inode.c 105 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593
  1. /*
  2. * linux/fs/ext3/inode.c
  3. *
  4. * Copyright (C) 1992, 1993, 1994, 1995
  5. * Remy Card (card@masi.ibp.fr)
  6. * Laboratoire MASI - Institut Blaise Pascal
  7. * Universite Pierre et Marie Curie (Paris VI)
  8. *
  9. * from
  10. *
  11. * linux/fs/minix/inode.c
  12. *
  13. * Copyright (C) 1991, 1992 Linus Torvalds
  14. *
  15. * Goal-directed block allocation by Stephen Tweedie
  16. * (sct@redhat.com), 1993, 1998
  17. * Big-endian to little-endian byte-swapping/bitmaps by
  18. * David S. Miller (davem@caip.rutgers.edu), 1995
  19. * 64-bit file support on 64-bit platforms by Jakub Jelinek
  20. * (jj@sunsite.ms.mff.cuni.cz)
  21. *
  22. * Assorted race fixes, rewrite of ext3_get_block() by Al Viro, 2000
  23. */
  24. #include <linux/highuid.h>
  25. #include <linux/quotaops.h>
  26. #include <linux/writeback.h>
  27. #include <linux/mpage.h>
  28. #include <linux/namei.h>
  29. #include "ext3.h"
  30. #include "xattr.h"
  31. #include "acl.h"
  32. static int ext3_writepage_trans_blocks(struct inode *inode);
  33. static int ext3_block_truncate_page(struct inode *inode, loff_t from);
  34. /*
  35. * Test whether an inode is a fast symlink.
  36. */
  37. static int ext3_inode_is_fast_symlink(struct inode *inode)
  38. {
  39. int ea_blocks = EXT3_I(inode)->i_file_acl ?
  40. (inode->i_sb->s_blocksize >> 9) : 0;
  41. return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
  42. }
  43. /*
  44. * The ext3 forget function must perform a revoke if we are freeing data
  45. * which has been journaled. Metadata (eg. indirect blocks) must be
  46. * revoked in all cases.
  47. *
  48. * "bh" may be NULL: a metadata block may have been freed from memory
  49. * but there may still be a record of it in the journal, and that record
  50. * still needs to be revoked.
  51. */
  52. int ext3_forget(handle_t *handle, int is_metadata, struct inode *inode,
  53. struct buffer_head *bh, ext3_fsblk_t blocknr)
  54. {
  55. int err;
  56. might_sleep();
  57. trace_ext3_forget(inode, is_metadata, blocknr);
  58. BUFFER_TRACE(bh, "enter");
  59. jbd_debug(4, "forgetting bh %p: is_metadata = %d, mode %o, "
  60. "data mode %lx\n",
  61. bh, is_metadata, inode->i_mode,
  62. test_opt(inode->i_sb, DATA_FLAGS));
  63. /* Never use the revoke function if we are doing full data
  64. * journaling: there is no need to, and a V1 superblock won't
  65. * support it. Otherwise, only skip the revoke on un-journaled
  66. * data blocks. */
  67. if (test_opt(inode->i_sb, DATA_FLAGS) == EXT3_MOUNT_JOURNAL_DATA ||
  68. (!is_metadata && !ext3_should_journal_data(inode))) {
  69. if (bh) {
  70. BUFFER_TRACE(bh, "call journal_forget");
  71. return ext3_journal_forget(handle, bh);
  72. }
  73. return 0;
  74. }
  75. /*
  76. * data!=journal && (is_metadata || should_journal_data(inode))
  77. */
  78. BUFFER_TRACE(bh, "call ext3_journal_revoke");
  79. err = ext3_journal_revoke(handle, blocknr, bh);
  80. if (err)
  81. ext3_abort(inode->i_sb, __func__,
  82. "error %d when attempting revoke", err);
  83. BUFFER_TRACE(bh, "exit");
  84. return err;
  85. }
  86. /*
  87. * Work out how many blocks we need to proceed with the next chunk of a
  88. * truncate transaction.
  89. */
  90. static unsigned long blocks_for_truncate(struct inode *inode)
  91. {
  92. unsigned long needed;
  93. needed = inode->i_blocks >> (inode->i_sb->s_blocksize_bits - 9);
  94. /* Give ourselves just enough room to cope with inodes in which
  95. * i_blocks is corrupt: we've seen disk corruptions in the past
  96. * which resulted in random data in an inode which looked enough
  97. * like a regular file for ext3 to try to delete it. Things
  98. * will go a bit crazy if that happens, but at least we should
  99. * try not to panic the whole kernel. */
  100. if (needed < 2)
  101. needed = 2;
  102. /* But we need to bound the transaction so we don't overflow the
  103. * journal. */
  104. if (needed > EXT3_MAX_TRANS_DATA)
  105. needed = EXT3_MAX_TRANS_DATA;
  106. return EXT3_DATA_TRANS_BLOCKS(inode->i_sb) + needed;
  107. }
  108. /*
  109. * Truncate transactions can be complex and absolutely huge. So we need to
  110. * be able to restart the transaction at a conventient checkpoint to make
  111. * sure we don't overflow the journal.
  112. *
  113. * start_transaction gets us a new handle for a truncate transaction,
  114. * and extend_transaction tries to extend the existing one a bit. If
  115. * extend fails, we need to propagate the failure up and restart the
  116. * transaction in the top-level truncate loop. --sct
  117. */
  118. static handle_t *start_transaction(struct inode *inode)
  119. {
  120. handle_t *result;
  121. result = ext3_journal_start(inode, blocks_for_truncate(inode));
  122. if (!IS_ERR(result))
  123. return result;
  124. ext3_std_error(inode->i_sb, PTR_ERR(result));
  125. return result;
  126. }
  127. /*
  128. * Try to extend this transaction for the purposes of truncation.
  129. *
  130. * Returns 0 if we managed to create more room. If we can't create more
  131. * room, and the transaction must be restarted we return 1.
  132. */
  133. static int try_to_extend_transaction(handle_t *handle, struct inode *inode)
  134. {
  135. if (handle->h_buffer_credits > EXT3_RESERVE_TRANS_BLOCKS)
  136. return 0;
  137. if (!ext3_journal_extend(handle, blocks_for_truncate(inode)))
  138. return 0;
  139. return 1;
  140. }
  141. /*
  142. * Restart the transaction associated with *handle. This does a commit,
  143. * so before we call here everything must be consistently dirtied against
  144. * this transaction.
  145. */
  146. static int truncate_restart_transaction(handle_t *handle, struct inode *inode)
  147. {
  148. int ret;
  149. jbd_debug(2, "restarting handle %p\n", handle);
  150. /*
  151. * Drop truncate_mutex to avoid deadlock with ext3_get_blocks_handle
  152. * At this moment, get_block can be called only for blocks inside
  153. * i_size since page cache has been already dropped and writes are
  154. * blocked by i_mutex. So we can safely drop the truncate_mutex.
  155. */
  156. mutex_unlock(&EXT3_I(inode)->truncate_mutex);
  157. ret = ext3_journal_restart(handle, blocks_for_truncate(inode));
  158. mutex_lock(&EXT3_I(inode)->truncate_mutex);
  159. return ret;
  160. }
  161. /*
  162. * Called at inode eviction from icache
  163. */
  164. void ext3_evict_inode (struct inode *inode)
  165. {
  166. struct ext3_inode_info *ei = EXT3_I(inode);
  167. struct ext3_block_alloc_info *rsv;
  168. handle_t *handle;
  169. int want_delete = 0;
  170. trace_ext3_evict_inode(inode);
  171. if (!inode->i_nlink && !is_bad_inode(inode)) {
  172. dquot_initialize(inode);
  173. want_delete = 1;
  174. }
  175. /*
  176. * When journalling data dirty buffers are tracked only in the journal.
  177. * So although mm thinks everything is clean and ready for reaping the
  178. * inode might still have some pages to write in the running
  179. * transaction or waiting to be checkpointed. Thus calling
  180. * journal_invalidatepage() (via truncate_inode_pages()) to discard
  181. * these buffers can cause data loss. Also even if we did not discard
  182. * these buffers, we would have no way to find them after the inode
  183. * is reaped and thus user could see stale data if he tries to read
  184. * them before the transaction is checkpointed. So be careful and
  185. * force everything to disk here... We use ei->i_datasync_tid to
  186. * store the newest transaction containing inode's data.
  187. *
  188. * Note that directories do not have this problem because they don't
  189. * use page cache.
  190. *
  191. * The s_journal check handles the case when ext3_get_journal() fails
  192. * and puts the journal inode.
  193. */
  194. if (inode->i_nlink && ext3_should_journal_data(inode) &&
  195. EXT3_SB(inode->i_sb)->s_journal &&
  196. (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode))) {
  197. tid_t commit_tid = atomic_read(&ei->i_datasync_tid);
  198. journal_t *journal = EXT3_SB(inode->i_sb)->s_journal;
  199. log_start_commit(journal, commit_tid);
  200. log_wait_commit(journal, commit_tid);
  201. filemap_write_and_wait(&inode->i_data);
  202. }
  203. truncate_inode_pages(&inode->i_data, 0);
  204. ext3_discard_reservation(inode);
  205. rsv = ei->i_block_alloc_info;
  206. ei->i_block_alloc_info = NULL;
  207. if (unlikely(rsv))
  208. kfree(rsv);
  209. if (!want_delete)
  210. goto no_delete;
  211. handle = start_transaction(inode);
  212. if (IS_ERR(handle)) {
  213. /*
  214. * If we're going to skip the normal cleanup, we still need to
  215. * make sure that the in-core orphan linked list is properly
  216. * cleaned up.
  217. */
  218. ext3_orphan_del(NULL, inode);
  219. goto no_delete;
  220. }
  221. if (IS_SYNC(inode))
  222. handle->h_sync = 1;
  223. inode->i_size = 0;
  224. if (inode->i_blocks)
  225. ext3_truncate(inode);
  226. /*
  227. * Kill off the orphan record created when the inode lost the last
  228. * link. Note that ext3_orphan_del() has to be able to cope with the
  229. * deletion of a non-existent orphan - ext3_truncate() could
  230. * have removed the record.
  231. */
  232. ext3_orphan_del(handle, inode);
  233. ei->i_dtime = get_seconds();
  234. /*
  235. * One subtle ordering requirement: if anything has gone wrong
  236. * (transaction abort, IO errors, whatever), then we can still
  237. * do these next steps (the fs will already have been marked as
  238. * having errors), but we can't free the inode if the mark_dirty
  239. * fails.
  240. */
  241. if (ext3_mark_inode_dirty(handle, inode)) {
  242. /* If that failed, just dquot_drop() and be done with that */
  243. dquot_drop(inode);
  244. end_writeback(inode);
  245. } else {
  246. ext3_xattr_delete_inode(handle, inode);
  247. dquot_free_inode(inode);
  248. dquot_drop(inode);
  249. end_writeback(inode);
  250. ext3_free_inode(handle, inode);
  251. }
  252. ext3_journal_stop(handle);
  253. return;
  254. no_delete:
  255. end_writeback(inode);
  256. dquot_drop(inode);
  257. }
  258. typedef struct {
  259. __le32 *p;
  260. __le32 key;
  261. struct buffer_head *bh;
  262. } Indirect;
  263. static inline void add_chain(Indirect *p, struct buffer_head *bh, __le32 *v)
  264. {
  265. p->key = *(p->p = v);
  266. p->bh = bh;
  267. }
  268. static int verify_chain(Indirect *from, Indirect *to)
  269. {
  270. while (from <= to && from->key == *from->p)
  271. from++;
  272. return (from > to);
  273. }
  274. /**
  275. * ext3_block_to_path - parse the block number into array of offsets
  276. * @inode: inode in question (we are only interested in its superblock)
  277. * @i_block: block number to be parsed
  278. * @offsets: array to store the offsets in
  279. * @boundary: set this non-zero if the referred-to block is likely to be
  280. * followed (on disk) by an indirect block.
  281. *
  282. * To store the locations of file's data ext3 uses a data structure common
  283. * for UNIX filesystems - tree of pointers anchored in the inode, with
  284. * data blocks at leaves and indirect blocks in intermediate nodes.
  285. * This function translates the block number into path in that tree -
  286. * return value is the path length and @offsets[n] is the offset of
  287. * pointer to (n+1)th node in the nth one. If @block is out of range
  288. * (negative or too large) warning is printed and zero returned.
  289. *
  290. * Note: function doesn't find node addresses, so no IO is needed. All
  291. * we need to know is the capacity of indirect blocks (taken from the
  292. * inode->i_sb).
  293. */
  294. /*
  295. * Portability note: the last comparison (check that we fit into triple
  296. * indirect block) is spelled differently, because otherwise on an
  297. * architecture with 32-bit longs and 8Kb pages we might get into trouble
  298. * if our filesystem had 8Kb blocks. We might use long long, but that would
  299. * kill us on x86. Oh, well, at least the sign propagation does not matter -
  300. * i_block would have to be negative in the very beginning, so we would not
  301. * get there at all.
  302. */
  303. static int ext3_block_to_path(struct inode *inode,
  304. long i_block, int offsets[4], int *boundary)
  305. {
  306. int ptrs = EXT3_ADDR_PER_BLOCK(inode->i_sb);
  307. int ptrs_bits = EXT3_ADDR_PER_BLOCK_BITS(inode->i_sb);
  308. const long direct_blocks = EXT3_NDIR_BLOCKS,
  309. indirect_blocks = ptrs,
  310. double_blocks = (1 << (ptrs_bits * 2));
  311. int n = 0;
  312. int final = 0;
  313. if (i_block < 0) {
  314. ext3_warning (inode->i_sb, "ext3_block_to_path", "block < 0");
  315. } else if (i_block < direct_blocks) {
  316. offsets[n++] = i_block;
  317. final = direct_blocks;
  318. } else if ( (i_block -= direct_blocks) < indirect_blocks) {
  319. offsets[n++] = EXT3_IND_BLOCK;
  320. offsets[n++] = i_block;
  321. final = ptrs;
  322. } else if ((i_block -= indirect_blocks) < double_blocks) {
  323. offsets[n++] = EXT3_DIND_BLOCK;
  324. offsets[n++] = i_block >> ptrs_bits;
  325. offsets[n++] = i_block & (ptrs - 1);
  326. final = ptrs;
  327. } else if (((i_block -= double_blocks) >> (ptrs_bits * 2)) < ptrs) {
  328. offsets[n++] = EXT3_TIND_BLOCK;
  329. offsets[n++] = i_block >> (ptrs_bits * 2);
  330. offsets[n++] = (i_block >> ptrs_bits) & (ptrs - 1);
  331. offsets[n++] = i_block & (ptrs - 1);
  332. final = ptrs;
  333. } else {
  334. ext3_warning(inode->i_sb, "ext3_block_to_path", "block > big");
  335. }
  336. if (boundary)
  337. *boundary = final - 1 - (i_block & (ptrs - 1));
  338. return n;
  339. }
  340. /**
  341. * ext3_get_branch - read the chain of indirect blocks leading to data
  342. * @inode: inode in question
  343. * @depth: depth of the chain (1 - direct pointer, etc.)
  344. * @offsets: offsets of pointers in inode/indirect blocks
  345. * @chain: place to store the result
  346. * @err: here we store the error value
  347. *
  348. * Function fills the array of triples <key, p, bh> and returns %NULL
  349. * if everything went OK or the pointer to the last filled triple
  350. * (incomplete one) otherwise. Upon the return chain[i].key contains
  351. * the number of (i+1)-th block in the chain (as it is stored in memory,
  352. * i.e. little-endian 32-bit), chain[i].p contains the address of that
  353. * number (it points into struct inode for i==0 and into the bh->b_data
  354. * for i>0) and chain[i].bh points to the buffer_head of i-th indirect
  355. * block for i>0 and NULL for i==0. In other words, it holds the block
  356. * numbers of the chain, addresses they were taken from (and where we can
  357. * verify that chain did not change) and buffer_heads hosting these
  358. * numbers.
  359. *
  360. * Function stops when it stumbles upon zero pointer (absent block)
  361. * (pointer to last triple returned, *@err == 0)
  362. * or when it gets an IO error reading an indirect block
  363. * (ditto, *@err == -EIO)
  364. * or when it notices that chain had been changed while it was reading
  365. * (ditto, *@err == -EAGAIN)
  366. * or when it reads all @depth-1 indirect blocks successfully and finds
  367. * the whole chain, all way to the data (returns %NULL, *err == 0).
  368. */
  369. static Indirect *ext3_get_branch(struct inode *inode, int depth, int *offsets,
  370. Indirect chain[4], int *err)
  371. {
  372. struct super_block *sb = inode->i_sb;
  373. Indirect *p = chain;
  374. struct buffer_head *bh;
  375. *err = 0;
  376. /* i_data is not going away, no lock needed */
  377. add_chain (chain, NULL, EXT3_I(inode)->i_data + *offsets);
  378. if (!p->key)
  379. goto no_block;
  380. while (--depth) {
  381. bh = sb_bread(sb, le32_to_cpu(p->key));
  382. if (!bh)
  383. goto failure;
  384. /* Reader: pointers */
  385. if (!verify_chain(chain, p))
  386. goto changed;
  387. add_chain(++p, bh, (__le32*)bh->b_data + *++offsets);
  388. /* Reader: end */
  389. if (!p->key)
  390. goto no_block;
  391. }
  392. return NULL;
  393. changed:
  394. brelse(bh);
  395. *err = -EAGAIN;
  396. goto no_block;
  397. failure:
  398. *err = -EIO;
  399. no_block:
  400. return p;
  401. }
  402. /**
  403. * ext3_find_near - find a place for allocation with sufficient locality
  404. * @inode: owner
  405. * @ind: descriptor of indirect block.
  406. *
  407. * This function returns the preferred place for block allocation.
