pnode.c 8.8 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355
  1. /*
  2. * linux/fs/pnode.c
  3. *
  4. * (C) Copyright IBM Corporation 2005.
  5. * Released under GPL v2.
  6. * Author : Ram Pai (linuxram@us.ibm.com)
  7. *
  8. */
  9. #include <linux/mnt_namespace.h>
  10. #include <linux/mount.h>
  11. #include <linux/fs.h>
  12. #include "internal.h"
  13. #include "pnode.h"
  14. /* return the next shared peer mount of @p */
  15. static inline struct mount *next_peer(struct mount *p)
  16. {
  17. return list_entry(p->mnt_share.next, struct mount, mnt_share);
  18. }
  19. static inline struct mount *first_slave(struct mount *p)
  20. {
  21. return list_entry(p->mnt_slave_list.next, struct mount, mnt_slave);
  22. }
  23. static inline struct mount *next_slave(struct mount *p)
  24. {
  25. return list_entry(p->mnt_slave.next, struct mount, mnt_slave);
  26. }
  27. static struct mount *get_peer_under_root(struct mount *mnt,
  28. struct mnt_namespace *ns,
  29. const struct path *root)
  30. {
  31. struct mount *m = mnt;
  32. do {
  33. /* Check the namespace first for optimization */
  34. if (m->mnt_ns == ns && is_path_reachable(m, m->mnt.mnt_root, root))
  35. return m;
  36. m = next_peer(m);
  37. } while (m != mnt);
  38. return NULL;
  39. }
  40. /*
  41. * Get ID of closest dominating peer group having a representative
  42. * under the given root.
  43. *
  44. * Caller must hold namespace_sem
  45. */
  46. int get_dominating_id(struct mount *mnt, const struct path *root)
  47. {
  48. struct mount *m;
  49. for (m = mnt->mnt_master; m != NULL; m = m->mnt_master) {
  50. struct mount *d = get_peer_under_root(m, mnt->mnt_ns, root);
  51. if (d)
  52. return d->mnt_group_id;
  53. }
  54. return 0;
  55. }
  56. static int do_make_slave(struct mount *mnt)
  57. {
  58. struct mount *peer_mnt = mnt, *master = mnt->mnt_master;
  59. struct mount *slave_mnt;
  60. /*
  61. * slave 'mnt' to a peer mount that has the
  62. * same root dentry. If none is available then
  63. * slave it to anything that is available.
  64. */
  65. while ((peer_mnt = next_peer(peer_mnt)) != mnt &&
  66. peer_mnt->mnt.mnt_root != mnt->mnt.mnt_root) ;
  67. if (peer_mnt == mnt) {
  68. peer_mnt = next_peer(mnt);
  69. if (peer_mnt == mnt)
  70. peer_mnt = NULL;
  71. }
  72. if (IS_MNT_SHARED(mnt) && list_empty(&mnt->mnt_share))
  73. mnt_release_group_id(mnt);
  74. list_del_init(&mnt->mnt_share);
  75. mnt->mnt_group_id = 0;
  76. if (peer_mnt)
  77. master = peer_mnt;
  78. if (master) {
  79. list_for_each_entry(slave_mnt, &mnt->mnt_slave_list, mnt_slave)
  80. slave_mnt->mnt_master = master;
  81. list_move(&mnt->mnt_slave, &master->mnt_slave_list);
  82. list_splice(&mnt->mnt_slave_list, master->mnt_slave_list.prev);
  83. INIT_LIST_HEAD(&mnt->mnt_slave_list);
  84. } else {
  85. struct list_head *p = &mnt->mnt_slave_list;
  86. while (!list_empty(p)) {
  87. slave_mnt = list_first_entry(p,
  88. struct mount, mnt_slave);
  89. list_del_init(&slave_mnt->mnt_slave);
  90. slave_mnt->mnt_master = NULL;
  91. }
  92. }
  93. mnt->mnt_master = master;
  94. CLEAR_MNT_SHARED(mnt);
  95. return 0;
  96. }
  97. /*
  98. * vfsmount lock must be held for write
  99. */
  100. void change_mnt_propagation(struct mount *mnt, int type)
  101. {
  102. if (type == MS_SHARED) {
  103. set_mnt_shared(mnt);
  104. return;
  105. }
  106. do_make_slave(mnt);
  107. if (type != MS_SLAVE) {
  108. list_del_init(&mnt->mnt_slave);
  109. mnt->mnt_master = NULL;
  110. if (type == MS_UNBINDABLE)
  111. mnt->mnt.mnt_flags |= MNT_UNBINDABLE;
  112. else
  113. mnt->mnt.mnt_flags &= ~MNT_UNBINDABLE;
  114. }
  115. }
  116. /*
  117. * get the next mount in the propagation tree.
