buffer.c 85 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290
  1. /*
  2. * linux/fs/buffer.c
  3. *
  4. * Copyright (C) 1991, 1992, 2002 Linus Torvalds
  5. */
  6. /*
  7. * Start bdflush() with kernel_thread not syscall - Paul Gortmaker, 12/95
  8. *
  9. * Removed a lot of unnecessary code and simplified things now that
  10. * the buffer cache isn't our primary cache - Andrew Tridgell 12/96
  11. *
  12. * Speed up hash, lru, and free list operations. Use gfp() for allocating
  13. * hash table, use SLAB cache for buffer heads. SMP threading. -DaveM
  14. *
  15. * Added 32k buffer block sizes - these are required older ARM systems. - RMK
  16. *
  17. * async buffer flushing, 1999 Andrea Arcangeli <andrea@suse.de>
  18. */
  19. #include <linux/kernel.h>
  20. #include <linux/syscalls.h>
  21. #include <linux/fs.h>
  22. #include <linux/mm.h>
  23. #include <linux/percpu.h>
  24. #include <linux/slab.h>
  25. #include <linux/capability.h>
  26. #include <linux/blkdev.h>
  27. #include <linux/file.h>
  28. #include <linux/quotaops.h>
  29. #include <linux/highmem.h>
  30. #include <linux/export.h>
  31. #include <linux/writeback.h>
  32. #include <linux/hash.h>
  33. #include <linux/suspend.h>
  34. #include <linux/buffer_head.h>
  35. #include <linux/task_io_accounting_ops.h>
  36. #include <linux/bio.h>
  37. #include <linux/notifier.h>
  38. #include <linux/cpu.h>
  39. #include <linux/bitops.h>
  40. #include <linux/mpage.h>
  41. #include <linux/bit_spinlock.h>
  42. static int fsync_buffers_list(spinlock_t *lock, struct list_head *list);
  43. #define BH_ENTRY(list) list_entry((list), struct buffer_head, b_assoc_buffers)
  44. inline void
  45. init_buffer(struct buffer_head *bh, bh_end_io_t *handler, void *private)
  46. {
  47. bh->b_end_io = handler;
  48. bh->b_private = private;
  49. }
  50. EXPORT_SYMBOL(init_buffer);
  51. static int sleep_on_buffer(void *word)
  52. {
  53. io_schedule();
  54. return 0;
  55. }
  56. void __lock_buffer(struct buffer_head *bh)
  57. {
  58. wait_on_bit_lock(&bh->b_state, BH_Lock, sleep_on_buffer,
  59. TASK_UNINTERRUPTIBLE);
  60. }
  61. EXPORT_SYMBOL(__lock_buffer);
  62. void unlock_buffer(struct buffer_head *bh)
  63. {
  64. clear_bit_unlock(BH_Lock, &bh->b_state);
  65. smp_mb__after_clear_bit();
  66. wake_up_bit(&bh->b_state, BH_Lock);
  67. }
  68. EXPORT_SYMBOL(unlock_buffer);
  69. /*
  70. * Block until a buffer comes unlocked. This doesn't stop it
  71. * from becoming locked again - you have to lock it yourself
  72. * if you want to preserve its state.
  73. */
  74. void __wait_on_buffer(struct buffer_head * bh)
  75. {
  76. wait_on_bit(&bh->b_state, BH_Lock, sleep_on_buffer, TASK_UNINTERRUPTIBLE);
  77. }
  78. EXPORT_SYMBOL(__wait_on_buffer);
  79. static void
  80. __clear_page_buffers(struct page *page)
  81. {
  82. ClearPagePrivate(page);
  83. set_page_private(page, 0);
  84. page_cache_release(page);
  85. }
  86. static int quiet_error(struct buffer_head *bh)
  87. {
  88. if (!test_bit(BH_Quiet, &bh->b_state) && printk_ratelimit())
  89. return 0;
  90. return 1;
  91. }
  92. static void buffer_io_error(struct buffer_head *bh)
  93. {
  94. char b[BDEVNAME_SIZE];
  95. printk(KERN_ERR "Buffer I/O error on device %s, logical block %Lu\n",
  96. bdevname(bh->b_bdev, b),
  97. (unsigned long long)bh->b_blocknr);
  98. }
  99. /*
  100. * End-of-IO handler helper function which does not touch the bh after
  101. * unlocking it.
  102. * Note: unlock_buffer() sort-of does touch the bh after unlocking it, but
  103. * a race there is benign: unlock_buffer() only use the bh's address for
  104. * hashing after unlocking the buffer, so it doesn't actually touch the bh
  105. * itself.
  106. */
  107. static void __end_buffer_read_notouch(struct buffer_head *bh, int uptodate)
  108. {
  109. if (uptodate) {
  110. set_buffer_uptodate(bh);
  111. } else {
  112. /* This happens, due to failed READA attempts. */
  113. clear_buffer_uptodate(bh);
  114. }
  115. unlock_buffer(bh);
  116. }
  117. /*
  118. * Default synchronous end-of-IO handler.. Just mark it up-to-date and
  119. * unlock the buffer. This is what ll_rw_block uses too.
  120. */
  121. void end_buffer_read_sync(struct buffer_head *bh, int uptodate)
  122. {
  123. __end_buffer_read_notouch(bh, uptodate);
  124. put_bh(bh);
  125. }
  126. EXPORT_SYMBOL(end_buffer_read_sync);
  127. void end_buffer_write_sync(struct buffer_head *bh, int uptodate)
  128. {
  129. char b[BDEVNAME_SIZE];
  130. if (uptodate) {
  131. set_buffer_uptodate(bh);
  132. } else {
  133. if (!quiet_error(bh)) {
  134. buffer_io_error(bh);
  135. printk(KERN_WARNING "lost page write due to "
  136. "I/O error on %s\n",
  137. bdevname(bh->b_bdev, b));
  138. }
  139. set_buffer_write_io_error(bh);
  140. clear_buffer_uptodate(bh);
  141. }
  142. unlock_buffer(bh);
  143. put_bh(bh);
  144. }
  145. EXPORT_SYMBOL(end_buffer_write_sync);
  146. /*
  147. * Various filesystems appear to want __find_get_block to be non-blocking.
  148. * But it's the page lock which protects the buffers. To get around this,
  149. * we get exclusion from try_to_free_buffers with the blockdev mapping's
  150. * private_lock.
  151. *
  152. * Hack idea: for the blockdev mapping, i_bufferlist_lock contention
  153. * may be quite high. This code could TryLock the page, and if that
  154. * succeeds, there is no need to take private_lock. (But if
  155. * private_lock is contended then so is mapping->tree_lock).
  156. */
  157. static struct buffer_head *
  158. __find_get_block_slow(struct block_device *bdev, sector_t block)
  159. {
  160. struct inode *bd_inode = bdev->bd_inode;
  161. struct address_space *bd_mapping = bd_inode->i_mapping;
  162. struct buffer_head *ret = NULL;
  163. pgoff_t index;
  164. struct buffer_head *bh;
  165. struct buffer_head *head;
  166. struct page *page;
  167. int all_mapped = 1;
  168. index = block >> (PAGE_CACHE_SHIFT - bd_inode->i_blkbits);
  169. page = find_get_page(bd_mapping, index);
  170. if (!page)
  171. goto out;
  172. spin_lock(&bd_mapping->private_lock);
  173. if (!page_has_buffers(page))
  174. goto out_unlock;
  175. head = page_buffers(page);
  176. bh = head;
  177. do {
  178. if (!buffer_mapped(bh))
  179. all_mapped = 0;
  180. else if (bh->b_blocknr == block) {
  181. ret = bh;
  182. get_bh(bh);
  183. goto out_unlock;
  184. }
  185. bh = bh->b_this_page;
  186. } while (bh != head);
  187. /* we might be here because some of the buffers on this page are
  188. * not mapped. This is due to various races between
  189. * file io on the block device and getblk. It gets dealt with
  190. * elsewhere, don't buffer_error if we had some unmapped buffers
  191. */
  192. if (all_mapped) {
  193. char b[BDEVNAME_SIZE];
  194. printk("__find_get_block_slow() failed. "
  195. "block=%llu, b_blocknr=%llu\n",
  196. (unsigned long long)block,
  197. (unsigned long long)bh->b_blocknr);
  198. printk("b_state=0x%08lx, b_size=%zu\n",
  199. bh->b_state, bh->b_size);
  200. printk("device %s blocksize: %d\n", bdevname(bdev, b),
  201. 1 << bd_inode->i_blkbits);
  202. }
  203. out_unlock:
  204. spin_unlock(&bd_mapping->private_lock);
  205. page_cache_release(page);
  206. out:
  207. return ret;
  208. }
  209. /*
  210. * Kick the writeback threads then try to free up some ZONE_NORMAL memory.
  211. */
  212. static void free_more_memory(void)
  213. {
  214. struct zone *zone;
  215. int nid;
  216. wakeup_flusher_threads(1024, WB_REASON_FREE_MORE_MEM);
  217. yield();
  218. for_each_online_node(nid) {
  219. (void)first_zones_zonelist(node_zonelist(nid, GFP_NOFS),
  220. gfp_zone(GFP_NOFS), NULL,
  221. &zone);
  222. if (zone)
  223. try_to_free_pages(node_zonelist(nid, GFP_NOFS), 0,
  224. GFP_NOFS, NULL);
  225. }
  226. }
  227. /*
  228. * I/O completion handler for block_read_full_page() - pages
  229. * which come unlocked at the end of I/O.
  230. */
  231. static void end_buffer_async_read(struct buffer_head *bh, int uptodate)
  232. {
  233. unsigned long flags;
  234. struct buffer_head *first;
  235. struct buffer_head *tmp;
  236. struct page *page;
  237. int page_uptodate = 1;
  238. BUG_ON(!buffer_async_read(bh));
  239. page = bh->b_page;
  240. if (uptodate) {
  241. set_buffer_uptodate(bh);
  242. } else {
  243. clear_buffer_uptodate(bh);
  244. if (!quiet_error(bh))
  245. buffer_io_error(bh);
  246. SetPageError(page);
  247. }
  248. /*
  249. * Be _very_ careful from here on. Bad things can happen if
  250. * two buffer heads end IO at almost the same time and both
  251. * decide that the page is now completely done.
  252. */
  253. first = page_buffers(page);
  254. local_irq_save(flags);
  255. bit_spin_lock(BH_Uptodate_Lock, &first->b_state);
  256. clear_buffer_async_read(bh);
  257. unlock_buffer(bh);
  258. tmp = bh;
  259. do {
  260. if (!buffer_uptodate(tmp))
  261. page_uptodate = 0;
  262. if (buffer_async_read(tmp)) {
  263. BUG_ON(!buffer_locked(tmp));
  264. goto still_busy;
  265. }
  266. tmp = tmp->b_this_page;
  267. } while (tmp != bh);
  268. bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
  269. local_irq_restore(flags);
  270. /*
  271. * If none of the buffers had errors and they are all
  272. * uptodate then we can set the page uptodate.
  273. */
  274. if (page_uptodate && !PageError(page))
  275. SetPageUptodate(page);
  276. unlock_page(page);
  277. return;
  278. still_busy:
  279. bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
  280. local_irq_restore(flags);
  281. return;
  282. }
  283. /*
  284. * Completion handler for block_write_full_page() - pages which are unlocked
  285. * during I/O, and which have PageWriteback cleared upon I/O completion.
  286. */
  287. void end_buffer_async_write(struct buffer_head *bh, int uptodate)
  288. {
  289. char b[BDEVNAME_SIZE];
  290. unsigned long flags;
  291. struct buffer_head *first;
  292. struct buffer_head *tmp;
  293. struct page *page;
  294. BUG_ON(!buffer_async_write(bh));
  295. page = bh->b_page;
  296. if (uptodate) {
  297. set_buffer_uptodate(bh);
  298. } else {
  299. if (!quiet_error(bh)) {
  300. buffer_io_error(bh);
  301. printk(KERN_WARNING "lost page write due to "
  302. "I/O error on %s\n",
  303. bdevname(bh->b_bdev, b));
  304. }
  305. set_bit(AS_EIO, &page->mapping->flags);
  306. set_buffer_write_io_error(bh);
  307. clear_buffer_uptodate(bh);
  308. SetPageError(page);
  309. }
  310. first = page_buffers(page);
  311. local_irq_save(flags);
  312. bit_spin_lock(BH_Uptodate_Lock, &first->b_state);
  313. clear_buffer_async_write(bh);
  314. unlock_buffer(bh);
  315. tmp = bh->b_this_page;
  316. while (tmp != bh) {
  317. if (buffer_async_write(tmp)) {
  318. BUG_ON(!buffer_locked(tmp));
  319. goto still_busy;
  320. }
  321. tmp = tmp->b_this_page;
  322. }
  323. bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
  324. local_irq_restore(flags);
  325. end_page_writeback(page);
  326. return;
  327. still_busy:
  328. bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
  329. local_irq_restore(flags);
  330. return;
  331. }
  332. EXPORT_SYMBOL(end_buffer_async_write);
  333. /*
  334. * If a page's buffers are under async readin (end_buffer_async_read
  335. * completion) then there is a possibility that another thread of
  336. * control could lock one of the buffers after it has completed
  337. * but while some of the other buffers have not completed. This
  338. * locked buffer would confuse end_buffer_async_read() into not unlocking
  339. * the page. So the absence of BH_Async_Read tells end_buffer_async_read()
  340. * that this buffer is not under async I/O.
  341. *
  342. * The page comes unlocked when it has no locked buffer_async buffers
  343. * left.
  344. *
  345. * PageLocked prevents anyone starting new async I/O reads any of
  346. * the buffers.
  347. *
  348. * PageWriteback is used to prevent simultaneous writeout of the same
  349. * page.
  350. *
  351. * PageLocked prevents anyone from starting writeback of a page which is
  352. * under read I/O (PageWriteback is only ever set against a locked page).
  353. */
  354. static void mark_buffer_async_read(struct buffer_head *bh)
  355. {
  356. bh->b_end_io = end_buffer_async_read;
  357. set_buffer_async_read(bh);
  358. }
  359. static void mark_buffer_async_write_endio(struct buffer_head *bh,
  360. bh_end_io_t *handler)
  361. {
  362. bh->b_end_io = handler;
  363. set_buffer_async_write(bh);
  364. }
  365. void mark_buffer_async_write(struct buffer_head *bh)
  366. {
  367. mark_buffer_async_write_endio(bh, end_buffer_async_write);
  368. }
  369. EXPORT_SYMBOL(mark_buffer_async_write);
  370. /*
  371. * fs/buffer.c contains helper functions for buffer-backed address space's
  372. * fsync functions. A common requirement for buffer-based filesystems is
  373. * that certain data from the backing blockdev needs to be written out for
  374. * a successful fsync(). For example, ext2 indirect blocks need to be
  375. * written back and waited upon before fsync() returns.
  376. *
  377. * The functions mark_buffer_inode_dirty(), fsync_inode_buffers(),
  378. * inode_has_buffers() and invalidate_inode_buffers() are provided for the
  379. * management of a list of dependent buffers at ->i_mapping->private_list.