  408. * It is used when heuristic for sequential allocation fails.
  409. * Rules are:
  410. * + if there is a block to the left of our position - allocate near it.
  411. * + if pointer will live in indirect block - allocate near that block.
  412. * + if pointer will live in inode - allocate in the same
  413. * cylinder group.
  414. *
  415. * In the latter case we colour the starting block by the callers PID to
  416. * prevent it from clashing with concurrent allocations for a different inode
  417. * in the same block group. The PID is used here so that functionally related
  418. * files will be close-by on-disk.
  419. *
  420. * Caller must make sure that @ind is valid and will stay that way.
  421. */
  422. static ext3_fsblk_t ext3_find_near(struct inode *inode, Indirect *ind)
  423. {
  424. struct ext3_inode_info *ei = EXT3_I(inode);
  425. __le32 *start = ind->bh ? (__le32*) ind->bh->b_data : ei->i_data;
  426. __le32 *p;
  427. ext3_fsblk_t bg_start;
  428. ext3_grpblk_t colour;
  429. /* Try to find previous block */
  430. for (p = ind->p - 1; p >= start; p--) {
  431. if (*p)
  432. return le32_to_cpu(*p);
  433. }
  434. /* No such thing, so let's try location of indirect block */
  435. if (ind->bh)
  436. return ind->bh->b_blocknr;
  437. /*
  438. * It is going to be referred to from the inode itself? OK, just put it
  439. * into the same cylinder group then.
  440. */
  441. bg_start = ext3_group_first_block_no(inode->i_sb, ei->i_block_group);
  442. colour = (current->pid % 16) *
  443. (EXT3_BLOCKS_PER_GROUP(inode->i_sb) / 16);
  444. return bg_start + colour;
  445. }
  446. /**
  447. * ext3_find_goal - find a preferred place for allocation.
  448. * @inode: owner
  449. * @block: block we want
  450. * @partial: pointer to the last triple within a chain
  451. *
  452. * Normally this function find the preferred place for block allocation,
  453. * returns it.
  454. */
  455. static ext3_fsblk_t ext3_find_goal(struct inode *inode, long block,
  456. Indirect *partial)
  457. {
  458. struct ext3_block_alloc_info *block_i;
  459. block_i = EXT3_I(inode)->i_block_alloc_info;
  460. /*
  461. * try the heuristic for sequential allocation,
  462. * failing that at least try to get decent locality.
  463. */
  464. if (block_i && (block == block_i->last_alloc_logical_block + 1)
  465. && (block_i->last_alloc_physical_block != 0)) {
  466. return block_i->last_alloc_physical_block + 1;
  467. }
  468. return ext3_find_near(inode, partial);
  469. }
  470. /**
  471. * ext3_blks_to_allocate - Look up the block map and count the number
  472. * of direct blocks need to be allocated for the given branch.
  473. *
  474. * @branch: chain of indirect blocks
  475. * @k: number of blocks need for indirect blocks
  476. * @blks: number of data blocks to be mapped.
  477. * @blocks_to_boundary: the offset in the indirect block
  478. *
  479. * return the total number of blocks to be allocate, including the
  480. * direct and indirect blocks.
  481. */
  482. static int ext3_blks_to_allocate(Indirect *branch, int k, unsigned long blks,
  483. int blocks_to_boundary)
  484. {
  485. unsigned long count = 0;
  486. /*
  487. * Simple case, [t,d]Indirect block(s) has not allocated yet
  488. * then it's clear blocks on that path have not allocated
  489. */
  490. if (k > 0) {
  491. /* right now we don't handle cross boundary allocation */
  492. if (blks < blocks_to_boundary + 1)
  493. count += blks;
  494. else
  495. count += blocks_to_boundary + 1;
  496. return count;
  497. }
  498. count++;
  499. while (count < blks && count <= blocks_to_boundary &&
  500. le32_to_cpu(*(branch[0].p + count)) == 0) {
  501. count++;
  502. }
  503. return count;
  504. }
  505. /**
  506. * ext3_alloc_blocks - multiple allocate blocks needed for a branch
  507. * @handle: handle for this transaction
  508. * @inode: owner
  509. * @goal: preferred place for allocation
  510. * @indirect_blks: the number of blocks need to allocate for indirect
  511. * blocks
  512. * @blks: number of blocks need to allocated for direct blocks
  513. * @new_blocks: on return it will store the new block numbers for
  514. * the indirect blocks(if needed) and the first direct block,
  515. * @err: here we store the error value
  516. *
  517. * return the number of direct blocks allocated
  518. */
  519. static int ext3_alloc_blocks(handle_t *handle, struct inode *inode,
  520. ext3_fsblk_t goal, int indirect_blks, int blks,
  521. ext3_fsblk_t new_blocks[4], int *err)
  522. {
  523. int target, i;
  524. unsigned long count = 0;
  525. int index = 0;
  526. ext3_fsblk_t current_block = 0;
  527. int ret = 0;
  528. /*
  529. * Here we try to allocate the requested multiple blocks at once,
  530. * on a best-effort basis.
  531. * To build a branch, we should allocate blocks for
  532. * the indirect blocks(if not allocated yet), and at least
  533. * the first direct block of this branch. That's the
  534. * minimum number of blocks need to allocate(required)
  535. */
  536. target = blks + indirect_blks;
  537. while (1) {
  538. count = target;
  539. /* allocating blocks for indirect blocks and direct blocks */
  540. current_block = ext3_new_blocks(handle,inode,goal,&count,err);
  541. if (*err)
  542. goto failed_out;
  543. target -= count;
  544. /* allocate blocks for indirect blocks */
  545. while (index < indirect_blks && count) {
  546. new_blocks[index++] = current_block++;
  547. count--;
  548. }
  549. if (count > 0)
  550. break;
  551. }
  552. /* save the new block number for the first direct block */
  553. new_blocks[index] = current_block;
  554. /* total number of blocks allocated for direct blocks */
  555. ret = count;
  556. *err = 0;
  557. return ret;
  558. failed_out:
  559. for (i = 0; i <index; i++)
  560. ext3_free_blocks(handle, inode, new_blocks[i], 1);
  561. return ret;
  562. }
  563. /**
  564. * ext3_alloc_branch - allocate and set up a chain of blocks.
  565. * @handle: handle for this transaction
  566. * @inode: owner
  567. * @indirect_blks: number of allocated indirect blocks
  568. * @blks: number of allocated direct blocks
  569. * @goal: preferred place for allocation
  570. * @offsets: offsets (in the blocks) to store the pointers to next.
  571. * @branch: place to store the chain in.
  572. *
  573. * This function allocates blocks, zeroes out all but the last one,
  574. * links them into chain and (if we are synchronous) writes them to disk.
  575. * In other words, it prepares a branch that can be spliced onto the
  576. * inode. It stores the information about that chain in the branch[], in
  577. * the same format as ext3_get_branch() would do. We are calling it after
  578. * we had read the existing part of chain and partial points to the last
  579. * triple of that (one with zero ->key). Upon the exit we have the same
  580. * picture as after the successful ext3_get_block(), except that in one
  581. * place chain is disconnected - *branch->p is still zero (we did not
  582. * set the last link), but branch->key contains the number that should
  583. * be placed into *branch->p to fill that gap.
  584. *
  585. * If allocation fails we free all blocks we've allocated (and forget
  586. * their buffer_heads) and return the error value the from failed
  587. * ext3_alloc_block() (normally -ENOSPC). Otherwise we set the chain
  588. * as described above and return 0.
  589. */
  590. static int ext3_alloc_branch(handle_t *handle, struct inode *inode,
  591. int indirect_blks, int *blks, ext3_fsblk_t goal,
  592. int *offsets, Indirect *branch)
  593. {
  594. int blocksize = inode->i_sb->s_blocksize;
  595. int i, n = 0;
  596. int err = 0;
  597. struct buffer_head *bh;
  598. int num;
  599. ext3_fsblk_t new_blocks[4];
  600. ext3_fsblk_t current_block;
  601. num = ext3_alloc_blocks(handle, inode, goal, indirect_blks,
  602. *blks, new_blocks, &err);
  603. if (err)
  604. return err;
  605. branch[0].key = cpu_to_le32(new_blocks[0]);
  606. /*
  607. * metadata blocks and data blocks are allocated.
  608. */
  609. for (n = 1; n <= indirect_blks; n++) {
  610. /*
  611. * Get buffer_head for parent block, zero it out
  612. * and set the pointer to new one, then send
  613. * parent to disk.
  614. */
  615. bh = sb_getblk(inode->i_sb, new_blocks[n-1]);
  616. branch[n].bh = bh;
  617. lock_buffer(bh);
  618. BUFFER_TRACE(bh, "call get_create_access");
  619. err = ext3_journal_get_create_access(handle, bh);
  620. if (err) {
  621. unlock_buffer(bh);
  622. brelse(bh);
  623. goto failed;
  624. }
  625. memset(bh->b_data, 0, blocksize);
  626. branch[n].p = (__le32 *) bh->b_data + offsets[n];
  627. branch[n].key = cpu_to_le32(new_blocks[n]);
  628. *branch[n].p = branch[n].key;
  629. if ( n == indirect_blks) {
  630. current_block = new_blocks[n];
  631. /*
  632. * End of chain, update the last new metablock of
  633. * the chain to point to the new allocated
  634. * data blocks numbers
  635. */
  636. for (i=1; i < num; i++)
  637. *(branch[n].p + i) = cpu_to_le32(++current_block);
  638. }
  639. BUFFER_TRACE(bh, "marking uptodate");
  640. set_buffer_uptodate(bh);
  641. unlock_buffer(bh);
  642. BUFFER_TRACE(bh, "call ext3_journal_dirty_metadata");
  643. err = ext3_journal_dirty_metadata(handle, bh);
  644. if (err)
  645. goto failed;
  646. }
  647. *blks = num;
  648. return err;
  649. failed:
  650. /* Allocation failed, free what we already allocated */
  651. for (i = 1; i <= n ; i++) {
  652. BUFFER_TRACE(branch[i].bh, "call journal_forget");
  653. ext3_journal_forget(handle, branch[i].bh);
  654. }
  655. for (i = 0; i <indirect_blks; i++)
  656. ext3_free_blocks(handle, inode, new_blocks[i], 1);
  657. ext3_free_blocks(handle, inode, new_blocks[i], num);
  658. return err;
  659. }
  660. /**
  661. * ext3_splice_branch - splice the allocated branch onto inode.
  662. * @handle: handle for this transaction
  663. * @inode: owner
  664. * @block: (logical) number of block we are adding
  665. * @where: location of missing link
  666. * @num: number of indirect blocks we are adding
  667. * @blks: number of direct blocks we are adding
  668. *
  669. * This function fills the missing link and does all housekeeping needed in
  670. * inode (->i_blocks, etc.). In case of success we end up with the full
  671. * chain to new block and return 0.
  672. */
  673. static int ext3_splice_branch(handle_t *handle, struct inode *inode,
  674. long block, Indirect *where, int num, int blks)
  675. {
  676. int i;
  677. int err = 0;
  678. struct ext3_block_alloc_info *block_i;
  679. ext3_fsblk_t current_block;
  680. struct ext3_inode_info *ei = EXT3_I(inode);
  681. struct timespec now;
  682. block_i = ei->i_block_alloc_info;
  683. /*
  684. * If we're splicing into a [td]indirect block (as opposed to the
  685. * inode) then we need to get write access to the [td]indirect block
  686. * before the splice.
  687. */
  688. if (where->bh) {
  689. BUFFER_TRACE(where->bh, "get_write_access");
  690. err = ext3_journal_get_write_access(handle, where->bh);
  691. if (err)
  692. goto err_out;
  693. }
  694. /* That's it */
  695. *where->p = where->key;
  696. /*
  697. * Update the host buffer_head or inode to point to more just allocated
  698. * direct blocks blocks
  699. */
  700. if (num == 0 && blks > 1) {
  701. current_block = le32_to_cpu(where->key) + 1;
  702. for (i = 1; i < blks; i++)
  703. *(where->p + i ) = cpu_to_le32(current_block++);
  704. }
  705. /*
  706. * update the most recently allocated logical & physical block
  707. * in i_block_alloc_info, to assist find the proper goal block for next
  708. * allocation
  709. */
  710. if (block_i) {
  711. block_i->last_alloc_logical_block = block + blks - 1;
  712. block_i->last_alloc_physical_block =
  713. le32_to_cpu(where[num].key) + blks - 1;
  714. }
  715. /* We are done with atomic stuff, now do the rest of housekeeping */
  716. now = CURRENT_TIME_SEC;
  717. if (!timespec_equal(&inode->i_ctime, &now) || !where->bh) {
  718. inode->i_ctime = now;
  719. ext3_mark_inode_dirty(handle, inode);
  720. }
  721. /* ext3_mark_inode_dirty already updated i_sync_tid */
  722. atomic_set(&ei->i_datasync_tid, handle->h_transaction->t_tid);
  723. /* had we spliced it onto indirect block? */
  724. if (where->bh) {
  725. /*
  726. * If we spliced it onto an indirect block, we haven't
  727. * altered the inode. Note however that if it is being spliced
  728. * onto an indirect block at the very end of the file (the
  729. * file is growing) then we *will* alter the inode to reflect
  730. * the new i_size. But that is not done here - it is done in
  731. * generic_commit_write->__mark_inode_dirty->ext3_dirty_inode.
  732. */
  733. jbd_debug(5, "splicing indirect only\n");
  734. BUFFER_TRACE(where->bh, "call ext3_journal_dirty_metadata");
  735. err = ext3_journal_dirty_metadata(handle, where->bh);
  736. if (err)
  737. goto err_out;
  738. } else {
  739. /*
  740. * OK, we spliced it into the inode itself on a direct block.
  741. * Inode was dirtied above.
  742. */
  743. jbd_debug(5, "splicing direct\n");
  744. }
  745. return err;
  746. err_out:
  747. for (i = 1; i <= num; i++) {
  748. BUFFER_TRACE(where[i].bh, "call journal_forget");
  749. ext3_journal_forget(handle, where[i].bh);
  750. ext3_free_blocks(handle,inode,le32_to_cpu(where[i-1].key),1);
  751. }
  752. ext3_free_blocks(handle, inode, le32_to_cpu(where[num].key), blks);
  753. return err;
  754. }
  755. /*
  756. * Allocation strategy is simple: if we have to allocate something, we will
  757. * have to go the whole way to leaf. So let's do it before attaching anything
  758. * to tree, set linkage between the newborn blocks, write them if sync is
  759. * required, recheck the path, free and repeat if check fails, otherwise
  760. * set the last missing link (that will protect us from any truncate-generated
  761. * removals - all blocks on the path are immune now) and possibly force the
  762. * write on the parent block.
  763. * That has a nice additional property: no special recovery from the failed
  764. * allocations is needed - we simply release blocks and do not touch anything
  765. * reachable from inode.
  766. *
  767. * `handle' can be NULL if create == 0.
  768. *
  769. * The BKL may not be held on entry here. Be sure to take it early.
  770. * return > 0, # of blocks mapped or allocated.
  771. * return = 0, if plain lookup failed.
  772. * return < 0, error case.
  773. */
  774. int ext3_get_blocks_handle(handle_t *handle, struct inode *inode,
  775. sector_t iblock, unsigned long maxblocks,
  776. struct buffer_head *bh_result,
  777. int create)
  778. {
  779. int err = -EIO;
  780. int offsets[4];
  781. Indirect chain[4];
  782. Indirect *partial;
  783. ext3_fsblk_t goal;
  784. int indirect_blks;
  785. int blocks_to_boundary = 0;
  786. int depth;
  787. struct ext3_inode_info *ei = EXT3_I(inode);
  788. int count = 0;
  789. ext3_fsblk_t first_block = 0;
  790. trace_ext3_get_blocks_enter(inode, iblock, maxblocks, create);
  791. J_ASSERT(handle != NULL || create == 0);
  792. depth = ext3_block_to_path(inode,iblock,offsets,&blocks_to_boundary);
  793. if (depth == 0)
  794. goto out;
  795. partial = ext3_get_branch(inode, depth, offsets, chain, &err);
  796. /* Simplest case - block found, no allocation needed */
  797. if (!partial) {
  798. first_block = le32_to_cpu(chain[depth - 1].key);
  799. clear_buffer_new(bh_result);
  800. count++;
  801. /*map more blocks*/
  802. while (count < maxblocks && count <= blocks_to_boundary) {
  803. ext3_fsblk_t blk;
  804. if (!verify_chain(chain, chain + depth - 1)) {
  805. /*
  806. * Indirect block might be removed by
  807. * truncate while we were reading it.
  808. * Handling of that case: forget what we've
  809. * got now. Flag the err as EAGAIN, so it
  810. * will reread.
  811. */
  812. err = -EAGAIN;
  813. count = 0;
  814. break;
  815. }
  816. blk = le32_to_cpu(*(chain[depth-1].p + count));
  817. if (blk == first_block + count)
  818. count++;
  819. else
  820. break;
  821. }
  822. if (err != -EAGAIN)
  823. goto got_it;
  824. }
  825. /* Next simple case - plain lookup or failed read of indirect block */
  826. if (!create || err == -EIO)
  827. goto cleanup;
  828. /*
  829. * Block out ext3_truncate while we alter the tree
  830. */
  831. mutex_lock(&ei->truncate_mutex);
  832. /*
  833. * If the indirect block is missing while we are reading
  834. * the chain(ext3_get_branch() returns -EAGAIN err), or
  835. * if the chain has been changed after we grab the semaphore,
  836. * (either because another process truncated this branch, or
  837. * another get_block allocated this branch) re-grab the chain to see if
  838. * the request block has been allocated or not.
  839. *
  840. * Since we already block the truncate/other get_block
  841. * at this point, we will have the current copy of the chain when we
  842. * splice the branch into the tree.
