_int(unsigned long x, unsigned int frac_bits, unsigned int n)
  1900. {
  1901. unsigned long result = 1UL << frac_bits;
  1902. if (n) for (;;) {
  1903. if (n & 1) {
  1904. result *= x;
  1905. result += 1UL << (frac_bits - 1);
  1906. result >>= frac_bits;
  1907. }
  1908. n >>= 1;
  1909. if (!n)
  1910. break;
  1911. x *= x;
  1912. x += 1UL << (frac_bits - 1);
  1913. x >>= frac_bits;
  1914. }
  1915. return result;
  1916. }
  1917. /*
  1918. * a1 = a0 * e + a * (1 - e)
  1919. *
  1920. * a2 = a1 * e + a * (1 - e)
  1921. * = (a0 * e + a * (1 - e)) * e + a * (1 - e)
  1922. * = a0 * e^2 + a * (1 - e) * (1 + e)
  1923. *
  1924. * a3 = a2 * e + a * (1 - e)
  1925. * = (a0 * e^2 + a * (1 - e) * (1 + e)) * e + a * (1 - e)
  1926. * = a0 * e^3 + a * (1 - e) * (1 + e + e^2)
  1927. *
  1928. * ...
  1929. *
  1930. * an = a0 * e^n + a * (1 - e) * (1 + e + ... + e^n-1) [1]
  1931. * = a0 * e^n + a * (1 - e) * (1 - e^n)/(1 - e)
  1932. * = a0 * e^n + a * (1 - e^n)
  1933. *
  1934. * [1] application of the geometric series:
  1935. *
  1936. * n 1 - x^(n+1)
  1937. * S_n := \Sum x^i = -------------
  1938. * i=0 1 - x
  1939. */
  1940. static unsigned long
  1941. calc_load_n(unsigned long load, unsigned long exp,
  1942. unsigned long active, unsigned int n)
  1943. {
  1944. return calc_load(load, fixed_power_int(exp, FSHIFT, n), active);
  1945. }
  1946. /*
  1947. * NO_HZ can leave us missing all per-cpu ticks calling
  1948. * calc_load_account_active(), but since an idle CPU folds its delta into
  1949. * calc_load_tasks_idle per calc_load_account_idle(), all we need to do is fold
  1950. * in the pending idle delta if our idle period crossed a load cycle boundary.
  1951. *
  1952. * Once we've updated the global active value, we need to apply the exponential
  1953. * weights adjusted to the number of cycles missed.
  1954. */
  1955. static void calc_global_nohz(void)
  1956. {
  1957. long delta, active, n;
  1958. /*
  1959. * If we crossed a calc_load_update boundary, make sure to fold
  1960. * any pending idle changes, the respective CPUs might have
  1961. * missed the tick driven calc_load_account_active() update
  1962. * due to NO_HZ.
  1963. */
  1964. delta = calc_load_fold_idle();
  1965. if (delta)
  1966. atomic_long_add(delta, &calc_load_tasks);
  1967. /*
  1968. * It could be the one fold was all it took, we done!
  1969. */
  1970. if (time_before(jiffies, calc_load_update + 10))
  1971. return;
  1972. /*
  1973. * Catch-up, fold however many we are behind still
  1974. */
  1975. delta = jiffies - calc_load_update - 10;
  1976. n = 1 + (delta / LOAD_FREQ);
  1977. active = atomic_long_read(&calc_load_tasks);
  1978. active = active > 0 ? active * FIXED_1 : 0;
  1979. avenrun[0] = calc_load_n(avenrun[0], EXP_1, active, n);
  1980. avenrun[1] = calc_load_n(avenrun[1], EXP_5, active, n);
  1981. avenrun[2] = calc_load_n(avenrun[2], EXP_15, active, n);
  1982. calc_load_update += n * LOAD_FREQ;
  1983. }
  1984. #else
  1985. void calc_load_account_idle(struct rq *this_rq)
  1986. {
  1987. }
  1988. static inline long calc_load_fold_idle(void)
  1989. {
  1990. return 0;
  1991. }
  1992. static void calc_global_nohz(void)
  1993. {
  1994. }
  1995. #endif
  1996. /**
  1997. * get_avenrun - get the load average array
  1998. * @loads: pointer to dest load array
  1999. * @offset: offset to add
  2000. * @shift: shift count to shift the result left
  2001. *
  2002. * These values are estimates at best, so no need for locking.
  2003. */
  2004. void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
  2005. {
  2006. loads[0] = (avenrun[0] + offset) << shift;
  2007. loads[1] = (avenrun[1] + offset) << shift;
  2008. loads[2] = (avenrun[2] + offset) << shift;
  2009. }
  2010. /*
  2011. * calc_load - update the avenrun load estimates 10 ticks after the
  2012. * CPUs have updated calc_load_tasks.
  2013. */
  2014. void calc_global_load(unsigned long ticks)
  2015. {
  2016. long active;
  2017. if (time_before(jiffies, calc_load_update + 10))
  2018. return;
  2019. active = atomic_long_read(&calc_load_tasks);
  2020. active = active > 0 ? active * FIXED_1 : 0;
  2021. avenrun[0] = calc_load(avenrun[0], EXP_1, active);
  2022. avenrun[1] = calc_load(avenrun[1], EXP_5, active);
  2023. avenrun[2] = calc_load(avenrun[2], EXP_15, active);
  2024. calc_load_update += LOAD_FREQ;
  2025. /*
  2026. * Account one period with whatever state we found before
  2027. * folding in the nohz state and ageing the entire idle period.
  2028. *
  2029. * This avoids loosing a sample when we go idle between
  2030. * calc_load_account_active() (10 ticks ago) and now and thus
  2031. * under-accounting.
  2032. */
  2033. calc_global_nohz();
  2034. }
  2035. /*
  2036. * Called from update_cpu_load() to periodically update this CPU's
  2037. * active count.
  2038. */
  2039. static void calc_load_account_active(struct rq *this_rq)
  2040. {
  2041. long delta;
  2042. if (time_before(jiffies, this_rq->calc_load_update))
  2043. return;
  2044. delta = calc_load_fold_active(this_rq);
  2045. delta += calc_load_fold_idle();
  2046. if (delta)
  2047. atomic_long_add(delta, &calc_load_tasks);
  2048. this_rq->calc_load_update += LOAD_FREQ;
  2049. }
  2050. /*
  2051. * The exact cpuload at various idx values, calculated at every tick would be
  2052. * load = (2^idx - 1) / 2^idx * load + 1 / 2^idx * cur_load
  2053. *
  2054. * If a cpu misses updates for n-1 ticks (as it was idle) and update gets called
  2055. * on nth tick when cpu may be busy, then we have:
  2056. * load = ((2^idx - 1) / 2^idx)^(n-1) * load
  2057. * load = (2^idx - 1) / 2^idx) * load + 1 / 2^idx * cur_load
  2058. *
  2059. * decay_load_missed() below does efficient calculation of
  2060. * load = ((2^idx - 1) / 2^idx)^(n-1) * load
  2061. * avoiding 0..n-1 loop doing load = ((2^idx - 1) / 2^idx) * load
  2062. *
  2063. * The calculation is approximated on a 128 point scale.
  2064. * degrade_zero_ticks is the number of ticks after which load at any
  2065. * particular idx is approximated to be zero.
  2066. * degrade_factor is a precomputed table, a row for each load idx.
  2067. * Each column corresponds to degradation factor for a power of two ticks,
  2068. * based on 128 point scale.
  2069. * Example:
  2070. * row 2, col 3 (=12) says that the degradation at load idx 2 after
  2071. * 8 ticks is 12/128 (which is an approximation of exact factor 3^8/4^8).
  2072. *
  2073. * With this power of 2 load factors, we can degrade the load n times
  2074. * by looking at 1 bits in n and doing as many mult/shift instead of
  2075. * n mult/shifts needed by the exact degradation.
  2076. */
  2077. #define DEGRADE_SHIFT 7
  2078. static const unsigned char
  2079. degrade_zero_ticks[CPU_LOAD_IDX_MAX] = {0, 8, 32, 64, 128};
  2080. static const unsigned char
  2081. degrade_factor[CPU_LOAD_IDX_MAX][DEGRADE_SHIFT + 1] = {
  2082. {0, 0, 0, 0, 0, 0, 0, 0},
  2083. {64, 32, 8, 0, 0, 0, 0, 0},
  2084. {96, 72, 40, 12, 1, 0, 0},
  2085. {112, 98, 75, 43, 15, 1, 0},
  2086. {120, 112, 98, 76, 45, 16, 2} };
  2087. /*
  2088. * Update cpu_load for any missed ticks, due to tickless idle. The backlog
  2089. * would be when CPU is idle and so we just decay the old load without
  2090. * adding any new load.
  2091. */
  2092. static unsigned long
  2093. decay_load_missed(unsigned long load, unsigned long missed_updates, int idx)
  2094. {
  2095. int j = 0;
  2096. if (!missed_updates)
  2097. return load;
  2098. if (missed_updates >= degrade_zero_ticks[idx])
  2099. return 0;
  2100. if (idx == 1)
  2101. return load >> missed_updates;
  2102. while (missed_updates) {
  2103. if (missed_updates % 2)
  2104. load = (load * degrade_factor[idx][j]) >> DEGRADE_SHIFT;
  2105. missed_updates >>= 1;
  2106. j++;
  2107. }
  2108. return load;
  2109. }
  2110. /*
  2111. * Update rq->cpu_load[] statistics. This function is usually called every
  2112. * scheduler tick (TICK_NSEC). With tickless idle this will not be called
  2113. * every tick. We fix it up based on jiffies.
  2114. */
  2115. void update_cpu_load(struct rq *this_rq)
  2116. {
  2117. unsigned long this_load = this_rq->load.weight;
  2118. unsigned long curr_jiffies = jiffies;
  2119. unsigned long pending_updates;
  2120. int i, scale;
  2121. this_rq->nr_load_updates++;
  2122. /* Avoid repeated calls on same jiffy, when moving in and out of idle */
  2123. if (curr_jiffies == this_rq->last_load_update_tick)
  2124. return;
  2125. pending_updates = curr_jiffies - this_rq->last_load_update_tick;
  2126. this_rq->last_load_update_tick = curr_jiffies;
  2127. /* Update our load: */
  2128. this_rq->cpu_load[0] = this_load; /* Fasttrack for idx 0 */
  2129. for (i = 1, scale = 2; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
  2130. unsigned long old_load, new_load;
  2131. /* scale is effectively 1 << i now, and >> i divides by scale */
  2132. old_load = this_rq->cpu_load[i];
  2133. old_load = decay_load_missed(old_load, pending_updates - 1, i);
  2134. new_load = this_load;
  2135. /*
  2136. * Round up the averaging division if load is increasing. This
  2137. * prevents us from getting stuck on 9 if the load is 10, for
  2138. * example.
  2139. */
  2140. if (new_load > old_load)
  2141. new_load += scale - 1;
  2142. this_rq->cpu_load[i] = (old_load * (scale - 1) + new_load) >> i;
  2143. }
  2144. sched_avg_update(this_rq);
  2145. }
  2146. static void update_cpu_load_active(struct rq *this_rq)
  2147. {
  2148. update_cpu_load(this_rq);
  2149. calc_load_account_active(this_rq);
  2150. }
  2151. #ifdef CONFIG_SMP
  2152. /*
  2153. * sched_exec - execve() is a valuable balancing opportunity, because at
  2154. * this point the task has the smallest effective memory and cache footprint.
  2155. */
  2156. void sched_exec(void)
  2157. {
  2158. struct task_struct *p = current;
  2159. unsigned long flags;
  2160. int dest_cpu;
  2161. raw_spin_lock_irqsave(&p->pi_lock, flags);
  2162. dest_cpu = p->sched_class->select_task_rq(p, SD_BALANCE_EXEC, 0);
  2163. if (dest_cpu == smp_processor_id())
  2164. goto unlock;
  2165. if (likely(cpu_active(dest_cpu))) {
  2166. struct migration_arg arg = { p, dest_cpu };
  2167. raw_spin_unlock_irqrestore(&p->pi_lock, flags);
  2168. stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
  2169. return;
  2170. }
  2171. unlock:
  2172. raw_spin_unlock_irqrestore(&p->pi_lock, flags);
  2173. }
  2174. #endif
  2175. DEFINE_PER_CPU(struct kernel_stat, kstat);
  2176. DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
  2177. EXPORT_PER_CPU_SYMBOL(kstat);
  2178. EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
  2179. /*
  2180. * Return any ns on the sched_clock that have not yet been accounted in
  2181. * @p in case that task is currently running.
  2182. *
  2183. * Called with task_rq_lock() held on @rq.
  2184. */
  2185. static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
  2186. {
  2187. u64 ns = 0;
  2188. if (task_current(rq, p)) {
  2189. update_rq_clock(rq);
  2190. ns = rq->clock_task - p->se.exec_start;
  2191. if ((s64)ns < 0)
  2192. ns = 0;
  2193. }
  2194. return ns;
  2195. }
  2196. unsigned long long task_delta_exec(struct task_struct *p)
  2197. {
  2198. unsigned long flags;
  2199. struct rq *rq;
  2200. u64 ns = 0;
  2201. rq = task_rq_lock(p, &flags);
  2202. ns = do_task_delta_exec(p, rq);
  2203. task_rq_unlock(rq, p, &flags);
  2204. return ns;
  2205. }
  2206. /*
  2207. * Return accounted runtime for the task.
  2208. * In case the task is currently running, return the runtime plus current's
  2209. * pending runtime that have not been accounted yet.
  2210. */
  2211. unsigned long long task_sched_runtime(struct task_struct *p)
  2212. {
  2213. unsigned long flags;
  2214. struct rq *rq;
  2215. u64 ns = 0;
  2216. rq = task_rq_lock(p, &flags);
  2217. ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
  2218. task_rq_unlock(rq, p, &flags);
  2219. return ns;
  2220. }
  2221. #ifdef CONFIG_CGROUP_CPUACCT
  2222. struct cgroup_subsys cpuacct_subsys;
  2223. struct cpuacct root_cpuacct;
  2224. #endif
  2225. static inline void task_group_account_field(struct task_struct *p, int index,
  2226. u64 tmp)
  2227. {
  2228. #ifdef CONFIG_CGROUP_CPUACCT
  2229. struct kernel_cpustat *kcpustat;
  2230. struct cpuacct *ca;
  2231. #endif
  2232. /*
  2233. * Since all updates are sure to touch the root cgroup, we
  2234. * get ourselves ahead and touch it first. If the root cgroup
  2235. * is the only cgroup, then nothing else should be necessary.
  2236. *
  2237. */
  2238. __get_cpu_var(kernel_cpustat).cpustat[index] += tmp;
  2239. #ifdef CONFIG_CGROUP_CPUACCT
  2240. if (unlikely(!cpuacct_subsys.active))
  2241. return;
  2242. rcu_read_lock();
  2243. ca = task_ca(p);
  2244. while (ca && (ca != &root_cpuacct)) {
  2245. kcpustat = this_cpu_ptr(ca->cpustat);
  2246. kcpustat->cpustat[index] += tmp;
  2247. ca = parent_ca(ca);
  2248. }
  2249. rcu_read_unlock();
  2250. #endif
  2251. }
  2252. /*
  2253. * Account user cpu time to a process.
  2254. * @p: the process that the cpu time gets accounted to
  2255. * @cputime: the cpu time spent in user space since the last update
  2256. * @cputime_scaled: cputime scaled by cpu frequency
  2257. */
  2258. void account_user_time(struct task_struct *p, cputime_t cputime,
  2259. cputime_t cputime_scaled)
  2260. {
  2261. int index;
  2262. /* Add user time to process. */
  2263. p->utime += cputime;
  2264. p->utimescaled += cputime_scaled;
  2265. account_group_user_time(p, cputime);
  2266. index = (TASK_NICE(p) > 0) ? CPUTIME_NICE : CPUTIME_USER;
  2267. /* Add user time to cpustat. */
  2268. task_group_account_field(p, index, (__force u64) cputime);
  2269. /* Account for user time used */
  2270. acct_update_integrals(p);
  2271. }
  2272. /*
  2273. * Account guest cpu time to a process.
  2274. * @p: the process that the cpu time gets accounted to
  2275. * @cputime: the cpu time spent in virtual machine since the last update
  2276. * @cputime_scaled: cputime scaled by cpu frequency
  2277. */
  2278. static void account_guest_time(struct task_struct *p, cputime_t cputime,
  2279. cputime_t cputime_scaled)
  2280. {
  2281. u64 *cpustat = kcpustat_this_cpu->cpustat;
  2282. /* Add guest time to process. */
  2283. p->utime += cputime;
  2284. p->utimescaled += cputime_scaled;
  2285. account_group_user_time(p, cputime);
  2286. p->gtime += cputime;
  2287. /* Add guest time to cpustat. */
  2288. if (TASK_NICE(p) > 0) {
  2289. cpustat[CPUTIME_NICE] += (__force u64) cputime;
  2290. cpustat[CPUTIME_GUEST_NICE] += (__force u64) cputime;
  2291. } else {
  2292. cpustat[CPUTIME_USER] += (__force u64) cputime;
  2293. cpustat[CPUTIME_GUEST] += (__force u64) cputime;
  2294. }
  2295. }
  2296. /*
  2297. * Account system cpu time to a process and desired cpustat field
  2298. * @p: the process that the cpu time gets accounted to
  2299. * @cputime: the cpu time spent in kernel space since the last update
  2300. * @cputime_scaled: cputime scaled by cpu frequency
  2301. * @target_cputime64: pointer to cpustat field that has to be updated
  2302. */
  2303. static inline
  2304. void __account_system_time(struct task_struct *p, cputime_t cputime,
  2305. cputime_t cputime_scaled, int index)
  2306. {
  2307. /* Add system time to process. */
  2308. p->stime += cputime;
  2309. p->stimescaled += cputime_scaled;
  2310. account_group_system_time(p, cputime);
  2311. /* Add system time to cpustat. */
  2312. task_group_account_field(p, index, (__force u64) cputime);
  2313. /* Account for system time used */
  2314. acct_update_integrals(p);
  2315. }
  2316. /*
  2317. * Account system cpu time to a process.
  2318. * @p: the process that the cpu time gets accounted to
  2319. * @hardirq_offset: the offset to subtract from hardirq_count()
  2320. * @cputime: the cpu time spent in kernel space since the last update
  2321. * @cputime_scaled: cputime scaled by cpu frequency
  2322. */
  2323. void account_system_time(struct task_struct *p, int hardirq_offset,
  2324. cputime_t cputime, cputime_t cputime_scaled)
  2325. {
  2326. int index;
  2327. if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
  2328. account_guest_time(p, cputime, cputime_scaled);
  2329. return;
  2330. }
  2331. if (hardirq_count() - hardirq_offset)
  2332. index = CPUTIME_IRQ;
  2333. else if (in_serving_softirq())
  2334. index = CPUTIME_SOFTIRQ;
  2335. else
  2336. index = CPUTIME_SYSTEM;
  2337. __account_system_time(p, cputime, cputime_scaled, index);
  2338. }
  2339. /*
  2340. * Account for involuntary wait time.
  2341. * @cputime: the cpu time spent in involuntary wait
  2342. */
  2343. void account_steal_time(cputime_t cputime)
  2344. {
  2345. u64 *cpustat = kcpustat_this_cpu->cpustat;
  2346. cpustat[CPUTIME_STEAL] += (__force u64) cputime;
  2347. }
  2348. /*
  2349. * Account for idle time.
  2350. * @cputime: the cpu time spent in idle wait
  2351. */
  2352. void account_idle_time(cputime_t cputime)
  2353. {
  2354. u64 *cpustat = kcpustat_this_cpu->cpustat;
  2355. struct rq *rq = this_rq();
  2356. if (atomic_read(&rq->nr_iowait) > 0)
  2357. cpustat[CPUTIME_IOWAIT] += (__force u64) cputime;
  2358. else
  2359. cpustat[CPUTIME_IDLE] += (__force u64) cputime;
  2360. }
  2361. static __always_inline bool steal_account_process_tick(void)
  2362. {
  2363. #ifdef CONFIG_PARAVIRT
  2364. if (static_key_false(&paravirt_steal_enabled)) {
  2365. u64 steal, st = 0;
  2366. steal = paravirt_steal_clock(smp_processor_id());
  2367. steal -= this_rq()->prev_steal_time;
  2368. st = steal_ticks(steal);
  2369. this_rq()->prev_steal_time += st * TICK_NSEC;
  2370. account_steal_time(st);
  2371. return st;
  2372. }
  2373. #endif
  2374. return false;
  2375. }
  2376. #ifndef CONFIG_VIRT_CPU_ACCOUNTING
  2377. #ifdef CONFIG_IRQ_TIME_ACCOUNTING
  2378. /*
  2379. * Account a tick to a process and cpustat
  2380. * @p: the process that the cpu time gets accounted to
  2381. * @user_tick: is the tick from userspace
  2382. * @rq: the pointer to rq
  2383. *
  2384. * Tick demultiplexing follows the order
  2385. * - pending hardirq update
  2386. * - pending softirq update
  2387. * - user_time
  2388. * - idle_time
  2389. * - system time
  2390. * - check for guest_time
  2391. * - else account as system_time
  2392. *
  2393. * Check for hardirq is done both for system and user time as there is
  2394. * no timer going off while we are on hardirq and hence we may never get an
  2395. * opportunity to update it solely in system time.
  2396. * p->stime and friends are only updated on system time and not on irq
  2397. * softirq as those do not count in task exec_runtime any more.
  2398. */
  2399. static void irqtime_account_process_tick(struct task_struct *p, int user_tick,
  2400. struct rq *rq)
  2401. {
  2402. cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
  2403. u64 *cpustat = kcpustat_this_cpu->cpustat;
  2404. if (steal_account_process_tick())
  2405. return;
  2406. if (irqtime_account_hi_update()) {
  2407. cpustat[CPUTIME_IRQ] += (__force u64) cputime_one_jiffy;
  2408. } else if (irqtime_account_si_update()) {
  2409. cpustat[CPUTIME_SOFTIRQ] += (__force u64) cputime_one_jiffy;
  2410. } else if (this_cpu_ksoftirqd() == p) {
  2411. /*
  2412. * ksoftirqd time do not get accounted in cpu_softirq_time.
  2413. * So, we have to handle it separately here.
  2414. * Also, p->stime needs to be updated for ksoftirqd.
  2415. */
  2416. __account_system_time(p, cputime_one_jiffy, one_jiffy_scaled,
  2417. CPUTIME_SOFTIRQ);
  2418. } else if (user_tick) {
  2419. account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
  2420. } else if (p == rq->idle) {
  2421. account_idle_time(cputime_one_jiffy);
  2422. } else if (p->flags & PF_VCPU) { /* System time or guest time */
  2423. account_guest_time(p, cputime_one_jiffy, one_jiffy_scaled);
  2424. } else {
  2425. __account_system_time(p, cputime_one_jiffy, one_jiffy_scaled,
  2426. CPUTIME_SYSTEM);
  2427. }
  2428. }
  2429. static void irqtime_account_idle_ticks(int ticks)
  2430. {
  2431. int i;
  2432. struct rq *rq = this_rq();
  2433. for (i = 0; i < ticks; i++)
  2434. irqtime_account_process_tick(current, 0, rq);
  2435. }
  2436. #else /* CONFIG_IRQ_TIME_ACCOUNTING */
  2437. static void irqtime_account_idle_ticks(int ticks) {}
  2438. static void irqtime_account_process_tick(struct task_struct *p, int user_tick,
  2439. struct rq *rq) {}
  2440. #endif /* CONFIG_IRQ_TIME_ACCOUNTING */
  2441. /*
  2442. * Account a single tick of cpu time.
  2443. * @p: the process that the cpu time gets accounted to
  2444. * @user_tick: indicates if the tick is a user or a system tick
  2445. */
  2446. void account_process_tick(struct task_struct *p, int user_tick)
  2447. {
  2448. cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
  2449. struct rq *rq = this_rq();
  2450. if (sched_clock_irqtime) {
  2451. irqtime_account_process_tick(p, user_tick, rq);
  2452. return;
  2453. }
  2454. if (steal_account_process_tick())
  2455. return;
  2456. if (user_tick)
  2457. account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
  2458. else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET))
  2459. account_system_time(p, HARDIRQ_OFFSET, cputime_one_jiffy,
  2460. one_jiffy_scaled);
  2461. else
  2462. account_idle_time(cputime_one_jiffy);
  2463. }
  2464. /*
  2465. * Account multiple ticks of steal time.