  380. *
  381. * Locking is a little subtle: try_to_free_buffers() will remove buffers
  382. * from their controlling inode's queue when they are being freed. But
  383. * try_to_free_buffers() will be operating against the *blockdev* mapping
  384. * at the time, not against the S_ISREG file which depends on those buffers.
  385. * So the locking for private_list is via the private_lock in the address_space
  386. * which backs the buffers. Which is different from the address_space
  387. * against which the buffers are listed. So for a particular address_space,
  388. * mapping->private_lock does *not* protect mapping->private_list! In fact,
  389. * mapping->private_list will always be protected by the backing blockdev's
  390. * ->private_lock.
  391. *
  392. * Which introduces a requirement: all buffers on an address_space's
  393. * ->private_list must be from the same address_space: the blockdev's.
  394. *
  395. * address_spaces which do not place buffers at ->private_list via these
  396. * utility functions are free to use private_lock and private_list for
  397. * whatever they want. The only requirement is that list_empty(private_list)
  398. * be true at clear_inode() time.
  399. *
  400. * FIXME: clear_inode should not call invalidate_inode_buffers(). The
  401. * filesystems should do that. invalidate_inode_buffers() should just go
  402. * BUG_ON(!list_empty).
  403. *
  404. * FIXME: mark_buffer_dirty_inode() is a data-plane operation. It should
  405. * take an address_space, not an inode. And it should be called
  406. * mark_buffer_dirty_fsync() to clearly define why those buffers are being
  407. * queued up.
  408. *
  409. * FIXME: mark_buffer_dirty_inode() doesn't need to add the buffer to the
  410. * list if it is already on a list. Because if the buffer is on a list,
  411. * it *must* already be on the right one. If not, the filesystem is being
  412. * silly. This will save a ton of locking. But first we have to ensure
  413. * that buffers are taken *off* the old inode's list when they are freed
  414. * (presumably in truncate). That requires careful auditing of all
  415. * filesystems (do it inside bforget()). It could also be done by bringing
  416. * b_inode back.
  417. */
  418. /*
  419. * The buffer's backing address_space's private_lock must be held
  420. */
  421. static void __remove_assoc_queue(struct buffer_head *bh)
  422. {
  423. list_del_init(&bh->b_assoc_buffers);
  424. WARN_ON(!bh->b_assoc_map);
  425. if (buffer_write_io_error(bh))
  426. set_bit(AS_EIO, &bh->b_assoc_map->flags);
  427. bh->b_assoc_map = NULL;
  428. }
  429. int inode_has_buffers(struct inode *inode)
  430. {
  431. return !list_empty(&inode->i_data.private_list);
  432. }
  433. /*
  434. * osync is designed to support O_SYNC io. It waits synchronously for
  435. * all already-submitted IO to complete, but does not queue any new
  436. * writes to the disk.
  437. *
  438. * To do O_SYNC writes, just queue the buffer writes with ll_rw_block as
  439. * you dirty the buffers, and then use osync_inode_buffers to wait for
  440. * completion. Any other dirty buffers which are not yet queued for
  441. * write will not be flushed to disk by the osync.
  442. */
  443. static int osync_buffers_list(spinlock_t *lock, struct list_head *list)
  444. {
  445. struct buffer_head *bh;
  446. struct list_head *p;
  447. int err = 0;
  448. spin_lock(lock);
  449. repeat:
  450. list_for_each_prev(p, list) {
  451. bh = BH_ENTRY(p);
  452. if (buffer_locked(bh)) {
  453. get_bh(bh);
  454. spin_unlock(lock);
  455. wait_on_buffer(bh);
  456. if (!buffer_uptodate(bh))
  457. err = -EIO;
  458. brelse(bh);
  459. spin_lock(lock);
  460. goto repeat;
  461. }
  462. }
  463. spin_unlock(lock);
  464. return err;
  465. }
  466. static void do_thaw_one(struct super_block *sb, void *unused)
  467. {
  468. char b[BDEVNAME_SIZE];
  469. while (sb->s_bdev && !thaw_bdev(sb->s_bdev, sb))
  470. printk(KERN_WARNING "Emergency Thaw on %s\n",
  471. bdevname(sb->s_bdev, b));
  472. }
  473. static void do_thaw_all(struct work_struct *work)
  474. {
  475. iterate_supers(do_thaw_one, NULL);
  476. kfree(work);
  477. printk(KERN_WARNING "Emergency Thaw complete\n");
  478. }
  479. /**
  480. * emergency_thaw_all -- forcibly thaw every frozen filesystem
  481. *
  482. * Used for emergency unfreeze of all filesystems via SysRq
  483. */
  484. void emergency_thaw_all(void)
  485. {
  486. struct work_struct *work;
  487. work = kmalloc(sizeof(*work), GFP_ATOMIC);
  488. if (work) {
  489. INIT_WORK(work, do_thaw_all);
  490. schedule_work(work);
  491. }
  492. }
  493. /**
  494. * sync_mapping_buffers - write out & wait upon a mapping's "associated" buffers
  495. * @mapping: the mapping which wants those buffers written
  496. *
  497. * Starts I/O against the buffers at mapping->private_list, and waits upon
  498. * that I/O.
  499. *
  500. * Basically, this is a convenience function for fsync().
  501. * @mapping is a file or directory which needs those buffers to be written for
  502. * a successful fsync().
  503. */
  504. int sync_mapping_buffers(struct address_space *mapping)
  505. {
  506. struct address_space *buffer_mapping = mapping->assoc_mapping;
  507. if (buffer_mapping == NULL || list_empty(&mapping->private_list))
  508. return 0;
  509. return fsync_buffers_list(&buffer_mapping->private_lock,
  510. &mapping->private_list);
  511. }
  512. EXPORT_SYMBOL(sync_mapping_buffers);
  513. /*
  514. * Called when we've recently written block `bblock', and it is known that
  515. * `bblock' was for a buffer_boundary() buffer. This means that the block at
  516. * `bblock + 1' is probably a dirty indirect block. Hunt it down and, if it's
  517. * dirty, schedule it for IO. So that indirects merge nicely with their data.
  518. */
  519. void write_boundary_block(struct block_device *bdev,
  520. sector_t bblock, unsigned blocksize)
  521. {
  522. struct buffer_head *bh = __find_get_block(bdev, bblock + 1, blocksize);
  523. if (bh) {
  524. if (buffer_dirty(bh))
  525. ll_rw_block(WRITE, 1, &bh);
  526. put_bh(bh);
  527. }
  528. }
  529. void mark_buffer_dirty_inode(struct buffer_head *bh, struct inode *inode)
  530. {
  531. struct address_space *mapping = inode->i_mapping;
  532. struct address_space *buffer_mapping = bh->b_page->mapping;
  533. mark_buffer_dirty(bh);
  534. if (!mapping->assoc_mapping) {
  535. mapping->assoc_mapping = buffer_mapping;
  536. } else {
  537. BUG_ON(mapping->assoc_mapping != buffer_mapping);
  538. }
  539. if (!bh->b_assoc_map) {
  540. spin_lock(&buffer_mapping->private_lock);
  541. list_move_tail(&bh->b_assoc_buffers,
  542. &mapping->private_list);
  543. bh->b_assoc_map = mapping;
  544. spin_unlock(&buffer_mapping->private_lock);
  545. }
  546. }
  547. EXPORT_SYMBOL(mark_buffer_dirty_inode);
  548. /*
  549. * Mark the page dirty, and set it dirty in the radix tree, and mark the inode
  550. * dirty.
  551. *
  552. * If warn is true, then emit a warning if the page is not uptodate and has
  553. * not been truncated.
  554. */
  555. static void __set_page_dirty(struct page *page,
  556. struct address_space *mapping, int warn)
  557. {
  558. spin_lock_irq(&mapping->tree_lock);
  559. if (page->mapping) { /* Race with truncate? */
  560. WARN_ON_ONCE(warn && !PageUptodate(page));
  561. account_page_dirtied(page, mapping);
  562. radix_tree_tag_set(&mapping->page_tree,
  563. page_index(page), PAGECACHE_TAG_DIRTY);
  564. }
  565. spin_unlock_irq(&mapping->tree_lock);
  566. __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
  567. }
  568. /*
  569. * Add a page to the dirty page list.
  570. *
  571. * It is a sad fact of life that this function is called from several places
  572. * deeply under spinlocking. It may not sleep.
  573. *
  574. * If the page has buffers, the uptodate buffers are set dirty, to preserve
  575. * dirty-state coherency between the page and the buffers. It the page does
  576. * not have buffers then when they are later attached they will all be set
  577. * dirty.
  578. *
  579. * The buffers are dirtied before the page is dirtied. There's a small race
  580. * window in which a writepage caller may see the page cleanness but not the
  581. * buffer dirtiness. That's fine. If this code were to set the page dirty
  582. * before the buffers, a concurrent writepage caller could clear the page dirty
  583. * bit, see a bunch of clean buffers and we'd end up with dirty buffers/clean
  584. * page on the dirty page list.
  585. *
  586. * We use private_lock to lock against try_to_free_buffers while using the
  587. * page's buffer list. Also use this to protect against clean buffers being
  588. * added to the page after it was set dirty.
  589. *
  590. * FIXME: may need to call ->reservepage here as well. That's rather up to the
  591. * address_space though.
  592. */
  593. int __set_page_dirty_buffers(struct page *page)
  594. {
  595. int newly_dirty;
  596. struct address_space *mapping = page_mapping(page);
  597. if (unlikely(!mapping))
  598. return !TestSetPageDirty(page);
  599. spin_lock(&mapping->private_lock);
  600. if (page_has_buffers(page)) {
  601. struct buffer_head *head = page_buffers(page);
  602. struct buffer_head *bh = head;
  603. do {
  604. set_buffer_dirty(bh);
  605. bh = bh->b_this_page;
  606. } while (bh != head);
  607. }
  608. newly_dirty = !TestSetPageDirty(page);
  609. spin_unlock(&mapping->private_lock);
  610. if (newly_dirty)
  611. __set_page_dirty(page, mapping, 1);
  612. return newly_dirty;
  613. }
  614. EXPORT_SYMBOL(__set_page_dirty_buffers);
  615. /*
  616. * Write out and wait upon a list of buffers.
  617. *
  618. * We have conflicting pressures: we want to make sure that all
  619. * initially dirty buffers get waited on, but that any subsequently
  620. * dirtied buffers don't. After all, we don't want fsync to last
  621. * forever if somebody is actively writing to the file.
  622. *
  623. * Do this in two main stages: first we copy dirty buffers to a
  624. * temporary inode list, queueing the writes as we go. Then we clean
  625. * up, waiting for those writes to complete.
  626. *
  627. * During this second stage, any subsequent updates to the file may end
  628. * up refiling the buffer on the original inode's dirty list again, so
  629. * there is a chance we will end up with a buffer queued for write but
  630. * not yet completed on that list. So, as a final cleanup we go through
  631. * the osync code to catch these locked, dirty buffers without requeuing
  632. * any newly dirty buffers for write.
  633. */
  634. static int fsync_buffers_list(spinlock_t *lock, struct list_head *list)
  635. {
  636. struct buffer_head *bh;
  637. struct list_head tmp;
  638. struct address_space *mapping;
  639. int err = 0, err2;
  640. struct blk_plug plug;
  641. INIT_LIST_HEAD(&tmp);
  642. blk_start_plug(&plug);
  643. spin_lock(lock);
  644. while (!list_empty(list)) {
  645. bh = BH_ENTRY(list->next);
  646. mapping = bh->b_assoc_map;
  647. __remove_assoc_queue(bh);
  648. /* Avoid race with mark_buffer_dirty_inode() which does
  649. * a lockless check and we rely on seeing the dirty bit */
  650. smp_mb();
  651. if (buffer_dirty(bh) || buffer_locked(bh)) {
  652. list_add(&bh->b_assoc_buffers, &tmp);
  653. bh->b_assoc_map = mapping;
  654. if (buffer_dirty(bh)) {
  655. get_bh(bh);
  656. spin_unlock(lock);
  657. /*
  658. * Ensure any pending I/O completes so that
  659. * write_dirty_buffer() actually writes the
  660. * current contents - it is a noop if I/O is
  661. * still in flight on potentially older
  662. * contents.
  663. */
  664. write_dirty_buffer(bh, WRITE_SYNC);
  665. /*
  666. * Kick off IO for the previous mapping. Note
  667. * that we will not run the very last mapping,
  668. * wait_on_buffer() will do that for us
  669. * through sync_buffer().
  670. */
  671. brelse(bh);
  672. spin_lock(lock);
  673. }
  674. }
  675. }
  676. spin_unlock(lock);
  677. blk_finish_plug(&plug);
  678. spin_lock(lock);
  679. while (!list_empty(&tmp)) {
  680. bh = BH_ENTRY(tmp.prev);
  681. get_bh(bh);
  682. mapping = bh->b_assoc_map;
  683. __remove_assoc_queue(bh);
  684. /* Avoid race with mark_buffer_dirty_inode() which does
  685. * a lockless check and we rely on seeing the dirty bit */
  686. smp_mb();
  687. if (buffer_dirty(bh)) {
  688. list_add(&bh->b_assoc_buffers,
  689. &mapping->private_list);
  690. bh->b_assoc_map = mapping;
  691. }
  692. spin_unlock(lock);
  693. wait_on_buffer(bh);
  694. if (!buffer_uptodate(bh))
  695. err = -EIO;
  696. brelse(bh);
  697. spin_lock(lock);
  698. }
  699. spin_unlock(lock);
  700. err2 = osync_buffers_list(lock, list);
  701. if (err)
  702. return err;
  703. else
  704. return err2;
  705. }
  706. /*
  707. * Invalidate any and all dirty buffers on a given inode. We are
  708. * probably unmounting the fs, but that doesn't mean we have already
  709. * done a sync(). Just drop the buffers from the inode list.
  710. *
  711. * NOTE: we take the inode's blockdev's mapping's private_lock. Which
  712. * assumes that all the buffers are against the blockdev. Not true
  713. * for reiserfs.
  714. */
  715. void invalidate_inode_buffers(struct inode *inode)
  716. {
  717. if (inode_has_buffers(inode)) {
  718. struct address_space *mapping = &inode->i_data;
  719. struct list_head *list = &mapping->private_list;
  720. struct address_space *buffer_mapping = mapping->assoc_mapping;
  721. spin_lock(&buffer_mapping->private_lock);
  722. while (!list_empty(list))
  723. __remove_assoc_queue(BH_ENTRY(list->next));
  724. spin_unlock(&buffer_mapping->private_lock);
  725. }
  726. }
  727. EXPORT_SYMBOL(invalidate_inode_buffers);
  728. /*
  729. * Remove any clean buffers from the inode's buffer list. This is called
  730. * when we're trying to free the inode itself. Those buffers can pin it.
  731. *
  732. * Returns true if all buffers were removed.