  843. */
  844. if (err == -EAGAIN || !verify_chain(chain, partial)) {
  845. while (partial > chain) {
  846. brelse(partial->bh);
  847. partial--;
  848. }
  849. partial = ext3_get_branch(inode, depth, offsets, chain, &err);
  850. if (!partial) {
  851. count++;
  852. mutex_unlock(&ei->truncate_mutex);
  853. if (err)
  854. goto cleanup;
  855. clear_buffer_new(bh_result);
  856. goto got_it;
  857. }
  858. }
  859. /*
  860. * Okay, we need to do block allocation. Lazily initialize the block
  861. * allocation info here if necessary
  862. */
  863. if (S_ISREG(inode->i_mode) && (!ei->i_block_alloc_info))
  864. ext3_init_block_alloc_info(inode);
  865. goal = ext3_find_goal(inode, iblock, partial);
  866. /* the number of blocks need to allocate for [d,t]indirect blocks */
  867. indirect_blks = (chain + depth) - partial - 1;
  868. /*
  869. * Next look up the indirect map to count the totoal number of
  870. * direct blocks to allocate for this branch.
  871. */
  872. count = ext3_blks_to_allocate(partial, indirect_blks,
  873. maxblocks, blocks_to_boundary);
  874. err = ext3_alloc_branch(handle, inode, indirect_blks, &count, goal,
  875. offsets + (partial - chain), partial);
  876. /*
  877. * The ext3_splice_branch call will free and forget any buffers
  878. * on the new chain if there is a failure, but that risks using
  879. * up transaction credits, especially for bitmaps where the
  880. * credits cannot be returned. Can we handle this somehow? We
  881. * may need to return -EAGAIN upwards in the worst case. --sct
  882. */
  883. if (!err)
  884. err = ext3_splice_branch(handle, inode, iblock,
  885. partial, indirect_blks, count);
  886. mutex_unlock(&ei->truncate_mutex);
  887. if (err)
  888. goto cleanup;
  889. set_buffer_new(bh_result);
  890. got_it:
  891. map_bh(bh_result, inode->i_sb, le32_to_cpu(chain[depth-1].key));
  892. if (count > blocks_to_boundary)
  893. set_buffer_boundary(bh_result);
  894. err = count;
  895. /* Clean up and exit */
  896. partial = chain + depth - 1; /* the whole chain */
  897. cleanup:
  898. while (partial > chain) {
  899. BUFFER_TRACE(partial->bh, "call brelse");
  900. brelse(partial->bh);
  901. partial--;
  902. }
  903. BUFFER_TRACE(bh_result, "returned");
  904. out:
  905. trace_ext3_get_blocks_exit(inode, iblock,
  906. depth ? le32_to_cpu(chain[depth-1].key) : 0,
  907. count, err);
  908. return err;
  909. }
  910. /* Maximum number of blocks we map for direct IO at once. */
  911. #define DIO_MAX_BLOCKS 4096
  912. /*
  913. * Number of credits we need for writing DIO_MAX_BLOCKS:
  914. * We need sb + group descriptor + bitmap + inode -> 4
  915. * For B blocks with A block pointers per block we need:
  916. * 1 (triple ind.) + (B/A/A + 2) (doubly ind.) + (B/A + 2) (indirect).
  917. * If we plug in 4096 for B and 256 for A (for 1KB block size), we get 25.
  918. */
  919. #define DIO_CREDITS 25
  920. static int ext3_get_block(struct inode *inode, sector_t iblock,
  921. struct buffer_head *bh_result, int create)
  922. {
  923. handle_t *handle = ext3_journal_current_handle();
  924. int ret = 0, started = 0;
  925. unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
  926. if (create && !handle) { /* Direct IO write... */
  927. if (max_blocks > DIO_MAX_BLOCKS)
  928. max_blocks = DIO_MAX_BLOCKS;
  929. handle = ext3_journal_start(inode, DIO_CREDITS +
  930. EXT3_MAXQUOTAS_TRANS_BLOCKS(inode->i_sb));
  931. if (IS_ERR(handle)) {
  932. ret = PTR_ERR(handle);
  933. goto out;
  934. }
  935. started = 1;
  936. }
  937. ret = ext3_get_blocks_handle(handle, inode, iblock,
  938. max_blocks, bh_result, create);
  939. if (ret > 0) {
  940. bh_result->b_size = (ret << inode->i_blkbits);
  941. ret = 0;
  942. }
  943. if (started)
  944. ext3_journal_stop(handle);
  945. out:
  946. return ret;
  947. }
  948. int ext3_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
  949. u64 start, u64 len)
  950. {
  951. return generic_block_fiemap(inode, fieinfo, start, len,
  952. ext3_get_block);
  953. }
  954. /*
  955. * `handle' can be NULL if create is zero
  956. */
  957. struct buffer_head *ext3_getblk(handle_t *handle, struct inode *inode,
  958. long block, int create, int *errp)
  959. {
  960. struct buffer_head dummy;
  961. int fatal = 0, err;
  962. J_ASSERT(handle != NULL || create == 0);
  963. dummy.b_state = 0;
  964. dummy.b_blocknr = -1000;
  965. buffer_trace_init(&dummy.b_history);
  966. err = ext3_get_blocks_handle(handle, inode, block, 1,
  967. &dummy, create);
  968. /*
  969. * ext3_get_blocks_handle() returns number of blocks
  970. * mapped. 0 in case of a HOLE.
  971. */
  972. if (err > 0) {
  973. if (err > 1)
  974. WARN_ON(1);
  975. err = 0;
  976. }
  977. *errp = err;
  978. if (!err && buffer_mapped(&dummy)) {
  979. struct buffer_head *bh;
  980. bh = sb_getblk(inode->i_sb, dummy.b_blocknr);
  981. if (!bh) {
  982. *errp = -EIO;
  983. goto err;
  984. }
  985. if (buffer_new(&dummy)) {
  986. J_ASSERT(create != 0);
  987. J_ASSERT(handle != NULL);
  988. /*
  989. * Now that we do not always journal data, we should
  990. * keep in mind whether this should always journal the
  991. * new buffer as metadata. For now, regular file
  992. * writes use ext3_get_block instead, so it's not a
  993. * problem.
  994. */
  995. lock_buffer(bh);
  996. BUFFER_TRACE(bh, "call get_create_access");
  997. fatal = ext3_journal_get_create_access(handle, bh);
  998. if (!fatal && !buffer_uptodate(bh)) {
  999. memset(bh->b_data,0,inode->i_sb->s_blocksize);
  1000. set_buffer_uptodate(bh);
  1001. }
  1002. unlock_buffer(bh);
  1003. BUFFER_TRACE(bh, "call ext3_journal_dirty_metadata");
  1004. err = ext3_journal_dirty_metadata(handle, bh);
  1005. if (!fatal)
  1006. fatal = err;
  1007. } else {
  1008. BUFFER_TRACE(bh, "not a new buffer");
  1009. }
  1010. if (fatal) {
  1011. *errp = fatal;
  1012. brelse(bh);
  1013. bh = NULL;
  1014. }
  1015. return bh;
  1016. }
  1017. err:
  1018. return NULL;
  1019. }
  1020. struct buffer_head *ext3_bread(handle_t *handle, struct inode *inode,
  1021. int block, int create, int *err)
  1022. {
  1023. struct buffer_head * bh;
  1024. bh = ext3_getblk(handle, inode, block, create, err);
  1025. if (!bh)
  1026. return bh;
  1027. if (bh_uptodate_or_lock(bh))
  1028. return bh;
  1029. get_bh(bh);
  1030. bh->b_end_io = end_buffer_read_sync;
  1031. submit_bh(READ | REQ_META | REQ_PRIO, bh);
  1032. wait_on_buffer(bh);
  1033. if (buffer_uptodate(bh))
  1034. return bh;
  1035. put_bh(bh);
  1036. *err = -EIO;
  1037. return NULL;
  1038. }
  1039. static int walk_page_buffers( handle_t *handle,
  1040. struct buffer_head *head,
  1041. unsigned from,
  1042. unsigned to,
  1043. int *partial,
  1044. int (*fn)( handle_t *handle,
  1045. struct buffer_head *bh))
  1046. {
  1047. struct buffer_head *bh;
  1048. unsigned block_start, block_end;
  1049. unsigned blocksize = head->b_size;
  1050. int err, ret = 0;
  1051. struct buffer_head *next;
  1052. for ( bh = head, block_start = 0;
  1053. ret == 0 && (bh != head || !block_start);
  1054. block_start = block_end, bh = next)
  1055. {
  1056. next = bh->b_this_page;
  1057. block_end = block_start + blocksize;
  1058. if (block_end <= from || block_start >= to) {
  1059. if (partial && !buffer_uptodate(bh))
  1060. *partial = 1;
  1061. continue;
  1062. }
  1063. err = (*fn)(handle, bh);
  1064. if (!ret)
  1065. ret = err;
  1066. }
  1067. return ret;
  1068. }
  1069. /*
  1070. * To preserve ordering, it is essential that the hole instantiation and
  1071. * the data write be encapsulated in a single transaction. We cannot
  1072. * close off a transaction and start a new one between the ext3_get_block()
  1073. * and the commit_write(). So doing the journal_start at the start of
  1074. * prepare_write() is the right place.
  1075. *
  1076. * Also, this function can nest inside ext3_writepage() ->
  1077. * block_write_full_page(). In that case, we *know* that ext3_writepage()
  1078. * has generated enough buffer credits to do the whole page. So we won't
  1079. * block on the journal in that case, which is good, because the caller may
  1080. * be PF_MEMALLOC.
  1081. *
  1082. * By accident, ext3 can be reentered when a transaction is open via
  1083. * quota file writes. If we were to commit the transaction while thus
  1084. * reentered, there can be a deadlock - we would be holding a quota
  1085. * lock, and the commit would never complete if another thread had a
  1086. * transaction open and was blocking on the quota lock - a ranking
  1087. * violation.
  1088. *
  1089. * So what we do is to rely on the fact that journal_stop/journal_start
  1090. * will _not_ run commit under these circumstances because handle->h_ref
  1091. * is elevated. We'll still have enough credits for the tiny quotafile
  1092. * write.
  1093. */
  1094. static int do_journal_get_write_access(handle_t *handle,
  1095. struct buffer_head *bh)
  1096. {
  1097. int dirty = buffer_dirty(bh);
  1098. int ret;
  1099. if (!buffer_mapped(bh) || buffer_freed(bh))
  1100. return 0;
  1101. /*
  1102. * __block_prepare_write() could have dirtied some buffers. Clean
  1103. * the dirty bit as jbd2_journal_get_write_access() could complain
  1104. * otherwise about fs integrity issues. Setting of the dirty bit
  1105. * by __block_prepare_write() isn't a real problem here as we clear
  1106. * the bit before releasing a page lock and thus writeback cannot
  1107. * ever write the buffer.
  1108. */
  1109. if (dirty)
  1110. clear_buffer_dirty(bh);
  1111. ret = ext3_journal_get_write_access(handle, bh);
  1112. if (!ret && dirty)
  1113. ret = ext3_journal_dirty_metadata(handle, bh);
  1114. return ret;
  1115. }
  1116. /*
  1117. * Truncate blocks that were not used by write. We have to truncate the
  1118. * pagecache as well so that corresponding buffers get properly unmapped.
  1119. */
  1120. static void ext3_truncate_failed_write(struct inode *inode)
  1121. {
  1122. truncate_inode_pages(inode->i_mapping, inode->i_size);
  1123. ext3_truncate(inode);
  1124. }
  1125. /*
  1126. * Truncate blocks that were not used by direct IO write. We have to zero out
  1127. * the last file block as well because direct IO might have written to it.
  1128. */
  1129. static void ext3_truncate_failed_direct_write(struct inode *inode)
  1130. {
  1131. ext3_block_truncate_page(inode, inode->i_size);
  1132. ext3_truncate(inode);
  1133. }
  1134. static int ext3_write_begin(struct file *file, struct address_space *mapping,
  1135. loff_t pos, unsigned len, unsigned flags,
  1136. struct page **pagep, void **fsdata)
  1137. {
  1138. struct inode *inode = mapping->host;
  1139. int ret;
  1140. handle_t *handle;
  1141. int retries = 0;
  1142. struct page *page;
  1143. pgoff_t index;
  1144. unsigned from, to;
  1145. /* Reserve one block more for addition to orphan list in case
  1146. * we allocate blocks but write fails for some reason */
  1147. int needed_blocks = ext3_writepage_trans_blocks(inode) + 1;
  1148. trace_ext3_write_begin(inode, pos, len, flags);
  1149. index = pos >> PAGE_CACHE_SHIFT;
  1150. from = pos & (PAGE_CACHE_SIZE - 1);
  1151. to = from + len;
  1152. retry:
  1153. page = grab_cache_page_write_begin(mapping, index, flags);
  1154. if (!page)
  1155. return -ENOMEM;
  1156. *pagep = page;
  1157. handle = ext3_journal_start(inode, needed_blocks);
  1158. if (IS_ERR(handle)) {
  1159. unlock_page(page);
  1160. page_cache_release(page);
  1161. ret = PTR_ERR(handle);
  1162. goto out;
  1163. }
  1164. ret = __block_write_begin(page, pos, len, ext3_get_block);
  1165. if (ret)
  1166. goto write_begin_failed;
  1167. if (ext3_should_journal_data(inode)) {
  1168. ret = walk_page_buffers(handle, page_buffers(page),
  1169. from, to, NULL, do_journal_get_write_access);
  1170. }
  1171. write_begin_failed:
  1172. if (ret) {
  1173. /*
  1174. * block_write_begin may have instantiated a few blocks
  1175. * outside i_size. Trim these off again. Don't need
  1176. * i_size_read because we hold i_mutex.
  1177. *
  1178. * Add inode to orphan list in case we crash before truncate
  1179. * finishes. Do this only if ext3_can_truncate() agrees so
  1180. * that orphan processing code is happy.
  1181. */
  1182. if (pos + len > inode->i_size && ext3_can_truncate(inode))
  1183. ext3_orphan_add(handle, inode);
  1184. ext3_journal_stop(handle);
  1185. unlock_page(page);
  1186. page_cache_release(page);
  1187. if (pos + len > inode->i_size)
  1188. ext3_truncate_failed_write(inode);
  1189. }
  1190. if (ret == -ENOSPC && ext3_should_retry_alloc(inode->i_sb, &retries))
  1191. goto retry;
  1192. out:
  1193. return ret;
  1194. }
  1195. int ext3_journal_dirty_data(handle_t *handle, struct buffer_head *bh)
  1196. {
  1197. int err = journal_dirty_data(handle, bh);
  1198. if (err)
  1199. ext3_journal_abort_handle(__func__, __func__,
  1200. bh, handle, err);
  1201. return err;
  1202. }
  1203. /* For ordered writepage and write_end functions */
  1204. static int journal_dirty_data_fn(handle_t *handle, struct buffer_head *bh)
  1205. {
  1206. /*
  1207. * Write could have mapped the buffer but it didn't copy the data in
  1208. * yet. So avoid filing such buffer into a transaction.
  1209. */
  1210. if (buffer_mapped(bh) && buffer_uptodate(bh))
  1211. return ext3_journal_dirty_data(handle, bh);
  1212. return 0;
  1213. }
  1214. /* For write_end() in data=journal mode */
  1215. static int write_end_fn(handle_t *handle, struct buffer_head *bh)
  1216. {
  1217. if (!buffer_mapped(bh) || buffer_freed(bh))
  1218. return 0;
  1219. set_buffer_uptodate(bh);
  1220. return ext3_journal_dirty_metadata(handle, bh);
  1221. }
  1222. /*
  1223. * This is nasty and subtle: ext3_write_begin() could have allocated blocks
  1224. * for the whole page but later we failed to copy the data in. Update inode
  1225. * size according to what we managed to copy. The rest is going to be
  1226. * truncated in write_end function.
  1227. */
  1228. static void update_file_sizes(struct inode *inode, loff_t pos, unsigned copied)
  1229. {
  1230. /* What matters to us is i_disksize. We don't write i_size anywhere */
  1231. if (pos + copied > inode->i_size)
  1232. i_size_write(inode, pos + copied);
  1233. if (pos + copied > EXT3_I(inode)->i_disksize) {
  1234. EXT3_I(inode)->i_disksize = pos + copied;
  1235. mark_inode_dirty(inode);
  1236. }
  1237. }
  1238. /*
  1239. * We need to pick up the new inode size which generic_commit_write gave us
  1240. * `file' can be NULL - eg, when called from page_symlink().
  1241. *
  1242. * ext3 never places buffers on inode->i_mapping->private_list. metadata
  1243. * buffers are managed internally.
  1244. */
  1245. static int ext3_ordered_write_end(struct file *file,
  1246. struct address_space *mapping,
  1247. loff_t pos, unsigned len, unsigned copied,
  1248. struct page *page, void *fsdata)
  1249. {
  1250. handle_t *handle = ext3_journal_current_handle();
  1251. struct inode *inode = file->f_mapping->host;
  1252. unsigned from, to;
  1253. int ret = 0, ret2;
  1254. trace_ext3_ordered_write_end(inode, pos, len, copied);
  1255. copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
  1256. from = pos & (PAGE_CACHE_SIZE - 1);
  1257. to = from + copied;
  1258. ret = walk_page_buffers(handle, page_buffers(page),
  1259. from, to, NULL, journal_dirty_data_fn);
  1260. if (ret == 0)
  1261. update_file_sizes(inode, pos, copied);
  1262. /*
  1263. * There may be allocated blocks outside of i_size because
  1264. * we failed to copy some data. Prepare for truncate.
