disk-io.c 100 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685
  1. /*
  2. * Copyright (C) 2007 Oracle. All rights reserved.
  3. *
  4. * This program is free software; you can redistribute it and/or
  5. * modify it under the terms of the GNU General Public
  6. * License v2 as published by the Free Software Foundation.
  7. *
  8. * This program is distributed in the hope that it will be useful,
  9. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  10. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  11. * General Public License for more details.
  12. *
  13. * You should have received a copy of the GNU General Public
  14. * License along with this program; if not, write to the
  15. * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
  16. * Boston, MA 021110-1307, USA.
  17. */
  18. #include <linux/fs.h>
  19. #include <linux/blkdev.h>
  20. #include <linux/scatterlist.h>
  21. #include <linux/swap.h>
  22. #include <linux/radix-tree.h>
  23. #include <linux/writeback.h>
  24. #include <linux/buffer_head.h>
  25. #include <linux/workqueue.h>
  26. #include <linux/kthread.h>
  27. #include <linux/freezer.h>
  28. #include <linux/crc32c.h>
  29. #include <linux/slab.h>
  30. #include <linux/migrate.h>
  31. #include <linux/ratelimit.h>
  32. #include <asm/unaligned.h>
  33. #include "compat.h"
  34. #include "ctree.h"
  35. #include "disk-io.h"
  36. #include "transaction.h"
  37. #include "btrfs_inode.h"
  38. #include "volumes.h"
  39. #include "print-tree.h"
  40. #include "async-thread.h"
  41. #include "locking.h"
  42. #include "tree-log.h"
  43. #include "free-space-cache.h"
  44. #include "inode-map.h"
  45. #include "check-integrity.h"
  46. static struct extent_io_ops btree_extent_io_ops;
  47. static void end_workqueue_fn(struct btrfs_work *work);
  48. static void free_fs_root(struct btrfs_root *root);
  49. static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
  50. int read_only);
  51. static void btrfs_destroy_ordered_operations(struct btrfs_root *root);
  52. static void btrfs_destroy_ordered_extents(struct btrfs_root *root);
  53. static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
  54. struct btrfs_root *root);
  55. static void btrfs_destroy_pending_snapshots(struct btrfs_transaction *t);
  56. static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
  57. static int btrfs_destroy_marked_extents(struct btrfs_root *root,
  58. struct extent_io_tree *dirty_pages,
  59. int mark);
  60. static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
  61. struct extent_io_tree *pinned_extents);
  62. /*
  63. * end_io_wq structs are used to do processing in task context when an IO is
  64. * complete. This is used during reads to verify checksums, and it is used
  65. * by writes to insert metadata for new file extents after IO is complete.
  66. */
  67. struct end_io_wq {
  68. struct bio *bio;
  69. bio_end_io_t *end_io;
  70. void *private;
  71. struct btrfs_fs_info *info;
  72. int error;
  73. int metadata;
  74. struct list_head list;
  75. struct btrfs_work work;
  76. };
  77. /*
  78. * async submit bios are used to offload expensive checksumming
  79. * onto the worker threads. They checksum file and metadata bios
  80. * just before they are sent down the IO stack.
  81. */
  82. struct async_submit_bio {
  83. struct inode *inode;
  84. struct bio *bio;
  85. struct list_head list;
  86. extent_submit_bio_hook_t *submit_bio_start;
  87. extent_submit_bio_hook_t *submit_bio_done;
  88. int rw;
  89. int mirror_num;
  90. unsigned long bio_flags;
  91. /*
  92. * bio_offset is optional, can be used if the pages in the bio
  93. * can't tell us where in the file the bio should go
  94. */
  95. u64 bio_offset;
  96. struct btrfs_work work;
  97. int error;
  98. };
  99. /*
  100. * Lockdep class keys for extent_buffer->lock's in this root. For a given
  101. * eb, the lockdep key is determined by the btrfs_root it belongs to and
  102. * the level the eb occupies in the tree.
  103. *
  104. * Different roots are used for different purposes and may nest inside each
  105. * other and they require separate keysets. As lockdep keys should be
  106. * static, assign keysets according to the purpose of the root as indicated
  107. * by btrfs_root->objectid. This ensures that all special purpose roots
  108. * have separate keysets.
  109. *
  110. * Lock-nesting across peer nodes is always done with the immediate parent
  111. * node locked thus preventing deadlock. As lockdep doesn't know this, use
  112. * subclass to avoid triggering lockdep warning in such cases.
  113. *
  114. * The key is set by the readpage_end_io_hook after the buffer has passed
  115. * csum validation but before the pages are unlocked. It is also set by
  116. * btrfs_init_new_buffer on freshly allocated blocks.
  117. *
  118. * We also add a check to make sure the highest level of the tree is the
  119. * same as our lockdep setup here. If BTRFS_MAX_LEVEL changes, this code
  120. * needs update as well.
  121. */
  122. #ifdef CONFIG_DEBUG_LOCK_ALLOC
  123. # if BTRFS_MAX_LEVEL != 8
  124. # error
  125. # endif
  126. static struct btrfs_lockdep_keyset {
  127. u64 id; /* root objectid */
  128. const char *name_stem; /* lock name stem */
  129. char names[BTRFS_MAX_LEVEL + 1][20];
  130. struct lock_class_key keys[BTRFS_MAX_LEVEL + 1];
  131. } btrfs_lockdep_keysets[] = {
  132. { .id = BTRFS_ROOT_TREE_OBJECTID, .name_stem = "root" },
  133. { .id = BTRFS_EXTENT_TREE_OBJECTID, .name_stem = "extent" },
  134. { .id = BTRFS_CHUNK_TREE_OBJECTID, .name_stem = "chunk" },
  135. { .id = BTRFS_DEV_TREE_OBJECTID, .name_stem = "dev" },
  136. { .id = BTRFS_FS_TREE_OBJECTID, .name_stem = "fs" },
  137. { .id = BTRFS_CSUM_TREE_OBJECTID, .name_stem = "csum" },
  138. { .id = BTRFS_ORPHAN_OBJECTID, .name_stem = "orphan" },
  139. { .id = BTRFS_TREE_LOG_OBJECTID, .name_stem = "log" },
  140. { .id = BTRFS_TREE_RELOC_OBJECTID, .name_stem = "treloc" },
  141. { .id = BTRFS_DATA_RELOC_TREE_OBJECTID, .name_stem = "dreloc" },
  142. { .id = 0, .name_stem = "tree" },
  143. };
  144. void __init btrfs_init_lockdep(void)
  145. {
  146. int i, j;
  147. /* initialize lockdep class names */
  148. for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) {
  149. struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i];
  150. for (j = 0; j < ARRAY_SIZE(ks->names); j++)
  151. snprintf(ks->names[j], sizeof(ks->names[j]),
  152. "btrfs-%s-%02d", ks->name_stem, j);
  153. }
  154. }
  155. void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb,
  156. int level)
  157. {
  158. struct btrfs_lockdep_keyset *ks;
  159. BUG_ON(level >= ARRAY_SIZE(ks->keys));
  160. /* find the matching keyset, id 0 is the default entry */
  161. for (ks = btrfs_lockdep_keysets; ks->id; ks++)
  162. if (ks->id == objectid)
  163. break;
  164. lockdep_set_class_and_name(&eb->lock,
  165. &ks->keys[level], ks->names[level]);
  166. }
  167. #endif
  168. /*
  169. * extents on the btree inode are pretty simple, there's one extent
  170. * that covers the entire device
  171. */
  172. static struct extent_map *btree_get_extent(struct inode *inode,
  173. struct page *page, size_t pg_offset, u64 start, u64 len,
  174. int create)
  175. {
  176. struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
  177. struct extent_map *em;
  178. int ret;
  179. read_lock(&em_tree->lock);
  180. em = lookup_extent_mapping(em_tree, start, len);
  181. if (em) {
  182. em->bdev =
  183. BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
  184. read_unlock(&em_tree->lock);
  185. goto out;
  186. }
  187. read_unlock(&em_tree->lock);
  188. em = alloc_extent_map();
  189. if (!em) {
  190. em = ERR_PTR(-ENOMEM);
  191. goto out;
  192. }
  193. em->start = 0;
  194. em->len = (u64)-1;
  195. em->block_len = (u64)-1;
  196. em->block_start = 0;
  197. em->bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
  198. write_lock(&em_tree->lock);
  199. ret = add_extent_mapping(em_tree, em);
  200. if (ret == -EEXIST) {
  201. u64 failed_start = em->start;
  202. u64 failed_len = em->len;
  203. free_extent_map(em);
  204. em = lookup_extent_mapping(em_tree, start, len);
  205. if (em) {
  206. ret = 0;
  207. } else {
  208. em = lookup_extent_mapping(em_tree, failed_start,
  209. failed_len);
  210. ret = -EIO;
  211. }
  212. } else if (ret) {
  213. free_extent_map(em);
  214. em = NULL;
  215. }
  216. write_unlock(&em_tree->lock);
  217. if (ret)
  218. em = ERR_PTR(ret);
  219. out:
  220. return em;
  221. }
  222. u32 btrfs_csum_data(struct btrfs_root *root, char *data, u32 seed, size_t len)
  223. {
  224. return crc32c(seed, data, len);
  225. }
  226. void btrfs_csum_final(u32 crc, char *result)
  227. {
  228. put_unaligned_le32(~crc, result);
  229. }
  230. /*
  231. * compute the csum for a btree block, and either verify it or write it
  232. * into the csum field of the block.
  233. */
  234. static int csum_tree_block(struct btrfs_root *root, struct extent_buffer *buf,
  235. int verify)
  236. {
  237. u16 csum_size = btrfs_super_csum_size(root->fs_info->super_copy);
  238. char *result = NULL;
  239. unsigned long len;
  240. unsigned long cur_len;
  241. unsigned long offset = BTRFS_CSUM_SIZE;
  242. char *kaddr;
  243. unsigned long map_start;
  244. unsigned long map_len;
  245. int err;
  246. u32 crc = ~(u32)0;
  247. unsigned long inline_result;
  248. len = buf->len - offset;
  249. while (len > 0) {
  250. err = map_private_extent_buffer(buf, offset, 32,
  251. &kaddr, &map_start, &map_len);
  252. if (err)
  253. return 1;
  254. cur_len = min(len, map_len - (offset - map_start));
  255. crc = btrfs_csum_data(root, kaddr + offset - map_start,
  256. crc, cur_len);
  257. len -= cur_len;
  258. offset += cur_len;
  259. }
  260. if (csum_size > sizeof(inline_result)) {
  261. result = kzalloc(csum_size * sizeof(char), GFP_NOFS);
  262. if (!result)
  263. return 1;
  264. } else {
  265. result = (char *)&inline_result;
  266. }
  267. btrfs_csum_final(crc, result);
  268. if (verify) {
  269. if (memcmp_extent_buffer(buf, result, 0, csum_size)) {
  270. u32 val;
  271. u32 found = 0;
  272. memcpy(&found, result, csum_size);
  273. read_extent_buffer(buf, &val, 0, csum_size);
  274. printk_ratelimited(KERN_INFO "btrfs: %s checksum verify "
  275. "failed on %llu wanted %X found %X "
  276. "level %d\n",
  277. root->fs_info->sb->s_id,
  278. (unsigned long long)buf->start, val, found,
  279. btrfs_header_level(buf));
  280. if (result != (char *)&inline_result)
  281. kfree(result);
  282. return 1;
  283. }
  284. } else {
  285. write_extent_buffer(buf, result, 0, csum_size);
  286. }
  287. if (result != (char *)&inline_result)
  288. kfree(result);
  289. return 0;
  290. }
  291. /*
  292. * we can't consider a given block up to date unless the transid of the
  293. * block matches the transid in the parent node's pointer. This is how we
  294. * detect blocks that either didn't get written at all or got written
  295. * in the wrong place.
  296. */
  297. static int verify_parent_transid(struct extent_io_tree *io_tree,
  298. struct extent_buffer *eb, u64 parent_transid)
  299. {
  300. struct extent_state *cached_state = NULL;
  301. int ret;
  302. if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
  303. return 0;
  304. lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
  305. 0, &cached_state);
  306. if (extent_buffer_uptodate(eb) &&
  307. btrfs_header_generation(eb) == parent_transid) {
  308. ret = 0;
  309. goto out;
  310. }
  311. printk_ratelimited("parent transid verify failed on %llu wanted %llu "
  312. "found %llu\n",
  313. (unsigned long long)eb->start,
  314. (unsigned long long)parent_transid,
  315. (unsigned long long)btrfs_header_generation(eb));
  316. ret = 1;
  317. clear_extent_buffer_uptodate(eb);
  318. out:
  319. unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
  320. &cached_state, GFP_NOFS);
  321. return ret;
  322. }
  323. /*
  324. * helper to read a given tree block, doing retries as required when
  325. * the checksums don't match and we have alternate mirrors to try.
  326. */
  327. static int btree_read_extent_buffer_pages(struct btrfs_root *root,
  328. struct extent_buffer *eb,
  329. u64 start, u64 parent_transid)
  330. {
  331. struct extent_io_tree *io_tree;
  332. int failed = 0;
  333. int ret;
  334. int num_copies = 0;
  335. int mirror_num = 0;
  336. int failed_mirror = 0;
  337. clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
  338. io_tree = &BTRFS_I(root->fs_info->btree_inode)->io_tree;
  339. while (1) {
  340. ret = read_extent_buffer_pages(io_tree, eb, start,
  341. WAIT_COMPLETE,
  342. btree_get_extent, mirror_num);
  343. if (!ret && !verify_parent_transid(io_tree, eb, parent_transid))
  344. break;
  345. /*
  346. * This buffer's crc is fine, but its contents are corrupted, so
  347. * there is no reason to read the other copies, they won't be
  348. * any less wrong.