  2466. * @p: the process from which the cpu time has been stolen
  2467. * @ticks: number of stolen ticks
  2468. */
  2469. void account_steal_ticks(unsigned long ticks)
  2470. {
  2471. account_steal_time(jiffies_to_cputime(ticks));
  2472. }
  2473. /*
  2474. * Account multiple ticks of idle time.
  2475. * @ticks: number of stolen ticks
  2476. */
  2477. void account_idle_ticks(unsigned long ticks)
  2478. {
  2479. if (sched_clock_irqtime) {
  2480. irqtime_account_idle_ticks(ticks);
  2481. return;
  2482. }
  2483. account_idle_time(jiffies_to_cputime(ticks));
  2484. }
  2485. #endif
  2486. /*
  2487. * Use precise platform statistics if available:
  2488. */
  2489. #ifdef CONFIG_VIRT_CPU_ACCOUNTING
  2490. void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
  2491. {
  2492. *ut = p->utime;
  2493. *st = p->stime;
  2494. }
  2495. void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
  2496. {
  2497. struct task_cputime cputime;
  2498. thread_group_cputime(p, &cputime);
  2499. *ut = cputime.utime;
  2500. *st = cputime.stime;
  2501. }
  2502. #else
  2503. #ifndef nsecs_to_cputime
  2504. # define nsecs_to_cputime(__nsecs) nsecs_to_jiffies(__nsecs)
  2505. #endif
  2506. void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
  2507. {
  2508. cputime_t rtime, utime = p->utime, total = utime + p->stime;
  2509. /*
  2510. * Use CFS's precise accounting:
  2511. */
  2512. rtime = nsecs_to_cputime(p->se.sum_exec_runtime);
  2513. if (total) {
  2514. u64 temp = (__force u64) rtime;
  2515. temp *= (__force u64) utime;
  2516. do_div(temp, (__force u32) total);
  2517. utime = (__force cputime_t) temp;
  2518. } else
  2519. utime = rtime;
  2520. /*
  2521. * Compare with previous values, to keep monotonicity:
  2522. */
  2523. p->prev_utime = max(p->prev_utime, utime);
  2524. p->prev_stime = max(p->prev_stime, rtime - p->prev_utime);
  2525. *ut = p->prev_utime;
  2526. *st = p->prev_stime;
  2527. }
  2528. /*
  2529. * Must be called with siglock held.
  2530. */
  2531. void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
  2532. {
  2533. struct signal_struct *sig = p->signal;
  2534. struct task_cputime cputime;
  2535. cputime_t rtime, utime, total;
  2536. thread_group_cputime(p, &cputime);
  2537. total = cputime.utime + cputime.stime;
  2538. rtime = nsecs_to_cputime(cputime.sum_exec_runtime);
  2539. if (total) {
  2540. u64 temp = (__force u64) rtime;
  2541. temp *= (__force u64) cputime.utime;
  2542. do_div(temp, (__force u32) total);
  2543. utime = (__force cputime_t) temp;
  2544. } else
  2545. utime = rtime;
  2546. sig->prev_utime = max(sig->prev_utime, utime);
  2547. sig->prev_stime = max(sig->prev_stime, rtime - sig->prev_utime);
  2548. *ut = sig->prev_utime;
  2549. *st = sig->prev_stime;
  2550. }
  2551. #endif
  2552. /*
  2553. * This function gets called by the timer code, with HZ frequency.
  2554. * We call it with interrupts disabled.
  2555. */
  2556. void scheduler_tick(void)
  2557. {
  2558. int cpu = smp_processor_id();
  2559. struct rq *rq = cpu_rq(cpu);
  2560. struct task_struct *curr = rq->curr;
  2561. sched_clock_tick();
  2562. raw_spin_lock(&rq->lock);
  2563. update_rq_clock(rq);
  2564. update_cpu_load_active(rq);
  2565. curr->sched_class->task_tick(rq, curr, 0);
  2566. raw_spin_unlock(&rq->lock);
  2567. perf_event_task_tick();
  2568. #ifdef CONFIG_SMP
  2569. rq->idle_balance = idle_cpu(cpu);
  2570. trigger_load_balance(rq, cpu);
  2571. #endif
  2572. }
  2573. notrace unsigned long get_parent_ip(unsigned long addr)
  2574. {
  2575. if (in_lock_functions(addr)) {
  2576. addr = CALLER_ADDR2;
  2577. if (in_lock_functions(addr))
  2578. addr = CALLER_ADDR3;
  2579. }
  2580. return addr;
  2581. }
  2582. #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
  2583. defined(CONFIG_PREEMPT_TRACER))
  2584. void __kprobes add_preempt_count(int val)
  2585. {
  2586. #ifdef CONFIG_DEBUG_PREEMPT
  2587. /*
  2588. * Underflow?
  2589. */
  2590. if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
  2591. return;
  2592. #endif
  2593. preempt_count() += val;
  2594. #ifdef CONFIG_DEBUG_PREEMPT
  2595. /*
  2596. * Spinlock count overflowing soon?
  2597. */
  2598. DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
  2599. PREEMPT_MASK - 10);
  2600. #endif
  2601. if (preempt_count() == val)
  2602. trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
  2603. }
  2604. EXPORT_SYMBOL(add_preempt_count);
  2605. void __kprobes sub_preempt_count(int val)
  2606. {
  2607. #ifdef CONFIG_DEBUG_PREEMPT
  2608. /*
  2609. * Underflow?
  2610. */
  2611. if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
  2612. return;
  2613. /*
  2614. * Is the spinlock portion underflowing?
  2615. */
  2616. if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
  2617. !(preempt_count() & PREEMPT_MASK)))
  2618. return;
  2619. #endif
  2620. if (preempt_count() == val)
  2621. trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
  2622. preempt_count() -= val;
  2623. }
  2624. EXPORT_SYMBOL(sub_preempt_count);
  2625. #endif
  2626. /*
  2627. * Print scheduling while atomic bug:
  2628. */
  2629. static noinline void __schedule_bug(struct task_struct *prev)
  2630. {
  2631. if (oops_in_progress)
  2632. return;
  2633. printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
  2634. prev->comm, prev->pid, preempt_count());
  2635. debug_show_held_locks(prev);
  2636. print_modules();
  2637. if (irqs_disabled())
  2638. print_irqtrace_events(prev);
  2639. dump_stack();
  2640. }
  2641. /*
  2642. * Various schedule()-time debugging checks and statistics:
  2643. */
  2644. static inline void schedule_debug(struct task_struct *prev)
  2645. {
  2646. /*
  2647. * Test if we are atomic. Since do_exit() needs to call into
  2648. * schedule() atomically, we ignore that path for now.
  2649. * Otherwise, whine if we are scheduling when we should not be.
  2650. */
  2651. if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
  2652. __schedule_bug(prev);
  2653. rcu_sleep_check();
  2654. profile_hit(SCHED_PROFILING, __builtin_return_address(0));
  2655. schedstat_inc(this_rq(), sched_count);
  2656. }
  2657. static void put_prev_task(struct rq *rq, struct task_struct *prev)
  2658. {
  2659. if (prev->on_rq || rq->skip_clock_update < 0)
  2660. update_rq_clock(rq);
  2661. prev->sched_class->put_prev_task(rq, prev);
  2662. }
  2663. /*
  2664. * Pick up the highest-prio task:
  2665. */
  2666. static inline struct task_struct *
  2667. pick_next_task(struct rq *rq)
  2668. {
  2669. const struct sched_class *class;
  2670. struct task_struct *p;
  2671. /*
  2672. * Optimization: we know that if all tasks are in
  2673. * the fair class we can call that function directly:
  2674. */
  2675. if (likely(rq->nr_running == rq->cfs.h_nr_running)) {
  2676. p = fair_sched_class.pick_next_task(rq);
  2677. if (likely(p))
  2678. return p;
  2679. }
  2680. for_each_class(class) {
  2681. p = class->pick_next_task(rq);
  2682. if (p)
  2683. return p;
  2684. }
  2685. BUG(); /* the idle class will always have a runnable task */
  2686. }
  2687. /*
  2688. * __schedule() is the main scheduler function.
  2689. */
  2690. static void __sched __schedule(void)
  2691. {
  2692. struct task_struct *prev, *next;
  2693. unsigned long *switch_count;
  2694. struct rq *rq;
  2695. int cpu;
  2696. need_resched:
  2697. preempt_disable();
  2698. cpu = smp_processor_id();
  2699. rq = cpu_rq(cpu);
  2700. rcu_note_context_switch(cpu);
  2701. prev = rq->curr;
  2702. schedule_debug(prev);
  2703. if (sched_feat(HRTICK))
  2704. hrtick_clear(rq);
  2705. raw_spin_lock_irq(&rq->lock);
  2706. switch_count = &prev->nivcsw;
  2707. if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
  2708. if (unlikely(signal_pending_state(prev->state, prev))) {
  2709. prev->state = TASK_RUNNING;
  2710. } else {
  2711. deactivate_task(rq, prev, DEQUEUE_SLEEP);
  2712. prev->on_rq = 0;
  2713. /*
  2714. * If a worker went to sleep, notify and ask workqueue
  2715. * whether it wants to wake up a task to maintain
  2716. * concurrency.
  2717. */
  2718. if (prev->flags & PF_WQ_WORKER) {
  2719. struct task_struct *to_wakeup;
  2720. to_wakeup = wq_worker_sleeping(prev, cpu);
  2721. if (to_wakeup)
  2722. try_to_wake_up_local(to_wakeup);
  2723. }
  2724. }
  2725. switch_count = &prev->nvcsw;
  2726. }
  2727. pre_schedule(rq, prev);
  2728. if (unlikely(!rq->nr_running))
  2729. idle_balance(cpu, rq);
  2730. put_prev_task(rq, prev);
  2731. next = pick_next_task(rq);
  2732. clear_tsk_need_resched(prev);
  2733. rq->skip_clock_update = 0;
  2734. if (likely(prev != next)) {
  2735. rq->nr_switches++;
  2736. rq->curr = next;
  2737. ++*switch_count;
  2738. context_switch(rq, prev, next); /* unlocks the rq */
  2739. /*
  2740. * The context switch have flipped the stack from under us
  2741. * and restored the local variables which were saved when
  2742. * this task called schedule() in the past. prev == current
  2743. * is still correct, but it can be moved to another cpu/rq.
  2744. */
  2745. cpu = smp_processor_id();
  2746. rq = cpu_rq(cpu);
  2747. } else
  2748. raw_spin_unlock_irq(&rq->lock);
  2749. post_schedule(rq);
  2750. sched_preempt_enable_no_resched();
  2751. if (need_resched())
  2752. goto need_resched;
  2753. }
  2754. static inline void sched_submit_work(struct task_struct *tsk)
  2755. {
  2756. if (!tsk->state || tsk_is_pi_blocked(tsk))
  2757. return;
  2758. /*
  2759. * If we are going to sleep and we have plugged IO queued,
  2760. * make sure to submit it to avoid deadlocks.
  2761. */
  2762. if (blk_needs_flush_plug(tsk))
  2763. blk_schedule_flush_plug(tsk);
  2764. }
  2765. asmlinkage void __sched schedule(void)
  2766. {
  2767. struct task_struct *tsk = current;
  2768. sched_submit_work(tsk);
  2769. __schedule();
  2770. }
  2771. EXPORT_SYMBOL(schedule);
  2772. /**
  2773. * schedule_preempt_disabled - called with preemption disabled
  2774. *
  2775. * Returns with preemption disabled. Note: preempt_count must be 1
  2776. */
  2777. void __sched schedule_preempt_disabled(void)
  2778. {
  2779. sched_preempt_enable_no_resched();
  2780. schedule();
  2781. preempt_disable();
  2782. }
  2783. #ifdef CONFIG_MUTEX_SPIN_ON_OWNER
  2784. static inline bool owner_running(struct mutex *lock, struct task_struct *owner)
  2785. {
  2786. if (lock->owner != owner)
  2787. return false;
  2788. /*
  2789. * Ensure we emit the owner->on_cpu, dereference _after_ checking
  2790. * lock->owner still matches owner, if that fails, owner might
  2791. * point to free()d memory, if it still matches, the rcu_read_lock()
  2792. * ensures the memory stays valid.
  2793. */
  2794. barrier();
  2795. return owner->on_cpu;
  2796. }
  2797. /*
  2798. * Look out! "owner" is an entirely speculative pointer
  2799. * access and not reliable.
  2800. */
  2801. int mutex_spin_on_owner(struct mutex *lock, struct task_struct *owner)
  2802. {
  2803. if (!sched_feat(OWNER_SPIN))
  2804. return 0;
  2805. rcu_read_lock();
  2806. while (owner_running(lock, owner)) {
  2807. if (need_resched())
  2808. break;
  2809. arch_mutex_cpu_relax();
  2810. }
  2811. rcu_read_unlock();
  2812. /*
  2813. * We break out the loop above on need_resched() and when the
  2814. * owner changed, which is a sign for heavy contention. Return
  2815. * success only when lock->owner is NULL.
  2816. */
  2817. return lock->owner == NULL;
  2818. }
  2819. #endif
  2820. #ifdef CONFIG_PREEMPT
  2821. /*
  2822. * this is the entry point to schedule() from in-kernel preemption
  2823. * off of preempt_enable. Kernel preemptions off return from interrupt
  2824. * occur there and call schedule directly.
  2825. */
  2826. asmlinkage void __sched notrace preempt_schedule(void)
  2827. {
  2828. struct thread_info *ti = current_thread_info();
  2829. /*
  2830. * If there is a non-zero preempt_count or interrupts are disabled,
  2831. * we do not want to preempt the current task. Just return..
  2832. */
  2833. if (likely(ti->preempt_count || irqs_disabled()))
  2834. return;
  2835. do {
  2836. add_preempt_count_notrace(PREEMPT_ACTIVE);
  2837. __schedule();
  2838. sub_preempt_count_notrace(PREEMPT_ACTIVE);
  2839. /*
  2840. * Check again in case we missed a preemption opportunity
  2841. * between schedule and now.
  2842. */
  2843. barrier();
  2844. } while (need_resched());
  2845. }
  2846. EXPORT_SYMBOL(preempt_schedule);
  2847. /*
  2848. * this is the entry point to schedule() from kernel preemption
  2849. * off of irq context.
  2850. * Note, that this is called and return with irqs disabled. This will
  2851. * protect us against recursive calling from irq.
  2852. */
  2853. asmlinkage void __sched preempt_schedule_irq(void)
  2854. {
  2855. struct thread_info *ti = current_thread_info();
  2856. /* Catch callers which need to be fixed */
  2857. BUG_ON(ti->preempt_count || !irqs_disabled());
  2858. do {
  2859. add_preempt_count(PREEMPT_ACTIVE);
  2860. local_irq_enable();
  2861. __schedule();
  2862. local_irq_disable();
  2863. sub_preempt_count(PREEMPT_ACTIVE);
  2864. /*
  2865. * Check again in case we missed a preemption opportunity
  2866. * between schedule and now.
  2867. */
  2868. barrier();
  2869. } while (need_resched());
  2870. }
  2871. #endif /* CONFIG_PREEMPT */
  2872. int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
  2873. void *key)
  2874. {
  2875. return try_to_wake_up(curr->private, mode, wake_flags);
  2876. }
  2877. EXPORT_SYMBOL(default_wake_function);
  2878. /*
  2879. * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
  2880. * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
  2881. * number) then we wake all the non-exclusive tasks and one exclusive task.
  2882. *
  2883. * There are circumstances in which we can try to wake a task which has already
  2884. * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
  2885. * zero in this (rare) case, and we handle it by continuing to scan the queue.
  2886. */
  2887. static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
  2888. int nr_exclusive, int wake_flags, void *key)
  2889. {
  2890. wait_queue_t *curr, *next;
  2891. list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
  2892. unsigned flags = curr->flags;
  2893. if (curr->func(curr, mode, wake_flags, key) &&
  2894. (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
  2895. break;
  2896. }
  2897. }
  2898. /**
  2899. * __wake_up - wake up threads blocked on a waitqueue.
  2900. * @q: the waitqueue
  2901. * @mode: which threads
  2902. * @nr_exclusive: how many wake-one or wake-many threads to wake up
  2903. * @key: is directly passed to the wakeup function
  2904. *
  2905. * It may be assumed that this function implies a write memory barrier before
  2906. * changing the task state if and only if any tasks are woken up.
  2907. */
  2908. void __wake_up(wait_queue_head_t *q, unsigned int mode,
  2909. int nr_exclusive, void *key)
  2910. {
  2911. unsigned long flags;
  2912. spin_lock_irqsave(&q->lock, flags);
  2913. __wake_up_common(q, mode, nr_exclusive, 0, key);
  2914. spin_unlock_irqrestore(&q->lock, flags);
  2915. }
  2916. EXPORT_SYMBOL(__wake_up);
  2917. /*
  2918. * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
  2919. */
  2920. void __wake_up_locked(wait_queue_head_t *q, unsigned int mode, int nr)
  2921. {
  2922. __wake_up_common(q, mode, nr, 0, NULL);
  2923. }
  2924. EXPORT_SYMBOL_GPL(__wake_up_locked);
  2925. void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
  2926. {
  2927. __wake_up_common(q, mode, 1, 0, key);
  2928. }
  2929. EXPORT_SYMBOL_GPL(__wake_up_locked_key);
  2930. /**
  2931. * __wake_up_sync_key - wake up threads blocked on a waitqueue.
  2932. * @q: the waitqueue
  2933. * @mode: which threads
  2934. * @nr_exclusive: how many wake-one or wake-many threads to wake up
  2935. * @key: opaque value to be passed to wakeup targets
  2936. *
  2937. * The sync wakeup differs that the waker knows that it will schedule
  2938. * away soon, so while the target thread will be woken up, it will not
  2939. * be migrated to another CPU - ie. the two threads are 'synchronized'
  2940. * with each other. This can prevent needless bouncing between CPUs.
  2941. *
  2942. * On UP it can prevent extra preemption.
  2943. *
  2944. * It may be assumed that this function implies a write memory barrier before
  2945. * changing the task state if and only if any tasks are woken up.
  2946. */
  2947. void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
  2948. int nr_exclusive, void *key)
  2949. {
  2950. unsigned long flags;
  2951. int wake_flags = WF_SYNC;
  2952. if (unlikely(!q))
  2953. return;
  2954. if (unlikely(!nr_exclusive))
  2955. wake_flags = 0;
  2956. spin_lock_irqsave(&q->lock, flags);
  2957. __wake_up_common(q, mode, nr_exclusive, wake_flags, key);
  2958. spin_unlock_irqrestore(&q->lock, flags);
  2959. }
  2960. EXPORT_SYMBOL_GPL(__wake_up_sync_key);
  2961. /*
  2962. * __wake_up_sync - see __wake_up_sync_key()
  2963. */
  2964. void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
  2965. {
  2966. __wake_up_sync_key(q, mode, nr_exclusive, NULL);
  2967. }
  2968. EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
  2969. /**
  2970. * complete: - signals a single thread waiting on this completion
  2971. * @x: holds the state of this particular completion
  2972. *
  2973. * This will wake up a single thread waiting on this completion. Threads will be
  2974. * awakened in the same order in which they were queued.
  2975. *
  2976. * See also complete_all(), wait_for_completion() and related routines.
  2977. *
  2978. * It may be assumed that this function implies a write memory barrier before
  2979. * changing the task state if and only if any tasks are woken up.
  2980. */
  2981. void complete(struct completion *x)
  2982. {
  2983. unsigned long flags;
  2984. spin_lock_irqsave(&x->wait.lock, flags);
  2985. x->done++;
  2986. __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
  2987. spin_unlock_irqrestore(&x->wait.lock, flags);
  2988. }
  2989. EXPORT_SYMBOL(complete);
  2990. /**
  2991. * complete_all: - signals all threads waiting on this completion
  2992. * @x: holds the state of this particular completion
  2993. *
  2994. * This will wake up all threads waiting on this particular completion event.
  2995. *
  2996. * It may be assumed that this function implies a write memory barrier before
  2997. * changing the task state if and only if any tasks are woken up.
  2998. */
  2999. void complete_all(struct completion *x)
  3000. {
  3001. unsigned long flags;
  3002. spin_lock_irqsave(&x->wait.lock, flags);
  3003. x->done += UINT_MAX/2;
  3004. __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
  3005. spin_unlock_irqrestore(&x->wait.lock, flags);
  3006. }
  3007. EXPORT_SYMBOL(complete_all);
  3008. static inline long __sched
  3009. do_wait_for_common(struct completion *x, long timeout, int state)
  3010. {
  3011. if (!x->done) {
  3012. DECLARE_WAITQUEUE(wait, current);
  3013. __add_wait_queue_tail_exclusive(&x->wait, &wait);
  3014. do {
  3015. if (signal_pending_state(state, current)) {
  3016. timeout = -ERESTARTSYS;
  3017. break;
  3018. }
  3019. __set_current_state(state);
  3020. spin_unlock_irq(&x->wait.lock);
  3021. timeout = schedule_timeout(timeout);
  3022. spin_lock_irq(&x->wait.lock);
  3023. } while (!x->done && timeout);
  3024. __remove_wait_queue(&x->wait, &wait);
  3025. if (!x->done)
  3026. return timeout;
  3027. }
  3028. x->done--;
  3029. return timeout ?: 1;
  3030. }
  3031. static long __sched
  3032. wait_for_common(struct completion *x, long timeout, int state)
  3033. {
  3034. might_sleep();
  3035. spin_lock_irq(&x->wait.lock);
  3036. timeout = do_wait_for_common(x, timeout, state);
  3037. spin_unlock_irq(&x->wait.lock);
  3038. return timeout;
  3039. }
  3040. /**
  3041. * wait_for_completion: - waits for completion of a task
  3042. * @x: holds the state of this particular completion
  3043. *
  3044. * This waits to be signaled for completion of a specific task. It is NOT
  3045. * interruptible and there is no timeout.
  3046. *
  3047. * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
  3048. * and interrupt capability. Also see complete().
  3049. */
  3050. void __sched wait_for_completion(struct completion *x)
  3051. {
  3052. wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
  3053. }
  3054. EXPORT_SYMBOL(wait_for_completion);
  3055. /**
  3056. * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
  3057. * @x: holds the state of this particular completion
  3058. * @timeout: timeout value in jiffies
  3059. *
  3060. * This waits for either a completion of a specific task to be signaled or for a
  3061. * specified timeout to expire. The timeout is in jiffies. It is not
  3062. * interruptible.
  3063. *
  3064. * The return value is 0 if timed out, and positive (at least 1, or number of
  3065. * jiffies left till timeout) if completed.
  3066. */
  3067. unsigned long __sched
  3068. wait_for_completion_timeout(struct completion *x, unsigned long timeout)
  3069. {
  3070. return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
  3071. }
  3072. EXPORT_SYMBOL(wait_for_completion_timeout);
  3073. /**
  3074. * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
  3075. * @x: holds the state of this particular completion
  3076. *
  3077. * This waits for completion of a specific task to be signaled. It is
  3078. * interruptible.
  3079. *
  3080. * The return value is -ERESTARTSYS if interrupted, 0 if completed.
  3081. */
  3082. int __sched wait_for_completion_interruptible(struct completion *x)
  3083. {
  3084. long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
  3085. if (t == -ERESTARTSYS)
  3086. return t;
  3087. return 0;
  3088. }
  3089. EXPORT_SYMBOL(wait_for_completion_interruptible);
  3090. /**
  3091. * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
  3092. * @x: holds the state of this particular completion
  3093. * @timeout: timeout value in jiffies
  3094. *
  3095. * This waits for either a completion of a specific task to be signaled or for a
  3096. * specified timeout to expire. It is interruptible. The timeout is in jiffies.
  3097. *
  3098. * The return value is -ERESTARTSYS if interrupted, 0 if timed out,
  3099. * positive (at least 1, or number of jiffies left till timeout) if completed.
  3100. */
  3101. long __sched
  3102. wait_for_completion_interruptible_timeout(struct completion *x,
  3103. unsigned long timeout)
  3104. {
  3105. return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
  3106. }
  3107. EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
  3108. /**
  3109. * wait_for_completion_killable: - waits for completion of a task (killable)
  3110. * @x: holds the state of this particular completion
  3111. *
  3112. * This waits to be signaled for completion of a specific task. It can be
  3113. * interrupted by a kill signal.
  3114. *
  3115. * The return value is -ERESTARTSYS if interrupted, 0 if completed.
  3116. */
  3117. int __sched wait_for_completion_killable(struct completion *x)
  3118. {
  3119. long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
  3120. if (t == -ERESTARTSYS)
  3121. return t;
  3122. return 0;
  3123. }
  3124. EXPORT_SYMBOL(wait_for_completion_killable);
  3125. /**
  3126. * wait_for_completion_killable_timeout: - waits for completion of a task (w/(to,killable))
  3127. * @x: holds the state of this particular completion
  3128. * @timeout: timeout value in jiffies
  3129. *
  3130. * This waits for either a completion of a specific task to be
  3131. * signaled or for a specified timeout to expire. It can be
  3132. * interrupted by a kill signal. The timeout is in jiffies.