  1265. */
  1266. if (pos + len > inode->i_size && ext3_can_truncate(inode))
  1267. ext3_orphan_add(handle, inode);
  1268. ret2 = ext3_journal_stop(handle);
  1269. if (!ret)
  1270. ret = ret2;
  1271. unlock_page(page);
  1272. page_cache_release(page);
  1273. if (pos + len > inode->i_size)
  1274. ext3_truncate_failed_write(inode);
  1275. return ret ? ret : copied;
  1276. }
  1277. static int ext3_writeback_write_end(struct file *file,
  1278. struct address_space *mapping,
  1279. loff_t pos, unsigned len, unsigned copied,
  1280. struct page *page, void *fsdata)
  1281. {
  1282. handle_t *handle = ext3_journal_current_handle();
  1283. struct inode *inode = file->f_mapping->host;
  1284. int ret;
  1285. trace_ext3_writeback_write_end(inode, pos, len, copied);
  1286. copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
  1287. update_file_sizes(inode, pos, copied);
  1288. /*
  1289. * There may be allocated blocks outside of i_size because
  1290. * we failed to copy some data. Prepare for truncate.
  1291. */
  1292. if (pos + len > inode->i_size && ext3_can_truncate(inode))
  1293. ext3_orphan_add(handle, inode);
  1294. ret = ext3_journal_stop(handle);
  1295. unlock_page(page);
  1296. page_cache_release(page);
  1297. if (pos + len > inode->i_size)
  1298. ext3_truncate_failed_write(inode);
  1299. return ret ? ret : copied;
  1300. }
  1301. static int ext3_journalled_write_end(struct file *file,
  1302. struct address_space *mapping,
  1303. loff_t pos, unsigned len, unsigned copied,
  1304. struct page *page, void *fsdata)
  1305. {
  1306. handle_t *handle = ext3_journal_current_handle();
  1307. struct inode *inode = mapping->host;
  1308. struct ext3_inode_info *ei = EXT3_I(inode);
  1309. int ret = 0, ret2;
  1310. int partial = 0;
  1311. unsigned from, to;
  1312. trace_ext3_journalled_write_end(inode, pos, len, copied);
  1313. from = pos & (PAGE_CACHE_SIZE - 1);
  1314. to = from + len;
  1315. if (copied < len) {
  1316. if (!PageUptodate(page))
  1317. copied = 0;
  1318. page_zero_new_buffers(page, from + copied, to);
  1319. to = from + copied;
  1320. }
  1321. ret = walk_page_buffers(handle, page_buffers(page), from,
  1322. to, &partial, write_end_fn);
  1323. if (!partial)
  1324. SetPageUptodate(page);
  1325. if (pos + copied > inode->i_size)
  1326. i_size_write(inode, pos + copied);
  1327. /*
  1328. * There may be allocated blocks outside of i_size because
  1329. * we failed to copy some data. Prepare for truncate.
  1330. */
  1331. if (pos + len > inode->i_size && ext3_can_truncate(inode))
  1332. ext3_orphan_add(handle, inode);
  1333. ext3_set_inode_state(inode, EXT3_STATE_JDATA);
  1334. atomic_set(&ei->i_datasync_tid, handle->h_transaction->t_tid);
  1335. if (inode->i_size > ei->i_disksize) {
  1336. ei->i_disksize = inode->i_size;
  1337. ret2 = ext3_mark_inode_dirty(handle, inode);
  1338. if (!ret)
  1339. ret = ret2;
  1340. }
  1341. ret2 = ext3_journal_stop(handle);
  1342. if (!ret)
  1343. ret = ret2;
  1344. unlock_page(page);
  1345. page_cache_release(page);
  1346. if (pos + len > inode->i_size)
  1347. ext3_truncate_failed_write(inode);
  1348. return ret ? ret : copied;
  1349. }
  1350. /*
  1351. * bmap() is special. It gets used by applications such as lilo and by
  1352. * the swapper to find the on-disk block of a specific piece of data.
  1353. *
  1354. * Naturally, this is dangerous if the block concerned is still in the
  1355. * journal. If somebody makes a swapfile on an ext3 data-journaling
  1356. * filesystem and enables swap, then they may get a nasty shock when the
  1357. * data getting swapped to that swapfile suddenly gets overwritten by
  1358. * the original zero's written out previously to the journal and
  1359. * awaiting writeback in the kernel's buffer cache.
  1360. *
  1361. * So, if we see any bmap calls here on a modified, data-journaled file,
  1362. * take extra steps to flush any blocks which might be in the cache.
  1363. */
  1364. static sector_t ext3_bmap(struct address_space *mapping, sector_t block)
  1365. {
  1366. struct inode *inode = mapping->host;
  1367. journal_t *journal;
  1368. int err;
  1369. if (ext3_test_inode_state(inode, EXT3_STATE_JDATA)) {
  1370. /*
  1371. * This is a REALLY heavyweight approach, but the use of
  1372. * bmap on dirty files is expected to be extremely rare:
  1373. * only if we run lilo or swapon on a freshly made file
  1374. * do we expect this to happen.
  1375. *
  1376. * (bmap requires CAP_SYS_RAWIO so this does not
  1377. * represent an unprivileged user DOS attack --- we'd be
  1378. * in trouble if mortal users could trigger this path at
  1379. * will.)
  1380. *
  1381. * NB. EXT3_STATE_JDATA is not set on files other than
  1382. * regular files. If somebody wants to bmap a directory
  1383. * or symlink and gets confused because the buffer
  1384. * hasn't yet been flushed to disk, they deserve
  1385. * everything they get.
  1386. */
  1387. ext3_clear_inode_state(inode, EXT3_STATE_JDATA);
  1388. journal = EXT3_JOURNAL(inode);
  1389. journal_lock_updates(journal);
  1390. err = journal_flush(journal);
  1391. journal_unlock_updates(journal);
  1392. if (err)
  1393. return 0;
  1394. }
  1395. return generic_block_bmap(mapping,block,ext3_get_block);
  1396. }
  1397. static int bget_one(handle_t *handle, struct buffer_head *bh)
  1398. {
  1399. get_bh(bh);
  1400. return 0;
  1401. }
  1402. static int bput_one(handle_t *handle, struct buffer_head *bh)
  1403. {
  1404. put_bh(bh);
  1405. return 0;
  1406. }
  1407. static int buffer_unmapped(handle_t *handle, struct buffer_head *bh)
  1408. {
  1409. return !buffer_mapped(bh);
  1410. }
  1411. /*
  1412. * Note that we always start a transaction even if we're not journalling
  1413. * data. This is to preserve ordering: any hole instantiation within
  1414. * __block_write_full_page -> ext3_get_block() should be journalled
  1415. * along with the data so we don't crash and then get metadata which
  1416. * refers to old data.
  1417. *
  1418. * In all journalling modes block_write_full_page() will start the I/O.
  1419. *
  1420. * Problem:
  1421. *
  1422. * ext3_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
  1423. * ext3_writepage()
  1424. *
  1425. * Similar for:
  1426. *
  1427. * ext3_file_write() -> generic_file_write() -> __alloc_pages() -> ...
  1428. *
  1429. * Same applies to ext3_get_block(). We will deadlock on various things like
  1430. * lock_journal and i_truncate_mutex.
  1431. *
  1432. * Setting PF_MEMALLOC here doesn't work - too many internal memory
  1433. * allocations fail.
  1434. *
  1435. * 16May01: If we're reentered then journal_current_handle() will be
  1436. * non-zero. We simply *return*.
  1437. *
  1438. * 1 July 2001: @@@ FIXME:
  1439. * In journalled data mode, a data buffer may be metadata against the
  1440. * current transaction. But the same file is part of a shared mapping
  1441. * and someone does a writepage() on it.
  1442. *
  1443. * We will move the buffer onto the async_data list, but *after* it has
  1444. * been dirtied. So there's a small window where we have dirty data on
  1445. * BJ_Metadata.
  1446. *
  1447. * Note that this only applies to the last partial page in the file. The
  1448. * bit which block_write_full_page() uses prepare/commit for. (That's
  1449. * broken code anyway: it's wrong for msync()).
  1450. *
  1451. * It's a rare case: affects the final partial page, for journalled data
  1452. * where the file is subject to bith write() and writepage() in the same
  1453. * transction. To fix it we'll need a custom block_write_full_page().
  1454. * We'll probably need that anyway for journalling writepage() output.
  1455. *
  1456. * We don't honour synchronous mounts for writepage(). That would be
  1457. * disastrous. Any write() or metadata operation will sync the fs for
  1458. * us.
  1459. *
  1460. * AKPM2: if all the page's buffers are mapped to disk and !data=journal,
  1461. * we don't need to open a transaction here.
  1462. */
  1463. static int ext3_ordered_writepage(struct page *page,
  1464. struct writeback_control *wbc)
  1465. {
  1466. struct inode *inode = page->mapping->host;
  1467. struct buffer_head *page_bufs;
  1468. handle_t *handle = NULL;
  1469. int ret = 0;
  1470. int err;
  1471. J_ASSERT(PageLocked(page));
  1472. /*
  1473. * We don't want to warn for emergency remount. The condition is
  1474. * ordered to avoid dereferencing inode->i_sb in non-error case to
  1475. * avoid slow-downs.
  1476. */
  1477. WARN_ON_ONCE(IS_RDONLY(inode) &&
  1478. !(EXT3_SB(inode->i_sb)->s_mount_state & EXT3_ERROR_FS));
  1479. /*
  1480. * We give up here if we're reentered, because it might be for a
  1481. * different filesystem.
  1482. */
  1483. if (ext3_journal_current_handle())
  1484. goto out_fail;
  1485. trace_ext3_ordered_writepage(page);
  1486. if (!page_has_buffers(page)) {
  1487. create_empty_buffers(page, inode->i_sb->s_blocksize,
  1488. (1 << BH_Dirty)|(1 << BH_Uptodate));
  1489. page_bufs = page_buffers(page);
  1490. } else {
  1491. page_bufs = page_buffers(page);
  1492. if (!walk_page_buffers(NULL, page_bufs, 0, PAGE_CACHE_SIZE,
  1493. NULL, buffer_unmapped)) {
  1494. /* Provide NULL get_block() to catch bugs if buffers
  1495. * weren't really mapped */
  1496. return block_write_full_page(page, NULL, wbc);
  1497. }
  1498. }
  1499. handle = ext3_journal_start(inode, ext3_writepage_trans_blocks(inode));
  1500. if (IS_ERR(handle)) {
  1501. ret = PTR_ERR(handle);
  1502. goto out_fail;
  1503. }
  1504. walk_page_buffers(handle, page_bufs, 0,
  1505. PAGE_CACHE_SIZE, NULL, bget_one);
  1506. ret = block_write_full_page(page, ext3_get_block, wbc);
  1507. /*
  1508. * The page can become unlocked at any point now, and
  1509. * truncate can then come in and change things. So we
  1510. * can't touch *page from now on. But *page_bufs is
  1511. * safe due to elevated refcount.
  1512. */
  1513. /*
  1514. * And attach them to the current transaction. But only if
  1515. * block_write_full_page() succeeded. Otherwise they are unmapped,
  1516. * and generally junk.
  1517. */
  1518. if (ret == 0) {
  1519. err = walk_page_buffers(handle, page_bufs, 0, PAGE_CACHE_SIZE,
  1520. NULL, journal_dirty_data_fn);
  1521. if (!ret)
  1522. ret = err;
  1523. }
  1524. walk_page_buffers(handle, page_bufs, 0,
  1525. PAGE_CACHE_SIZE, NULL, bput_one);
  1526. err = ext3_journal_stop(handle);
  1527. if (!ret)
  1528. ret = err;
  1529. return ret;
  1530. out_fail:
  1531. redirty_page_for_writepage(wbc, page);
  1532. unlock_page(page);
  1533. return ret;
  1534. }
  1535. static int ext3_writeback_writepage(struct page *page,
  1536. struct writeback_control *wbc)
  1537. {
  1538. struct inode *inode = page->mapping->host;
  1539. handle_t *handle = NULL;
  1540. int ret = 0;
  1541. int err;
  1542. J_ASSERT(PageLocked(page));
  1543. /*
  1544. * We don't want to warn for emergency remount. The condition is
  1545. * ordered to avoid dereferencing inode->i_sb in non-error case to
  1546. * avoid slow-downs.
  1547. */
  1548. WARN_ON_ONCE(IS_RDONLY(inode) &&
  1549. !(EXT3_SB(inode->i_sb)->s_mount_state & EXT3_ERROR_FS));
  1550. if (ext3_journal_current_handle())
  1551. goto out_fail;
  1552. trace_ext3_writeback_writepage(page);
  1553. if (page_has_buffers(page)) {
  1554. if (!walk_page_buffers(NULL, page_buffers(page), 0,
  1555. PAGE_CACHE_SIZE, NULL, buffer_unmapped)) {
  1556. /* Provide NULL get_block() to catch bugs if buffers
  1557. * weren't really mapped */
  1558. return block_write_full_page(page, NULL, wbc);
  1559. }
  1560. }
  1561. handle = ext3_journal_start(inode, ext3_writepage_trans_blocks(inode));
  1562. if (IS_ERR(handle)) {
  1563. ret = PTR_ERR(handle);
  1564. goto out_fail;
  1565. }
  1566. ret = block_write_full_page(page, ext3_get_block, wbc);
  1567. err = ext3_journal_stop(handle);
  1568. if (!ret)
  1569. ret = err;
  1570. return ret;
  1571. out_fail:
  1572. redirty_page_for_writepage(wbc, page);
  1573. unlock_page(page);
  1574. return ret;
  1575. }
  1576. static int ext3_journalled_writepage(struct page *page,
  1577. struct writeback_control *wbc)
  1578. {
  1579. struct inode *inode = page->mapping->host;
  1580. handle_t *handle = NULL;
  1581. int ret = 0;
  1582. int err;
  1583. J_ASSERT(PageLocked(page));
  1584. /*
  1585. * We don't want to warn for emergency remount. The condition is
  1586. * ordered to avoid dereferencing inode->i_sb in non-error case to
  1587. * avoid slow-downs.
  1588. */
  1589. WARN_ON_ONCE(IS_RDONLY(inode) &&
  1590. !(EXT3_SB(inode->i_sb)->s_mount_state & EXT3_ERROR_FS));
  1591. if (ext3_journal_current_handle())
  1592. goto no_write;
  1593. trace_ext3_journalled_writepage(page);
  1594. handle = ext3_journal_start(inode, ext3_writepage_trans_blocks(inode));
  1595. if (IS_ERR(handle)) {
  1596. ret = PTR_ERR(handle);
  1597. goto no_write;
  1598. }
  1599. if (!page_has_buffers(page) || PageChecked(page)) {
  1600. /*
  1601. * It's mmapped pagecache. Add buffers and journal it. There
  1602. * doesn't seem much point in redirtying the page here.
  1603. */
  1604. ClearPageChecked(page);
  1605. ret = __block_write_begin(page, 0, PAGE_CACHE_SIZE,
  1606. ext3_get_block);
  1607. if (ret != 0) {
  1608. ext3_journal_stop(handle);
  1609. goto out_unlock;
  1610. }
  1611. ret = walk_page_buffers(handle, page_buffers(page), 0,
  1612. PAGE_CACHE_SIZE, NULL, do_journal_get_write_access);
  1613. err = walk_page_buffers(handle, page_buffers(page), 0,
  1614. PAGE_CACHE_SIZE, NULL, write_end_fn);
  1615. if (ret == 0)
  1616. ret = err;
  1617. ext3_set_inode_state(inode, EXT3_STATE_JDATA);
  1618. atomic_set(&EXT3_I(inode)->i_datasync_tid,
  1619. handle->h_transaction->t_tid);
  1620. unlock_page(page);
  1621. } else {
  1622. /*
  1623. * It may be a page full of checkpoint-mode buffers. We don't
  1624. * really know unless we go poke around in the buffer_heads.
  1625. * But block_write_full_page will do the right thing.
  1626. */
  1627. ret = block_write_full_page(page, ext3_get_block, wbc);
  1628. }
  1629. err = ext3_journal_stop(handle);
  1630. if (!ret)
  1631. ret = err;
  1632. out:
  1633. return ret;
  1634. no_write:
  1635. redirty_page_for_writepage(wbc, page);
  1636. out_unlock:
  1637. unlock_page(page);
  1638. goto out;
  1639. }
  1640. static int ext3_readpage(struct file *file, struct page *page)
  1641. {
  1642. trace_ext3_readpage(page);
  1643. return mpage_readpage(page, ext3_get_block);
  1644. }
  1645. static int
  1646. ext3_readpages(struct file *file, struct address_space *mapping,
  1647. struct list_head *pages, unsigned nr_pages)
  1648. {
  1649. return mpage_readpages(mapping, pages, nr_pages, ext3_get_block);
  1650. }
  1651. static void ext3_invalidatepage(struct page *page, unsigned long offset)
  1652. {
  1653. journal_t *journal = EXT3_JOURNAL(page->mapping->host);
  1654. trace_ext3_invalidatepage(page, offset);
  1655. /*
  1656. * If it's a full truncate we just forget about the pending dirtying
  1657. */
  1658. if (offset == 0)
  1659. ClearPageChecked(page);
  1660. journal_invalidatepage(journal, page, offset);
  1661. }
  1662. static int ext3_releasepage(struct page *page, gfp_t wait)
  1663. {
  1664. journal_t *journal = EXT3_JOURNAL(page->mapping->host);
  1665. trace_ext3_releasepage(page);
  1666. WARN_ON(PageChecked(page));
  1667. if (!page_has_buffers(page))
  1668. return 0;
  1669. return journal_try_to_free_buffers(journal, page, wait);
  1670. }
  1671. /*
  1672. * If the O_DIRECT write will extend the file then add this inode to the
  1673. * orphan list. So recovery will truncate it back to the original size
  1674. * if the machine crashes during the write.