  349. */
  350. if (test_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags))
  351. break;
  352. if (!failed_mirror) {
  353. failed = 1;
  354. printk(KERN_ERR "failed mirror was %d\n", eb->failed_mirror);
  355. failed_mirror = eb->failed_mirror;
  356. }
  357. num_copies = btrfs_num_copies(&root->fs_info->mapping_tree,
  358. eb->start, eb->len);
  359. if (num_copies == 1)
  360. break;
  361. mirror_num++;
  362. if (mirror_num == failed_mirror)
  363. mirror_num++;
  364. if (mirror_num > num_copies)
  365. break;
  366. }
  367. if (failed && !ret)
  368. repair_eb_io_failure(root, eb, failed_mirror);
  369. return ret;
  370. }
  371. /*
  372. * checksum a dirty tree block before IO. This has extra checks to make sure
  373. * we only fill in the checksum field in the first page of a multi-page block
  374. */
  375. static int csum_dirty_buffer(struct btrfs_root *root, struct page *page)
  376. {
  377. struct extent_io_tree *tree;
  378. u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
  379. u64 found_start;
  380. struct extent_buffer *eb;
  381. tree = &BTRFS_I(page->mapping->host)->io_tree;
  382. eb = (struct extent_buffer *)page->private;
  383. if (page != eb->pages[0])
  384. return 0;
  385. found_start = btrfs_header_bytenr(eb);
  386. if (found_start != start) {
  387. WARN_ON(1);
  388. return 0;
  389. }
  390. if (eb->pages[0] != page) {
  391. WARN_ON(1);
  392. return 0;
  393. }
  394. if (!PageUptodate(page)) {
  395. WARN_ON(1);
  396. return 0;
  397. }
  398. csum_tree_block(root, eb, 0);
  399. return 0;
  400. }
  401. static int check_tree_block_fsid(struct btrfs_root *root,
  402. struct extent_buffer *eb)
  403. {
  404. struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
  405. u8 fsid[BTRFS_UUID_SIZE];
  406. int ret = 1;
  407. read_extent_buffer(eb, fsid, (unsigned long)btrfs_header_fsid(eb),
  408. BTRFS_FSID_SIZE);
  409. while (fs_devices) {
  410. if (!memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE)) {
  411. ret = 0;
  412. break;
  413. }
  414. fs_devices = fs_devices->seed;
  415. }
  416. return ret;
  417. }
  418. #define CORRUPT(reason, eb, root, slot) \
  419. printk(KERN_CRIT "btrfs: corrupt leaf, %s: block=%llu," \
  420. "root=%llu, slot=%d\n", reason, \
  421. (unsigned long long)btrfs_header_bytenr(eb), \
  422. (unsigned long long)root->objectid, slot)
  423. static noinline int check_leaf(struct btrfs_root *root,
  424. struct extent_buffer *leaf)
  425. {
  426. struct btrfs_key key;
  427. struct btrfs_key leaf_key;
  428. u32 nritems = btrfs_header_nritems(leaf);
  429. int slot;
  430. if (nritems == 0)
  431. return 0;
  432. /* Check the 0 item */
  433. if (btrfs_item_offset_nr(leaf, 0) + btrfs_item_size_nr(leaf, 0) !=
  434. BTRFS_LEAF_DATA_SIZE(root)) {
  435. CORRUPT("invalid item offset size pair", leaf, root, 0);
  436. return -EIO;
  437. }
  438. /*
  439. * Check to make sure each items keys are in the correct order and their
  440. * offsets make sense. We only have to loop through nritems-1 because
  441. * we check the current slot against the next slot, which verifies the
  442. * next slot's offset+size makes sense and that the current's slot
  443. * offset is correct.
  444. */
  445. for (slot = 0; slot < nritems - 1; slot++) {
  446. btrfs_item_key_to_cpu(leaf, &leaf_key, slot);
  447. btrfs_item_key_to_cpu(leaf, &key, slot + 1);
  448. /* Make sure the keys are in the right order */
  449. if (btrfs_comp_cpu_keys(&leaf_key, &key) >= 0) {
  450. CORRUPT("bad key order", leaf, root, slot);
  451. return -EIO;
  452. }
  453. /*
  454. * Make sure the offset and ends are right, remember that the
  455. * item data starts at the end of the leaf and grows towards the
  456. * front.
  457. */
  458. if (btrfs_item_offset_nr(leaf, slot) !=
  459. btrfs_item_end_nr(leaf, slot + 1)) {
  460. CORRUPT("slot offset bad", leaf, root, slot);
  461. return -EIO;
  462. }
  463. /*
  464. * Check to make sure that we don't point outside of the leaf,
  465. * just incase all the items are consistent to eachother, but
  466. * all point outside of the leaf.
  467. */
  468. if (btrfs_item_end_nr(leaf, slot) >
  469. BTRFS_LEAF_DATA_SIZE(root)) {
  470. CORRUPT("slot end outside of leaf", leaf, root, slot);
  471. return -EIO;
  472. }
  473. }
  474. return 0;
  475. }
  476. struct extent_buffer *find_eb_for_page(struct extent_io_tree *tree,
  477. struct page *page, int max_walk)
  478. {
  479. struct extent_buffer *eb;
  480. u64 start = page_offset(page);
  481. u64 target = start;
  482. u64 min_start;
  483. if (start < max_walk)
  484. min_start = 0;
  485. else
  486. min_start = start - max_walk;
  487. while (start >= min_start) {
  488. eb = find_extent_buffer(tree, start, 0);
  489. if (eb) {
  490. /*
  491. * we found an extent buffer and it contains our page
  492. * horray!
  493. */
  494. if (eb->start <= target &&
  495. eb->start + eb->len > target)
  496. return eb;
  497. /* we found an extent buffer that wasn't for us */
  498. free_extent_buffer(eb);
  499. return NULL;
  500. }
  501. if (start == 0)
  502. break;
  503. start -= PAGE_CACHE_SIZE;
  504. }
  505. return NULL;
  506. }
  507. static int btree_readpage_end_io_hook(struct page *page, u64 start, u64 end,
  508. struct extent_state *state)
  509. {
  510. struct extent_io_tree *tree;
  511. u64 found_start;
  512. int found_level;
  513. struct extent_buffer *eb;
  514. struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
  515. int ret = 0;
  516. int reads_done;
  517. if (!page->private)
  518. goto out;
  519. tree = &BTRFS_I(page->mapping->host)->io_tree;
  520. eb = (struct extent_buffer *)page->private;
  521. /* the pending IO might have been the only thing that kept this buffer
  522. * in memory. Make sure we have a ref for all this other checks
  523. */
  524. extent_buffer_get(eb);
  525. reads_done = atomic_dec_and_test(&eb->io_pages);
  526. if (!reads_done)
  527. goto err;
  528. if (test_bit(EXTENT_BUFFER_IOERR, &eb->bflags)) {
  529. ret = -EIO;
  530. goto err;
  531. }
  532. found_start = btrfs_header_bytenr(eb);
  533. if (found_start != eb->start) {
  534. printk_ratelimited(KERN_INFO "btrfs bad tree block start "
  535. "%llu %llu\n",
  536. (unsigned long long)found_start,
  537. (unsigned long long)eb->start);
  538. ret = -EIO;
  539. goto err;
  540. }
  541. if (check_tree_block_fsid(root, eb)) {
  542. printk_ratelimited(KERN_INFO "btrfs bad fsid on block %llu\n",
  543. (unsigned long long)eb->start);
  544. ret = -EIO;
  545. goto err;
  546. }
  547. found_level = btrfs_header_level(eb);
  548. btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb),
  549. eb, found_level);
  550. ret = csum_tree_block(root, eb, 1);
  551. if (ret) {
  552. ret = -EIO;
  553. goto err;
  554. }
  555. /*
  556. * If this is a leaf block and it is corrupt, set the corrupt bit so
  557. * that we don't try and read the other copies of this block, just
  558. * return -EIO.
  559. */
  560. if (found_level == 0 && check_leaf(root, eb)) {
  561. set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
  562. ret = -EIO;
  563. }
  564. if (!ret)
  565. set_extent_buffer_uptodate(eb);
  566. err:
  567. if (test_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags)) {
  568. clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags);
  569. btree_readahead_hook(root, eb, eb->start, ret);
  570. }
  571. if (ret)
  572. clear_extent_buffer_uptodate(eb);
  573. free_extent_buffer(eb);
  574. out:
  575. return ret;
  576. }
  577. static int btree_io_failed_hook(struct page *page, int failed_mirror)
  578. {
  579. struct extent_buffer *eb;
  580. struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
  581. eb = (struct extent_buffer *)page->private;
  582. set_bit(EXTENT_BUFFER_IOERR, &eb->bflags);
  583. eb->failed_mirror = failed_mirror;
  584. if (test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
  585. btree_readahead_hook(root, eb, eb->start, -EIO);
  586. return -EIO; /* we fixed nothing */
  587. }
  588. static void end_workqueue_bio(struct bio *bio, int err)
  589. {
  590. struct end_io_wq *end_io_wq = bio->bi_private;
  591. struct btrfs_fs_info *fs_info;
  592. fs_info = end_io_wq->info;
  593. end_io_wq->error = err;
  594. end_io_wq->work.func = end_workqueue_fn;
  595. end_io_wq->work.flags = 0;
  596. if (bio->bi_rw & REQ_WRITE) {
  597. if (end_io_wq->metadata == 1)
  598. btrfs_queue_worker(&fs_info->endio_meta_write_workers,
  599. &end_io_wq->work);
  600. else if (end_io_wq->metadata == 2)
  601. btrfs_queue_worker(&fs_info->endio_freespace_worker,
  602. &end_io_wq->work);
  603. else
  604. btrfs_queue_worker(&fs_info->endio_write_workers,
  605. &end_io_wq->work);
  606. } else {
  607. if (end_io_wq->metadata)
  608. btrfs_queue_worker(&fs_info->endio_meta_workers,
  609. &end_io_wq->work);
  610. else
  611. btrfs_queue_worker(&fs_info->endio_workers,
  612. &end_io_wq->work);
  613. }
  614. }
  615. /*
  616. * For the metadata arg you want
  617. *
  618. * 0 - if data
  619. * 1 - if normal metadta
  620. * 2 - if writing to the free space cache area
  621. */
  622. int btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
  623. int metadata)
  624. {
  625. struct end_io_wq *end_io_wq;
  626. end_io_wq = kmalloc(sizeof(*end_io_wq), GFP_NOFS);
  627. if (!end_io_wq)
  628. return -ENOMEM;
  629. end_io_wq->private = bio->bi_private;
  630. end_io_wq->end_io = bio->bi_end_io;
  631. end_io_wq->info = info;
  632. end_io_wq->error = 0;
  633. end_io_wq->bio = bio;
  634. end_io_wq->metadata = metadata;
  635. bio->bi_private = end_io_wq;
  636. bio->bi_end_io = end_workqueue_bio;
  637. return 0;
  638. }
  639. unsigned long btrfs_async_submit_limit(struct btrfs_fs_info *info)
  640. {
  641. unsigned long limit = min_t(unsigned long,
  642. info->workers.max_workers,
  643. info->fs_devices->open_devices);
  644. return 256 * limit;
  645. }
  646. static void run_one_async_start(struct btrfs_work *work)
  647. {
  648. struct async_submit_bio *async;
  649. int ret;
  650. async = container_of(work, struct async_submit_bio, work);
  651. ret = async->submit_bio_start(async->inode, async->rw, async->bio,
  652. async->mirror_num, async->bio_flags,
  653. async->bio_offset);
  654. if (ret)
  655. async->error = ret;
  656. }
  657. static void run_one_async_done(struct btrfs_work *work)
  658. {
  659. struct btrfs_fs_info *fs_info;
  660. struct async_submit_bio *async;
  661. int limit;
  662. async = container_of(work, struct async_submit_bio, work);
  663. fs_info = BTRFS_I(async->inode)->root->fs_info;
  664. limit = btrfs_async_submit_limit(fs_info);
  665. limit = limit * 2 / 3;
  666. atomic_dec(&fs_info->nr_async_submits);
  667. if (atomic_read(&fs_info->nr_async_submits) < limit &&
  668. waitqueue_active(&fs_info->async_submit_wait))
  669. wake_up(&fs_info->async_submit_wait);
  670. /* If an error occured we just want to clean up the bio and move on */
  671. if (async->error) {
  672. bio_endio(async->bio, async->error);
  673. return;
  674. }
  675. async->submit_bio_done(async->inode, async->rw, async->bio,
  676. async->mirror_num, async->bio_flags,
  677. async->bio_offset);
  678. }
  679. static void run_one_async_free(struct btrfs_work *work)
  680. {
  681. struct async_submit_bio *async;
  682. async = container_of(work, struct async_submit_bio, work);
  683. kfree(async);
  684. }
  685. int btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct inode *inode,
  686. int rw, struct bio *bio, int mirror_num,
  687. unsigned long bio_flags,
  688. u64 bio_offset,
  689. extent_submit_bio_hook_t *submit_bio_start,
  690. extent_submit_bio_hook_t *submit_bio_done)
  691. {
  692. struct async_submit_bio *async;
  693. async = kmalloc(sizeof(*async), GFP_NOFS);
  694. if (!async)
  695. return -ENOMEM;
  696. async->inode = inode;
  697. async->rw = rw;
  698. async->bio = bio;
  699. async->mirror_num = mirror_num;
  700. async->submit_bio_start = submit_bio_start;
  701. async->submit_bio_done = submit_bio_done;
  702. async->work.func = run_one_async_start;
  703. async->work.ordered_func = run_one_async_done;
  704. async->work.ordered_free = run_one_async_free;
  705. async->work.flags = 0;
  706. async->bio_flags = bio_flags;
  707. async->bio_offset = bio_offset;
  708. async->error = 0;
  709. atomic_inc(&fs_info->nr_async_submits);
  710. if (rw & REQ_SYNC)
  711. btrfs_set_work_high_prio(&async->work);
  712. btrfs_queue_worker(&fs_info->workers, &async->work);
  713. while (atomic_read(&fs_info->async_submit_draining) &&
  714. atomic_read(&fs_info->nr_async_submits)) {
  715. wait_event(fs_info->async_submit_wait,
  716. (atomic_read(&fs_info->nr_async_submits) == 0));
  717. }
  718. return 0;
  719. }
  720. static int btree_csum_one_bio(struct bio *bio)
  721. {
  722. struct bio_vec *bvec = bio->bi_io_vec;
  723. int bio_index = 0;
  724. struct btrfs_root *root;
  725. int ret = 0;
  726. WARN_ON(bio->bi_vcnt <= 0);
  727. while (bio_index < bio->bi_vcnt) {
  728. root = BTRFS_I(bvec->bv_page->mapping->host)->root;
  729. ret = csum_dirty_buffer(root, bvec->bv_page);
  730. if (ret)
  731. break;
  732. bio_index++;
  733. bvec++;
  734. }
  735. return ret;
  736. }
  737. static int __btree_submit_bio_start(struct inode *inode, int rw,
  738. struct bio *bio, int mirror_num,
  739. unsigned long bio_flags,
  740. u64 bio_offset)
  741. {
  742. /*
  743. * when we're called for a write, we're already in the async
  744. * submission context. Just jump into btrfs_map_bio
  745. */
  746. return btree_csum_one_bio(bio);
  747. }
  748. static int __btree_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
  749. int mirror_num, unsigned long bio_flags,
  750. u64 bio_offset)
  751. {
  752. /*
  753. * when we're called for a write, we're already in the async
  754. * submission context. Just jump into btrfs_map_bio
  755. */
  756. return btrfs_map_bio(BTRFS_I(inode)->root, rw, bio, mirror_num, 1);
  757. }
  758. static int btree_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
  759. int mirror_num, unsigned long bio_flags,
  760. u64 bio_offset)
  761. {
  762. int ret;
  763. if (!(rw & REQ_WRITE)) {
  764. /*
  765. * called for a read, do the setup so that checksum validation
  766. * can happen in the async kernel threads
  767. */
  768. ret = btrfs_bio_wq_end_io(BTRFS_I(inode)->root->fs_info,
  769. bio, 1);
  770. if (ret)
  771. return ret;
  772. return btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
  773. mirror_num, 0);
  774. }
  775. /*
  776. * kthread helpers are used to submit writes so that checksumming
  777. * can happen in parallel across all CPUs
  778. */
  779. return btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
  780. inode, rw, bio, mirror_num, 0,
  781. bio_offset,
  782. __btree_submit_bio_start,
  783. __btree_submit_bio_done);
  784. }
  785. #ifdef CONFIG_MIGRATION
  786. static int btree_migratepage(struct address_space *mapping,
  787. struct page *newpage, struct page *page,
  788. enum migrate_mode mode)
  789. {
  790. /*
  791. * we can't safely write a btree page from here,
  792. * we haven't done the locking hook
  793. */
  794. if (PageDirty(page))
  795. return -EAGAIN;
  796. /*
  797. * Buffers may be managed in a filesystem specific way.