  3133. *
  3134. * The return value is -ERESTARTSYS if interrupted, 0 if timed out,
  3135. * positive (at least 1, or number of jiffies left till timeout) if completed.
  3136. */
  3137. long __sched
  3138. wait_for_completion_killable_timeout(struct completion *x,
  3139. unsigned long timeout)
  3140. {
  3141. return wait_for_common(x, timeout, TASK_KILLABLE);
  3142. }
  3143. EXPORT_SYMBOL(wait_for_completion_killable_timeout);
  3144. /**
  3145. * try_wait_for_completion - try to decrement a completion without blocking
  3146. * @x: completion structure
  3147. *
  3148. * Returns: 0 if a decrement cannot be done without blocking
  3149. * 1 if a decrement succeeded.
  3150. *
  3151. * If a completion is being used as a counting completion,
  3152. * attempt to decrement the counter without blocking. This
  3153. * enables us to avoid waiting if the resource the completion
  3154. * is protecting is not available.
  3155. */
  3156. bool try_wait_for_completion(struct completion *x)
  3157. {
  3158. unsigned long flags;
  3159. int ret = 1;
  3160. spin_lock_irqsave(&x->wait.lock, flags);
  3161. if (!x->done)
  3162. ret = 0;
  3163. else
  3164. x->done--;
  3165. spin_unlock_irqrestore(&x->wait.lock, flags);
  3166. return ret;
  3167. }
  3168. EXPORT_SYMBOL(try_wait_for_completion);
  3169. /**
  3170. * completion_done - Test to see if a completion has any waiters
  3171. * @x: completion structure
  3172. *
  3173. * Returns: 0 if there are waiters (wait_for_completion() in progress)
  3174. * 1 if there are no waiters.
  3175. *
  3176. */
  3177. bool completion_done(struct completion *x)
  3178. {
  3179. unsigned long flags;
  3180. int ret = 1;
  3181. spin_lock_irqsave(&x->wait.lock, flags);
  3182. if (!x->done)
  3183. ret = 0;
  3184. spin_unlock_irqrestore(&x->wait.lock, flags);
  3185. return ret;
  3186. }
  3187. EXPORT_SYMBOL(completion_done);
  3188. static long __sched
  3189. sleep_on_common(wait_queue_head_t *q, int state, long timeout)
  3190. {
  3191. unsigned long flags;
  3192. wait_queue_t wait;
  3193. init_waitqueue_entry(&wait, current);
  3194. __set_current_state(state);
  3195. spin_lock_irqsave(&q->lock, flags);
  3196. __add_wait_queue(q, &wait);
  3197. spin_unlock(&q->lock);
  3198. timeout = schedule_timeout(timeout);
  3199. spin_lock_irq(&q->lock);
  3200. __remove_wait_queue(q, &wait);
  3201. spin_unlock_irqrestore(&q->lock, flags);
  3202. return timeout;
  3203. }
  3204. void __sched interruptible_sleep_on(wait_queue_head_t *q)
  3205. {
  3206. sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
  3207. }
  3208. EXPORT_SYMBOL(interruptible_sleep_on);
  3209. long __sched
  3210. interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
  3211. {
  3212. return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
  3213. }
  3214. EXPORT_SYMBOL(interruptible_sleep_on_timeout);
  3215. void __sched sleep_on(wait_queue_head_t *q)
  3216. {
  3217. sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
  3218. }
  3219. EXPORT_SYMBOL(sleep_on);
  3220. long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
  3221. {
  3222. return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
  3223. }
  3224. EXPORT_SYMBOL(sleep_on_timeout);
  3225. #ifdef CONFIG_RT_MUTEXES
  3226. /*
  3227. * rt_mutex_setprio - set the current priority of a task
  3228. * @p: task
  3229. * @prio: prio value (kernel-internal form)
  3230. *
  3231. * This function changes the 'effective' priority of a task. It does
  3232. * not touch ->normal_prio like __setscheduler().
  3233. *
  3234. * Used by the rt_mutex code to implement priority inheritance logic.
  3235. */
  3236. void rt_mutex_setprio(struct task_struct *p, int prio)
  3237. {
  3238. int oldprio, on_rq, running;
  3239. struct rq *rq;
  3240. const struct sched_class *prev_class;
  3241. BUG_ON(prio < 0 || prio > MAX_PRIO);
  3242. rq = __task_rq_lock(p);
  3243. /*
  3244. * Idle task boosting is a nono in general. There is one
  3245. * exception, when PREEMPT_RT and NOHZ is active:
  3246. *
  3247. * The idle task calls get_next_timer_interrupt() and holds
  3248. * the timer wheel base->lock on the CPU and another CPU wants
  3249. * to access the timer (probably to cancel it). We can safely
  3250. * ignore the boosting request, as the idle CPU runs this code
  3251. * with interrupts disabled and will complete the lock
  3252. * protected section without being interrupted. So there is no
  3253. * real need to boost.
  3254. */
  3255. if (unlikely(p == rq->idle)) {
  3256. WARN_ON(p != rq->curr);
  3257. WARN_ON(p->pi_blocked_on);
  3258. goto out_unlock;
  3259. }
  3260. trace_sched_pi_setprio(p, prio);
  3261. oldprio = p->prio;
  3262. prev_class = p->sched_class;
  3263. on_rq = p->on_rq;
  3264. running = task_current(rq, p);
  3265. if (on_rq)
  3266. dequeue_task(rq, p, 0);
  3267. if (running)
  3268. p->sched_class->put_prev_task(rq, p);
  3269. if (rt_prio(prio))
  3270. p->sched_class = &rt_sched_class;
  3271. else
  3272. p->sched_class = &fair_sched_class;
  3273. p->prio = prio;
  3274. if (running)
  3275. p->sched_class->set_curr_task(rq);
  3276. if (on_rq)
  3277. enqueue_task(rq, p, oldprio < prio ? ENQUEUE_HEAD : 0);
  3278. check_class_changed(rq, p, prev_class, oldprio);
  3279. out_unlock:
  3280. __task_rq_unlock(rq);
  3281. }
  3282. #endif
  3283. void set_user_nice(struct task_struct *p, long nice)
  3284. {
  3285. int old_prio, delta, on_rq;
  3286. unsigned long flags;
  3287. struct rq *rq;
  3288. if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
  3289. return;
  3290. /*
  3291. * We have to be careful, if called from sys_setpriority(),
  3292. * the task might be in the middle of scheduling on another CPU.
  3293. */
  3294. rq = task_rq_lock(p, &flags);
  3295. /*
  3296. * The RT priorities are set via sched_setscheduler(), but we still
  3297. * allow the 'normal' nice value to be set - but as expected
  3298. * it wont have any effect on scheduling until the task is
  3299. * SCHED_FIFO/SCHED_RR:
  3300. */
  3301. if (task_has_rt_policy(p)) {
  3302. p->static_prio = NICE_TO_PRIO(nice);
  3303. goto out_unlock;
  3304. }
  3305. on_rq = p->on_rq;
  3306. if (on_rq)
  3307. dequeue_task(rq, p, 0);
  3308. p->static_prio = NICE_TO_PRIO(nice);
  3309. set_load_weight(p);
  3310. old_prio = p->prio;
  3311. p->prio = effective_prio(p);
  3312. delta = p->prio - old_prio;
  3313. if (on_rq) {
  3314. enqueue_task(rq, p, 0);
  3315. /*
  3316. * If the task increased its priority or is running and
  3317. * lowered its priority, then reschedule its CPU:
  3318. */
  3319. if (delta < 0 || (delta > 0 && task_running(rq, p)))
  3320. resched_task(rq->curr);
  3321. }
  3322. out_unlock:
  3323. task_rq_unlock(rq, p, &flags);
  3324. }
  3325. EXPORT_SYMBOL(set_user_nice);
  3326. /*
  3327. * can_nice - check if a task can reduce its nice value
  3328. * @p: task
  3329. * @nice: nice value
  3330. */
  3331. int can_nice(const struct task_struct *p, const int nice)
  3332. {
  3333. /* convert nice value [19,-20] to rlimit style value [1,40] */
  3334. int nice_rlim = 20 - nice;
  3335. return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
  3336. capable(CAP_SYS_NICE));
  3337. }
  3338. #ifdef __ARCH_WANT_SYS_NICE
  3339. /*
  3340. * sys_nice - change the priority of the current process.
  3341. * @increment: priority increment
  3342. *
  3343. * sys_setpriority is a more generic, but much slower function that
  3344. * does similar things.
  3345. */
  3346. SYSCALL_DEFINE1(nice, int, increment)
  3347. {
  3348. long nice, retval;
  3349. /*
  3350. * Setpriority might change our priority at the same moment.
  3351. * We don't have to worry. Conceptually one call occurs first
  3352. * and we have a single winner.
  3353. */
  3354. if (increment < -40)
  3355. increment = -40;
  3356. if (increment > 40)
  3357. increment = 40;
  3358. nice = TASK_NICE(current) + increment;
  3359. if (nice < -20)
  3360. nice = -20;
  3361. if (nice > 19)
  3362. nice = 19;
  3363. if (increment < 0 && !can_nice(current, nice))
  3364. return -EPERM;
  3365. retval = security_task_setnice(current, nice);
  3366. if (retval)
  3367. return retval;
  3368. set_user_nice(current, nice);
  3369. return 0;
  3370. }
  3371. #endif
  3372. /**
  3373. * task_prio - return the priority value of a given task.
  3374. * @p: the task in question.
  3375. *
  3376. * This is the priority value as seen by users in /proc.
  3377. * RT tasks are offset by -200. Normal tasks are centered
  3378. * around 0, value goes from -16 to +15.
  3379. */
  3380. int task_prio(const struct task_struct *p)
  3381. {
  3382. return p->prio - MAX_RT_PRIO;
  3383. }
  3384. /**
  3385. * task_nice - return the nice value of a given task.
  3386. * @p: the task in question.
  3387. */
  3388. int task_nice(const struct task_struct *p)
  3389. {
  3390. return TASK_NICE(p);
  3391. }
  3392. EXPORT_SYMBOL(task_nice);
  3393. /**
  3394. * idle_cpu - is a given cpu idle currently?
  3395. * @cpu: the processor in question.
  3396. */
  3397. int idle_cpu(int cpu)
  3398. {
  3399. struct rq *rq = cpu_rq(cpu);
  3400. if (rq->curr != rq->idle)
  3401. return 0;
  3402. if (rq->nr_running)
  3403. return 0;
  3404. #ifdef CONFIG_SMP
  3405. if (!llist_empty(&rq->wake_list))
  3406. return 0;
  3407. #endif
  3408. return 1;
  3409. }
  3410. /**
  3411. * idle_task - return the idle task for a given cpu.
  3412. * @cpu: the processor in question.
  3413. */
  3414. struct task_struct *idle_task(int cpu)
  3415. {
  3416. return cpu_rq(cpu)->idle;
  3417. }
  3418. /**
  3419. * find_process_by_pid - find a process with a matching PID value.
  3420. * @pid: the pid in question.
  3421. */
  3422. static struct task_struct *find_process_by_pid(pid_t pid)
  3423. {
  3424. return pid ? find_task_by_vpid(pid) : current;
  3425. }
  3426. /* Actually do priority change: must hold rq lock. */
  3427. static void
  3428. __setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
  3429. {
  3430. p->policy = policy;
  3431. p->rt_priority = prio;
  3432. p->normal_prio = normal_prio(p);
  3433. /* we are holding p->pi_lock already */
  3434. p->prio = rt_mutex_getprio(p);
  3435. if (rt_prio(p->prio))
  3436. p->sched_class = &rt_sched_class;
  3437. else
  3438. p->sched_class = &fair_sched_class;
  3439. set_load_weight(p);
  3440. }
  3441. /*
  3442. * check the target process has a UID that matches the current process's
  3443. */
  3444. static bool check_same_owner(struct task_struct *p)
  3445. {
  3446. const struct cred *cred = current_cred(), *pcred;
  3447. bool match;
  3448. rcu_read_lock();
  3449. pcred = __task_cred(p);
  3450. if (cred->user->user_ns == pcred->user->user_ns)
  3451. match = (cred->euid == pcred->euid ||
  3452. cred->euid == pcred->uid);
  3453. else
  3454. match = false;
  3455. rcu_read_unlock();
  3456. return match;
  3457. }
  3458. static int __sched_setscheduler(struct task_struct *p, int policy,
  3459. const struct sched_param *param, bool user)
  3460. {
  3461. int retval, oldprio, oldpolicy = -1, on_rq, running;
  3462. unsigned long flags;
  3463. const struct sched_class *prev_class;
  3464. struct rq *rq;
  3465. int reset_on_fork;
  3466. /* may grab non-irq protected spin_locks */
  3467. BUG_ON(in_interrupt());
  3468. recheck:
  3469. /* double check policy once rq lock held */
  3470. if (policy < 0) {
  3471. reset_on_fork = p->sched_reset_on_fork;
  3472. policy = oldpolicy = p->policy;
  3473. } else {
  3474. reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
  3475. policy &= ~SCHED_RESET_ON_FORK;
  3476. if (policy != SCHED_FIFO && policy != SCHED_RR &&
  3477. policy != SCHED_NORMAL && policy != SCHED_BATCH &&
  3478. policy != SCHED_IDLE)
  3479. return -EINVAL;
  3480. }
  3481. /*
  3482. * Valid priorities for SCHED_FIFO and SCHED_RR are
  3483. * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
  3484. * SCHED_BATCH and SCHED_IDLE is 0.
  3485. */
  3486. if (param->sched_priority < 0 ||
  3487. (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
  3488. (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
  3489. return -EINVAL;
  3490. if (rt_policy(policy) != (param->sched_priority != 0))
  3491. return -EINVAL;
  3492. /*
  3493. * Allow unprivileged RT tasks to decrease priority:
  3494. */
  3495. if (user && !capable(CAP_SYS_NICE)) {
  3496. if (rt_policy(policy)) {
  3497. unsigned long rlim_rtprio =
  3498. task_rlimit(p, RLIMIT_RTPRIO);
  3499. /* can't set/change the rt policy */
  3500. if (policy != p->policy && !rlim_rtprio)
  3501. return -EPERM;
  3502. /* can't increase priority */
  3503. if (param->sched_priority > p->rt_priority &&
  3504. param->sched_priority > rlim_rtprio)
  3505. return -EPERM;
  3506. }
  3507. /*
  3508. * Treat SCHED_IDLE as nice 20. Only allow a switch to
  3509. * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
  3510. */
  3511. if (p->policy == SCHED_IDLE && policy != SCHED_IDLE) {
  3512. if (!can_nice(p, TASK_NICE(p)))
  3513. return -EPERM;
  3514. }
  3515. /* can't change other user's priorities */
  3516. if (!check_same_owner(p))
  3517. return -EPERM;
  3518. /* Normal users shall not reset the sched_reset_on_fork flag */
  3519. if (p->sched_reset_on_fork && !reset_on_fork)
  3520. return -EPERM;
  3521. }
  3522. if (user) {
  3523. retval = security_task_setscheduler(p);
  3524. if (retval)
  3525. return retval;
  3526. }
  3527. /*
  3528. * make sure no PI-waiters arrive (or leave) while we are
  3529. * changing the priority of the task:
  3530. *
  3531. * To be able to change p->policy safely, the appropriate
  3532. * runqueue lock must be held.
  3533. */
  3534. rq = task_rq_lock(p, &flags);
  3535. /*
  3536. * Changing the policy of the stop threads its a very bad idea
  3537. */
  3538. if (p == rq->stop) {
  3539. task_rq_unlock(rq, p, &flags);
  3540. return -EINVAL;
  3541. }
  3542. /*
  3543. * If not changing anything there's no need to proceed further:
  3544. */
  3545. if (unlikely(policy == p->policy && (!rt_policy(policy) ||
  3546. param->sched_priority == p->rt_priority))) {
  3547. __task_rq_unlock(rq);
  3548. raw_spin_unlock_irqrestore(&p->pi_lock, flags);
  3549. return 0;
  3550. }
  3551. #ifdef CONFIG_RT_GROUP_SCHED
  3552. if (user) {
  3553. /*
  3554. * Do not allow realtime tasks into groups that have no runtime
  3555. * assigned.
  3556. */
  3557. if (rt_bandwidth_enabled() && rt_policy(policy) &&
  3558. task_group(p)->rt_bandwidth.rt_runtime == 0 &&
  3559. !task_group_is_autogroup(task_group(p))) {
  3560. task_rq_unlock(rq, p, &flags);
  3561. return -EPERM;
  3562. }
  3563. }
  3564. #endif
  3565. /* recheck policy now with rq lock held */
  3566. if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
  3567. policy = oldpolicy = -1;
  3568. task_rq_unlock(rq, p, &flags);
  3569. goto recheck;
  3570. }
  3571. on_rq = p->on_rq;
  3572. running = task_current(rq, p);
  3573. if (on_rq)
  3574. dequeue_task(rq, p, 0);
  3575. if (running)
  3576. p->sched_class->put_prev_task(rq, p);
  3577. p->sched_reset_on_fork = reset_on_fork;
  3578. oldprio = p->prio;
  3579. prev_class = p->sched_class;
  3580. __setscheduler(rq, p, policy, param->sched_priority);
  3581. if (running)
  3582. p->sched_class->set_curr_task(rq);
  3583. if (on_rq)
  3584. enqueue_task(rq, p, 0);
  3585. check_class_changed(rq, p, prev_class, oldprio);
  3586. task_rq_unlock(rq, p, &flags);
  3587. rt_mutex_adjust_pi(p);
  3588. return 0;
  3589. }
  3590. /**
  3591. * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
  3592. * @p: the task in question.
  3593. * @policy: new policy.
  3594. * @param: structure containing the new RT priority.
  3595. *
  3596. * NOTE that the task may be already dead.
  3597. */
  3598. int sched_setscheduler(struct task_struct *p, int policy,
  3599. const struct sched_param *param)
  3600. {
  3601. return __sched_setscheduler(p, policy, param, true);
  3602. }
  3603. EXPORT_SYMBOL_GPL(sched_setscheduler);
  3604. /**
  3605. * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
  3606. * @p: the task in question.
  3607. * @policy: new policy.
  3608. * @param: structure containing the new RT priority.
  3609. *
  3610. * Just like sched_setscheduler, only don't bother checking if the
  3611. * current context has permission. For example, this is needed in
  3612. * stop_machine(): we create temporary high priority worker threads,
  3613. * but our caller might not have that capability.
  3614. */
  3615. int sched_setscheduler_nocheck(struct task_struct *p, int policy,
  3616. const struct sched_param *param)
  3617. {
  3618. return __sched_setscheduler(p, policy, param, false);
  3619. }
  3620. static int
  3621. do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
  3622. {
  3623. struct sched_param lparam;
  3624. struct task_struct *p;
  3625. int retval;
  3626. if (!param || pid < 0)
  3627. return -EINVAL;
  3628. if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
  3629. return -EFAULT;
  3630. rcu_read_lock();
  3631. retval = -ESRCH;
  3632. p = find_process_by_pid(pid);
  3633. if (p != NULL)
  3634. retval = sched_setscheduler(p, policy, &lparam);
  3635. rcu_read_unlock();
  3636. return retval;
  3637. }
  3638. /**
  3639. * sys_sched_setscheduler - set/change the scheduler policy and RT priority
  3640. * @pid: the pid in question.
  3641. * @policy: new policy.
  3642. * @param: structure containing the new RT priority.
  3643. */
  3644. SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
  3645. struct sched_param __user *, param)
  3646. {
  3647. /* negative values for policy are not valid */
  3648. if (policy < 0)
  3649. return -EINVAL;
  3650. return do_sched_setscheduler(pid, policy, param);
  3651. }
  3652. /**
  3653. * sys_sched_setparam - set/change the RT priority of a thread
  3654. * @pid: the pid in question.
  3655. * @param: structure containing the new RT priority.
  3656. */
  3657. SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
  3658. {
  3659. return do_sched_setscheduler(pid, -1, param);
  3660. }
  3661. /**
  3662. * sys_sched_getscheduler - get the policy (scheduling class) of a thread
  3663. * @pid: the pid in question.
  3664. */
  3665. SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
  3666. {
  3667. struct task_struct *p;
  3668. int retval;
  3669. if (pid < 0)
  3670. return -EINVAL;
  3671. retval = -ESRCH;
  3672. rcu_read_lock();
  3673. p = find_process_by_pid(pid);
  3674. if (p) {
  3675. retval = security_task_getscheduler(p);
  3676. if (!retval)
  3677. retval = p->policy
  3678. | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
  3679. }
  3680. rcu_read_unlock();
  3681. return retval;
  3682. }
  3683. /**
  3684. * sys_sched_getparam - get the RT priority of a thread
  3685. * @pid: the pid in question.
  3686. * @param: structure containing the RT priority.
  3687. */
  3688. SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
  3689. {
  3690. struct sched_param lp;
  3691. struct task_struct *p;
  3692. int retval;
  3693. if (!param || pid < 0)
  3694. return -EINVAL;
  3695. rcu_read_lock();
  3696. p = find_process_by_pid(pid);
  3697. retval = -ESRCH;
  3698. if (!p)
  3699. goto out_unlock;
  3700. retval = security_task_getscheduler(p);
  3701. if (retval)
  3702. goto out_unlock;
  3703. lp.sched_priority = p->rt_priority;
  3704. rcu_read_unlock();
  3705. /*
  3706. * This one might sleep, we cannot do it with a spinlock held ...
  3707. */
  3708. retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
  3709. return retval;
  3710. out_unlock:
  3711. rcu_read_unlock();
  3712. return retval;
  3713. }
  3714. long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
  3715. {
  3716. cpumask_var_t cpus_allowed, new_mask;
  3717. struct task_struct *p;
  3718. int retval;
  3719. get_online_cpus();
  3720. rcu_read_lock();
  3721. p = find_process_by_pid(pid);
  3722. if (!p) {
  3723. rcu_read_unlock();
  3724. put_online_cpus();
  3725. return -ESRCH;
  3726. }
  3727. /* Prevent p going away */
  3728. get_task_struct(p);
  3729. rcu_read_unlock();
  3730. if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
  3731. retval = -ENOMEM;
  3732. goto out_put_task;
  3733. }
  3734. if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
  3735. retval = -ENOMEM;
  3736. goto out_free_cpus_allowed;
  3737. }
  3738. retval = -EPERM;
  3739. if (!check_same_owner(p) && !ns_capable(task_user_ns(p), CAP_SYS_NICE))
  3740. goto out_unlock;
  3741. retval = security_task_setscheduler(p);
  3742. if (retval)
  3743. goto out_unlock;
  3744. cpuset_cpus_allowed(p, cpus_allowed);
  3745. cpumask_and(new_mask, in_mask, cpus_allowed);
  3746. again:
  3747. retval = set_cpus_allowed_ptr(p, new_mask);
  3748. if (!retval) {
  3749. cpuset_cpus_allowed(p, cpus_allowed);
  3750. if (!cpumask_subset(new_mask, cpus_allowed)) {
  3751. /*
  3752. * We must have raced with a concurrent cpuset
  3753. * update. Just reset the cpus_allowed to the
  3754. * cpuset's cpus_allowed
  3755. */
  3756. cpumask_copy(new_mask, cpus_allowed);
  3757. goto again;
  3758. }
  3759. }
  3760. out_unlock:
  3761. free_cpumask_var(new_mask);
  3762. out_free_cpus_allowed:
  3763. free_cpumask_var(cpus_allowed);
  3764. out_put_task:
  3765. put_task_struct(p);
  3766. put_online_cpus();
  3767. return retval;
  3768. }
  3769. static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
  3770. struct cpumask *new_mask)
  3771. {
  3772. if (len < cpumask_size())
  3773. cpumask_clear(new_mask);
  3774. else if (len > cpumask_size())
  3775. len = cpumask_size();
  3776. return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
  3777. }
  3778. /**
  3779. * sys_sched_setaffinity - set the cpu affinity of a process
  3780. * @pid: pid of the process
  3781. * @len: length in bytes of the bitmask pointed to by user_mask_ptr
  3782. * @user_mask_ptr: user-space pointer to the new cpu mask
  3783. */
  3784. SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
  3785. unsigned long __user *, user_mask_ptr)
  3786. {
  3787. cpumask_var_t new_mask;
  3788. int retval;
  3789. if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
  3790. return -ENOMEM;
  3791. retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
  3792. if (retval == 0)
  3793. retval = sched_setaffinity(pid, new_mask);
  3794. free_cpumask_var(new_mask);
  3795. return retval;
  3796. }
  3797. long sched_getaffinity(pid_t pid, struct cpumask *mask)
  3798. {
  3799. struct task_struct *p;
  3800. unsigned long flags;
  3801. int retval;
  3802. get_online_cpus();
  3803. rcu_read_lock();
  3804. retval = -ESRCH;
  3805. p = find_process_by_pid(pid);
  3806. if (!p)
  3807. goto out_unlock;
  3808. retval = security_task_getscheduler(p);
  3809. if (retval)
  3810. goto out_unlock;
  3811. raw_spin_lock_irqsave(&p->pi_lock, flags);
  3812. cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
  3813. raw_spin_unlock_irqrestore(&p->pi_lock, flags);
  3814. out_unlock:
  3815. rcu_read_unlock();
  3816. put_online_cpus();
  3817. return retval;
  3818. }
  3819. /**
  3820. * sys_sched_getaffinity - get the cpu affinity of a process
  3821. * @pid: pid of the process
  3822. * @len: length in bytes of the bitmask pointed to by user_mask_ptr
  3823. * @user_mask_ptr: user-space pointer to hold the current cpu mask
  3824. */
  3825. SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
  3826. unsigned long __user *, user_mask_ptr)
  3827. {
  3828. int ret;
  3829. cpumask_var_t mask;
  3830. if ((len * BITS_PER_BYTE) < nr_cpu_ids)
  3831. return -EINVAL;
  3832. if (len & (sizeof(unsigned long)-1))
  3833. return -EINVAL;
  3834. if (!alloc_cpumask_var(&mask, GFP_KERNEL))
  3835. return -ENOMEM;
  3836. ret = sched_getaffinity(pid, mask);
  3837. if (ret == 0) {
  3838. size_t retlen = min_t(size_t, len, cpumask_size());
  3839. if (copy_to_user(user_mask_ptr, mask, retlen))
  3840. ret = -EFAULT;
  3841. else
  3842. ret = retlen;
  3843. }
  3844. free_cpumask_var(mask);
  3845. return ret;
  3846. }
  3847. /**
  3848. * sys_sched_yield - yield the current processor to other threads.