  733. */
  734. int remove_inode_buffers(struct inode *inode)
  735. {
  736. int ret = 1;
  737. if (inode_has_buffers(inode)) {
  738. struct address_space *mapping = &inode->i_data;
  739. struct list_head *list = &mapping->private_list;
  740. struct address_space *buffer_mapping = mapping->assoc_mapping;
  741. spin_lock(&buffer_mapping->private_lock);
  742. while (!list_empty(list)) {
  743. struct buffer_head *bh = BH_ENTRY(list->next);
  744. if (buffer_dirty(bh)) {
  745. ret = 0;
  746. break;
  747. }
  748. __remove_assoc_queue(bh);
  749. }
  750. spin_unlock(&buffer_mapping->private_lock);
  751. }
  752. return ret;
  753. }
  754. /*
  755. * Create the appropriate buffers when given a page for data area and
  756. * the size of each buffer.. Use the bh->b_this_page linked list to
  757. * follow the buffers created. Return NULL if unable to create more
  758. * buffers.
  759. *
  760. * The retry flag is used to differentiate async IO (paging, swapping)
  761. * which may not fail from ordinary buffer allocations.
  762. */
  763. struct buffer_head *alloc_page_buffers(struct page *page, unsigned long size,
  764. int retry)
  765. {
  766. struct buffer_head *bh, *head;
  767. long offset;
  768. try_again:
  769. head = NULL;
  770. offset = PAGE_SIZE;
  771. while ((offset -= size) >= 0) {
  772. bh = alloc_buffer_head(GFP_NOFS);
  773. if (!bh)
  774. goto no_grow;
  775. bh->b_bdev = NULL;
  776. bh->b_this_page = head;
  777. bh->b_blocknr = -1;
  778. head = bh;
  779. bh->b_state = 0;
  780. atomic_set(&bh->b_count, 0);
  781. bh->b_size = size;
  782. /* Link the buffer to its page */
  783. set_bh_page(bh, page, offset);
  784. init_buffer(bh, NULL, NULL);
  785. }
  786. return head;
  787. /*
  788. * In case anything failed, we just free everything we got.
  789. */
  790. no_grow:
  791. if (head) {
  792. do {
  793. bh = head;
  794. head = head->b_this_page;
  795. free_buffer_head(bh);
  796. } while (head);
  797. }
  798. /*
  799. * Return failure for non-async IO requests. Async IO requests
  800. * are not allowed to fail, so we have to wait until buffer heads
  801. * become available. But we don't want tasks sleeping with
  802. * partially complete buffers, so all were released above.
  803. */
  804. if (!retry)
  805. return NULL;
  806. /* We're _really_ low on memory. Now we just
  807. * wait for old buffer heads to become free due to
  808. * finishing IO. Since this is an async request and
  809. * the reserve list is empty, we're sure there are
  810. * async buffer heads in use.
  811. */
  812. free_more_memory();
  813. goto try_again;
  814. }
  815. EXPORT_SYMBOL_GPL(alloc_page_buffers);
  816. static inline void
  817. link_dev_buffers(struct page *page, struct buffer_head *head)
  818. {
  819. struct buffer_head *bh, *tail;
  820. bh = head;
  821. do {
  822. tail = bh;
  823. bh = bh->b_this_page;
  824. } while (bh);
  825. tail->b_this_page = head;
  826. attach_page_buffers(page, head);
  827. }
  828. /*
  829. * Initialise the state of a blockdev page's buffers.
  830. */
  831. static void
  832. init_page_buffers(struct page *page, struct block_device *bdev,
  833. sector_t block, int size)
  834. {
  835. struct buffer_head *head = page_buffers(page);
  836. struct buffer_head *bh = head;
  837. int uptodate = PageUptodate(page);
  838. do {
  839. if (!buffer_mapped(bh)) {
  840. init_buffer(bh, NULL, NULL);
  841. bh->b_bdev = bdev;
  842. bh->b_blocknr = block;
  843. if (uptodate)
  844. set_buffer_uptodate(bh);
  845. set_buffer_mapped(bh);
  846. }
  847. block++;
  848. bh = bh->b_this_page;
  849. } while (bh != head);
  850. }
  851. /*
  852. * Create the page-cache page that contains the requested block.
  853. *
  854. * This is user purely for blockdev mappings.
  855. */
  856. static struct page *
  857. grow_dev_page(struct block_device *bdev, sector_t block,
  858. pgoff_t index, int size)
  859. {
  860. struct inode *inode = bdev->bd_inode;
  861. struct page *page;
  862. struct buffer_head *bh;
  863. page = find_or_create_page(inode->i_mapping, index,
  864. (mapping_gfp_mask(inode->i_mapping) & ~__GFP_FS)|__GFP_MOVABLE);
  865. if (!page)
  866. return NULL;
  867. BUG_ON(!PageLocked(page));
  868. if (page_has_buffers(page)) {
  869. bh = page_buffers(page);
  870. if (bh->b_size == size) {
  871. init_page_buffers(page, bdev, block, size);
  872. return page;
  873. }
  874. if (!try_to_free_buffers(page))
  875. goto failed;
  876. }
  877. /*
  878. * Allocate some buffers for this page
  879. */
  880. bh = alloc_page_buffers(page, size, 0);
  881. if (!bh)
  882. goto failed;
  883. /*
  884. * Link the page to the buffers and initialise them. Take the
  885. * lock to be atomic wrt __find_get_block(), which does not
  886. * run under the page lock.
  887. */
  888. spin_lock(&inode->i_mapping->private_lock);
  889. link_dev_buffers(page, bh);
  890. init_page_buffers(page, bdev, block, size);
  891. spin_unlock(&inode->i_mapping->private_lock);
  892. return page;
  893. failed:
  894. BUG();
  895. unlock_page(page);
  896. page_cache_release(page);
  897. return NULL;
  898. }
  899. /*
  900. * Create buffers for the specified block device block's page. If
  901. * that page was dirty, the buffers are set dirty also.
  902. */
  903. static int
  904. grow_buffers(struct block_device *bdev, sector_t block, int size)
  905. {
  906. struct page *page;
  907. pgoff_t index;
  908. int sizebits;
  909. sizebits = -1;
  910. do {
  911. sizebits++;
  912. } while ((size << sizebits) < PAGE_SIZE);
  913. index = block >> sizebits;
  914. /*
  915. * Check for a block which wants to lie outside our maximum possible
  916. * pagecache index. (this comparison is done using sector_t types).
  917. */
  918. if (unlikely(index != block >> sizebits)) {
  919. char b[BDEVNAME_SIZE];
  920. printk(KERN_ERR "%s: requested out-of-range block %llu for "
  921. "device %s\n",
  922. __func__, (unsigned long long)block,
  923. bdevname(bdev, b));
  924. return -EIO;
  925. }
  926. block = index << sizebits;
  927. /* Create a page with the proper size buffers.. */
  928. page = grow_dev_page(bdev, block, index, size);
  929. if (!page)
  930. return 0;
  931. unlock_page(page);
  932. page_cache_release(page);
  933. return 1;
  934. }
  935. static struct buffer_head *
  936. __getblk_slow(struct block_device *bdev, sector_t block, int size)
  937. {
  938. /* Size must be multiple of hard sectorsize */
  939. if (unlikely(size & (bdev_logical_block_size(bdev)-1) ||
  940. (size < 512 || size > PAGE_SIZE))) {
  941. printk(KERN_ERR "getblk(): invalid block size %d requested\n",
  942. size);
  943. printk(KERN_ERR "logical block size: %d\n",
  944. bdev_logical_block_size(bdev));
  945. dump_stack();
  946. return NULL;
  947. }
  948. for (;;) {
  949. struct buffer_head * bh;
  950. int ret;
  951. bh = __find_get_block(bdev, block, size);
  952. if (bh)
  953. return bh;
  954. ret = grow_buffers(bdev, block, size);
  955. if (ret < 0)
  956. return NULL;
  957. if (ret == 0)
  958. free_more_memory();
  959. }
  960. }
  961. /*
  962. * The relationship between dirty buffers and dirty pages:
  963. *
  964. * Whenever a page has any dirty buffers, the page's dirty bit is set, and
  965. * the page is tagged dirty in its radix tree.
  966. *
  967. * At all times, the dirtiness of the buffers represents the dirtiness of
  968. * subsections of the page. If the page has buffers, the page dirty bit is
  969. * merely a hint about the true dirty state.
  970. *
  971. * When a page is set dirty in its entirety, all its buffers are marked dirty
  972. * (if the page has buffers).
  973. *
  974. * When a buffer is marked dirty, its page is dirtied, but the page's other
  975. * buffers are not.
  976. *
  977. * Also. When blockdev buffers are explicitly read with bread(), they
  978. * individually become uptodate. But their backing page remains not
  979. * uptodate - even if all of its buffers are uptodate. A subsequent
  980. * block_read_full_page() against that page will discover all the uptodate
  981. * buffers, will set the page uptodate and will perform no I/O.
  982. */
  983. /**
  984. * mark_buffer_dirty - mark a buffer_head as needing writeout
  985. * @bh: the buffer_head to mark dirty
  986. *
  987. * mark_buffer_dirty() will set the dirty bit against the buffer, then set its
  988. * backing page dirty, then tag the page as dirty in its address_space's radix
  989. * tree and then attach the address_space's inode to its superblock's dirty
  990. * inode list.
  991. *
  992. * mark_buffer_dirty() is atomic. It takes bh->b_page->mapping->private_lock,
  993. * mapping->tree_lock and mapping->host->i_lock.
  994. */
  995. void mark_buffer_dirty(struct buffer_head *bh)
  996. {
  997. WARN_ON_ONCE(!buffer_uptodate(bh));
  998. /*
  999. * Very *carefully* optimize the it-is-already-dirty case.
  1000. *
  1001. * Don't let the final "is it dirty" escape to before we
  1002. * perhaps modified the buffer.
  1003. */
  1004. if (buffer_dirty(bh)) {
  1005. smp_mb();
  1006. if (buffer_dirty(bh))
  1007. return;
  1008. }
  1009. if (!test_set_buffer_dirty(bh)) {
  1010. struct page *page = bh->b_page;
  1011. if (!TestSetPageDirty(page)) {
  1012. struct address_space *mapping = page_mapping(page);
  1013. if (mapping)
  1014. __set_page_dirty(page, mapping, 0);
  1015. }
  1016. }
  1017. }
  1018. EXPORT_SYMBOL(mark_buffer_dirty);
  1019. /*
  1020. * Decrement a buffer_head's reference count. If all buffers against a page
  1021. * have zero reference count, are clean and unlocked, and if the page is clean
  1022. * and unlocked then try_to_free_buffers() may strip the buffers from the page
  1023. * in preparation for freeing it (sometimes, rarely, buffers are removed from
  1024. * a page but it ends up not being freed, and buffers may later be reattached).
  1025. */
  1026. void __brelse(struct buffer_head * buf)
  1027. {
  1028. if (atomic_read(&buf->b_count)) {
  1029. put_bh(buf);
  1030. return;
  1031. }
  1032. WARN(1, KERN_ERR "VFS: brelse: Trying to free free buffer\n");
  1033. }
  1034. EXPORT_SYMBOL(__brelse);
  1035. /*
  1036. * bforget() is like brelse(), except it discards any
  1037. * potentially dirty data.
  1038. */
  1039. void __bforget(struct buffer_head *bh)
  1040. {
  1041. clear_buffer_dirty(bh);
  1042. if (bh->b_assoc_map) {
  1043. struct address_space *buffer_mapping = bh->b_page->mapping;
  1044. spin_lock(&buffer_mapping->private_lock);
  1045. list_del_init(&bh->b_assoc_buffers);
  1046. bh->b_assoc_map = NULL;
  1047. spin_unlock(&buffer_mapping->private_lock);
  1048. }
  1049. __brelse(bh);
  1050. }
  1051. EXPORT_SYMBOL(__bforget);
  1052. static struct buffer_head *__bread_slow(struct buffer_head *bh)
  1053. {
  1054. lock_buffer(bh);
  1055. if (buffer_uptodate(bh)) {
  1056. unlock_buffer(bh);
  1057. return bh;
  1058. } else {
  1059. get_bh(bh);
  1060. bh->b_end_io = end_buffer_read_sync;
  1061. submit_bh(READ, bh);
  1062. wait_on_buffer(bh);
  1063. if (buffer_uptodate(bh))
  1064. return bh;
  1065. }
  1066. brelse(bh);
  1067. return NULL;
  1068. }
  1069. /*
  1070. * Per-cpu buffer LRU implementation. To reduce the cost of __find_get_block().
  1071. * The bhs[] array is sorted - newest buffer is at bhs[0]. Buffers have their
  1072. * refcount elevated by one when they're in an LRU. A buffer can only appear
  1073. * once in a particular CPU's LRU. A single buffer can be present in multiple
  1074. * CPU's LRUs at the same time.
  1075. *
  1076. * This is a transparent caching front-end to sb_bread(), sb_getblk() and
  1077. * sb_find_get_block().
  1078. *
  1079. * The LRUs themselves only need locking against invalidate_bh_lrus. We use
  1080. * a local interrupt disable for that.
  1081. */
  1082. #define BH_LRU_SIZE 8
  1083. struct bh_lru {
  1084. struct buffer_head *bhs[BH_LRU_SIZE];
  1085. };
  1086. static DEFINE_PER_CPU(struct bh_lru, bh_lrus) = {{ NULL }};
  1087. #ifdef CONFIG_SMP
  1088. #define bh_lru_lock() local_irq_disable()
  1089. #define bh_lru_unlock() local_irq_enable()
  1090. #else
  1091. #define bh_lru_lock() preempt_disable()
  1092. #define bh_lru_unlock() preempt_enable()
  1093. #endif
  1094. static inline void check_irqs_on(void)
  1095. {
  1096. #ifdef irqs_disabled
  1097. BUG_ON(irqs_disabled());
  1098. #endif
  1099. }
  1100. /*
  1101. * The LRU management algorithm is dopey-but-simple. Sorry.
  1102. */
  1103. static void bh_lru_install(struct buffer_head *bh)
  1104. {
  1105. struct buffer_head *evictee = NULL;
  1106. check_irqs_on();
  1107. bh_lru_lock();
  1108. if (__this_cpu_read(bh_lrus.bhs[0]) != bh) {
  1109. struct buffer_head *bhs[BH_LRU_SIZE];
  1110. int in;
  1111. int out = 0;
  1112. get_bh(bh);
  1113. bhs[out++] = bh;
  1114. for (in = 0; in < BH_LRU_SIZE; in++) {
  1115. struct buffer_head *bh2 =
  1116. __this_cpu_read(bh_lrus.bhs[in]);
  1117. if (bh2 == bh) {
  1118. __brelse(bh2);
  1119. } else {
  1120. if (out >= BH_LRU_SIZE) {
  1121. BUG_ON(evictee != NULL);
  1122. evictee = bh2;
  1123. } else {
  1124. bhs[out++] = bh2;
  1125. }
  1126. }
  1127. }
  1128. while (out < BH_LRU_SIZE)
  1129. bhs[out++] = NULL;
  1130. memcpy(__this_cpu_ptr(&bh_lrus.bhs), bhs, sizeof(bhs));
  1131. }
  1132. bh_lru_unlock();
  1133. if (evictee)
  1134. __brelse(evictee);
  1135. }
  1136. /*
  1137. * Look up the bh in this cpu's LRU. If it's there, move it to the head.
