dcache.c 77 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077
  1. /*
  2. * fs/dcache.c
  3. *
  4. * Complete reimplementation
  5. * (C) 1997 Thomas Schoebel-Theuer,
  6. * with heavy changes by Linus Torvalds
  7. */
  8. /*
  9. * Notes on the allocation strategy:
  10. *
  11. * The dcache is a master of the icache - whenever a dcache entry
  12. * exists, the inode will always exist. "iput()" is done either when
  13. * the dcache entry is deleted or garbage collected.
  14. */
  15. #include <linux/syscalls.h>
  16. #include <linux/string.h>
  17. #include <linux/mm.h>
  18. #include <linux/fs.h>
  19. #include <linux/fsnotify.h>
  20. #include <linux/slab.h>
  21. #include <linux/init.h>
  22. #include <linux/hash.h>
  23. #include <linux/cache.h>
  24. #include <linux/export.h>
  25. #include <linux/mount.h>
  26. #include <linux/file.h>
  27. #include <asm/uaccess.h>
  28. #include <linux/security.h>
  29. #include <linux/seqlock.h>
  30. #include <linux/swap.h>
  31. #include <linux/bootmem.h>
  32. #include <linux/fs_struct.h>
  33. #include <linux/hardirq.h>
  34. #include <linux/bit_spinlock.h>
  35. #include <linux/rculist_bl.h>
  36. #include <linux/prefetch.h>
  37. #include <linux/ratelimit.h>
  38. #include "internal.h"
  39. #include "mount.h"
  40. /*
  41. * Usage:
  42. * dcache->d_inode->i_lock protects:
  43. * - i_dentry, d_alias, d_inode of aliases
  44. * dcache_hash_bucket lock protects:
  45. * - the dcache hash table
  46. * s_anon bl list spinlock protects:
  47. * - the s_anon list (see __d_drop)
  48. * dcache_lru_lock protects:
  49. * - the dcache lru lists and counters
  50. * d_lock protects:
  51. * - d_flags
  52. * - d_name
  53. * - d_lru
  54. * - d_count
  55. * - d_unhashed()
  56. * - d_parent and d_subdirs
  57. * - childrens' d_child and d_parent
  58. * - d_alias, d_inode
  59. *
  60. * Ordering:
  61. * dentry->d_inode->i_lock
  62. * dentry->d_lock
  63. * dcache_lru_lock
  64. * dcache_hash_bucket lock
  65. * s_anon lock
  66. *
  67. * If there is an ancestor relationship:
  68. * dentry->d_parent->...->d_parent->d_lock
  69. * ...
  70. * dentry->d_parent->d_lock
  71. * dentry->d_lock
  72. *
  73. * If no ancestor relationship:
  74. * if (dentry1 < dentry2)
  75. * dentry1->d_lock
  76. * dentry2->d_lock
  77. */
  78. int sysctl_vfs_cache_pressure __read_mostly = 100;
  79. EXPORT_SYMBOL_GPL(sysctl_vfs_cache_pressure);
  80. static __cacheline_aligned_in_smp DEFINE_SPINLOCK(dcache_lru_lock);
  81. __cacheline_aligned_in_smp DEFINE_SEQLOCK(rename_lock);
  82. EXPORT_SYMBOL(rename_lock);
  83. static struct kmem_cache *dentry_cache __read_mostly;
  84. /*
  85. * This is the single most critical data structure when it comes
  86. * to the dcache: the hashtable for lookups. Somebody should try
  87. * to make this good - I've just made it work.
  88. *
  89. * This hash-function tries to avoid losing too many bits of hash
  90. * information, yet avoid using a prime hash-size or similar.
  91. */
  92. #define D_HASHBITS d_hash_shift
  93. #define D_HASHMASK d_hash_mask
  94. static unsigned int d_hash_mask __read_mostly;
  95. static unsigned int d_hash_shift __read_mostly;
  96. static struct hlist_bl_head *dentry_hashtable __read_mostly;
  97. static inline struct hlist_bl_head *d_hash(const struct dentry *parent,
  98. unsigned int hash)
  99. {
  100. hash += (unsigned long) parent / L1_CACHE_BYTES;
  101. hash = hash + (hash >> D_HASHBITS);
  102. return dentry_hashtable + (hash & D_HASHMASK);
  103. }
  104. /* Statistics gathering. */
  105. struct dentry_stat_t dentry_stat = {
  106. .age_limit = 45,
  107. };
  108. static DEFINE_PER_CPU(unsigned int, nr_dentry);
  109. #if defined(CONFIG_SYSCTL) && defined(CONFIG_PROC_FS)
  110. static int get_nr_dentry(void)
  111. {
  112. int i;
  113. int sum = 0;
  114. for_each_possible_cpu(i)
  115. sum += per_cpu(nr_dentry, i);
  116. return sum < 0 ? 0 : sum;
  117. }
  118. int proc_nr_dentry(ctl_table *table, int write, void __user *buffer,
  119. size_t *lenp, loff_t *ppos)
  120. {
  121. dentry_stat.nr_dentry = get_nr_dentry();
  122. return proc_dointvec(table, write, buffer, lenp, ppos);
  123. }
  124. #endif
  125. /*
  126. * Compare 2 name strings, return 0 if they match, otherwise non-zero.
  127. * The strings are both count bytes long, and count is non-zero.
  128. */
  129. static inline int dentry_cmp(const unsigned char *cs, size_t scount,
  130. const unsigned char *ct, size_t tcount)
  131. {
  132. #ifdef CONFIG_DCACHE_WORD_ACCESS
  133. unsigned long a,b,mask;
  134. if (unlikely(scount != tcount))
  135. return 1;
  136. for (;;) {
  137. a = *(unsigned long *)cs;
  138. b = *(unsigned long *)ct;
  139. if (tcount < sizeof(unsigned long))
  140. break;
  141. if (unlikely(a != b))
  142. return 1;
  143. cs += sizeof(unsigned long);
  144. ct += sizeof(unsigned long);
  145. tcount -= sizeof(unsigned long);
  146. if (!tcount)
  147. return 0;
  148. }
  149. mask = ~(~0ul << tcount*8);
  150. return unlikely(!!((a ^ b) & mask));
  151. #else
  152. if (scount != tcount)
  153. return 1;
  154. do {
  155. if (*cs != *ct)
  156. return 1;
  157. cs++;
  158. ct++;
  159. tcount--;
  160. } while (tcount);
  161. return 0;
  162. #endif
  163. }
  164. static void __d_free(struct rcu_head *head)
  165. {
  166. struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu);
  167. WARN_ON(!list_empty(&dentry->d_alias));
  168. if (dname_external(dentry))
  169. kfree(dentry->d_name.name);
  170. kmem_cache_free(dentry_cache, dentry);
  171. }
  172. /*
  173. * no locks, please.
  174. */
  175. static void d_free(struct dentry *dentry)
  176. {
  177. BUG_ON(dentry->d_count);
  178. this_cpu_dec(nr_dentry);
  179. if (dentry->d_op && dentry->d_op->d_release)
  180. dentry->d_op->d_release(dentry);
  181. /* if dentry was never visible to RCU, immediate free is OK */
  182. if (!(dentry->d_flags & DCACHE_RCUACCESS))
  183. __d_free(&dentry->d_u.d_rcu);
  184. else
  185. call_rcu(&dentry->d_u.d_rcu, __d_free);
  186. }
  187. /**
  188. * dentry_rcuwalk_barrier - invalidate in-progress rcu-walk lookups
  189. * @dentry: the target dentry
  190. * After this call, in-progress rcu-walk path lookup will fail. This
  191. * should be called after unhashing, and after changing d_inode (if
  192. * the dentry has not already been unhashed).
  193. */
  194. static inline void dentry_rcuwalk_barrier(struct dentry *dentry)
  195. {
  196. assert_spin_locked(&dentry->d_lock);
  197. /* Go through a barrier */
  198. write_seqcount_barrier(&dentry->d_seq);
  199. }
  200. /*
  201. * Release the dentry's inode, using the filesystem
  202. * d_iput() operation if defined. Dentry has no refcount
  203. * and is unhashed.
  204. */
  205. static void dentry_iput(struct dentry * dentry)
  206. __releases(dentry->d_lock)
  207. __releases(dentry->d_inode->i_lock)
  208. {
  209. struct inode *inode = dentry->d_inode;
  210. if (inode) {
  211. dentry->d_inode = NULL;
  212. list_del_init(&dentry->d_alias);
  213. spin_unlock(&dentry->d_lock);
  214. spin_unlock(&inode->i_lock);
  215. if (!inode->i_nlink)
  216. fsnotify_inoderemove(inode);
  217. if (dentry->d_op && dentry->d_op->d_iput)
  218. dentry->d_op->d_iput(dentry, inode);
  219. else
  220. iput(inode);
  221. } else {
  222. spin_unlock(&dentry->d_lock);
  223. }
  224. }
  225. /*
  226. * Release the dentry's inode, using the filesystem
  227. * d_iput() operation if defined. dentry remains in-use.
  228. */
  229. static void dentry_unlink_inode(struct dentry * dentry)
  230. __releases(dentry->d_lock)
  231. __releases(dentry->d_inode->i_lock)
  232. {
  233. struct inode *inode = dentry->d_inode;
  234. dentry->d_inode = NULL;
  235. list_del_init(&dentry->d_alias);
  236. dentry_rcuwalk_barrier(dentry);
  237. spin_unlock(&dentry->d_lock);
  238. spin_unlock(&inode->i_lock);
  239. if (!inode->i_nlink)
  240. fsnotify_inoderemove(inode);
  241. if (dentry->d_op && dentry->d_op->d_iput)
  242. dentry->d_op->d_iput(dentry, inode);
  243. else
  244. iput(inode);
  245. }
  246. /*
  247. * dentry_lru_(add|del|prune|move_tail) must be called with d_lock held.
  248. */
  249. static void dentry_lru_add(struct dentry *dentry)
  250. {
  251. if (list_empty(&dentry->d_lru)) {
  252. spin_lock(&dcache_lru_lock);
  253. list_add(&dentry->d_lru, &dentry->d_sb->s_dentry_lru);
  254. dentry->d_sb->s_nr_dentry_unused++;
  255. dentry_stat.nr_unused++;
  256. spin_unlock(&dcache_lru_lock);
  257. }
  258. }
  259. static void __dentry_lru_del(struct dentry *dentry)
  260. {
  261. list_del_init(&dentry->d_lru);
  262. dentry->d_flags &= ~DCACHE_SHRINK_LIST;
  263. dentry->d_sb->s_nr_dentry_unused--;
  264. dentry_stat.nr_unused--;
  265. }
  266. /*
  267. * Remove a dentry with references from the LRU.
  268. */
  269. static void dentry_lru_del(struct dentry *dentry)
  270. {
  271. if (!list_empty(&dentry->d_lru)) {
  272. spin_lock(&dcache_lru_lock);
  273. __dentry_lru_del(dentry);
  274. spin_unlock(&dcache_lru_lock);
  275. }
  276. }
  277. /*
  278. * Remove a dentry that is unreferenced and about to be pruned
  279. * (unhashed and destroyed) from the LRU, and inform the file system.
  280. * This wrapper should be called _prior_ to unhashing a victim dentry.
  281. */
  282. static void dentry_lru_prune(struct dentry *dentry)
  283. {
  284. if (!list_empty(&dentry->d_lru)) {
  285. if (dentry->d_flags & DCACHE_OP_PRUNE)
  286. dentry->d_op->d_prune(dentry);
  287. spin_lock(&dcache_lru_lock);
  288. __dentry_lru_del(dentry);
  289. spin_unlock(&dcache_lru_lock);
  290. }
  291. }
  292. static void dentry_lru_move_list(struct dentry *dentry, struct list_head *list)
  293. {
  294. spin_lock(&dcache_lru_lock);
  295. if (list_empty(&dentry->d_lru)) {
  296. list_add_tail(&dentry->d_lru, list);
  297. dentry->d_sb->s_nr_dentry_unused++;
  298. dentry_stat.nr_unused++;
  299. } else {
  300. list_move_tail(&dentry->d_lru, list);
  301. }
  302. spin_unlock(&dcache_lru_lock);
  303. }
  304. /**
  305. * d_kill - kill dentry and return parent
  306. * @dentry: dentry to kill
  307. * @parent: parent dentry
  308. *
  309. * The dentry must already be unhashed and removed from the LRU.
  310. *
  311. * If this is the root of the dentry tree, return NULL.
  312. *
  313. * dentry->d_lock and parent->d_lock must be held by caller, and are dropped by
  314. * d_kill.
  315. */
  316. static struct dentry *d_kill(struct dentry *dentry, struct dentry *parent)
  317. __releases(dentry->d_lock)
  318. __releases(parent->d_lock)
  319. __releases(dentry->d_inode->i_lock)
  320. {
  321. list_del(&dentry->d_u.d_child);
  322. /*
  323. * Inform try_to_ascend() that we are no longer attached to the
  324. * dentry tree
  325. */
  326. dentry->d_flags |= DCACHE_DISCONNECTED;
  327. if (parent)
  328. spin_unlock(&parent->d_lock);
  329. dentry_iput(dentry);
  330. /*
  331. * dentry_iput drops the locks, at which point nobody (except
  332. * transient RCU lookups) can reach this dentry.
  333. */
  334. d_free(dentry);
  335. return parent;
  336. }
  337. /*
  338. * Unhash a dentry without inserting an RCU walk barrier or checking that
  339. * dentry->d_lock is locked. The caller must take care of that, if
  340. * appropriate.