  3849. *
  3850. * This function yields the current CPU to other tasks. If there are no
  3851. * other threads running on this CPU then this function will return.
  3852. */
  3853. SYSCALL_DEFINE0(sched_yield)
  3854. {
  3855. struct rq *rq = this_rq_lock();
  3856. schedstat_inc(rq, yld_count);
  3857. current->sched_class->yield_task(rq);
  3858. /*
  3859. * Since we are going to call schedule() anyway, there's
  3860. * no need to preempt or enable interrupts:
  3861. */
  3862. __release(rq->lock);
  3863. spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
  3864. do_raw_spin_unlock(&rq->lock);
  3865. sched_preempt_enable_no_resched();
  3866. schedule();
  3867. return 0;
  3868. }
  3869. static inline int should_resched(void)
  3870. {
  3871. return need_resched() && !(preempt_count() & PREEMPT_ACTIVE);
  3872. }
  3873. static void __cond_resched(void)
  3874. {
  3875. add_preempt_count(PREEMPT_ACTIVE);
  3876. __schedule();
  3877. sub_preempt_count(PREEMPT_ACTIVE);
  3878. }
  3879. int __sched _cond_resched(void)
  3880. {
  3881. if (should_resched()) {
  3882. __cond_resched();
  3883. return 1;
  3884. }
  3885. return 0;
  3886. }
  3887. EXPORT_SYMBOL(_cond_resched);
  3888. /*
  3889. * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
  3890. * call schedule, and on return reacquire the lock.
  3891. *
  3892. * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
  3893. * operations here to prevent schedule() from being called twice (once via
  3894. * spin_unlock(), once by hand).
  3895. */
  3896. int __cond_resched_lock(spinlock_t *lock)
  3897. {
  3898. int resched = should_resched();
  3899. int ret = 0;
  3900. lockdep_assert_held(lock);
  3901. if (spin_needbreak(lock) || resched) {
  3902. spin_unlock(lock);
  3903. if (resched)
  3904. __cond_resched();
  3905. else
  3906. cpu_relax();
  3907. ret = 1;
  3908. spin_lock(lock);
  3909. }
  3910. return ret;
  3911. }
  3912. EXPORT_SYMBOL(__cond_resched_lock);
  3913. int __sched __cond_resched_softirq(void)
  3914. {
  3915. BUG_ON(!in_softirq());
  3916. if (should_resched()) {
  3917. local_bh_enable();
  3918. __cond_resched();
  3919. local_bh_disable();
  3920. return 1;
  3921. }
  3922. return 0;
  3923. }
  3924. EXPORT_SYMBOL(__cond_resched_softirq);
  3925. /**
  3926. * yield - yield the current processor to other threads.
  3927. *
  3928. * Do not ever use this function, there's a 99% chance you're doing it wrong.
  3929. *
  3930. * The scheduler is at all times free to pick the calling task as the most
  3931. * eligible task to run, if removing the yield() call from your code breaks
  3932. * it, its already broken.
  3933. *
  3934. * Typical broken usage is:
  3935. *
  3936. * while (!event)
  3937. * yield();
  3938. *
  3939. * where one assumes that yield() will let 'the other' process run that will
  3940. * make event true. If the current task is a SCHED_FIFO task that will never
  3941. * happen. Never use yield() as a progress guarantee!!
  3942. *
  3943. * If you want to use yield() to wait for something, use wait_event().
  3944. * If you want to use yield() to be 'nice' for others, use cond_resched().
  3945. * If you still want to use yield(), do not!
  3946. */
  3947. void __sched yield(void)
  3948. {
  3949. set_current_state(TASK_RUNNING);
  3950. sys_sched_yield();
  3951. }
  3952. EXPORT_SYMBOL(yield);
  3953. /**
  3954. * yield_to - yield the current processor to another thread in
  3955. * your thread group, or accelerate that thread toward the
  3956. * processor it's on.
  3957. * @p: target task
  3958. * @preempt: whether task preemption is allowed or not
  3959. *
  3960. * It's the caller's job to ensure that the target task struct
  3961. * can't go away on us before we can do any checks.
  3962. *
  3963. * Returns true if we indeed boosted the target task.
  3964. */
  3965. bool __sched yield_to(struct task_struct *p, bool preempt)
  3966. {
  3967. struct task_struct *curr = current;
  3968. struct rq *rq, *p_rq;
  3969. unsigned long flags;
  3970. bool yielded = 0;
  3971. local_irq_save(flags);
  3972. rq = this_rq();
  3973. again:
  3974. p_rq = task_rq(p);
  3975. double_rq_lock(rq, p_rq);
  3976. while (task_rq(p) != p_rq) {
  3977. double_rq_unlock(rq, p_rq);
  3978. goto again;
  3979. }
  3980. if (!curr->sched_class->yield_to_task)
  3981. goto out;
  3982. if (curr->sched_class != p->sched_class)
  3983. goto out;
  3984. if (task_running(p_rq, p) || p->state)
  3985. goto out;
  3986. yielded = curr->sched_class->yield_to_task(rq, p, preempt);
  3987. if (yielded) {
  3988. schedstat_inc(rq, yld_count);
  3989. /*
  3990. * Make p's CPU reschedule; pick_next_entity takes care of
  3991. * fairness.
  3992. */
  3993. if (preempt && rq != p_rq)
  3994. resched_task(p_rq->curr);
  3995. } else {
  3996. /*
  3997. * We might have set it in task_yield_fair(), but are
  3998. * not going to schedule(), so don't want to skip
  3999. * the next update.
  4000. */
  4001. rq->skip_clock_update = 0;
  4002. }
  4003. out:
  4004. double_rq_unlock(rq, p_rq);
  4005. local_irq_restore(flags);
  4006. if (yielded)
  4007. schedule();
  4008. return yielded;
  4009. }
  4010. EXPORT_SYMBOL_GPL(yield_to);
  4011. /*
  4012. * This task is about to go to sleep on IO. Increment rq->nr_iowait so
  4013. * that process accounting knows that this is a task in IO wait state.
  4014. */
  4015. void __sched io_schedule(void)
  4016. {
  4017. struct rq *rq = raw_rq();
  4018. delayacct_blkio_start();
  4019. atomic_inc(&rq->nr_iowait);
  4020. blk_flush_plug(current);
  4021. current->in_iowait = 1;
  4022. schedule();
  4023. current->in_iowait = 0;
  4024. atomic_dec(&rq->nr_iowait);
  4025. delayacct_blkio_end();
  4026. }
  4027. EXPORT_SYMBOL(io_schedule);
  4028. long __sched io_schedule_timeout(long timeout)
  4029. {
  4030. struct rq *rq = raw_rq();
  4031. long ret;
  4032. delayacct_blkio_start();
  4033. atomic_inc(&rq->nr_iowait);
  4034. blk_flush_plug(current);
  4035. current->in_iowait = 1;
  4036. ret = schedule_timeout(timeout);
  4037. current->in_iowait = 0;
  4038. atomic_dec(&rq->nr_iowait);
  4039. delayacct_blkio_end();
  4040. return ret;
  4041. }
  4042. /**
  4043. * sys_sched_get_priority_max - return maximum RT priority.
  4044. * @policy: scheduling class.
  4045. *
  4046. * this syscall returns the maximum rt_priority that can be used
  4047. * by a given scheduling class.
  4048. */
  4049. SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
  4050. {
  4051. int ret = -EINVAL;
  4052. switch (policy) {
  4053. case SCHED_FIFO:
  4054. case SCHED_RR:
  4055. ret = MAX_USER_RT_PRIO-1;
  4056. break;
  4057. case SCHED_NORMAL:
  4058. case SCHED_BATCH:
  4059. case SCHED_IDLE:
  4060. ret = 0;
  4061. break;
  4062. }
  4063. return ret;
  4064. }
  4065. /**
  4066. * sys_sched_get_priority_min - return minimum RT priority.
  4067. * @policy: scheduling class.
  4068. *
  4069. * this syscall returns the minimum rt_priority that can be used
  4070. * by a given scheduling class.
  4071. */
  4072. SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
  4073. {
  4074. int ret = -EINVAL;
  4075. switch (policy) {
  4076. case SCHED_FIFO:
  4077. case SCHED_RR:
  4078. ret = 1;
  4079. break;
  4080. case SCHED_NORMAL:
  4081. case SCHED_BATCH:
  4082. case SCHED_IDLE:
  4083. ret = 0;
  4084. }
  4085. return ret;
  4086. }
  4087. /**
  4088. * sys_sched_rr_get_interval - return the default timeslice of a process.
  4089. * @pid: pid of the process.
  4090. * @interval: userspace pointer to the timeslice value.
  4091. *
  4092. * this syscall writes the default timeslice value of a given process
  4093. * into the user-space timespec buffer. A value of '0' means infinity.
  4094. */
  4095. SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
  4096. struct timespec __user *, interval)
  4097. {
  4098. struct task_struct *p;
  4099. unsigned int time_slice;
  4100. unsigned long flags;
  4101. struct rq *rq;
  4102. int retval;
  4103. struct timespec t;
  4104. if (pid < 0)
  4105. return -EINVAL;
  4106. retval = -ESRCH;
  4107. rcu_read_lock();
  4108. p = find_process_by_pid(pid);
  4109. if (!p)
  4110. goto out_unlock;
  4111. retval = security_task_getscheduler(p);
  4112. if (retval)
  4113. goto out_unlock;
  4114. rq = task_rq_lock(p, &flags);
  4115. time_slice = p->sched_class->get_rr_interval(rq, p);
  4116. task_rq_unlock(rq, p, &flags);
  4117. rcu_read_unlock();
  4118. jiffies_to_timespec(time_slice, &t);
  4119. retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
  4120. return retval;
  4121. out_unlock:
  4122. rcu_read_unlock();
  4123. return retval;
  4124. }
  4125. static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
  4126. void sched_show_task(struct task_struct *p)
  4127. {
  4128. unsigned long free = 0;
  4129. unsigned state;
  4130. state = p->state ? __ffs(p->state) + 1 : 0;
  4131. printk(KERN_INFO "%-15.15s %c", p->comm,
  4132. state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
  4133. #if BITS_PER_LONG == 32
  4134. if (state == TASK_RUNNING)
  4135. printk(KERN_CONT " running ");
  4136. else
  4137. printk(KERN_CONT " %08lx ", thread_saved_pc(p));
  4138. #else
  4139. if (state == TASK_RUNNING)
  4140. printk(KERN_CONT " running task ");
  4141. else
  4142. printk(KERN_CONT " %016lx ", thread_saved_pc(p));
  4143. #endif
  4144. #ifdef CONFIG_DEBUG_STACK_USAGE
  4145. free = stack_not_used(p);
  4146. #endif
  4147. printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
  4148. task_pid_nr(p), task_pid_nr(rcu_dereference(p->real_parent)),
  4149. (unsigned long)task_thread_info(p)->flags);
  4150. show_stack(p, NULL);
  4151. }
  4152. void show_state_filter(unsigned long state_filter)
  4153. {
  4154. struct task_struct *g, *p;
  4155. #if BITS_PER_LONG == 32
  4156. printk(KERN_INFO
  4157. " task PC stack pid father\n");
  4158. #else
  4159. printk(KERN_INFO
  4160. " task PC stack pid father\n");
  4161. #endif
  4162. rcu_read_lock();
  4163. do_each_thread(g, p) {
  4164. /*
  4165. * reset the NMI-timeout, listing all files on a slow
  4166. * console might take a lot of time:
  4167. */
  4168. touch_nmi_watchdog();
  4169. if (!state_filter || (p->state & state_filter))
  4170. sched_show_task(p);
  4171. } while_each_thread(g, p);
  4172. touch_all_softlockup_watchdogs();
  4173. #ifdef CONFIG_SCHED_DEBUG
  4174. sysrq_sched_debug_show();
  4175. #endif
  4176. rcu_read_unlock();
  4177. /*
  4178. * Only show locks if all tasks are dumped:
  4179. */
  4180. if (!state_filter)
  4181. debug_show_all_locks();
  4182. }
  4183. void __cpuinit init_idle_bootup_task(struct task_struct *idle)
  4184. {
  4185. idle->sched_class = &idle_sched_class;
  4186. }
  4187. /**
  4188. * init_idle - set up an idle thread for a given CPU
  4189. * @idle: task in question
  4190. * @cpu: cpu the idle task belongs to
  4191. *
  4192. * NOTE: this function does not set the idle thread's NEED_RESCHED
  4193. * flag, to make booting more robust.
  4194. */
  4195. void __cpuinit init_idle(struct task_struct *idle, int cpu)
  4196. {
  4197. struct rq *rq = cpu_rq(cpu);
  4198. unsigned long flags;
  4199. raw_spin_lock_irqsave(&rq->lock, flags);
  4200. __sched_fork(idle);
  4201. idle->state = TASK_RUNNING;
  4202. idle->se.exec_start = sched_clock();
  4203. do_set_cpus_allowed(idle, cpumask_of(cpu));
  4204. /*
  4205. * We're having a chicken and egg problem, even though we are
  4206. * holding rq->lock, the cpu isn't yet set to this cpu so the
  4207. * lockdep check in task_group() will fail.
  4208. *
  4209. * Similar case to sched_fork(). / Alternatively we could
  4210. * use task_rq_lock() here and obtain the other rq->lock.
  4211. *
  4212. * Silence PROVE_RCU
  4213. */
  4214. rcu_read_lock();
  4215. __set_task_cpu(idle, cpu);
  4216. rcu_read_unlock();
  4217. rq->curr = rq->idle = idle;
  4218. #if defined(CONFIG_SMP)
  4219. idle->on_cpu = 1;
  4220. #endif
  4221. raw_spin_unlock_irqrestore(&rq->lock, flags);
  4222. /* Set the preempt count _outside_ the spinlocks! */
  4223. task_thread_info(idle)->preempt_count = 0;
  4224. /*
  4225. * The idle tasks have their own, simple scheduling class:
  4226. */
  4227. idle->sched_class = &idle_sched_class;
  4228. ftrace_graph_init_idle_task(idle, cpu);
  4229. #if defined(CONFIG_SMP)
  4230. sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
  4231. #endif
  4232. }
  4233. #ifdef CONFIG_SMP
  4234. void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
  4235. {
  4236. if (p->sched_class && p->sched_class->set_cpus_allowed)
  4237. p->sched_class->set_cpus_allowed(p, new_mask);
  4238. cpumask_copy(&p->cpus_allowed, new_mask);
  4239. p->rt.nr_cpus_allowed = cpumask_weight(new_mask);
  4240. }
  4241. /*
  4242. * This is how migration works:
  4243. *
  4244. * 1) we invoke migration_cpu_stop() on the target CPU using
  4245. * stop_one_cpu().
  4246. * 2) stopper starts to run (implicitly forcing the migrated thread
  4247. * off the CPU)
  4248. * 3) it checks whether the migrated task is still in the wrong runqueue.
  4249. * 4) if it's in the wrong runqueue then the migration thread removes
  4250. * it and puts it into the right queue.
  4251. * 5) stopper completes and stop_one_cpu() returns and the migration
  4252. * is done.
  4253. */
  4254. /*
  4255. * Change a given task's CPU affinity. Migrate the thread to a
  4256. * proper CPU and schedule it away if the CPU it's executing on
  4257. * is removed from the allowed bitmask.
  4258. *
  4259. * NOTE: the caller must have a valid reference to the task, the
  4260. * task must not exit() & deallocate itself prematurely. The
  4261. * call is not atomic; no spinlocks may be held.
  4262. */
  4263. int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
  4264. {
  4265. unsigned long flags;
  4266. struct rq *rq;
  4267. unsigned int dest_cpu;
  4268. int ret = 0;
  4269. rq = task_rq_lock(p, &flags);
  4270. if (cpumask_equal(&p->cpus_allowed, new_mask))
  4271. goto out;
  4272. if (!cpumask_intersects(new_mask, cpu_active_mask)) {
  4273. ret = -EINVAL;
  4274. goto out;
  4275. }
  4276. if (unlikely((p->flags & PF_THREAD_BOUND) && p != current)) {
  4277. ret = -EINVAL;
  4278. goto out;
  4279. }
  4280. do_set_cpus_allowed(p, new_mask);
  4281. /* Can the task run on the task's current CPU? If so, we're done */
  4282. if (cpumask_test_cpu(task_cpu(p), new_mask))
  4283. goto out;
  4284. dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
  4285. if (p->on_rq) {
  4286. struct migration_arg arg = { p, dest_cpu };
  4287. /* Need help from migration thread: drop lock and wait. */
  4288. task_rq_unlock(rq, p, &flags);
  4289. stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
  4290. tlb_migrate_finish(p->mm);
  4291. return 0;
  4292. }
  4293. out:
  4294. task_rq_unlock(rq, p, &flags);
  4295. return ret;
  4296. }
  4297. EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
  4298. /*
  4299. * Move (not current) task off this cpu, onto dest cpu. We're doing
  4300. * this because either it can't run here any more (set_cpus_allowed()
  4301. * away from this CPU, or CPU going down), or because we're
  4302. * attempting to rebalance this task on exec (sched_exec).
  4303. *
  4304. * So we race with normal scheduler movements, but that's OK, as long
  4305. * as the task is no longer on this CPU.
  4306. *
  4307. * Returns non-zero if task was successfully migrated.
  4308. */
  4309. static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
  4310. {
  4311. struct rq *rq_dest, *rq_src;
  4312. int ret = 0;
  4313. if (unlikely(!cpu_active(dest_cpu)))
  4314. return ret;
  4315. rq_src = cpu_rq(src_cpu);
  4316. rq_dest = cpu_rq(dest_cpu);
  4317. raw_spin_lock(&p->pi_lock);
  4318. double_rq_lock(rq_src, rq_dest);
  4319. /* Already moved. */
  4320. if (task_cpu(p) != src_cpu)
  4321. goto done;
  4322. /* Affinity changed (again). */
  4323. if (!cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
  4324. goto fail;
  4325. /*
  4326. * If we're not on a rq, the next wake-up will ensure we're
  4327. * placed properly.
  4328. */
  4329. if (p->on_rq) {
  4330. dequeue_task(rq_src, p, 0);
  4331. set_task_cpu(p, dest_cpu);
  4332. enqueue_task(rq_dest, p, 0);
  4333. check_preempt_curr(rq_dest, p, 0);
  4334. }
  4335. done:
  4336. ret = 1;
  4337. fail:
  4338. double_rq_unlock(rq_src, rq_dest);
  4339. raw_spin_unlock(&p->pi_lock);
  4340. return ret;
  4341. }
  4342. /*
  4343. * migration_cpu_stop - this will be executed by a highprio stopper thread
  4344. * and performs thread migration by bumping thread off CPU then
  4345. * 'pushing' onto another runqueue.
  4346. */
  4347. static int migration_cpu_stop(void *data)
  4348. {
  4349. struct migration_arg *arg = data;
  4350. /*
  4351. * The original target cpu might have gone down and we might
  4352. * be on another cpu but it doesn't matter.
  4353. */
  4354. local_irq_disable();
  4355. __migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu);
  4356. local_irq_enable();
  4357. return 0;
  4358. }
  4359. #ifdef CONFIG_HOTPLUG_CPU
  4360. /*
  4361. * Ensures that the idle task is using init_mm right before its cpu goes
  4362. * offline.
  4363. */
  4364. void idle_task_exit(void)
  4365. {
  4366. struct mm_struct *mm = current->active_mm;
  4367. BUG_ON(cpu_online(smp_processor_id()));
  4368. if (mm != &init_mm)
  4369. switch_mm(mm, &init_mm, current);
  4370. mmdrop(mm);
  4371. }
  4372. /*
  4373. * While a dead CPU has no uninterruptible tasks queued at this point,
  4374. * it might still have a nonzero ->nr_uninterruptible counter, because
  4375. * for performance reasons the counter is not stricly tracking tasks to
  4376. * their home CPUs. So we just add the counter to another CPU's counter,
  4377. * to keep the global sum constant after CPU-down:
  4378. */
  4379. static void migrate_nr_uninterruptible(struct rq *rq_src)
  4380. {
  4381. struct rq *rq_dest = cpu_rq(cpumask_any(cpu_active_mask));
  4382. rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
  4383. rq_src->nr_uninterruptible = 0;
  4384. }
  4385. /*
  4386. * remove the tasks which were accounted by rq from calc_load_tasks.
  4387. */
  4388. static void calc_global_load_remove(struct rq *rq)
  4389. {
  4390. atomic_long_sub(rq->calc_load_active, &calc_load_tasks);
  4391. rq->calc_load_active = 0;
  4392. }
  4393. /*
  4394. * Migrate all tasks from the rq, sleeping tasks will be migrated by
  4395. * try_to_wake_up()->select_task_rq().
  4396. *
  4397. * Called with rq->lock held even though we'er in stop_machine() and
  4398. * there's no concurrency possible, we hold the required locks anyway
  4399. * because of lock validation efforts.
  4400. */
  4401. static void migrate_tasks(unsigned int dead_cpu)
  4402. {
  4403. struct rq *rq = cpu_rq(dead_cpu);
  4404. struct task_struct *next, *stop = rq->stop;
  4405. int dest_cpu;
  4406. /*
  4407. * Fudge the rq selection such that the below task selection loop
  4408. * doesn't get stuck on the currently eligible stop task.
  4409. *
  4410. * We're currently inside stop_machine() and the rq is either stuck
  4411. * in the stop_machine_cpu_stop() loop, or we're executing this code,
  4412. * either way we should never end up calling schedule() until we're
  4413. * done here.
  4414. */
  4415. rq->stop = NULL;
  4416. /* Ensure any throttled groups are reachable by pick_next_task */
  4417. unthrottle_offline_cfs_rqs(rq);
  4418. for ( ; ; ) {
  4419. /*
  4420. * There's this thread running, bail when that's the only
  4421. * remaining thread.