  118. * @m: the mount seen last
  119. * @origin: the original mount from where the tree walk initiated
  120. *
  121. * Note that peer groups form contiguous segments of slave lists.
  122. * We rely on that in get_source() to be able to find out if
  123. * vfsmount found while iterating with propagation_next() is
  124. * a peer of one we'd found earlier.
  125. */
  126. static struct mount *propagation_next(struct mount *m,
  127. struct mount *origin)
  128. {
  129. /* are there any slaves of this mount? */
  130. if (!IS_MNT_NEW(m) && !list_empty(&m->mnt_slave_list))
  131. return first_slave(m);
  132. while (1) {
  133. struct mount *master = m->mnt_master;
  134. if (master == origin->mnt_master) {
  135. struct mount *next = next_peer(m);
  136. return (next == origin) ? NULL : next;
  137. } else if (m->mnt_slave.next != &master->mnt_slave_list)
  138. return next_slave(m);
  139. /* back at master */
  140. m = master;
  141. }
  142. }
  143. /*
  144. * return the source mount to be used for cloning
  145. *
  146. * @dest the current destination mount
  147. * @last_dest the last seen destination mount
  148. * @last_src the last seen source mount
  149. * @type return CL_SLAVE if the new mount has to be
  150. * cloned as a slave.
  151. */
  152. static struct mount *get_source(struct mount *dest,
  153. struct mount *last_dest,
  154. struct mount *last_src,
  155. int *type)
  156. {
  157. struct mount *p_last_src = NULL;
  158. struct mount *p_last_dest = NULL;
  159. while (last_dest != dest->mnt_master) {
  160. p_last_dest = last_dest;
  161. p_last_src = last_src;
  162. last_dest = last_dest->mnt_master;
  163. last_src = last_src->mnt_master;
  164. }
  165. if (p_last_dest) {
  166. do {
  167. p_last_dest = next_peer(p_last_dest);
  168. } while (IS_MNT_NEW(p_last_dest));
  169. /* is that a peer of the earlier? */
  170. if (dest == p_last_dest) {
  171. *type = CL_MAKE_SHARED;
  172. return p_last_src;
  173. }
  174. }
  175. /* slave of the earlier, then */
  176. *type = CL_SLAVE;
  177. /* beginning of peer group among the slaves? */
  178. if (IS_MNT_SHARED(dest))
  179. *type |= CL_MAKE_SHARED;
  180. return last_src;
  181. }
  182. /*
  183. * mount 'source_mnt' under the destination 'dest_mnt' at
  184. * dentry 'dest_dentry'. And propagate that mount to
  185. * all the peer and slave mounts of 'dest_mnt'.
  186. * Link all the new mounts into a propagation tree headed at
  187. * source_mnt. Also link all the new mounts using ->mnt_list
  188. * headed at source_mnt's ->mnt_list
  189. *
  190. * @dest_mnt: destination mount.
  191. * @dest_dentry: destination dentry.
  192. * @source_mnt: source mount.
  193. * @tree_list : list of heads of trees to be attached.