  341. */
  342. static void __d_shrink(struct dentry *dentry)
  343. {
  344. if (!d_unhashed(dentry)) {
  345. struct hlist_bl_head *b;
  346. if (unlikely(dentry->d_flags & DCACHE_DISCONNECTED))
  347. b = &dentry->d_sb->s_anon;
  348. else
  349. b = d_hash(dentry->d_parent, dentry->d_name.hash);
  350. hlist_bl_lock(b);
  351. __hlist_bl_del(&dentry->d_hash);
  352. dentry->d_hash.pprev = NULL;
  353. hlist_bl_unlock(b);
  354. }
  355. }
  356. /**
  357. * d_drop - drop a dentry
  358. * @dentry: dentry to drop
  359. *
  360. * d_drop() unhashes the entry from the parent dentry hashes, so that it won't
  361. * be found through a VFS lookup any more. Note that this is different from
  362. * deleting the dentry - d_delete will try to mark the dentry negative if
  363. * possible, giving a successful _negative_ lookup, while d_drop will
  364. * just make the cache lookup fail.
  365. *
  366. * d_drop() is used mainly for stuff that wants to invalidate a dentry for some
  367. * reason (NFS timeouts or autofs deletes).
  368. *
  369. * __d_drop requires dentry->d_lock.
  370. */
  371. void __d_drop(struct dentry *dentry)
  372. {
  373. if (!d_unhashed(dentry)) {
  374. __d_shrink(dentry);
  375. dentry_rcuwalk_barrier(dentry);
  376. }
  377. }
  378. EXPORT_SYMBOL(__d_drop);
  379. void d_drop(struct dentry *dentry)
  380. {
  381. spin_lock(&dentry->d_lock);
  382. __d_drop(dentry);
  383. spin_unlock(&dentry->d_lock);
  384. }
  385. EXPORT_SYMBOL(d_drop);
  386. /*
  387. * d_clear_need_lookup - drop a dentry from cache and clear the need lookup flag
  388. * @dentry: dentry to drop
  389. *
  390. * This is called when we do a lookup on a placeholder dentry that needed to be
  391. * looked up. The dentry should have been hashed in order for it to be found by
  392. * the lookup code, but now needs to be unhashed while we do the actual lookup
  393. * and clear the DCACHE_NEED_LOOKUP flag.
  394. */
  395. void d_clear_need_lookup(struct dentry *dentry)
  396. {
  397. spin_lock(&dentry->d_lock);
  398. __d_drop(dentry);
  399. dentry->d_flags &= ~DCACHE_NEED_LOOKUP;
  400. spin_unlock(&dentry->d_lock);
  401. }
  402. EXPORT_SYMBOL(d_clear_need_lookup);
  403. /*
  404. * Finish off a dentry we've decided to kill.
  405. * dentry->d_lock must be held, returns with it unlocked.
  406. * If ref is non-zero, then decrement the refcount too.
  407. * Returns dentry requiring refcount drop, or NULL if we're done.
  408. */
  409. static inline struct dentry *dentry_kill(struct dentry *dentry, int ref)
  410. __releases(dentry->d_lock)
  411. {
  412. struct inode *inode;
  413. struct dentry *parent;
  414. inode = dentry->d_inode;
  415. if (inode && !spin_trylock(&inode->i_lock)) {
  416. relock:
  417. spin_unlock(&dentry->d_lock);
  418. cpu_relax();
  419. return dentry; /* try again with same dentry */
  420. }
  421. if (IS_ROOT(dentry))
  422. parent = NULL;
  423. else
  424. parent = dentry->d_parent;
  425. if (parent && !spin_trylock(&parent->d_lock)) {
  426. if (inode)
  427. spin_unlock(&inode->i_lock);
  428. goto relock;
  429. }
  430. if (ref)
  431. dentry->d_count--;
  432. /*
  433. * if dentry was on the d_lru list delete it from there.
  434. * inform the fs via d_prune that this dentry is about to be
  435. * unhashed and destroyed.
  436. */
  437. dentry_lru_prune(dentry);
  438. /* if it was on the hash then remove it */
  439. __d_drop(dentry);
  440. return d_kill(dentry, parent);
  441. }
  442. /*
  443. * This is dput
  444. *
  445. * This is complicated by the fact that we do not want to put
  446. * dentries that are no longer on any hash chain on the unused
  447. * list: we'd much rather just get rid of them immediately.
  448. *
  449. * However, that implies that we have to traverse the dentry
  450. * tree upwards to the parents which might _also_ now be
  451. * scheduled for deletion (it may have been only waiting for
  452. * its last child to go away).
  453. *
  454. * This tail recursion is done by hand as we don't want to depend
  455. * on the compiler to always get this right (gcc generally doesn't).
  456. * Real recursion would eat up our stack space.
  457. */
  458. /*
  459. * dput - release a dentry
  460. * @dentry: dentry to release
  461. *
  462. * Release a dentry. This will drop the usage count and if appropriate
  463. * call the dentry unlink method as well as removing it from the queues and
  464. * releasing its resources. If the parent dentries were scheduled for release
  465. * they too may now get deleted.
  466. */
  467. void dput(struct dentry *dentry)
  468. {
  469. if (!dentry)
  470. return;
  471. repeat:
  472. if (dentry->d_count == 1)
  473. might_sleep();
  474. spin_lock(&dentry->d_lock);
  475. BUG_ON(!dentry->d_count);
  476. if (dentry->d_count > 1) {
  477. dentry->d_count--;
  478. spin_unlock(&dentry->d_lock);
  479. return;
  480. }
  481. if (dentry->d_flags & DCACHE_OP_DELETE) {
  482. if (dentry->d_op->d_delete(dentry))
  483. goto kill_it;
  484. }
  485. /* Unreachable? Get rid of it */
  486. if (d_unhashed(dentry))
  487. goto kill_it;
  488. /*
  489. * If this dentry needs lookup, don't set the referenced flag so that it
  490. * is more likely to be cleaned up by the dcache shrinker in case of
  491. * memory pressure.
  492. */
  493. if (!d_need_lookup(dentry))
  494. dentry->d_flags |= DCACHE_REFERENCED;
  495. dentry_lru_add(dentry);
  496. dentry->d_count--;
  497. spin_unlock(&dentry->d_lock);
  498. return;
  499. kill_it:
  500. dentry = dentry_kill(dentry, 1);
  501. if (dentry)
  502. goto repeat;
  503. }
  504. EXPORT_SYMBOL(dput);
  505. /**
  506. * d_invalidate - invalidate a dentry
  507. * @dentry: dentry to invalidate
  508. *
  509. * Try to invalidate the dentry if it turns out to be
  510. * possible. If there are other dentries that can be
  511. * reached through this one we can't delete it and we
  512. * return -EBUSY. On success we return 0.
  513. *
  514. * no dcache lock.
  515. */
  516. int d_invalidate(struct dentry * dentry)
  517. {
  518. /*
  519. * If it's already been dropped, return OK.
  520. */
  521. spin_lock(&dentry->d_lock);
  522. if (d_unhashed(dentry)) {
  523. spin_unlock(&dentry->d_lock);
  524. return 0;
  525. }
  526. /*
  527. * Check whether to do a partial shrink_dcache
  528. * to get rid of unused child entries.
  529. */
  530. if (!list_empty(&dentry->d_subdirs)) {
  531. spin_unlock(&dentry->d_lock);
  532. shrink_dcache_parent(dentry);
  533. spin_lock(&dentry->d_lock);
  534. }
  535. /*
  536. * Somebody else still using it?
  537. *
  538. * If it's a directory, we can't drop it
  539. * for fear of somebody re-populating it
  540. * with children (even though dropping it
  541. * would make it unreachable from the root,
  542. * we might still populate it if it was a
  543. * working directory or similar).
  544. * We also need to leave mountpoints alone,
  545. * directory or not.
  546. */
  547. if (dentry->d_count > 1 && dentry->d_inode) {
  548. if (S_ISDIR(dentry->d_inode->i_mode) || d_mountpoint(dentry)) {
  549. spin_unlock(&dentry->d_lock);
  550. return -EBUSY;
  551. }
  552. }
  553. __d_drop(dentry);
  554. spin_unlock(&dentry->d_lock);
  555. return 0;
  556. }
  557. EXPORT_SYMBOL(d_invalidate);
  558. /* This must be called with d_lock held */
  559. static inline void __dget_dlock(struct dentry *dentry)
  560. {
  561. dentry->d_count++;
  562. }
  563. static inline void __dget(struct dentry *dentry)
  564. {
  565. spin_lock(&dentry->d_lock);
  566. __dget_dlock(dentry);
  567. spin_unlock(&dentry->d_lock);
  568. }
  569. struct dentry *dget_parent(struct dentry *dentry)
  570. {
  571. struct dentry *ret;
  572. repeat:
  573. /*
  574. * Don't need rcu_dereference because we re-check it was correct under
  575. * the lock.
  576. */
  577. rcu_read_lock();
  578. ret = dentry->d_parent;
  579. spin_lock(&ret->d_lock);
  580. if (unlikely(ret != dentry->d_parent)) {
  581. spin_unlock(&ret->d_lock);
  582. rcu_read_unlock();
  583. goto repeat;
  584. }
  585. rcu_read_unlock();
  586. BUG_ON(!ret->d_count);
  587. ret->d_count++;
  588. spin_unlock(&ret->d_lock);
  589. return ret;
  590. }
  591. EXPORT_SYMBOL(dget_parent);
  592. /**
  593. * d_find_alias - grab a hashed alias of inode
  594. * @inode: inode in question
  595. * @want_discon: flag, used by d_splice_alias, to request
  596. * that only a DISCONNECTED alias be returned.
  597. *
  598. * If inode has a hashed alias, or is a directory and has any alias,
  599. * acquire the reference to alias and return it. Otherwise return NULL.
  600. * Notice that if inode is a directory there can be only one alias and
  601. * it can be unhashed only if it has no children, or if it is the root
  602. * of a filesystem.
  603. *
  604. * If the inode has an IS_ROOT, DCACHE_DISCONNECTED alias, then prefer
  605. * any other hashed alias over that one unless @want_discon is set,
  606. * in which case only return an IS_ROOT, DCACHE_DISCONNECTED alias.
  607. */
  608. static struct dentry *__d_find_alias(struct inode *inode, int want_discon)
  609. {
  610. struct dentry *alias, *discon_alias;
  611. again:
  612. discon_alias = NULL;
  613. list_for_each_entry(alias, &inode->i_dentry, d_alias) {
  614. spin_lock(&alias->d_lock);
  615. if (S_ISDIR(inode->i_mode) || !d_unhashed(alias)) {
  616. if (IS_ROOT(alias) &&
  617. (alias->d_flags & DCACHE_DISCONNECTED)) {
  618. discon_alias = alias;
  619. } else if (!want_discon) {
  620. __dget_dlock(alias);
  621. spin_unlock(&alias->d_lock);
  622. return alias;
  623. }
  624. }
  625. spin_unlock(&alias->d_lock);
  626. }
  627. if (discon_alias) {
  628. alias = discon_alias;
  629. spin_lock(&alias->d_lock);
  630. if (S_ISDIR(inode->i_mode) || !d_unhashed(alias)) {
  631. if (IS_ROOT(alias) &&
  632. (alias->d_flags & DCACHE_DISCONNECTED)) {
  633. __dget_dlock(alias);
  634. spin_unlock(&alias->d_lock);
  635. return alias;
  636. }
  637. }
  638. spin_unlock(&alias->d_lock);
  639. goto again;
  640. }
  641. return NULL;
  642. }
  643. struct dentry *d_find_alias(struct inode *inode)
  644. {
  645. struct dentry *de = NULL;
  646. if (!list_empty(&inode->i_dentry)) {
  647. spin_lock(&inode->i_lock);
  648. de = __d_find_alias(inode, 0);
  649. spin_unlock(&inode->i_lock);
  650. }
  651. return de;
  652. }
  653. EXPORT_SYMBOL(d_find_alias);
  654. /*
  655. * Try to kill dentries associated with this inode.
  656. * WARNING: you must own a reference to inode.
  657. */
  658. void d_prune_aliases(struct inode *inode)
  659. {
  660. struct dentry *dentry;
  661. restart:
  662. spin_lock(&inode->i_lock);
  663. list_for_each_entry(dentry, &inode->i_dentry, d_alias) {
  664. spin_lock(&dentry->d_lock);
  665. if (!dentry->d_count) {
  666. __dget_dlock(dentry);
  667. __d_drop(dentry);
  668. spin_unlock(&dentry->d_lock);
  669. spin_unlock(&inode->i_lock);
  670. dput(dentry);
  671. goto restart;
  672. }
  673. spin_unlock(&dentry->d_lock);
  674. }
  675. spin_unlock(&inode->i_lock);
  676. }
  677. EXPORT_SYMBOL(d_prune_aliases);
  678. /*
  679. * Try to throw away a dentry - free the inode, dput the parent.
  680. * Requires dentry->d_lock is held, and dentry->d_count == 0.
  681. * Releases dentry->d_lock.
  682. *
  683. * This may fail if locks cannot be acquired no problem, just try again.
  684. */
  685. static void try_prune_one_dentry(struct dentry *dentry)
  686. __releases(dentry->d_lock)
  687. {
  688. struct dentry *parent;
  689. parent = dentry_kill(dentry, 0);
  690. /*
  691. * If dentry_kill returns NULL, we have nothing more to do.
  692. * if it returns the same dentry, trylocks failed. In either
  693. * case, just loop again.
  694. *
  695. * Otherwise, we need to prune ancestors too. This is necessary
  696. * to prevent quadratic behavior of shrink_dcache_parent(), but
  697. * is also expected to be beneficial in reducing dentry cache
  698. * fragmentation.
