dir.c 13 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514
  1. /*
  2. * linux/fs/ext3/dir.c
  3. *
  4. * Copyright (C) 1992, 1993, 1994, 1995
  5. * Remy Card (card@masi.ibp.fr)
  6. * Laboratoire MASI - Institut Blaise Pascal
  7. * Universite Pierre et Marie Curie (Paris VI)
  8. *
  9. * from
  10. *
  11. * linux/fs/minix/dir.c
  12. *
  13. * Copyright (C) 1991, 1992 Linus Torvalds
  14. *
  15. * ext3 directory handling functions
  16. *
  17. * Big-endian to little-endian byte-swapping/bitmaps by
  18. * David S. Miller (davem@caip.rutgers.edu), 1995
  19. *
  20. * Hash Tree Directory indexing (c) 2001 Daniel Phillips
  21. *
  22. */
  23. #include "ext3.h"
  24. static unsigned char ext3_filetype_table[] = {
  25. DT_UNKNOWN, DT_REG, DT_DIR, DT_CHR, DT_BLK, DT_FIFO, DT_SOCK, DT_LNK
  26. };
  27. static int ext3_readdir(struct file *, void *, filldir_t);
  28. static int ext3_dx_readdir(struct file * filp,
  29. void * dirent, filldir_t filldir);
  30. static int ext3_release_dir (struct inode * inode,
  31. struct file * filp);
  32. const struct file_operations ext3_dir_operations = {
  33. .llseek = generic_file_llseek,
  34. .read = generic_read_dir,
  35. .readdir = ext3_readdir, /* we take BKL. needed?*/
  36. .unlocked_ioctl = ext3_ioctl,
  37. #ifdef CONFIG_COMPAT
  38. .compat_ioctl = ext3_compat_ioctl,
  39. #endif
  40. .fsync = ext3_sync_file, /* BKL held */
  41. .release = ext3_release_dir,
  42. };
  43. static unsigned char get_dtype(struct super_block *sb, int filetype)
  44. {
  45. if (!EXT3_HAS_INCOMPAT_FEATURE(sb, EXT3_FEATURE_INCOMPAT_FILETYPE) ||
  46. (filetype >= EXT3_FT_MAX))
  47. return DT_UNKNOWN;
  48. return (ext3_filetype_table[filetype]);
  49. }
  50. int ext3_check_dir_entry (const char * function, struct inode * dir,
  51. struct ext3_dir_entry_2 * de,
  52. struct buffer_head * bh,
  53. unsigned long offset)
  54. {
  55. const char * error_msg = NULL;
  56. const int rlen = ext3_rec_len_from_disk(de->rec_len);
  57. if (unlikely(rlen < EXT3_DIR_REC_LEN(1)))
  58. error_msg = "rec_len is smaller than minimal";
  59. else if (unlikely(rlen % 4 != 0))
  60. error_msg = "rec_len % 4 != 0";
  61. else if (unlikely(rlen < EXT3_DIR_REC_LEN(de->name_len)))
  62. error_msg = "rec_len is too small for name_len";
  63. else if (unlikely((((char *) de - bh->b_data) + rlen > dir->i_sb->s_blocksize)))
  64. error_msg = "directory entry across blocks";
  65. else if (unlikely(le32_to_cpu(de->inode) >
  66. le32_to_cpu(EXT3_SB(dir->i_sb)->s_es->s_inodes_count)))
  67. error_msg = "inode out of bounds";
  68. if (unlikely(error_msg != NULL))
  69. ext3_error (dir->i_sb, function,
  70. "bad entry in directory #%lu: %s - "
  71. "offset=%lu, inode=%lu, rec_len=%d, name_len=%d",
  72. dir->i_ino, error_msg, offset,
  73. (unsigned long) le32_to_cpu(de->inode),
  74. rlen, de->name_len);
  75. return error_msg == NULL ? 1 : 0;
  76. }
  77. static int ext3_readdir(struct file * filp,
  78. void * dirent, filldir_t filldir)
  79. {
  80. int error = 0;
  81. unsigned long offset;
  82. int i, stored;
  83. struct ext3_dir_entry_2 *de;
  84. struct super_block *sb;
  85. int err;
  86. struct inode *inode = filp->f_path.dentry->d_inode;
  87. int ret = 0;
  88. int dir_has_error = 0;
  89. sb = inode->i_sb;
  90. if (EXT3_HAS_COMPAT_FEATURE(inode->i_sb,
  91. EXT3_FEATURE_COMPAT_DIR_INDEX) &&
  92. ((EXT3_I(inode)->i_flags & EXT3_INDEX_FL) ||
  93. ((inode->i_size >> sb->s_blocksize_bits) == 1))) {
  94. err = ext3_dx_readdir(filp, dirent, filldir);
  95. if (err != ERR_BAD_DX_DIR) {
  96. ret = err;
  97. goto out;
  98. }
  99. /*
  100. * We don't set the inode dirty flag since it's not
  101. * critical that it get flushed back to the disk.