  4422. */
  4423. if (rq->nr_running == 1)
  4424. break;
  4425. next = pick_next_task(rq);
  4426. BUG_ON(!next);
  4427. next->sched_class->put_prev_task(rq, next);
  4428. /* Find suitable destination for @next, with force if needed. */
  4429. dest_cpu = select_fallback_rq(dead_cpu, next);
  4430. raw_spin_unlock(&rq->lock);
  4431. __migrate_task(next, dead_cpu, dest_cpu);
  4432. raw_spin_lock(&rq->lock);
  4433. }
  4434. rq->stop = stop;
  4435. }
  4436. #endif /* CONFIG_HOTPLUG_CPU */
  4437. #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
  4438. static struct ctl_table sd_ctl_dir[] = {
  4439. {
  4440. .procname = "sched_domain",
  4441. .mode = 0555,
  4442. },
  4443. {}
  4444. };
  4445. static struct ctl_table sd_ctl_root[] = {
  4446. {
  4447. .procname = "kernel",
  4448. .mode = 0555,
  4449. .child = sd_ctl_dir,
  4450. },
  4451. {}
  4452. };
  4453. static struct ctl_table *sd_alloc_ctl_entry(int n)
  4454. {
  4455. struct ctl_table *entry =
  4456. kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
  4457. return entry;
  4458. }
  4459. static void sd_free_ctl_entry(struct ctl_table **tablep)
  4460. {
  4461. struct ctl_table *entry;
  4462. /*
  4463. * In the intermediate directories, both the child directory and
  4464. * procname are dynamically allocated and could fail but the mode
  4465. * will always be set. In the lowest directory the names are
  4466. * static strings and all have proc handlers.
  4467. */
  4468. for (entry = *tablep; entry->mode; entry++) {
  4469. if (entry->child)
  4470. sd_free_ctl_entry(&entry->child);
  4471. if (entry->proc_handler == NULL)
  4472. kfree(entry->procname);
  4473. }
  4474. kfree(*tablep);
  4475. *tablep = NULL;
  4476. }
  4477. static void
  4478. set_table_entry(struct ctl_table *entry,
  4479. const char *procname, void *data, int maxlen,
  4480. umode_t mode, proc_handler *proc_handler)
  4481. {
  4482. entry->procname = procname;
  4483. entry->data = data;
  4484. entry->maxlen = maxlen;
  4485. entry->mode = mode;
  4486. entry->proc_handler = proc_handler;
  4487. }
  4488. static struct ctl_table *
  4489. sd_alloc_ctl_domain_table(struct sched_domain *sd)
  4490. {
  4491. struct ctl_table *table = sd_alloc_ctl_entry(13);
  4492. if (table == NULL)
  4493. return NULL;
  4494. set_table_entry(&table[0], "min_interval", &sd->min_interval,
  4495. sizeof(long), 0644, proc_doulongvec_minmax);
  4496. set_table_entry(&table[1], "max_interval", &sd->max_interval,
  4497. sizeof(long), 0644, proc_doulongvec_minmax);
  4498. set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
  4499. sizeof(int), 0644, proc_dointvec_minmax);
  4500. set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
  4501. sizeof(int), 0644, proc_dointvec_minmax);
  4502. set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
  4503. sizeof(int), 0644, proc_dointvec_minmax);
  4504. set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
  4505. sizeof(int), 0644, proc_dointvec_minmax);
  4506. set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
  4507. sizeof(int), 0644, proc_dointvec_minmax);
  4508. set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
  4509. sizeof(int), 0644, proc_dointvec_minmax);
  4510. set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
  4511. sizeof(int), 0644, proc_dointvec_minmax);
  4512. set_table_entry(&table[9], "cache_nice_tries",
  4513. &sd->cache_nice_tries,
  4514. sizeof(int), 0644, proc_dointvec_minmax);
  4515. set_table_entry(&table[10], "flags", &sd->flags,
  4516. sizeof(int), 0644, proc_dointvec_minmax);
  4517. set_table_entry(&table[11], "name", sd->name,
  4518. CORENAME_MAX_SIZE, 0444, proc_dostring);
  4519. /* &table[12] is terminator */
  4520. return table;
  4521. }
  4522. static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
  4523. {
  4524. struct ctl_table *entry, *table;
  4525. struct sched_domain *sd;
  4526. int domain_num = 0, i;
  4527. char buf[32];
  4528. for_each_domain(cpu, sd)
  4529. domain_num++;
  4530. entry = table = sd_alloc_ctl_entry(domain_num + 1);
  4531. if (table == NULL)
  4532. return NULL;
  4533. i = 0;
  4534. for_each_domain(cpu, sd) {
  4535. snprintf(buf, 32, "domain%d", i);
  4536. entry->procname = kstrdup(buf, GFP_KERNEL);
  4537. entry->mode = 0555;
  4538. entry->child = sd_alloc_ctl_domain_table(sd);
  4539. entry++;
  4540. i++;
  4541. }
  4542. return table;
  4543. }
  4544. static struct ctl_table_header *sd_sysctl_header;
  4545. static void register_sched_domain_sysctl(void)
  4546. {
  4547. int i, cpu_num = num_possible_cpus();
  4548. struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
  4549. char buf[32];
  4550. WARN_ON(sd_ctl_dir[0].child);
  4551. sd_ctl_dir[0].child = entry;
  4552. if (entry == NULL)
  4553. return;
  4554. for_each_possible_cpu(i) {
  4555. snprintf(buf, 32, "cpu%d", i);
  4556. entry->procname = kstrdup(buf, GFP_KERNEL);
  4557. entry->mode = 0555;
  4558. entry->child = sd_alloc_ctl_cpu_table(i);
  4559. entry++;
  4560. }
  4561. WARN_ON(sd_sysctl_header);
  4562. sd_sysctl_header = register_sysctl_table(sd_ctl_root);
  4563. }
  4564. /* may be called multiple times per register */
  4565. static void unregister_sched_domain_sysctl(void)
  4566. {
  4567. if (sd_sysctl_header)
  4568. unregister_sysctl_table(sd_sysctl_header);
  4569. sd_sysctl_header = NULL;
  4570. if (sd_ctl_dir[0].child)
  4571. sd_free_ctl_entry(&sd_ctl_dir[0].child);
  4572. }
  4573. #else
  4574. static void register_sched_domain_sysctl(void)
  4575. {
  4576. }
  4577. static void unregister_sched_domain_sysctl(void)
  4578. {
  4579. }
  4580. #endif
  4581. static void set_rq_online(struct rq *rq)
  4582. {
  4583. if (!rq->online) {
  4584. const struct sched_class *class;
  4585. cpumask_set_cpu(rq->cpu, rq->rd->online);
  4586. rq->online = 1;
  4587. for_each_class(class) {
  4588. if (class->rq_online)
  4589. class->rq_online(rq);
  4590. }
  4591. }
  4592. }
  4593. static void set_rq_offline(struct rq *rq)
  4594. {
  4595. if (rq->online) {
  4596. const struct sched_class *class;
  4597. for_each_class(class) {
  4598. if (class->rq_offline)
  4599. class->rq_offline(rq);
  4600. }
  4601. cpumask_clear_cpu(rq->cpu, rq->rd->online);
  4602. rq->online = 0;
  4603. }
  4604. }
  4605. /*
  4606. * migration_call - callback that gets triggered when a CPU is added.
  4607. * Here we can start up the necessary migration thread for the new CPU.
  4608. */
  4609. static int __cpuinit
  4610. migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
  4611. {
  4612. int cpu = (long)hcpu;
  4613. unsigned long flags;
  4614. struct rq *rq = cpu_rq(cpu);
  4615. switch (action & ~CPU_TASKS_FROZEN) {
  4616. case CPU_UP_PREPARE:
  4617. rq->calc_load_update = calc_load_update;
  4618. break;
  4619. case CPU_ONLINE:
  4620. /* Update our root-domain */
  4621. raw_spin_lock_irqsave(&rq->lock, flags);
  4622. if (rq->rd) {
  4623. BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
  4624. set_rq_online(rq);
  4625. }
  4626. raw_spin_unlock_irqrestore(&rq->lock, flags);
  4627. break;
  4628. #ifdef CONFIG_HOTPLUG_CPU
  4629. case CPU_DYING:
  4630. sched_ttwu_pending();
  4631. /* Update our root-domain */
  4632. raw_spin_lock_irqsave(&rq->lock, flags);
  4633. if (rq->rd) {
  4634. BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
  4635. set_rq_offline(rq);
  4636. }
  4637. migrate_tasks(cpu);
  4638. BUG_ON(rq->nr_running != 1); /* the migration thread */
  4639. raw_spin_unlock_irqrestore(&rq->lock, flags);
  4640. migrate_nr_uninterruptible(rq);
  4641. calc_global_load_remove(rq);
  4642. break;
  4643. #endif
  4644. }
  4645. update_max_interval();
  4646. return NOTIFY_OK;
  4647. }
  4648. /*
  4649. * Register at high priority so that task migration (migrate_all_tasks)
  4650. * happens before everything else. This has to be lower priority than
  4651. * the notifier in the perf_event subsystem, though.
  4652. */
  4653. static struct notifier_block __cpuinitdata migration_notifier = {
  4654. .notifier_call = migration_call,
  4655. .priority = CPU_PRI_MIGRATION,
  4656. };
  4657. static int __cpuinit sched_cpu_active(struct notifier_block *nfb,
  4658. unsigned long action, void *hcpu)
  4659. {
  4660. switch (action & ~CPU_TASKS_FROZEN) {
  4661. case CPU_STARTING:
  4662. case CPU_DOWN_FAILED:
  4663. set_cpu_active((long)hcpu, true);
  4664. return NOTIFY_OK;
  4665. default:
  4666. return NOTIFY_DONE;
  4667. }
  4668. }
  4669. static int __cpuinit sched_cpu_inactive(struct notifier_block *nfb,
  4670. unsigned long action, void *hcpu)
  4671. {
  4672. switch (action & ~CPU_TASKS_FROZEN) {
  4673. case CPU_DOWN_PREPARE:
  4674. set_cpu_active((long)hcpu, false);
  4675. return NOTIFY_OK;
  4676. default:
  4677. return NOTIFY_DONE;
  4678. }
  4679. }
  4680. static int __init migration_init(void)
  4681. {
  4682. void *cpu = (void *)(long)smp_processor_id();
  4683. int err;
  4684. /* Initialize migration for the boot CPU */
  4685. err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
  4686. BUG_ON(err == NOTIFY_BAD);
  4687. migration_call(&migration_notifier, CPU_ONLINE, cpu);
  4688. register_cpu_notifier(&migration_notifier);
  4689. /* Register cpu active notifiers */
  4690. cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
  4691. cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);
  4692. return 0;
  4693. }
  4694. early_initcall(migration_init);
  4695. #endif
  4696. #ifdef CONFIG_SMP
  4697. static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */
  4698. #ifdef CONFIG_SCHED_DEBUG
  4699. static __read_mostly int sched_domain_debug_enabled;
  4700. static int __init sched_domain_debug_setup(char *str)
  4701. {
  4702. sched_domain_debug_enabled = 1;
  4703. return 0;
  4704. }
  4705. early_param("sched_debug", sched_domain_debug_setup);
  4706. static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
  4707. struct cpumask *groupmask)
  4708. {
  4709. struct sched_group *group = sd->groups;
  4710. char str[256];
  4711. cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
  4712. cpumask_clear(groupmask);
  4713. printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
  4714. if (!(sd->flags & SD_LOAD_BALANCE)) {
  4715. printk("does not load-balance\n");
  4716. if (sd->parent)
  4717. printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
  4718. " has parent");
  4719. return -1;
  4720. }
  4721. printk(KERN_CONT "span %s level %s\n", str, sd->name);
  4722. if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
  4723. printk(KERN_ERR "ERROR: domain->span does not contain "
  4724. "CPU%d\n", cpu);
  4725. }
  4726. if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
  4727. printk(KERN_ERR "ERROR: domain->groups does not contain"
  4728. " CPU%d\n", cpu);
  4729. }
  4730. printk(KERN_DEBUG "%*s groups:", level + 1, "");
  4731. do {
  4732. if (!group) {
  4733. printk("\n");
  4734. printk(KERN_ERR "ERROR: group is NULL\n");
  4735. break;
  4736. }
  4737. if (!group->sgp->power) {
  4738. printk(KERN_CONT "\n");
  4739. printk(KERN_ERR "ERROR: domain->cpu_power not "
  4740. "set\n");
  4741. break;
  4742. }
  4743. if (!cpumask_weight(sched_group_cpus(group))) {
  4744. printk(KERN_CONT "\n");
  4745. printk(KERN_ERR "ERROR: empty group\n");
  4746. break;
  4747. }
  4748. if (cpumask_intersects(groupmask, sched_group_cpus(group))) {
  4749. printk(KERN_CONT "\n");
  4750. printk(KERN_ERR "ERROR: repeated CPUs\n");
  4751. break;
  4752. }
  4753. cpumask_or(groupmask, groupmask, sched_group_cpus(group));
  4754. cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
  4755. printk(KERN_CONT " %s", str);
  4756. if (group->sgp->power != SCHED_POWER_SCALE) {
  4757. printk(KERN_CONT " (cpu_power = %d)",
  4758. group->sgp->power);
  4759. }
  4760. group = group->next;
  4761. } while (group != sd->groups);
  4762. printk(KERN_CONT "\n");
  4763. if (!cpumask_equal(sched_domain_span(sd), groupmask))
  4764. printk(KERN_ERR "ERROR: groups don't span domain->span\n");
  4765. if (sd->parent &&
  4766. !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
  4767. printk(KERN_ERR "ERROR: parent span is not a superset "
  4768. "of domain->span\n");
  4769. return 0;
  4770. }
  4771. static void sched_domain_debug(struct sched_domain *sd, int cpu)
  4772. {
  4773. int level = 0;
  4774. if (!sched_domain_debug_enabled)
  4775. return;
  4776. if (!sd) {
  4777. printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
  4778. return;
  4779. }
  4780. printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
  4781. for (;;) {
  4782. if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
  4783. break;
  4784. level++;
  4785. sd = sd->parent;
  4786. if (!sd)
  4787. break;
  4788. }
  4789. }
  4790. #else /* !CONFIG_SCHED_DEBUG */
  4791. # define sched_domain_debug(sd, cpu) do { } while (0)
  4792. #endif /* CONFIG_SCHED_DEBUG */
  4793. static int sd_degenerate(struct sched_domain *sd)
  4794. {
  4795. if (cpumask_weight(sched_domain_span(sd)) == 1)
  4796. return 1;
  4797. /* Following flags need at least 2 groups */
  4798. if (sd->flags & (SD_LOAD_BALANCE |
  4799. SD_BALANCE_NEWIDLE |
  4800. SD_BALANCE_FORK |
  4801. SD_BALANCE_EXEC |
  4802. SD_SHARE_CPUPOWER |
  4803. SD_SHARE_PKG_RESOURCES)) {
  4804. if (sd->groups != sd->groups->next)
  4805. return 0;
  4806. }
  4807. /* Following flags don't use groups */
  4808. if (sd->flags & (SD_WAKE_AFFINE))
  4809. return 0;
  4810. return 1;
  4811. }
  4812. static int
  4813. sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
  4814. {
  4815. unsigned long cflags = sd->flags, pflags = parent->flags;
  4816. if (sd_degenerate(parent))
  4817. return 1;
  4818. if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
  4819. return 0;
  4820. /* Flags needing groups don't count if only 1 group in parent */
  4821. if (parent->groups == parent->groups->next) {
  4822. pflags &= ~(SD_LOAD_BALANCE |
  4823. SD_BALANCE_NEWIDLE |
  4824. SD_BALANCE_FORK |
  4825. SD_BALANCE_EXEC |
  4826. SD_SHARE_CPUPOWER |
  4827. SD_SHARE_PKG_RESOURCES);
  4828. if (nr_node_ids == 1)
  4829. pflags &= ~SD_SERIALIZE;
  4830. }
  4831. if (~cflags & pflags)
  4832. return 0;
  4833. return 1;
  4834. }
  4835. static void free_rootdomain(struct rcu_head *rcu)
  4836. {
  4837. struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
  4838. cpupri_cleanup(&rd->cpupri);
  4839. free_cpumask_var(rd->rto_mask);
  4840. free_cpumask_var(rd->online);
  4841. free_cpumask_var(rd->span);
  4842. kfree(rd);
  4843. }
  4844. static void rq_attach_root(struct rq *rq, struct root_domain *rd)
  4845. {
  4846. struct root_domain *old_rd = NULL;
  4847. unsigned long flags;
  4848. raw_spin_lock_irqsave(&rq->lock, flags);
  4849. if (rq->rd) {
  4850. old_rd = rq->rd;
  4851. if (cpumask_test_cpu(rq->cpu, old_rd->online))
  4852. set_rq_offline(rq);
  4853. cpumask_clear_cpu(rq->cpu, old_rd->span);
  4854. /*
  4855. * If we dont want to free the old_rt yet then
  4856. * set old_rd to NULL to skip the freeing later
  4857. * in this function:
  4858. */
  4859. if (!atomic_dec_and_test(&old_rd->refcount))
  4860. old_rd = NULL;
  4861. }
  4862. atomic_inc(&rd->refcount);
  4863. rq->rd = rd;
  4864. cpumask_set_cpu(rq->cpu, rd->span);
  4865. if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
  4866. set_rq_online(rq);
  4867. raw_spin_unlock_irqrestore(&rq->lock, flags);
  4868. if (old_rd)
  4869. call_rcu_sched(&old_rd->rcu, free_rootdomain);
  4870. }
  4871. static int init_rootdomain(struct root_domain *rd)
  4872. {
  4873. memset(rd, 0, sizeof(*rd));
  4874. if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
  4875. goto out;
  4876. if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
  4877. goto free_span;
  4878. if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
  4879. goto free_online;
  4880. if (cpupri_init(&rd->cpupri) != 0)
  4881. goto free_rto_mask;
  4882. return 0;
  4883. free_rto_mask:
  4884. free_cpumask_var(rd->rto_mask);
  4885. free_online:
  4886. free_cpumask_var(rd->online);
  4887. free_span:
  4888. free_cpumask_var(rd->span);
  4889. out:
  4890. return -ENOMEM;
  4891. }
  4892. /*
  4893. * By default the system creates a single root-domain with all cpus as
  4894. * members (mimicking the global state we have today).
  4895. */
  4896. struct root_domain def_root_domain;
  4897. static void init_defrootdomain(void)
  4898. {
  4899. init_rootdomain(&def_root_domain);
  4900. atomic_set(&def_root_domain.refcount, 1);
  4901. }
  4902. static struct root_domain *alloc_rootdomain(void)
  4903. {
  4904. struct root_domain *rd;
  4905. rd = kmalloc(sizeof(*rd), GFP_KERNEL);
  4906. if (!rd)
  4907. return NULL;
  4908. if (init_rootdomain(rd) != 0) {
  4909. kfree(rd);
  4910. return NULL;
  4911. }
  4912. return rd;
  4913. }
  4914. static void free_sched_groups(struct sched_group *sg, int free_sgp)
  4915. {
  4916. struct sched_group *tmp, *first;
  4917. if (!sg)
  4918. return;
  4919. first = sg;
  4920. do {
  4921. tmp = sg->next;
  4922. if (free_sgp && atomic_dec_and_test(&sg->sgp->ref))
  4923. kfree(sg->sgp);
  4924. kfree(sg);
  4925. sg = tmp;
  4926. } while (sg != first);
  4927. }
  4928. static void free_sched_domain(struct rcu_head *rcu)
  4929. {
  4930. struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
  4931. /*
  4932. * If its an overlapping domain it has private groups, iterate and
  4933. * nuke them all.
  4934. */
  4935. if (sd->flags & SD_OVERLAP) {
  4936. free_sched_groups(sd->groups, 1);
  4937. } else if (atomic_dec_and_test(&sd->groups->ref)) {
  4938. kfree(sd->groups->sgp);
  4939. kfree(sd->groups);
  4940. }
  4941. kfree(sd);
  4942. }
  4943. static void destroy_sched_domain(struct sched_domain *sd, int cpu)
  4944. {
  4945. call_rcu(&sd->rcu, free_sched_domain);
  4946. }
  4947. static void destroy_sched_domains(struct sched_domain *sd, int cpu)
  4948. {
  4949. for (; sd; sd = sd->parent)
  4950. destroy_sched_domain(sd, cpu);
  4951. }
  4952. /*
  4953. * Keep a special pointer to the highest sched_domain that has
  4954. * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
  4955. * allows us to avoid some pointer chasing select_idle_sibling().
  4956. *
  4957. * Also keep a unique ID per domain (we use the first cpu number in
  4958. * the cpumask of the domain), this allows us to quickly tell if
  4959. * two cpus are in the same cache domain, see cpus_share_cache().
  4960. */
  4961. DEFINE_PER_CPU(struct sched_domain *, sd_llc);
  4962. DEFINE_PER_CPU(int, sd_llc_id);
  4963. static void update_top_cache_domain(int cpu)
  4964. {
  4965. struct sched_domain *sd;
  4966. int id = cpu;
  4967. sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
  4968. if (sd)
  4969. id = cpumask_first(sched_domain_span(sd));
  4970. rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
  4971. per_cpu(sd_llc_id, cpu) = id;
  4972. }
  4973. /*
  4974. * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
  4975. * hold the hotplug lock.
  4976. */
  4977. static void
  4978. cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
  4979. {
  4980. struct rq *rq = cpu_rq(cpu);
  4981. struct sched_domain *tmp;
  4982. /* Remove the sched domains which do not contribute to scheduling. */
  4983. for (tmp = sd; tmp; ) {
  4984. struct sched_domain *parent = tmp->parent;
  4985. if (!parent)
  4986. break;
  4987. if (sd_parent_degenerate(tmp, parent)) {
  4988. tmp->parent = parent->parent;
  4989. if (parent->parent)
  4990. parent->parent->child = tmp;
  4991. destroy_sched_domain(parent, cpu);
  4992. } else
  4993. tmp = tmp->parent;
  4994. }
  4995. if (sd && sd_degenerate(sd)) {
  4996. tmp = sd;
  4997. sd = sd->parent;
  4998. destroy_sched_domain(tmp, cpu);
  4999. if (sd)
  5000. sd->child = NULL;
  5001. }
  5002. sched_domain_debug(sd, cpu);
  5003. rq_attach_root(rq, rd);
  5004. tmp = rq->sd;
  5005. rcu_assign_pointer(rq->sd, sd);
  5006. destroy_sched_domains(tmp, cpu);
  5007. update_top_cache_domain(cpu);
  5008. }
  5009. /* cpus with isolated domains */
  5010. static cpumask_var_t cpu_isolated_map;
  5011. /* Setup the mask of cpus configured for isolated domains */
  5012. static int __init isolated_cpu_setup(char *str)
  5013. {
  5014. alloc_bootmem_cpumask_var(&cpu_isolated_map);
  5015. cpulist_parse(str, cpu_isolated_map);
  5016. return 1;
  5017. }
  5018. __setup("isolcpus=", isolated_cpu_setup);
  5019. #ifdef CONFIG_NUMA
  5020. /**
  5021. * find_next_best_node - find the next node to include in a sched_domain
  5022. * @node: node whose sched_domain we're building
  5023. * @used_nodes: nodes already in the sched_domain
  5024. *
  5025. * Find the next node to include in a given scheduling domain. Simply
  5026. * finds the closest node not already in the @used_nodes map.
  5027. *
  5028. * Should use nodemask_t.
  5029. */
  5030. static int find_next_best_node(int node, nodemask_t *used_nodes)
  5031. {
  5032. int i, n, val, min_val, best_node = -1;
  5033. min_val = INT_MAX;
  5034. for (i = 0; i < nr_node_ids; i++) {
  5035. /* Start at @node */
  5036. n = (node + i) % nr_node_ids;
  5037. if (!nr_cpus_node(n))
  5038. continue;
  5039. /* Skip already used nodes */
  5040. if (node_isset(n, *used_nodes))
  5041. continue;
  5042. /* Simple min distance search */
  5043. val = node_distance(node, n);
  5044. if (val < min_val) {
  5045. min_val = val;
  5046. best_node = n;
  5047. }
  5048. }
  5049. if (best_node != -1)
  5050. node_set(best_node, *used_nodes);
  5051. return best_node;
  5052. }
  5053. /**
  5054. * sched_domain_node_span - get a cpumask for a node's sched_domain
  5055. * @node: node whose cpumask we're constructing
  5056. * @span: resulting cpumask
  5057. *
  5058. * Given a node, construct a good cpumask for its sched_domain to span. It
  5059. * should be one that prevents unnecessary balancing, but also spreads tasks
  5060. * out optimally.