  798. * We must have no buffers or drop them.
  799. */
  800. if (page_has_private(page) &&
  801. !try_to_release_page(page, GFP_KERNEL))
  802. return -EAGAIN;
  803. return migrate_page(mapping, newpage, page, mode);
  804. }
  805. #endif
  806. static int btree_writepages(struct address_space *mapping,
  807. struct writeback_control *wbc)
  808. {
  809. struct extent_io_tree *tree;
  810. tree = &BTRFS_I(mapping->host)->io_tree;
  811. if (wbc->sync_mode == WB_SYNC_NONE) {
  812. struct btrfs_root *root = BTRFS_I(mapping->host)->root;
  813. u64 num_dirty;
  814. unsigned long thresh = 32 * 1024 * 1024;
  815. if (wbc->for_kupdate)
  816. return 0;
  817. /* this is a bit racy, but that's ok */
  818. num_dirty = root->fs_info->dirty_metadata_bytes;
  819. if (num_dirty < thresh)
  820. return 0;
  821. }
  822. return btree_write_cache_pages(mapping, wbc);
  823. }
  824. static int btree_readpage(struct file *file, struct page *page)
  825. {
  826. struct extent_io_tree *tree;
  827. tree = &BTRFS_I(page->mapping->host)->io_tree;
  828. return extent_read_full_page(tree, page, btree_get_extent, 0);
  829. }
  830. static int btree_releasepage(struct page *page, gfp_t gfp_flags)
  831. {
  832. if (PageWriteback(page) || PageDirty(page))
  833. return 0;
  834. /*
  835. * We need to mask out eg. __GFP_HIGHMEM and __GFP_DMA32 as we're doing
  836. * slab allocation from alloc_extent_state down the callchain where
  837. * it'd hit a BUG_ON as those flags are not allowed.
  838. */
  839. gfp_flags &= ~GFP_SLAB_BUG_MASK;
  840. return try_release_extent_buffer(page, gfp_flags);
  841. }
  842. static void btree_invalidatepage(struct page *page, unsigned long offset)
  843. {
  844. struct extent_io_tree *tree;
  845. tree = &BTRFS_I(page->mapping->host)->io_tree;
  846. extent_invalidatepage(tree, page, offset);
  847. btree_releasepage(page, GFP_NOFS);
  848. if (PagePrivate(page)) {
  849. printk(KERN_WARNING "btrfs warning page private not zero "
  850. "on page %llu\n", (unsigned long long)page_offset(page));
  851. ClearPagePrivate(page);
  852. set_page_private(page, 0);
  853. page_cache_release(page);
  854. }
  855. }
  856. static int btree_set_page_dirty(struct page *page)
  857. {
  858. struct extent_buffer *eb;
  859. BUG_ON(!PagePrivate(page));
  860. eb = (struct extent_buffer *)page->private;
  861. BUG_ON(!eb);
  862. BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
  863. BUG_ON(!atomic_read(&eb->refs));
  864. btrfs_assert_tree_locked(eb);
  865. return __set_page_dirty_nobuffers(page);
  866. }
  867. static const struct address_space_operations btree_aops = {
  868. .readpage = btree_readpage,
  869. .writepages = btree_writepages,
  870. .releasepage = btree_releasepage,
  871. .invalidatepage = btree_invalidatepage,
  872. #ifdef CONFIG_MIGRATION
  873. .migratepage = btree_migratepage,
  874. #endif
  875. .set_page_dirty = btree_set_page_dirty,
  876. };
  877. int readahead_tree_block(struct btrfs_root *root, u64 bytenr, u32 blocksize,
  878. u64 parent_transid)
  879. {
  880. struct extent_buffer *buf = NULL;
  881. struct inode *btree_inode = root->fs_info->btree_inode;
  882. int ret = 0;
  883. buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
  884. if (!buf)
  885. return 0;
  886. read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree,
  887. buf, 0, WAIT_NONE, btree_get_extent, 0);
  888. free_extent_buffer(buf);
  889. return ret;
  890. }
  891. int reada_tree_block_flagged(struct btrfs_root *root, u64 bytenr, u32 blocksize,
  892. int mirror_num, struct extent_buffer **eb)
  893. {
  894. struct extent_buffer *buf = NULL;
  895. struct inode *btree_inode = root->fs_info->btree_inode;
  896. struct extent_io_tree *io_tree = &BTRFS_I(btree_inode)->io_tree;
  897. int ret;
  898. buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
  899. if (!buf)
  900. return 0;
  901. set_bit(EXTENT_BUFFER_READAHEAD, &buf->bflags);
  902. ret = read_extent_buffer_pages(io_tree, buf, 0, WAIT_PAGE_LOCK,
  903. btree_get_extent, mirror_num);
  904. if (ret) {
  905. free_extent_buffer(buf);
  906. return ret;
  907. }
  908. if (test_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags)) {
  909. free_extent_buffer(buf);
  910. return -EIO;
  911. } else if (extent_buffer_uptodate(buf)) {
  912. *eb = buf;
  913. } else {
  914. free_extent_buffer(buf);
  915. }
  916. return 0;
  917. }
  918. struct extent_buffer *btrfs_find_tree_block(struct btrfs_root *root,
  919. u64 bytenr, u32 blocksize)
  920. {
  921. struct inode *btree_inode = root->fs_info->btree_inode;
  922. struct extent_buffer *eb;
  923. eb = find_extent_buffer(&BTRFS_I(btree_inode)->io_tree,
  924. bytenr, blocksize);
  925. return eb;
  926. }
  927. struct extent_buffer *btrfs_find_create_tree_block(struct btrfs_root *root,
  928. u64 bytenr, u32 blocksize)
  929. {
  930. struct inode *btree_inode = root->fs_info->btree_inode;
  931. struct extent_buffer *eb;
  932. eb = alloc_extent_buffer(&BTRFS_I(btree_inode)->io_tree,
  933. bytenr, blocksize);
  934. return eb;
  935. }
  936. int btrfs_write_tree_block(struct extent_buffer *buf)
  937. {
  938. return filemap_fdatawrite_range(buf->pages[0]->mapping, buf->start,
  939. buf->start + buf->len - 1);
  940. }
  941. int btrfs_wait_tree_block_writeback(struct extent_buffer *buf)
  942. {
  943. return filemap_fdatawait_range(buf->pages[0]->mapping,
  944. buf->start, buf->start + buf->len - 1);
  945. }
  946. struct extent_buffer *read_tree_block(struct btrfs_root *root, u64 bytenr,
  947. u32 blocksize, u64 parent_transid)
  948. {
  949. struct extent_buffer *buf = NULL;
  950. int ret;
  951. buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
  952. if (!buf)
  953. return NULL;
  954. ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
  955. return buf;
  956. }
  957. void clean_tree_block(struct btrfs_trans_handle *trans, struct btrfs_root *root,
  958. struct extent_buffer *buf)
  959. {
  960. if (btrfs_header_generation(buf) ==
  961. root->fs_info->running_transaction->transid) {
  962. btrfs_assert_tree_locked(buf);
  963. if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
  964. spin_lock(&root->fs_info->delalloc_lock);
  965. if (root->fs_info->dirty_metadata_bytes >= buf->len)
  966. root->fs_info->dirty_metadata_bytes -= buf->len;
  967. else {
  968. spin_unlock(&root->fs_info->delalloc_lock);
  969. btrfs_panic(root->fs_info, -EOVERFLOW,
  970. "Can't clear %lu bytes from "
  971. " dirty_mdatadata_bytes (%lu)",
  972. buf->len,
  973. root->fs_info->dirty_metadata_bytes);
  974. }
  975. spin_unlock(&root->fs_info->delalloc_lock);
  976. }
  977. /* ugh, clear_extent_buffer_dirty needs to lock the page */
  978. btrfs_set_lock_blocking(buf);
  979. clear_extent_buffer_dirty(buf);
  980. }
  981. }
  982. static void __setup_root(u32 nodesize, u32 leafsize, u32 sectorsize,
  983. u32 stripesize, struct btrfs_root *root,
  984. struct btrfs_fs_info *fs_info,
  985. u64 objectid)
  986. {
  987. root->node = NULL;
  988. root->commit_root = NULL;
  989. root->sectorsize = sectorsize;
  990. root->nodesize = nodesize;
  991. root->leafsize = leafsize;
  992. root->stripesize = stripesize;
  993. root->ref_cows = 0;
  994. root->track_dirty = 0;
  995. root->in_radix = 0;
  996. root->orphan_item_inserted = 0;
  997. root->orphan_cleanup_state = 0;
  998. root->objectid = objectid;
  999. root->last_trans = 0;
  1000. root->highest_objectid = 0;
  1001. root->name = NULL;
  1002. root->inode_tree = RB_ROOT;
  1003. INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
  1004. root->block_rsv = NULL;
  1005. root->orphan_block_rsv = NULL;
  1006. INIT_LIST_HEAD(&root->dirty_list);
  1007. INIT_LIST_HEAD(&root->orphan_list);
  1008. INIT_LIST_HEAD(&root->root_list);
  1009. spin_lock_init(&root->orphan_lock);
  1010. spin_lock_init(&root->inode_lock);
  1011. spin_lock_init(&root->accounting_lock);
  1012. mutex_init(&root->objectid_mutex);
  1013. mutex_init(&root->log_mutex);
  1014. init_waitqueue_head(&root->log_writer_wait);
  1015. init_waitqueue_head(&root->log_commit_wait[0]);
  1016. init_waitqueue_head(&root->log_commit_wait[1]);
  1017. atomic_set(&root->log_commit[0], 0);
  1018. atomic_set(&root->log_commit[1], 0);
  1019. atomic_set(&root->log_writers, 0);
  1020. root->log_batch = 0;
  1021. root->log_transid = 0;
  1022. root->last_log_commit = 0;
  1023. extent_io_tree_init(&root->dirty_log_pages,
  1024. fs_info->btree_inode->i_mapping);
  1025. memset(&root->root_key, 0, sizeof(root->root_key));
  1026. memset(&root->root_item, 0, sizeof(root->root_item));
  1027. memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
  1028. memset(&root->root_kobj, 0, sizeof(root->root_kobj));
  1029. root->defrag_trans_start = fs_info->generation;
  1030. init_completion(&root->kobj_unregister);
  1031. root->defrag_running = 0;
  1032. root->root_key.objectid = objectid;
  1033. root->anon_dev = 0;
  1034. }
  1035. static int __must_check find_and_setup_root(struct btrfs_root *tree_root,
  1036. struct btrfs_fs_info *fs_info,
  1037. u64 objectid,
  1038. struct btrfs_root *root)
  1039. {
  1040. int ret;
  1041. u32 blocksize;
  1042. u64 generation;
  1043. __setup_root(tree_root->nodesize, tree_root->leafsize,
  1044. tree_root->sectorsize, tree_root->stripesize,
  1045. root, fs_info, objectid);
  1046. ret = btrfs_find_last_root(tree_root, objectid,
  1047. &root->root_item, &root->root_key);
  1048. if (ret > 0)
  1049. return -ENOENT;
  1050. else if (ret < 0)
  1051. return ret;
  1052. generation = btrfs_root_generation(&root->root_item);
  1053. blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item));
  1054. root->commit_root = NULL;
  1055. root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
  1056. blocksize, generation);
  1057. if (!root->node || !btrfs_buffer_uptodate(root->node, generation)) {
  1058. free_extent_buffer(root->node);
  1059. root->node = NULL;
  1060. return -EIO;
  1061. }
  1062. root->commit_root = btrfs_root_node(root);
  1063. return 0;
  1064. }
  1065. static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info)
  1066. {
  1067. struct btrfs_root *root = kzalloc(sizeof(*root), GFP_NOFS);
  1068. if (root)
  1069. root->fs_info = fs_info;
  1070. return root;
  1071. }
  1072. static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
  1073. struct btrfs_fs_info *fs_info)
  1074. {
  1075. struct btrfs_root *root;
  1076. struct btrfs_root *tree_root = fs_info->tree_root;
  1077. struct extent_buffer *leaf;
  1078. root = btrfs_alloc_root(fs_info);
  1079. if (!root)
  1080. return ERR_PTR(-ENOMEM);
  1081. __setup_root(tree_root->nodesize, tree_root->leafsize,
  1082. tree_root->sectorsize, tree_root->stripesize,
  1083. root, fs_info, BTRFS_TREE_LOG_OBJECTID);
  1084. root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
  1085. root->root_key.type = BTRFS_ROOT_ITEM_KEY;
  1086. root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
  1087. /*
  1088. * log trees do not get reference counted because they go away
  1089. * before a real commit is actually done. They do store pointers
  1090. * to file data extents, and those reference counts still get
  1091. * updated (along with back refs to the log tree).