  699. */
  700. if (!parent)
  701. return;
  702. if (parent == dentry)
  703. return;
  704. /* Prune ancestors. */
  705. dentry = parent;
  706. while (dentry) {
  707. spin_lock(&dentry->d_lock);
  708. if (dentry->d_count > 1) {
  709. dentry->d_count--;
  710. spin_unlock(&dentry->d_lock);
  711. return;
  712. }
  713. dentry = dentry_kill(dentry, 1);
  714. }
  715. }
  716. static void shrink_dentry_list(struct list_head *list)
  717. {
  718. struct dentry *dentry;
  719. rcu_read_lock();
  720. for (;;) {
  721. dentry = list_entry_rcu(list->prev, struct dentry, d_lru);
  722. if (&dentry->d_lru == list)
  723. break; /* empty */
  724. spin_lock(&dentry->d_lock);
  725. if (dentry != list_entry(list->prev, struct dentry, d_lru)) {
  726. spin_unlock(&dentry->d_lock);
  727. continue;
  728. }
  729. /*
  730. * We found an inuse dentry which was not removed from
  731. * the LRU because of laziness during lookup. Do not free
  732. * it - just keep it off the LRU list.
  733. */
  734. if (dentry->d_count) {
  735. dentry_lru_del(dentry);
  736. spin_unlock(&dentry->d_lock);
  737. continue;
  738. }
  739. rcu_read_unlock();
  740. try_prune_one_dentry(dentry);
  741. rcu_read_lock();
  742. }
  743. rcu_read_unlock();
  744. }
  745. /**
  746. * prune_dcache_sb - shrink the dcache
  747. * @sb: superblock
  748. * @count: number of entries to try to free
  749. *
  750. * Attempt to shrink the superblock dcache LRU by @count entries. This is
  751. * done when we need more memory an called from the superblock shrinker
  752. * function.
  753. *
  754. * This function may fail to free any resources if all the dentries are in
  755. * use.
  756. */
  757. void prune_dcache_sb(struct super_block *sb, int count)
  758. {
  759. struct dentry *dentry;
  760. LIST_HEAD(referenced);
  761. LIST_HEAD(tmp);
  762. relock:
  763. spin_lock(&dcache_lru_lock);
  764. while (!list_empty(&sb->s_dentry_lru)) {
  765. dentry = list_entry(sb->s_dentry_lru.prev,
  766. struct dentry, d_lru);
  767. BUG_ON(dentry->d_sb != sb);
  768. if (!spin_trylock(&dentry->d_lock)) {
  769. spin_unlock(&dcache_lru_lock);
  770. cpu_relax();
  771. goto relock;
  772. }
  773. if (dentry->d_flags & DCACHE_REFERENCED) {
  774. dentry->d_flags &= ~DCACHE_REFERENCED;
  775. list_move(&dentry->d_lru, &referenced);
  776. spin_unlock(&dentry->d_lock);
  777. } else {
  778. list_move_tail(&dentry->d_lru, &tmp);
  779. dentry->d_flags |= DCACHE_SHRINK_LIST;
  780. spin_unlock(&dentry->d_lock);
  781. if (!--count)
  782. break;
  783. }
  784. cond_resched_lock(&dcache_lru_lock);
  785. }
  786. if (!list_empty(&referenced))
  787. list_splice(&referenced, &sb->s_dentry_lru);
  788. spin_unlock(&dcache_lru_lock);
  789. shrink_dentry_list(&tmp);
  790. }
  791. /**
  792. * shrink_dcache_sb - shrink dcache for a superblock
  793. * @sb: superblock
  794. *
  795. * Shrink the dcache for the specified super block. This is used to free
  796. * the dcache before unmounting a file system.
  797. */
  798. void shrink_dcache_sb(struct super_block *sb)
  799. {
  800. LIST_HEAD(tmp);
  801. spin_lock(&dcache_lru_lock);
  802. while (!list_empty(&sb->s_dentry_lru)) {
  803. list_splice_init(&sb->s_dentry_lru, &tmp);
  804. spin_unlock(&dcache_lru_lock);
  805. shrink_dentry_list(&tmp);
  806. spin_lock(&dcache_lru_lock);
  807. }
  808. spin_unlock(&dcache_lru_lock);
  809. }
  810. EXPORT_SYMBOL(shrink_dcache_sb);
  811. /*
  812. * destroy a single subtree of dentries for unmount
  813. * - see the comments on shrink_dcache_for_umount() for a description of the
  814. * locking
  815. */
  816. static void shrink_dcache_for_umount_subtree(struct dentry *dentry)
  817. {
  818. struct dentry *parent;
  819. BUG_ON(!IS_ROOT(dentry));
  820. for (;;) {
  821. /* descend to the first leaf in the current subtree */
  822. while (!list_empty(&dentry->d_subdirs))
  823. dentry = list_entry(dentry->d_subdirs.next,
  824. struct dentry, d_u.d_child);
  825. /* consume the dentries from this leaf up through its parents
  826. * until we find one with children or run out altogether */
  827. do {
  828. struct inode *inode;
  829. /*
  830. * remove the dentry from the lru, and inform
  831. * the fs that this dentry is about to be
  832. * unhashed and destroyed.
  833. */
  834. dentry_lru_prune(dentry);
  835. __d_shrink(dentry);
  836. if (dentry->d_count != 0) {
  837. printk(KERN_ERR
  838. "BUG: Dentry %p{i=%lx,n=%s}"
  839. " still in use (%d)"
  840. " [unmount of %s %s]\n",
  841. dentry,
  842. dentry->d_inode ?
  843. dentry->d_inode->i_ino : 0UL,
  844. dentry->d_name.name,
  845. dentry->d_count,
  846. dentry->d_sb->s_type->name,
  847. dentry->d_sb->s_id);
  848. BUG();
  849. }
  850. if (IS_ROOT(dentry)) {
  851. parent = NULL;
  852. list_del(&dentry->d_u.d_child);
  853. } else {
  854. parent = dentry->d_parent;
  855. parent->d_count--;
  856. list_del(&dentry->d_u.d_child);
  857. }
  858. inode = dentry->d_inode;
  859. if (inode) {
  860. dentry->d_inode = NULL;
  861. list_del_init(&dentry->d_alias);
  862. if (dentry->d_op && dentry->d_op->d_iput)
  863. dentry->d_op->d_iput(dentry, inode);
  864. else
  865. iput(inode);
  866. }
  867. d_free(dentry);
  868. /* finished when we fall off the top of the tree,
  869. * otherwise we ascend to the parent and move to the
  870. * next sibling if there is one */
  871. if (!parent)
  872. return;
  873. dentry = parent;
  874. } while (list_empty(&dentry->d_subdirs));
  875. dentry = list_entry(dentry->d_subdirs.next,
  876. struct dentry, d_u.d_child);
  877. }
  878. }
  879. /*
  880. * destroy the dentries attached to a superblock on unmounting
  881. * - we don't need to use dentry->d_lock because:
  882. * - the superblock is detached from all mountings and open files, so the
  883. * dentry trees will not be rearranged by the VFS
  884. * - s_umount is write-locked, so the memory pressure shrinker will ignore
  885. * any dentries belonging to this superblock that it comes across
  886. * - the filesystem itself is no longer permitted to rearrange the dentries
  887. * in this superblock
  888. */
  889. void shrink_dcache_for_umount(struct super_block *sb)
  890. {
  891. struct dentry *dentry;
  892. if (down_read_trylock(&sb->s_umount))
  893. BUG();
  894. dentry = sb->s_root;
  895. sb->s_root = NULL;
  896. dentry->d_count--;
  897. shrink_dcache_for_umount_subtree(dentry);
  898. while (!hlist_bl_empty(&sb->s_anon)) {
  899. dentry = hlist_bl_entry(hlist_bl_first(&sb->s_anon), struct dentry, d_hash);
  900. shrink_dcache_for_umount_subtree(dentry);
  901. }
  902. }
  903. /*
  904. * This tries to ascend one level of parenthood, but
  905. * we can race with renaming, so we need to re-check
  906. * the parenthood after dropping the lock and check
  907. * that the sequence number still matches.
  908. */
  909. static struct dentry *try_to_ascend(struct dentry *old, int locked, unsigned seq)
  910. {
  911. struct dentry *new = old->d_parent;
  912. rcu_read_lock();
  913. spin_unlock(&old->d_lock);
  914. spin_lock(&new->d_lock);
  915. /*
  916. * might go back up the wrong parent if we have had a rename
  917. * or deletion
  918. */
  919. if (new != old->d_parent ||
  920. (old->d_flags & DCACHE_DISCONNECTED) ||
  921. (!locked && read_seqretry(&rename_lock, seq))) {
  922. spin_unlock(&new->d_lock);
  923. new = NULL;
  924. }
  925. rcu_read_unlock();
  926. return new;
  927. }
  928. /*
  929. * Search for at least 1 mount point in the dentry's subdirs.
  930. * We descend to the next level whenever the d_subdirs
  931. * list is non-empty and continue searching.
  932. */
  933. /**
  934. * have_submounts - check for mounts over a dentry
  935. * @parent: dentry to check.
  936. *
  937. * Return true if the parent or its subdirectories contain
  938. * a mount point
  939. */
  940. int have_submounts(struct dentry *parent)
  941. {
  942. struct dentry *this_parent;
  943. struct list_head *next;
  944. unsigned seq;
  945. int locked = 0;
  946. seq = read_seqbegin(&rename_lock);
  947. again:
  948. this_parent = parent;
  949. if (d_mountpoint(parent))
  950. goto positive;
  951. spin_lock(&this_parent->d_lock);
  952. repeat:
  953. next = this_parent->d_subdirs.next;
  954. resume:
  955. while (next != &this_parent->d_subdirs) {
  956. struct list_head *tmp = next;
  957. struct dentry *dentry = list_entry(tmp, struct dentry, d_u.d_child);
  958. next = tmp->next;
  959. spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
  960. /* Have we found a mount point ? */
  961. if (d_mountpoint(dentry)) {
  962. spin_unlock(&dentry->d_lock);
  963. spin_unlock(&this_parent->d_lock);
  964. goto positive;
  965. }
  966. if (!list_empty(&dentry->d_subdirs)) {
  967. spin_unlock(&this_parent->d_lock);
  968. spin_release(&dentry->d_lock.dep_map, 1, _RET_IP_);
  969. this_parent = dentry;
  970. spin_acquire(&this_parent->d_lock.dep_map, 0, 1, _RET_IP_);
  971. goto repeat;
  972. }
  973. spin_unlock(&dentry->d_lock);
  974. }
  975. /*
  976. * All done at this level ... ascend and resume the search.
  977. */
  978. if (this_parent != parent) {
  979. struct dentry *child = this_parent;
  980. this_parent = try_to_ascend(this_parent, locked, seq);
  981. if (!this_parent)
  982. goto rename_retry;
  983. next = child->d_u.d_child.next;
  984. goto resume;
  985. }
  986. spin_unlock(&this_parent->d_lock);
  987. if (!locked && read_seqretry(&rename_lock, seq))
  988. goto rename_retry;
  989. if (locked)
  990. write_sequnlock(&rename_lock);
  991. return 0; /* No mount points found in tree */
  992. positive:
  993. if (!locked && read_seqretry(&rename_lock, seq))
  994. goto rename_retry;
  995. if (locked)
  996. write_sequnlock(&rename_lock);
  997. return 1;
  998. rename_retry:
  999. locked = 1;
  1000. write_seqlock(&rename_lock);
  1001. goto again;
  1002. }
  1003. EXPORT_SYMBOL(have_submounts);
  1004. /*
  1005. * Search the dentry child list for the specified parent,
  1006. * and move any unused dentries to the end of the unused
  1007. * list for prune_dcache(). We descend to the next level
  1008. * whenever the d_subdirs list is non-empty and continue
  1009. * searching.
  1010. *
  1011. * It returns zero iff there are no unused children,
  1012. * otherwise it returns the number of children moved to
  1013. * the end of the unused list. This may not be the total
  1014. * number of unused children, because select_parent can
  1015. * drop the lock and return early due to latency
  1016. * constraints.
  1017. */
  1018. static int select_parent(struct dentry *parent, struct list_head *dispose)
  1019. {
  1020. struct dentry *this_parent;
  1021. struct list_head *next;
  1022. unsigned seq;
  1023. int found = 0;
  1024. int locked = 0;
  1025. seq = read_seqbegin(&rename_lock);
  1026. again:
  1027. this_parent = parent;
  1028. spin_lock(&this_parent->d_lock);
  1029. repeat:
  1030. next = this_parent->d_subdirs.next;
  1031. resume:
  1032. while (next != &this_parent->d_subdirs) {
  1033. struct list_head *tmp = next;
  1034. struct dentry *dentry = list_entry(tmp, struct dentry, d_u.d_child);
  1035. next = tmp->next;
  1036. spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
  1037. /*
  1038. * move only zero ref count dentries to the dispose list.
  1039. *
  1040. * Those which are presently on the shrink list, being processed
  1041. * by shrink_dentry_list(), shouldn't be moved. Otherwise the
  1042. * loop in shrink_dcache_parent() might not make any progress
  1043. * and loop forever.
  1044. */
  1045. if (dentry->d_count) {
  1046. dentry_lru_del(dentry);
  1047. } else if (!(dentry->d_flags & DCACHE_SHRINK_LIST)) {
  1048. dentry_lru_move_list(dentry, dispose);
  1049. dentry->d_flags |= DCACHE_SHRINK_LIST;
  1050. found++;
  1051. }
  1052. /*
  1053. * We can return to the caller if we have found some (this
  1054. * ensures forward progress). We'll be coming back to find
  1055. * the rest.
  1056. */
  1057. if (found && need_resched()) {
  1058. spin_unlock(&dentry->d_lock);
  1059. goto out;
  1060. }
  1061. /*
  1062. * Descend a level if the d_subdirs list is non-empty.
  1063. */
  1064. if (!list_empty(&dentry->d_subdirs)) {
  1065. spin_unlock(&this_parent->d_lock);
  1066. spin_release(&dentry->d_lock.dep_map, 1, _RET_IP_);
  1067. this_parent = dentry;
  1068. spin_acquire(&this_parent->d_lock.dep_map, 0, 1, _RET_IP_);
  1069. goto repeat;
  1070. }
  1071. spin_unlock(&dentry->d_lock);
  1072. }
  1073. /*
  1074. * All done at this level ... ascend and resume the search.