  194. */
  195. int propagate_mnt(struct mount *dest_mnt, struct dentry *dest_dentry,
  196. struct mount *source_mnt, struct list_head *tree_list)
  197. {
  198. struct mount *m, *child;
  199. int ret = 0;
  200. struct mount *prev_dest_mnt = dest_mnt;
  201. struct mount *prev_src_mnt = source_mnt;
  202. LIST_HEAD(tmp_list);
  203. LIST_HEAD(umount_list);
  204. for (m = propagation_next(dest_mnt, dest_mnt); m;
  205. m = propagation_next(m, dest_mnt)) {
  206. int type;
  207. struct mount *source;
  208. if (IS_MNT_NEW(m))
  209. continue;
  210. source = get_source(m, prev_dest_mnt, prev_src_mnt, &type);
  211. if (!(child = copy_tree(source, source->mnt.mnt_root, type))) {
  212. ret = -ENOMEM;
  213. list_splice(tree_list, tmp_list.prev);
  214. goto out;
  215. }
  216. if (is_subdir(dest_dentry, m->mnt.mnt_root)) {
  217. mnt_set_mountpoint(m, dest_dentry, child);
  218. list_add_tail(&child->mnt_hash, tree_list);
  219. } else {
  220. /*
  221. * This can happen if the parent mount was bind mounted
  222. * on some subdirectory of a shared/slave mount.
  223. */
  224. list_add_tail(&child->mnt_hash, &tmp_list);
  225. }
  226. prev_dest_mnt = m;
  227. prev_src_mnt = child;
  228. }
  229. out:
  230. br_write_lock(vfsmount_lock);
  231. while (!list_empty(&tmp_list)) {
  232. child = list_first_entry(&tmp_list, struct mount, mnt_hash);
  233. umount_tree(child, 0, &umount_list);
  234. }
  235. br_write_unlock(vfsmount_lock);
  236. release_mounts(&umount_list);
  237. return ret;
  238. }
  239. /*
  240. * return true if the refcount is greater than count
  241. */
  242. static inline int do_refcount_check(struct mount *mnt, int count)
  243. {
  244. int mycount = mnt_get_count(mnt) - mnt->mnt_ghosts;
  245. return (mycount > count);
  246. }
  247. /*
  248. * check if the mount 'mnt' can be unmounted successfully.
  249. * @mnt: the mount to be checked for unmount
  250. * NOTE: unmounting 'mnt' would naturally propagate to all
  251. * other mounts its parent propagates to.
  252. * Check if any of these mounts that **do not have submounts**
  253. * have more references than 'refcnt'. If so return busy.
  254. *
  255. * vfsmount lock must be held for write
  256. */
  257. int propagate_mount_busy(struct mount *mnt, int refcnt)
  258. {
  259. struct mount *m, *child;
  260. struct mount *parent = mnt->mnt_parent;
  261. int ret = 0;
  262. if (mnt == parent)
  263. return do_refcount_check(mnt, refcnt);
  264. /*
  265. * quickly check if the current mount can be unmounted.
  266. * If not, we don't have to go checking for all other
  267. * mounts
  268. */
  269. if (!list_empty(&mnt->mnt_mounts) || do_refcount_check(mnt, refcnt))
  270. return 1;
  271. for (m = propagation_next(parent, parent); m;
  272. m = propagation_next(m, parent)) {
  273. child = __lookup_mnt(&m->mnt, mnt->mnt_mountpoint, 0);
  274. if (child && list_empty(&child->mnt_mounts) &&
  275. (ret = do_refcount_check(child, 1)))
  276. break;
  277. }
  278. return ret;
  279. }
  280. /*
  281. * NOTE: unmounting 'mnt' naturally propagates to all other mounts its
  282. * parent propagates to.
  283. */
  284. static void __propagate_umount(struct mount *mnt)
  285. {
  286. struct mount *parent = mnt->mnt_parent;
  287. struct mount *m;
  288. BUG_ON(parent == mnt);
  289. for (m = propagation_next(parent, parent); m;
  290. m = propagation_next(m, parent)) {
  291. struct mount *child = __lookup_mnt(&m->mnt,
  292. mnt->mnt_mountpoint, 0);
  293. /*
  294. * umount the child only if the child has no
  295. * other children
  296. */
  297. if (child && list_empty(&child->mnt_mounts))
  298. list_move_tail(&child->mnt_hash, &mnt->mnt_hash);
  299. }
  300. }
  301. /*
  302. * collect all mounts that receive propagation from the mount in @list,
  303. * and return these additional mounts in the same list.
  304. * @list: the list of mounts to be unmounted.
  305. *
  306. * vfsmount lock must be held for write
  307. */
  308. int propagate_umount(struct list_head *list)
  309. {
  310. struct mount *mnt;
  311. list_for_each_entry(mnt, list, mnt_hash)
  312. __propagate_umount(mnt);
  313. return 0;
  314. }