  1092. */
  1093. root->ref_cows = 0;
  1094. leaf = btrfs_alloc_free_block(trans, root, root->leafsize, 0,
  1095. BTRFS_TREE_LOG_OBJECTID, NULL,
  1096. 0, 0, 0, 0);
  1097. if (IS_ERR(leaf)) {
  1098. kfree(root);
  1099. return ERR_CAST(leaf);
  1100. }
  1101. memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
  1102. btrfs_set_header_bytenr(leaf, leaf->start);
  1103. btrfs_set_header_generation(leaf, trans->transid);
  1104. btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
  1105. btrfs_set_header_owner(leaf, BTRFS_TREE_LOG_OBJECTID);
  1106. root->node = leaf;
  1107. write_extent_buffer(root->node, root->fs_info->fsid,
  1108. (unsigned long)btrfs_header_fsid(root->node),
  1109. BTRFS_FSID_SIZE);
  1110. btrfs_mark_buffer_dirty(root->node);
  1111. btrfs_tree_unlock(root->node);
  1112. return root;
  1113. }
  1114. int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
  1115. struct btrfs_fs_info *fs_info)
  1116. {
  1117. struct btrfs_root *log_root;
  1118. log_root = alloc_log_tree(trans, fs_info);
  1119. if (IS_ERR(log_root))
  1120. return PTR_ERR(log_root);
  1121. WARN_ON(fs_info->log_root_tree);
  1122. fs_info->log_root_tree = log_root;
  1123. return 0;
  1124. }
  1125. int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
  1126. struct btrfs_root *root)
  1127. {
  1128. struct btrfs_root *log_root;
  1129. struct btrfs_inode_item *inode_item;
  1130. log_root = alloc_log_tree(trans, root->fs_info);
  1131. if (IS_ERR(log_root))
  1132. return PTR_ERR(log_root);
  1133. log_root->last_trans = trans->transid;
  1134. log_root->root_key.offset = root->root_key.objectid;
  1135. inode_item = &log_root->root_item.inode;
  1136. inode_item->generation = cpu_to_le64(1);
  1137. inode_item->size = cpu_to_le64(3);
  1138. inode_item->nlink = cpu_to_le32(1);
  1139. inode_item->nbytes = cpu_to_le64(root->leafsize);
  1140. inode_item->mode = cpu_to_le32(S_IFDIR | 0755);
  1141. btrfs_set_root_node(&log_root->root_item, log_root->node);
  1142. WARN_ON(root->log_root);
  1143. root->log_root = log_root;
  1144. root->log_transid = 0;
  1145. root->last_log_commit = 0;
  1146. return 0;
  1147. }
  1148. struct btrfs_root *btrfs_read_fs_root_no_radix(struct btrfs_root *tree_root,
  1149. struct btrfs_key *location)
  1150. {
  1151. struct btrfs_root *root;
  1152. struct btrfs_fs_info *fs_info = tree_root->fs_info;
  1153. struct btrfs_path *path;
  1154. struct extent_buffer *l;
  1155. u64 generation;
  1156. u32 blocksize;
  1157. int ret = 0;
  1158. root = btrfs_alloc_root(fs_info);
  1159. if (!root)
  1160. return ERR_PTR(-ENOMEM);
  1161. if (location->offset == (u64)-1) {
  1162. ret = find_and_setup_root(tree_root, fs_info,
  1163. location->objectid, root);
  1164. if (ret) {
  1165. kfree(root);
  1166. return ERR_PTR(ret);
  1167. }
  1168. goto out;
  1169. }
  1170. __setup_root(tree_root->nodesize, tree_root->leafsize,
  1171. tree_root->sectorsize, tree_root->stripesize,
  1172. root, fs_info, location->objectid);
  1173. path = btrfs_alloc_path();
  1174. if (!path) {
  1175. kfree(root);
  1176. return ERR_PTR(-ENOMEM);
  1177. }
  1178. ret = btrfs_search_slot(NULL, tree_root, location, path, 0, 0);
  1179. if (ret == 0) {
  1180. l = path->nodes[0];
  1181. read_extent_buffer(l, &root->root_item,
  1182. btrfs_item_ptr_offset(l, path->slots[0]),
  1183. sizeof(root->root_item));
  1184. memcpy(&root->root_key, location, sizeof(*location));
  1185. }
  1186. btrfs_free_path(path);
  1187. if (ret) {
  1188. kfree(root);
  1189. if (ret > 0)
  1190. ret = -ENOENT;
  1191. return ERR_PTR(ret);
  1192. }
  1193. generation = btrfs_root_generation(&root->root_item);
  1194. blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item));
  1195. root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
  1196. blocksize, generation);
  1197. root->commit_root = btrfs_root_node(root);
  1198. BUG_ON(!root->node); /* -ENOMEM */
  1199. out:
  1200. if (location->objectid != BTRFS_TREE_LOG_OBJECTID) {
  1201. root->ref_cows = 1;
  1202. btrfs_check_and_init_root_item(&root->root_item);
  1203. }
  1204. return root;
  1205. }
  1206. struct btrfs_root *btrfs_read_fs_root_no_name(struct btrfs_fs_info *fs_info,
  1207. struct btrfs_key *location)
  1208. {
  1209. struct btrfs_root *root;
  1210. int ret;
  1211. if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
  1212. return fs_info->tree_root;
  1213. if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID)
  1214. return fs_info->extent_root;
  1215. if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID)
  1216. return fs_info->chunk_root;
  1217. if (location->objectid == BTRFS_DEV_TREE_OBJECTID)
  1218. return fs_info->dev_root;
  1219. if (location->objectid == BTRFS_CSUM_TREE_OBJECTID)
  1220. return fs_info->csum_root;
  1221. again:
  1222. spin_lock(&fs_info->fs_roots_radix_lock);
  1223. root = radix_tree_lookup(&fs_info->fs_roots_radix,
  1224. (unsigned long)location->objectid);
  1225. spin_unlock(&fs_info->fs_roots_radix_lock);
  1226. if (root)
  1227. return root;
  1228. root = btrfs_read_fs_root_no_radix(fs_info->tree_root, location);
  1229. if (IS_ERR(root))
  1230. return root;
  1231. root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS);
  1232. root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned),
  1233. GFP_NOFS);
  1234. if (!root->free_ino_pinned || !root->free_ino_ctl) {
  1235. ret = -ENOMEM;
  1236. goto fail;
  1237. }
  1238. btrfs_init_free_ino_ctl(root);
  1239. mutex_init(&root->fs_commit_mutex);
  1240. spin_lock_init(&root->cache_lock);
  1241. init_waitqueue_head(&root->cache_wait);
  1242. ret = get_anon_bdev(&root->anon_dev);
  1243. if (ret)
  1244. goto fail;
  1245. if (btrfs_root_refs(&root->root_item) == 0) {
  1246. ret = -ENOENT;
  1247. goto fail;
  1248. }
  1249. ret = btrfs_find_orphan_item(fs_info->tree_root, location->objectid);
  1250. if (ret < 0)
  1251. goto fail;
  1252. if (ret == 0)
  1253. root->orphan_item_inserted = 1;
  1254. ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
  1255. if (ret)
  1256. goto fail;
  1257. spin_lock(&fs_info->fs_roots_radix_lock);
  1258. ret = radix_tree_insert(&fs_info->fs_roots_radix,
  1259. (unsigned long)root->root_key.objectid,
  1260. root);
  1261. if (ret == 0)
  1262. root->in_radix = 1;
  1263. spin_unlock(&fs_info->fs_roots_radix_lock);
  1264. radix_tree_preload_end();
  1265. if (ret) {
  1266. if (ret == -EEXIST) {
  1267. free_fs_root(root);
  1268. goto again;
  1269. }
  1270. goto fail;
  1271. }
  1272. ret = btrfs_find_dead_roots(fs_info->tree_root,
  1273. root->root_key.objectid);
  1274. WARN_ON(ret);
  1275. return root;
  1276. fail:
  1277. free_fs_root(root);
  1278. return ERR_PTR(ret);
  1279. }
  1280. static int btrfs_congested_fn(void *congested_data, int bdi_bits)
  1281. {
  1282. struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
  1283. int ret = 0;
  1284. struct btrfs_device *device;
  1285. struct backing_dev_info *bdi;
  1286. rcu_read_lock();
  1287. list_for_each_entry_rcu(device, &info->fs_devices->devices, dev_list) {
  1288. if (!device->bdev)
  1289. continue;
  1290. bdi = blk_get_backing_dev_info(device->bdev);
  1291. if (bdi && bdi_congested(bdi, bdi_bits)) {
  1292. ret = 1;
  1293. break;
  1294. }
  1295. }
  1296. rcu_read_unlock();
  1297. return ret;
  1298. }
  1299. /*
  1300. * If this fails, caller must call bdi_destroy() to get rid of the
  1301. * bdi again.
  1302. */
  1303. static int setup_bdi(struct btrfs_fs_info *info, struct backing_dev_info *bdi)
  1304. {
  1305. int err;
  1306. bdi->capabilities = BDI_CAP_MAP_COPY;
  1307. err = bdi_setup_and_register(bdi, "btrfs", BDI_CAP_MAP_COPY);
  1308. if (err)
  1309. return err;
  1310. bdi->ra_pages = default_backing_dev_info.ra_pages;
  1311. bdi->congested_fn = btrfs_congested_fn;
  1312. bdi->congested_data = info;
  1313. return 0;
  1314. }
  1315. /*
  1316. * called by the kthread helper functions to finally call the bio end_io
  1317. * functions. This is where read checksum verification actually happens
  1318. */
  1319. static void end_workqueue_fn(struct btrfs_work *work)
  1320. {
  1321. struct bio *bio;
  1322. struct end_io_wq *end_io_wq;
  1323. struct btrfs_fs_info *fs_info;
  1324. int error;
  1325. end_io_wq = container_of(work, struct end_io_wq, work);
  1326. bio = end_io_wq->bio;
  1327. fs_info = end_io_wq->info;
  1328. error = end_io_wq->error;
  1329. bio->bi_private = end_io_wq->private;
  1330. bio->bi_end_io = end_io_wq->end_io;
  1331. kfree(end_io_wq);
  1332. bio_endio(bio, error);
  1333. }
  1334. static int cleaner_kthread(void *arg)
  1335. {
  1336. struct btrfs_root *root = arg;
  1337. do {
  1338. vfs_check_frozen(root->fs_info->sb, SB_FREEZE_WRITE);
  1339. if (!(root->fs_info->sb->s_flags & MS_RDONLY) &&
  1340. mutex_trylock(&root->fs_info->cleaner_mutex)) {
  1341. btrfs_run_delayed_iputs(root);
  1342. btrfs_clean_old_snapshots(root);
  1343. mutex_unlock(&root->fs_info->cleaner_mutex);
  1344. btrfs_run_defrag_inodes(root->fs_info);
  1345. }
  1346. if (!try_to_freeze()) {
  1347. set_current_state(TASK_INTERRUPTIBLE);
  1348. if (!kthread_should_stop())
  1349. schedule();
  1350. __set_current_state(TASK_RUNNING);
  1351. }
  1352. } while (!kthread_should_stop());
  1353. return 0;
  1354. }
  1355. static int transaction_kthread(void *arg)
  1356. {
  1357. struct btrfs_root *root = arg;
  1358. struct btrfs_trans_handle *trans;
  1359. struct btrfs_transaction *cur;
  1360. u64 transid;
  1361. unsigned long now;
  1362. unsigned long delay;
  1363. bool cannot_commit;
  1364. do {
  1365. cannot_commit = false;
  1366. delay = HZ * 30;
  1367. vfs_check_frozen(root->fs_info->sb, SB_FREEZE_WRITE);
  1368. mutex_lock(&root->fs_info->transaction_kthread_mutex);
  1369. spin_lock(&root->fs_info->trans_lock);
  1370. cur = root->fs_info->running_transaction;
  1371. if (!cur) {
  1372. spin_unlock(&root->fs_info->trans_lock);
  1373. goto sleep;
  1374. }
  1375. now = get_seconds();
  1376. if (!cur->blocked &&
  1377. (now < cur->start_time || now - cur->start_time < 30)) {
  1378. spin_unlock(&root->fs_info->trans_lock);
  1379. delay = HZ * 5;
  1380. goto sleep;
  1381. }
  1382. transid = cur->transid;
  1383. spin_unlock(&root->fs_info->trans_lock);
  1384. /* If the file system is aborted, this will always fail. */
  1385. trans = btrfs_join_transaction(root);
  1386. if (IS_ERR(trans)) {
  1387. cannot_commit = true;
  1388. goto sleep;
  1389. }
  1390. if (transid == trans->transid) {
  1391. btrfs_commit_transaction(trans, root);
  1392. } else {
  1393. btrfs_end_transaction(trans, root);
  1394. }
  1395. sleep:
  1396. wake_up_process(root->fs_info->cleaner_kthread);
  1397. mutex_unlock(&root->fs_info->transaction_kthread_mutex);
  1398. if (!try_to_freeze()) {
  1399. set_current_state(TASK_INTERRUPTIBLE);
  1400. if (!kthread_should_stop() &&
  1401. (!btrfs_transaction_blocked(root->fs_info) ||
  1402. cannot_commit))
  1403. schedule_timeout(delay);
  1404. __set_current_state(TASK_RUNNING);
  1405. }
  1406. } while (!kthread_should_stop());
  1407. return 0;
  1408. }
  1409. /*
  1410. * this will find the highest generation in the array of
  1411. * root backups. The index of the highest array is returned,
  1412. * or -1 if we can't find anything.
  1413. *
  1414. * We check to make sure the array is valid by comparing the
  1415. * generation of the latest root in the array with the generation
  1416. * in the super block. If they don't match we pitch it.
  1417. */
  1418. static int find_newest_super_backup(struct btrfs_fs_info *info, u64 newest_gen)
  1419. {
  1420. u64 cur;
  1421. int newest_index = -1;
  1422. struct btrfs_root_backup *root_backup;
  1423. int i;
  1424. for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
  1425. root_backup = info->super_copy->super_roots + i;
  1426. cur = btrfs_backup_tree_root_gen(root_backup);
  1427. if (cur == newest_gen)
  1428. newest_index = i;
  1429. }
  1430. /* check to see if we actually wrapped around */
  1431. if (newest_index == BTRFS_NUM_BACKUP_ROOTS - 1) {
  1432. root_backup = info->super_copy->super_roots;
  1433. cur = btrfs_backup_tree_root_gen(root_backup);
  1434. if (cur == newest_gen)
  1435. newest_index = 0;
  1436. }
  1437. return newest_index;
  1438. }
  1439. /*
  1440. * find the oldest backup so we know where to store new entries
  1441. * in the backup array. This will set the backup_root_index
  1442. * field in the fs_info struct
  1443. */
  1444. static void find_oldest_super_backup(struct btrfs_fs_info *info,
  1445. u64 newest_gen)
  1446. {
  1447. int newest_index = -1;
  1448. newest_index = find_newest_super_backup(info, newest_gen);
  1449. /* if there was garbage in there, just move along */
  1450. if (newest_index == -1) {
  1451. info->backup_root_index = 0;
  1452. } else {
  1453. info->backup_root_index = (newest_index + 1) % BTRFS_NUM_BACKUP_ROOTS;
  1454. }
  1455. }
  1456. /*
  1457. * copy all the root pointers into the super backup array.
  1458. * this will bump the backup pointer by one when it is
  1459. * done
  1460. */
  1461. static void backup_super_roots(struct btrfs_fs_info *info)
  1462. {
  1463. int next_backup;
  1464. struct btrfs_root_backup *root_backup;
  1465. int last_backup;
  1466. next_backup = info->backup_root_index;
  1467. last_backup = (next_backup + BTRFS_NUM_BACKUP_ROOTS - 1) %
  1468. BTRFS_NUM_BACKUP_ROOTS;
  1469. /*
  1470. * just overwrite the last backup if we're at the same generation
  1471. * this happens only at umount
  1472. */
  1473. root_backup = info->super_for_commit->super_roots + last_backup;
  1474. if (btrfs_backup_tree_root_gen(root_backup) ==
  1475. btrfs_header_generation(info->tree_root->node))
  1476. next_backup = last_backup;
  1477. root_backup = info->super_for_commit->super_roots + next_backup;
  1478. /*
  1479. * make sure all of our padding and empty slots get zero filled
  1480. * regardless of which ones we use today
  1481. */
  1482. memset(root_backup, 0, sizeof(*root_backup));
  1483. info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
  1484. btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
  1485. btrfs_set_backup_tree_root_gen(root_backup,
  1486. btrfs_header_generation(info->tree_root->node));
  1487. btrfs_set_backup_tree_root_level(root_backup,
  1488. btrfs_header_level(info->tree_root->node));
  1489. btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
  1490. btrfs_set_backup_chunk_root_gen(root_backup,
  1491. btrfs_header_generation(info->chunk_root->node));
  1492. btrfs_set_backup_chunk_root_level(root_backup,
  1493. btrfs_header_level(info->chunk_root->node));
  1494. btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start);
  1495. btrfs_set_backup_extent_root_gen(root_backup,
  1496. btrfs_header_generation(info->extent_root->node));
  1497. btrfs_set_backup_extent_root_level(root_backup,
  1498. btrfs_header_level(info->extent_root->node));
  1499. /*
  1500. * we might commit during log recovery, which happens before we set
  1501. * the fs_root. Make sure it is valid before we fill it in.