  1075. */
  1076. if (this_parent != parent) {
  1077. struct dentry *child = this_parent;
  1078. this_parent = try_to_ascend(this_parent, locked, seq);
  1079. if (!this_parent)
  1080. goto rename_retry;
  1081. next = child->d_u.d_child.next;
  1082. goto resume;
  1083. }
  1084. out:
  1085. spin_unlock(&this_parent->d_lock);
  1086. if (!locked && read_seqretry(&rename_lock, seq))
  1087. goto rename_retry;
  1088. if (locked)
  1089. write_sequnlock(&rename_lock);
  1090. return found;
  1091. rename_retry:
  1092. if (found)
  1093. return found;
  1094. locked = 1;
  1095. write_seqlock(&rename_lock);
  1096. goto again;
  1097. }
  1098. /**
  1099. * shrink_dcache_parent - prune dcache
  1100. * @parent: parent of entries to prune
  1101. *
  1102. * Prune the dcache to remove unused children of the parent dentry.
  1103. */
  1104. void shrink_dcache_parent(struct dentry * parent)
  1105. {
  1106. LIST_HEAD(dispose);
  1107. int found;
  1108. while ((found = select_parent(parent, &dispose)) != 0)
  1109. shrink_dentry_list(&dispose);
  1110. }
  1111. EXPORT_SYMBOL(shrink_dcache_parent);
  1112. /**
  1113. * __d_alloc - allocate a dcache entry
  1114. * @sb: filesystem it will belong to
  1115. * @name: qstr of the name
  1116. *
  1117. * Allocates a dentry. It returns %NULL if there is insufficient memory
  1118. * available. On a success the dentry is returned. The name passed in is
  1119. * copied and the copy passed in may be reused after this call.
  1120. */
  1121. struct dentry *__d_alloc(struct super_block *sb, const struct qstr *name)
  1122. {
  1123. struct dentry *dentry;
  1124. char *dname;
  1125. dentry = kmem_cache_alloc(dentry_cache, GFP_KERNEL);
  1126. if (!dentry)
  1127. return NULL;
  1128. if (name->len > DNAME_INLINE_LEN-1) {
  1129. dname = kmalloc(name->len + 1, GFP_KERNEL);
  1130. if (!dname) {
  1131. kmem_cache_free(dentry_cache, dentry);
  1132. return NULL;
  1133. }
  1134. } else {
  1135. dname = dentry->d_iname;
  1136. }
  1137. dentry->d_name.name = dname;
  1138. dentry->d_name.len = name->len;
  1139. dentry->d_name.hash = name->hash;
  1140. memcpy(dname, name->name, name->len);
  1141. dname[name->len] = 0;
  1142. dentry->d_count = 1;
  1143. dentry->d_flags = 0;
  1144. spin_lock_init(&dentry->d_lock);
  1145. seqcount_init(&dentry->d_seq);
  1146. dentry->d_inode = NULL;
  1147. dentry->d_parent = dentry;
  1148. dentry->d_sb = sb;
  1149. dentry->d_op = NULL;
  1150. dentry->d_fsdata = NULL;
  1151. INIT_HLIST_BL_NODE(&dentry->d_hash);
  1152. INIT_LIST_HEAD(&dentry->d_lru);
  1153. INIT_LIST_HEAD(&dentry->d_subdirs);
  1154. INIT_LIST_HEAD(&dentry->d_alias);
  1155. INIT_LIST_HEAD(&dentry->d_u.d_child);
  1156. d_set_d_op(dentry, dentry->d_sb->s_d_op);
  1157. this_cpu_inc(nr_dentry);
  1158. return dentry;
  1159. }
  1160. /**
  1161. * d_alloc - allocate a dcache entry
  1162. * @parent: parent of entry to allocate
  1163. * @name: qstr of the name
  1164. *
  1165. * Allocates a dentry. It returns %NULL if there is insufficient memory
  1166. * available. On a success the dentry is returned. The name passed in is
  1167. * copied and the copy passed in may be reused after this call.
  1168. */
  1169. struct dentry *d_alloc(struct dentry * parent, const struct qstr *name)
  1170. {
  1171. struct dentry *dentry = __d_alloc(parent->d_sb, name);
  1172. if (!dentry)
  1173. return NULL;
  1174. spin_lock(&parent->d_lock);
  1175. /*
  1176. * don't need child lock because it is not subject
  1177. * to concurrency here
  1178. */
  1179. __dget_dlock(parent);
  1180. dentry->d_parent = parent;
  1181. list_add(&dentry->d_u.d_child, &parent->d_subdirs);
  1182. spin_unlock(&parent->d_lock);
  1183. return dentry;
  1184. }
  1185. EXPORT_SYMBOL(d_alloc);
  1186. struct dentry *d_alloc_pseudo(struct super_block *sb, const struct qstr *name)
  1187. {
  1188. struct dentry *dentry = __d_alloc(sb, name);
  1189. if (dentry)
  1190. dentry->d_flags |= DCACHE_DISCONNECTED;
  1191. return dentry;
  1192. }
  1193. EXPORT_SYMBOL(d_alloc_pseudo);
  1194. struct dentry *d_alloc_name(struct dentry *parent, const char *name)
  1195. {
  1196. struct qstr q;
  1197. q.name = name;
  1198. q.len = strlen(name);
  1199. q.hash = full_name_hash(q.name, q.len);
  1200. return d_alloc(parent, &q);
  1201. }
  1202. EXPORT_SYMBOL(d_alloc_name);
  1203. void d_set_d_op(struct dentry *dentry, const struct dentry_operations *op)
  1204. {
  1205. WARN_ON_ONCE(dentry->d_op);
  1206. WARN_ON_ONCE(dentry->d_flags & (DCACHE_OP_HASH |
  1207. DCACHE_OP_COMPARE |
  1208. DCACHE_OP_REVALIDATE |
  1209. DCACHE_OP_DELETE ));
  1210. dentry->d_op = op;
  1211. if (!op)
  1212. return;
  1213. if (op->d_hash)
  1214. dentry->d_flags |= DCACHE_OP_HASH;
  1215. if (op->d_compare)
  1216. dentry->d_flags |= DCACHE_OP_COMPARE;
  1217. if (op->d_revalidate)
  1218. dentry->d_flags |= DCACHE_OP_REVALIDATE;
  1219. if (op->d_delete)
  1220. dentry->d_flags |= DCACHE_OP_DELETE;
  1221. if (op->d_prune)
  1222. dentry->d_flags |= DCACHE_OP_PRUNE;
  1223. }
  1224. EXPORT_SYMBOL(d_set_d_op);
  1225. static void __d_instantiate(struct dentry *dentry, struct inode *inode)
  1226. {
  1227. spin_lock(&dentry->d_lock);
  1228. if (inode) {
  1229. if (unlikely(IS_AUTOMOUNT(inode)))
  1230. dentry->d_flags |= DCACHE_NEED_AUTOMOUNT;
  1231. list_add(&dentry->d_alias, &inode->i_dentry);
  1232. }
  1233. dentry->d_inode = inode;
  1234. dentry_rcuwalk_barrier(dentry);
  1235. spin_unlock(&dentry->d_lock);
  1236. fsnotify_d_instantiate(dentry, inode);
  1237. }
  1238. /**
  1239. * d_instantiate - fill in inode information for a dentry
  1240. * @entry: dentry to complete
  1241. * @inode: inode to attach to this dentry
  1242. *
  1243. * Fill in inode information in the entry.
  1244. *
  1245. * This turns negative dentries into productive full members
  1246. * of society.
  1247. *
  1248. * NOTE! This assumes that the inode count has been incremented
  1249. * (or otherwise set) by the caller to indicate that it is now
  1250. * in use by the dcache.
  1251. */
  1252. void d_instantiate(struct dentry *entry, struct inode * inode)
  1253. {
  1254. BUG_ON(!list_empty(&entry->d_alias));
  1255. if (inode)
  1256. spin_lock(&inode->i_lock);
  1257. __d_instantiate(entry, inode);
  1258. if (inode)
  1259. spin_unlock(&inode->i_lock);
  1260. security_d_instantiate(entry, inode);
  1261. }
  1262. EXPORT_SYMBOL(d_instantiate);
  1263. /**
  1264. * d_instantiate_unique - instantiate a non-aliased dentry
  1265. * @entry: dentry to instantiate
  1266. * @inode: inode to attach to this dentry
  1267. *
  1268. * Fill in inode information in the entry. On success, it returns NULL.
  1269. * If an unhashed alias of "entry" already exists, then we return the
  1270. * aliased dentry instead and drop one reference to inode.
  1271. *
  1272. * Note that in order to avoid conflicts with rename() etc, the caller
  1273. * had better be holding the parent directory semaphore.
  1274. *
  1275. * This also assumes that the inode count has been incremented
  1276. * (or otherwise set) by the caller to indicate that it is now
  1277. * in use by the dcache.
  1278. */
  1279. static struct dentry *__d_instantiate_unique(struct dentry *entry,
  1280. struct inode *inode)
  1281. {
  1282. struct dentry *alias;
  1283. int len = entry->d_name.len;
  1284. const char *name = entry->d_name.name;
  1285. unsigned int hash = entry->d_name.hash;
  1286. if (!inode) {
  1287. __d_instantiate(entry, NULL);
  1288. return NULL;
  1289. }
  1290. list_for_each_entry(alias, &inode->i_dentry, d_alias) {
  1291. struct qstr *qstr = &alias->d_name;
  1292. /*
  1293. * Don't need alias->d_lock here, because aliases with
  1294. * d_parent == entry->d_parent are not subject to name or
  1295. * parent changes, because the parent inode i_mutex is held.
  1296. */
  1297. if (qstr->hash != hash)
  1298. continue;
  1299. if (alias->d_parent != entry->d_parent)
  1300. continue;
  1301. if (dentry_cmp(qstr->name, qstr->len, name, len))
  1302. continue;
  1303. __dget(alias);
  1304. return alias;
  1305. }
  1306. __d_instantiate(entry, inode);
  1307. return NULL;
  1308. }
  1309. struct dentry *d_instantiate_unique(struct dentry *entry, struct inode *inode)
  1310. {
  1311. struct dentry *result;
  1312. BUG_ON(!list_empty(&entry->d_alias));
  1313. if (inode)
  1314. spin_lock(&inode->i_lock);
  1315. result = __d_instantiate_unique(entry, inode);
  1316. if (inode)
  1317. spin_unlock(&inode->i_lock);
  1318. if (!result) {
  1319. security_d_instantiate(entry, inode);
  1320. return NULL;
  1321. }
  1322. BUG_ON(!d_unhashed(result));
  1323. iput(inode);
  1324. return result;
  1325. }
  1326. EXPORT_SYMBOL(d_instantiate_unique);
  1327. struct dentry *d_make_root(struct inode *root_inode)
  1328. {
  1329. struct dentry *res = NULL;
  1330. if (root_inode) {
  1331. static const struct qstr name = { .name = "/", .len = 1 };
  1332. res = __d_alloc(root_inode->i_sb, &name);
  1333. if (res)
  1334. d_instantiate(res, root_inode);
  1335. else
  1336. iput(root_inode);
  1337. }
  1338. return res;
  1339. }
  1340. EXPORT_SYMBOL(d_make_root);
  1341. static struct dentry * __d_find_any_alias(struct inode *inode)
  1342. {
  1343. struct dentry *alias;
  1344. if (list_empty(&inode->i_dentry))
  1345. return NULL;
  1346. alias = list_first_entry(&inode->i_dentry, struct dentry, d_alias);
  1347. __dget(alias);
  1348. return alias;
  1349. }
  1350. /**
  1351. * d_find_any_alias - find any alias for a given inode
  1352. * @inode: inode to find an alias for
  1353. *
  1354. * If any aliases exist for the given inode, take and return a
  1355. * reference for one of them. If no aliases exist, return %NULL.
  1356. */
  1357. struct dentry *d_find_any_alias(struct inode *inode)
  1358. {
  1359. struct dentry *de;
  1360. spin_lock(&inode->i_lock);
  1361. de = __d_find_any_alias(inode);
  1362. spin_unlock(&inode->i_lock);
  1363. return de;
  1364. }
  1365. EXPORT_SYMBOL(d_find_any_alias);
  1366. /**
  1367. * d_obtain_alias - find or allocate a dentry for a given inode
  1368. * @inode: inode to allocate the dentry for
  1369. *
  1370. * Obtain a dentry for an inode resulting from NFS filehandle conversion or
  1371. * similar open by handle operations. The returned dentry may be anonymous,
  1372. * or may have a full name (if the inode was already in the cache).
  1373. *
  1374. * When called on a directory inode, we must ensure that the inode only ever
  1375. * has one dentry. If a dentry is found, that is returned instead of
  1376. * allocating a new one.
  1377. *
  1378. * On successful return, the reference to the inode has been transferred
  1379. * to the dentry. In case of an error the reference on the inode is released.
  1380. * To make it easier to use in export operations a %NULL or IS_ERR inode may
  1381. * be passed in and will be the error will be propagate to the return value,
  1382. * with a %NULL @inode replaced by ERR_PTR(-ESTALE).