  1138. */
  1139. static struct buffer_head *
  1140. lookup_bh_lru(struct block_device *bdev, sector_t block, unsigned size)
  1141. {
  1142. struct buffer_head *ret = NULL;
  1143. unsigned int i;
  1144. check_irqs_on();
  1145. bh_lru_lock();
  1146. for (i = 0; i < BH_LRU_SIZE; i++) {
  1147. struct buffer_head *bh = __this_cpu_read(bh_lrus.bhs[i]);
  1148. if (bh && bh->b_bdev == bdev &&
  1149. bh->b_blocknr == block && bh->b_size == size) {
  1150. if (i) {
  1151. while (i) {
  1152. __this_cpu_write(bh_lrus.bhs[i],
  1153. __this_cpu_read(bh_lrus.bhs[i - 1]));
  1154. i--;
  1155. }
  1156. __this_cpu_write(bh_lrus.bhs[0], bh);
  1157. }
  1158. get_bh(bh);
  1159. ret = bh;
  1160. break;
  1161. }
  1162. }
  1163. bh_lru_unlock();
  1164. return ret;
  1165. }
  1166. /*
  1167. * Perform a pagecache lookup for the matching buffer. If it's there, refresh
  1168. * it in the LRU and mark it as accessed. If it is not present then return
  1169. * NULL
  1170. */
  1171. struct buffer_head *
  1172. __find_get_block(struct block_device *bdev, sector_t block, unsigned size)
  1173. {
  1174. struct buffer_head *bh = lookup_bh_lru(bdev, block, size);
  1175. if (bh == NULL) {
  1176. bh = __find_get_block_slow(bdev, block);
  1177. if (bh)
  1178. bh_lru_install(bh);
  1179. }
  1180. if (bh)
  1181. touch_buffer(bh);
  1182. return bh;
  1183. }
  1184. EXPORT_SYMBOL(__find_get_block);
  1185. /*
  1186. * __getblk will locate (and, if necessary, create) the buffer_head
  1187. * which corresponds to the passed block_device, block and size. The
  1188. * returned buffer has its reference count incremented.
  1189. *
  1190. * __getblk() cannot fail - it just keeps trying. If you pass it an
  1191. * illegal block number, __getblk() will happily return a buffer_head
  1192. * which represents the non-existent block. Very weird.
  1193. *
  1194. * __getblk() will lock up the machine if grow_dev_page's try_to_free_buffers()
  1195. * attempt is failing. FIXME, perhaps?
  1196. */
  1197. struct buffer_head *
  1198. __getblk(struct block_device *bdev, sector_t block, unsigned size)
  1199. {
  1200. struct buffer_head *bh = __find_get_block(bdev, block, size);
  1201. might_sleep();
  1202. if (bh == NULL)
  1203. bh = __getblk_slow(bdev, block, size);
  1204. return bh;
  1205. }
  1206. EXPORT_SYMBOL(__getblk);
  1207. /*
  1208. * Do async read-ahead on a buffer..
  1209. */
  1210. void __breadahead(struct block_device *bdev, sector_t block, unsigned size)
  1211. {
  1212. struct buffer_head *bh = __getblk(bdev, block, size);
  1213. if (likely(bh)) {
  1214. ll_rw_block(READA, 1, &bh);
  1215. brelse(bh);
  1216. }
  1217. }
  1218. EXPORT_SYMBOL(__breadahead);
  1219. /**
  1220. * __bread() - reads a specified block and returns the bh
  1221. * @bdev: the block_device to read from
  1222. * @block: number of block
  1223. * @size: size (in bytes) to read
  1224. *
  1225. * Reads a specified block, and returns buffer head that contains it.
  1226. * It returns NULL if the block was unreadable.
  1227. */
  1228. struct buffer_head *
  1229. __bread(struct block_device *bdev, sector_t block, unsigned size)
  1230. {
  1231. struct buffer_head *bh = __getblk(bdev, block, size);
  1232. if (likely(bh) && !buffer_uptodate(bh))
  1233. bh = __bread_slow(bh);
  1234. return bh;
  1235. }
  1236. EXPORT_SYMBOL(__bread);
  1237. /*
  1238. * invalidate_bh_lrus() is called rarely - but not only at unmount.
  1239. * This doesn't race because it runs in each cpu either in irq
  1240. * or with preempt disabled.
  1241. */
  1242. static void invalidate_bh_lru(void *arg)
  1243. {
  1244. struct bh_lru *b = &get_cpu_var(bh_lrus);
  1245. int i;
  1246. for (i = 0; i < BH_LRU_SIZE; i++) {
  1247. brelse(b->bhs[i]);
  1248. b->bhs[i] = NULL;
  1249. }
  1250. put_cpu_var(bh_lrus);
  1251. }
  1252. static bool has_bh_in_lru(int cpu, void *dummy)
  1253. {
  1254. struct bh_lru *b = per_cpu_ptr(&bh_lrus, cpu);
  1255. int i;
  1256. for (i = 0; i < BH_LRU_SIZE; i++) {
  1257. if (b->bhs[i])
  1258. return 1;
  1259. }
  1260. return 0;
  1261. }
  1262. void invalidate_bh_lrus(void)
  1263. {
  1264. on_each_cpu_cond(has_bh_in_lru, invalidate_bh_lru, NULL, 1, GFP_KERNEL);
  1265. }
  1266. EXPORT_SYMBOL_GPL(invalidate_bh_lrus);
  1267. void set_bh_page(struct buffer_head *bh,
  1268. struct page *page, unsigned long offset)
  1269. {
  1270. bh->b_page = page;
  1271. BUG_ON(offset >= PAGE_SIZE);
  1272. if (PageHighMem(page))
  1273. /*
  1274. * This catches illegal uses and preserves the offset:
  1275. */
  1276. bh->b_data = (char *)(0 + offset);
  1277. else
  1278. bh->b_data = page_address(page) + offset;
  1279. }
  1280. EXPORT_SYMBOL(set_bh_page);
  1281. /*
  1282. * Called when truncating a buffer on a page completely.
  1283. */
  1284. static void discard_buffer(struct buffer_head * bh)
  1285. {
  1286. lock_buffer(bh);
  1287. clear_buffer_dirty(bh);
  1288. bh->b_bdev = NULL;
  1289. clear_buffer_mapped(bh);
  1290. clear_buffer_req(bh);
  1291. clear_buffer_new(bh);
  1292. clear_buffer_delay(bh);
  1293. clear_buffer_unwritten(bh);
  1294. unlock_buffer(bh);
  1295. }
  1296. /**
  1297. * block_invalidatepage - invalidate part or all of a buffer-backed page
  1298. *
  1299. * @page: the page which is affected
  1300. * @offset: the index of the truncation point
  1301. *
  1302. * block_invalidatepage() is called when all or part of the page has become
  1303. * invalidated by a truncate operation.
  1304. *
  1305. * block_invalidatepage() does not have to release all buffers, but it must
  1306. * ensure that no dirty buffer is left outside @offset and that no I/O
  1307. * is underway against any of the blocks which are outside the truncation
  1308. * point. Because the caller is about to free (and possibly reuse) those
  1309. * blocks on-disk.
  1310. */
  1311. void block_invalidatepage(struct page *page, unsigned long offset)
  1312. {
  1313. struct buffer_head *head, *bh, *next;
  1314. unsigned int curr_off = 0;
  1315. BUG_ON(!PageLocked(page));
  1316. if (!page_has_buffers(page))
  1317. goto out;
  1318. head = page_buffers(page);
  1319. bh = head;
  1320. do {
  1321. unsigned int next_off = curr_off + bh->b_size;
  1322. next = bh->b_this_page;
  1323. /*
  1324. * is this block fully invalidated?
  1325. */
  1326. if (offset <= curr_off)
  1327. discard_buffer(bh);
  1328. curr_off = next_off;
  1329. bh = next;
  1330. } while (bh != head);
  1331. /*
  1332. * We release buffers only if the entire page is being invalidated.
  1333. * The get_block cached value has been unconditionally invalidated,
  1334. * so real IO is not possible anymore.
  1335. */
  1336. if (offset == 0)
  1337. try_to_release_page(page, 0);
  1338. out:
  1339. return;
  1340. }
  1341. EXPORT_SYMBOL(block_invalidatepage);
  1342. /*
  1343. * We attach and possibly dirty the buffers atomically wrt
  1344. * __set_page_dirty_buffers() via private_lock. try_to_free_buffers
  1345. * is already excluded via the page lock.
  1346. */
  1347. void create_empty_buffers(struct page *page,
  1348. unsigned long blocksize, unsigned long b_state)
  1349. {
  1350. struct buffer_head *bh, *head, *tail;
  1351. head = alloc_page_buffers(page, blocksize, 1);
  1352. bh = head;
  1353. do {
  1354. bh->b_state |= b_state;
  1355. tail = bh;
  1356. bh = bh->b_this_page;
  1357. } while (bh);
  1358. tail->b_this_page = head;
  1359. spin_lock(&page->mapping->private_lock);
  1360. if (PageUptodate(page) || PageDirty(page)) {
  1361. bh = head;
  1362. do {
  1363. if (PageDirty(page))
  1364. set_buffer_dirty(bh);
  1365. if (PageUptodate(page))
  1366. set_buffer_uptodate(bh);
  1367. bh = bh->b_this_page;
  1368. } while (bh != head);
  1369. }
  1370. attach_page_buffers(page, head);
  1371. spin_unlock(&page->mapping->private_lock);
  1372. }
  1373. EXPORT_SYMBOL(create_empty_buffers);
  1374. /*
  1375. * We are taking a block for data and we don't want any output from any
  1376. * buffer-cache aliases starting from return from that function and
  1377. * until the moment when something will explicitly mark the buffer
  1378. * dirty (hopefully that will not happen until we will free that block ;-)
  1379. * We don't even need to mark it not-uptodate - nobody can expect
  1380. * anything from a newly allocated buffer anyway. We used to used
  1381. * unmap_buffer() for such invalidation, but that was wrong. We definitely
  1382. * don't want to mark the alias unmapped, for example - it would confuse
  1383. * anyone who might pick it with bread() afterwards...
  1384. *
  1385. * Also.. Note that bforget() doesn't lock the buffer. So there can
  1386. * be writeout I/O going on against recently-freed buffers. We don't
  1387. * wait on that I/O in bforget() - it's more efficient to wait on the I/O
  1388. * only if we really need to. That happens here.
  1389. */
  1390. void unmap_underlying_metadata(struct block_device *bdev, sector_t block)
  1391. {
  1392. struct buffer_head *old_bh;
  1393. might_sleep();
  1394. old_bh = __find_get_block_slow(bdev, block);
  1395. if (old_bh) {
  1396. clear_buffer_dirty(old_bh);
  1397. wait_on_buffer(old_bh);
  1398. clear_buffer_req(old_bh);
  1399. __brelse(old_bh);
  1400. }
  1401. }
  1402. EXPORT_SYMBOL(unmap_underlying_metadata);
  1403. /*
  1404. * NOTE! All mapped/uptodate combinations are valid:
  1405. *
  1406. * Mapped Uptodate Meaning
  1407. *
  1408. * No No "unknown" - must do get_block()
  1409. * No Yes "hole" - zero-filled
  1410. * Yes No "allocated" - allocated on disk, not read in
  1411. * Yes Yes "valid" - allocated and up-to-date in memory.
  1412. *
  1413. * "Dirty" is valid only with the last case (mapped+uptodate).
  1414. */
  1415. /*
  1416. * While block_write_full_page is writing back the dirty buffers under
  1417. * the page lock, whoever dirtied the buffers may decide to clean them
  1418. * again at any time. We handle that by only looking at the buffer
  1419. * state inside lock_buffer().
  1420. *
  1421. * If block_write_full_page() is called for regular writeback
  1422. * (wbc->sync_mode == WB_SYNC_NONE) then it will redirty a page which has a
  1423. * locked buffer. This only can happen if someone has written the buffer
  1424. * directly, with submit_bh(). At the address_space level PageWriteback
  1425. * prevents this contention from occurring.
  1426. *
  1427. * If block_write_full_page() is called with wbc->sync_mode ==
  1428. * WB_SYNC_ALL, the writes are posted using WRITE_SYNC; this
  1429. * causes the writes to be flagged as synchronous writes.
  1430. */
  1431. static int __block_write_full_page(struct inode *inode, struct page *page,
  1432. get_block_t *get_block, struct writeback_control *wbc,
  1433. bh_end_io_t *handler)
  1434. {
  1435. int err;
  1436. sector_t block;
  1437. sector_t last_block;
  1438. struct buffer_head *bh, *head;
  1439. const unsigned blocksize = 1 << inode->i_blkbits;
  1440. int nr_underway = 0;
  1441. int write_op = (wbc->sync_mode == WB_SYNC_ALL ?
  1442. WRITE_SYNC : WRITE);
  1443. BUG_ON(!PageLocked(page));
  1444. last_block = (i_size_read(inode) - 1) >> inode->i_blkbits;
  1445. if (!page_has_buffers(page)) {
  1446. create_empty_buffers(page, blocksize,
  1447. (1 << BH_Dirty)|(1 << BH_Uptodate));
  1448. }
  1449. /*
  1450. * Be very careful. We have no exclusion from __set_page_dirty_buffers
  1451. * here, and the (potentially unmapped) buffers may become dirty at
  1452. * any time. If a buffer becomes dirty here after we've inspected it
  1453. * then we just miss that fact, and the page stays dirty.
  1454. *
  1455. * Buffers outside i_size may be dirtied by __set_page_dirty_buffers;
  1456. * handle that here by just cleaning them.
  1457. */
  1458. block = (sector_t)page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
  1459. head = page_buffers(page);
  1460. bh = head;
  1461. /*
  1462. * Get all the dirty buffers mapped to disk addresses and
  1463. * handle any aliases from the underlying blockdev's mapping.
  1464. */
  1465. do {
  1466. if (block > last_block) {
  1467. /*
  1468. * mapped buffers outside i_size will occur, because
  1469. * this page can be outside i_size when there is a
  1470. * truncate in progress.