  1502. */
  1503. if (info->fs_root && info->fs_root->node) {
  1504. btrfs_set_backup_fs_root(root_backup,
  1505. info->fs_root->node->start);
  1506. btrfs_set_backup_fs_root_gen(root_backup,
  1507. btrfs_header_generation(info->fs_root->node));
  1508. btrfs_set_backup_fs_root_level(root_backup,
  1509. btrfs_header_level(info->fs_root->node));
  1510. }
  1511. btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
  1512. btrfs_set_backup_dev_root_gen(root_backup,
  1513. btrfs_header_generation(info->dev_root->node));
  1514. btrfs_set_backup_dev_root_level(root_backup,
  1515. btrfs_header_level(info->dev_root->node));
  1516. btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start);
  1517. btrfs_set_backup_csum_root_gen(root_backup,
  1518. btrfs_header_generation(info->csum_root->node));
  1519. btrfs_set_backup_csum_root_level(root_backup,
  1520. btrfs_header_level(info->csum_root->node));
  1521. btrfs_set_backup_total_bytes(root_backup,
  1522. btrfs_super_total_bytes(info->super_copy));
  1523. btrfs_set_backup_bytes_used(root_backup,
  1524. btrfs_super_bytes_used(info->super_copy));
  1525. btrfs_set_backup_num_devices(root_backup,
  1526. btrfs_super_num_devices(info->super_copy));
  1527. /*
  1528. * if we don't copy this out to the super_copy, it won't get remembered
  1529. * for the next commit
  1530. */
  1531. memcpy(&info->super_copy->super_roots,
  1532. &info->super_for_commit->super_roots,
  1533. sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
  1534. }
  1535. /*
  1536. * this copies info out of the root backup array and back into
  1537. * the in-memory super block. It is meant to help iterate through
  1538. * the array, so you send it the number of backups you've already
  1539. * tried and the last backup index you used.
  1540. *
  1541. * this returns -1 when it has tried all the backups
  1542. */
  1543. static noinline int next_root_backup(struct btrfs_fs_info *info,
  1544. struct btrfs_super_block *super,
  1545. int *num_backups_tried, int *backup_index)
  1546. {
  1547. struct btrfs_root_backup *root_backup;
  1548. int newest = *backup_index;
  1549. if (*num_backups_tried == 0) {
  1550. u64 gen = btrfs_super_generation(super);
  1551. newest = find_newest_super_backup(info, gen);
  1552. if (newest == -1)
  1553. return -1;
  1554. *backup_index = newest;
  1555. *num_backups_tried = 1;
  1556. } else if (*num_backups_tried == BTRFS_NUM_BACKUP_ROOTS) {
  1557. /* we've tried all the backups, all done */
  1558. return -1;
  1559. } else {
  1560. /* jump to the next oldest backup */
  1561. newest = (*backup_index + BTRFS_NUM_BACKUP_ROOTS - 1) %
  1562. BTRFS_NUM_BACKUP_ROOTS;
  1563. *backup_index = newest;
  1564. *num_backups_tried += 1;
  1565. }
  1566. root_backup = super->super_roots + newest;
  1567. btrfs_set_super_generation(super,
  1568. btrfs_backup_tree_root_gen(root_backup));
  1569. btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
  1570. btrfs_set_super_root_level(super,
  1571. btrfs_backup_tree_root_level(root_backup));
  1572. btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
  1573. /*
  1574. * fixme: the total bytes and num_devices need to match or we should
  1575. * need a fsck
  1576. */
  1577. btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
  1578. btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
  1579. return 0;
  1580. }
  1581. /* helper to cleanup tree roots */
  1582. static void free_root_pointers(struct btrfs_fs_info *info, int chunk_root)
  1583. {
  1584. free_extent_buffer(info->tree_root->node);
  1585. free_extent_buffer(info->tree_root->commit_root);
  1586. free_extent_buffer(info->dev_root->node);
  1587. free_extent_buffer(info->dev_root->commit_root);
  1588. free_extent_buffer(info->extent_root->node);
  1589. free_extent_buffer(info->extent_root->commit_root);
  1590. free_extent_buffer(info->csum_root->node);
  1591. free_extent_buffer(info->csum_root->commit_root);
  1592. info->tree_root->node = NULL;
  1593. info->tree_root->commit_root = NULL;
  1594. info->dev_root->node = NULL;
  1595. info->dev_root->commit_root = NULL;
  1596. info->extent_root->node = NULL;
  1597. info->extent_root->commit_root = NULL;
  1598. info->csum_root->node = NULL;
  1599. info->csum_root->commit_root = NULL;
  1600. if (chunk_root) {
  1601. free_extent_buffer(info->chunk_root->node);
  1602. free_extent_buffer(info->chunk_root->commit_root);
  1603. info->chunk_root->node = NULL;
  1604. info->chunk_root->commit_root = NULL;
  1605. }
  1606. }
  1607. int open_ctree(struct super_block *sb,
  1608. struct btrfs_fs_devices *fs_devices,
  1609. char *options)
  1610. {
  1611. u32 sectorsize;
  1612. u32 nodesize;
  1613. u32 leafsize;
  1614. u32 blocksize;
  1615. u32 stripesize;
  1616. u64 generation;
  1617. u64 features;
  1618. struct btrfs_key location;
  1619. struct buffer_head *bh;
  1620. struct btrfs_super_block *disk_super;
  1621. struct btrfs_fs_info *fs_info = btrfs_sb(sb);
  1622. struct btrfs_root *tree_root;
  1623. struct btrfs_root *extent_root;
  1624. struct btrfs_root *csum_root;
  1625. struct btrfs_root *chunk_root;
  1626. struct btrfs_root *dev_root;
  1627. struct btrfs_root *log_tree_root;
  1628. int ret;
  1629. int err = -EINVAL;
  1630. int num_backups_tried = 0;
  1631. int backup_index = 0;
  1632. tree_root = fs_info->tree_root = btrfs_alloc_root(fs_info);
  1633. extent_root = fs_info->extent_root = btrfs_alloc_root(fs_info);
  1634. csum_root = fs_info->csum_root = btrfs_alloc_root(fs_info);
  1635. chunk_root = fs_info->chunk_root = btrfs_alloc_root(fs_info);
  1636. dev_root = fs_info->dev_root = btrfs_alloc_root(fs_info);
  1637. if (!tree_root || !extent_root || !csum_root ||
  1638. !chunk_root || !dev_root) {
  1639. err = -ENOMEM;
  1640. goto fail;
  1641. }
  1642. ret = init_srcu_struct(&fs_info->subvol_srcu);
  1643. if (ret) {
  1644. err = ret;
  1645. goto fail;
  1646. }
  1647. ret = setup_bdi(fs_info, &fs_info->bdi);
  1648. if (ret) {
  1649. err = ret;
  1650. goto fail_srcu;
  1651. }
  1652. fs_info->btree_inode = new_inode(sb);
  1653. if (!fs_info->btree_inode) {
  1654. err = -ENOMEM;
  1655. goto fail_bdi;
  1656. }
  1657. mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
  1658. INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
  1659. INIT_LIST_HEAD(&fs_info->trans_list);
  1660. INIT_LIST_HEAD(&fs_info->dead_roots);
  1661. INIT_LIST_HEAD(&fs_info->delayed_iputs);
  1662. INIT_LIST_HEAD(&fs_info->hashers);
  1663. INIT_LIST_HEAD(&fs_info->delalloc_inodes);
  1664. INIT_LIST_HEAD(&fs_info->ordered_operations);
  1665. INIT_LIST_HEAD(&fs_info->caching_block_groups);
  1666. spin_lock_init(&fs_info->delalloc_lock);
  1667. spin_lock_init(&fs_info->trans_lock);
  1668. spin_lock_init(&fs_info->ref_cache_lock);
  1669. spin_lock_init(&fs_info->fs_roots_radix_lock);
  1670. spin_lock_init(&fs_info->delayed_iput_lock);
  1671. spin_lock_init(&fs_info->defrag_inodes_lock);
  1672. spin_lock_init(&fs_info->free_chunk_lock);
  1673. mutex_init(&fs_info->reloc_mutex);
  1674. init_completion(&fs_info->kobj_unregister);
  1675. INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
  1676. INIT_LIST_HEAD(&fs_info->space_info);
  1677. btrfs_mapping_init(&fs_info->mapping_tree);
  1678. btrfs_init_block_rsv(&fs_info->global_block_rsv);
  1679. btrfs_init_block_rsv(&fs_info->delalloc_block_rsv);
  1680. btrfs_init_block_rsv(&fs_info->trans_block_rsv);
  1681. btrfs_init_block_rsv(&fs_info->chunk_block_rsv);
  1682. btrfs_init_block_rsv(&fs_info->empty_block_rsv);
  1683. btrfs_init_block_rsv(&fs_info->delayed_block_rsv);
  1684. atomic_set(&fs_info->nr_async_submits, 0);
  1685. atomic_set(&fs_info->async_delalloc_pages, 0);
  1686. atomic_set(&fs_info->async_submit_draining, 0);
  1687. atomic_set(&fs_info->nr_async_bios, 0);
  1688. atomic_set(&fs_info->defrag_running, 0);
  1689. fs_info->sb = sb;
  1690. fs_info->max_inline = 8192 * 1024;
  1691. fs_info->metadata_ratio = 0;
  1692. fs_info->defrag_inodes = RB_ROOT;
  1693. fs_info->trans_no_join = 0;
  1694. fs_info->free_chunk_space = 0;
  1695. /* readahead state */
  1696. INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_WAIT);
  1697. spin_lock_init(&fs_info->reada_lock);
  1698. fs_info->thread_pool_size = min_t(unsigned long,
  1699. num_online_cpus() + 2, 8);
  1700. INIT_LIST_HEAD(&fs_info->ordered_extents);
  1701. spin_lock_init(&fs_info->ordered_extent_lock);
  1702. fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
  1703. GFP_NOFS);
  1704. if (!fs_info->delayed_root) {
  1705. err = -ENOMEM;
  1706. goto fail_iput;
  1707. }
  1708. btrfs_init_delayed_root(fs_info->delayed_root);
  1709. mutex_init(&fs_info->scrub_lock);
  1710. atomic_set(&fs_info->scrubs_running, 0);
  1711. atomic_set(&fs_info->scrub_pause_req, 0);
  1712. atomic_set(&fs_info->scrubs_paused, 0);
  1713. atomic_set(&fs_info->scrub_cancel_req, 0);
  1714. init_waitqueue_head(&fs_info->scrub_pause_wait);
  1715. init_rwsem(&fs_info->scrub_super_lock);
  1716. fs_info->scrub_workers_refcnt = 0;
  1717. #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
  1718. fs_info->check_integrity_print_mask = 0;
  1719. #endif
  1720. spin_lock_init(&fs_info->balance_lock);
  1721. mutex_init(&fs_info->balance_mutex);
  1722. atomic_set(&fs_info->balance_running, 0);
  1723. atomic_set(&fs_info->balance_pause_req, 0);
  1724. atomic_set(&fs_info->balance_cancel_req, 0);
  1725. fs_info->balance_ctl = NULL;
  1726. init_waitqueue_head(&fs_info->balance_wait_q);
  1727. sb->s_blocksize = 4096;
  1728. sb->s_blocksize_bits = blksize_bits(4096);
  1729. sb->s_bdi = &fs_info->bdi;
  1730. fs_info->btree_inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
  1731. set_nlink(fs_info->btree_inode, 1);
  1732. /*
  1733. * we set the i_size on the btree inode to the max possible int.
  1734. * the real end of the address space is determined by all of
  1735. * the devices in the system
  1736. */
  1737. fs_info->btree_inode->i_size = OFFSET_MAX;
  1738. fs_info->btree_inode->i_mapping->a_ops = &btree_aops;
  1739. fs_info->btree_inode->i_mapping->backing_dev_info = &fs_info->bdi;
  1740. RB_CLEAR_NODE(&BTRFS_I(fs_info->btree_inode)->rb_node);
  1741. extent_io_tree_init(&BTRFS_I(fs_info->btree_inode)->io_tree,
  1742. fs_info->btree_inode->i_mapping);
  1743. BTRFS_I(fs_info->btree_inode)->io_tree.track_uptodate = 0;
  1744. extent_map_tree_init(&BTRFS_I(fs_info->btree_inode)->extent_tree);
  1745. BTRFS_I(fs_info->btree_inode)->io_tree.ops = &btree_extent_io_ops;
  1746. BTRFS_I(fs_info->btree_inode)->root = tree_root;
  1747. memset(&BTRFS_I(fs_info->btree_inode)->location, 0,
  1748. sizeof(struct btrfs_key));
  1749. BTRFS_I(fs_info->btree_inode)->dummy_inode = 1;
  1750. insert_inode_hash(fs_info->btree_inode);
  1751. spin_lock_init(&fs_info->block_group_cache_lock);
  1752. fs_info->block_group_cache_tree = RB_ROOT;
  1753. extent_io_tree_init(&fs_info->freed_extents[0],
  1754. fs_info->btree_inode->i_mapping);
  1755. extent_io_tree_init(&fs_info->freed_extents[1],
  1756. fs_info->btree_inode->i_mapping);
  1757. fs_info->pinned_extents = &fs_info->freed_extents[0];
  1758. fs_info->do_barriers = 1;
  1759. mutex_init(&fs_info->ordered_operations_mutex);
  1760. mutex_init(&fs_info->tree_log_mutex);
  1761. mutex_init(&fs_info->chunk_mutex);
  1762. mutex_init(&fs_info->transaction_kthread_mutex);
  1763. mutex_init(&fs_info->cleaner_mutex);
  1764. mutex_init(&fs_info->volume_mutex);
  1765. init_rwsem(&fs_info->extent_commit_sem);
  1766. init_rwsem(&fs_info->cleanup_work_sem);
  1767. init_rwsem(&fs_info->subvol_sem);
  1768. btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
  1769. btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
  1770. init_waitqueue_head(&fs_info->transaction_throttle);
  1771. init_waitqueue_head(&fs_info->transaction_wait);
  1772. init_waitqueue_head(&fs_info->transaction_blocked_wait);
  1773. init_waitqueue_head(&fs_info->async_submit_wait);
  1774. __setup_root(4096, 4096, 4096, 4096, tree_root,
  1775. fs_info, BTRFS_ROOT_TREE_OBJECTID);
  1776. invalidate_bdev(fs_devices->latest_bdev);
  1777. bh = btrfs_read_dev_super(fs_devices->latest_bdev);
  1778. if (!bh) {
  1779. err = -EINVAL;
  1780. goto fail_alloc;
  1781. }
  1782. memcpy(fs_info->super_copy, bh->b_data, sizeof(*fs_info->super_copy));
  1783. memcpy(fs_info->super_for_commit, fs_info->super_copy,
  1784. sizeof(*fs_info->super_for_commit));
  1785. brelse(bh);
  1786. memcpy(fs_info->fsid, fs_info->super_copy->fsid, BTRFS_FSID_SIZE);
  1787. disk_super = fs_info->super_copy;
  1788. if (!btrfs_super_root(disk_super))
  1789. goto fail_alloc;
  1790. /* check FS state, whether FS is broken. */
  1791. fs_info->fs_state |= btrfs_super_flags(disk_super);
  1792. ret = btrfs_check_super_valid(fs_info, sb->s_flags & MS_RDONLY);
  1793. if (ret) {
  1794. printk(KERN_ERR "btrfs: superblock contains fatal errors\n");
  1795. err = ret;
  1796. goto fail_alloc;
  1797. }
  1798. /*
  1799. * run through our array of backup supers and setup
  1800. * our ring pointer to the oldest one
  1801. */
  1802. generation = btrfs_super_generation(disk_super);
  1803. find_oldest_super_backup(fs_info, generation);
  1804. /*
  1805. * In the long term, we'll store the compression type in the super
  1806. * block, and it'll be used for per file compression control.