  5061. */
  5062. static void sched_domain_node_span(int node, struct cpumask *span)
  5063. {
  5064. nodemask_t used_nodes;
  5065. int i;
  5066. cpumask_clear(span);
  5067. nodes_clear(used_nodes);
  5068. cpumask_or(span, span, cpumask_of_node(node));
  5069. node_set(node, used_nodes);
  5070. for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
  5071. int next_node = find_next_best_node(node, &used_nodes);
  5072. if (next_node < 0)
  5073. break;
  5074. cpumask_or(span, span, cpumask_of_node(next_node));
  5075. }
  5076. }
  5077. static const struct cpumask *cpu_node_mask(int cpu)
  5078. {
  5079. lockdep_assert_held(&sched_domains_mutex);
  5080. sched_domain_node_span(cpu_to_node(cpu), sched_domains_tmpmask);
  5081. return sched_domains_tmpmask;
  5082. }
  5083. static const struct cpumask *cpu_allnodes_mask(int cpu)
  5084. {
  5085. return cpu_possible_mask;
  5086. }
  5087. #endif /* CONFIG_NUMA */
  5088. static const struct cpumask *cpu_cpu_mask(int cpu)
  5089. {
  5090. return cpumask_of_node(cpu_to_node(cpu));
  5091. }
  5092. int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
  5093. struct sd_data {
  5094. struct sched_domain **__percpu sd;
  5095. struct sched_group **__percpu sg;
  5096. struct sched_group_power **__percpu sgp;
  5097. };
  5098. struct s_data {
  5099. struct sched_domain ** __percpu sd;
  5100. struct root_domain *rd;
  5101. };
  5102. enum s_alloc {
  5103. sa_rootdomain,
  5104. sa_sd,
  5105. sa_sd_storage,
  5106. sa_none,
  5107. };
  5108. struct sched_domain_topology_level;
  5109. typedef struct sched_domain *(*sched_domain_init_f)(struct sched_domain_topology_level *tl, int cpu);
  5110. typedef const struct cpumask *(*sched_domain_mask_f)(int cpu);
  5111. #define SDTL_OVERLAP 0x01
  5112. struct sched_domain_topology_level {
  5113. sched_domain_init_f init;
  5114. sched_domain_mask_f mask;
  5115. int flags;
  5116. struct sd_data data;
  5117. };
  5118. static int
  5119. build_overlap_sched_groups(struct sched_domain *sd, int cpu)
  5120. {
  5121. struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg;
  5122. const struct cpumask *span = sched_domain_span(sd);
  5123. struct cpumask *covered = sched_domains_tmpmask;
  5124. struct sd_data *sdd = sd->private;
  5125. struct sched_domain *child;
  5126. int i;
  5127. cpumask_clear(covered);
  5128. for_each_cpu(i, span) {
  5129. struct cpumask *sg_span;
  5130. if (cpumask_test_cpu(i, covered))
  5131. continue;
  5132. sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
  5133. GFP_KERNEL, cpu_to_node(cpu));
  5134. if (!sg)
  5135. goto fail;
  5136. sg_span = sched_group_cpus(sg);
  5137. child = *per_cpu_ptr(sdd->sd, i);
  5138. if (child->child) {
  5139. child = child->child;
  5140. cpumask_copy(sg_span, sched_domain_span(child));
  5141. } else
  5142. cpumask_set_cpu(i, sg_span);
  5143. cpumask_or(covered, covered, sg_span);
  5144. sg->sgp = *per_cpu_ptr(sdd->sgp, cpumask_first(sg_span));
  5145. atomic_inc(&sg->sgp->ref);
  5146. if (cpumask_test_cpu(cpu, sg_span))
  5147. groups = sg;
  5148. if (!first)
  5149. first = sg;
  5150. if (last)
  5151. last->next = sg;
  5152. last = sg;
  5153. last->next = first;
  5154. }
  5155. sd->groups = groups;
  5156. return 0;
  5157. fail:
  5158. free_sched_groups(first, 0);
  5159. return -ENOMEM;
  5160. }
  5161. static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
  5162. {
  5163. struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
  5164. struct sched_domain *child = sd->child;
  5165. if (child)
  5166. cpu = cpumask_first(sched_domain_span(child));
  5167. if (sg) {
  5168. *sg = *per_cpu_ptr(sdd->sg, cpu);
  5169. (*sg)->sgp = *per_cpu_ptr(sdd->sgp, cpu);
  5170. atomic_set(&(*sg)->sgp->ref, 1); /* for claim_allocations */
  5171. }
  5172. return cpu;
  5173. }
  5174. /*
  5175. * build_sched_groups will build a circular linked list of the groups
  5176. * covered by the given span, and will set each group's ->cpumask correctly,
  5177. * and ->cpu_power to 0.
  5178. *
  5179. * Assumes the sched_domain tree is fully constructed
  5180. */
  5181. static int
  5182. build_sched_groups(struct sched_domain *sd, int cpu)
  5183. {
  5184. struct sched_group *first = NULL, *last = NULL;
  5185. struct sd_data *sdd = sd->private;
  5186. const struct cpumask *span = sched_domain_span(sd);
  5187. struct cpumask *covered;
  5188. int i;
  5189. get_group(cpu, sdd, &sd->groups);
  5190. atomic_inc(&sd->groups->ref);
  5191. if (cpu != cpumask_first(sched_domain_span(sd)))
  5192. return 0;
  5193. lockdep_assert_held(&sched_domains_mutex);
  5194. covered = sched_domains_tmpmask;
  5195. cpumask_clear(covered);
  5196. for_each_cpu(i, span) {
  5197. struct sched_group *sg;
  5198. int group = get_group(i, sdd, &sg);
  5199. int j;
  5200. if (cpumask_test_cpu(i, covered))
  5201. continue;
  5202. cpumask_clear(sched_group_cpus(sg));
  5203. sg->sgp->power = 0;
  5204. for_each_cpu(j, span) {
  5205. if (get_group(j, sdd, NULL) != group)
  5206. continue;
  5207. cpumask_set_cpu(j, covered);
  5208. cpumask_set_cpu(j, sched_group_cpus(sg));
  5209. }
  5210. if (!first)
  5211. first = sg;
  5212. if (last)
  5213. last->next = sg;
  5214. last = sg;
  5215. }
  5216. last->next = first;
  5217. return 0;
  5218. }
  5219. /*
  5220. * Initialize sched groups cpu_power.
  5221. *
  5222. * cpu_power indicates the capacity of sched group, which is used while
  5223. * distributing the load between different sched groups in a sched domain.
  5224. * Typically cpu_power for all the groups in a sched domain will be same unless
  5225. * there are asymmetries in the topology. If there are asymmetries, group
  5226. * having more cpu_power will pickup more load compared to the group having
  5227. * less cpu_power.
  5228. */
  5229. static void init_sched_groups_power(int cpu, struct sched_domain *sd)
  5230. {
  5231. struct sched_group *sg = sd->groups;
  5232. WARN_ON(!sd || !sg);
  5233. do {
  5234. sg->group_weight = cpumask_weight(sched_group_cpus(sg));
  5235. sg = sg->next;
  5236. } while (sg != sd->groups);
  5237. if (cpu != group_first_cpu(sg))
  5238. return;
  5239. update_group_power(sd, cpu);
  5240. atomic_set(&sg->sgp->nr_busy_cpus, sg->group_weight);
  5241. }
  5242. int __weak arch_sd_sibling_asym_packing(void)
  5243. {
  5244. return 0*SD_ASYM_PACKING;
  5245. }
  5246. /*
  5247. * Initializers for schedule domains
  5248. * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
  5249. */
  5250. #ifdef CONFIG_SCHED_DEBUG
  5251. # define SD_INIT_NAME(sd, type) sd->name = #type
  5252. #else
  5253. # define SD_INIT_NAME(sd, type) do { } while (0)
  5254. #endif
  5255. #define SD_INIT_FUNC(type) \
  5256. static noinline struct sched_domain * \
  5257. sd_init_##type(struct sched_domain_topology_level *tl, int cpu) \
  5258. { \
  5259. struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu); \
  5260. *sd = SD_##type##_INIT; \
  5261. SD_INIT_NAME(sd, type); \
  5262. sd->private = &tl->data; \
  5263. return sd; \
  5264. }
  5265. SD_INIT_FUNC(CPU)
  5266. #ifdef CONFIG_NUMA
  5267. SD_INIT_FUNC(ALLNODES)
  5268. SD_INIT_FUNC(NODE)
  5269. #endif
  5270. #ifdef CONFIG_SCHED_SMT
  5271. SD_INIT_FUNC(SIBLING)
  5272. #endif
  5273. #ifdef CONFIG_SCHED_MC
  5274. SD_INIT_FUNC(MC)
  5275. #endif
  5276. #ifdef CONFIG_SCHED_BOOK
  5277. SD_INIT_FUNC(BOOK)
  5278. #endif
  5279. static int default_relax_domain_level = -1;
  5280. int sched_domain_level_max;
  5281. static int __init setup_relax_domain_level(char *str)
  5282. {
  5283. unsigned long val;
  5284. val = simple_strtoul(str, NULL, 0);
  5285. if (val < sched_domain_level_max)
  5286. default_relax_domain_level = val;
  5287. return 1;
  5288. }
  5289. __setup("relax_domain_level=", setup_relax_domain_level);
  5290. static void set_domain_attribute(struct sched_domain *sd,
  5291. struct sched_domain_attr *attr)
  5292. {
  5293. int request;
  5294. if (!attr || attr->relax_domain_level < 0) {
  5295. if (default_relax_domain_level < 0)
  5296. return;
  5297. else
  5298. request = default_relax_domain_level;
  5299. } else
  5300. request = attr->relax_domain_level;
  5301. if (request < sd->level) {
  5302. /* turn off idle balance on this domain */
  5303. sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
  5304. } else {
  5305. /* turn on idle balance on this domain */
  5306. sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
  5307. }
  5308. }
  5309. static void __sdt_free(const struct cpumask *cpu_map);
  5310. static int __sdt_alloc(const struct cpumask *cpu_map);
  5311. static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
  5312. const struct cpumask *cpu_map)
  5313. {
  5314. switch (what) {
  5315. case sa_rootdomain:
  5316. if (!atomic_read(&d->rd->refcount))
  5317. free_rootdomain(&d->rd->rcu); /* fall through */
  5318. case sa_sd:
  5319. free_percpu(d->sd); /* fall through */
  5320. case sa_sd_storage:
  5321. __sdt_free(cpu_map); /* fall through */
  5322. case sa_none:
  5323. break;
  5324. }
  5325. }
  5326. static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
  5327. const struct cpumask *cpu_map)
  5328. {
  5329. memset(d, 0, sizeof(*d));
  5330. if (__sdt_alloc(cpu_map))
  5331. return sa_sd_storage;
  5332. d->sd = alloc_percpu(struct sched_domain *);
  5333. if (!d->sd)
  5334. return sa_sd_storage;
  5335. d->rd = alloc_rootdomain();
  5336. if (!d->rd)
  5337. return sa_sd;
  5338. return sa_rootdomain;
  5339. }
  5340. /*
  5341. * NULL the sd_data elements we've used to build the sched_domain and
  5342. * sched_group structure so that the subsequent __free_domain_allocs()
  5343. * will not free the data we're using.
  5344. */
  5345. static void claim_allocations(int cpu, struct sched_domain *sd)
  5346. {
  5347. struct sd_data *sdd = sd->private;
  5348. WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
  5349. *per_cpu_ptr(sdd->sd, cpu) = NULL;
  5350. if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
  5351. *per_cpu_ptr(sdd->sg, cpu) = NULL;
  5352. if (atomic_read(&(*per_cpu_ptr(sdd->sgp, cpu))->ref))
  5353. *per_cpu_ptr(sdd->sgp, cpu) = NULL;
  5354. }
  5355. #ifdef CONFIG_SCHED_SMT
  5356. static const struct cpumask *cpu_smt_mask(int cpu)
  5357. {
  5358. return topology_thread_cpumask(cpu);
  5359. }
  5360. #endif
  5361. /*
  5362. * Topology list, bottom-up.
  5363. */
  5364. static struct sched_domain_topology_level default_topology[] = {
  5365. #ifdef CONFIG_SCHED_SMT
  5366. { sd_init_SIBLING, cpu_smt_mask, },
  5367. #endif
  5368. #ifdef CONFIG_SCHED_MC
  5369. { sd_init_MC, cpu_coregroup_mask, },
  5370. #endif
  5371. #ifdef CONFIG_SCHED_BOOK
  5372. { sd_init_BOOK, cpu_book_mask, },
  5373. #endif
  5374. { sd_init_CPU, cpu_cpu_mask, },
  5375. #ifdef CONFIG_NUMA
  5376. { sd_init_NODE, cpu_node_mask, SDTL_OVERLAP, },
  5377. { sd_init_ALLNODES, cpu_allnodes_mask, },
  5378. #endif
  5379. { NULL, },
  5380. };
  5381. static struct sched_domain_topology_level *sched_domain_topology = default_topology;
  5382. static int __sdt_alloc(const struct cpumask *cpu_map)
  5383. {
  5384. struct sched_domain_topology_level *tl;
  5385. int j;
  5386. for (tl = sched_domain_topology; tl->init; tl++) {
  5387. struct sd_data *sdd = &tl->data;
  5388. sdd->sd = alloc_percpu(struct sched_domain *);
  5389. if (!sdd->sd)
  5390. return -ENOMEM;
  5391. sdd->sg = alloc_percpu(struct sched_group *);
  5392. if (!sdd->sg)
  5393. return -ENOMEM;
  5394. sdd->sgp = alloc_percpu(struct sched_group_power *);
  5395. if (!sdd->sgp)
  5396. return -ENOMEM;
  5397. for_each_cpu(j, cpu_map) {
  5398. struct sched_domain *sd;
  5399. struct sched_group *sg;
  5400. struct sched_group_power *sgp;
  5401. sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
  5402. GFP_KERNEL, cpu_to_node(j));
  5403. if (!sd)
  5404. return -ENOMEM;
  5405. *per_cpu_ptr(sdd->sd, j) = sd;
  5406. sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
  5407. GFP_KERNEL, cpu_to_node(j));
  5408. if (!sg)
  5409. return -ENOMEM;
  5410. *per_cpu_ptr(sdd->sg, j) = sg;
  5411. sgp = kzalloc_node(sizeof(struct sched_group_power),
  5412. GFP_KERNEL, cpu_to_node(j));
  5413. if (!sgp)
  5414. return -ENOMEM;
  5415. *per_cpu_ptr(sdd->sgp, j) = sgp;
  5416. }
  5417. }
  5418. return 0;
  5419. }
  5420. static void __sdt_free(const struct cpumask *cpu_map)
  5421. {
  5422. struct sched_domain_topology_level *tl;
  5423. int j;
  5424. for (tl = sched_domain_topology; tl->init; tl++) {
  5425. struct sd_data *sdd = &tl->data;
  5426. for_each_cpu(j, cpu_map) {
  5427. struct sched_domain *sd = *per_cpu_ptr(sdd->sd, j);
  5428. if (sd && (sd->flags & SD_OVERLAP))
  5429. free_sched_groups(sd->groups, 0);
  5430. kfree(*per_cpu_ptr(sdd->sd, j));
  5431. kfree(*per_cpu_ptr(sdd->sg, j));
  5432. kfree(*per_cpu_ptr(sdd->sgp, j));
  5433. }
  5434. free_percpu(sdd->sd);
  5435. free_percpu(sdd->sg);
  5436. free_percpu(sdd->sgp);
  5437. }
  5438. }
  5439. struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
  5440. struct s_data *d, const struct cpumask *cpu_map,
  5441. struct sched_domain_attr *attr, struct sched_domain *child,
  5442. int cpu)
  5443. {
  5444. struct sched_domain *sd = tl->init(tl, cpu);
  5445. if (!sd)
  5446. return child;
  5447. set_domain_attribute(sd, attr);
  5448. cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
  5449. if (child) {
  5450. sd->level = child->level + 1;
  5451. sched_domain_level_max = max(sched_domain_level_max, sd->level);
  5452. child->parent = sd;
  5453. }
  5454. sd->child = child;
  5455. return sd;
  5456. }
  5457. /*
  5458. * Build sched domains for a given set of cpus and attach the sched domains
  5459. * to the individual cpus
  5460. */
  5461. static int build_sched_domains(const struct cpumask *cpu_map,
  5462. struct sched_domain_attr *attr)
  5463. {
  5464. enum s_alloc alloc_state = sa_none;
  5465. struct sched_domain *sd;
  5466. struct s_data d;
  5467. int i, ret = -ENOMEM;
  5468. alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
  5469. if (alloc_state != sa_rootdomain)
  5470. goto error;
  5471. /* Set up domains for cpus specified by the cpu_map. */
  5472. for_each_cpu(i, cpu_map) {
  5473. struct sched_domain_topology_level *tl;
  5474. sd = NULL;
  5475. for (tl = sched_domain_topology; tl->init; tl++) {
  5476. sd = build_sched_domain(tl, &d, cpu_map, attr, sd, i);
  5477. if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP))
  5478. sd->flags |= SD_OVERLAP;
  5479. if (cpumask_equal(cpu_map, sched_domain_span(sd)))
  5480. break;
  5481. }
  5482. while (sd->child)
  5483. sd = sd->child;
  5484. *per_cpu_ptr(d.sd, i) = sd;
  5485. }
  5486. /* Build the groups for the domains */
  5487. for_each_cpu(i, cpu_map) {
  5488. for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
  5489. sd->span_weight = cpumask_weight(sched_domain_span(sd));
  5490. if (sd->flags & SD_OVERLAP) {
  5491. if (build_overlap_sched_groups(sd, i))
  5492. goto error;
  5493. } else {
  5494. if (build_sched_groups(sd, i))
  5495. goto error;
  5496. }
  5497. }
  5498. }
  5499. /* Calculate CPU power for physical packages and nodes */
  5500. for (i = nr_cpumask_bits-1; i >= 0; i--) {
  5501. if (!cpumask_test_cpu(i, cpu_map))
  5502. continue;
  5503. for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
  5504. claim_allocations(i, sd);
  5505. init_sched_groups_power(i, sd);
  5506. }
  5507. }
  5508. /* Attach the domains */
  5509. rcu_read_lock();
  5510. for_each_cpu(i, cpu_map) {
  5511. sd = *per_cpu_ptr(d.sd, i);
  5512. cpu_attach_domain(sd, d.rd, i);
  5513. }
  5514. rcu_read_unlock();
  5515. ret = 0;
  5516. error:
  5517. __free_domain_allocs(&d, alloc_state, cpu_map);
  5518. return ret;
  5519. }
  5520. static cpumask_var_t *doms_cur; /* current sched domains */
  5521. static int ndoms_cur; /* number of sched domains in 'doms_cur' */
  5522. static struct sched_domain_attr *dattr_cur;
  5523. /* attribues of custom domains in 'doms_cur' */
  5524. /*
  5525. * Special case: If a kmalloc of a doms_cur partition (array of
  5526. * cpumask) fails, then fallback to a single sched domain,
  5527. * as determined by the single cpumask fallback_doms.
  5528. */
  5529. static cpumask_var_t fallback_doms;
  5530. /*
  5531. * arch_update_cpu_topology lets virtualized architectures update the
  5532. * cpu core maps. It is supposed to return 1 if the topology changed
  5533. * or 0 if it stayed the same.
  5534. */
  5535. int __attribute__((weak)) arch_update_cpu_topology(void)
  5536. {
  5537. return 0;
  5538. }
  5539. cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
  5540. {
  5541. int i;
  5542. cpumask_var_t *doms;
  5543. doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
  5544. if (!doms)
  5545. return NULL;
  5546. for (i = 0; i < ndoms; i++) {
  5547. if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
  5548. free_sched_domains(doms, i);
  5549. return NULL;
  5550. }
  5551. }
  5552. return doms;
  5553. }
  5554. void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
  5555. {
  5556. unsigned int i;
  5557. for (i = 0; i < ndoms; i++)
  5558. free_cpumask_var(doms[i]);
  5559. kfree(doms);
  5560. }
  5561. /*
  5562. * Set up scheduler domains and groups. Callers must hold the hotplug lock.
  5563. * For now this just excludes isolated cpus, but could be used to
  5564. * exclude other special cases in the future.
  5565. */
  5566. static int init_sched_domains(const struct cpumask *cpu_map)
  5567. {
  5568. int err;
  5569. arch_update_cpu_topology();
  5570. ndoms_cur = 1;
  5571. doms_cur = alloc_sched_domains(ndoms_cur);
  5572. if (!doms_cur)
  5573. doms_cur = &fallback_doms;
  5574. cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
  5575. dattr_cur = NULL;
  5576. err = build_sched_domains(doms_cur[0], NULL);
  5577. register_sched_domain_sysctl();
  5578. return err;
  5579. }
  5580. /*
  5581. * Detach sched domains from a group of cpus specified in cpu_map
  5582. * These cpus will now be attached to the NULL domain
  5583. */
  5584. static void detach_destroy_domains(const struct cpumask *cpu_map)
  5585. {
  5586. int i;
  5587. rcu_read_lock();
  5588. for_each_cpu(i, cpu_map)
  5589. cpu_attach_domain(NULL, &def_root_domain, i);
  5590. rcu_read_unlock();
  5591. }
  5592. /* handle null as "default" */
  5593. static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
  5594. struct sched_domain_attr *new, int idx_new)
  5595. {
  5596. struct sched_domain_attr tmp;
  5597. /* fast path */
  5598. if (!new && !cur)
  5599. return 1;
  5600. tmp = SD_ATTR_INIT;
  5601. return !memcmp(cur ? (cur + idx_cur) : &tmp,
  5602. new ? (new + idx_new) : &tmp,
  5603. sizeof(struct sched_domain_attr));
  5604. }
  5605. /*
  5606. * Partition sched domains as specified by the 'ndoms_new'
  5607. * cpumasks in the array doms_new[] of cpumasks. This compares
  5608. * doms_new[] to the current sched domain partitioning, doms_cur[].
  5609. * It destroys each deleted domain and builds each new domain.
  5610. *
  5611. * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
  5612. * The masks don't intersect (don't overlap.) We should setup one
  5613. * sched domain for each mask. CPUs not in any of the cpumasks will
  5614. * not be load balanced. If the same cpumask appears both in the
  5615. * current 'doms_cur' domains and in the new 'doms_new', we can leave
  5616. * it as it is.
  5617. *
  5618. * The passed in 'doms_new' should be allocated using
  5619. * alloc_sched_domains. This routine takes ownership of it and will
  5620. * free_sched_domains it when done with it. If the caller failed the
  5621. * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
  5622. * and partition_sched_domains() will fallback to the single partition
  5623. * 'fallback_doms', it also forces the domains to be rebuilt.
  5624. *
  5625. * If doms_new == NULL it will be replaced with cpu_online_mask.
  5626. * ndoms_new == 0 is a special case for destroying existing domains,
  5627. * and it will not create the default domain.
  5628. *
  5629. * Call with hotplug lock held
  5630. */
  5631. void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
  5632. struct sched_domain_attr *dattr_new)
  5633. {
  5634. int i, j, n;
  5635. int new_topology;
  5636. mutex_lock(&sched_domains_mutex);
  5637. /* always unregister in case we don't destroy any domains */
  5638. unregister_sched_domain_sysctl();
  5639. /* Let architecture update cpu core mappings. */
  5640. new_topology = arch_update_cpu_topology();
  5641. n = doms_new ? ndoms_new : 0;
  5642. /* Destroy deleted domains */
  5643. for (i = 0; i < ndoms_cur; i++) {
  5644. for (j = 0; j < n && !new_topology; j++) {
  5645. if (cpumask_equal(doms_cur[i], doms_new[j])
  5646. && dattrs_equal(dattr_cur, i, dattr_new, j))
  5647. goto match1;
  5648. }
  5649. /* no match - a current sched domain not in new doms_new[] */
  5650. detach_destroy_domains(doms_cur[i]);
  5651. match1:
  5652. ;
  5653. }
  5654. if (doms_new == NULL) {
  5655. ndoms_cur = 0;
  5656. doms_new = &fallback_doms;
  5657. cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
  5658. WARN_ON_ONCE(dattr_new);
  5659. }
  5660. /* Build new domains */
  5661. for (i = 0; i < ndoms_new; i++) {
  5662. for (j = 0; j < ndoms_cur && !new_topology; j++) {
  5663. if (cpumask_equal(doms_new[i], doms_cur[j])
  5664. && dattrs_equal(dattr_new, i, dattr_cur, j))
  5665. goto match2;
  5666. }
  5667. /* no match - add a new doms_new */
  5668. build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
  5669. match2:
  5670. ;
  5671. }
  5672. /* Remember the new sched domains */
  5673. if (doms_cur != &fallback_doms)
  5674. free_sched_domains(doms_cur, ndoms_cur);
  5675. kfree(dattr_cur); /* kfree(NULL) is safe */
  5676. doms_cur = doms_new;
  5677. dattr_cur = dattr_new;
  5678. ndoms_cur = ndoms_new;
  5679. register_sched_domain_sysctl();
  5680. mutex_unlock(&sched_domains_mutex);
  5681. }
  5682. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  5683. static void reinit_sched_domains(void)
  5684. {
  5685. get_online_cpus();
  5686. /* Destroy domains first to force the rebuild */
  5687. partition_sched_domains(0, NULL, NULL);
  5688. rebuild_sched_domains();
  5689. put_online_cpus();
  5690. }
  5691. static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
  5692. {
  5693. unsigned int level = 0;
  5694. if (sscanf(buf, "%u", &level) != 1)
  5695. return -EINVAL;
  5696. /*
  5697. * level is always be positive so don't check for
  5698. * level < POWERSAVINGS_BALANCE_NONE which is 0
  5699. * What happens on 0 or 1 byte write,
  5700. * need to check for count as well?