  1471. */
  1472. /*
  1473. * The buffer was zeroed by block_write_full_page()
  1474. */
  1475. clear_buffer_dirty(bh);
  1476. set_buffer_uptodate(bh);
  1477. } else if ((!buffer_mapped(bh) || buffer_delay(bh)) &&
  1478. buffer_dirty(bh)) {
  1479. WARN_ON(bh->b_size != blocksize);
  1480. err = get_block(inode, block, bh, 1);
  1481. if (err)
  1482. goto recover;
  1483. clear_buffer_delay(bh);
  1484. if (buffer_new(bh)) {
  1485. /* blockdev mappings never come here */
  1486. clear_buffer_new(bh);
  1487. unmap_underlying_metadata(bh->b_bdev,
  1488. bh->b_blocknr);
  1489. }
  1490. }
  1491. bh = bh->b_this_page;
  1492. block++;
  1493. } while (bh != head);
  1494. do {
  1495. if (!buffer_mapped(bh))
  1496. continue;
  1497. /*
  1498. * If it's a fully non-blocking write attempt and we cannot
  1499. * lock the buffer then redirty the page. Note that this can
  1500. * potentially cause a busy-wait loop from writeback threads
  1501. * and kswapd activity, but those code paths have their own
  1502. * higher-level throttling.
  1503. */
  1504. if (wbc->sync_mode != WB_SYNC_NONE) {
  1505. lock_buffer(bh);
  1506. } else if (!trylock_buffer(bh)) {
  1507. redirty_page_for_writepage(wbc, page);
  1508. continue;
  1509. }
  1510. if (test_clear_buffer_dirty(bh)) {
  1511. mark_buffer_async_write_endio(bh, handler);
  1512. } else {
  1513. unlock_buffer(bh);
  1514. }
  1515. } while ((bh = bh->b_this_page) != head);
  1516. /*
  1517. * The page and its buffers are protected by PageWriteback(), so we can
  1518. * drop the bh refcounts early.
  1519. */
  1520. BUG_ON(PageWriteback(page));
  1521. set_page_writeback(page);
  1522. do {
  1523. struct buffer_head *next = bh->b_this_page;
  1524. if (buffer_async_write(bh)) {
  1525. submit_bh(write_op, bh);
  1526. nr_underway++;
  1527. }
  1528. bh = next;
  1529. } while (bh != head);
  1530. unlock_page(page);
  1531. err = 0;
  1532. done:
  1533. if (nr_underway == 0) {
  1534. /*
  1535. * The page was marked dirty, but the buffers were
  1536. * clean. Someone wrote them back by hand with
  1537. * ll_rw_block/submit_bh. A rare case.
  1538. */
  1539. end_page_writeback(page);
  1540. /*
  1541. * The page and buffer_heads can be released at any time from
  1542. * here on.
  1543. */
  1544. }
  1545. return err;
  1546. recover:
  1547. /*
  1548. * ENOSPC, or some other error. We may already have added some
  1549. * blocks to the file, so we need to write these out to avoid
  1550. * exposing stale data.
  1551. * The page is currently locked and not marked for writeback
  1552. */
  1553. bh = head;
  1554. /* Recovery: lock and submit the mapped buffers */
  1555. do {
  1556. if (buffer_mapped(bh) && buffer_dirty(bh) &&
  1557. !buffer_delay(bh)) {
  1558. lock_buffer(bh);
  1559. mark_buffer_async_write_endio(bh, handler);
  1560. } else {
  1561. /*
  1562. * The buffer may have been set dirty during
  1563. * attachment to a dirty page.
  1564. */
  1565. clear_buffer_dirty(bh);
  1566. }
  1567. } while ((bh = bh->b_this_page) != head);
  1568. SetPageError(page);
  1569. BUG_ON(PageWriteback(page));
  1570. mapping_set_error(page->mapping, err);
  1571. set_page_writeback(page);
  1572. do {
  1573. struct buffer_head *next = bh->b_this_page;
  1574. if (buffer_async_write(bh)) {
  1575. clear_buffer_dirty(bh);
  1576. submit_bh(write_op, bh);
  1577. nr_underway++;
  1578. }
  1579. bh = next;
  1580. } while (bh != head);
  1581. unlock_page(page);
  1582. goto done;
  1583. }
  1584. /*
  1585. * If a page has any new buffers, zero them out here, and mark them uptodate
  1586. * and dirty so they'll be written out (in order to prevent uninitialised
  1587. * block data from leaking). And clear the new bit.
  1588. */
  1589. void page_zero_new_buffers(struct page *page, unsigned from, unsigned to)
  1590. {
  1591. unsigned int block_start, block_end;
  1592. struct buffer_head *head, *bh;
  1593. BUG_ON(!PageLocked(page));
  1594. if (!page_has_buffers(page))
  1595. return;
  1596. bh = head = page_buffers(page);
  1597. block_start = 0;
  1598. do {
  1599. block_end = block_start + bh->b_size;
  1600. if (buffer_new(bh)) {
  1601. if (block_end > from && block_start < to) {
  1602. if (!PageUptodate(page)) {
  1603. unsigned start, size;
  1604. start = max(from, block_start);
  1605. size = min(to, block_end) - start;
  1606. zero_user(page, start, size);
  1607. set_buffer_uptodate(bh);
  1608. }
  1609. clear_buffer_new(bh);
  1610. mark_buffer_dirty(bh);
  1611. }
  1612. }
  1613. block_start = block_end;
  1614. bh = bh->b_this_page;
  1615. } while (bh != head);
  1616. }
  1617. EXPORT_SYMBOL(page_zero_new_buffers);
  1618. int __block_write_begin(struct page *page, loff_t pos, unsigned len,
  1619. get_block_t *get_block)
  1620. {
  1621. unsigned from = pos & (PAGE_CACHE_SIZE - 1);
  1622. unsigned to = from + len;
  1623. struct inode *inode = page->mapping->host;
  1624. unsigned block_start, block_end;
  1625. sector_t block;
  1626. int err = 0;
  1627. unsigned blocksize, bbits;
  1628. struct buffer_head *bh, *head, *wait[2], **wait_bh=wait;
  1629. BUG_ON(!PageLocked(page));
  1630. BUG_ON(from > PAGE_CACHE_SIZE);
  1631. BUG_ON(to > PAGE_CACHE_SIZE);
  1632. BUG_ON(from > to);
  1633. blocksize = 1 << inode->i_blkbits;
  1634. if (!page_has_buffers(page))
  1635. create_empty_buffers(page, blocksize, 0);
  1636. head = page_buffers(page);
  1637. bbits = inode->i_blkbits;
  1638. block = (sector_t)page->index << (PAGE_CACHE_SHIFT - bbits);
  1639. for(bh = head, block_start = 0; bh != head || !block_start;
  1640. block++, block_start=block_end, bh = bh->b_this_page) {
  1641. block_end = block_start + blocksize;
  1642. if (block_end <= from || block_start >= to) {
  1643. if (PageUptodate(page)) {
  1644. if (!buffer_uptodate(bh))
  1645. set_buffer_uptodate(bh);
  1646. }
  1647. continue;
  1648. }
  1649. if (buffer_new(bh))
  1650. clear_buffer_new(bh);
  1651. if (!buffer_mapped(bh)) {
  1652. WARN_ON(bh->b_size != blocksize);
  1653. err = get_block(inode, block, bh, 1);
  1654. if (err)
  1655. break;
  1656. if (buffer_new(bh)) {
  1657. unmap_underlying_metadata(bh->b_bdev,
  1658. bh->b_blocknr);
  1659. if (PageUptodate(page)) {
  1660. clear_buffer_new(bh);
  1661. set_buffer_uptodate(bh);
  1662. mark_buffer_dirty(bh);
  1663. continue;
  1664. }
  1665. if (block_end > to || block_start < from)
  1666. zero_user_segments(page,
  1667. to, block_end,
  1668. block_start, from);
  1669. continue;
  1670. }
  1671. }
  1672. if (PageUptodate(page)) {
  1673. if (!buffer_uptodate(bh))
  1674. set_buffer_uptodate(bh);
  1675. continue;
  1676. }
  1677. if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
  1678. !buffer_unwritten(bh) &&
  1679. (block_start < from || block_end > to)) {
  1680. ll_rw_block(READ, 1, &bh);
  1681. *wait_bh++=bh;
  1682. }
  1683. }
  1684. /*
  1685. * If we issued read requests - let them complete.
  1686. */
  1687. while(wait_bh > wait) {
  1688. wait_on_buffer(*--wait_bh);
  1689. if (!buffer_uptodate(*wait_bh))
  1690. err = -EIO;
  1691. }
  1692. if (unlikely(err))
  1693. page_zero_new_buffers(page, from, to);
  1694. return err;
  1695. }
  1696. EXPORT_SYMBOL(__block_write_begin);
  1697. static int __block_commit_write(struct inode *inode, struct page *page,
  1698. unsigned from, unsigned to)
  1699. {
  1700. unsigned block_start, block_end;
  1701. int partial = 0;
  1702. unsigned blocksize;
  1703. struct buffer_head *bh, *head;
  1704. blocksize = 1 << inode->i_blkbits;
  1705. for(bh = head = page_buffers(page), block_start = 0;
  1706. bh != head || !block_start;
  1707. block_start=block_end, bh = bh->b_this_page) {
  1708. block_end = block_start + blocksize;
  1709. if (block_end <= from || block_start >= to) {
  1710. if (!buffer_uptodate(bh))
  1711. partial = 1;
  1712. } else {
  1713. set_buffer_uptodate(bh);
  1714. mark_buffer_dirty(bh);
  1715. }
  1716. clear_buffer_new(bh);
  1717. }
  1718. /*
  1719. * If this is a partial write which happened to make all buffers
  1720. * uptodate then we can optimize away a bogus readpage() for
  1721. * the next read(). Here we 'discover' whether the page went
  1722. * uptodate as a result of this (potentially partial) write.
  1723. */
  1724. if (!partial)
  1725. SetPageUptodate(page);
  1726. return 0;
  1727. }
  1728. /*
  1729. * block_write_begin takes care of the basic task of block allocation and
  1730. * bringing partial write blocks uptodate first.
  1731. *
  1732. * The filesystem needs to handle block truncation upon failure.
  1733. */
  1734. int block_write_begin(struct address_space *mapping, loff_t pos, unsigned len,
  1735. unsigned flags, struct page **pagep, get_block_t *get_block)
  1736. {
  1737. pgoff_t index = pos >> PAGE_CACHE_SHIFT;
  1738. struct page *page;
  1739. int status;
  1740. page = grab_cache_page_write_begin(mapping, index, flags);
  1741. if (!page)
  1742. return -ENOMEM;
  1743. status = __block_write_begin(page, pos, len, get_block);
  1744. if (unlikely(status)) {
  1745. unlock_page(page);
  1746. page_cache_release(page);
  1747. page = NULL;
  1748. }
  1749. *pagep = page;
  1750. return status;
  1751. }
  1752. EXPORT_SYMBOL(block_write_begin);
  1753. int block_write_end(struct file *file, struct address_space *mapping,
  1754. loff_t pos, unsigned len, unsigned copied,
  1755. struct page *page, void *fsdata)
  1756. {
  1757. struct inode *inode = mapping->host;
  1758. unsigned start;
  1759. start = pos & (PAGE_CACHE_SIZE - 1);
  1760. if (unlikely(copied < len)) {
  1761. /*
  1762. * The buffers that were written will now be uptodate, so we
  1763. * don't have to worry about a readpage reading them and
  1764. * overwriting a partial write. However if we have encountered
  1765. * a short write and only partially written into a buffer, it
  1766. * will not be marked uptodate, so a readpage might come in and
  1767. * destroy our partial write.
  1768. *
  1769. * Do the simplest thing, and just treat any short write to a
  1770. * non uptodate page as a zero-length write, and force the
  1771. * caller to redo the whole thing.
  1772. */
  1773. if (!PageUptodate(page))
  1774. copied = 0;
  1775. page_zero_new_buffers(page, start+copied, start+len);
  1776. }
  1777. flush_dcache_page(page);
  1778. /* This could be a short (even 0-length) commit */
  1779. __block_commit_write(inode, page, start, start+copied);
  1780. return copied;
  1781. }
  1782. EXPORT_SYMBOL(block_write_end);
  1783. int generic_write_end(struct file *file, struct address_space *mapping,
  1784. loff_t pos, unsigned len, unsigned copied,
  1785. struct page *page, void *fsdata)
  1786. {
  1787. struct inode *inode = mapping->host;
  1788. int i_size_changed = 0;
  1789. copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
  1790. /*
  1791. * No need to use i_size_read() here, the i_size
  1792. * cannot change under us because we hold i_mutex.
  1793. *
  1794. * But it's important to update i_size while still holding page lock:
  1795. * page writeout could otherwise come in and zero beyond i_size.
  1796. */
  1797. if (pos+copied > inode->i_size) {
  1798. i_size_write(inode, pos+copied);
  1799. i_size_changed = 1;
  1800. }
  1801. unlock_page(page);
  1802. page_cache_release(page);
  1803. /*
  1804. * Don't mark the inode dirty under page lock. First, it unnecessarily
  1805. * makes the holding time of page lock longer. Second, it forces lock
  1806. * ordering of page lock and transaction start for journaling
  1807. * filesystems.
  1808. */
  1809. if (i_size_changed)
  1810. mark_inode_dirty(inode);
  1811. return copied;
  1812. }
  1813. EXPORT_SYMBOL(generic_write_end);
  1814. /*
  1815. * block_is_partially_uptodate checks whether buffers within a page are
  1816. * uptodate or not.
  1817. *
  1818. * Returns true if all buffers which correspond to a file portion
  1819. * we want to read are uptodate.
  1820. */
  1821. int block_is_partially_uptodate(struct page *page, read_descriptor_t *desc,
  1822. unsigned long from)
  1823. {
  1824. struct inode *inode = page->mapping->host;
  1825. unsigned block_start, block_end, blocksize;
  1826. unsigned to;
  1827. struct buffer_head *bh, *head;
  1828. int ret = 1;
  1829. if (!page_has_buffers(page))
  1830. return 0;
  1831. blocksize = 1 << inode->i_blkbits;
  1832. to = min_t(unsigned, PAGE_CACHE_SIZE - from, desc->count);
  1833. to = from + to;
  1834. if (from < blocksize && to > PAGE_CACHE_SIZE - blocksize)
  1835. return 0;
  1836. head = page_buffers(page);
  1837. bh = head;
  1838. block_start = 0;
  1839. do {
  1840. block_end = block_start + blocksize;
  1841. if (block_end > from && block_start < to) {
  1842. if (!buffer_uptodate(bh)) {
  1843. ret = 0;
  1844. break;
  1845. }
  1846. if (block_end >= to)
  1847. break;
  1848. }
  1849. block_start = block_end;
  1850. bh = bh->b_this_page;
  1851. } while (bh != head);
  1852. return ret;
  1853. }
  1854. EXPORT_SYMBOL(block_is_partially_uptodate);
  1855. /*
  1856. * Generic "read page" function for block devices that have the normal
  1857. * get_block functionality. This is most of the block device filesystems.
  1858. * Reads the page asynchronously --- the unlock_buffer() and
  1859. * set/clear_buffer_uptodate() functions propagate buffer state into the
  1860. * page struct once IO has completed.