  1807. */
  1808. fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
  1809. ret = btrfs_parse_options(tree_root, options);
  1810. if (ret) {
  1811. err = ret;
  1812. goto fail_alloc;
  1813. }
  1814. features = btrfs_super_incompat_flags(disk_super) &
  1815. ~BTRFS_FEATURE_INCOMPAT_SUPP;
  1816. if (features) {
  1817. printk(KERN_ERR "BTRFS: couldn't mount because of "
  1818. "unsupported optional features (%Lx).\n",
  1819. (unsigned long long)features);
  1820. err = -EINVAL;
  1821. goto fail_alloc;
  1822. }
  1823. if (btrfs_super_leafsize(disk_super) !=
  1824. btrfs_super_nodesize(disk_super)) {
  1825. printk(KERN_ERR "BTRFS: couldn't mount because metadata "
  1826. "blocksizes don't match. node %d leaf %d\n",
  1827. btrfs_super_nodesize(disk_super),
  1828. btrfs_super_leafsize(disk_super));
  1829. err = -EINVAL;
  1830. goto fail_alloc;
  1831. }
  1832. if (btrfs_super_leafsize(disk_super) > BTRFS_MAX_METADATA_BLOCKSIZE) {
  1833. printk(KERN_ERR "BTRFS: couldn't mount because metadata "
  1834. "blocksize (%d) was too large\n",
  1835. btrfs_super_leafsize(disk_super));
  1836. err = -EINVAL;
  1837. goto fail_alloc;
  1838. }
  1839. features = btrfs_super_incompat_flags(disk_super);
  1840. features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
  1841. if (tree_root->fs_info->compress_type & BTRFS_COMPRESS_LZO)
  1842. features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
  1843. /*
  1844. * flag our filesystem as having big metadata blocks if
  1845. * they are bigger than the page size
  1846. */
  1847. if (btrfs_super_leafsize(disk_super) > PAGE_CACHE_SIZE) {
  1848. if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA))
  1849. printk(KERN_INFO "btrfs flagging fs with big metadata feature\n");
  1850. features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
  1851. }
  1852. nodesize = btrfs_super_nodesize(disk_super);
  1853. leafsize = btrfs_super_leafsize(disk_super);
  1854. sectorsize = btrfs_super_sectorsize(disk_super);
  1855. stripesize = btrfs_super_stripesize(disk_super);
  1856. /*
  1857. * mixed block groups end up with duplicate but slightly offset
  1858. * extent buffers for the same range. It leads to corruptions
  1859. */
  1860. if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
  1861. (sectorsize != leafsize)) {
  1862. printk(KERN_WARNING "btrfs: unequal leaf/node/sector sizes "
  1863. "are not allowed for mixed block groups on %s\n",
  1864. sb->s_id);
  1865. goto fail_alloc;
  1866. }
  1867. btrfs_set_super_incompat_flags(disk_super, features);
  1868. features = btrfs_super_compat_ro_flags(disk_super) &
  1869. ~BTRFS_FEATURE_COMPAT_RO_SUPP;
  1870. if (!(sb->s_flags & MS_RDONLY) && features) {
  1871. printk(KERN_ERR "BTRFS: couldn't mount RDWR because of "
  1872. "unsupported option features (%Lx).\n",
  1873. (unsigned long long)features);
  1874. err = -EINVAL;
  1875. goto fail_alloc;
  1876. }
  1877. btrfs_init_workers(&fs_info->generic_worker,
  1878. "genwork", 1, NULL);
  1879. btrfs_init_workers(&fs_info->workers, "worker",
  1880. fs_info->thread_pool_size,
  1881. &fs_info->generic_worker);
  1882. btrfs_init_workers(&fs_info->delalloc_workers, "delalloc",
  1883. fs_info->thread_pool_size,
  1884. &fs_info->generic_worker);
  1885. btrfs_init_workers(&fs_info->submit_workers, "submit",
  1886. min_t(u64, fs_devices->num_devices,
  1887. fs_info->thread_pool_size),
  1888. &fs_info->generic_worker);
  1889. btrfs_init_workers(&fs_info->caching_workers, "cache",
  1890. 2, &fs_info->generic_worker);
  1891. /* a higher idle thresh on the submit workers makes it much more
  1892. * likely that bios will be send down in a sane order to the
  1893. * devices
  1894. */
  1895. fs_info->submit_workers.idle_thresh = 64;
  1896. fs_info->workers.idle_thresh = 16;
  1897. fs_info->workers.ordered = 1;
  1898. fs_info->delalloc_workers.idle_thresh = 2;
  1899. fs_info->delalloc_workers.ordered = 1;
  1900. btrfs_init_workers(&fs_info->fixup_workers, "fixup", 1,
  1901. &fs_info->generic_worker);
  1902. btrfs_init_workers(&fs_info->endio_workers, "endio",
  1903. fs_info->thread_pool_size,
  1904. &fs_info->generic_worker);
  1905. btrfs_init_workers(&fs_info->endio_meta_workers, "endio-meta",
  1906. fs_info->thread_pool_size,
  1907. &fs_info->generic_worker);
  1908. btrfs_init_workers(&fs_info->endio_meta_write_workers,
  1909. "endio-meta-write", fs_info->thread_pool_size,
  1910. &fs_info->generic_worker);
  1911. btrfs_init_workers(&fs_info->endio_write_workers, "endio-write",
  1912. fs_info->thread_pool_size,
  1913. &fs_info->generic_worker);
  1914. btrfs_init_workers(&fs_info->endio_freespace_worker, "freespace-write",
  1915. 1, &fs_info->generic_worker);
  1916. btrfs_init_workers(&fs_info->delayed_workers, "delayed-meta",
  1917. fs_info->thread_pool_size,
  1918. &fs_info->generic_worker);
  1919. btrfs_init_workers(&fs_info->readahead_workers, "readahead",
  1920. fs_info->thread_pool_size,
  1921. &fs_info->generic_worker);
  1922. /*
  1923. * endios are largely parallel and should have a very
  1924. * low idle thresh
  1925. */
  1926. fs_info->endio_workers.idle_thresh = 4;
  1927. fs_info->endio_meta_workers.idle_thresh = 4;
  1928. fs_info->endio_write_workers.idle_thresh = 2;
  1929. fs_info->endio_meta_write_workers.idle_thresh = 2;
  1930. fs_info->readahead_workers.idle_thresh = 2;
  1931. /*
  1932. * btrfs_start_workers can really only fail because of ENOMEM so just
  1933. * return -ENOMEM if any of these fail.
  1934. */
  1935. ret = btrfs_start_workers(&fs_info->workers);
  1936. ret |= btrfs_start_workers(&fs_info->generic_worker);
  1937. ret |= btrfs_start_workers(&fs_info->submit_workers);
  1938. ret |= btrfs_start_workers(&fs_info->delalloc_workers);
  1939. ret |= btrfs_start_workers(&fs_info->fixup_workers);
  1940. ret |= btrfs_start_workers(&fs_info->endio_workers);
  1941. ret |= btrfs_start_workers(&fs_info->endio_meta_workers);
  1942. ret |= btrfs_start_workers(&fs_info->endio_meta_write_workers);
  1943. ret |= btrfs_start_workers(&fs_info->endio_write_workers);
  1944. ret |= btrfs_start_workers(&fs_info->endio_freespace_worker);
  1945. ret |= btrfs_start_workers(&fs_info->delayed_workers);
  1946. ret |= btrfs_start_workers(&fs_info->caching_workers);
  1947. ret |= btrfs_start_workers(&fs_info->readahead_workers);
  1948. if (ret) {
  1949. ret = -ENOMEM;
  1950. goto fail_sb_buffer;
  1951. }
  1952. fs_info->bdi.ra_pages *= btrfs_super_num_devices(disk_super);
  1953. fs_info->bdi.ra_pages = max(fs_info->bdi.ra_pages,
  1954. 4 * 1024 * 1024 / PAGE_CACHE_SIZE);
  1955. tree_root->nodesize = nodesize;
  1956. tree_root->leafsize = leafsize;
  1957. tree_root->sectorsize = sectorsize;
  1958. tree_root->stripesize = stripesize;
  1959. sb->s_blocksize = sectorsize;
  1960. sb->s_blocksize_bits = blksize_bits(sectorsize);
  1961. if (strncmp((char *)(&disk_super->magic), BTRFS_MAGIC,
  1962. sizeof(disk_super->magic))) {
  1963. printk(KERN_INFO "btrfs: valid FS not found on %s\n", sb->s_id);
  1964. goto fail_sb_buffer;
  1965. }
  1966. if (sectorsize < PAGE_SIZE) {
  1967. printk(KERN_WARNING "btrfs: Incompatible sector size "
  1968. "found on %s\n", sb->s_id);
  1969. goto fail_sb_buffer;
  1970. }
  1971. mutex_lock(&fs_info->chunk_mutex);
  1972. ret = btrfs_read_sys_array(tree_root);
  1973. mutex_unlock(&fs_info->chunk_mutex);
  1974. if (ret) {
  1975. printk(KERN_WARNING "btrfs: failed to read the system "
  1976. "array on %s\n", sb->s_id);
  1977. goto fail_sb_buffer;
  1978. }
  1979. blocksize = btrfs_level_size(tree_root,
  1980. btrfs_super_chunk_root_level(disk_super));
  1981. generation = btrfs_super_chunk_root_generation(disk_super);
  1982. __setup_root(nodesize, leafsize, sectorsize, stripesize,
  1983. chunk_root, fs_info, BTRFS_CHUNK_TREE_OBJECTID);
  1984. chunk_root->node = read_tree_block(chunk_root,
  1985. btrfs_super_chunk_root(disk_super),
  1986. blocksize, generation);
  1987. BUG_ON(!chunk_root->node); /* -ENOMEM */
  1988. if (!test_bit(EXTENT_BUFFER_UPTODATE, &chunk_root->node->bflags)) {
  1989. printk(KERN_WARNING "btrfs: failed to read chunk root on %s\n",
  1990. sb->s_id);
  1991. goto fail_tree_roots;
  1992. }
  1993. btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
  1994. chunk_root->commit_root = btrfs_root_node(chunk_root);
  1995. read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
  1996. (unsigned long)btrfs_header_chunk_tree_uuid(chunk_root->node),
  1997. BTRFS_UUID_SIZE);
  1998. ret = btrfs_read_chunk_tree(chunk_root);
  1999. if (ret) {
  2000. printk(KERN_WARNING "btrfs: failed to read chunk tree on %s\n",
  2001. sb->s_id);
  2002. goto fail_tree_roots;
  2003. }
  2004. btrfs_close_extra_devices(fs_devices);
  2005. if (!fs_devices->latest_bdev) {
  2006. printk(KERN_CRIT "btrfs: failed to read devices on %s\n",
  2007. sb->s_id);
  2008. goto fail_tree_roots;
  2009. }
  2010. retry_root_backup:
  2011. blocksize = btrfs_level_size(tree_root,
  2012. btrfs_super_root_level(disk_super));
  2013. generation = btrfs_super_generation(disk_super);
  2014. tree_root->node = read_tree_block(tree_root,
  2015. btrfs_super_root(disk_super),
  2016. blocksize, generation);
  2017. if (!tree_root->node ||
  2018. !test_bit(EXTENT_BUFFER_UPTODATE, &tree_root->node->bflags)) {
  2019. printk(KERN_WARNING "btrfs: failed to read tree root on %s\n",
  2020. sb->s_id);
  2021. goto recovery_tree_root;
  2022. }
  2023. btrfs_set_root_node(&tree_root->root_item, tree_root->node);
  2024. tree_root->commit_root = btrfs_root_node(tree_root);
  2025. ret = find_and_setup_root(tree_root, fs_info,
  2026. BTRFS_EXTENT_TREE_OBJECTID, extent_root);
  2027. if (ret)
  2028. goto recovery_tree_root;
  2029. extent_root->track_dirty = 1;
  2030. ret = find_and_setup_root(tree_root, fs_info,
  2031. BTRFS_DEV_TREE_OBJECTID, dev_root);
  2032. if (ret)
  2033. goto recovery_tree_root;
  2034. dev_root->track_dirty = 1;
  2035. ret = find_and_setup_root(tree_root, fs_info,
  2036. BTRFS_CSUM_TREE_OBJECTID, csum_root);
  2037. if (ret)
  2038. goto recovery_tree_root;
  2039. csum_root->track_dirty = 1;
  2040. fs_info->generation = generation;
  2041. fs_info->last_trans_committed = generation;
  2042. ret = btrfs_init_space_info(fs_info);
  2043. if (ret) {
  2044. printk(KERN_ERR "Failed to initial space info: %d\n", ret);
  2045. goto fail_block_groups;
  2046. }
  2047. ret = btrfs_read_block_groups(extent_root);
  2048. if (ret) {
  2049. printk(KERN_ERR "Failed to read block groups: %d\n", ret);
  2050. goto fail_block_groups;
  2051. }
  2052. fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
  2053. "btrfs-cleaner");
  2054. if (IS_ERR(fs_info->cleaner_kthread))
  2055. goto fail_block_groups;
  2056. fs_info->transaction_kthread = kthread_run(transaction_kthread,
  2057. tree_root,
  2058. "btrfs-transaction");
  2059. if (IS_ERR(fs_info->transaction_kthread))
  2060. goto fail_cleaner;
  2061. if (!btrfs_test_opt(tree_root, SSD) &&
  2062. !btrfs_test_opt(tree_root, NOSSD) &&
  2063. !fs_info->fs_devices->rotating) {
  2064. printk(KERN_INFO "Btrfs detected SSD devices, enabling SSD "
  2065. "mode\n");
  2066. btrfs_set_opt(fs_info->mount_opt, SSD);