  102. */
  103. EXT3_I(filp->f_path.dentry->d_inode)->i_flags &= ~EXT3_INDEX_FL;
  104. }
  105. stored = 0;
  106. offset = filp->f_pos & (sb->s_blocksize - 1);
  107. while (!error && !stored && filp->f_pos < inode->i_size) {
  108. unsigned long blk = filp->f_pos >> EXT3_BLOCK_SIZE_BITS(sb);
  109. struct buffer_head map_bh;
  110. struct buffer_head *bh = NULL;
  111. map_bh.b_state = 0;
  112. err = ext3_get_blocks_handle(NULL, inode, blk, 1, &map_bh, 0);
  113. if (err > 0) {
  114. pgoff_t index = map_bh.b_blocknr >>
  115. (PAGE_CACHE_SHIFT - inode->i_blkbits);
  116. if (!ra_has_index(&filp->f_ra, index))
  117. page_cache_sync_readahead(
  118. sb->s_bdev->bd_inode->i_mapping,
  119. &filp->f_ra, filp,
  120. index, 1);
  121. filp->f_ra.prev_pos = (loff_t)index << PAGE_CACHE_SHIFT;
  122. bh = ext3_bread(NULL, inode, blk, 0, &err);
  123. }
  124. /*
  125. * We ignore I/O errors on directories so users have a chance
  126. * of recovering data when there's a bad sector
  127. */
  128. if (!bh) {
  129. if (!dir_has_error) {
  130. ext3_error(sb, __func__, "directory #%lu "
  131. "contains a hole at offset %lld",
  132. inode->i_ino, filp->f_pos);
  133. dir_has_error = 1;
  134. }
  135. /* corrupt size? Maybe no more blocks to read */
  136. if (filp->f_pos > inode->i_blocks << 9)
  137. break;
  138. filp->f_pos += sb->s_blocksize - offset;
  139. continue;
  140. }
  141. revalidate:
  142. /* If the dir block has changed since the last call to
  143. * readdir(2), then we might be pointing to an invalid
  144. * dirent right now. Scan from the start of the block
  145. * to make sure. */
  146. if (filp->f_version != inode->i_version) {
  147. for (i = 0; i < sb->s_blocksize && i < offset; ) {
  148. de = (struct ext3_dir_entry_2 *)
  149. (bh->b_data + i);
  150. /* It's too expensive to do a full
  151. * dirent test each time round this
  152. * loop, but we do have to test at
  153. * least that it is non-zero. A
  154. * failure will be detected in the
  155. * dirent test below. */
  156. if (ext3_rec_len_from_disk(de->rec_len) <
  157. EXT3_DIR_REC_LEN(1))
  158. break;
  159. i += ext3_rec_len_from_disk(de->rec_len);
  160. }
  161. offset = i;
  162. filp->f_pos = (filp->f_pos & ~(sb->s_blocksize - 1))
  163. | offset;
  164. filp->f_version = inode->i_version;
  165. }
  166. while (!error && filp->f_pos < inode->i_size
  167. && offset < sb->s_blocksize) {
  168. de = (struct ext3_dir_entry_2 *) (bh->b_data + offset);
  169. if (!ext3_check_dir_entry ("ext3_readdir", inode, de,
  170. bh, offset)) {
  171. /* On error, skip the f_pos to the
  172. next block. */
  173. filp->f_pos = (filp->f_pos |
  174. (sb->s_blocksize - 1)) + 1;
  175. brelse (bh);
  176. ret = stored;
  177. goto out;
  178. }
  179. offset += ext3_rec_len_from_disk(de->rec_len);
  180. if (le32_to_cpu(de->inode)) {
  181. /* We might block in the next section
  182. * if the data destination is
  183. * currently swapped out. So, use a
  184. * version stamp to detect whether or
  185. * not the directory has been modified
  186. * during the copy operation.