  1861. */
  1862. int block_read_full_page(struct page *page, get_block_t *get_block)
  1863. {
  1864. struct inode *inode = page->mapping->host;
  1865. sector_t iblock, lblock;
  1866. struct buffer_head *bh, *head, *arr[MAX_BUF_PER_PAGE];
  1867. unsigned int blocksize;
  1868. int nr, i;
  1869. int fully_mapped = 1;
  1870. BUG_ON(!PageLocked(page));
  1871. blocksize = 1 << inode->i_blkbits;
  1872. if (!page_has_buffers(page))
  1873. create_empty_buffers(page, blocksize, 0);
  1874. head = page_buffers(page);
  1875. iblock = (sector_t)page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
  1876. lblock = (i_size_read(inode)+blocksize-1) >> inode->i_blkbits;
  1877. bh = head;
  1878. nr = 0;
  1879. i = 0;
  1880. do {
  1881. if (buffer_uptodate(bh))
  1882. continue;
  1883. if (!buffer_mapped(bh)) {
  1884. int err = 0;
  1885. fully_mapped = 0;
  1886. if (iblock < lblock) {
  1887. WARN_ON(bh->b_size != blocksize);
  1888. err = get_block(inode, iblock, bh, 0);
  1889. if (err)
  1890. SetPageError(page);
  1891. }
  1892. if (!buffer_mapped(bh)) {
  1893. zero_user(page, i * blocksize, blocksize);
  1894. if (!err)
  1895. set_buffer_uptodate(bh);
  1896. continue;
  1897. }
  1898. /*
  1899. * get_block() might have updated the buffer
  1900. * synchronously
  1901. */
  1902. if (buffer_uptodate(bh))
  1903. continue;
  1904. }
  1905. arr[nr++] = bh;
  1906. } while (i++, iblock++, (bh = bh->b_this_page) != head);
  1907. if (fully_mapped)
  1908. SetPageMappedToDisk(page);
  1909. if (!nr) {
  1910. /*
  1911. * All buffers are uptodate - we can set the page uptodate
  1912. * as well. But not if get_block() returned an error.
  1913. */
  1914. if (!PageError(page))
  1915. SetPageUptodate(page);
  1916. unlock_page(page);
  1917. return 0;
  1918. }
  1919. /* Stage two: lock the buffers */
  1920. for (i = 0; i < nr; i++) {
  1921. bh = arr[i];
  1922. lock_buffer(bh);
  1923. mark_buffer_async_read(bh);
  1924. }
  1925. /*
  1926. * Stage 3: start the IO. Check for uptodateness
  1927. * inside the buffer lock in case another process reading
  1928. * the underlying blockdev brought it uptodate (the sct fix).
  1929. */
  1930. for (i = 0; i < nr; i++) {
  1931. bh = arr[i];
  1932. if (buffer_uptodate(bh))
  1933. end_buffer_async_read(bh, 1);
  1934. else
  1935. submit_bh(READ, bh);
  1936. }
  1937. return 0;
  1938. }
  1939. EXPORT_SYMBOL(block_read_full_page);
  1940. /* utility function for filesystems that need to do work on expanding
  1941. * truncates. Uses filesystem pagecache writes to allow the filesystem to
  1942. * deal with the hole.
  1943. */
  1944. int generic_cont_expand_simple(struct inode *inode, loff_t size)
  1945. {
  1946. struct address_space *mapping = inode->i_mapping;
  1947. struct page *page;
  1948. void *fsdata;
  1949. int err;
  1950. err = inode_newsize_ok(inode, size);
  1951. if (err)
  1952. goto out;
  1953. err = pagecache_write_begin(NULL, mapping, size, 0,
  1954. AOP_FLAG_UNINTERRUPTIBLE|AOP_FLAG_CONT_EXPAND,
  1955. &page, &fsdata);
  1956. if (err)
  1957. goto out;
  1958. err = pagecache_write_end(NULL, mapping, size, 0, 0, page, fsdata);
  1959. BUG_ON(err > 0);
  1960. out:
  1961. return err;
  1962. }
  1963. EXPORT_SYMBOL(generic_cont_expand_simple);
  1964. static int cont_expand_zero(struct file *file, struct address_space *mapping,
  1965. loff_t pos, loff_t *bytes)
  1966. {
  1967. struct inode *inode = mapping->host;
  1968. unsigned blocksize = 1 << inode->i_blkbits;
  1969. struct page *page;
  1970. void *fsdata;
  1971. pgoff_t index, curidx;
  1972. loff_t curpos;
  1973. unsigned zerofrom, offset, len;
  1974. int err = 0;
  1975. index = pos >> PAGE_CACHE_SHIFT;
  1976. offset = pos & ~PAGE_CACHE_MASK;
  1977. while (index > (curidx = (curpos = *bytes)>>PAGE_CACHE_SHIFT)) {
  1978. zerofrom = curpos & ~PAGE_CACHE_MASK;
  1979. if (zerofrom & (blocksize-1)) {
  1980. *bytes |= (blocksize-1);
  1981. (*bytes)++;
  1982. }
  1983. len = PAGE_CACHE_SIZE - zerofrom;
  1984. err = pagecache_write_begin(file, mapping, curpos, len,
  1985. AOP_FLAG_UNINTERRUPTIBLE,
  1986. &page, &fsdata);
  1987. if (err)
  1988. goto out;
  1989. zero_user(page, zerofrom, len);
  1990. err = pagecache_write_end(file, mapping, curpos, len, len,
  1991. page, fsdata);
  1992. if (err < 0)
  1993. goto out;
  1994. BUG_ON(err != len);
  1995. err = 0;
  1996. balance_dirty_pages_ratelimited(mapping);
  1997. }
  1998. /* page covers the boundary, find the boundary offset */
  1999. if (index == curidx) {
  2000. zerofrom = curpos & ~PAGE_CACHE_MASK;
  2001. /* if we will expand the thing last block will be filled */
  2002. if (offset <= zerofrom) {
  2003. goto out;
  2004. }
  2005. if (zerofrom & (blocksize-1)) {
  2006. *bytes |= (blocksize-1);
  2007. (*bytes)++;
  2008. }
  2009. len = offset - zerofrom;
  2010. err = pagecache_write_begin(file, mapping, curpos, len,
  2011. AOP_FLAG_UNINTERRUPTIBLE,
  2012. &page, &fsdata);
  2013. if (err)
  2014. goto out;
  2015. zero_user(page, zerofrom, len);
  2016. err = pagecache_write_end(file, mapping, curpos, len, len,
  2017. page, fsdata);
  2018. if (err < 0)
  2019. goto out;
  2020. BUG_ON(err != len);
  2021. err = 0;
  2022. }
  2023. out:
  2024. return err;
  2025. }
  2026. /*
  2027. * For moronic filesystems that do not allow holes in file.
  2028. * We may have to extend the file.
  2029. */
  2030. int cont_write_begin(struct file *file, struct address_space *mapping,
  2031. loff_t pos, unsigned len, unsigned flags,
  2032. struct page **pagep, void **fsdata,
  2033. get_block_t *get_block, loff_t *bytes)
  2034. {
  2035. struct inode *inode = mapping->host;
  2036. unsigned blocksize = 1 << inode->i_blkbits;
  2037. unsigned zerofrom;
  2038. int err;
  2039. err = cont_expand_zero(file, mapping, pos, bytes);
  2040. if (err)
  2041. return err;
  2042. zerofrom = *bytes & ~PAGE_CACHE_MASK;
  2043. if (pos+len > *bytes && zerofrom & (blocksize-1)) {
  2044. *bytes |= (blocksize-1);
  2045. (*bytes)++;
  2046. }
  2047. return block_write_begin(mapping, pos, len, flags, pagep, get_block);
  2048. }
  2049. EXPORT_SYMBOL(cont_write_begin);
  2050. int block_commit_write(struct page *page, unsigned from, unsigned to)
  2051. {
  2052. struct inode *inode = page->mapping->host;
  2053. __block_commit_write(inode,page,from,to);
  2054. return 0;
  2055. }
  2056. EXPORT_SYMBOL(block_commit_write);
  2057. /*
  2058. * block_page_mkwrite() is not allowed to change the file size as it gets
  2059. * called from a page fault handler when a page is first dirtied. Hence we must
  2060. * be careful to check for EOF conditions here. We set the page up correctly
  2061. * for a written page which means we get ENOSPC checking when writing into
  2062. * holes and correct delalloc and unwritten extent mapping on filesystems that
  2063. * support these features.
  2064. *
  2065. * We are not allowed to take the i_mutex here so we have to play games to
  2066. * protect against truncate races as the page could now be beyond EOF. Because
  2067. * truncate writes the inode size before removing pages, once we have the
  2068. * page lock we can determine safely if the page is beyond EOF. If it is not
  2069. * beyond EOF, then the page is guaranteed safe against truncation until we
  2070. * unlock the page.
  2071. *
  2072. * Direct callers of this function should call vfs_check_frozen() so that page
  2073. * fault does not busyloop until the fs is thawed.
  2074. */
  2075. int __block_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf,
  2076. get_block_t get_block)
  2077. {
  2078. struct page *page = vmf->page;
  2079. struct inode *inode = vma->vm_file->f_path.dentry->d_inode;
  2080. unsigned long end;
  2081. loff_t size;
  2082. int ret;
  2083. lock_page(page);
  2084. size = i_size_read(inode);
  2085. if ((page->mapping != inode->i_mapping) ||
  2086. (page_offset(page) > size)) {
  2087. /* We overload EFAULT to mean page got truncated */
  2088. ret = -EFAULT;
  2089. goto out_unlock;
  2090. }
  2091. /* page is wholly or partially inside EOF */
  2092. if (((page->index + 1) << PAGE_CACHE_SHIFT) > size)
  2093. end = size & ~PAGE_CACHE_MASK;
  2094. else
  2095. end = PAGE_CACHE_SIZE;
  2096. ret = __block_write_begin(page, 0, end, get_block);
  2097. if (!ret)
  2098. ret = block_commit_write(page, 0, end);
  2099. if (unlikely(ret < 0))
  2100. goto out_unlock;
  2101. /*
  2102. * Freezing in progress? We check after the page is marked dirty and
  2103. * with page lock held so if the test here fails, we are sure freezing
  2104. * code will wait during syncing until the page fault is done - at that
  2105. * point page will be dirty and unlocked so freezing code will write it
  2106. * and writeprotect it again.
  2107. */
  2108. set_page_dirty(page);
  2109. if (inode->i_sb->s_frozen != SB_UNFROZEN) {
  2110. ret = -EAGAIN;
  2111. goto out_unlock;
  2112. }
  2113. wait_on_page_writeback(page);
  2114. return 0;
  2115. out_unlock:
  2116. unlock_page(page);
  2117. return ret;
  2118. }
  2119. EXPORT_SYMBOL(__block_page_mkwrite);
  2120. int block_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf,
  2121. get_block_t get_block)
  2122. {
  2123. int ret;
  2124. struct super_block *sb = vma->vm_file->f_path.dentry->d_inode->i_sb;
  2125. /*
  2126. * This check is racy but catches the common case. The check in
  2127. * __block_page_mkwrite() is reliable.
  2128. */
  2129. vfs_check_frozen(sb, SB_FREEZE_WRITE);
  2130. ret = __block_page_mkwrite(vma, vmf, get_block);
  2131. return block_page_mkwrite_return(ret);
  2132. }
  2133. EXPORT_SYMBOL(block_page_mkwrite);
  2134. /*
  2135. * nobh_write_begin()'s prereads are special: the buffer_heads are freed
  2136. * immediately, while under the page lock. So it needs a special end_io
  2137. * handler which does not touch the bh after unlocking it.
  2138. */
  2139. static void end_buffer_read_nobh(struct buffer_head *bh, int uptodate)
  2140. {
  2141. __end_buffer_read_notouch(bh, uptodate);
  2142. }
  2143. /*
  2144. * Attach the singly-linked list of buffers created by nobh_write_begin, to
  2145. * the page (converting it to circular linked list and taking care of page
  2146. * dirty races).
  2147. */
  2148. static void attach_nobh_buffers(struct page *page, struct buffer_head *head)
  2149. {
  2150. struct buffer_head *bh;
  2151. BUG_ON(!PageLocked(page));
  2152. spin_lock(&page->mapping->private_lock);
  2153. bh = head;
  2154. do {
  2155. if (PageDirty(page))
  2156. set_buffer_dirty(bh);
  2157. if (!bh->b_this_page)
  2158. bh->b_this_page = head;
  2159. bh = bh->b_this_page;
  2160. } while (bh != head);
  2161. attach_page_buffers(page, head);
  2162. spin_unlock(&page->mapping->private_lock);
  2163. }
  2164. /*
  2165. * On entry, the page is fully not uptodate.
  2166. * On exit the page is fully uptodate in the areas outside (from,to)
  2167. * The filesystem needs to handle block truncation upon failure.
  2168. */
  2169. int nobh_write_begin(struct address_space *mapping,
  2170. loff_t pos, unsigned len, unsigned flags,
  2171. struct page **pagep, void **fsdata,
  2172. get_block_t *get_block)
  2173. {
  2174. struct inode *inode = mapping->host;
  2175. const unsigned blkbits = inode->i_blkbits;
  2176. const unsigned blocksize = 1 << blkbits;
  2177. struct buffer_head *head, *bh;
  2178. struct page *page;
  2179. pgoff_t index;
  2180. unsigned from, to;
  2181. unsigned block_in_page;
  2182. unsigned block_start, block_end;
  2183. sector_t block_in_file;
  2184. int nr_reads = 0;
  2185. int ret = 0;
  2186. int is_mapped_to_disk = 1;
  2187. index = pos >> PAGE_CACHE_SHIFT;
  2188. from = pos & (PAGE_CACHE_SIZE - 1);
  2189. to = from + len;
  2190. page = grab_cache_page_write_begin(mapping, index, flags);
  2191. if (!page)
  2192. return -ENOMEM;
  2193. *pagep = page;
  2194. *fsdata = NULL;
  2195. if (page_has_buffers(page)) {
  2196. ret = __block_write_begin(page, pos, len, get_block);
  2197. if (unlikely(ret))
  2198. goto out_release;
  2199. return ret;
  2200. }
  2201. if (PageMappedToDisk(page))
  2202. return 0;
  2203. /*
  2204. * Allocate buffers so that we can keep track of state, and potentially
  2205. * attach them to the page if an error occurs. In the common case of
  2206. * no error, they will just be freed again without ever being attached
  2207. * to the page (which is all OK, because we're under the page lock).
  2208. *
  2209. * Be careful: the buffer linked list is a NULL terminated one, rather
  2210. * than the circular one we're used to.
  2211. */
  2212. head = alloc_page_buffers(page, blocksize, 0);
  2213. if (!head) {
  2214. ret = -ENOMEM;
  2215. goto out_release;
  2216. }
  2217. block_in_file = (sector_t)page->index << (PAGE_CACHE_SHIFT - blkbits);
  2218. /*
  2219. * We loop across all blocks in the page, whether or not they are
  2220. * part of the affected region. This is so we can discover if the
  2221. * page is fully mapped-to-disk.