  2067. }
  2068. #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
  2069. if (btrfs_test_opt(tree_root, CHECK_INTEGRITY)) {
  2070. ret = btrfsic_mount(tree_root, fs_devices,
  2071. btrfs_test_opt(tree_root,
  2072. CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ?
  2073. 1 : 0,
  2074. fs_info->check_integrity_print_mask);
  2075. if (ret)
  2076. printk(KERN_WARNING "btrfs: failed to initialize"
  2077. " integrity check module %s\n", sb->s_id);
  2078. }
  2079. #endif
  2080. /* do not make disk changes in broken FS */
  2081. if (btrfs_super_log_root(disk_super) != 0 &&
  2082. !(fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR)) {
  2083. u64 bytenr = btrfs_super_log_root(disk_super);
  2084. if (fs_devices->rw_devices == 0) {
  2085. printk(KERN_WARNING "Btrfs log replay required "
  2086. "on RO media\n");
  2087. err = -EIO;
  2088. goto fail_trans_kthread;
  2089. }
  2090. blocksize =
  2091. btrfs_level_size(tree_root,
  2092. btrfs_super_log_root_level(disk_super));
  2093. log_tree_root = btrfs_alloc_root(fs_info);
  2094. if (!log_tree_root) {
  2095. err = -ENOMEM;
  2096. goto fail_trans_kthread;
  2097. }
  2098. __setup_root(nodesize, leafsize, sectorsize, stripesize,
  2099. log_tree_root, fs_info, BTRFS_TREE_LOG_OBJECTID);
  2100. log_tree_root->node = read_tree_block(tree_root, bytenr,
  2101. blocksize,
  2102. generation + 1);
  2103. /* returns with log_tree_root freed on success */
  2104. ret = btrfs_recover_log_trees(log_tree_root);
  2105. if (ret) {
  2106. btrfs_error(tree_root->fs_info, ret,
  2107. "Failed to recover log tree");
  2108. free_extent_buffer(log_tree_root->node);
  2109. kfree(log_tree_root);
  2110. goto fail_trans_kthread;
  2111. }
  2112. if (sb->s_flags & MS_RDONLY) {
  2113. ret = btrfs_commit_super(tree_root);
  2114. if (ret)
  2115. goto fail_trans_kthread;
  2116. }
  2117. }
  2118. ret = btrfs_find_orphan_roots(tree_root);
  2119. if (ret)
  2120. goto fail_trans_kthread;
  2121. if (!(sb->s_flags & MS_RDONLY)) {
  2122. ret = btrfs_cleanup_fs_roots(fs_info);
  2123. if (ret) {
  2124. }
  2125. ret = btrfs_recover_relocation(tree_root);
  2126. if (ret < 0) {
  2127. printk(KERN_WARNING
  2128. "btrfs: failed to recover relocation\n");
  2129. err = -EINVAL;
  2130. goto fail_trans_kthread;
  2131. }
  2132. }
  2133. location.objectid = BTRFS_FS_TREE_OBJECTID;
  2134. location.type = BTRFS_ROOT_ITEM_KEY;
  2135. location.offset = (u64)-1;
  2136. fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location);
  2137. if (!fs_info->fs_root)
  2138. goto fail_trans_kthread;
  2139. if (IS_ERR(fs_info->fs_root)) {
  2140. err = PTR_ERR(fs_info->fs_root);
  2141. goto fail_trans_kthread;
  2142. }
  2143. if (!(sb->s_flags & MS_RDONLY)) {
  2144. down_read(&fs_info->cleanup_work_sem);
  2145. err = btrfs_orphan_cleanup(fs_info->fs_root);
  2146. if (!err)
  2147. err = btrfs_orphan_cleanup(fs_info->tree_root);
  2148. up_read(&fs_info->cleanup_work_sem);
  2149. if (!err)
  2150. err = btrfs_recover_balance(fs_info->tree_root);
  2151. if (err) {
  2152. close_ctree(tree_root);
  2153. return err;
  2154. }
  2155. }
  2156. return 0;
  2157. fail_trans_kthread:
  2158. kthread_stop(fs_info->transaction_kthread);
  2159. fail_cleaner:
  2160. kthread_stop(fs_info->cleaner_kthread);
  2161. /*
  2162. * make sure we're done with the btree inode before we stop our
  2163. * kthreads
  2164. */
  2165. filemap_write_and_wait(fs_info->btree_inode->i_mapping);
  2166. invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
  2167. fail_block_groups:
  2168. btrfs_free_block_groups(fs_info);
  2169. fail_tree_roots:
  2170. free_root_pointers(fs_info, 1);
  2171. fail_sb_buffer:
  2172. btrfs_stop_workers(&fs_info->generic_worker);
  2173. btrfs_stop_workers(&fs_info->readahead_workers);
  2174. btrfs_stop_workers(&fs_info->fixup_workers);
  2175. btrfs_stop_workers(&fs_info->delalloc_workers);
  2176. btrfs_stop_workers(&fs_info->workers);
  2177. btrfs_stop_workers(&fs_info->endio_workers);
  2178. btrfs_stop_workers(&fs_info->endio_meta_workers);
  2179. btrfs_stop_workers(&fs_info->endio_meta_write_workers);
  2180. btrfs_stop_workers(&fs_info->endio_write_workers);
  2181. btrfs_stop_workers(&fs_info->endio_freespace_worker);
  2182. btrfs_stop_workers(&fs_info->submit_workers);
  2183. btrfs_stop_workers(&fs_info->delayed_workers);
  2184. btrfs_stop_workers(&fs_info->caching_workers);
  2185. fail_alloc:
  2186. fail_iput:
  2187. btrfs_mapping_tree_free(&fs_info->mapping_tree);
  2188. invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
  2189. iput(fs_info->btree_inode);
  2190. fail_bdi:
  2191. bdi_destroy(&fs_info->bdi);
  2192. fail_srcu:
  2193. cleanup_srcu_struct(&fs_info->subvol_srcu);
  2194. fail:
  2195. btrfs_close_devices(fs_info->fs_devices);
  2196. return err;
  2197. recovery_tree_root:
  2198. if (!btrfs_test_opt(tree_root, RECOVERY))
  2199. goto fail_tree_roots;
  2200. free_root_pointers(fs_info, 0);
  2201. /* don't use the log in recovery mode, it won't be valid */
  2202. btrfs_set_super_log_root(disk_super, 0);
  2203. /* we can't trust the free space cache either */
  2204. btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);
  2205. ret = next_root_backup(fs_info, fs_info->super_copy,
  2206. &num_backups_tried, &backup_index);
  2207. if (ret == -1)
  2208. goto fail_block_groups;
  2209. goto retry_root_backup;
  2210. }
  2211. static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate)
  2212. {
  2213. char b[BDEVNAME_SIZE];
  2214. if (uptodate) {
  2215. set_buffer_uptodate(bh);
  2216. } else {
  2217. printk_ratelimited(KERN_WARNING "lost page write due to "
  2218. "I/O error on %s\n",
  2219. bdevname(bh->b_bdev, b));
  2220. /* note, we dont' set_buffer_write_io_error because we have
  2221. * our own ways of dealing with the IO errors
  2222. */
  2223. clear_buffer_uptodate(bh);
  2224. }
  2225. unlock_buffer(bh);
  2226. put_bh(bh);
  2227. }
  2228. struct buffer_head *btrfs_read_dev_super(struct block_device *bdev)
  2229. {
  2230. struct buffer_head *bh;
  2231. struct buffer_head *latest = NULL;
  2232. struct btrfs_super_block *super;
  2233. int i;
  2234. u64 transid = 0;
  2235. u64 bytenr;
  2236. /* we would like to check all the supers, but that would make
  2237. * a btrfs mount succeed after a mkfs from a different FS.
  2238. * So, we need to add a special mount option to scan for
  2239. * later supers, using BTRFS_SUPER_MIRROR_MAX instead
  2240. */
  2241. for (i = 0; i < 1; i++) {
  2242. bytenr = btrfs_sb_offset(i);
  2243. if (bytenr + 4096 >= i_size_read(bdev->bd_inode))
  2244. break;
  2245. bh = __bread(bdev, bytenr / 4096, 4096);
  2246. if (!bh)
  2247. continue;
  2248. super = (struct btrfs_super_block *)bh->b_data;
  2249. if (btrfs_super_bytenr(super) != bytenr ||
  2250. strncmp((char *)(&super->magic), BTRFS_MAGIC,
  2251. sizeof(super->magic))) {
  2252. brelse(bh);
  2253. continue;
  2254. }
  2255. if (!latest || btrfs_super_generation(super) > transid) {
  2256. brelse(latest);
  2257. latest = bh;
  2258. transid = btrfs_super_generation(super);
  2259. } else {
  2260. brelse(bh);
  2261. }
  2262. }
  2263. return latest;
  2264. }
  2265. /*
  2266. * this should be called twice, once with wait == 0 and
  2267. * once with wait == 1. When wait == 0 is done, all the buffer heads
  2268. * we write are pinned.
  2269. *
  2270. * They are released when wait == 1 is done.
  2271. * max_mirrors must be the same for both runs, and it indicates how
  2272. * many supers on this one device should be written.
  2273. *
  2274. * max_mirrors == 0 means to write them all.
  2275. */
  2276. static int write_dev_supers(struct btrfs_device *device,
  2277. struct btrfs_super_block *sb,
  2278. int do_barriers, int wait, int max_mirrors)
  2279. {
  2280. struct buffer_head *bh;
  2281. int i;
  2282. int ret;
  2283. int errors = 0;
  2284. u32 crc;
  2285. u64 bytenr;
  2286. if (max_mirrors == 0)
  2287. max_mirrors = BTRFS_SUPER_MIRROR_MAX;
  2288. for (i = 0; i < max_mirrors; i++) {
  2289. bytenr = btrfs_sb_offset(i);
  2290. if (bytenr + BTRFS_SUPER_INFO_SIZE >= device->total_bytes)
  2291. break;
  2292. if (wait) {
  2293. bh = __find_get_block(device->bdev, bytenr / 4096,
  2294. BTRFS_SUPER_INFO_SIZE);
  2295. BUG_ON(!bh);
  2296. wait_on_buffer(bh);
  2297. if (!buffer_uptodate(bh))
  2298. errors++;
  2299. /* drop our reference */
  2300. brelse(bh);
  2301. /* drop the reference from the wait == 0 run */
  2302. brelse(bh);
  2303. continue;
  2304. } else {
  2305. btrfs_set_super_bytenr(sb, bytenr);
  2306. crc = ~(u32)0;
  2307. crc = btrfs_csum_data(NULL, (char *)sb +
  2308. BTRFS_CSUM_SIZE, crc,
  2309. BTRFS_SUPER_INFO_SIZE -
  2310. BTRFS_CSUM_SIZE);
  2311. btrfs_csum_final(crc, sb->csum);
  2312. /*
  2313. * one reference for us, and we leave it for the
  2314. * caller
  2315. */
  2316. bh = __getblk(device->bdev, bytenr / 4096,
  2317. BTRFS_SUPER_INFO_SIZE);
  2318. memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE);
  2319. /* one reference for submit_bh */
  2320. get_bh(bh);
  2321. set_buffer_uptodate(bh);
  2322. lock_buffer(bh);
  2323. bh->b_end_io = btrfs_end_buffer_write_sync;
  2324. }
  2325. /*
  2326. * we fua the first super. The others we allow
  2327. * to go down lazy.
  2328. */
  2329. ret = btrfsic_submit_bh(WRITE_FUA, bh);
  2330. if (ret)
  2331. errors++;
  2332. }
  2333. return errors < i ? 0 : -1;
  2334. }
  2335. /*
  2336. * endio for the write_dev_flush, this will wake anyone waiting
  2337. * for the barrier when it is done
  2338. */
  2339. static void btrfs_end_empty_barrier(struct bio *bio, int err)
  2340. {
  2341. if (err) {
  2342. if (err == -EOPNOTSUPP)
  2343. set_bit(BIO_EOPNOTSUPP, &bio->bi_flags);
  2344. clear_bit(BIO_UPTODATE, &bio->bi_flags);
  2345. }
  2346. if (bio->bi_private)
  2347. complete(bio->bi_private);
  2348. bio_put(bio);
  2349. }
  2350. /*
  2351. * trigger flushes for one the devices. If you pass wait == 0, the flushes are
  2352. * sent down. With wait == 1, it waits for the previous flush.