  1675. *
  1676. * If the O_DIRECT write is intantiating holes inside i_size and the machine
  1677. * crashes then stale disk data _may_ be exposed inside the file. But current
  1678. * VFS code falls back into buffered path in that case so we are safe.
  1679. */
  1680. static ssize_t ext3_direct_IO(int rw, struct kiocb *iocb,
  1681. const struct iovec *iov, loff_t offset,
  1682. unsigned long nr_segs)
  1683. {
  1684. struct file *file = iocb->ki_filp;
  1685. struct inode *inode = file->f_mapping->host;
  1686. struct ext3_inode_info *ei = EXT3_I(inode);
  1687. handle_t *handle;
  1688. ssize_t ret;
  1689. int orphan = 0;
  1690. size_t count = iov_length(iov, nr_segs);
  1691. int retries = 0;
  1692. trace_ext3_direct_IO_enter(inode, offset, iov_length(iov, nr_segs), rw);
  1693. if (rw == WRITE) {
  1694. loff_t final_size = offset + count;
  1695. if (final_size > inode->i_size) {
  1696. /* Credits for sb + inode write */
  1697. handle = ext3_journal_start(inode, 2);
  1698. if (IS_ERR(handle)) {
  1699. ret = PTR_ERR(handle);
  1700. goto out;
  1701. }
  1702. ret = ext3_orphan_add(handle, inode);
  1703. if (ret) {
  1704. ext3_journal_stop(handle);
  1705. goto out;
  1706. }
  1707. orphan = 1;
  1708. ei->i_disksize = inode->i_size;
  1709. ext3_journal_stop(handle);
  1710. }
  1711. }
  1712. retry:
  1713. ret = blockdev_direct_IO(rw, iocb, inode, iov, offset, nr_segs,
  1714. ext3_get_block);
  1715. /*
  1716. * In case of error extending write may have instantiated a few
  1717. * blocks outside i_size. Trim these off again.
  1718. */
  1719. if (unlikely((rw & WRITE) && ret < 0)) {
  1720. loff_t isize = i_size_read(inode);
  1721. loff_t end = offset + iov_length(iov, nr_segs);
  1722. if (end > isize)
  1723. ext3_truncate_failed_direct_write(inode);
  1724. }
  1725. if (ret == -ENOSPC && ext3_should_retry_alloc(inode->i_sb, &retries))
  1726. goto retry;
  1727. if (orphan) {
  1728. int err;
  1729. /* Credits for sb + inode write */
  1730. handle = ext3_journal_start(inode, 2);
  1731. if (IS_ERR(handle)) {
  1732. /* This is really bad luck. We've written the data
  1733. * but cannot extend i_size. Truncate allocated blocks
  1734. * and pretend the write failed... */
  1735. ext3_truncate_failed_direct_write(inode);
  1736. ret = PTR_ERR(handle);
  1737. goto out;
  1738. }
  1739. if (inode->i_nlink)
  1740. ext3_orphan_del(handle, inode);
  1741. if (ret > 0) {
  1742. loff_t end = offset + ret;
  1743. if (end > inode->i_size) {
  1744. ei->i_disksize = end;
  1745. i_size_write(inode, end);
  1746. /*
  1747. * We're going to return a positive `ret'
  1748. * here due to non-zero-length I/O, so there's
  1749. * no way of reporting error returns from
  1750. * ext3_mark_inode_dirty() to userspace. So
  1751. * ignore it.
  1752. */
  1753. ext3_mark_inode_dirty(handle, inode);
  1754. }
  1755. }
  1756. err = ext3_journal_stop(handle);
  1757. if (ret == 0)
  1758. ret = err;
  1759. }
  1760. out:
  1761. trace_ext3_direct_IO_exit(inode, offset,
  1762. iov_length(iov, nr_segs), rw, ret);
  1763. return ret;
  1764. }
  1765. /*
  1766. * Pages can be marked dirty completely asynchronously from ext3's journalling
  1767. * activity. By filemap_sync_pte(), try_to_unmap_one(), etc. We cannot do
  1768. * much here because ->set_page_dirty is called under VFS locks. The page is
  1769. * not necessarily locked.
  1770. *
  1771. * We cannot just dirty the page and leave attached buffers clean, because the
  1772. * buffers' dirty state is "definitive". We cannot just set the buffers dirty
  1773. * or jbddirty because all the journalling code will explode.
  1774. *
  1775. * So what we do is to mark the page "pending dirty" and next time writepage
  1776. * is called, propagate that into the buffers appropriately.
  1777. */
  1778. static int ext3_journalled_set_page_dirty(struct page *page)
  1779. {
  1780. SetPageChecked(page);
  1781. return __set_page_dirty_nobuffers(page);
  1782. }
  1783. static const struct address_space_operations ext3_ordered_aops = {
  1784. .readpage = ext3_readpage,
  1785. .readpages = ext3_readpages,
  1786. .writepage = ext3_ordered_writepage,
  1787. .write_begin = ext3_write_begin,
  1788. .write_end = ext3_ordered_write_end,
  1789. .bmap = ext3_bmap,
  1790. .invalidatepage = ext3_invalidatepage,
  1791. .releasepage = ext3_releasepage,
  1792. .direct_IO = ext3_direct_IO,
  1793. .migratepage = buffer_migrate_page,
  1794. .is_partially_uptodate = block_is_partially_uptodate,
  1795. .error_remove_page = generic_error_remove_page,
  1796. };
  1797. static const struct address_space_operations ext3_writeback_aops = {
  1798. .readpage = ext3_readpage,
  1799. .readpages = ext3_readpages,
  1800. .writepage = ext3_writeback_writepage,
  1801. .write_begin = ext3_write_begin,
  1802. .write_end = ext3_writeback_write_end,
  1803. .bmap = ext3_bmap,
  1804. .invalidatepage = ext3_invalidatepage,
  1805. .releasepage = ext3_releasepage,
  1806. .direct_IO = ext3_direct_IO,
  1807. .migratepage = buffer_migrate_page,
  1808. .is_partially_uptodate = block_is_partially_uptodate,
  1809. .error_remove_page = generic_error_remove_page,
  1810. };
  1811. static const struct address_space_operations ext3_journalled_aops = {
  1812. .readpage = ext3_readpage,
  1813. .readpages = ext3_readpages,
  1814. .writepage = ext3_journalled_writepage,
  1815. .write_begin = ext3_write_begin,
  1816. .write_end = ext3_journalled_write_end,
  1817. .set_page_dirty = ext3_journalled_set_page_dirty,
  1818. .bmap = ext3_bmap,
  1819. .invalidatepage = ext3_invalidatepage,
  1820. .releasepage = ext3_releasepage,
  1821. .is_partially_uptodate = block_is_partially_uptodate,
  1822. .error_remove_page = generic_error_remove_page,
  1823. };
  1824. void ext3_set_aops(struct inode *inode)
  1825. {
  1826. if (ext3_should_order_data(inode))
  1827. inode->i_mapping->a_ops = &ext3_ordered_aops;
  1828. else if (ext3_should_writeback_data(inode))
  1829. inode->i_mapping->a_ops = &ext3_writeback_aops;
  1830. else
  1831. inode->i_mapping->a_ops = &ext3_journalled_aops;
  1832. }
  1833. /*
  1834. * ext3_block_truncate_page() zeroes out a mapping from file offset `from'
  1835. * up to the end of the block which corresponds to `from'.
  1836. * This required during truncate. We need to physically zero the tail end
  1837. * of that block so it doesn't yield old data if the file is later grown.
  1838. */
  1839. static int ext3_block_truncate_page(struct inode *inode, loff_t from)
  1840. {
  1841. ext3_fsblk_t index = from >> PAGE_CACHE_SHIFT;
  1842. unsigned offset = from & (PAGE_CACHE_SIZE - 1);
  1843. unsigned blocksize, iblock, length, pos;
  1844. struct page *page;
  1845. handle_t *handle = NULL;
  1846. struct buffer_head *bh;
  1847. int err = 0;
  1848. /* Truncated on block boundary - nothing to do */
  1849. blocksize = inode->i_sb->s_blocksize;
  1850. if ((from & (blocksize - 1)) == 0)
  1851. return 0;
  1852. page = grab_cache_page(inode->i_mapping, index);
  1853. if (!page)
  1854. return -ENOMEM;
  1855. length = blocksize - (offset & (blocksize - 1));
  1856. iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
  1857. if (!page_has_buffers(page))
  1858. create_empty_buffers(page, blocksize, 0);
  1859. /* Find the buffer that contains "offset" */
  1860. bh = page_buffers(page);
  1861. pos = blocksize;
  1862. while (offset >= pos) {
  1863. bh = bh->b_this_page;
  1864. iblock++;
  1865. pos += blocksize;
  1866. }
  1867. err = 0;
  1868. if (buffer_freed(bh)) {
  1869. BUFFER_TRACE(bh, "freed: skip");
  1870. goto unlock;
  1871. }
  1872. if (!buffer_mapped(bh)) {
  1873. BUFFER_TRACE(bh, "unmapped");
  1874. ext3_get_block(inode, iblock, bh, 0);
  1875. /* unmapped? It's a hole - nothing to do */
  1876. if (!buffer_mapped(bh)) {
  1877. BUFFER_TRACE(bh, "still unmapped");
  1878. goto unlock;
  1879. }
  1880. }
  1881. /* Ok, it's mapped. Make sure it's up-to-date */
  1882. if (PageUptodate(page))
  1883. set_buffer_uptodate(bh);
  1884. if (!bh_uptodate_or_lock(bh)) {
  1885. err = bh_submit_read(bh);
  1886. /* Uhhuh. Read error. Complain and punt. */
  1887. if (err)
  1888. goto unlock;
  1889. }
  1890. /* data=writeback mode doesn't need transaction to zero-out data */
  1891. if (!ext3_should_writeback_data(inode)) {
  1892. /* We journal at most one block */
  1893. handle = ext3_journal_start(inode, 1);
  1894. if (IS_ERR(handle)) {
  1895. clear_highpage(page);
  1896. flush_dcache_page(page);
  1897. err = PTR_ERR(handle);
  1898. goto unlock;
  1899. }
  1900. }
  1901. if (ext3_should_journal_data(inode)) {
  1902. BUFFER_TRACE(bh, "get write access");
  1903. err = ext3_journal_get_write_access(handle, bh);
  1904. if (err)
  1905. goto stop;
  1906. }
  1907. zero_user(page, offset, length);
  1908. BUFFER_TRACE(bh, "zeroed end of block");
  1909. err = 0;
  1910. if (ext3_should_journal_data(inode)) {
  1911. err = ext3_journal_dirty_metadata(handle, bh);
  1912. } else {
  1913. if (ext3_should_order_data(inode))
  1914. err = ext3_journal_dirty_data(handle, bh);
  1915. mark_buffer_dirty(bh);
  1916. }
  1917. stop:
  1918. if (handle)
  1919. ext3_journal_stop(handle);
  1920. unlock:
  1921. unlock_page(page);
  1922. page_cache_release(page);
  1923. return err;
  1924. }
  1925. /*
  1926. * Probably it should be a library function... search for first non-zero word
  1927. * or memcmp with zero_page, whatever is better for particular architecture.
  1928. * Linus?
  1929. */
  1930. static inline int all_zeroes(__le32 *p, __le32 *q)
  1931. {
  1932. while (p < q)
  1933. if (*p++)
  1934. return 0;
  1935. return 1;
  1936. }
  1937. /**
  1938. * ext3_find_shared - find the indirect blocks for partial truncation.
  1939. * @inode: inode in question
  1940. * @depth: depth of the affected branch
  1941. * @offsets: offsets of pointers in that branch (see ext3_block_to_path)
  1942. * @chain: place to store the pointers to partial indirect blocks
  1943. * @top: place to the (detached) top of branch
  1944. *
  1945. * This is a helper function used by ext3_truncate().
  1946. *
  1947. * When we do truncate() we may have to clean the ends of several
  1948. * indirect blocks but leave the blocks themselves alive. Block is
  1949. * partially truncated if some data below the new i_size is referred
  1950. * from it (and it is on the path to the first completely truncated
  1951. * data block, indeed). We have to free the top of that path along
  1952. * with everything to the right of the path. Since no allocation
  1953. * past the truncation point is possible until ext3_truncate()
  1954. * finishes, we may safely do the latter, but top of branch may
  1955. * require special attention - pageout below the truncation point
  1956. * might try to populate it.
  1957. *
  1958. * We atomically detach the top of branch from the tree, store the
  1959. * block number of its root in *@top, pointers to buffer_heads of
  1960. * partially truncated blocks - in @chain[].bh and pointers to
  1961. * their last elements that should not be removed - in
  1962. * @chain[].p. Return value is the pointer to last filled element
  1963. * of @chain.
  1964. *
  1965. * The work left to caller to do the actual freeing of subtrees:
  1966. * a) free the subtree starting from *@top
  1967. * b) free the subtrees whose roots are stored in
  1968. * (@chain[i].p+1 .. end of @chain[i].bh->b_data)
  1969. * c) free the subtrees growing from the inode past the @chain[0].
  1970. * (no partially truncated stuff there). */
  1971. static Indirect *ext3_find_shared(struct inode *inode, int depth,
  1972. int offsets[4], Indirect chain[4], __le32 *top)
  1973. {
  1974. Indirect *partial, *p;
  1975. int k, err;
  1976. *top = 0;
  1977. /* Make k index the deepest non-null offset + 1 */
  1978. for (k = depth; k > 1 && !offsets[k-1]; k--)
  1979. ;
  1980. partial = ext3_get_branch(inode, k, offsets, chain, &err);
  1981. /* Writer: pointers */
  1982. if (!partial)
  1983. partial = chain + k-1;
  1984. /*
  1985. * If the branch acquired continuation since we've looked at it -
  1986. * fine, it should all survive and (new) top doesn't belong to us.
  1987. */
  1988. if (!partial->key && *partial->p)
  1989. /* Writer: end */
  1990. goto no_top;
  1991. for (p=partial; p>chain && all_zeroes((__le32*)p->bh->b_data,p->p); p--)
  1992. ;
  1993. /*
  1994. * OK, we've found the last block that must survive. The rest of our
  1995. * branch should be detached before unlocking. However, if that rest
  1996. * of branch is all ours and does not grow immediately from the inode
  1997. * it's easier to cheat and just decrement partial->p.
  1998. */
  1999. if (p == chain + k - 1 && p > chain) {
  2000. p->p--;
  2001. } else {
  2002. *top = *p->p;
  2003. /* Nope, don't do this in ext3. Must leave the tree intact */
  2004. #if 0
  2005. *p->p = 0;
  2006. #endif
  2007. }
  2008. /* Writer: end */
  2009. while(partial > p) {
  2010. brelse(partial->bh);
  2011. partial--;
  2012. }
  2013. no_top:
  2014. return partial;
  2015. }
  2016. /*
  2017. * Zero a number of block pointers in either an inode or an indirect block.
  2018. * If we restart the transaction we must again get write access to the
  2019. * indirect block for further modification.
  2020. *
  2021. * We release `count' blocks on disk, but (last - first) may be greater
  2022. * than `count' because there can be holes in there.
  2023. */
  2024. static void ext3_clear_blocks(handle_t *handle, struct inode *inode,
  2025. struct buffer_head *bh, ext3_fsblk_t block_to_free,
  2026. unsigned long count, __le32 *first, __le32 *last)
  2027. {
  2028. __le32 *p;
  2029. if (try_to_extend_transaction(handle, inode)) {
  2030. if (bh) {
  2031. BUFFER_TRACE(bh, "call ext3_journal_dirty_metadata");
  2032. if (ext3_journal_dirty_metadata(handle, bh))
  2033. return;
  2034. }
  2035. ext3_mark_inode_dirty(handle, inode);
  2036. truncate_restart_transaction(handle, inode);
  2037. if (bh) {
  2038. BUFFER_TRACE(bh, "retaking write access");
  2039. if (ext3_journal_get_write_access(handle, bh))
  2040. return;
  2041. }
  2042. }
  2043. /*
  2044. * Any buffers which are on the journal will be in memory. We find
  2045. * them on the hash table so journal_revoke() will run journal_forget()
  2046. * on them. We've already detached each block from the file, so
  2047. * bforget() in journal_forget() should be safe.
  2048. *
  2049. * AKPM: turn on bforget in journal_forget()!!!
  2050. */
  2051. for (p = first; p < last; p++) {
  2052. u32 nr = le32_to_cpu(*p);
  2053. if (nr) {
  2054. struct buffer_head *bh;
  2055. *p = 0;
  2056. bh = sb_find_get_block(inode->i_sb, nr);
  2057. ext3_forget(handle, 0, inode, bh, nr);
  2058. }
  2059. }
  2060. ext3_free_blocks(handle, inode, block_to_free, count);
  2061. }
  2062. /**
  2063. * ext3_free_data - free a list of data blocks
  2064. * @handle: handle for this transaction
  2065. * @inode: inode we are dealing with
  2066. * @this_bh: indirect buffer_head which contains *@first and *@last
  2067. * @first: array of block numbers
  2068. * @last: points immediately past the end of array
  2069. *
  2070. * We are freeing all blocks referred from that array (numbers are stored as
  2071. * little-endian 32-bit) and updating @inode->i_blocks appropriately.
  2072. *
  2073. * We accumulate contiguous runs of blocks to free. Conveniently, if these
  2074. * blocks are contiguous then releasing them at one time will only affect one
  2075. * or two bitmap blocks (+ group descriptor(s) and superblock) and we won't
  2076. * actually use a lot of journal space.
  2077. *
  2078. * @this_bh will be %NULL if @first and @last point into the inode's direct
  2079. * block pointers.