  5701. */
  5702. if (level >= MAX_POWERSAVINGS_BALANCE_LEVELS)
  5703. return -EINVAL;
  5704. if (smt)
  5705. sched_smt_power_savings = level;
  5706. else
  5707. sched_mc_power_savings = level;
  5708. reinit_sched_domains();
  5709. return count;
  5710. }
  5711. #ifdef CONFIG_SCHED_MC
  5712. static ssize_t sched_mc_power_savings_show(struct device *dev,
  5713. struct device_attribute *attr,
  5714. char *buf)
  5715. {
  5716. return sprintf(buf, "%u\n", sched_mc_power_savings);
  5717. }
  5718. static ssize_t sched_mc_power_savings_store(struct device *dev,
  5719. struct device_attribute *attr,
  5720. const char *buf, size_t count)
  5721. {
  5722. return sched_power_savings_store(buf, count, 0);
  5723. }
  5724. static DEVICE_ATTR(sched_mc_power_savings, 0644,
  5725. sched_mc_power_savings_show,
  5726. sched_mc_power_savings_store);
  5727. #endif
  5728. #ifdef CONFIG_SCHED_SMT
  5729. static ssize_t sched_smt_power_savings_show(struct device *dev,
  5730. struct device_attribute *attr,
  5731. char *buf)
  5732. {
  5733. return sprintf(buf, "%u\n", sched_smt_power_savings);
  5734. }
  5735. static ssize_t sched_smt_power_savings_store(struct device *dev,
  5736. struct device_attribute *attr,
  5737. const char *buf, size_t count)
  5738. {
  5739. return sched_power_savings_store(buf, count, 1);
  5740. }
  5741. static DEVICE_ATTR(sched_smt_power_savings, 0644,
  5742. sched_smt_power_savings_show,
  5743. sched_smt_power_savings_store);
  5744. #endif
  5745. int __init sched_create_sysfs_power_savings_entries(struct device *dev)
  5746. {
  5747. int err = 0;
  5748. #ifdef CONFIG_SCHED_SMT
  5749. if (smt_capable())
  5750. err = device_create_file(dev, &dev_attr_sched_smt_power_savings);
  5751. #endif
  5752. #ifdef CONFIG_SCHED_MC
  5753. if (!err && mc_capable())
  5754. err = device_create_file(dev, &dev_attr_sched_mc_power_savings);
  5755. #endif
  5756. return err;
  5757. }
  5758. #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
  5759. /*
  5760. * Update cpusets according to cpu_active mask. If cpusets are
  5761. * disabled, cpuset_update_active_cpus() becomes a simple wrapper
  5762. * around partition_sched_domains().
  5763. */
  5764. static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
  5765. void *hcpu)
  5766. {
  5767. switch (action & ~CPU_TASKS_FROZEN) {
  5768. case CPU_ONLINE:
  5769. case CPU_DOWN_FAILED:
  5770. cpuset_update_active_cpus();
  5771. return NOTIFY_OK;
  5772. default:
  5773. return NOTIFY_DONE;
  5774. }
  5775. }
  5776. static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
  5777. void *hcpu)
  5778. {
  5779. switch (action & ~CPU_TASKS_FROZEN) {
  5780. case CPU_DOWN_PREPARE:
  5781. cpuset_update_active_cpus();
  5782. return NOTIFY_OK;
  5783. default:
  5784. return NOTIFY_DONE;
  5785. }
  5786. }
  5787. void __init sched_init_smp(void)
  5788. {
  5789. cpumask_var_t non_isolated_cpus;
  5790. alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
  5791. alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
  5792. get_online_cpus();
  5793. mutex_lock(&sched_domains_mutex);
  5794. init_sched_domains(cpu_active_mask);
  5795. cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
  5796. if (cpumask_empty(non_isolated_cpus))
  5797. cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
  5798. mutex_unlock(&sched_domains_mutex);
  5799. put_online_cpus();
  5800. hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
  5801. hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
  5802. /* RT runtime code needs to handle some hotplug events */
  5803. hotcpu_notifier(update_runtime, 0);
  5804. init_hrtick();
  5805. /* Move init over to a non-isolated CPU */
  5806. if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
  5807. BUG();
  5808. sched_init_granularity();
  5809. free_cpumask_var(non_isolated_cpus);
  5810. init_sched_rt_class();
  5811. }
  5812. #else
  5813. void __init sched_init_smp(void)
  5814. {
  5815. sched_init_granularity();
  5816. }
  5817. #endif /* CONFIG_SMP */
  5818. const_debug unsigned int sysctl_timer_migration = 1;
  5819. int in_sched_functions(unsigned long addr)
  5820. {
  5821. return in_lock_functions(addr) ||
  5822. (addr >= (unsigned long)__sched_text_start
  5823. && addr < (unsigned long)__sched_text_end);
  5824. }
  5825. #ifdef CONFIG_CGROUP_SCHED
  5826. struct task_group root_task_group;
  5827. #endif
  5828. DECLARE_PER_CPU(cpumask_var_t, load_balance_tmpmask);
  5829. void __init sched_init(void)
  5830. {
  5831. int i, j;
  5832. unsigned long alloc_size = 0, ptr;
  5833. #ifdef CONFIG_FAIR_GROUP_SCHED
  5834. alloc_size += 2 * nr_cpu_ids * sizeof(void **);
  5835. #endif
  5836. #ifdef CONFIG_RT_GROUP_SCHED
  5837. alloc_size += 2 * nr_cpu_ids * sizeof(void **);
  5838. #endif
  5839. #ifdef CONFIG_CPUMASK_OFFSTACK
  5840. alloc_size += num_possible_cpus() * cpumask_size();
  5841. #endif
  5842. if (alloc_size) {
  5843. ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
  5844. #ifdef CONFIG_FAIR_GROUP_SCHED
  5845. root_task_group.se = (struct sched_entity **)ptr;
  5846. ptr += nr_cpu_ids * sizeof(void **);
  5847. root_task_group.cfs_rq = (struct cfs_rq **)ptr;
  5848. ptr += nr_cpu_ids * sizeof(void **);
  5849. #endif /* CONFIG_FAIR_GROUP_SCHED */
  5850. #ifdef CONFIG_RT_GROUP_SCHED
  5851. root_task_group.rt_se = (struct sched_rt_entity **)ptr;
  5852. ptr += nr_cpu_ids * sizeof(void **);
  5853. root_task_group.rt_rq = (struct rt_rq **)ptr;
  5854. ptr += nr_cpu_ids * sizeof(void **);
  5855. #endif /* CONFIG_RT_GROUP_SCHED */
  5856. #ifdef CONFIG_CPUMASK_OFFSTACK
  5857. for_each_possible_cpu(i) {
  5858. per_cpu(load_balance_tmpmask, i) = (void *)ptr;
  5859. ptr += cpumask_size();
  5860. }
  5861. #endif /* CONFIG_CPUMASK_OFFSTACK */
  5862. }
  5863. #ifdef CONFIG_SMP
  5864. init_defrootdomain();
  5865. #endif
  5866. init_rt_bandwidth(&def_rt_bandwidth,
  5867. global_rt_period(), global_rt_runtime());
  5868. #ifdef CONFIG_RT_GROUP_SCHED
  5869. init_rt_bandwidth(&root_task_group.rt_bandwidth,
  5870. global_rt_period(), global_rt_runtime());
  5871. #endif /* CONFIG_RT_GROUP_SCHED */
  5872. #ifdef CONFIG_CGROUP_SCHED
  5873. list_add(&root_task_group.list, &task_groups);
  5874. INIT_LIST_HEAD(&root_task_group.children);
  5875. INIT_LIST_HEAD(&root_task_group.siblings);
  5876. autogroup_init(&init_task);
  5877. #endif /* CONFIG_CGROUP_SCHED */
  5878. #ifdef CONFIG_CGROUP_CPUACCT
  5879. root_cpuacct.cpustat = &kernel_cpustat;
  5880. root_cpuacct.cpuusage = alloc_percpu(u64);
  5881. /* Too early, not expected to fail */
  5882. BUG_ON(!root_cpuacct.cpuusage);
  5883. #endif
  5884. for_each_possible_cpu(i) {
  5885. struct rq *rq;
  5886. rq = cpu_rq(i);
  5887. raw_spin_lock_init(&rq->lock);
  5888. rq->nr_running = 0;
  5889. rq->calc_load_active = 0;
  5890. rq->calc_load_update = jiffies + LOAD_FREQ;
  5891. init_cfs_rq(&rq->cfs);
  5892. init_rt_rq(&rq->rt, rq);
  5893. #ifdef CONFIG_FAIR_GROUP_SCHED
  5894. root_task_group.shares = ROOT_TASK_GROUP_LOAD;
  5895. INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
  5896. /*
  5897. * How much cpu bandwidth does root_task_group get?
  5898. *
  5899. * In case of task-groups formed thr' the cgroup filesystem, it
  5900. * gets 100% of the cpu resources in the system. This overall
  5901. * system cpu resource is divided among the tasks of
  5902. * root_task_group and its child task-groups in a fair manner,
  5903. * based on each entity's (task or task-group's) weight
  5904. * (se->load.weight).
  5905. *
  5906. * In other words, if root_task_group has 10 tasks of weight
  5907. * 1024) and two child groups A0 and A1 (of weight 1024 each),
  5908. * then A0's share of the cpu resource is:
  5909. *
  5910. * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
  5911. *
  5912. * We achieve this by letting root_task_group's tasks sit
  5913. * directly in rq->cfs (i.e root_task_group->se[] = NULL).
  5914. */
  5915. init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
  5916. init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
  5917. #endif /* CONFIG_FAIR_GROUP_SCHED */
  5918. rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
  5919. #ifdef CONFIG_RT_GROUP_SCHED
  5920. INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
  5921. init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
  5922. #endif
  5923. for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
  5924. rq->cpu_load[j] = 0;
  5925. rq->last_load_update_tick = jiffies;
  5926. #ifdef CONFIG_SMP
  5927. rq->sd = NULL;
  5928. rq->rd = NULL;
  5929. rq->cpu_power = SCHED_POWER_SCALE;
  5930. rq->post_schedule = 0;
  5931. rq->active_balance = 0;
  5932. rq->next_balance = jiffies;
  5933. rq->push_cpu = 0;
  5934. rq->cpu = i;
  5935. rq->online = 0;
  5936. rq->idle_stamp = 0;
  5937. rq->avg_idle = 2*sysctl_sched_migration_cost;
  5938. INIT_LIST_HEAD(&rq->cfs_tasks);
  5939. rq_attach_root(rq, &def_root_domain);
  5940. #ifdef CONFIG_NO_HZ
  5941. rq->nohz_flags = 0;
  5942. #endif
  5943. #endif
  5944. init_rq_hrtick(rq);
  5945. atomic_set(&rq->nr_iowait, 0);
  5946. }
  5947. set_load_weight(&init_task);
  5948. #ifdef CONFIG_PREEMPT_NOTIFIERS
  5949. INIT_HLIST_HEAD(&init_task.preempt_notifiers);
  5950. #endif
  5951. #ifdef CONFIG_RT_MUTEXES
  5952. plist_head_init(&init_task.pi_waiters);
  5953. #endif
  5954. /*
  5955. * The boot idle thread does lazy MMU switching as well:
  5956. */
  5957. atomic_inc(&init_mm.mm_count);
  5958. enter_lazy_tlb(&init_mm, current);
  5959. /*
  5960. * Make us the idle thread. Technically, schedule() should not be
  5961. * called from this thread, however somewhere below it might be,
  5962. * but because we are the idle thread, we just pick up running again
  5963. * when this runqueue becomes "idle".
  5964. */
  5965. init_idle(current, smp_processor_id());
  5966. calc_load_update = jiffies + LOAD_FREQ;
  5967. /*
  5968. * During early bootup we pretend to be a normal task:
  5969. */
  5970. current->sched_class = &fair_sched_class;
  5971. #ifdef CONFIG_SMP
  5972. zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
  5973. /* May be allocated at isolcpus cmdline parse time */
  5974. if (cpu_isolated_map == NULL)
  5975. zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
  5976. #endif
  5977. init_sched_fair_class();
  5978. scheduler_running = 1;
  5979. }
  5980. #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
  5981. static inline int preempt_count_equals(int preempt_offset)
  5982. {
  5983. int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
  5984. return (nested == preempt_offset);
  5985. }
  5986. void __might_sleep(const char *file, int line, int preempt_offset)
  5987. {
  5988. static unsigned long prev_jiffy; /* ratelimiting */
  5989. rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */
  5990. if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
  5991. system_state != SYSTEM_RUNNING || oops_in_progress)
  5992. return;
  5993. if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
  5994. return;
  5995. prev_jiffy = jiffies;
  5996. printk(KERN_ERR
  5997. "BUG: sleeping function called from invalid context at %s:%d\n",
  5998. file, line);
  5999. printk(KERN_ERR
  6000. "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
  6001. in_atomic(), irqs_disabled(),
  6002. current->pid, current->comm);
  6003. debug_show_held_locks(current);
  6004. if (irqs_disabled())
  6005. print_irqtrace_events(current);
  6006. dump_stack();
  6007. }
  6008. EXPORT_SYMBOL(__might_sleep);
  6009. #endif
  6010. #ifdef CONFIG_MAGIC_SYSRQ
  6011. static void normalize_task(struct rq *rq, struct task_struct *p)
  6012. {
  6013. const struct sched_class *prev_class = p->sched_class;
  6014. int old_prio = p->prio;
  6015. int on_rq;
  6016. on_rq = p->on_rq;
  6017. if (on_rq)
  6018. dequeue_task(rq, p, 0);
  6019. __setscheduler(rq, p, SCHED_NORMAL, 0);
  6020. if (on_rq) {
  6021. enqueue_task(rq, p, 0);
  6022. resched_task(rq->curr);
  6023. }
  6024. check_class_changed(rq, p, prev_class, old_prio);
  6025. }
  6026. void normalize_rt_tasks(void)
  6027. {
  6028. struct task_struct *g, *p;
  6029. unsigned long flags;
  6030. struct rq *rq;
  6031. read_lock_irqsave(&tasklist_lock, flags);
  6032. do_each_thread(g, p) {
  6033. /*
  6034. * Only normalize user tasks:
  6035. */
  6036. if (!p->mm)
  6037. continue;
  6038. p->se.exec_start = 0;
  6039. #ifdef CONFIG_SCHEDSTATS
  6040. p->se.statistics.wait_start = 0;
  6041. p->se.statistics.sleep_start = 0;
  6042. p->se.statistics.block_start = 0;
  6043. #endif
  6044. if (!rt_task(p)) {
  6045. /*
  6046. * Renice negative nice level userspace
  6047. * tasks back to 0:
  6048. */
  6049. if (TASK_NICE(p) < 0 && p->mm)
  6050. set_user_nice(p, 0);
  6051. continue;
  6052. }
  6053. raw_spin_lock(&p->pi_lock);
  6054. rq = __task_rq_lock(p);
  6055. normalize_task(rq, p);
  6056. __task_rq_unlock(rq);
  6057. raw_spin_unlock(&p->pi_lock);
  6058. } while_each_thread(g, p);
  6059. read_unlock_irqrestore(&tasklist_lock, flags);
  6060. }
  6061. #endif /* CONFIG_MAGIC_SYSRQ */
  6062. #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
  6063. /*
  6064. * These functions are only useful for the IA64 MCA handling, or kdb.
  6065. *
  6066. * They can only be called when the whole system has been
  6067. * stopped - every CPU needs to be quiescent, and no scheduling
  6068. * activity can take place. Using them for anything else would
  6069. * be a serious bug, and as a result, they aren't even visible
  6070. * under any other configuration.
  6071. */
  6072. /**
  6073. * curr_task - return the current task for a given cpu.
  6074. * @cpu: the processor in question.
  6075. *
  6076. * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
  6077. */
  6078. struct task_struct *curr_task(int cpu)
  6079. {
  6080. return cpu_curr(cpu);
  6081. }
  6082. #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
  6083. #ifdef CONFIG_IA64
  6084. /**
  6085. * set_curr_task - set the current task for a given cpu.
  6086. * @cpu: the processor in question.
  6087. * @p: the task pointer to set.
  6088. *
  6089. * Description: This function must only be used when non-maskable interrupts
  6090. * are serviced on a separate stack. It allows the architecture to switch the
  6091. * notion of the current task on a cpu in a non-blocking manner. This function
  6092. * must be called with all CPU's synchronized, and interrupts disabled, the
  6093. * and caller must save the original value of the current task (see
  6094. * curr_task() above) and restore that value before reenabling interrupts and
  6095. * re-starting the system.
  6096. *
  6097. * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
  6098. */
  6099. void set_curr_task(int cpu, struct task_struct *p)
  6100. {
  6101. cpu_curr(cpu) = p;
  6102. }
  6103. #endif
  6104. #ifdef CONFIG_CGROUP_SCHED
  6105. /* task_group_lock serializes the addition/removal of task groups */
  6106. static DEFINE_SPINLOCK(task_group_lock);
  6107. static void free_sched_group(struct task_group *tg)
  6108. {
  6109. free_fair_sched_group(tg);
  6110. free_rt_sched_group(tg);
  6111. autogroup_free(tg);
  6112. kfree(tg);
  6113. }
  6114. /* allocate runqueue etc for a new task group */
  6115. struct task_group *sched_create_group(struct task_group *parent)
  6116. {
  6117. struct task_group *tg;
  6118. unsigned long flags;
  6119. tg = kzalloc(sizeof(*tg), GFP_KERNEL);
  6120. if (!tg)
  6121. return ERR_PTR(-ENOMEM);
  6122. if (!alloc_fair_sched_group(tg, parent))
  6123. goto err;
  6124. if (!alloc_rt_sched_group(tg, parent))
  6125. goto err;
  6126. spin_lock_irqsave(&task_group_lock, flags);
  6127. list_add_rcu(&tg->list, &task_groups);
  6128. WARN_ON(!parent); /* root should already exist */
  6129. tg->parent = parent;
  6130. INIT_LIST_HEAD(&tg->children);
  6131. list_add_rcu(&tg->siblings, &parent->children);
  6132. spin_unlock_irqrestore(&task_group_lock, flags);
  6133. return tg;
  6134. err:
  6135. free_sched_group(tg);
  6136. return ERR_PTR(-ENOMEM);
  6137. }
  6138. /* rcu callback to free various structures associated with a task group */
  6139. static void free_sched_group_rcu(struct rcu_head *rhp)
  6140. {
  6141. /* now it should be safe to free those cfs_rqs */
  6142. free_sched_group(container_of(rhp, struct task_group, rcu));
  6143. }
  6144. /* Destroy runqueue etc associated with a task group */
  6145. void sched_destroy_group(struct task_group *tg)
  6146. {
  6147. unsigned long flags;
  6148. int i;
  6149. /* end participation in shares distribution */
  6150. for_each_possible_cpu(i)
  6151. unregister_fair_sched_group(tg, i);
  6152. spin_lock_irqsave(&task_group_lock, flags);
  6153. list_del_rcu(&tg->list);
  6154. list_del_rcu(&tg->siblings);
  6155. spin_unlock_irqrestore(&task_group_lock, flags);
  6156. /* wait for possible concurrent references to cfs_rqs complete */
  6157. call_rcu(&tg->rcu, free_sched_group_rcu);
  6158. }
  6159. /* change task's runqueue when it moves between groups.
  6160. * The caller of this function should have put the task in its new group
  6161. * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
  6162. * reflect its new group.
  6163. */
  6164. void sched_move_task(struct task_struct *tsk)
  6165. {
  6166. int on_rq, running;
  6167. unsigned long flags;
  6168. struct rq *rq;
  6169. rq = task_rq_lock(tsk, &flags);
  6170. running = task_current(rq, tsk);
  6171. on_rq = tsk->on_rq;
  6172. if (on_rq)
  6173. dequeue_task(rq, tsk, 0);
  6174. if (unlikely(running))
  6175. tsk->sched_class->put_prev_task(rq, tsk);
  6176. #ifdef CONFIG_FAIR_GROUP_SCHED
  6177. if (tsk->sched_class->task_move_group)
  6178. tsk->sched_class->task_move_group(tsk, on_rq);
  6179. else
  6180. #endif
  6181. set_task_rq(tsk, task_cpu(tsk));
  6182. if (unlikely(running))
  6183. tsk->sched_class->set_curr_task(rq);
  6184. if (on_rq)
  6185. enqueue_task(rq, tsk, 0);
  6186. task_rq_unlock(rq, tsk, &flags);
  6187. }
  6188. #endif /* CONFIG_CGROUP_SCHED */
  6189. #if defined(CONFIG_RT_GROUP_SCHED) || defined(CONFIG_CFS_BANDWIDTH)
  6190. static unsigned long to_ratio(u64 period, u64 runtime)
  6191. {
  6192. if (runtime == RUNTIME_INF)
  6193. return 1ULL << 20;
  6194. return div64_u64(runtime << 20, period);
  6195. }
  6196. #endif
  6197. #ifdef CONFIG_RT_GROUP_SCHED
  6198. /*
  6199. * Ensure that the real time constraints are schedulable.
  6200. */
  6201. static DEFINE_MUTEX(rt_constraints_mutex);
  6202. /* Must be called with tasklist_lock held */
  6203. static inline int tg_has_rt_tasks(struct task_group *tg)
  6204. {
  6205. struct task_struct *g, *p;
  6206. do_each_thread(g, p) {
  6207. if (rt_task(p) && task_rq(p)->rt.tg == tg)
  6208. return 1;
  6209. } while_each_thread(g, p);
  6210. return 0;
  6211. }
  6212. struct rt_schedulable_data {
  6213. struct task_group *tg;
  6214. u64 rt_period;
  6215. u64 rt_runtime;
  6216. };
  6217. static int tg_rt_schedulable(struct task_group *tg, void *data)
  6218. {
  6219. struct rt_schedulable_data *d = data;
  6220. struct task_group *child;
  6221. unsigned long total, sum = 0;
  6222. u64 period, runtime;
  6223. period = ktime_to_ns(tg->rt_bandwidth.rt_period);
  6224. runtime = tg->rt_bandwidth.rt_runtime;
  6225. if (tg == d->tg) {
  6226. period = d->rt_period;
  6227. runtime = d->rt_runtime;
  6228. }
  6229. /*
  6230. * Cannot have more runtime than the period.
  6231. */
  6232. if (runtime > period && runtime != RUNTIME_INF)
  6233. return -EINVAL;
  6234. /*
  6235. * Ensure we don't starve existing RT tasks.
  6236. */
  6237. if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
  6238. return -EBUSY;
  6239. total = to_ratio(period, runtime);
  6240. /*
  6241. * Nobody can have more than the global setting allows.
  6242. */
  6243. if (total > to_ratio(global_rt_period(), global_rt_runtime()))
  6244. return -EINVAL;
  6245. /*
  6246. * The sum of our children's runtime should not exceed our own.