  1383. */
  1384. struct dentry *d_obtain_alias(struct inode *inode)
  1385. {
  1386. static const struct qstr anonstring = { .name = "" };
  1387. struct dentry *tmp;
  1388. struct dentry *res;
  1389. if (!inode)
  1390. return ERR_PTR(-ESTALE);
  1391. if (IS_ERR(inode))
  1392. return ERR_CAST(inode);
  1393. res = d_find_any_alias(inode);
  1394. if (res)
  1395. goto out_iput;
  1396. tmp = __d_alloc(inode->i_sb, &anonstring);
  1397. if (!tmp) {
  1398. res = ERR_PTR(-ENOMEM);
  1399. goto out_iput;
  1400. }
  1401. spin_lock(&inode->i_lock);
  1402. res = __d_find_any_alias(inode);
  1403. if (res) {
  1404. spin_unlock(&inode->i_lock);
  1405. dput(tmp);
  1406. goto out_iput;
  1407. }
  1408. /* attach a disconnected dentry */
  1409. spin_lock(&tmp->d_lock);
  1410. tmp->d_inode = inode;
  1411. tmp->d_flags |= DCACHE_DISCONNECTED;
  1412. list_add(&tmp->d_alias, &inode->i_dentry);
  1413. hlist_bl_lock(&tmp->d_sb->s_anon);
  1414. hlist_bl_add_head(&tmp->d_hash, &tmp->d_sb->s_anon);
  1415. hlist_bl_unlock(&tmp->d_sb->s_anon);
  1416. spin_unlock(&tmp->d_lock);
  1417. spin_unlock(&inode->i_lock);
  1418. security_d_instantiate(tmp, inode);
  1419. return tmp;
  1420. out_iput:
  1421. if (res && !IS_ERR(res))
  1422. security_d_instantiate(res, inode);
  1423. iput(inode);
  1424. return res;
  1425. }
  1426. EXPORT_SYMBOL(d_obtain_alias);
  1427. /**
  1428. * d_splice_alias - splice a disconnected dentry into the tree if one exists
  1429. * @inode: the inode which may have a disconnected dentry
  1430. * @dentry: a negative dentry which we want to point to the inode.
  1431. *
  1432. * If inode is a directory and has a 'disconnected' dentry (i.e. IS_ROOT and
  1433. * DCACHE_DISCONNECTED), then d_move that in place of the given dentry
  1434. * and return it, else simply d_add the inode to the dentry and return NULL.
  1435. *
  1436. * This is needed in the lookup routine of any filesystem that is exportable
  1437. * (via knfsd) so that we can build dcache paths to directories effectively.
  1438. *
  1439. * If a dentry was found and moved, then it is returned. Otherwise NULL
  1440. * is returned. This matches the expected return value of ->lookup.
  1441. *
  1442. */
  1443. struct dentry *d_splice_alias(struct inode *inode, struct dentry *dentry)
  1444. {
  1445. struct dentry *new = NULL;
  1446. if (IS_ERR(inode))
  1447. return ERR_CAST(inode);
  1448. if (inode && S_ISDIR(inode->i_mode)) {
  1449. spin_lock(&inode->i_lock);
  1450. new = __d_find_alias(inode, 1);
  1451. if (new) {
  1452. BUG_ON(!(new->d_flags & DCACHE_DISCONNECTED));
  1453. spin_unlock(&inode->i_lock);
  1454. security_d_instantiate(new, inode);
  1455. d_move(new, dentry);
  1456. iput(inode);
  1457. } else {
  1458. /* already taking inode->i_lock, so d_add() by hand */
  1459. __d_instantiate(dentry, inode);
  1460. spin_unlock(&inode->i_lock);
  1461. security_d_instantiate(dentry, inode);
  1462. d_rehash(dentry);
  1463. }
  1464. } else
  1465. d_add(dentry, inode);
  1466. return new;
  1467. }
  1468. EXPORT_SYMBOL(d_splice_alias);
  1469. /**
  1470. * d_add_ci - lookup or allocate new dentry with case-exact name
  1471. * @inode: the inode case-insensitive lookup has found
  1472. * @dentry: the negative dentry that was passed to the parent's lookup func
  1473. * @name: the case-exact name to be associated with the returned dentry
  1474. *
  1475. * This is to avoid filling the dcache with case-insensitive names to the
  1476. * same inode, only the actual correct case is stored in the dcache for
  1477. * case-insensitive filesystems.
  1478. *
  1479. * For a case-insensitive lookup match and if the the case-exact dentry
  1480. * already exists in in the dcache, use it and return it.
  1481. *
  1482. * If no entry exists with the exact case name, allocate new dentry with
  1483. * the exact case, and return the spliced entry.
  1484. */
  1485. struct dentry *d_add_ci(struct dentry *dentry, struct inode *inode,
  1486. struct qstr *name)
  1487. {
  1488. int error;
  1489. struct dentry *found;
  1490. struct dentry *new;
  1491. /*
  1492. * First check if a dentry matching the name already exists,
  1493. * if not go ahead and create it now.
  1494. */
  1495. found = d_hash_and_lookup(dentry->d_parent, name);
  1496. if (!found) {
  1497. new = d_alloc(dentry->d_parent, name);
  1498. if (!new) {
  1499. error = -ENOMEM;
  1500. goto err_out;
  1501. }
  1502. found = d_splice_alias(inode, new);
  1503. if (found) {
  1504. dput(new);
  1505. return found;
  1506. }
  1507. return new;
  1508. }
  1509. /*
  1510. * If a matching dentry exists, and it's not negative use it.
  1511. *
  1512. * Decrement the reference count to balance the iget() done
  1513. * earlier on.
  1514. */
  1515. if (found->d_inode) {
  1516. if (unlikely(found->d_inode != inode)) {
  1517. /* This can't happen because bad inodes are unhashed. */
  1518. BUG_ON(!is_bad_inode(inode));
  1519. BUG_ON(!is_bad_inode(found->d_inode));
  1520. }
  1521. iput(inode);
  1522. return found;
  1523. }
  1524. /*
  1525. * We are going to instantiate this dentry, unhash it and clear the
  1526. * lookup flag so we can do that.
  1527. */
  1528. if (unlikely(d_need_lookup(found)))
  1529. d_clear_need_lookup(found);
  1530. /*
  1531. * Negative dentry: instantiate it unless the inode is a directory and
  1532. * already has a dentry.
  1533. */
  1534. new = d_splice_alias(inode, found);
  1535. if (new) {
  1536. dput(found);
  1537. found = new;
  1538. }
  1539. return found;
  1540. err_out:
  1541. iput(inode);
  1542. return ERR_PTR(error);
  1543. }
  1544. EXPORT_SYMBOL(d_add_ci);
  1545. /**
  1546. * __d_lookup_rcu - search for a dentry (racy, store-free)
  1547. * @parent: parent dentry
  1548. * @name: qstr of name we wish to find
  1549. * @seqp: returns d_seq value at the point where the dentry was found
  1550. * @inode: returns dentry->d_inode when the inode was found valid.
  1551. * Returns: dentry, or NULL
  1552. *
  1553. * __d_lookup_rcu is the dcache lookup function for rcu-walk name
  1554. * resolution (store-free path walking) design described in
  1555. * Documentation/filesystems/path-lookup.txt.
  1556. *
  1557. * This is not to be used outside core vfs.
  1558. *
  1559. * __d_lookup_rcu must only be used in rcu-walk mode, ie. with vfsmount lock
  1560. * held, and rcu_read_lock held. The returned dentry must not be stored into
  1561. * without taking d_lock and checking d_seq sequence count against @seq
  1562. * returned here.
  1563. *
  1564. * A refcount may be taken on the found dentry with the __d_rcu_to_refcount
  1565. * function.
  1566. *
  1567. * Alternatively, __d_lookup_rcu may be called again to look up the child of
  1568. * the returned dentry, so long as its parent's seqlock is checked after the
  1569. * child is looked up. Thus, an interlocking stepping of sequence lock checks
  1570. * is formed, giving integrity down the path walk.
  1571. */
  1572. struct dentry *__d_lookup_rcu(const struct dentry *parent,
  1573. const struct qstr *name,
  1574. unsigned *seqp, struct inode **inode)
  1575. {
  1576. unsigned int len = name->len;
  1577. unsigned int hash = name->hash;
  1578. const unsigned char *str = name->name;
  1579. struct hlist_bl_head *b = d_hash(parent, hash);
  1580. struct hlist_bl_node *node;
  1581. struct dentry *dentry;
  1582. /*
  1583. * Note: There is significant duplication with __d_lookup_rcu which is
  1584. * required to prevent single threaded performance regressions
  1585. * especially on architectures where smp_rmb (in seqcounts) are costly.
  1586. * Keep the two functions in sync.
  1587. */
  1588. /*
  1589. * The hash list is protected using RCU.
  1590. *
  1591. * Carefully use d_seq when comparing a candidate dentry, to avoid
  1592. * races with d_move().
  1593. *
  1594. * It is possible that concurrent renames can mess up our list
  1595. * walk here and result in missing our dentry, resulting in the
  1596. * false-negative result. d_lookup() protects against concurrent
  1597. * renames using rename_lock seqlock.
  1598. *
  1599. * See Documentation/filesystems/path-lookup.txt for more details.
  1600. */
  1601. hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
  1602. unsigned seq;
  1603. struct inode *i;
  1604. const char *tname;
  1605. int tlen;
  1606. if (dentry->d_name.hash != hash)
  1607. continue;
  1608. seqretry:
  1609. seq = read_seqcount_begin(&dentry->d_seq);
  1610. if (dentry->d_parent != parent)
  1611. continue;
  1612. if (d_unhashed(dentry))
  1613. continue;
  1614. tlen = dentry->d_name.len;
  1615. tname = dentry->d_name.name;
  1616. i = dentry->d_inode;
  1617. prefetch(tname);
  1618. /*
  1619. * This seqcount check is required to ensure name and
  1620. * len are loaded atomically, so as not to walk off the
  1621. * edge of memory when walking. If we could load this
  1622. * atomically some other way, we could drop this check.
  1623. */
  1624. if (read_seqcount_retry(&dentry->d_seq, seq))
  1625. goto seqretry;
  1626. if (unlikely(parent->d_flags & DCACHE_OP_COMPARE)) {
  1627. if (parent->d_op->d_compare(parent, *inode,
  1628. dentry, i,
  1629. tlen, tname, name))
  1630. continue;
  1631. } else {
  1632. if (dentry_cmp(tname, tlen, str, len))
  1633. continue;
  1634. }
  1635. /*
  1636. * No extra seqcount check is required after the name
  1637. * compare. The caller must perform a seqcount check in
  1638. * order to do anything useful with the returned dentry
  1639. * anyway.
  1640. */
  1641. *seqp = seq;
  1642. *inode = i;
  1643. return dentry;
  1644. }
  1645. return NULL;
  1646. }
  1647. /**
  1648. * d_lookup - search for a dentry
  1649. * @parent: parent dentry
  1650. * @name: qstr of name we wish to find
  1651. * Returns: dentry, or NULL
  1652. *
  1653. * d_lookup searches the children of the parent dentry for the name in
  1654. * question. If the dentry is found its reference count is incremented and the
  1655. * dentry is returned. The caller must use dput to free the entry when it has
  1656. * finished using it. %NULL is returned if the dentry does not exist.
  1657. */
  1658. struct dentry *d_lookup(struct dentry *parent, struct qstr *name)
  1659. {
  1660. struct dentry *dentry;
  1661. unsigned seq;
  1662. do {
  1663. seq = read_seqbegin(&rename_lock);
  1664. dentry = __d_lookup(parent, name);
  1665. if (dentry)
  1666. break;
  1667. } while (read_seqretry(&rename_lock, seq));
  1668. return dentry;
  1669. }
  1670. EXPORT_SYMBOL(d_lookup);
  1671. /**
  1672. * __d_lookup - search for a dentry (racy)
  1673. * @parent: parent dentry
  1674. * @name: qstr of name we wish to find
  1675. * Returns: dentry, or NULL
  1676. *
  1677. * __d_lookup is like d_lookup, however it may (rarely) return a
  1678. * false-negative result due to unrelated rename activity.
  1679. *
  1680. * __d_lookup is slightly faster by avoiding rename_lock read seqlock,
  1681. * however it must be used carefully, eg. with a following d_lookup in
  1682. * the case of failure.
  1683. *
  1684. * __d_lookup callers must be commented.
  1685. */
  1686. struct dentry *__d_lookup(struct dentry *parent, struct qstr *name)
  1687. {
  1688. unsigned int len = name->len;
  1689. unsigned int hash = name->hash;
  1690. const unsigned char *str = name->name;
  1691. struct hlist_bl_head *b = d_hash(parent, hash);
  1692. struct hlist_bl_node *node;
  1693. struct dentry *found = NULL;
  1694. struct dentry *dentry;
  1695. /*
  1696. * Note: There is significant duplication with __d_lookup_rcu which is
  1697. * required to prevent single threaded performance regressions
  1698. * especially on architectures where smp_rmb (in seqcounts) are costly.
  1699. * Keep the two functions in sync.
  1700. */
  1701. /*
  1702. * The hash list is protected using RCU.
  1703. *
  1704. * Take d_lock when comparing a candidate dentry, to avoid races
  1705. * with d_move().
  1706. *
  1707. * It is possible that concurrent renames can mess up our list
  1708. * walk here and result in missing our dentry, resulting in the
  1709. * false-negative result. d_lookup() protects against concurrent
  1710. * renames using rename_lock seqlock.
  1711. *
  1712. * See Documentation/filesystems/path-lookup.txt for more details.
  1713. */
  1714. rcu_read_lock();
  1715. hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
  1716. const char *tname;
  1717. int tlen;
  1718. if (dentry->d_name.hash != hash)
  1719. continue;
  1720. spin_lock(&dentry->d_lock);
  1721. if (dentry->d_parent != parent)
  1722. goto next;
  1723. if (d_unhashed(dentry))
  1724. goto next;
  1725. /*
  1726. * It is safe to compare names since d_move() cannot
  1727. * change the qstr (protected by d_lock).
  1728. */
  1729. tlen = dentry->d_name.len;
  1730. tname = dentry->d_name.name;
  1731. if (parent->d_flags & DCACHE_OP_COMPARE) {
  1732. if (parent->d_op->d_compare(parent, parent->d_inode,
  1733. dentry, dentry->d_inode,
  1734. tlen, tname, name))
  1735. goto next;
  1736. } else {
  1737. if (dentry_cmp(tname, tlen, str, len))
  1738. goto next;
  1739. }
  1740. dentry->d_count++;
  1741. found = dentry;
  1742. spin_unlock(&dentry->d_lock);
  1743. break;
  1744. next:
  1745. spin_unlock(&dentry->d_lock);
  1746. }
  1747. rcu_read_unlock();
  1748. return found;
  1749. }
  1750. /**
  1751. * d_hash_and_lookup - hash the qstr then search for a dentry
  1752. * @dir: Directory to search in
  1753. * @name: qstr of name we wish to find
  1754. *
  1755. * On hash failure or on lookup failure NULL is returned.