  187. */
  188. u64 version = filp->f_version;
  189. error = filldir(dirent, de->name,
  190. de->name_len,
  191. filp->f_pos,
  192. le32_to_cpu(de->inode),
  193. get_dtype(sb, de->file_type));
  194. if (error)
  195. break;
  196. if (version != filp->f_version)
  197. goto revalidate;
  198. stored ++;
  199. }
  200. filp->f_pos += ext3_rec_len_from_disk(de->rec_len);
  201. }
  202. offset = 0;
  203. brelse (bh);
  204. }
  205. out:
  206. return ret;
  207. }
  208. /*
  209. * These functions convert from the major/minor hash to an f_pos
  210. * value.
  211. *
  212. * Currently we only use major hash numer. This is unfortunate, but
  213. * on 32-bit machines, the same VFS interface is used for lseek and
  214. * llseek, so if we use the 64 bit offset, then the 32-bit versions of
  215. * lseek/telldir/seekdir will blow out spectacularly, and from within
  216. * the ext2 low-level routine, we don't know if we're being called by
  217. * a 64-bit version of the system call or the 32-bit version of the
  218. * system call. Worse yet, NFSv2 only allows for a 32-bit readdir
  219. * cookie. Sigh.
  220. */
  221. #define hash2pos(major, minor) (major >> 1)
  222. #define pos2maj_hash(pos) ((pos << 1) & 0xffffffff)
  223. #define pos2min_hash(pos) (0)
  224. /*
  225. * This structure holds the nodes of the red-black tree used to store
  226. * the directory entry in hash order.
  227. */
  228. struct fname {
  229. __u32 hash;
  230. __u32 minor_hash;
  231. struct rb_node rb_hash;
  232. struct fname *next;
  233. __u32 inode;
  234. __u8 name_len;
  235. __u8 file_type;
  236. char name[0];
  237. };
  238. /*
  239. * This functoin implements a non-recursive way of freeing all of the
  240. * nodes in the red-black tree.
  241. */
  242. static void free_rb_tree_fname(struct rb_root *root)
  243. {
  244. struct rb_node *n = root->rb_node;
  245. struct rb_node *parent;
  246. struct fname *fname;
  247. while (n) {
  248. /* Do the node's children first */
  249. if (n->rb_left) {
  250. n = n->rb_left;
  251. continue;
  252. }
  253. if (n->rb_right) {
  254. n = n->rb_right;
  255. continue;
  256. }
  257. /*
  258. * The node has no children; free it, and then zero
  259. * out parent's link to it. Finally go to the
  260. * beginning of the loop and try to free the parent
  261. * node.