  6247. */
  6248. list_for_each_entry_rcu(child, &tg->children, siblings) {
  6249. period = ktime_to_ns(child->rt_bandwidth.rt_period);
  6250. runtime = child->rt_bandwidth.rt_runtime;
  6251. if (child == d->tg) {
  6252. period = d->rt_period;
  6253. runtime = d->rt_runtime;
  6254. }
  6255. sum += to_ratio(period, runtime);
  6256. }
  6257. if (sum > total)
  6258. return -EINVAL;
  6259. return 0;
  6260. }
  6261. static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
  6262. {
  6263. int ret;
  6264. struct rt_schedulable_data data = {
  6265. .tg = tg,
  6266. .rt_period = period,
  6267. .rt_runtime = runtime,
  6268. };
  6269. rcu_read_lock();
  6270. ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
  6271. rcu_read_unlock();
  6272. return ret;
  6273. }
  6274. static int tg_set_rt_bandwidth(struct task_group *tg,
  6275. u64 rt_period, u64 rt_runtime)
  6276. {
  6277. int i, err = 0;
  6278. mutex_lock(&rt_constraints_mutex);
  6279. read_lock(&tasklist_lock);
  6280. err = __rt_schedulable(tg, rt_period, rt_runtime);
  6281. if (err)
  6282. goto unlock;
  6283. raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
  6284. tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
  6285. tg->rt_bandwidth.rt_runtime = rt_runtime;
  6286. for_each_possible_cpu(i) {
  6287. struct rt_rq *rt_rq = tg->rt_rq[i];
  6288. raw_spin_lock(&rt_rq->rt_runtime_lock);
  6289. rt_rq->rt_runtime = rt_runtime;
  6290. raw_spin_unlock(&rt_rq->rt_runtime_lock);
  6291. }
  6292. raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
  6293. unlock:
  6294. read_unlock(&tasklist_lock);
  6295. mutex_unlock(&rt_constraints_mutex);
  6296. return err;
  6297. }
  6298. int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
  6299. {
  6300. u64 rt_runtime, rt_period;
  6301. rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
  6302. rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
  6303. if (rt_runtime_us < 0)
  6304. rt_runtime = RUNTIME_INF;
  6305. return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
  6306. }
  6307. long sched_group_rt_runtime(struct task_group *tg)
  6308. {
  6309. u64 rt_runtime_us;
  6310. if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
  6311. return -1;
  6312. rt_runtime_us = tg->rt_bandwidth.rt_runtime;
  6313. do_div(rt_runtime_us, NSEC_PER_USEC);
  6314. return rt_runtime_us;
  6315. }
  6316. int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
  6317. {
  6318. u64 rt_runtime, rt_period;
  6319. rt_period = (u64)rt_period_us * NSEC_PER_USEC;
  6320. rt_runtime = tg->rt_bandwidth.rt_runtime;
  6321. if (rt_period == 0)
  6322. return -EINVAL;
  6323. return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
  6324. }
  6325. long sched_group_rt_period(struct task_group *tg)
  6326. {
  6327. u64 rt_period_us;
  6328. rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
  6329. do_div(rt_period_us, NSEC_PER_USEC);
  6330. return rt_period_us;
  6331. }
  6332. static int sched_rt_global_constraints(void)
  6333. {
  6334. u64 runtime, period;
  6335. int ret = 0;
  6336. if (sysctl_sched_rt_period <= 0)
  6337. return -EINVAL;
  6338. runtime = global_rt_runtime();
  6339. period = global_rt_period();
  6340. /*
  6341. * Sanity check on the sysctl variables.
  6342. */
  6343. if (runtime > period && runtime != RUNTIME_INF)
  6344. return -EINVAL;
  6345. mutex_lock(&rt_constraints_mutex);
  6346. read_lock(&tasklist_lock);
  6347. ret = __rt_schedulable(NULL, 0, 0);
  6348. read_unlock(&tasklist_lock);
  6349. mutex_unlock(&rt_constraints_mutex);
  6350. return ret;
  6351. }
  6352. int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
  6353. {
  6354. /* Don't accept realtime tasks when there is no way for them to run */
  6355. if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
  6356. return 0;
  6357. return 1;
  6358. }
  6359. #else /* !CONFIG_RT_GROUP_SCHED */
  6360. static int sched_rt_global_constraints(void)
  6361. {
  6362. unsigned long flags;
  6363. int i;
  6364. if (sysctl_sched_rt_period <= 0)
  6365. return -EINVAL;
  6366. /*
  6367. * There's always some RT tasks in the root group
  6368. * -- migration, kstopmachine etc..
  6369. */
  6370. if (sysctl_sched_rt_runtime == 0)
  6371. return -EBUSY;
  6372. raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
  6373. for_each_possible_cpu(i) {
  6374. struct rt_rq *rt_rq = &cpu_rq(i)->rt;
  6375. raw_spin_lock(&rt_rq->rt_runtime_lock);
  6376. rt_rq->rt_runtime = global_rt_runtime();
  6377. raw_spin_unlock(&rt_rq->rt_runtime_lock);
  6378. }
  6379. raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
  6380. return 0;
  6381. }
  6382. #endif /* CONFIG_RT_GROUP_SCHED */
  6383. int sched_rt_handler(struct ctl_table *table, int write,
  6384. void __user *buffer, size_t *lenp,
  6385. loff_t *ppos)
  6386. {
  6387. int ret;
  6388. int old_period, old_runtime;
  6389. static DEFINE_MUTEX(mutex);
  6390. mutex_lock(&mutex);
  6391. old_period = sysctl_sched_rt_period;
  6392. old_runtime = sysctl_sched_rt_runtime;
  6393. ret = proc_dointvec(table, write, buffer, lenp, ppos);
  6394. if (!ret && write) {
  6395. ret = sched_rt_global_constraints();
  6396. if (ret) {
  6397. sysctl_sched_rt_period = old_period;
  6398. sysctl_sched_rt_runtime = old_runtime;
  6399. } else {
  6400. def_rt_bandwidth.rt_runtime = global_rt_runtime();
  6401. def_rt_bandwidth.rt_period =
  6402. ns_to_ktime(global_rt_period());
  6403. }
  6404. }
  6405. mutex_unlock(&mutex);
  6406. return ret;
  6407. }
  6408. #ifdef CONFIG_CGROUP_SCHED
  6409. /* return corresponding task_group object of a cgroup */
  6410. static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
  6411. {
  6412. return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
  6413. struct task_group, css);
  6414. }
  6415. static struct cgroup_subsys_state *cpu_cgroup_create(struct cgroup *cgrp)
  6416. {
  6417. struct task_group *tg, *parent;
  6418. if (!cgrp->parent) {
  6419. /* This is early initialization for the top cgroup */
  6420. return &root_task_group.css;
  6421. }
  6422. parent = cgroup_tg(cgrp->parent);
  6423. tg = sched_create_group(parent);
  6424. if (IS_ERR(tg))
  6425. return ERR_PTR(-ENOMEM);
  6426. return &tg->css;
  6427. }
  6428. static void cpu_cgroup_destroy(struct cgroup *cgrp)
  6429. {
  6430. struct task_group *tg = cgroup_tg(cgrp);
  6431. sched_destroy_group(tg);
  6432. }
  6433. static int cpu_cgroup_can_attach(struct cgroup *cgrp,
  6434. struct cgroup_taskset *tset)
  6435. {
  6436. struct task_struct *task;
  6437. cgroup_taskset_for_each(task, cgrp, tset) {
  6438. #ifdef CONFIG_RT_GROUP_SCHED
  6439. if (!sched_rt_can_attach(cgroup_tg(cgrp), task))
  6440. return -EINVAL;
  6441. #else
  6442. /* We don't support RT-tasks being in separate groups */
  6443. if (task->sched_class != &fair_sched_class)
  6444. return -EINVAL;
  6445. #endif
  6446. }
  6447. return 0;
  6448. }
  6449. static void cpu_cgroup_attach(struct cgroup *cgrp,
  6450. struct cgroup_taskset *tset)
  6451. {
  6452. struct task_struct *task;
  6453. cgroup_taskset_for_each(task, cgrp, tset)
  6454. sched_move_task(task);
  6455. }
  6456. static void
  6457. cpu_cgroup_exit(struct cgroup *cgrp, struct cgroup *old_cgrp,
  6458. struct task_struct *task)
  6459. {
  6460. /*
  6461. * cgroup_exit() is called in the copy_process() failure path.
  6462. * Ignore this case since the task hasn't ran yet, this avoids
  6463. * trying to poke a half freed task state from generic code.
  6464. */
  6465. if (!(task->flags & PF_EXITING))
  6466. return;
  6467. sched_move_task(task);
  6468. }
  6469. #ifdef CONFIG_FAIR_GROUP_SCHED
  6470. static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
  6471. u64 shareval)
  6472. {
  6473. return sched_group_set_shares(cgroup_tg(cgrp), scale_load(shareval));
  6474. }
  6475. static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
  6476. {
  6477. struct task_group *tg = cgroup_tg(cgrp);
  6478. return (u64) scale_load_down(tg->shares);
  6479. }
  6480. #ifdef CONFIG_CFS_BANDWIDTH
  6481. static DEFINE_MUTEX(cfs_constraints_mutex);
  6482. const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
  6483. const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
  6484. static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
  6485. static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
  6486. {
  6487. int i, ret = 0, runtime_enabled, runtime_was_enabled;
  6488. struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
  6489. if (tg == &root_task_group)
  6490. return -EINVAL;
  6491. /*
  6492. * Ensure we have at some amount of bandwidth every period. This is
  6493. * to prevent reaching a state of large arrears when throttled via
  6494. * entity_tick() resulting in prolonged exit starvation.
  6495. */
  6496. if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
  6497. return -EINVAL;
  6498. /*
  6499. * Likewise, bound things on the otherside by preventing insane quota
  6500. * periods. This also allows us to normalize in computing quota
  6501. * feasibility.
  6502. */
  6503. if (period > max_cfs_quota_period)
  6504. return -EINVAL;
  6505. mutex_lock(&cfs_constraints_mutex);
  6506. ret = __cfs_schedulable(tg, period, quota);
  6507. if (ret)
  6508. goto out_unlock;
  6509. runtime_enabled = quota != RUNTIME_INF;
  6510. runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
  6511. account_cfs_bandwidth_used(runtime_enabled, runtime_was_enabled);
  6512. raw_spin_lock_irq(&cfs_b->lock);
  6513. cfs_b->period = ns_to_ktime(period);
  6514. cfs_b->quota = quota;
  6515. __refill_cfs_bandwidth_runtime(cfs_b);
  6516. /* restart the period timer (if active) to handle new period expiry */
  6517. if (runtime_enabled && cfs_b->timer_active) {
  6518. /* force a reprogram */
  6519. cfs_b->timer_active = 0;
  6520. __start_cfs_bandwidth(cfs_b);
  6521. }
  6522. raw_spin_unlock_irq(&cfs_b->lock);
  6523. for_each_possible_cpu(i) {
  6524. struct cfs_rq *cfs_rq = tg->cfs_rq[i];
  6525. struct rq *rq = cfs_rq->rq;
  6526. raw_spin_lock_irq(&rq->lock);
  6527. cfs_rq->runtime_enabled = runtime_enabled;
  6528. cfs_rq->runtime_remaining = 0;
  6529. if (cfs_rq->throttled)
  6530. unthrottle_cfs_rq(cfs_rq);
  6531. raw_spin_unlock_irq(&rq->lock);
  6532. }
  6533. out_unlock:
  6534. mutex_unlock(&cfs_constraints_mutex);
  6535. return ret;
  6536. }
  6537. int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
  6538. {
  6539. u64 quota, period;
  6540. period = ktime_to_ns(tg->cfs_bandwidth.period);
  6541. if (cfs_quota_us < 0)
  6542. quota = RUNTIME_INF;
  6543. else
  6544. quota = (u64)cfs_quota_us * NSEC_PER_USEC;
  6545. return tg_set_cfs_bandwidth(tg, period, quota);
  6546. }
  6547. long tg_get_cfs_quota(struct task_group *tg)
  6548. {
  6549. u64 quota_us;
  6550. if (tg->cfs_bandwidth.quota == RUNTIME_INF)
  6551. return -1;
  6552. quota_us = tg->cfs_bandwidth.quota;
  6553. do_div(quota_us, NSEC_PER_USEC);
  6554. return quota_us;
  6555. }
  6556. int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
  6557. {
  6558. u64 quota, period;
  6559. period = (u64)cfs_period_us * NSEC_PER_USEC;
  6560. quota = tg->cfs_bandwidth.quota;
  6561. return tg_set_cfs_bandwidth(tg, period, quota);
  6562. }
  6563. long tg_get_cfs_period(struct task_group *tg)
  6564. {
  6565. u64 cfs_period_us;
  6566. cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
  6567. do_div(cfs_period_us, NSEC_PER_USEC);
  6568. return cfs_period_us;
  6569. }
  6570. static s64 cpu_cfs_quota_read_s64(struct cgroup *cgrp, struct cftype *cft)
  6571. {
  6572. return tg_get_cfs_quota(cgroup_tg(cgrp));
  6573. }
  6574. static int cpu_cfs_quota_write_s64(struct cgroup *cgrp, struct cftype *cftype,
  6575. s64 cfs_quota_us)
  6576. {
  6577. return tg_set_cfs_quota(cgroup_tg(cgrp), cfs_quota_us);
  6578. }
  6579. static u64 cpu_cfs_period_read_u64(struct cgroup *cgrp, struct cftype *cft)
  6580. {
  6581. return tg_get_cfs_period(cgroup_tg(cgrp));
  6582. }
  6583. static int cpu_cfs_period_write_u64(struct cgroup *cgrp, struct cftype *cftype,
  6584. u64 cfs_period_us)
  6585. {
  6586. return tg_set_cfs_period(cgroup_tg(cgrp), cfs_period_us);
  6587. }
  6588. struct cfs_schedulable_data {
  6589. struct task_group *tg;
  6590. u64 period, quota;
  6591. };
  6592. /*
  6593. * normalize group quota/period to be quota/max_period
  6594. * note: units are usecs
  6595. */
  6596. static u64 normalize_cfs_quota(struct task_group *tg,
  6597. struct cfs_schedulable_data *d)
  6598. {
  6599. u64 quota, period;
  6600. if (tg == d->tg) {
  6601. period = d->period;
  6602. quota = d->quota;
  6603. } else {
  6604. period = tg_get_cfs_period(tg);
  6605. quota = tg_get_cfs_quota(tg);
  6606. }
  6607. /* note: these should typically be equivalent */
  6608. if (quota == RUNTIME_INF || quota == -1)
  6609. return RUNTIME_INF;
  6610. return to_ratio(period, quota);
  6611. }
  6612. static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
  6613. {
  6614. struct cfs_schedulable_data *d = data;
  6615. struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
  6616. s64 quota = 0, parent_quota = -1;
  6617. if (!tg->parent) {
  6618. quota = RUNTIME_INF;
  6619. } else {
  6620. struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
  6621. quota = normalize_cfs_quota(tg, d);
  6622. parent_quota = parent_b->hierarchal_quota;
  6623. /*
  6624. * ensure max(child_quota) <= parent_quota, inherit when no
  6625. * limit is set
  6626. */
  6627. if (quota == RUNTIME_INF)
  6628. quota = parent_quota;
  6629. else if (parent_quota != RUNTIME_INF && quota > parent_quota)
  6630. return -EINVAL;
  6631. }
  6632. cfs_b->hierarchal_quota = quota;
  6633. return 0;
  6634. }
  6635. static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
  6636. {
  6637. int ret;
  6638. struct cfs_schedulable_data data = {
  6639. .tg = tg,
  6640. .period = period,
  6641. .quota = quota,
  6642. };
  6643. if (quota != RUNTIME_INF) {
  6644. do_div(data.period, NSEC_PER_USEC);
  6645. do_div(data.quota, NSEC_PER_USEC);
  6646. }
  6647. rcu_read_lock();
  6648. ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
  6649. rcu_read_unlock();
  6650. return ret;
  6651. }
  6652. static int cpu_stats_show(struct cgroup *cgrp, struct cftype *cft,
  6653. struct cgroup_map_cb *cb)
  6654. {
  6655. struct task_group *tg = cgroup_tg(cgrp);
  6656. struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
  6657. cb->fill(cb, "nr_periods", cfs_b->nr_periods);
  6658. cb->fill(cb, "nr_throttled", cfs_b->nr_throttled);
  6659. cb->fill(cb, "throttled_time", cfs_b->throttled_time);
  6660. return 0;
  6661. }
  6662. #endif /* CONFIG_CFS_BANDWIDTH */
  6663. #endif /* CONFIG_FAIR_GROUP_SCHED */
  6664. #ifdef CONFIG_RT_GROUP_SCHED
  6665. static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
  6666. s64 val)
  6667. {
  6668. return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
  6669. }
  6670. static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
  6671. {
  6672. return sched_group_rt_runtime(cgroup_tg(cgrp));
  6673. }
  6674. static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
  6675. u64 rt_period_us)
  6676. {
  6677. return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
  6678. }
  6679. static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
  6680. {
  6681. return sched_group_rt_period(cgroup_tg(cgrp));
  6682. }
  6683. #endif /* CONFIG_RT_GROUP_SCHED */
  6684. static struct cftype cpu_files[] = {
  6685. #ifdef CONFIG_FAIR_GROUP_SCHED
  6686. {
  6687. .name = "shares",
  6688. .read_u64 = cpu_shares_read_u64,
  6689. .write_u64 = cpu_shares_write_u64,
  6690. },
  6691. #endif
  6692. #ifdef CONFIG_CFS_BANDWIDTH
  6693. {
  6694. .name = "cfs_quota_us",
  6695. .read_s64 = cpu_cfs_quota_read_s64,
  6696. .write_s64 = cpu_cfs_quota_write_s64,
  6697. },
  6698. {
  6699. .name = "cfs_period_us",
  6700. .read_u64 = cpu_cfs_period_read_u64,
  6701. .write_u64 = cpu_cfs_period_write_u64,
  6702. },
  6703. {
  6704. .name = "stat",
  6705. .read_map = cpu_stats_show,
  6706. },
  6707. #endif
  6708. #ifdef CONFIG_RT_GROUP_SCHED
  6709. {
  6710. .name = "rt_runtime_us",
  6711. .read_s64 = cpu_rt_runtime_read,
  6712. .write_s64 = cpu_rt_runtime_write,
  6713. },
  6714. {
  6715. .name = "rt_period_us",
  6716. .read_u64 = cpu_rt_period_read_uint,
  6717. .write_u64 = cpu_rt_period_write_uint,
  6718. },
  6719. #endif
  6720. };
  6721. static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
  6722. {
  6723. return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
  6724. }
  6725. struct cgroup_subsys cpu_cgroup_subsys = {
  6726. .name = "cpu",
  6727. .create = cpu_cgroup_create,
  6728. .destroy = cpu_cgroup_destroy,
  6729. .can_attach = cpu_cgroup_can_attach,
  6730. .attach = cpu_cgroup_attach,
  6731. .exit = cpu_cgroup_exit,
  6732. .populate = cpu_cgroup_populate,
  6733. .subsys_id = cpu_cgroup_subsys_id,
  6734. .early_init = 1,
  6735. };
  6736. #endif /* CONFIG_CGROUP_SCHED */
  6737. #ifdef CONFIG_CGROUP_CPUACCT
  6738. /*
  6739. * CPU accounting code for task groups.
  6740. *
  6741. * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
  6742. * (balbir@in.ibm.com).
  6743. */
  6744. /* create a new cpu accounting group */
  6745. static struct cgroup_subsys_state *cpuacct_create(struct cgroup *cgrp)
  6746. {
  6747. struct cpuacct *ca;
  6748. if (!cgrp->parent)
  6749. return &root_cpuacct.css;
  6750. ca = kzalloc(sizeof(*ca), GFP_KERNEL);
  6751. if (!ca)
  6752. goto out;
  6753. ca->cpuusage = alloc_percpu(u64);
  6754. if (!ca->cpuusage)
  6755. goto out_free_ca;
  6756. ca->cpustat = alloc_percpu(struct kernel_cpustat);
  6757. if (!ca->cpustat)
  6758. goto out_free_cpuusage;
  6759. return &ca->css;
  6760. out_free_cpuusage:
  6761. free_percpu(ca->cpuusage);
  6762. out_free_ca:
  6763. kfree(ca);
  6764. out:
  6765. return ERR_PTR(-ENOMEM);
  6766. }
  6767. /* destroy an existing cpu accounting group */
  6768. static void cpuacct_destroy(struct cgroup *cgrp)
  6769. {
  6770. struct cpuacct *ca = cgroup_ca(cgrp);
  6771. free_percpu(ca->cpustat);
  6772. free_percpu(ca->cpuusage);
  6773. kfree(ca);
  6774. }
  6775. static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
  6776. {
  6777. u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
  6778. u64 data;
  6779. #ifndef CONFIG_64BIT
  6780. /*
  6781. * Take rq->lock to make 64-bit read safe on 32-bit platforms.
  6782. */
  6783. raw_spin_lock_irq(&cpu_rq(cpu)->lock);
  6784. data = *cpuusage;
  6785. raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
  6786. #else
  6787. data = *cpuusage;
  6788. #endif
  6789. return data;
  6790. }
  6791. static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
  6792. {
  6793. u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
  6794. #ifndef CONFIG_64BIT
  6795. /*
  6796. * Take rq->lock to make 64-bit write safe on 32-bit platforms.
  6797. */
  6798. raw_spin_lock_irq(&cpu_rq(cpu)->lock);
  6799. *cpuusage = val;
  6800. raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
  6801. #else
  6802. *cpuusage = val;
  6803. #endif
  6804. }
  6805. /* return total cpu usage (in nanoseconds) of a group */
  6806. static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
  6807. {
  6808. struct cpuacct *ca = cgroup_ca(cgrp);
  6809. u64 totalcpuusage = 0;
  6810. int i;
  6811. for_each_present_cpu(i)
  6812. totalcpuusage += cpuacct_cpuusage_read(ca, i);
  6813. return totalcpuusage;
  6814. }
  6815. static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
  6816. u64 reset)
  6817. {
  6818. struct cpuacct *ca = cgroup_ca(cgrp);
  6819. int err = 0;
  6820. int i;
  6821. if (reset) {
  6822. err = -EINVAL;
  6823. goto out;
  6824. }
  6825. for_each_present_cpu(i)
  6826. cpuacct_cpuusage_write(ca, i, 0);
  6827. out:
  6828. return err;
  6829. }
  6830. static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
  6831. struct seq_file *m)
  6832. {
  6833. struct cpuacct *ca = cgroup_ca(cgroup);
  6834. u64 percpu;
  6835. int i;
  6836. for_each_present_cpu(i) {
  6837. percpu = cpuacct_cpuusage_read(ca, i);
  6838. seq_printf(m, "%llu ", (unsigned long long) percpu);
  6839. }
  6840. seq_printf(m, "\n");
  6841. return 0;
  6842. }
  6843. static const char *cpuacct_stat_desc[] = {
  6844. [CPUACCT_STAT_USER] = "user",
  6845. [CPUACCT_STAT_SYSTEM] = "system",
  6846. };
  6847. static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft,
  6848. struct cgroup_map_cb *cb)
  6849. {
  6850. struct cpuacct *ca = cgroup_ca(cgrp);
  6851. int cpu;
  6852. s64 val = 0;
  6853. for_each_online_cpu(cpu) {
  6854. struct kernel_cpustat *kcpustat = per_cpu_ptr(ca->cpustat, cpu);
  6855. val += kcpustat->cpustat[CPUTIME_USER];
  6856. val += kcpustat->cpustat[CPUTIME_NICE];
  6857. }
  6858. val = cputime64_to_clock_t(val);
  6859. cb->fill(cb, cpuacct_stat_desc[CPUACCT_STAT_USER], val);
  6860. val = 0;
  6861. for_each_online_cpu(cpu) {
  6862. struct kernel_cpustat *kcpustat = per_cpu_ptr(ca->cpustat, cpu);
  6863. val += kcpustat->cpustat[CPUTIME_SYSTEM];
  6864. val += kcpustat->cpustat[CPUTIME_IRQ];
  6865. val += kcpustat->cpustat[CPUTIME_SOFTIRQ];
  6866. }
  6867. val = cputime64_to_clock_t(val);
  6868. cb->fill(cb, cpuacct_stat_desc[CPUACCT_STAT_SYSTEM], val);
  6869. return 0;
  6870. }
  6871. static struct cftype files[] = {
  6872. {
  6873. .name = "usage",
  6874. .read_u64 = cpuusage_read,
  6875. .write_u64 = cpuusage_write,
  6876. },
  6877. {
  6878. .name = "usage_percpu",
  6879. .read_seq_string = cpuacct_percpu_seq_read,
  6880. },
  6881. {
  6882. .name = "stat",
  6883. .read_map = cpuacct_stats_show,
  6884. },
  6885. };
  6886. static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
  6887. {
  6888. return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
  6889. }
  6890. /*
  6891. * charge this task's execution time to its accounting group.
  6892. *
  6893. * called with rq->lock held.
  6894. */
  6895. void cpuacct_charge(struct task_struct *tsk, u64 cputime)
  6896. {
  6897. struct cpuacct *ca;
  6898. int cpu;
  6899. if (unlikely(!cpuacct_subsys.active))
  6900. return;
  6901. cpu = task_cpu(tsk);
  6902. rcu_read_lock();
  6903. ca = task_ca(tsk);
  6904. for (; ca; ca = parent_ca(ca)) {
  6905. u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
  6906. *cpuusage += cputime;
  6907. }
  6908. rcu_read_unlock();
  6909. }
  6910. struct cgroup_subsys cpuacct_subsys = {
  6911. .name = "cpuacct",
  6912. .create = cpuacct_create,
  6913. .destroy = cpuacct_destroy,
  6914. .populate = cpuacct_populate,
  6915. .subsys_id = cpuacct_subsys_id,
  6916. };
  6917. #endif /* CONFIG_CGROUP_CPUACCT */