  2080. */
  2081. static void ext3_free_data(handle_t *handle, struct inode *inode,
  2082. struct buffer_head *this_bh,
  2083. __le32 *first, __le32 *last)
  2084. {
  2085. ext3_fsblk_t block_to_free = 0; /* Starting block # of a run */
  2086. unsigned long count = 0; /* Number of blocks in the run */
  2087. __le32 *block_to_free_p = NULL; /* Pointer into inode/ind
  2088. corresponding to
  2089. block_to_free */
  2090. ext3_fsblk_t nr; /* Current block # */
  2091. __le32 *p; /* Pointer into inode/ind
  2092. for current block */
  2093. int err;
  2094. if (this_bh) { /* For indirect block */
  2095. BUFFER_TRACE(this_bh, "get_write_access");
  2096. err = ext3_journal_get_write_access(handle, this_bh);
  2097. /* Important: if we can't update the indirect pointers
  2098. * to the blocks, we can't free them. */
  2099. if (err)
  2100. return;
  2101. }
  2102. for (p = first; p < last; p++) {
  2103. nr = le32_to_cpu(*p);
  2104. if (nr) {
  2105. /* accumulate blocks to free if they're contiguous */
  2106. if (count == 0) {
  2107. block_to_free = nr;
  2108. block_to_free_p = p;
  2109. count = 1;
  2110. } else if (nr == block_to_free + count) {
  2111. count++;
  2112. } else {
  2113. ext3_clear_blocks(handle, inode, this_bh,
  2114. block_to_free,
  2115. count, block_to_free_p, p);
  2116. block_to_free = nr;
  2117. block_to_free_p = p;
  2118. count = 1;
  2119. }
  2120. }
  2121. }
  2122. if (count > 0)
  2123. ext3_clear_blocks(handle, inode, this_bh, block_to_free,
  2124. count, block_to_free_p, p);
  2125. if (this_bh) {
  2126. BUFFER_TRACE(this_bh, "call ext3_journal_dirty_metadata");
  2127. /*
  2128. * The buffer head should have an attached journal head at this
  2129. * point. However, if the data is corrupted and an indirect
  2130. * block pointed to itself, it would have been detached when
  2131. * the block was cleared. Check for this instead of OOPSing.
  2132. */
  2133. if (bh2jh(this_bh))
  2134. ext3_journal_dirty_metadata(handle, this_bh);
  2135. else
  2136. ext3_error(inode->i_sb, "ext3_free_data",
  2137. "circular indirect block detected, "
  2138. "inode=%lu, block=%llu",
  2139. inode->i_ino,
  2140. (unsigned long long)this_bh->b_blocknr);
  2141. }
  2142. }
  2143. /**
  2144. * ext3_free_branches - free an array of branches
  2145. * @handle: JBD handle for this transaction
  2146. * @inode: inode we are dealing with
  2147. * @parent_bh: the buffer_head which contains *@first and *@last
  2148. * @first: array of block numbers
  2149. * @last: pointer immediately past the end of array
  2150. * @depth: depth of the branches to free
  2151. *
  2152. * We are freeing all blocks referred from these branches (numbers are
  2153. * stored as little-endian 32-bit) and updating @inode->i_blocks
  2154. * appropriately.
  2155. */
  2156. static void ext3_free_branches(handle_t *handle, struct inode *inode,
  2157. struct buffer_head *parent_bh,
  2158. __le32 *first, __le32 *last, int depth)
  2159. {
  2160. ext3_fsblk_t nr;
  2161. __le32 *p;
  2162. if (is_handle_aborted(handle))
  2163. return;
  2164. if (depth--) {
  2165. struct buffer_head *bh;
  2166. int addr_per_block = EXT3_ADDR_PER_BLOCK(inode->i_sb);
  2167. p = last;
  2168. while (--p >= first) {
  2169. nr = le32_to_cpu(*p);
  2170. if (!nr)
  2171. continue; /* A hole */
  2172. /* Go read the buffer for the next level down */
  2173. bh = sb_bread(inode->i_sb, nr);
  2174. /*
  2175. * A read failure? Report error and clear slot
  2176. * (should be rare).
  2177. */
  2178. if (!bh) {
  2179. ext3_error(inode->i_sb, "ext3_free_branches",
  2180. "Read failure, inode=%lu, block="E3FSBLK,
  2181. inode->i_ino, nr);
  2182. continue;
  2183. }
  2184. /* This zaps the entire block. Bottom up. */
  2185. BUFFER_TRACE(bh, "free child branches");
  2186. ext3_free_branches(handle, inode, bh,
  2187. (__le32*)bh->b_data,
  2188. (__le32*)bh->b_data + addr_per_block,
  2189. depth);
  2190. /*
  2191. * Everything below this this pointer has been
  2192. * released. Now let this top-of-subtree go.
  2193. *
  2194. * We want the freeing of this indirect block to be
  2195. * atomic in the journal with the updating of the
  2196. * bitmap block which owns it. So make some room in
  2197. * the journal.
  2198. *
  2199. * We zero the parent pointer *after* freeing its
  2200. * pointee in the bitmaps, so if extend_transaction()
  2201. * for some reason fails to put the bitmap changes and
  2202. * the release into the same transaction, recovery
  2203. * will merely complain about releasing a free block,
  2204. * rather than leaking blocks.
  2205. */
  2206. if (is_handle_aborted(handle))
  2207. return;
  2208. if (try_to_extend_transaction(handle, inode)) {
  2209. ext3_mark_inode_dirty(handle, inode);
  2210. truncate_restart_transaction(handle, inode);
  2211. }
  2212. /*
  2213. * We've probably journalled the indirect block several
  2214. * times during the truncate. But it's no longer
  2215. * needed and we now drop it from the transaction via
  2216. * journal_revoke().
  2217. *
  2218. * That's easy if it's exclusively part of this
  2219. * transaction. But if it's part of the committing
  2220. * transaction then journal_forget() will simply
  2221. * brelse() it. That means that if the underlying
  2222. * block is reallocated in ext3_get_block(),
  2223. * unmap_underlying_metadata() will find this block
  2224. * and will try to get rid of it. damn, damn. Thus
  2225. * we don't allow a block to be reallocated until
  2226. * a transaction freeing it has fully committed.
  2227. *
  2228. * We also have to make sure journal replay after a
  2229. * crash does not overwrite non-journaled data blocks
  2230. * with old metadata when the block got reallocated for
  2231. * data. Thus we have to store a revoke record for a
  2232. * block in the same transaction in which we free the
  2233. * block.
  2234. */
  2235. ext3_forget(handle, 1, inode, bh, bh->b_blocknr);
  2236. ext3_free_blocks(handle, inode, nr, 1);
  2237. if (parent_bh) {
  2238. /*
  2239. * The block which we have just freed is
  2240. * pointed to by an indirect block: journal it
  2241. */
  2242. BUFFER_TRACE(parent_bh, "get_write_access");
  2243. if (!ext3_journal_get_write_access(handle,
  2244. parent_bh)){
  2245. *p = 0;
  2246. BUFFER_TRACE(parent_bh,
  2247. "call ext3_journal_dirty_metadata");
  2248. ext3_journal_dirty_metadata(handle,
  2249. parent_bh);
  2250. }
  2251. }
  2252. }
  2253. } else {
  2254. /* We have reached the bottom of the tree. */
  2255. BUFFER_TRACE(parent_bh, "free data blocks");
  2256. ext3_free_data(handle, inode, parent_bh, first, last);
  2257. }
  2258. }
  2259. int ext3_can_truncate(struct inode *inode)
  2260. {
  2261. if (S_ISREG(inode->i_mode))
  2262. return 1;
  2263. if (S_ISDIR(inode->i_mode))
  2264. return 1;
  2265. if (S_ISLNK(inode->i_mode))
  2266. return !ext3_inode_is_fast_symlink(inode);
  2267. return 0;
  2268. }
  2269. /*
  2270. * ext3_truncate()
  2271. *
  2272. * We block out ext3_get_block() block instantiations across the entire
  2273. * transaction, and VFS/VM ensures that ext3_truncate() cannot run
  2274. * simultaneously on behalf of the same inode.
  2275. *
  2276. * As we work through the truncate and commit bits of it to the journal there
  2277. * is one core, guiding principle: the file's tree must always be consistent on
  2278. * disk. We must be able to restart the truncate after a crash.
  2279. *
  2280. * The file's tree may be transiently inconsistent in memory (although it
  2281. * probably isn't), but whenever we close off and commit a journal transaction,
  2282. * the contents of (the filesystem + the journal) must be consistent and
  2283. * restartable. It's pretty simple, really: bottom up, right to left (although
  2284. * left-to-right works OK too).
  2285. *
  2286. * Note that at recovery time, journal replay occurs *before* the restart of
  2287. * truncate against the orphan inode list.
  2288. *
  2289. * The committed inode has the new, desired i_size (which is the same as
  2290. * i_disksize in this case). After a crash, ext3_orphan_cleanup() will see
  2291. * that this inode's truncate did not complete and it will again call
  2292. * ext3_truncate() to have another go. So there will be instantiated blocks
  2293. * to the right of the truncation point in a crashed ext3 filesystem. But
  2294. * that's fine - as long as they are linked from the inode, the post-crash
  2295. * ext3_truncate() run will find them and release them.
  2296. */
  2297. void ext3_truncate(struct inode *inode)
  2298. {
  2299. handle_t *handle;
  2300. struct ext3_inode_info *ei = EXT3_I(inode);
  2301. __le32 *i_data = ei->i_data;
  2302. int addr_per_block = EXT3_ADDR_PER_BLOCK(inode->i_sb);
  2303. int offsets[4];
  2304. Indirect chain[4];
  2305. Indirect *partial;
  2306. __le32 nr = 0;
  2307. int n;
  2308. long last_block;
  2309. unsigned blocksize = inode->i_sb->s_blocksize;
  2310. trace_ext3_truncate_enter(inode);
  2311. if (!ext3_can_truncate(inode))
  2312. goto out_notrans;
  2313. if (inode->i_size == 0 && ext3_should_writeback_data(inode))
  2314. ext3_set_inode_state(inode, EXT3_STATE_FLUSH_ON_CLOSE);
  2315. handle = start_transaction(inode);
  2316. if (IS_ERR(handle))
  2317. goto out_notrans;
  2318. last_block = (inode->i_size + blocksize-1)
  2319. >> EXT3_BLOCK_SIZE_BITS(inode->i_sb);
  2320. n = ext3_block_to_path(inode, last_block, offsets, NULL);
  2321. if (n == 0)
  2322. goto out_stop; /* error */
  2323. /*
  2324. * OK. This truncate is going to happen. We add the inode to the
  2325. * orphan list, so that if this truncate spans multiple transactions,
  2326. * and we crash, we will resume the truncate when the filesystem
  2327. * recovers. It also marks the inode dirty, to catch the new size.
  2328. *
  2329. * Implication: the file must always be in a sane, consistent
  2330. * truncatable state while each transaction commits.
  2331. */
  2332. if (ext3_orphan_add(handle, inode))
  2333. goto out_stop;
  2334. /*
  2335. * The orphan list entry will now protect us from any crash which
  2336. * occurs before the truncate completes, so it is now safe to propagate
  2337. * the new, shorter inode size (held for now in i_size) into the
  2338. * on-disk inode. We do this via i_disksize, which is the value which
  2339. * ext3 *really* writes onto the disk inode.
  2340. */
  2341. ei->i_disksize = inode->i_size;
  2342. /*
  2343. * From here we block out all ext3_get_block() callers who want to
  2344. * modify the block allocation tree.
  2345. */
  2346. mutex_lock(&ei->truncate_mutex);
  2347. if (n == 1) { /* direct blocks */
  2348. ext3_free_data(handle, inode, NULL, i_data+offsets[0],
  2349. i_data + EXT3_NDIR_BLOCKS);
  2350. goto do_indirects;
  2351. }
  2352. partial = ext3_find_shared(inode, n, offsets, chain, &nr);
  2353. /* Kill the top of shared branch (not detached) */
  2354. if (nr) {
  2355. if (partial == chain) {
  2356. /* Shared branch grows from the inode */
  2357. ext3_free_branches(handle, inode, NULL,
  2358. &nr, &nr+1, (chain+n-1) - partial);
  2359. *partial->p = 0;
  2360. /*
  2361. * We mark the inode dirty prior to restart,
  2362. * and prior to stop. No need for it here.
  2363. */
  2364. } else {
  2365. /* Shared branch grows from an indirect block */
  2366. ext3_free_branches(handle, inode, partial->bh,
  2367. partial->p,
  2368. partial->p+1, (chain+n-1) - partial);
  2369. }
  2370. }
  2371. /* Clear the ends of indirect blocks on the shared branch */
  2372. while (partial > chain) {
  2373. ext3_free_branches(handle, inode, partial->bh, partial->p + 1,
  2374. (__le32*)partial->bh->b_data+addr_per_block,
  2375. (chain+n-1) - partial);
  2376. BUFFER_TRACE(partial->bh, "call brelse");
  2377. brelse (partial->bh);
  2378. partial--;
  2379. }
  2380. do_indirects:
  2381. /* Kill the remaining (whole) subtrees */
  2382. switch (offsets[0]) {
  2383. default:
  2384. nr = i_data[EXT3_IND_BLOCK];
  2385. if (nr) {
  2386. ext3_free_branches(handle, inode, NULL, &nr, &nr+1, 1);
  2387. i_data[EXT3_IND_BLOCK] = 0;
  2388. }
  2389. case EXT3_IND_BLOCK:
  2390. nr = i_data[EXT3_DIND_BLOCK];
  2391. if (nr) {
  2392. ext3_free_branches(handle, inode, NULL, &nr, &nr+1, 2);
  2393. i_data[EXT3_DIND_BLOCK] = 0;
  2394. }
  2395. case EXT3_DIND_BLOCK:
  2396. nr = i_data[EXT3_TIND_BLOCK];
  2397. if (nr) {
  2398. ext3_free_branches(handle, inode, NULL, &nr, &nr+1, 3);
  2399. i_data[EXT3_TIND_BLOCK] = 0;
  2400. }
  2401. case EXT3_TIND_BLOCK:
  2402. ;
  2403. }
  2404. ext3_discard_reservation(inode);
  2405. mutex_unlock(&ei->truncate_mutex);
  2406. inode->i_mtime = inode->i_ctime = CURRENT_TIME_SEC;
  2407. ext3_mark_inode_dirty(handle, inode);
  2408. /*
  2409. * In a multi-transaction truncate, we only make the final transaction
  2410. * synchronous
  2411. */
  2412. if (IS_SYNC(inode))
  2413. handle->h_sync = 1;
  2414. out_stop:
  2415. /*
  2416. * If this was a simple ftruncate(), and the file will remain alive
  2417. * then we need to clear up the orphan record which we created above.
  2418. * However, if this was a real unlink then we were called by
  2419. * ext3_evict_inode(), and we allow that function to clean up the
  2420. * orphan info for us.
  2421. */
  2422. if (inode->i_nlink)
  2423. ext3_orphan_del(handle, inode);
  2424. ext3_journal_stop(handle);
  2425. trace_ext3_truncate_exit(inode);
  2426. return;
  2427. out_notrans:
  2428. /*
  2429. * Delete the inode from orphan list so that it doesn't stay there
  2430. * forever and trigger assertion on umount.
  2431. */
  2432. if (inode->i_nlink)
  2433. ext3_orphan_del(NULL, inode);
  2434. trace_ext3_truncate_exit(inode);
  2435. }
  2436. static ext3_fsblk_t ext3_get_inode_block(struct super_block *sb,
  2437. unsigned long ino, struct ext3_iloc *iloc)
  2438. {
  2439. unsigned long block_group;
  2440. unsigned long offset;
  2441. ext3_fsblk_t block;
  2442. struct ext3_group_desc *gdp;
  2443. if (!ext3_valid_inum(sb, ino)) {
  2444. /*
  2445. * This error is already checked for in namei.c unless we are
  2446. * looking at an NFS filehandle, in which case no error
  2447. * report is needed
  2448. */
  2449. return 0;
  2450. }
  2451. block_group = (ino - 1) / EXT3_INODES_PER_GROUP(sb);
  2452. gdp = ext3_get_group_desc(sb, block_group, NULL);
  2453. if (!gdp)
  2454. return 0;
  2455. /*
  2456. * Figure out the offset within the block group inode table
  2457. */
  2458. offset = ((ino - 1) % EXT3_INODES_PER_GROUP(sb)) *
  2459. EXT3_INODE_SIZE(sb);
  2460. block = le32_to_cpu(gdp->bg_inode_table) +
  2461. (offset >> EXT3_BLOCK_SIZE_BITS(sb));
  2462. iloc->block_group = block_group;
  2463. iloc->offset = offset & (EXT3_BLOCK_SIZE(sb) - 1);
  2464. return block;
  2465. }
  2466. /*
  2467. * ext3_get_inode_loc returns with an extra refcount against the inode's
  2468. * underlying buffer_head on success. If 'in_mem' is true, we have all
  2469. * data in memory that is needed to recreate the on-disk version of this
  2470. * inode.
  2471. */
  2472. static int __ext3_get_inode_loc(struct inode *inode,
  2473. struct ext3_iloc *iloc, int in_mem)
  2474. {
  2475. ext3_fsblk_t block;
  2476. struct buffer_head *bh;
  2477. block = ext3_get_inode_block(inode->i_sb, inode->i_ino, iloc);
  2478. if (!block)
  2479. return -EIO;
  2480. bh = sb_getblk(inode->i_sb, block);
  2481. if (!bh) {
  2482. ext3_error (inode->i_sb, "ext3_get_inode_loc",
  2483. "unable to read inode block - "
  2484. "inode=%lu, block="E3FSBLK,
  2485. inode->i_ino, block);
  2486. return -EIO;
  2487. }
  2488. if (!buffer_uptodate(bh)) {
  2489. lock_buffer(bh);
  2490. /*
  2491. * If the buffer has the write error flag, we have failed
  2492. * to write out another inode in the same block. In this
  2493. * case, we don't have to read the block because we may
  2494. * read the old inode data successfully.