  1756. */
  1757. struct dentry *d_hash_and_lookup(struct dentry *dir, struct qstr *name)
  1758. {
  1759. struct dentry *dentry = NULL;
  1760. /*
  1761. * Check for a fs-specific hash function. Note that we must
  1762. * calculate the standard hash first, as the d_op->d_hash()
  1763. * routine may choose to leave the hash value unchanged.
  1764. */
  1765. name->hash = full_name_hash(name->name, name->len);
  1766. if (dir->d_flags & DCACHE_OP_HASH) {
  1767. if (dir->d_op->d_hash(dir, dir->d_inode, name) < 0)
  1768. goto out;
  1769. }
  1770. dentry = d_lookup(dir, name);
  1771. out:
  1772. return dentry;
  1773. }
  1774. /**
  1775. * d_validate - verify dentry provided from insecure source (deprecated)
  1776. * @dentry: The dentry alleged to be valid child of @dparent
  1777. * @dparent: The parent dentry (known to be valid)
  1778. *
  1779. * An insecure source has sent us a dentry, here we verify it and dget() it.
  1780. * This is used by ncpfs in its readdir implementation.
  1781. * Zero is returned in the dentry is invalid.
  1782. *
  1783. * This function is slow for big directories, and deprecated, do not use it.
  1784. */
  1785. int d_validate(struct dentry *dentry, struct dentry *dparent)
  1786. {
  1787. struct dentry *child;
  1788. spin_lock(&dparent->d_lock);
  1789. list_for_each_entry(child, &dparent->d_subdirs, d_u.d_child) {
  1790. if (dentry == child) {
  1791. spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
  1792. __dget_dlock(dentry);
  1793. spin_unlock(&dentry->d_lock);
  1794. spin_unlock(&dparent->d_lock);
  1795. return 1;
  1796. }
  1797. }
  1798. spin_unlock(&dparent->d_lock);
  1799. return 0;
  1800. }
  1801. EXPORT_SYMBOL(d_validate);
  1802. /*
  1803. * When a file is deleted, we have two options:
  1804. * - turn this dentry into a negative dentry
  1805. * - unhash this dentry and free it.
  1806. *
  1807. * Usually, we want to just turn this into
  1808. * a negative dentry, but if anybody else is
  1809. * currently using the dentry or the inode
  1810. * we can't do that and we fall back on removing
  1811. * it from the hash queues and waiting for
  1812. * it to be deleted later when it has no users
  1813. */
  1814. /**
  1815. * d_delete - delete a dentry
  1816. * @dentry: The dentry to delete
  1817. *
  1818. * Turn the dentry into a negative dentry if possible, otherwise
  1819. * remove it from the hash queues so it can be deleted later
  1820. */
  1821. void d_delete(struct dentry * dentry)
  1822. {
  1823. struct inode *inode;
  1824. int isdir = 0;
  1825. /*
  1826. * Are we the only user?
  1827. */
  1828. again:
  1829. spin_lock(&dentry->d_lock);
  1830. inode = dentry->d_inode;
  1831. isdir = S_ISDIR(inode->i_mode);
  1832. if (dentry->d_count == 1) {
  1833. if (inode && !spin_trylock(&inode->i_lock)) {
  1834. spin_unlock(&dentry->d_lock);
  1835. cpu_relax();
  1836. goto again;
  1837. }
  1838. dentry->d_flags &= ~DCACHE_CANT_MOUNT;
  1839. dentry_unlink_inode(dentry);
  1840. fsnotify_nameremove(dentry, isdir);
  1841. return;
  1842. }
  1843. if (!d_unhashed(dentry))
  1844. __d_drop(dentry);
  1845. spin_unlock(&dentry->d_lock);
  1846. fsnotify_nameremove(dentry, isdir);
  1847. }
  1848. EXPORT_SYMBOL(d_delete);
  1849. static void __d_rehash(struct dentry * entry, struct hlist_bl_head *b)
  1850. {
  1851. BUG_ON(!d_unhashed(entry));
  1852. hlist_bl_lock(b);
  1853. entry->d_flags |= DCACHE_RCUACCESS;
  1854. hlist_bl_add_head_rcu(&entry->d_hash, b);
  1855. hlist_bl_unlock(b);
  1856. }
  1857. static void _d_rehash(struct dentry * entry)
  1858. {
  1859. __d_rehash(entry, d_hash(entry->d_parent, entry->d_name.hash));
  1860. }
  1861. /**
  1862. * d_rehash - add an entry back to the hash
  1863. * @entry: dentry to add to the hash
  1864. *
  1865. * Adds a dentry to the hash according to its name.
  1866. */
  1867. void d_rehash(struct dentry * entry)
  1868. {
  1869. spin_lock(&entry->d_lock);
  1870. _d_rehash(entry);
  1871. spin_unlock(&entry->d_lock);
  1872. }
  1873. EXPORT_SYMBOL(d_rehash);
  1874. /**
  1875. * dentry_update_name_case - update case insensitive dentry with a new name
  1876. * @dentry: dentry to be updated
  1877. * @name: new name
  1878. *
  1879. * Update a case insensitive dentry with new case of name.
  1880. *
  1881. * dentry must have been returned by d_lookup with name @name. Old and new
  1882. * name lengths must match (ie. no d_compare which allows mismatched name
  1883. * lengths).
  1884. *
  1885. * Parent inode i_mutex must be held over d_lookup and into this call (to
  1886. * keep renames and concurrent inserts, and readdir(2) away).
  1887. */
  1888. void dentry_update_name_case(struct dentry *dentry, struct qstr *name)
  1889. {
  1890. BUG_ON(!mutex_is_locked(&dentry->d_parent->d_inode->i_mutex));
  1891. BUG_ON(dentry->d_name.len != name->len); /* d_lookup gives this */
  1892. spin_lock(&dentry->d_lock);
  1893. write_seqcount_begin(&dentry->d_seq);
  1894. memcpy((unsigned char *)dentry->d_name.name, name->name, name->len);
  1895. write_seqcount_end(&dentry->d_seq);
  1896. spin_unlock(&dentry->d_lock);
  1897. }
  1898. EXPORT_SYMBOL(dentry_update_name_case);
  1899. static void switch_names(struct dentry *dentry, struct dentry *target)
  1900. {
  1901. if (dname_external(target)) {
  1902. if (dname_external(dentry)) {
  1903. /*
  1904. * Both external: swap the pointers
  1905. */
  1906. swap(target->d_name.name, dentry->d_name.name);
  1907. } else {
  1908. /*
  1909. * dentry:internal, target:external. Steal target's
  1910. * storage and make target internal.
  1911. */
  1912. memcpy(target->d_iname, dentry->d_name.name,
  1913. dentry->d_name.len + 1);
  1914. dentry->d_name.name = target->d_name.name;
  1915. target->d_name.name = target->d_iname;
  1916. }
  1917. } else {
  1918. if (dname_external(dentry)) {
  1919. /*
  1920. * dentry:external, target:internal. Give dentry's
  1921. * storage to target and make dentry internal
  1922. */
  1923. memcpy(dentry->d_iname, target->d_name.name,
  1924. target->d_name.len + 1);
  1925. target->d_name.name = dentry->d_name.name;
  1926. dentry->d_name.name = dentry->d_iname;
  1927. } else {
  1928. /*
  1929. * Both are internal. Just copy target to dentry
  1930. */
  1931. memcpy(dentry->d_iname, target->d_name.name,
  1932. target->d_name.len + 1);
  1933. dentry->d_name.len = target->d_name.len;
  1934. return;
  1935. }
  1936. }
  1937. swap(dentry->d_name.len, target->d_name.len);
  1938. }
  1939. static void dentry_lock_for_move(struct dentry *dentry, struct dentry *target)
  1940. {
  1941. /*
  1942. * XXXX: do we really need to take target->d_lock?
  1943. */
  1944. if (IS_ROOT(dentry) || dentry->d_parent == target->d_parent)
  1945. spin_lock(&target->d_parent->d_lock);
  1946. else {
  1947. if (d_ancestor(dentry->d_parent, target->d_parent)) {
  1948. spin_lock(&dentry->d_parent->d_lock);
  1949. spin_lock_nested(&target->d_parent->d_lock,
  1950. DENTRY_D_LOCK_NESTED);
  1951. } else {
  1952. spin_lock(&target->d_parent->d_lock);
  1953. spin_lock_nested(&dentry->d_parent->d_lock,
  1954. DENTRY_D_LOCK_NESTED);
  1955. }
  1956. }
  1957. if (target < dentry) {
  1958. spin_lock_nested(&target->d_lock, 2);
  1959. spin_lock_nested(&dentry->d_lock, 3);
  1960. } else {
  1961. spin_lock_nested(&dentry->d_lock, 2);
  1962. spin_lock_nested(&target->d_lock, 3);
  1963. }
  1964. }
  1965. static void dentry_unlock_parents_for_move(struct dentry *dentry,
  1966. struct dentry *target)
  1967. {
  1968. if (target->d_parent != dentry->d_parent)
  1969. spin_unlock(&dentry->d_parent->d_lock);
  1970. if (target->d_parent != target)
  1971. spin_unlock(&target->d_parent->d_lock);
  1972. }
  1973. /*
  1974. * When switching names, the actual string doesn't strictly have to
  1975. * be preserved in the target - because we're dropping the target
  1976. * anyway. As such, we can just do a simple memcpy() to copy over
  1977. * the new name before we switch.
  1978. *
  1979. * Note that we have to be a lot more careful about getting the hash
  1980. * switched - we have to switch the hash value properly even if it
  1981. * then no longer matches the actual (corrupted) string of the target.
  1982. * The hash value has to match the hash queue that the dentry is on..
  1983. */
  1984. /*
  1985. * __d_move - move a dentry
  1986. * @dentry: entry to move
  1987. * @target: new dentry
  1988. *
  1989. * Update the dcache to reflect the move of a file name. Negative
  1990. * dcache entries should not be moved in this way. Caller must hold
  1991. * rename_lock, the i_mutex of the source and target directories,
  1992. * and the sb->s_vfs_rename_mutex if they differ. See lock_rename().
  1993. */
  1994. static void __d_move(struct dentry * dentry, struct dentry * target)
  1995. {
  1996. if (!dentry->d_inode)
  1997. printk(KERN_WARNING "VFS: moving negative dcache entry\n");
  1998. BUG_ON(d_ancestor(dentry, target));
  1999. BUG_ON(d_ancestor(target, dentry));
  2000. dentry_lock_for_move(dentry, target);
  2001. write_seqcount_begin(&dentry->d_seq);
  2002. write_seqcount_begin(&target->d_seq);
  2003. /* __d_drop does write_seqcount_barrier, but they're OK to nest. */
  2004. /*
  2005. * Move the dentry to the target hash queue. Don't bother checking
  2006. * for the same hash queue because of how unlikely it is.
  2007. */
  2008. __d_drop(dentry);
  2009. __d_rehash(dentry, d_hash(target->d_parent, target->d_name.hash));
  2010. /* Unhash the target: dput() will then get rid of it */
  2011. __d_drop(target);
  2012. list_del(&dentry->d_u.d_child);
  2013. list_del(&target->d_u.d_child);
  2014. /* Switch the names.. */
  2015. switch_names(dentry, target);
  2016. swap(dentry->d_name.hash, target->d_name.hash);
  2017. /* ... and switch the parents */
  2018. if (IS_ROOT(dentry)) {
  2019. dentry->d_parent = target->d_parent;
  2020. target->d_parent = target;
  2021. INIT_LIST_HEAD(&target->d_u.d_child);
  2022. } else {
  2023. swap(dentry->d_parent, target->d_parent);
  2024. /* And add them back to the (new) parent lists */
  2025. list_add(&target->d_u.d_child, &target->d_parent->d_subdirs);
  2026. }
  2027. list_add(&dentry->d_u.d_child, &dentry->d_parent->d_subdirs);
  2028. write_seqcount_end(&target->d_seq);
  2029. write_seqcount_end(&dentry->d_seq);
  2030. dentry_unlock_parents_for_move(dentry, target);
  2031. spin_unlock(&target->d_lock);
  2032. fsnotify_d_move(dentry);
  2033. spin_unlock(&dentry->d_lock);
  2034. }
  2035. /*
  2036. * d_move - move a dentry
  2037. * @dentry: entry to move
  2038. * @target: new dentry
  2039. *
  2040. * Update the dcache to reflect the move of a file name. Negative
  2041. * dcache entries should not be moved in this way. See the locking
  2042. * requirements for __d_move.
  2043. */
  2044. void d_move(struct dentry *dentry, struct dentry *target)
  2045. {
  2046. write_seqlock(&rename_lock);
  2047. __d_move(dentry, target);
  2048. write_sequnlock(&rename_lock);
  2049. }
  2050. EXPORT_SYMBOL(d_move);
  2051. /**
  2052. * d_ancestor - search for an ancestor
  2053. * @p1: ancestor dentry
  2054. * @p2: child dentry
  2055. *
  2056. * Returns the ancestor dentry of p2 which is a child of p1, if p1 is
  2057. * an ancestor of p2, else NULL.
  2058. */
  2059. struct dentry *d_ancestor(struct dentry *p1, struct dentry *p2)
  2060. {
  2061. struct dentry *p;
  2062. for (p = p2; !IS_ROOT(p); p = p->d_parent) {
  2063. if (p->d_parent == p1)
  2064. return p;
  2065. }
  2066. return NULL;
  2067. }
  2068. /*
  2069. * This helper attempts to cope with remotely renamed directories
  2070. *
  2071. * It assumes that the caller is already holding
  2072. * dentry->d_parent->d_inode->i_mutex, inode->i_lock and rename_lock
  2073. *
  2074. * Note: If ever the locking in lock_rename() changes, then please
  2075. * remember to update this too...