  262. */
  263. parent = rb_parent(n);
  264. fname = rb_entry(n, struct fname, rb_hash);
  265. while (fname) {
  266. struct fname * old = fname;
  267. fname = fname->next;
  268. kfree (old);
  269. }
  270. if (!parent)
  271. *root = RB_ROOT;
  272. else if (parent->rb_left == n)
  273. parent->rb_left = NULL;
  274. else if (parent->rb_right == n)
  275. parent->rb_right = NULL;
  276. n = parent;
  277. }
  278. }
  279. static struct dir_private_info *ext3_htree_create_dir_info(loff_t pos)
  280. {
  281. struct dir_private_info *p;
  282. p = kzalloc(sizeof(struct dir_private_info), GFP_KERNEL);
  283. if (!p)
  284. return NULL;
  285. p->curr_hash = pos2maj_hash(pos);
  286. p->curr_minor_hash = pos2min_hash(pos);
  287. return p;
  288. }
  289. void ext3_htree_free_dir_info(struct dir_private_info *p)
  290. {
  291. free_rb_tree_fname(&p->root);
  292. kfree(p);
  293. }
  294. /*
  295. * Given a directory entry, enter it into the fname rb tree.
  296. */
  297. int ext3_htree_store_dirent(struct file *dir_file, __u32 hash,
  298. __u32 minor_hash,
  299. struct ext3_dir_entry_2 *dirent)
  300. {
  301. struct rb_node **p, *parent = NULL;
  302. struct fname * fname, *new_fn;
  303. struct dir_private_info *info;
  304. int len;
  305. info = (struct dir_private_info *) dir_file->private_data;
  306. p = &info->root.rb_node;
  307. /* Create and allocate the fname structure */
  308. len = sizeof(struct fname) + dirent->name_len + 1;
  309. new_fn = kzalloc(len, GFP_KERNEL);
  310. if (!new_fn)
  311. return -ENOMEM;
  312. new_fn->hash = hash;
  313. new_fn->minor_hash = minor_hash;
  314. new_fn->inode = le32_to_cpu(dirent->inode);
  315. new_fn->name_len = dirent->name_len;
  316. new_fn->file_type = dirent->file_type;
  317. memcpy(new_fn->name, dirent->name, dirent->name_len);
  318. new_fn->name[dirent->name_len] = 0;
  319. while (*p) {
  320. parent = *p;
  321. fname = rb_entry(parent, struct fname, rb_hash);
  322. /*
  323. * If the hash and minor hash match up, then we put
  324. * them on a linked list. This rarely happens...
  325. */
  326. if ((new_fn->hash == fname->hash) &&
  327. (new_fn->minor_hash == fname->minor_hash)) {
  328. new_fn->next = fname->next;
  329. fname->next = new_fn;
  330. return 0;
  331. }
  332. if (new_fn->hash < fname->hash)
  333. p = &(*p)->rb_left;
  334. else if (new_fn->hash > fname->hash)
  335. p = &(*p)->rb_right;
  336. else if (new_fn->minor_hash < fname->minor_hash)
  337. p = &(*p)->rb_left;
  338. else /* if (new_fn->minor_hash > fname->minor_hash) */
  339. p = &(*p)->rb_right;
  340. }
  341. rb_link_node(&new_fn->rb_hash, parent, p);
  342. rb_insert_color(&new_fn->rb_hash, &info->root);
  343. return 0;
  344. }
  345. /*
  346. * This is a helper function for ext3_dx_readdir. It calls filldir
  347. * for all entres on the fname linked list. (Normally there is only
  348. * one entry on the linked list, unless there are 62 bit hash collisions.)