  2495. */
  2496. if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
  2497. set_buffer_uptodate(bh);
  2498. if (buffer_uptodate(bh)) {
  2499. /* someone brought it uptodate while we waited */
  2500. unlock_buffer(bh);
  2501. goto has_buffer;
  2502. }
  2503. /*
  2504. * If we have all information of the inode in memory and this
  2505. * is the only valid inode in the block, we need not read the
  2506. * block.
  2507. */
  2508. if (in_mem) {
  2509. struct buffer_head *bitmap_bh;
  2510. struct ext3_group_desc *desc;
  2511. int inodes_per_buffer;
  2512. int inode_offset, i;
  2513. int block_group;
  2514. int start;
  2515. block_group = (inode->i_ino - 1) /
  2516. EXT3_INODES_PER_GROUP(inode->i_sb);
  2517. inodes_per_buffer = bh->b_size /
  2518. EXT3_INODE_SIZE(inode->i_sb);
  2519. inode_offset = ((inode->i_ino - 1) %
  2520. EXT3_INODES_PER_GROUP(inode->i_sb));
  2521. start = inode_offset & ~(inodes_per_buffer - 1);
  2522. /* Is the inode bitmap in cache? */
  2523. desc = ext3_get_group_desc(inode->i_sb,
  2524. block_group, NULL);
  2525. if (!desc)
  2526. goto make_io;
  2527. bitmap_bh = sb_getblk(inode->i_sb,
  2528. le32_to_cpu(desc->bg_inode_bitmap));
  2529. if (!bitmap_bh)
  2530. goto make_io;
  2531. /*
  2532. * If the inode bitmap isn't in cache then the
  2533. * optimisation may end up performing two reads instead
  2534. * of one, so skip it.
  2535. */
  2536. if (!buffer_uptodate(bitmap_bh)) {
  2537. brelse(bitmap_bh);
  2538. goto make_io;
  2539. }
  2540. for (i = start; i < start + inodes_per_buffer; i++) {
  2541. if (i == inode_offset)
  2542. continue;
  2543. if (ext3_test_bit(i, bitmap_bh->b_data))
  2544. break;
  2545. }
  2546. brelse(bitmap_bh);
  2547. if (i == start + inodes_per_buffer) {
  2548. /* all other inodes are free, so skip I/O */
  2549. memset(bh->b_data, 0, bh->b_size);
  2550. set_buffer_uptodate(bh);
  2551. unlock_buffer(bh);
  2552. goto has_buffer;
  2553. }
  2554. }
  2555. make_io:
  2556. /*
  2557. * There are other valid inodes in the buffer, this inode
  2558. * has in-inode xattrs, or we don't have this inode in memory.
  2559. * Read the block from disk.
  2560. */
  2561. trace_ext3_load_inode(inode);
  2562. get_bh(bh);
  2563. bh->b_end_io = end_buffer_read_sync;
  2564. submit_bh(READ | REQ_META | REQ_PRIO, bh);
  2565. wait_on_buffer(bh);
  2566. if (!buffer_uptodate(bh)) {
  2567. ext3_error(inode->i_sb, "ext3_get_inode_loc",
  2568. "unable to read inode block - "
  2569. "inode=%lu, block="E3FSBLK,
  2570. inode->i_ino, block);
  2571. brelse(bh);
  2572. return -EIO;
  2573. }
  2574. }
  2575. has_buffer:
  2576. iloc->bh = bh;
  2577. return 0;
  2578. }
  2579. int ext3_get_inode_loc(struct inode *inode, struct ext3_iloc *iloc)
  2580. {
  2581. /* We have all inode data except xattrs in memory here. */
  2582. return __ext3_get_inode_loc(inode, iloc,
  2583. !ext3_test_inode_state(inode, EXT3_STATE_XATTR));
  2584. }
  2585. void ext3_set_inode_flags(struct inode *inode)
  2586. {
  2587. unsigned int flags = EXT3_I(inode)->i_flags;
  2588. inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
  2589. if (flags & EXT3_SYNC_FL)
  2590. inode->i_flags |= S_SYNC;
  2591. if (flags & EXT3_APPEND_FL)
  2592. inode->i_flags |= S_APPEND;
  2593. if (flags & EXT3_IMMUTABLE_FL)
  2594. inode->i_flags |= S_IMMUTABLE;
  2595. if (flags & EXT3_NOATIME_FL)
  2596. inode->i_flags |= S_NOATIME;
  2597. if (flags & EXT3_DIRSYNC_FL)
  2598. inode->i_flags |= S_DIRSYNC;
  2599. }
  2600. /* Propagate flags from i_flags to EXT3_I(inode)->i_flags */
  2601. void ext3_get_inode_flags(struct ext3_inode_info *ei)
  2602. {
  2603. unsigned int flags = ei->vfs_inode.i_flags;
  2604. ei->i_flags &= ~(EXT3_SYNC_FL|EXT3_APPEND_FL|
  2605. EXT3_IMMUTABLE_FL|EXT3_NOATIME_FL|EXT3_DIRSYNC_FL);
  2606. if (flags & S_SYNC)
  2607. ei->i_flags |= EXT3_SYNC_FL;
  2608. if (flags & S_APPEND)
  2609. ei->i_flags |= EXT3_APPEND_FL;
  2610. if (flags & S_IMMUTABLE)
  2611. ei->i_flags |= EXT3_IMMUTABLE_FL;
  2612. if (flags & S_NOATIME)
  2613. ei->i_flags |= EXT3_NOATIME_FL;
  2614. if (flags & S_DIRSYNC)
  2615. ei->i_flags |= EXT3_DIRSYNC_FL;
  2616. }
  2617. struct inode *ext3_iget(struct super_block *sb, unsigned long ino)
  2618. {
  2619. struct ext3_iloc iloc;
  2620. struct ext3_inode *raw_inode;
  2621. struct ext3_inode_info *ei;
  2622. struct buffer_head *bh;
  2623. struct inode *inode;
  2624. journal_t *journal = EXT3_SB(sb)->s_journal;
  2625. transaction_t *transaction;
  2626. long ret;
  2627. int block;
  2628. inode = iget_locked(sb, ino);
  2629. if (!inode)
  2630. return ERR_PTR(-ENOMEM);
  2631. if (!(inode->i_state & I_NEW))
  2632. return inode;
  2633. ei = EXT3_I(inode);
  2634. ei->i_block_alloc_info = NULL;
  2635. ret = __ext3_get_inode_loc(inode, &iloc, 0);
  2636. if (ret < 0)
  2637. goto bad_inode;
  2638. bh = iloc.bh;
  2639. raw_inode = ext3_raw_inode(&iloc);
  2640. inode->i_mode = le16_to_cpu(raw_inode->i_mode);
  2641. inode->i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
  2642. inode->i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
  2643. if(!(test_opt (inode->i_sb, NO_UID32))) {
  2644. inode->i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
  2645. inode->i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
  2646. }
  2647. set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
  2648. inode->i_size = le32_to_cpu(raw_inode->i_size);
  2649. inode->i_atime.tv_sec = (signed)le32_to_cpu(raw_inode->i_atime);
  2650. inode->i_ctime.tv_sec = (signed)le32_to_cpu(raw_inode->i_ctime);
  2651. inode->i_mtime.tv_sec = (signed)le32_to_cpu(raw_inode->i_mtime);
  2652. inode->i_atime.tv_nsec = inode->i_ctime.tv_nsec = inode->i_mtime.tv_nsec = 0;
  2653. ei->i_state_flags = 0;
  2654. ei->i_dir_start_lookup = 0;
  2655. ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
  2656. /* We now have enough fields to check if the inode was active or not.
  2657. * This is needed because nfsd might try to access dead inodes
  2658. * the test is that same one that e2fsck uses
  2659. * NeilBrown 1999oct15
  2660. */
  2661. if (inode->i_nlink == 0) {
  2662. if (inode->i_mode == 0 ||
  2663. !(EXT3_SB(inode->i_sb)->s_mount_state & EXT3_ORPHAN_FS)) {
  2664. /* this inode is deleted */
  2665. brelse (bh);
  2666. ret = -ESTALE;
  2667. goto bad_inode;
  2668. }
  2669. /* The only unlinked inodes we let through here have
  2670. * valid i_mode and are being read by the orphan
  2671. * recovery code: that's fine, we're about to complete
  2672. * the process of deleting those. */
  2673. }
  2674. inode->i_blocks = le32_to_cpu(raw_inode->i_blocks);
  2675. ei->i_flags = le32_to_cpu(raw_inode->i_flags);
  2676. #ifdef EXT3_FRAGMENTS
  2677. ei->i_faddr = le32_to_cpu(raw_inode->i_faddr);
  2678. ei->i_frag_no = raw_inode->i_frag;
  2679. ei->i_frag_size = raw_inode->i_fsize;
  2680. #endif
  2681. ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl);
  2682. if (!S_ISREG(inode->i_mode)) {
  2683. ei->i_dir_acl = le32_to_cpu(raw_inode->i_dir_acl);
  2684. } else {
  2685. inode->i_size |=
  2686. ((__u64)le32_to_cpu(raw_inode->i_size_high)) << 32;
  2687. }
  2688. ei->i_disksize = inode->i_size;
  2689. inode->i_generation = le32_to_cpu(raw_inode->i_generation);
  2690. ei->i_block_group = iloc.block_group;
  2691. /*
  2692. * NOTE! The in-memory inode i_data array is in little-endian order
  2693. * even on big-endian machines: we do NOT byteswap the block numbers!
  2694. */
  2695. for (block = 0; block < EXT3_N_BLOCKS; block++)
  2696. ei->i_data[block] = raw_inode->i_block[block];
  2697. INIT_LIST_HEAD(&ei->i_orphan);
  2698. /*
  2699. * Set transaction id's of transactions that have to be committed
  2700. * to finish f[data]sync. We set them to currently running transaction
  2701. * as we cannot be sure that the inode or some of its metadata isn't
  2702. * part of the transaction - the inode could have been reclaimed and
  2703. * now it is reread from disk.
  2704. */
  2705. if (journal) {
  2706. tid_t tid;
  2707. spin_lock(&journal->j_state_lock);
  2708. if (journal->j_running_transaction)
  2709. transaction = journal->j_running_transaction;
  2710. else
  2711. transaction = journal->j_committing_transaction;
  2712. if (transaction)
  2713. tid = transaction->t_tid;
  2714. else
  2715. tid = journal->j_commit_sequence;
  2716. spin_unlock(&journal->j_state_lock);
  2717. atomic_set(&ei->i_sync_tid, tid);
  2718. atomic_set(&ei->i_datasync_tid, tid);
  2719. }
  2720. if (inode->i_ino >= EXT3_FIRST_INO(inode->i_sb) + 1 &&
  2721. EXT3_INODE_SIZE(inode->i_sb) > EXT3_GOOD_OLD_INODE_SIZE) {
  2722. /*
  2723. * When mke2fs creates big inodes it does not zero out
  2724. * the unused bytes above EXT3_GOOD_OLD_INODE_SIZE,
  2725. * so ignore those first few inodes.
  2726. */
  2727. ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
  2728. if (EXT3_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
  2729. EXT3_INODE_SIZE(inode->i_sb)) {
  2730. brelse (bh);
  2731. ret = -EIO;
  2732. goto bad_inode;
  2733. }
  2734. if (ei->i_extra_isize == 0) {
  2735. /* The extra space is currently unused. Use it. */
  2736. ei->i_extra_isize = sizeof(struct ext3_inode) -
  2737. EXT3_GOOD_OLD_INODE_SIZE;
  2738. } else {
  2739. __le32 *magic = (void *)raw_inode +
  2740. EXT3_GOOD_OLD_INODE_SIZE +
  2741. ei->i_extra_isize;
  2742. if (*magic == cpu_to_le32(EXT3_XATTR_MAGIC))
  2743. ext3_set_inode_state(inode, EXT3_STATE_XATTR);
  2744. }
  2745. } else
  2746. ei->i_extra_isize = 0;
  2747. if (S_ISREG(inode->i_mode)) {
  2748. inode->i_op = &ext3_file_inode_operations;
  2749. inode->i_fop = &ext3_file_operations;
  2750. ext3_set_aops(inode);
  2751. } else if (S_ISDIR(inode->i_mode)) {
  2752. inode->i_op = &ext3_dir_inode_operations;
  2753. inode->i_fop = &ext3_dir_operations;
  2754. } else if (S_ISLNK(inode->i_mode)) {
  2755. if (ext3_inode_is_fast_symlink(inode)) {
  2756. inode->i_op = &ext3_fast_symlink_inode_operations;
  2757. nd_terminate_link(ei->i_data, inode->i_size,
  2758. sizeof(ei->i_data) - 1);
  2759. } else {
  2760. inode->i_op = &ext3_symlink_inode_operations;
  2761. ext3_set_aops(inode);
  2762. }
  2763. } else {
  2764. inode->i_op = &ext3_special_inode_operations;
  2765. if (raw_inode->i_block[0])
  2766. init_special_inode(inode, inode->i_mode,
  2767. old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
  2768. else
  2769. init_special_inode(inode, inode->i_mode,
  2770. new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
  2771. }
  2772. brelse (iloc.bh);
  2773. ext3_set_inode_flags(inode);
  2774. unlock_new_inode(inode);
  2775. return inode;
  2776. bad_inode:
  2777. iget_failed(inode);
  2778. return ERR_PTR(ret);
  2779. }
  2780. /*
  2781. * Post the struct inode info into an on-disk inode location in the
  2782. * buffer-cache. This gobbles the caller's reference to the
  2783. * buffer_head in the inode location struct.
  2784. *
  2785. * The caller must have write access to iloc->bh.
  2786. */
  2787. static int ext3_do_update_inode(handle_t *handle,
  2788. struct inode *inode,
  2789. struct ext3_iloc *iloc)
  2790. {
  2791. struct ext3_inode *raw_inode = ext3_raw_inode(iloc);
  2792. struct ext3_inode_info *ei = EXT3_I(inode);
  2793. struct buffer_head *bh = iloc->bh;
  2794. int err = 0, rc, block;
  2795. again:
  2796. /* we can't allow multiple procs in here at once, its a bit racey */
  2797. lock_buffer(bh);
  2798. /* For fields not not tracking in the in-memory inode,
  2799. * initialise them to zero for new inodes. */
  2800. if (ext3_test_inode_state(inode, EXT3_STATE_NEW))
  2801. memset(raw_inode, 0, EXT3_SB(inode->i_sb)->s_inode_size);
  2802. ext3_get_inode_flags(ei);
  2803. raw_inode->i_mode = cpu_to_le16(inode->i_mode);
  2804. if(!(test_opt(inode->i_sb, NO_UID32))) {
  2805. raw_inode->i_uid_low = cpu_to_le16(low_16_bits(inode->i_uid));
  2806. raw_inode->i_gid_low = cpu_to_le16(low_16_bits(inode->i_gid));
  2807. /*
  2808. * Fix up interoperability with old kernels. Otherwise, old inodes get
  2809. * re-used with the upper 16 bits of the uid/gid intact
  2810. */
  2811. if(!ei->i_dtime) {
  2812. raw_inode->i_uid_high =
  2813. cpu_to_le16(high_16_bits(inode->i_uid));
  2814. raw_inode->i_gid_high =
  2815. cpu_to_le16(high_16_bits(inode->i_gid));
  2816. } else {
  2817. raw_inode->i_uid_high = 0;
  2818. raw_inode->i_gid_high = 0;
  2819. }
  2820. } else {
  2821. raw_inode->i_uid_low =
  2822. cpu_to_le16(fs_high2lowuid(inode->i_uid));
  2823. raw_inode->i_gid_low =
  2824. cpu_to_le16(fs_high2lowgid(inode->i_gid));
  2825. raw_inode->i_uid_high = 0;
  2826. raw_inode->i_gid_high = 0;
  2827. }
  2828. raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
  2829. raw_inode->i_size = cpu_to_le32(ei->i_disksize);
  2830. raw_inode->i_atime = cpu_to_le32(inode->i_atime.tv_sec);
  2831. raw_inode->i_ctime = cpu_to_le32(inode->i_ctime.tv_sec);
  2832. raw_inode->i_mtime = cpu_to_le32(inode->i_mtime.tv_sec);
  2833. raw_inode->i_blocks = cpu_to_le32(inode->i_blocks);
  2834. raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
  2835. raw_inode->i_flags = cpu_to_le32(ei->i_flags);
  2836. #ifdef EXT3_FRAGMENTS
  2837. raw_inode->i_faddr = cpu_to_le32(ei->i_faddr);
  2838. raw_inode->i_frag = ei->i_frag_no;
  2839. raw_inode->i_fsize = ei->i_frag_size;
  2840. #endif
  2841. raw_inode->i_file_acl = cpu_to_le32(ei->i_file_acl);
  2842. if (!S_ISREG(inode->i_mode)) {
  2843. raw_inode->i_dir_acl = cpu_to_le32(ei->i_dir_acl);
  2844. } else {
  2845. raw_inode->i_size_high =
  2846. cpu_to_le32(ei->i_disksize >> 32);
  2847. if (ei->i_disksize > 0x7fffffffULL) {
  2848. struct super_block *sb = inode->i_sb;
  2849. if (!EXT3_HAS_RO_COMPAT_FEATURE(sb,
  2850. EXT3_FEATURE_RO_COMPAT_LARGE_FILE) ||
  2851. EXT3_SB(sb)->s_es->s_rev_level ==
  2852. cpu_to_le32(EXT3_GOOD_OLD_REV)) {
  2853. /* If this is the first large file
  2854. * created, add a flag to the superblock.