  2076. */
  2077. static struct dentry *__d_unalias(struct inode *inode,
  2078. struct dentry *dentry, struct dentry *alias)
  2079. {
  2080. struct mutex *m1 = NULL, *m2 = NULL;
  2081. struct dentry *ret;
  2082. /* If alias and dentry share a parent, then no extra locks required */
  2083. if (alias->d_parent == dentry->d_parent)
  2084. goto out_unalias;
  2085. /* See lock_rename() */
  2086. ret = ERR_PTR(-EBUSY);
  2087. if (!mutex_trylock(&dentry->d_sb->s_vfs_rename_mutex))
  2088. goto out_err;
  2089. m1 = &dentry->d_sb->s_vfs_rename_mutex;
  2090. if (!mutex_trylock(&alias->d_parent->d_inode->i_mutex))
  2091. goto out_err;
  2092. m2 = &alias->d_parent->d_inode->i_mutex;
  2093. out_unalias:
  2094. __d_move(alias, dentry);
  2095. ret = alias;
  2096. out_err:
  2097. spin_unlock(&inode->i_lock);
  2098. if (m2)
  2099. mutex_unlock(m2);
  2100. if (m1)
  2101. mutex_unlock(m1);
  2102. return ret;
  2103. }
  2104. /*
  2105. * Prepare an anonymous dentry for life in the superblock's dentry tree as a
  2106. * named dentry in place of the dentry to be replaced.
  2107. * returns with anon->d_lock held!
  2108. */
  2109. static void __d_materialise_dentry(struct dentry *dentry, struct dentry *anon)
  2110. {
  2111. struct dentry *dparent, *aparent;
  2112. dentry_lock_for_move(anon, dentry);
  2113. write_seqcount_begin(&dentry->d_seq);
  2114. write_seqcount_begin(&anon->d_seq);
  2115. dparent = dentry->d_parent;
  2116. aparent = anon->d_parent;
  2117. switch_names(dentry, anon);
  2118. swap(dentry->d_name.hash, anon->d_name.hash);
  2119. dentry->d_parent = (aparent == anon) ? dentry : aparent;
  2120. list_del(&dentry->d_u.d_child);
  2121. if (!IS_ROOT(dentry))
  2122. list_add(&dentry->d_u.d_child, &dentry->d_parent->d_subdirs);
  2123. else
  2124. INIT_LIST_HEAD(&dentry->d_u.d_child);
  2125. anon->d_parent = (dparent == dentry) ? anon : dparent;
  2126. list_del(&anon->d_u.d_child);
  2127. if (!IS_ROOT(anon))
  2128. list_add(&anon->d_u.d_child, &anon->d_parent->d_subdirs);
  2129. else
  2130. INIT_LIST_HEAD(&anon->d_u.d_child);
  2131. write_seqcount_end(&dentry->d_seq);
  2132. write_seqcount_end(&anon->d_seq);
  2133. dentry_unlock_parents_for_move(anon, dentry);
  2134. spin_unlock(&dentry->d_lock);
  2135. /* anon->d_lock still locked, returns locked */
  2136. anon->d_flags &= ~DCACHE_DISCONNECTED;
  2137. }
  2138. /**
  2139. * d_materialise_unique - introduce an inode into the tree
  2140. * @dentry: candidate dentry
  2141. * @inode: inode to bind to the dentry, to which aliases may be attached
  2142. *
  2143. * Introduces an dentry into the tree, substituting an extant disconnected
  2144. * root directory alias in its place if there is one. Caller must hold the
  2145. * i_mutex of the parent directory.
  2146. */
  2147. struct dentry *d_materialise_unique(struct dentry *dentry, struct inode *inode)
  2148. {
  2149. struct dentry *actual;
  2150. BUG_ON(!d_unhashed(dentry));
  2151. if (!inode) {
  2152. actual = dentry;
  2153. __d_instantiate(dentry, NULL);
  2154. d_rehash(actual);
  2155. goto out_nolock;
  2156. }
  2157. spin_lock(&inode->i_lock);
  2158. if (S_ISDIR(inode->i_mode)) {
  2159. struct dentry *alias;
  2160. /* Does an aliased dentry already exist? */
  2161. alias = __d_find_alias(inode, 0);
  2162. if (alias) {
  2163. actual = alias;
  2164. write_seqlock(&rename_lock);
  2165. if (d_ancestor(alias, dentry)) {
  2166. /* Check for loops */
  2167. actual = ERR_PTR(-ELOOP);
  2168. spin_unlock(&inode->i_lock);
  2169. } else if (IS_ROOT(alias)) {
  2170. /* Is this an anonymous mountpoint that we
  2171. * could splice into our tree? */
  2172. __d_materialise_dentry(dentry, alias);
  2173. write_sequnlock(&rename_lock);
  2174. __d_drop(alias);
  2175. goto found;
  2176. } else {
  2177. /* Nope, but we must(!) avoid directory
  2178. * aliasing. This drops inode->i_lock */
  2179. actual = __d_unalias(inode, dentry, alias);
  2180. }
  2181. write_sequnlock(&rename_lock);
  2182. if (IS_ERR(actual)) {
  2183. if (PTR_ERR(actual) == -ELOOP)
  2184. pr_warn_ratelimited(
  2185. "VFS: Lookup of '%s' in %s %s"
  2186. " would have caused loop\n",
  2187. dentry->d_name.name,
  2188. inode->i_sb->s_type->name,
  2189. inode->i_sb->s_id);
  2190. dput(alias);
  2191. }
  2192. goto out_nolock;
  2193. }
  2194. }
  2195. /* Add a unique reference */
  2196. actual = __d_instantiate_unique(dentry, inode);
  2197. if (!actual)
  2198. actual = dentry;
  2199. else
  2200. BUG_ON(!d_unhashed(actual));
  2201. spin_lock(&actual->d_lock);
  2202. found:
  2203. _d_rehash(actual);
  2204. spin_unlock(&actual->d_lock);
  2205. spin_unlock(&inode->i_lock);
  2206. out_nolock:
  2207. if (actual == dentry) {
  2208. security_d_instantiate(dentry, inode);
  2209. return NULL;
  2210. }
  2211. iput(inode);
  2212. return actual;
  2213. }
  2214. EXPORT_SYMBOL_GPL(d_materialise_unique);
  2215. static int prepend(char **buffer, int *buflen, const char *str, int namelen)
  2216. {
  2217. *buflen -= namelen;
  2218. if (*buflen < 0)
  2219. return -ENAMETOOLONG;
  2220. *buffer -= namelen;
  2221. memcpy(*buffer, str, namelen);
  2222. return 0;
  2223. }
  2224. static int prepend_name(char **buffer, int *buflen, struct qstr *name)
  2225. {
  2226. return prepend(buffer, buflen, name->name, name->len);
  2227. }
  2228. /**
  2229. * prepend_path - Prepend path string to a buffer
  2230. * @path: the dentry/vfsmount to report
  2231. * @root: root vfsmnt/dentry
  2232. * @buffer: pointer to the end of the buffer
  2233. * @buflen: pointer to buffer length
  2234. *
  2235. * Caller holds the rename_lock.
  2236. */
  2237. static int prepend_path(const struct path *path,
  2238. const struct path *root,
  2239. char **buffer, int *buflen)
  2240. {
  2241. struct dentry *dentry = path->dentry;
  2242. struct vfsmount *vfsmnt = path->mnt;
  2243. struct mount *mnt = real_mount(vfsmnt);
  2244. bool slash = false;
  2245. int error = 0;
  2246. br_read_lock(vfsmount_lock);
  2247. while (dentry != root->dentry || vfsmnt != root->mnt) {
  2248. struct dentry * parent;
  2249. if (dentry == vfsmnt->mnt_root || IS_ROOT(dentry)) {
  2250. /* Global root? */
  2251. if (!mnt_has_parent(mnt))
  2252. goto global_root;
  2253. dentry = mnt->mnt_mountpoint;
  2254. mnt = mnt->mnt_parent;
  2255. vfsmnt = &mnt->mnt;
  2256. continue;
  2257. }
  2258. parent = dentry->d_parent;
  2259. prefetch(parent);
  2260. spin_lock(&dentry->d_lock);
  2261. error = prepend_name(buffer, buflen, &dentry->d_name);
  2262. spin_unlock(&dentry->d_lock);
  2263. if (!error)
  2264. error = prepend(buffer, buflen, "/", 1);
  2265. if (error)
  2266. break;
  2267. slash = true;
  2268. dentry = parent;
  2269. }
  2270. if (!error && !slash)
  2271. error = prepend(buffer, buflen, "/", 1);
  2272. out:
  2273. br_read_unlock(vfsmount_lock);
  2274. return error;
  2275. global_root:
  2276. /*
  2277. * Filesystems needing to implement special "root names"
  2278. * should do so with ->d_dname()
  2279. */
  2280. if (IS_ROOT(dentry) &&
  2281. (dentry->d_name.len != 1 || dentry->d_name.name[0] != '/')) {
  2282. WARN(1, "Root dentry has weird name <%.*s>\n",
  2283. (int) dentry->d_name.len, dentry->d_name.name);
  2284. }
  2285. if (!slash)
  2286. error = prepend(buffer, buflen, "/", 1);
  2287. if (!error)
  2288. error = real_mount(vfsmnt)->mnt_ns ? 1 : 2;
  2289. goto out;
  2290. }
  2291. /**
  2292. * __d_path - return the path of a dentry
  2293. * @path: the dentry/vfsmount to report
  2294. * @root: root vfsmnt/dentry
  2295. * @buf: buffer to return value in
  2296. * @buflen: buffer length
  2297. *
  2298. * Convert a dentry into an ASCII path name.
  2299. *
  2300. * Returns a pointer into the buffer or an error code if the
  2301. * path was too long.
  2302. *
  2303. * "buflen" should be positive.
  2304. *
  2305. * If the path is not reachable from the supplied root, return %NULL.
  2306. */
  2307. char *__d_path(const struct path *path,
  2308. const struct path *root,
  2309. char *buf, int buflen)
  2310. {
  2311. char *res = buf + buflen;
  2312. int error;
  2313. prepend(&res, &buflen, "\0", 1);
  2314. write_seqlock(&rename_lock);
  2315. error = prepend_path(path, root, &res, &buflen);
  2316. write_sequnlock(&rename_lock);
  2317. if (error < 0)
  2318. return ERR_PTR(error);
  2319. if (error > 0)
  2320. return NULL;
  2321. return res;
  2322. }
  2323. char *d_absolute_path(const struct path *path,
  2324. char *buf, int buflen)
  2325. {
  2326. struct path root = {};
  2327. char *res = buf + buflen;
  2328. int error;
  2329. prepend(&res, &buflen, "\0", 1);
  2330. write_seqlock(&rename_lock);
  2331. error = prepend_path(path, &root, &res, &buflen);
  2332. write_sequnlock(&rename_lock);
  2333. if (error > 1)
  2334. error = -EINVAL;
  2335. if (error < 0)
  2336. return ERR_PTR(error);
  2337. return res;
  2338. }
  2339. /*
  2340. * same as __d_path but appends "(deleted)" for unlinked files.
  2341. */
  2342. static int path_with_deleted(const struct path *path,
  2343. const struct path *root,
  2344. char **buf, int *buflen)
  2345. {
  2346. prepend(buf, buflen, "\0", 1);
  2347. if (d_unlinked(path->dentry)) {
  2348. int error = prepend(buf, buflen, " (deleted)", 10);
  2349. if (error)
  2350. return error;
  2351. }
  2352. return prepend_path(path, root, buf, buflen);
  2353. }
  2354. static int prepend_unreachable(char **buffer, int *buflen)
  2355. {
  2356. return prepend(buffer, buflen, "(unreachable)", 13);
  2357. }
  2358. /**
  2359. * d_path - return the path of a dentry
  2360. * @path: path to report
  2361. * @buf: buffer to return value in
  2362. * @buflen: buffer length
  2363. *
  2364. * Convert a dentry into an ASCII path name. If the entry has been deleted
  2365. * the string " (deleted)" is appended. Note that this is ambiguous.
  2366. *
  2367. * Returns a pointer into the buffer or an error code if the path was
  2368. * too long. Note: Callers should use the returned pointer, not the passed
  2369. * in buffer, to use the name! The implementation often starts at an offset
  2370. * into the buffer, and may leave 0 bytes at the start.
  2371. *
  2372. * "buflen" should be positive.
  2373. */
  2374. char *d_path(const struct path *path, char *buf, int buflen)
  2375. {
  2376. char *res = buf + buflen;
  2377. struct path root;
  2378. int error;
  2379. /*
  2380. * We have various synthetic filesystems that never get mounted. On
  2381. * these filesystems dentries are never used for lookup purposes, and
  2382. * thus don't need to be hashed. They also don't need a name until a
  2383. * user wants to identify the object in /proc/pid/fd/. The little hack
  2384. * below allows us to generate a name for these objects on demand:
  2385. */
  2386. if (path->dentry->d_op && path->dentry->d_op->d_dname)
  2387. return path->dentry->d_op->d_dname(path->dentry, buf, buflen);
  2388. get_fs_root(current->fs, &root);
  2389. write_seqlock(&rename_lock);
  2390. error = path_with_deleted(path, &root, &res, &buflen);
  2391. if (error < 0)
  2392. res = ERR_PTR(error);
  2393. write_sequnlock(&rename_lock);
  2394. path_put(&root);
  2395. return res;
  2396. }
  2397. EXPORT_SYMBOL(d_path);
  2398. /**
  2399. * d_path_with_unreachable - return the path of a dentry
  2400. * @path: path to report
  2401. * @buf: buffer to return value in
  2402. * @buflen: buffer length
  2403. *
  2404. * The difference from d_path() is that this prepends "(unreachable)"
  2405. * to paths which are unreachable from the current process' root.