  349. */
  350. static int call_filldir(struct file * filp, void * dirent,
  351. filldir_t filldir, struct fname *fname)
  352. {
  353. struct dir_private_info *info = filp->private_data;
  354. loff_t curr_pos;
  355. struct inode *inode = filp->f_path.dentry->d_inode;
  356. struct super_block * sb;
  357. int error;
  358. sb = inode->i_sb;
  359. if (!fname) {
  360. printk("call_filldir: called with null fname?!?\n");
  361. return 0;
  362. }
  363. curr_pos = hash2pos(fname->hash, fname->minor_hash);
  364. while (fname) {
  365. error = filldir(dirent, fname->name,
  366. fname->name_len, curr_pos,
  367. fname->inode,
  368. get_dtype(sb, fname->file_type));
  369. if (error) {
  370. filp->f_pos = curr_pos;
  371. info->extra_fname = fname;
  372. return error;
  373. }
  374. fname = fname->next;
  375. }
  376. return 0;
  377. }
  378. static int ext3_dx_readdir(struct file * filp,
  379. void * dirent, filldir_t filldir)
  380. {
  381. struct dir_private_info *info = filp->private_data;
  382. struct inode *inode = filp->f_path.dentry->d_inode;
  383. struct fname *fname;
  384. int ret;
  385. if (!info) {
  386. info = ext3_htree_create_dir_info(filp->f_pos);
  387. if (!info)
  388. return -ENOMEM;
  389. filp->private_data = info;
  390. }
  391. if (filp->f_pos == EXT3_HTREE_EOF)
  392. return 0; /* EOF */
  393. /* Some one has messed with f_pos; reset the world */
  394. if (info->last_pos != filp->f_pos) {
  395. free_rb_tree_fname(&info->root);
  396. info->curr_node = NULL;
  397. info->extra_fname = NULL;
  398. info->curr_hash = pos2maj_hash(filp->f_pos);
  399. info->curr_minor_hash = pos2min_hash(filp->f_pos);
  400. }
  401. /*
  402. * If there are any leftover names on the hash collision
  403. * chain, return them first.
  404. */
  405. if (info->extra_fname) {
  406. if (call_filldir(filp, dirent, filldir, info->extra_fname))
  407. goto finished;
  408. info->extra_fname = NULL;
  409. goto next_node;
  410. } else if (!info->curr_node)
  411. info->curr_node = rb_first(&info->root);
  412. while (1) {
  413. /*
  414. * Fill the rbtree if we have no more entries,
  415. * or the inode has changed since we last read in the
  416. * cached entries.
  417. */
  418. if ((!info->curr_node) ||
  419. (filp->f_version != inode->i_version)) {
  420. info->curr_node = NULL;
  421. free_rb_tree_fname(&info->root);
  422. filp->f_version = inode->i_version;
  423. ret = ext3_htree_fill_tree(filp, info->curr_hash,
  424. info->curr_minor_hash,
  425. &info->next_hash);
  426. if (ret < 0)
  427. return ret;
  428. if (ret == 0) {
  429. filp->f_pos = EXT3_HTREE_EOF;
  430. break;
  431. }
  432. info->curr_node = rb_first(&info->root);
  433. }
  434. fname = rb_entry(info->curr_node, struct fname, rb_hash);
  435. info->curr_hash = fname->hash;
  436. info->curr_minor_hash = fname->minor_hash;
  437. if (call_filldir(filp, dirent, filldir, fname))
  438. break;
  439. next_node:
  440. info->curr_node = rb_next(info->curr_node);
  441. if (info->curr_node) {
  442. fname = rb_entry(info->curr_node, struct fname,
  443. rb_hash);
  444. info->curr_hash = fname->hash;
  445. info->curr_minor_hash = fname->minor_hash;
  446. } else {
  447. if (info->next_hash == ~0) {
  448. filp->f_pos = EXT3_HTREE_EOF;
  449. break;
  450. }
  451. info->curr_hash = info->next_hash;
  452. info->curr_minor_hash = 0;
  453. }
  454. }
  455. finished:
  456. info->last_pos = filp->f_pos;
  457. return 0;
  458. }
  459. static int ext3_release_dir (struct inode * inode, struct file * filp)
  460. {
  461. if (filp->private_data)
  462. ext3_htree_free_dir_info(filp->private_data);
  463. return 0;
  464. }