  2855. */
  2856. unlock_buffer(bh);
  2857. err = ext3_journal_get_write_access(handle,
  2858. EXT3_SB(sb)->s_sbh);
  2859. if (err)
  2860. goto out_brelse;
  2861. ext3_update_dynamic_rev(sb);
  2862. EXT3_SET_RO_COMPAT_FEATURE(sb,
  2863. EXT3_FEATURE_RO_COMPAT_LARGE_FILE);
  2864. handle->h_sync = 1;
  2865. err = ext3_journal_dirty_metadata(handle,
  2866. EXT3_SB(sb)->s_sbh);
  2867. /* get our lock and start over */
  2868. goto again;
  2869. }
  2870. }
  2871. }
  2872. raw_inode->i_generation = cpu_to_le32(inode->i_generation);
  2873. if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
  2874. if (old_valid_dev(inode->i_rdev)) {
  2875. raw_inode->i_block[0] =
  2876. cpu_to_le32(old_encode_dev(inode->i_rdev));
  2877. raw_inode->i_block[1] = 0;
  2878. } else {
  2879. raw_inode->i_block[0] = 0;
  2880. raw_inode->i_block[1] =
  2881. cpu_to_le32(new_encode_dev(inode->i_rdev));
  2882. raw_inode->i_block[2] = 0;
  2883. }
  2884. } else for (block = 0; block < EXT3_N_BLOCKS; block++)
  2885. raw_inode->i_block[block] = ei->i_data[block];
  2886. if (ei->i_extra_isize)
  2887. raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize);
  2888. BUFFER_TRACE(bh, "call ext3_journal_dirty_metadata");
  2889. unlock_buffer(bh);
  2890. rc = ext3_journal_dirty_metadata(handle, bh);
  2891. if (!err)
  2892. err = rc;
  2893. ext3_clear_inode_state(inode, EXT3_STATE_NEW);
  2894. atomic_set(&ei->i_sync_tid, handle->h_transaction->t_tid);
  2895. out_brelse:
  2896. brelse (bh);
  2897. ext3_std_error(inode->i_sb, err);
  2898. return err;
  2899. }
  2900. /*
  2901. * ext3_write_inode()
  2902. *
  2903. * We are called from a few places:
  2904. *
  2905. * - Within generic_file_write() for O_SYNC files.
  2906. * Here, there will be no transaction running. We wait for any running
  2907. * trasnaction to commit.
  2908. *
  2909. * - Within sys_sync(), kupdate and such.
  2910. * We wait on commit, if tol to.
  2911. *
  2912. * - Within prune_icache() (PF_MEMALLOC == true)
  2913. * Here we simply return. We can't afford to block kswapd on the
  2914. * journal commit.
  2915. *
  2916. * In all cases it is actually safe for us to return without doing anything,
  2917. * because the inode has been copied into a raw inode buffer in
  2918. * ext3_mark_inode_dirty(). This is a correctness thing for O_SYNC and for
  2919. * knfsd.
  2920. *
  2921. * Note that we are absolutely dependent upon all inode dirtiers doing the
  2922. * right thing: they *must* call mark_inode_dirty() after dirtying info in
  2923. * which we are interested.
  2924. *
  2925. * It would be a bug for them to not do this. The code:
  2926. *
  2927. * mark_inode_dirty(inode)
  2928. * stuff();
  2929. * inode->i_size = expr;
  2930. *
  2931. * is in error because a kswapd-driven write_inode() could occur while
  2932. * `stuff()' is running, and the new i_size will be lost. Plus the inode
  2933. * will no longer be on the superblock's dirty inode list.
  2934. */
  2935. int ext3_write_inode(struct inode *inode, struct writeback_control *wbc)
  2936. {
  2937. if (current->flags & PF_MEMALLOC)
  2938. return 0;
  2939. if (ext3_journal_current_handle()) {
  2940. jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
  2941. dump_stack();
  2942. return -EIO;
  2943. }
  2944. if (wbc->sync_mode != WB_SYNC_ALL)
  2945. return 0;
  2946. return ext3_force_commit(inode->i_sb);
  2947. }
  2948. /*
  2949. * ext3_setattr()
  2950. *
  2951. * Called from notify_change.
  2952. *
  2953. * We want to trap VFS attempts to truncate the file as soon as
  2954. * possible. In particular, we want to make sure that when the VFS
  2955. * shrinks i_size, we put the inode on the orphan list and modify
  2956. * i_disksize immediately, so that during the subsequent flushing of
  2957. * dirty pages and freeing of disk blocks, we can guarantee that any
  2958. * commit will leave the blocks being flushed in an unused state on
  2959. * disk. (On recovery, the inode will get truncated and the blocks will
  2960. * be freed, so we have a strong guarantee that no future commit will
  2961. * leave these blocks visible to the user.)
  2962. *
  2963. * Called with inode->sem down.
  2964. */
  2965. int ext3_setattr(struct dentry *dentry, struct iattr *attr)
  2966. {
  2967. struct inode *inode = dentry->d_inode;
  2968. int error, rc = 0;
  2969. const unsigned int ia_valid = attr->ia_valid;
  2970. error = inode_change_ok(inode, attr);
  2971. if (error)
  2972. return error;
  2973. if (is_quota_modification(inode, attr))
  2974. dquot_initialize(inode);
  2975. if ((ia_valid & ATTR_UID && attr->ia_uid != inode->i_uid) ||
  2976. (ia_valid & ATTR_GID && attr->ia_gid != inode->i_gid)) {
  2977. handle_t *handle;
  2978. /* (user+group)*(old+new) structure, inode write (sb,
  2979. * inode block, ? - but truncate inode update has it) */
  2980. handle = ext3_journal_start(inode, EXT3_MAXQUOTAS_INIT_BLOCKS(inode->i_sb)+
  2981. EXT3_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)+3);
  2982. if (IS_ERR(handle)) {
  2983. error = PTR_ERR(handle);
  2984. goto err_out;
  2985. }
  2986. error = dquot_transfer(inode, attr);
  2987. if (error) {
  2988. ext3_journal_stop(handle);
  2989. return error;
  2990. }
  2991. /* Update corresponding info in inode so that everything is in
  2992. * one transaction */
  2993. if (attr->ia_valid & ATTR_UID)
  2994. inode->i_uid = attr->ia_uid;
  2995. if (attr->ia_valid & ATTR_GID)
  2996. inode->i_gid = attr->ia_gid;
  2997. error = ext3_mark_inode_dirty(handle, inode);
  2998. ext3_journal_stop(handle);
  2999. }
  3000. if (attr->ia_valid & ATTR_SIZE)
  3001. inode_dio_wait(inode);
  3002. if (S_ISREG(inode->i_mode) &&
  3003. attr->ia_valid & ATTR_SIZE && attr->ia_size < inode->i_size) {
  3004. handle_t *handle;
  3005. handle = ext3_journal_start(inode, 3);
  3006. if (IS_ERR(handle)) {
  3007. error = PTR_ERR(handle);
  3008. goto err_out;
  3009. }
  3010. error = ext3_orphan_add(handle, inode);
  3011. if (error) {
  3012. ext3_journal_stop(handle);
  3013. goto err_out;
  3014. }
  3015. EXT3_I(inode)->i_disksize = attr->ia_size;
  3016. error = ext3_mark_inode_dirty(handle, inode);
  3017. ext3_journal_stop(handle);
  3018. if (error) {
  3019. /* Some hard fs error must have happened. Bail out. */
  3020. ext3_orphan_del(NULL, inode);
  3021. goto err_out;
  3022. }
  3023. rc = ext3_block_truncate_page(inode, attr->ia_size);
  3024. if (rc) {
  3025. /* Cleanup orphan list and exit */
  3026. handle = ext3_journal_start(inode, 3);
  3027. if (IS_ERR(handle)) {
  3028. ext3_orphan_del(NULL, inode);
  3029. goto err_out;
  3030. }
  3031. ext3_orphan_del(handle, inode);
  3032. ext3_journal_stop(handle);
  3033. goto err_out;
  3034. }
  3035. }
  3036. if ((attr->ia_valid & ATTR_SIZE) &&
  3037. attr->ia_size != i_size_read(inode)) {
  3038. truncate_setsize(inode, attr->ia_size);
  3039. ext3_truncate(inode);
  3040. }
  3041. setattr_copy(inode, attr);
  3042. mark_inode_dirty(inode);
  3043. if (ia_valid & ATTR_MODE)
  3044. rc = ext3_acl_chmod(inode);
  3045. err_out:
  3046. ext3_std_error(inode->i_sb, error);
  3047. if (!error)
  3048. error = rc;
  3049. return error;
  3050. }
  3051. /*
  3052. * How many blocks doth make a writepage()?
  3053. *
  3054. * With N blocks per page, it may be:
  3055. * N data blocks
  3056. * 2 indirect block
  3057. * 2 dindirect
  3058. * 1 tindirect
  3059. * N+5 bitmap blocks (from the above)
  3060. * N+5 group descriptor summary blocks
  3061. * 1 inode block
  3062. * 1 superblock.
  3063. * 2 * EXT3_SINGLEDATA_TRANS_BLOCKS for the quote files
  3064. *
  3065. * 3 * (N + 5) + 2 + 2 * EXT3_SINGLEDATA_TRANS_BLOCKS
  3066. *
  3067. * With ordered or writeback data it's the same, less the N data blocks.
  3068. *
  3069. * If the inode's direct blocks can hold an integral number of pages then a
  3070. * page cannot straddle two indirect blocks, and we can only touch one indirect
  3071. * and dindirect block, and the "5" above becomes "3".
  3072. *
  3073. * This still overestimates under most circumstances. If we were to pass the
  3074. * start and end offsets in here as well we could do block_to_path() on each
  3075. * block and work out the exact number of indirects which are touched. Pah.
  3076. */
  3077. static int ext3_writepage_trans_blocks(struct inode *inode)
  3078. {
  3079. int bpp = ext3_journal_blocks_per_page(inode);
  3080. int indirects = (EXT3_NDIR_BLOCKS % bpp) ? 5 : 3;
  3081. int ret;
  3082. if (ext3_should_journal_data(inode))
  3083. ret = 3 * (bpp + indirects) + 2;
  3084. else
  3085. ret = 2 * (bpp + indirects) + indirects + 2;
  3086. #ifdef CONFIG_QUOTA
  3087. /* We know that structure was already allocated during dquot_initialize so
  3088. * we will be updating only the data blocks + inodes */
  3089. ret += EXT3_MAXQUOTAS_TRANS_BLOCKS(inode->i_sb);
  3090. #endif
  3091. return ret;
  3092. }
  3093. /*
  3094. * The caller must have previously called ext3_reserve_inode_write().
  3095. * Give this, we know that the caller already has write access to iloc->bh.
  3096. */
  3097. int ext3_mark_iloc_dirty(handle_t *handle,
  3098. struct inode *inode, struct ext3_iloc *iloc)
  3099. {
  3100. int err = 0;
  3101. /* the do_update_inode consumes one bh->b_count */
  3102. get_bh(iloc->bh);
  3103. /* ext3_do_update_inode() does journal_dirty_metadata */
  3104. err = ext3_do_update_inode(handle, inode, iloc);
  3105. put_bh(iloc->bh);
  3106. return err;
  3107. }
  3108. /*
  3109. * On success, We end up with an outstanding reference count against
  3110. * iloc->bh. This _must_ be cleaned up later.
  3111. */
  3112. int
  3113. ext3_reserve_inode_write(handle_t *handle, struct inode *inode,
  3114. struct ext3_iloc *iloc)
  3115. {
  3116. int err = 0;
  3117. if (handle) {
  3118. err = ext3_get_inode_loc(inode, iloc);
  3119. if (!err) {
  3120. BUFFER_TRACE(iloc->bh, "get_write_access");
  3121. err = ext3_journal_get_write_access(handle, iloc->bh);
  3122. if (err) {
  3123. brelse(iloc->bh);
  3124. iloc->bh = NULL;
  3125. }
  3126. }
  3127. }
  3128. ext3_std_error(inode->i_sb, err);
  3129. return err;
  3130. }
  3131. /*
  3132. * What we do here is to mark the in-core inode as clean with respect to inode
  3133. * dirtiness (it may still be data-dirty).
  3134. * This means that the in-core inode may be reaped by prune_icache
  3135. * without having to perform any I/O. This is a very good thing,
  3136. * because *any* task may call prune_icache - even ones which
  3137. * have a transaction open against a different journal.
  3138. *
  3139. * Is this cheating? Not really. Sure, we haven't written the
  3140. * inode out, but prune_icache isn't a user-visible syncing function.
  3141. * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
  3142. * we start and wait on commits.
  3143. *
  3144. * Is this efficient/effective? Well, we're being nice to the system
  3145. * by cleaning up our inodes proactively so they can be reaped
  3146. * without I/O. But we are potentially leaving up to five seconds'
  3147. * worth of inodes floating about which prune_icache wants us to
  3148. * write out. One way to fix that would be to get prune_icache()
  3149. * to do a write_super() to free up some memory. It has the desired
  3150. * effect.
  3151. */
  3152. int ext3_mark_inode_dirty(handle_t *handle, struct inode *inode)
  3153. {
  3154. struct ext3_iloc iloc;
  3155. int err;
  3156. might_sleep();
  3157. trace_ext3_mark_inode_dirty(inode, _RET_IP_);
  3158. err = ext3_reserve_inode_write(handle, inode, &iloc);
  3159. if (!err)
  3160. err = ext3_mark_iloc_dirty(handle, inode, &iloc);
  3161. return err;
  3162. }
  3163. /*
  3164. * ext3_dirty_inode() is called from __mark_inode_dirty()
  3165. *
  3166. * We're really interested in the case where a file is being extended.
  3167. * i_size has been changed by generic_commit_write() and we thus need
  3168. * to include the updated inode in the current transaction.
  3169. *
  3170. * Also, dquot_alloc_space() will always dirty the inode when blocks
  3171. * are allocated to the file.
  3172. *
  3173. * If the inode is marked synchronous, we don't honour that here - doing
  3174. * so would cause a commit on atime updates, which we don't bother doing.
  3175. * We handle synchronous inodes at the highest possible level.
  3176. */
  3177. void ext3_dirty_inode(struct inode *inode, int flags)
  3178. {
  3179. handle_t *current_handle = ext3_journal_current_handle();
  3180. handle_t *handle;
  3181. handle = ext3_journal_start(inode, 2);
  3182. if (IS_ERR(handle))
  3183. goto out;
  3184. if (current_handle &&
  3185. current_handle->h_transaction != handle->h_transaction) {
  3186. /* This task has a transaction open against a different fs */
  3187. printk(KERN_EMERG "%s: transactions do not match!\n",
  3188. __func__);
  3189. } else {
  3190. jbd_debug(5, "marking dirty. outer handle=%p\n",
  3191. current_handle);
  3192. ext3_mark_inode_dirty(handle, inode);
  3193. }
  3194. ext3_journal_stop(handle);
  3195. out:
  3196. return;
  3197. }
  3198. #if 0
  3199. /*
  3200. * Bind an inode's backing buffer_head into this transaction, to prevent
  3201. * it from being flushed to disk early. Unlike
  3202. * ext3_reserve_inode_write, this leaves behind no bh reference and
  3203. * returns no iloc structure, so the caller needs to repeat the iloc
  3204. * lookup to mark the inode dirty later.
  3205. */
  3206. static int ext3_pin_inode(handle_t *handle, struct inode *inode)
  3207. {
  3208. struct ext3_iloc iloc;
  3209. int err = 0;
  3210. if (handle) {
  3211. err = ext3_get_inode_loc(inode, &iloc);
  3212. if (!err) {
  3213. BUFFER_TRACE(iloc.bh, "get_write_access");
  3214. err = journal_get_write_access(handle, iloc.bh);
  3215. if (!err)
  3216. err = ext3_journal_dirty_metadata(handle,
  3217. iloc.bh);
  3218. brelse(iloc.bh);
  3219. }
  3220. }
  3221. ext3_std_error(inode->i_sb, err);
  3222. return err;
  3223. }
  3224. #endif
  3225. int ext3_change_inode_journal_flag(struct inode *inode, int val)
  3226. {
  3227. journal_t *journal;
  3228. handle_t *handle;
  3229. int err;
  3230. /*
  3231. * We have to be very careful here: changing a data block's
  3232. * journaling status dynamically is dangerous. If we write a
  3233. * data block to the journal, change the status and then delete
  3234. * that block, we risk forgetting to revoke the old log record
  3235. * from the journal and so a subsequent replay can corrupt data.
  3236. * So, first we make sure that the journal is empty and that
  3237. * nobody is changing anything.
  3238. */
  3239. journal = EXT3_JOURNAL(inode);
  3240. if (is_journal_aborted(journal))
  3241. return -EROFS;
  3242. journal_lock_updates(journal);
  3243. journal_flush(journal);
  3244. /*
  3245. * OK, there are no updates running now, and all cached data is
  3246. * synced to disk. We are now in a completely consistent state
  3247. * which doesn't have anything in the journal, and we know that
  3248. * no filesystem updates are running, so it is safe to modify
  3249. * the inode's in-core data-journaling state flag now.
  3250. */
  3251. if (val)
  3252. EXT3_I(inode)->i_flags |= EXT3_JOURNAL_DATA_FL;
  3253. else
  3254. EXT3_I(inode)->i_flags &= ~EXT3_JOURNAL_DATA_FL;
  3255. ext3_set_aops(inode);
  3256. journal_unlock_updates(journal);
  3257. /* Finally we can mark the inode as dirty. */
  3258. handle = ext3_journal_start(inode, 1);
  3259. if (IS_ERR(handle))
  3260. return PTR_ERR(handle);
  3261. err = ext3_mark_inode_dirty(handle, inode);
  3262. handle->h_sync = 1;
  3263. ext3_journal_stop(handle);
  3264. ext3_std_error(inode->i_sb, err);
  3265. return err;
  3266. }