  2222. */
  2223. for (block_start = 0, block_in_page = 0, bh = head;
  2224. block_start < PAGE_CACHE_SIZE;
  2225. block_in_page++, block_start += blocksize, bh = bh->b_this_page) {
  2226. int create;
  2227. block_end = block_start + blocksize;
  2228. bh->b_state = 0;
  2229. create = 1;
  2230. if (block_start >= to)
  2231. create = 0;
  2232. ret = get_block(inode, block_in_file + block_in_page,
  2233. bh, create);
  2234. if (ret)
  2235. goto failed;
  2236. if (!buffer_mapped(bh))
  2237. is_mapped_to_disk = 0;
  2238. if (buffer_new(bh))
  2239. unmap_underlying_metadata(bh->b_bdev, bh->b_blocknr);
  2240. if (PageUptodate(page)) {
  2241. set_buffer_uptodate(bh);
  2242. continue;
  2243. }
  2244. if (buffer_new(bh) || !buffer_mapped(bh)) {
  2245. zero_user_segments(page, block_start, from,
  2246. to, block_end);
  2247. continue;
  2248. }
  2249. if (buffer_uptodate(bh))
  2250. continue; /* reiserfs does this */
  2251. if (block_start < from || block_end > to) {
  2252. lock_buffer(bh);
  2253. bh->b_end_io = end_buffer_read_nobh;
  2254. submit_bh(READ, bh);
  2255. nr_reads++;
  2256. }
  2257. }
  2258. if (nr_reads) {
  2259. /*
  2260. * The page is locked, so these buffers are protected from
  2261. * any VM or truncate activity. Hence we don't need to care
  2262. * for the buffer_head refcounts.
  2263. */
  2264. for (bh = head; bh; bh = bh->b_this_page) {
  2265. wait_on_buffer(bh);
  2266. if (!buffer_uptodate(bh))
  2267. ret = -EIO;
  2268. }
  2269. if (ret)
  2270. goto failed;
  2271. }
  2272. if (is_mapped_to_disk)
  2273. SetPageMappedToDisk(page);
  2274. *fsdata = head; /* to be released by nobh_write_end */
  2275. return 0;
  2276. failed:
  2277. BUG_ON(!ret);
  2278. /*
  2279. * Error recovery is a bit difficult. We need to zero out blocks that
  2280. * were newly allocated, and dirty them to ensure they get written out.
  2281. * Buffers need to be attached to the page at this point, otherwise
  2282. * the handling of potential IO errors during writeout would be hard
  2283. * (could try doing synchronous writeout, but what if that fails too?)
  2284. */
  2285. attach_nobh_buffers(page, head);
  2286. page_zero_new_buffers(page, from, to);
  2287. out_release:
  2288. unlock_page(page);
  2289. page_cache_release(page);
  2290. *pagep = NULL;
  2291. return ret;
  2292. }
  2293. EXPORT_SYMBOL(nobh_write_begin);
  2294. int nobh_write_end(struct file *file, struct address_space *mapping,
  2295. loff_t pos, unsigned len, unsigned copied,
  2296. struct page *page, void *fsdata)
  2297. {
  2298. struct inode *inode = page->mapping->host;
  2299. struct buffer_head *head = fsdata;
  2300. struct buffer_head *bh;
  2301. BUG_ON(fsdata != NULL && page_has_buffers(page));
  2302. if (unlikely(copied < len) && head)
  2303. attach_nobh_buffers(page, head);
  2304. if (page_has_buffers(page))
  2305. return generic_write_end(file, mapping, pos, len,
  2306. copied, page, fsdata);
  2307. SetPageUptodate(page);
  2308. set_page_dirty(page);
  2309. if (pos+copied > inode->i_size) {
  2310. i_size_write(inode, pos+copied);
  2311. mark_inode_dirty(inode);
  2312. }
  2313. unlock_page(page);
  2314. page_cache_release(page);
  2315. while (head) {
  2316. bh = head;
  2317. head = head->b_this_page;
  2318. free_buffer_head(bh);
  2319. }
  2320. return copied;
  2321. }
  2322. EXPORT_SYMBOL(nobh_write_end);
  2323. /*
  2324. * nobh_writepage() - based on block_full_write_page() except
  2325. * that it tries to operate without attaching bufferheads to
  2326. * the page.
  2327. */
  2328. int nobh_writepage(struct page *page, get_block_t *get_block,
  2329. struct writeback_control *wbc)
  2330. {
  2331. struct inode * const inode = page->mapping->host;
  2332. loff_t i_size = i_size_read(inode);
  2333. const pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT;
  2334. unsigned offset;
  2335. int ret;
  2336. /* Is the page fully inside i_size? */
  2337. if (page->index < end_index)
  2338. goto out;
  2339. /* Is the page fully outside i_size? (truncate in progress) */
  2340. offset = i_size & (PAGE_CACHE_SIZE-1);
  2341. if (page->index >= end_index+1 || !offset) {
  2342. /*
  2343. * The page may have dirty, unmapped buffers. For example,
  2344. * they may have been added in ext3_writepage(). Make them
  2345. * freeable here, so the page does not leak.
  2346. */
  2347. #if 0
  2348. /* Not really sure about this - do we need this ? */
  2349. if (page->mapping->a_ops->invalidatepage)
  2350. page->mapping->a_ops->invalidatepage(page, offset);
  2351. #endif
  2352. unlock_page(page);
  2353. return 0; /* don't care */
  2354. }
  2355. /*
  2356. * The page straddles i_size. It must be zeroed out on each and every
  2357. * writepage invocation because it may be mmapped. "A file is mapped
  2358. * in multiples of the page size. For a file that is not a multiple of
  2359. * the page size, the remaining memory is zeroed when mapped, and
  2360. * writes to that region are not written out to the file."
  2361. */
  2362. zero_user_segment(page, offset, PAGE_CACHE_SIZE);
  2363. out:
  2364. ret = mpage_writepage(page, get_block, wbc);
  2365. if (ret == -EAGAIN)
  2366. ret = __block_write_full_page(inode, page, get_block, wbc,
  2367. end_buffer_async_write);
  2368. return ret;
  2369. }
  2370. EXPORT_SYMBOL(nobh_writepage);
  2371. int nobh_truncate_page(struct address_space *mapping,
  2372. loff_t from, get_block_t *get_block)
  2373. {
  2374. pgoff_t index = from >> PAGE_CACHE_SHIFT;
  2375. unsigned offset = from & (PAGE_CACHE_SIZE-1);
  2376. unsigned blocksize;
  2377. sector_t iblock;
  2378. unsigned length, pos;
  2379. struct inode *inode = mapping->host;
  2380. struct page *page;
  2381. struct buffer_head map_bh;
  2382. int err;
  2383. blocksize = 1 << inode->i_blkbits;
  2384. length = offset & (blocksize - 1);
  2385. /* Block boundary? Nothing to do */
  2386. if (!length)
  2387. return 0;
  2388. length = blocksize - length;
  2389. iblock = (sector_t)index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
  2390. page = grab_cache_page(mapping, index);
  2391. err = -ENOMEM;
  2392. if (!page)
  2393. goto out;
  2394. if (page_has_buffers(page)) {
  2395. has_buffers:
  2396. unlock_page(page);
  2397. page_cache_release(page);
  2398. return block_truncate_page(mapping, from, get_block);
  2399. }
  2400. /* Find the buffer that contains "offset" */
  2401. pos = blocksize;
  2402. while (offset >= pos) {
  2403. iblock++;
  2404. pos += blocksize;
  2405. }
  2406. map_bh.b_size = blocksize;
  2407. map_bh.b_state = 0;
  2408. err = get_block(inode, iblock, &map_bh, 0);
  2409. if (err)
  2410. goto unlock;
  2411. /* unmapped? It's a hole - nothing to do */
  2412. if (!buffer_mapped(&map_bh))
  2413. goto unlock;
  2414. /* Ok, it's mapped. Make sure it's up-to-date */
  2415. if (!PageUptodate(page)) {
  2416. err = mapping->a_ops->readpage(NULL, page);
  2417. if (err) {
  2418. page_cache_release(page);
  2419. goto out;
  2420. }
  2421. lock_page(page);
  2422. if (!PageUptodate(page)) {
  2423. err = -EIO;
  2424. goto unlock;
  2425. }
  2426. if (page_has_buffers(page))
  2427. goto has_buffers;
  2428. }
  2429. zero_user(page, offset, length);
  2430. set_page_dirty(page);
  2431. err = 0;
  2432. unlock:
  2433. unlock_page(page);
  2434. page_cache_release(page);
  2435. out:
  2436. return err;
  2437. }
  2438. EXPORT_SYMBOL(nobh_truncate_page);
  2439. int block_truncate_page(struct address_space *mapping,
  2440. loff_t from, get_block_t *get_block)
  2441. {
  2442. pgoff_t index = from >> PAGE_CACHE_SHIFT;
  2443. unsigned offset = from & (PAGE_CACHE_SIZE-1);
  2444. unsigned blocksize;
  2445. sector_t iblock;
  2446. unsigned length, pos;
  2447. struct inode *inode = mapping->host;
  2448. struct page *page;
  2449. struct buffer_head *bh;
  2450. int err;
  2451. blocksize = 1 << inode->i_blkbits;
  2452. length = offset & (blocksize - 1);
  2453. /* Block boundary? Nothing to do */
  2454. if (!length)
  2455. return 0;
  2456. length = blocksize - length;
  2457. iblock = (sector_t)index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
  2458. page = grab_cache_page(mapping, index);
  2459. err = -ENOMEM;
  2460. if (!page)
  2461. goto out;
  2462. if (!page_has_buffers(page))
  2463. create_empty_buffers(page, blocksize, 0);
  2464. /* Find the buffer that contains "offset" */
  2465. bh = page_buffers(page);
  2466. pos = blocksize;
  2467. while (offset >= pos) {
  2468. bh = bh->b_this_page;
  2469. iblock++;
  2470. pos += blocksize;
  2471. }
  2472. err = 0;
  2473. if (!buffer_mapped(bh)) {
  2474. WARN_ON(bh->b_size != blocksize);
  2475. err = get_block(inode, iblock, bh, 0);
  2476. if (err)
  2477. goto unlock;
  2478. /* unmapped? It's a hole - nothing to do */
  2479. if (!buffer_mapped(bh))
  2480. goto unlock;
  2481. }
  2482. /* Ok, it's mapped. Make sure it's up-to-date */
  2483. if (PageUptodate(page))
  2484. set_buffer_uptodate(bh);
  2485. if (!buffer_uptodate(bh) && !buffer_delay(bh) && !buffer_unwritten(bh)) {
  2486. err = -EIO;
  2487. ll_rw_block(READ, 1, &bh);
  2488. wait_on_buffer(bh);
  2489. /* Uhhuh. Read error. Complain and punt. */
  2490. if (!buffer_uptodate(bh))
  2491. goto unlock;
  2492. }
  2493. zero_user(page, offset, length);
  2494. mark_buffer_dirty(bh);
  2495. err = 0;
  2496. unlock:
  2497. unlock_page(page);
  2498. page_cache_release(page);
  2499. out:
  2500. return err;
  2501. }
  2502. EXPORT_SYMBOL(block_truncate_page);
  2503. /*
  2504. * The generic ->writepage function for buffer-backed address_spaces
  2505. * this form passes in the end_io handler used to finish the IO.
  2506. */
  2507. int block_write_full_page_endio(struct page *page, get_block_t *get_block,
  2508. struct writeback_control *wbc, bh_end_io_t *handler)
  2509. {
  2510. struct inode * const inode = page->mapping->host;
  2511. loff_t i_size = i_size_read(inode);
  2512. const pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT;
  2513. unsigned offset;
  2514. /* Is the page fully inside i_size? */
  2515. if (page->index < end_index)
  2516. return __block_write_full_page(inode, page, get_block, wbc,
  2517. handler);
  2518. /* Is the page fully outside i_size? (truncate in progress) */
  2519. offset = i_size & (PAGE_CACHE_SIZE-1);
  2520. if (page->index >= end_index+1 || !offset) {
  2521. /*
  2522. * The page may have dirty, unmapped buffers. For example,
  2523. * they may have been added in ext3_writepage(). Make them
  2524. * freeable here, so the page does not leak.
  2525. */
  2526. do_invalidatepage(page, 0);
  2527. unlock_page(page);
  2528. return 0; /* don't care */
  2529. }
  2530. /*
  2531. * The page straddles i_size. It must be zeroed out on each and every
  2532. * writepage invocation because it may be mmapped. "A file is mapped
  2533. * in multiples of the page size. For a file that is not a multiple of
  2534. * the page size, the remaining memory is zeroed when mapped, and
  2535. * writes to that region are not written out to the file."
  2536. */
  2537. zero_user_segment(page, offset, PAGE_CACHE_SIZE);
  2538. return __block_write_full_page(inode, page, get_block, wbc, handler);
  2539. }
  2540. EXPORT_SYMBOL(block_write_full_page_endio);
  2541. /*
  2542. * The generic ->writepage function for buffer-backed address_spaces
  2543. */
  2544. int block_write_full_page(struct page *page, get_block_t *get_block,
  2545. struct writeback_control *wbc)
  2546. {
  2547. return block_write_full_page_endio(page, get_block, wbc,
  2548. end_buffer_async_write);
  2549. }
  2550. EXPORT_SYMBOL(block_write_full_page);
  2551. sector_t generic_block_bmap(struct address_space *mapping, sector_t block,
  2552. get_block_t *get_block)
  2553. {
  2554. struct buffer_head tmp;
  2555. struct inode *inode = mapping->host;
  2556. tmp.b_state = 0;
  2557. tmp.b_blocknr = 0;
  2558. tmp.b_size = 1 << inode->i_blkbits;
  2559. get_block(inode, block, &tmp, 0);
  2560. return tmp.b_blocknr;
  2561. }
  2562. EXPORT_SYMBOL(generic_block_bmap);
  2563. static void end_bio_bh_io_sync(struct bio *bio, int err)
  2564. {
  2565. struct buffer_head *bh = bio->bi_private;
  2566. if (err == -EOPNOTSUPP) {
  2567. set_bit(BIO_EOPNOTSUPP, &bio->bi_flags);
  2568. }
  2569. if (unlikely (test_bit(BIO_QUIET,&bio->bi_flags)))
  2570. set_bit(BH_Quiet, &bh->b_state);
  2571. bh->b_end_io(bh, test_bit(BIO_UPTODATE, &bio->bi_flags));
  2572. bio_put(bio);
  2573. }
  2574. int submit_bh(int rw, struct buffer_head * bh)
  2575. {
  2576. struct bio *bio;
  2577. int ret = 0;
  2578. BUG_ON(!buffer_locked(bh));
  2579. BUG_ON(!buffer_mapped(bh));
  2580. BUG_ON(!bh->b_end_io);
  2581. BUG_ON(buffer_delay(bh));
  2582. BUG_ON(buffer_unwritten(bh));
  2583. /*
  2584. * Only clear out a write error when rewriting
  2585. */
  2586. if (test_set_buffer_req(bh) && (rw & WRITE))
  2587. clear_buffer_write_io_error(bh);
  2588. /*
  2589. * from here on down, it's all bio -- do the initial mapping,
  2590. * submit_bio -> generic_make_request may further map this bio around
  2591. */
  2592. bio = bio_alloc(GFP_NOIO, 1);
  2593. bio->bi_sector = bh->b_blocknr * (bh->b_size >> 9);
  2594. bio->bi_bdev = bh->b_bdev;
  2595. bio->bi_io_vec[0].bv_page = bh->b_page;
  2596. bio->bi_io_vec[0].bv_len = bh->b_size;
  2597. bio->bi_io_vec[0].bv_offset = bh_offset(bh);
  2598. bio->bi_vcnt = 1;
  2599. bio->bi_idx = 0;
  2600. bio->bi_size = bh->b_size;
  2601. bio->bi_end_io = end_bio_bh_io_sync;
  2602. bio->bi_private = bh;
  2603. bio_get(bio);
  2604. submit_bio(rw, bio);
  2605. if (bio_flagged(bio, BIO_EOPNOTSUPP))
  2606. ret = -EOPNOTSUPP;
  2607. bio_put(bio);
  2608. return ret;
  2609. }
  2610. EXPORT_SYMBOL(submit_bh);
  2611. /**
  2612. * ll_rw_block: low-level access to block devices (DEPRECATED)
  2613. * @rw: whether to %READ or %WRITE or maybe %READA (readahead)
  2614. * @nr: number of &struct buffer_heads in the array
  2615. * @bhs: array of pointers to &struct buffer_head
  2616. *
  2617. * ll_rw_block() takes an array of pointers to &struct buffer_heads, and
  2618. * requests an I/O operation on them, either a %READ or a %WRITE. The third
  2619. * %READA option is described in the documentation for generic_make_request()
  2620. * which ll_rw_block() calls.