  2406. */
  2407. char *d_path_with_unreachable(const struct path *path, char *buf, int buflen)
  2408. {
  2409. char *res = buf + buflen;
  2410. struct path root;
  2411. int error;
  2412. if (path->dentry->d_op && path->dentry->d_op->d_dname)
  2413. return path->dentry->d_op->d_dname(path->dentry, buf, buflen);
  2414. get_fs_root(current->fs, &root);
  2415. write_seqlock(&rename_lock);
  2416. error = path_with_deleted(path, &root, &res, &buflen);
  2417. if (error > 0)
  2418. error = prepend_unreachable(&res, &buflen);
  2419. write_sequnlock(&rename_lock);
  2420. path_put(&root);
  2421. if (error)
  2422. res = ERR_PTR(error);
  2423. return res;
  2424. }
  2425. /*
  2426. * Helper function for dentry_operations.d_dname() members
  2427. */
  2428. char *dynamic_dname(struct dentry *dentry, char *buffer, int buflen,
  2429. const char *fmt, ...)
  2430. {
  2431. va_list args;
  2432. char temp[64];
  2433. int sz;
  2434. va_start(args, fmt);
  2435. sz = vsnprintf(temp, sizeof(temp), fmt, args) + 1;
  2436. va_end(args);
  2437. if (sz > sizeof(temp) || sz > buflen)
  2438. return ERR_PTR(-ENAMETOOLONG);
  2439. buffer += buflen - sz;
  2440. return memcpy(buffer, temp, sz);
  2441. }
  2442. /*
  2443. * Write full pathname from the root of the filesystem into the buffer.
  2444. */
  2445. static char *__dentry_path(struct dentry *dentry, char *buf, int buflen)
  2446. {
  2447. char *end = buf + buflen;
  2448. char *retval;
  2449. prepend(&end, &buflen, "\0", 1);
  2450. if (buflen < 1)
  2451. goto Elong;
  2452. /* Get '/' right */
  2453. retval = end-1;
  2454. *retval = '/';
  2455. while (!IS_ROOT(dentry)) {
  2456. struct dentry *parent = dentry->d_parent;
  2457. int error;
  2458. prefetch(parent);
  2459. spin_lock(&dentry->d_lock);
  2460. error = prepend_name(&end, &buflen, &dentry->d_name);
  2461. spin_unlock(&dentry->d_lock);
  2462. if (error != 0 || prepend(&end, &buflen, "/", 1) != 0)
  2463. goto Elong;
  2464. retval = end;
  2465. dentry = parent;
  2466. }
  2467. return retval;
  2468. Elong:
  2469. return ERR_PTR(-ENAMETOOLONG);
  2470. }
  2471. char *dentry_path_raw(struct dentry *dentry, char *buf, int buflen)
  2472. {
  2473. char *retval;
  2474. write_seqlock(&rename_lock);
  2475. retval = __dentry_path(dentry, buf, buflen);
  2476. write_sequnlock(&rename_lock);
  2477. return retval;
  2478. }
  2479. EXPORT_SYMBOL(dentry_path_raw);
  2480. char *dentry_path(struct dentry *dentry, char *buf, int buflen)
  2481. {
  2482. char *p = NULL;
  2483. char *retval;
  2484. write_seqlock(&rename_lock);
  2485. if (d_unlinked(dentry)) {
  2486. p = buf + buflen;
  2487. if (prepend(&p, &buflen, "//deleted", 10) != 0)
  2488. goto Elong;
  2489. buflen++;
  2490. }
  2491. retval = __dentry_path(dentry, buf, buflen);
  2492. write_sequnlock(&rename_lock);
  2493. if (!IS_ERR(retval) && p)
  2494. *p = '/'; /* restore '/' overriden with '\0' */
  2495. return retval;
  2496. Elong:
  2497. return ERR_PTR(-ENAMETOOLONG);
  2498. }
  2499. /*
  2500. * NOTE! The user-level library version returns a
  2501. * character pointer. The kernel system call just
  2502. * returns the length of the buffer filled (which
  2503. * includes the ending '\0' character), or a negative
  2504. * error value. So libc would do something like
  2505. *
  2506. * char *getcwd(char * buf, size_t size)
  2507. * {
  2508. * int retval;
  2509. *
  2510. * retval = sys_getcwd(buf, size);
  2511. * if (retval >= 0)
  2512. * return buf;
  2513. * errno = -retval;
  2514. * return NULL;
  2515. * }
  2516. */
  2517. SYSCALL_DEFINE2(getcwd, char __user *, buf, unsigned long, size)
  2518. {
  2519. int error;
  2520. struct path pwd, root;
  2521. char *page = (char *) __get_free_page(GFP_USER);
  2522. if (!page)
  2523. return -ENOMEM;
  2524. get_fs_root_and_pwd(current->fs, &root, &pwd);
  2525. error = -ENOENT;
  2526. write_seqlock(&rename_lock);
  2527. if (!d_unlinked(pwd.dentry)) {
  2528. unsigned long len;
  2529. char *cwd = page + PAGE_SIZE;
  2530. int buflen = PAGE_SIZE;
  2531. prepend(&cwd, &buflen, "\0", 1);
  2532. error = prepend_path(&pwd, &root, &cwd, &buflen);
  2533. write_sequnlock(&rename_lock);
  2534. if (error < 0)
  2535. goto out;
  2536. /* Unreachable from current root */
  2537. if (error > 0) {
  2538. error = prepend_unreachable(&cwd, &buflen);
  2539. if (error)
  2540. goto out;
  2541. }
  2542. error = -ERANGE;
  2543. len = PAGE_SIZE + page - cwd;
  2544. if (len <= size) {
  2545. error = len;
  2546. if (copy_to_user(buf, cwd, len))
  2547. error = -EFAULT;
  2548. }
  2549. } else {
  2550. write_sequnlock(&rename_lock);
  2551. }
  2552. out:
  2553. path_put(&pwd);
  2554. path_put(&root);
  2555. free_page((unsigned long) page);
  2556. return error;
  2557. }
  2558. /*
  2559. * Test whether new_dentry is a subdirectory of old_dentry.
  2560. *
  2561. * Trivially implemented using the dcache structure
  2562. */
  2563. /**
  2564. * is_subdir - is new dentry a subdirectory of old_dentry
  2565. * @new_dentry: new dentry
  2566. * @old_dentry: old dentry
  2567. *
  2568. * Returns 1 if new_dentry is a subdirectory of the parent (at any depth).
  2569. * Returns 0 otherwise.
  2570. * Caller must ensure that "new_dentry" is pinned before calling is_subdir()
  2571. */
  2572. int is_subdir(struct dentry *new_dentry, struct dentry *old_dentry)
  2573. {
  2574. int result;
  2575. unsigned seq;
  2576. if (new_dentry == old_dentry)
  2577. return 1;
  2578. do {
  2579. /* for restarting inner loop in case of seq retry */
  2580. seq = read_seqbegin(&rename_lock);
  2581. /*
  2582. * Need rcu_readlock to protect against the d_parent trashing
  2583. * due to d_move
  2584. */
  2585. rcu_read_lock();
  2586. if (d_ancestor(old_dentry, new_dentry))
  2587. result = 1;
  2588. else
  2589. result = 0;
  2590. rcu_read_unlock();
  2591. } while (read_seqretry(&rename_lock, seq));
  2592. return result;
  2593. }
  2594. void d_genocide(struct dentry *root)
  2595. {
  2596. struct dentry *this_parent;
  2597. struct list_head *next;
  2598. unsigned seq;
  2599. int locked = 0;
  2600. seq = read_seqbegin(&rename_lock);
  2601. again:
  2602. this_parent = root;
  2603. spin_lock(&this_parent->d_lock);
  2604. repeat:
  2605. next = this_parent->d_subdirs.next;
  2606. resume:
  2607. while (next != &this_parent->d_subdirs) {
  2608. struct list_head *tmp = next;
  2609. struct dentry *dentry = list_entry(tmp, struct dentry, d_u.d_child);
  2610. next = tmp->next;
  2611. spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
  2612. if (d_unhashed(dentry) || !dentry->d_inode) {
  2613. spin_unlock(&dentry->d_lock);
  2614. continue;
  2615. }
  2616. if (!list_empty(&dentry->d_subdirs)) {
  2617. spin_unlock(&this_parent->d_lock);
  2618. spin_release(&dentry->d_lock.dep_map, 1, _RET_IP_);
  2619. this_parent = dentry;
  2620. spin_acquire(&this_parent->d_lock.dep_map, 0, 1, _RET_IP_);
  2621. goto repeat;
  2622. }
  2623. if (!(dentry->d_flags & DCACHE_GENOCIDE)) {
  2624. dentry->d_flags |= DCACHE_GENOCIDE;
  2625. dentry->d_count--;
  2626. }
  2627. spin_unlock(&dentry->d_lock);
  2628. }
  2629. if (this_parent != root) {
  2630. struct dentry *child = this_parent;
  2631. if (!(this_parent->d_flags & DCACHE_GENOCIDE)) {
  2632. this_parent->d_flags |= DCACHE_GENOCIDE;
  2633. this_parent->d_count--;
  2634. }
  2635. this_parent = try_to_ascend(this_parent, locked, seq);
  2636. if (!this_parent)
  2637. goto rename_retry;
  2638. next = child->d_u.d_child.next;
  2639. goto resume;
  2640. }
  2641. spin_unlock(&this_parent->d_lock);
  2642. if (!locked && read_seqretry(&rename_lock, seq))
  2643. goto rename_retry;
  2644. if (locked)
  2645. write_sequnlock(&rename_lock);
  2646. return;
  2647. rename_retry:
  2648. locked = 1;
  2649. write_seqlock(&rename_lock);
  2650. goto again;
  2651. }
  2652. /**
  2653. * find_inode_number - check for dentry with name
  2654. * @dir: directory to check
  2655. * @name: Name to find.
  2656. *
  2657. * Check whether a dentry already exists for the given name,
  2658. * and return the inode number if it has an inode. Otherwise
  2659. * 0 is returned.
  2660. *
  2661. * This routine is used to post-process directory listings for
  2662. * filesystems using synthetic inode numbers, and is necessary
  2663. * to keep getcwd() working.
  2664. */
  2665. ino_t find_inode_number(struct dentry *dir, struct qstr *name)
  2666. {
  2667. struct dentry * dentry;
  2668. ino_t ino = 0;
  2669. dentry = d_hash_and_lookup(dir, name);
  2670. if (dentry) {
  2671. if (dentry->d_inode)
  2672. ino = dentry->d_inode->i_ino;
  2673. dput(dentry);
  2674. }
  2675. return ino;
  2676. }
  2677. EXPORT_SYMBOL(find_inode_number);
  2678. static __initdata unsigned long dhash_entries;
  2679. static int __init set_dhash_entries(char *str)
  2680. {
  2681. if (!str)
  2682. return 0;
  2683. dhash_entries = simple_strtoul(str, &str, 0);
  2684. return 1;
  2685. }
  2686. __setup("dhash_entries=", set_dhash_entries);
  2687. static void __init dcache_init_early(void)
  2688. {
  2689. unsigned int loop;
  2690. /* If hashes are distributed across NUMA nodes, defer
  2691. * hash allocation until vmalloc space is available.
  2692. */
  2693. if (hashdist)
  2694. return;
  2695. dentry_hashtable =
  2696. alloc_large_system_hash("Dentry cache",
  2697. sizeof(struct hlist_bl_head),
  2698. dhash_entries,
  2699. 13,
  2700. HASH_EARLY,
  2701. &d_hash_shift,
  2702. &d_hash_mask,
  2703. 0);
  2704. for (loop = 0; loop < (1U << d_hash_shift); loop++)
  2705. INIT_HLIST_BL_HEAD(dentry_hashtable + loop);
  2706. }
  2707. static void __init dcache_init(void)
  2708. {
  2709. unsigned int loop;
  2710. /*
  2711. * A constructor could be added for stable state like the lists,
  2712. * but it is probably not worth it because of the cache nature
  2713. * of the dcache.
  2714. */
  2715. dentry_cache = KMEM_CACHE(dentry,
  2716. SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|SLAB_MEM_SPREAD);
  2717. /* Hash may have been set up in dcache_init_early */
  2718. if (!hashdist)
  2719. return;
  2720. dentry_hashtable =
  2721. alloc_large_system_hash("Dentry cache",
  2722. sizeof(struct hlist_bl_head),
  2723. dhash_entries,
  2724. 13,
  2725. 0,
  2726. &d_hash_shift,
  2727. &d_hash_mask,
  2728. 0);
  2729. for (loop = 0; loop < (1U << d_hash_shift); loop++)
  2730. INIT_HLIST_BL_HEAD(dentry_hashtable + loop);
  2731. }
  2732. /* SLAB cache for __getname() consumers */
  2733. struct kmem_cache *names_cachep __read_mostly;
  2734. EXPORT_SYMBOL(names_cachep);
  2735. EXPORT_SYMBOL(d_genocide);
  2736. void __init vfs_caches_init_early(void)
  2737. {
  2738. dcache_init_early();
  2739. inode_init_early();
  2740. }
  2741. void __init vfs_caches_init(unsigned long mempages)
  2742. {
  2743. unsigned long reserve;
  2744. /* Base hash sizes on available memory, with a reserve equal to
  2745. 150% of current kernel size */
  2746. reserve = min((mempages - nr_free_pages()) * 3/2, mempages - 1);
  2747. mempages -= reserve;
  2748. names_cachep = kmem_cache_create("names_cache", PATH_MAX, 0,
  2749. SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
  2750. dcache_init();
  2751. inode_init();
  2752. files_init(mempages);
  2753. mnt_init();
  2754. bdev_cache_init();
  2755. chrdev_init();
  2756. }