  2621. *
  2622. * This function drops any buffer that it cannot get a lock on (with the
  2623. * BH_Lock state bit), any buffer that appears to be clean when doing a write
  2624. * request, and any buffer that appears to be up-to-date when doing read
  2625. * request. Further it marks as clean buffers that are processed for
  2626. * writing (the buffer cache won't assume that they are actually clean
  2627. * until the buffer gets unlocked).
  2628. *
  2629. * ll_rw_block sets b_end_io to simple completion handler that marks
  2630. * the buffer up-to-date (if approriate), unlocks the buffer and wakes
  2631. * any waiters.
  2632. *
  2633. * All of the buffers must be for the same device, and must also be a
  2634. * multiple of the current approved size for the device.
  2635. */
  2636. void ll_rw_block(int rw, int nr, struct buffer_head *bhs[])
  2637. {
  2638. int i;
  2639. for (i = 0; i < nr; i++) {
  2640. struct buffer_head *bh = bhs[i];
  2641. if (!trylock_buffer(bh))
  2642. continue;
  2643. if (rw == WRITE) {
  2644. if (test_clear_buffer_dirty(bh)) {
  2645. bh->b_end_io = end_buffer_write_sync;
  2646. get_bh(bh);
  2647. submit_bh(WRITE, bh);
  2648. continue;
  2649. }
  2650. } else {
  2651. if (!buffer_uptodate(bh)) {
  2652. bh->b_end_io = end_buffer_read_sync;
  2653. get_bh(bh);
  2654. submit_bh(rw, bh);
  2655. continue;
  2656. }
  2657. }
  2658. unlock_buffer(bh);
  2659. }
  2660. }
  2661. EXPORT_SYMBOL(ll_rw_block);
  2662. void write_dirty_buffer(struct buffer_head *bh, int rw)
  2663. {
  2664. lock_buffer(bh);
  2665. if (!test_clear_buffer_dirty(bh)) {
  2666. unlock_buffer(bh);
  2667. return;
  2668. }
  2669. bh->b_end_io = end_buffer_write_sync;
  2670. get_bh(bh);
  2671. submit_bh(rw, bh);
  2672. }
  2673. EXPORT_SYMBOL(write_dirty_buffer);
  2674. /*
  2675. * For a data-integrity writeout, we need to wait upon any in-progress I/O
  2676. * and then start new I/O and then wait upon it. The caller must have a ref on
  2677. * the buffer_head.
  2678. */
  2679. int __sync_dirty_buffer(struct buffer_head *bh, int rw)
  2680. {
  2681. int ret = 0;
  2682. WARN_ON(atomic_read(&bh->b_count) < 1);
  2683. lock_buffer(bh);
  2684. if (test_clear_buffer_dirty(bh)) {
  2685. get_bh(bh);
  2686. bh->b_end_io = end_buffer_write_sync;
  2687. ret = submit_bh(rw, bh);
  2688. wait_on_buffer(bh);
  2689. if (!ret && !buffer_uptodate(bh))
  2690. ret = -EIO;
  2691. } else {
  2692. unlock_buffer(bh);
  2693. }
  2694. return ret;
  2695. }
  2696. EXPORT_SYMBOL(__sync_dirty_buffer);
  2697. int sync_dirty_buffer(struct buffer_head *bh)
  2698. {
  2699. return __sync_dirty_buffer(bh, WRITE_SYNC);
  2700. }
  2701. EXPORT_SYMBOL(sync_dirty_buffer);
  2702. /*
  2703. * try_to_free_buffers() checks if all the buffers on this particular page
  2704. * are unused, and releases them if so.
  2705. *
  2706. * Exclusion against try_to_free_buffers may be obtained by either
  2707. * locking the page or by holding its mapping's private_lock.
  2708. *
  2709. * If the page is dirty but all the buffers are clean then we need to
  2710. * be sure to mark the page clean as well. This is because the page
  2711. * may be against a block device, and a later reattachment of buffers
  2712. * to a dirty page will set *all* buffers dirty. Which would corrupt
  2713. * filesystem data on the same device.
  2714. *
  2715. * The same applies to regular filesystem pages: if all the buffers are
  2716. * clean then we set the page clean and proceed. To do that, we require
  2717. * total exclusion from __set_page_dirty_buffers(). That is obtained with
  2718. * private_lock.
  2719. *
  2720. * try_to_free_buffers() is non-blocking.
  2721. */
  2722. static inline int buffer_busy(struct buffer_head *bh)
  2723. {
  2724. return atomic_read(&bh->b_count) |
  2725. (bh->b_state & ((1 << BH_Dirty) | (1 << BH_Lock)));
  2726. }
  2727. static int
  2728. drop_buffers(struct page *page, struct buffer_head **buffers_to_free)
  2729. {
  2730. struct buffer_head *head = page_buffers(page);
  2731. struct buffer_head *bh;
  2732. bh = head;
  2733. do {
  2734. if (buffer_write_io_error(bh) && page->mapping)
  2735. set_bit(AS_EIO, &page->mapping->flags);
  2736. if (buffer_busy(bh))
  2737. goto failed;
  2738. bh = bh->b_this_page;
  2739. } while (bh != head);
  2740. do {
  2741. struct buffer_head *next = bh->b_this_page;
  2742. if (bh->b_assoc_map)
  2743. __remove_assoc_queue(bh);
  2744. bh = next;
  2745. } while (bh != head);
  2746. *buffers_to_free = head;
  2747. __clear_page_buffers(page);
  2748. return 1;
  2749. failed:
  2750. return 0;
  2751. }
  2752. int try_to_free_buffers(struct page *page)
  2753. {
  2754. struct address_space * const mapping = page->mapping;
  2755. struct buffer_head *buffers_to_free = NULL;
  2756. int ret = 0;
  2757. BUG_ON(!PageLocked(page));
  2758. if (PageWriteback(page))
  2759. return 0;
  2760. if (mapping == NULL) { /* can this still happen? */
  2761. ret = drop_buffers(page, &buffers_to_free);
  2762. goto out;
  2763. }
  2764. spin_lock(&mapping->private_lock);
  2765. ret = drop_buffers(page, &buffers_to_free);
  2766. /*
  2767. * If the filesystem writes its buffers by hand (eg ext3)
  2768. * then we can have clean buffers against a dirty page. We
  2769. * clean the page here; otherwise the VM will never notice
  2770. * that the filesystem did any IO at all.
  2771. *
  2772. * Also, during truncate, discard_buffer will have marked all
  2773. * the page's buffers clean. We discover that here and clean
  2774. * the page also.
  2775. *
  2776. * private_lock must be held over this entire operation in order
  2777. * to synchronise against __set_page_dirty_buffers and prevent the
  2778. * dirty bit from being lost.
  2779. */
  2780. if (ret)
  2781. cancel_dirty_page(page, PAGE_CACHE_SIZE);
  2782. spin_unlock(&mapping->private_lock);
  2783. out:
  2784. if (buffers_to_free) {
  2785. struct buffer_head *bh = buffers_to_free;
  2786. do {
  2787. struct buffer_head *next = bh->b_this_page;
  2788. free_buffer_head(bh);
  2789. bh = next;
  2790. } while (bh != buffers_to_free);
  2791. }
  2792. return ret;
  2793. }
  2794. EXPORT_SYMBOL(try_to_free_buffers);
  2795. /*
  2796. * There are no bdflush tunables left. But distributions are
  2797. * still running obsolete flush daemons, so we terminate them here.
  2798. *
  2799. * Use of bdflush() is deprecated and will be removed in a future kernel.
  2800. * The `flush-X' kernel threads fully replace bdflush daemons and this call.
  2801. */
  2802. SYSCALL_DEFINE2(bdflush, int, func, long, data)
  2803. {
  2804. static int msg_count;
  2805. if (!capable(CAP_SYS_ADMIN))
  2806. return -EPERM;
  2807. if (msg_count < 5) {
  2808. msg_count++;
  2809. printk(KERN_INFO
  2810. "warning: process `%s' used the obsolete bdflush"
  2811. " system call\n", current->comm);
  2812. printk(KERN_INFO "Fix your initscripts?\n");
  2813. }
  2814. if (func == 1)
  2815. do_exit(0);
  2816. return 0;
  2817. }
  2818. /*
  2819. * Buffer-head allocation
  2820. */
  2821. static struct kmem_cache *bh_cachep;
  2822. /*
  2823. * Once the number of bh's in the machine exceeds this level, we start
  2824. * stripping them in writeback.
  2825. */
  2826. static int max_buffer_heads;
  2827. int buffer_heads_over_limit;
  2828. struct bh_accounting {
  2829. int nr; /* Number of live bh's */
  2830. int ratelimit; /* Limit cacheline bouncing */
  2831. };
  2832. static DEFINE_PER_CPU(struct bh_accounting, bh_accounting) = {0, 0};
  2833. static void recalc_bh_state(void)
  2834. {
  2835. int i;
  2836. int tot = 0;
  2837. if (__this_cpu_inc_return(bh_accounting.ratelimit) - 1 < 4096)
  2838. return;
  2839. __this_cpu_write(bh_accounting.ratelimit, 0);
  2840. for_each_online_cpu(i)
  2841. tot += per_cpu(bh_accounting, i).nr;
  2842. buffer_heads_over_limit = (tot > max_buffer_heads);
  2843. }
  2844. struct buffer_head *alloc_buffer_head(gfp_t gfp_flags)
  2845. {
  2846. struct buffer_head *ret = kmem_cache_zalloc(bh_cachep, gfp_flags);
  2847. if (ret) {
  2848. INIT_LIST_HEAD(&ret->b_assoc_buffers);
  2849. preempt_disable();
  2850. __this_cpu_inc(bh_accounting.nr);
  2851. recalc_bh_state();
  2852. preempt_enable();
  2853. }
  2854. return ret;
  2855. }
  2856. EXPORT_SYMBOL(alloc_buffer_head);
  2857. void free_buffer_head(struct buffer_head *bh)
  2858. {
  2859. BUG_ON(!list_empty(&bh->b_assoc_buffers));
  2860. kmem_cache_free(bh_cachep, bh);
  2861. preempt_disable();
  2862. __this_cpu_dec(bh_accounting.nr);
  2863. recalc_bh_state();
  2864. preempt_enable();
  2865. }
  2866. EXPORT_SYMBOL(free_buffer_head);
  2867. static void buffer_exit_cpu(int cpu)
  2868. {
  2869. int i;
  2870. struct bh_lru *b = &per_cpu(bh_lrus, cpu);
  2871. for (i = 0; i < BH_LRU_SIZE; i++) {
  2872. brelse(b->bhs[i]);
  2873. b->bhs[i] = NULL;
  2874. }
  2875. this_cpu_add(bh_accounting.nr, per_cpu(bh_accounting, cpu).nr);
  2876. per_cpu(bh_accounting, cpu).nr = 0;
  2877. }
  2878. static int buffer_cpu_notify(struct notifier_block *self,
  2879. unsigned long action, void *hcpu)
  2880. {
  2881. if (action == CPU_DEAD || action == CPU_DEAD_FROZEN)
  2882. buffer_exit_cpu((unsigned long)hcpu);
  2883. return NOTIFY_OK;
  2884. }
  2885. /**
  2886. * bh_uptodate_or_lock - Test whether the buffer is uptodate
  2887. * @bh: struct buffer_head
  2888. *
  2889. * Return true if the buffer is up-to-date and false,
  2890. * with the buffer locked, if not.
  2891. */
  2892. int bh_uptodate_or_lock(struct buffer_head *bh)
  2893. {
  2894. if (!buffer_uptodate(bh)) {
  2895. lock_buffer(bh);
  2896. if (!buffer_uptodate(bh))
  2897. return 0;
  2898. unlock_buffer(bh);
  2899. }
  2900. return 1;
  2901. }
  2902. EXPORT_SYMBOL(bh_uptodate_or_lock);
  2903. /**
  2904. * bh_submit_read - Submit a locked buffer for reading
  2905. * @bh: struct buffer_head
  2906. *
  2907. * Returns zero on success and -EIO on error.
  2908. */
  2909. int bh_submit_read(struct buffer_head *bh)
  2910. {
  2911. BUG_ON(!buffer_locked(bh));
  2912. if (buffer_uptodate(bh)) {
  2913. unlock_buffer(bh);
  2914. return 0;
  2915. }
  2916. get_bh(bh);
  2917. bh->b_end_io = end_buffer_read_sync;
  2918. submit_bh(READ, bh);
  2919. wait_on_buffer(bh);
  2920. if (buffer_uptodate(bh))
  2921. return 0;
  2922. return -EIO;
  2923. }
  2924. EXPORT_SYMBOL(bh_submit_read);
  2925. void __init buffer_init(void)
  2926. {
  2927. int nrpages;
  2928. bh_cachep = kmem_cache_create("buffer_head",
  2929. sizeof(struct buffer_head), 0,
  2930. (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|
  2931. SLAB_MEM_SPREAD),
  2932. NULL);
  2933. /*
  2934. * Limit the bh occupancy to 10% of ZONE_NORMAL
  2935. */
  2936. nrpages = (nr_free_buffer_pages() * 10) / 100;
  2937. max_buffer_heads = nrpages * (PAGE_SIZE / sizeof(struct buffer_head));
  2938. hotcpu_notifier(buffer_cpu_notify, 0);
  2939. }