  2353. *
  2354. * any device where the flush fails with eopnotsupp are flagged as not-barrier
  2355. * capable
  2356. */
  2357. static int write_dev_flush(struct btrfs_device *device, int wait)
  2358. {
  2359. struct bio *bio;
  2360. int ret = 0;
  2361. if (device->nobarriers)
  2362. return 0;
  2363. if (wait) {
  2364. bio = device->flush_bio;
  2365. if (!bio)
  2366. return 0;
  2367. wait_for_completion(&device->flush_wait);
  2368. if (bio_flagged(bio, BIO_EOPNOTSUPP)) {
  2369. printk("btrfs: disabling barriers on dev %s\n",
  2370. device->name);
  2371. device->nobarriers = 1;
  2372. }
  2373. if (!bio_flagged(bio, BIO_UPTODATE)) {
  2374. ret = -EIO;
  2375. }
  2376. /* drop the reference from the wait == 0 run */
  2377. bio_put(bio);
  2378. device->flush_bio = NULL;
  2379. return ret;
  2380. }
  2381. /*
  2382. * one reference for us, and we leave it for the
  2383. * caller
  2384. */
  2385. device->flush_bio = NULL;;
  2386. bio = bio_alloc(GFP_NOFS, 0);
  2387. if (!bio)
  2388. return -ENOMEM;
  2389. bio->bi_end_io = btrfs_end_empty_barrier;
  2390. bio->bi_bdev = device->bdev;
  2391. init_completion(&device->flush_wait);
  2392. bio->bi_private = &device->flush_wait;
  2393. device->flush_bio = bio;
  2394. bio_get(bio);
  2395. btrfsic_submit_bio(WRITE_FLUSH, bio);
  2396. return 0;
  2397. }
  2398. /*
  2399. * send an empty flush down to each device in parallel,
  2400. * then wait for them
  2401. */
  2402. static int barrier_all_devices(struct btrfs_fs_info *info)
  2403. {
  2404. struct list_head *head;
  2405. struct btrfs_device *dev;
  2406. int errors = 0;
  2407. int ret;
  2408. /* send down all the barriers */
  2409. head = &info->fs_devices->devices;
  2410. list_for_each_entry_rcu(dev, head, dev_list) {
  2411. if (!dev->bdev) {
  2412. errors++;
  2413. continue;
  2414. }
  2415. if (!dev->in_fs_metadata || !dev->writeable)
  2416. continue;
  2417. ret = write_dev_flush(dev, 0);
  2418. if (ret)
  2419. errors++;
  2420. }
  2421. /* wait for all the barriers */
  2422. list_for_each_entry_rcu(dev, head, dev_list) {
  2423. if (!dev->bdev) {
  2424. errors++;
  2425. continue;
  2426. }
  2427. if (!dev->in_fs_metadata || !dev->writeable)
  2428. continue;
  2429. ret = write_dev_flush(dev, 1);
  2430. if (ret)
  2431. errors++;
  2432. }
  2433. if (errors)
  2434. return -EIO;
  2435. return 0;
  2436. }
  2437. int write_all_supers(struct btrfs_root *root, int max_mirrors)
  2438. {
  2439. struct list_head *head;
  2440. struct btrfs_device *dev;
  2441. struct btrfs_super_block *sb;
  2442. struct btrfs_dev_item *dev_item;
  2443. int ret;
  2444. int do_barriers;
  2445. int max_errors;
  2446. int total_errors = 0;
  2447. u64 flags;
  2448. max_errors = btrfs_super_num_devices(root->fs_info->super_copy) - 1;
  2449. do_barriers = !btrfs_test_opt(root, NOBARRIER);
  2450. backup_super_roots(root->fs_info);
  2451. sb = root->fs_info->super_for_commit;
  2452. dev_item = &sb->dev_item;
  2453. mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
  2454. head = &root->fs_info->fs_devices->devices;
  2455. if (do_barriers)
  2456. barrier_all_devices(root->fs_info);
  2457. list_for_each_entry_rcu(dev, head, dev_list) {
  2458. if (!dev->bdev) {
  2459. total_errors++;
  2460. continue;
  2461. }
  2462. if (!dev->in_fs_metadata || !dev->writeable)
  2463. continue;
  2464. btrfs_set_stack_device_generation(dev_item, 0);
  2465. btrfs_set_stack_device_type(dev_item, dev->type);
  2466. btrfs_set_stack_device_id(dev_item, dev->devid);
  2467. btrfs_set_stack_device_total_bytes(dev_item, dev->total_bytes);
  2468. btrfs_set_stack_device_bytes_used(dev_item, dev->bytes_used);
  2469. btrfs_set_stack_device_io_align(dev_item, dev->io_align);
  2470. btrfs_set_stack_device_io_width(dev_item, dev->io_width);
  2471. btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
  2472. memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
  2473. memcpy(dev_item->fsid, dev->fs_devices->fsid, BTRFS_UUID_SIZE);
  2474. flags = btrfs_super_flags(sb);
  2475. btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
  2476. ret = write_dev_supers(dev, sb, do_barriers, 0, max_mirrors);
  2477. if (ret)
  2478. total_errors++;
  2479. }
  2480. if (total_errors > max_errors) {
  2481. printk(KERN_ERR "btrfs: %d errors while writing supers\n",
  2482. total_errors);
  2483. /* This shouldn't happen. FUA is masked off if unsupported */
  2484. BUG();
  2485. }
  2486. total_errors = 0;
  2487. list_for_each_entry_rcu(dev, head, dev_list) {
  2488. if (!dev->bdev)
  2489. continue;
  2490. if (!dev->in_fs_metadata || !dev->writeable)
  2491. continue;
  2492. ret = write_dev_supers(dev, sb, do_barriers, 1, max_mirrors);
  2493. if (ret)
  2494. total_errors++;
  2495. }
  2496. mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
  2497. if (total_errors > max_errors) {
  2498. btrfs_error(root->fs_info, -EIO,
  2499. "%d errors while writing supers", total_errors);
  2500. return -EIO;
  2501. }
  2502. return 0;
  2503. }
  2504. int write_ctree_super(struct btrfs_trans_handle *trans,
  2505. struct btrfs_root *root, int max_mirrors)
  2506. {
  2507. int ret;
  2508. ret = write_all_supers(root, max_mirrors);
  2509. return ret;
  2510. }
  2511. /* Kill all outstanding I/O */
  2512. void btrfs_abort_devices(struct btrfs_root *root)
  2513. {
  2514. struct list_head *head;
  2515. struct btrfs_device *dev;
  2516. mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
  2517. head = &root->fs_info->fs_devices->devices;
  2518. list_for_each_entry_rcu(dev, head, dev_list) {
  2519. blk_abort_queue(dev->bdev->bd_disk->queue);
  2520. }
  2521. mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
  2522. }
  2523. void btrfs_free_fs_root(struct btrfs_fs_info *fs_info, struct btrfs_root *root)
  2524. {
  2525. spin_lock(&fs_info->fs_roots_radix_lock);
  2526. radix_tree_delete(&fs_info->fs_roots_radix,
  2527. (unsigned long)root->root_key.objectid);
  2528. spin_unlock(&fs_info->fs_roots_radix_lock);
  2529. if (btrfs_root_refs(&root->root_item) == 0)
  2530. synchronize_srcu(&fs_info->subvol_srcu);
  2531. __btrfs_remove_free_space_cache(root->free_ino_pinned);
  2532. __btrfs_remove_free_space_cache(root->free_ino_ctl);
  2533. free_fs_root(root);
  2534. }
  2535. static void free_fs_root(struct btrfs_root *root)
  2536. {
  2537. iput(root->cache_inode);
  2538. WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
  2539. if (root->anon_dev)
  2540. free_anon_bdev(root->anon_dev);
  2541. free_extent_buffer(root->node);
  2542. free_extent_buffer(root->commit_root);
  2543. kfree(root->free_ino_ctl);
  2544. kfree(root->free_ino_pinned);
  2545. kfree(root->name);
  2546. kfree(root);
  2547. }
  2548. static void del_fs_roots(struct btrfs_fs_info *fs_info)
  2549. {
  2550. int ret;
  2551. struct btrfs_root *gang[8];
  2552. int i;
  2553. while (!list_empty(&fs_info->dead_roots)) {
  2554. gang[0] = list_entry(fs_info->dead_roots.next,
  2555. struct btrfs_root, root_list);
  2556. list_del(&gang[0]->root_list);
  2557. if (gang[0]->in_radix) {
  2558. btrfs_free_fs_root(fs_info, gang[0]);
  2559. } else {
  2560. free_extent_buffer(gang[0]->node);
  2561. free_extent_buffer(gang[0]->commit_root);
  2562. kfree(gang[0]);
  2563. }
  2564. }
  2565. while (1) {
  2566. ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
  2567. (void **)gang, 0,
  2568. ARRAY_SIZE(gang));
  2569. if (!ret)
  2570. break;
  2571. for (i = 0; i < ret; i++)
  2572. btrfs_free_fs_root(fs_info, gang[i]);
  2573. }
  2574. }
  2575. int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
  2576. {
  2577. u64 root_objectid = 0;
  2578. struct btrfs_root *gang[8];
  2579. int i;
  2580. int ret;
  2581. while (1) {
  2582. ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
  2583. (void **)gang, root_objectid,
  2584. ARRAY_SIZE(gang));
  2585. if (!ret)
  2586. break;
  2587. root_objectid = gang[ret - 1]->root_key.objectid + 1;
  2588. for (i = 0; i < ret; i++) {
  2589. int err;
  2590. root_objectid = gang[i]->root_key.objectid;
  2591. err = btrfs_orphan_cleanup(gang[i]);
  2592. if (err)
  2593. return err;
  2594. }
  2595. root_objectid++;
  2596. }
  2597. return 0;
  2598. }
  2599. int btrfs_commit_super(struct btrfs_root *root)
  2600. {
  2601. struct btrfs_trans_handle *trans;
  2602. int ret;
  2603. mutex_lock(&root->fs_info->cleaner_mutex);
  2604. btrfs_run_delayed_iputs(root);
  2605. btrfs_clean_old_snapshots(root);
  2606. mutex_unlock(&root->fs_info->cleaner_mutex);
  2607. /* wait until ongoing cleanup work done */
  2608. down_write(&root->fs_info->cleanup_work_sem);
  2609. up_write(&root->fs_info->cleanup_work_sem);
  2610. trans = btrfs_join_transaction(root);
  2611. if (IS_ERR(trans))
  2612. return PTR_ERR(trans);
  2613. ret = btrfs_commit_transaction(trans, root);
  2614. if (ret)
  2615. return ret;
  2616. /* run commit again to drop the original snapshot */
  2617. trans = btrfs_join_transaction(root);
  2618. if (IS_ERR(trans))
  2619. return PTR_ERR(trans);
  2620. ret = btrfs_commit_transaction(trans, root);
  2621. if (ret)
  2622. return ret;
  2623. ret = btrfs_write_and_wait_transaction(NULL, root);
  2624. if (ret) {
  2625. btrfs_error(root->fs_info, ret,
  2626. "Failed to sync btree inode to disk.");
  2627. return ret;
  2628. }
  2629. ret = write_ctree_super(NULL, root, 0);
  2630. return ret;
  2631. }
  2632. int close_ctree(struct btrfs_root *root)
  2633. {
  2634. struct btrfs_fs_info *fs_info = root->fs_info;
  2635. int ret;
  2636. fs_info->closing = 1;
  2637. smp_mb();
  2638. /* pause restriper - we want to resume on mount */
  2639. btrfs_pause_balance(root->fs_info);
  2640. btrfs_scrub_cancel(root);
  2641. /* wait for any defraggers to finish */
  2642. wait_event(fs_info->transaction_wait,
  2643. (atomic_read(&fs_info->defrag_running) == 0));
  2644. /* clear out the rbtree of defraggable inodes */
  2645. btrfs_run_defrag_inodes(fs_info);
  2646. /*
  2647. * Here come 2 situations when btrfs is broken to flip readonly:
  2648. *
  2649. * 1. when btrfs flips readonly somewhere else before
  2650. * btrfs_commit_super, sb->s_flags has MS_RDONLY flag,
  2651. * and btrfs will skip to write sb directly to keep
  2652. * ERROR state on disk.
  2653. *
  2654. * 2. when btrfs flips readonly just in btrfs_commit_super,
  2655. * and in such case, btrfs cannot write sb via btrfs_commit_super,
  2656. * and since fs_state has been set BTRFS_SUPER_FLAG_ERROR flag,
  2657. * btrfs will cleanup all FS resources first and write sb then.
  2658. */
  2659. if (!(fs_info->sb->s_flags & MS_RDONLY)) {
  2660. ret = btrfs_commit_super(root);
  2661. if (ret)
  2662. printk(KERN_ERR "btrfs: commit super ret %d\n", ret);
  2663. }
  2664. if (fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR) {
  2665. ret = btrfs_error_commit_super(root);
  2666. if (ret)
  2667. printk(KERN_ERR "btrfs: commit super ret %d\n", ret);
  2668. }
  2669. btrfs_put_block_group_cache(fs_info);
  2670. kthread_stop(fs_info->transaction_kthread);
  2671. kthread_stop(fs_info->cleaner_kthread);
  2672. fs_info->closing = 2;
  2673. smp_mb();
  2674. if (fs_info->delalloc_bytes) {
  2675. printk(KERN_INFO "btrfs: at unmount delalloc count %llu\n",
  2676. (unsigned long long)fs_info->delalloc_bytes);
  2677. }
  2678. if (fs_info->total_ref_cache_size) {
  2679. printk(KERN_INFO "btrfs: at umount reference cache size %llu\n",
  2680. (unsigned long long)fs_info->total_ref_cache_size);
  2681. }
  2682. free_extent_buffer(fs_info->extent_root->node);
  2683. free_extent_buffer(fs_info->extent_root->commit_root);
  2684. free_extent_buffer(fs_info->tree_root->node);
  2685. free_extent_buffer(fs_info->tree_root->commit_root);
  2686. free_extent_buffer(fs_info->chunk_root->node);
  2687. free_extent_buffer(fs_info->chunk_root->commit_root);
  2688. free_extent_buffer(fs_info->dev_root->node);
  2689. free_extent_buffer(fs_info->dev_root->commit_root);
  2690. free_extent_buffer(fs_info->csum_root->node);
  2691. free_extent_buffer(fs_info->csum_root->commit_root);
  2692. btrfs_free_block_groups(fs_info);
  2693. del_fs_roots(fs_info);
  2694. iput(fs_info->btree_inode);
  2695. btrfs_stop_workers(&fs_info->generic_worker);
  2696. btrfs_stop_workers(&fs_info->fixup_workers);
  2697. btrfs_stop_workers(&fs_info->delalloc_workers);
  2698. btrfs_stop_workers(&fs_info->workers);
  2699. btrfs_stop_workers(&fs_info->endio_workers);
  2700. btrfs_stop_workers(&fs_info->endio_meta_workers);
  2701. btrfs_stop_workers(&fs_info->endio_meta_write_workers);
  2702. btrfs_stop_workers(&fs_info->endio_write_workers);
  2703. btrfs_stop_workers(&fs_info->endio_freespace_worker);
  2704. btrfs_stop_workers(&fs_info->submit_workers);
  2705. btrfs_stop_workers(&fs_info->delayed_workers);
  2706. btrfs_stop_workers(&fs_info->caching_workers);
  2707. btrfs_stop_workers(&fs_info->readahead_workers);
  2708. #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
  2709. if (btrfs_test_opt(root, CHECK_INTEGRITY))
  2710. btrfsic_unmount(root, fs_info->fs_devices);
  2711. #endif
  2712. btrfs_close_devices(fs_info->fs_devices);
  2713. btrfs_mapping_tree_free(&fs_info->mapping_tree);
  2714. bdi_destroy(&fs_info->bdi);
  2715. cleanup_srcu_struct(&fs_info->subvol_srcu);
  2716. return 0;
  2717. }
  2718. int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid)
  2719. {
  2720. int ret;
  2721. struct inode *btree_inode = buf->pages[0]->mapping->host;
  2722. ret = extent_buffer_uptodate(buf);
  2723. if (!ret)
  2724. return ret;
  2725. ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
  2726. parent_transid);
  2727. return !ret;
  2728. }
  2729. int btrfs_set_buffer_uptodate(struct extent_buffer *buf)
  2730. {
  2731. return set_extent_buffer_uptodate(buf);
  2732. }
  2733. void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
  2734. {
  2735. struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root;
  2736. u64 transid = btrfs_header_generation(buf);
  2737. int was_dirty;
  2738. btrfs_assert_tree_locked(buf);
  2739. if (transid != root->fs_info->generation) {
  2740. printk(KERN_CRIT "btrfs transid mismatch buffer %llu, "
  2741. "found %llu running %llu\n",
  2742. (unsigned long long)buf->start,
  2743. (unsigned long long)transid,
  2744. (unsigned long long)root->fs_info->generation);
  2745. WARN_ON(1);
  2746. }
  2747. was_dirty = set_extent_buffer_dirty(buf);
  2748. if (!was_dirty) {
  2749. spin_lock(&root->fs_info->delalloc_lock);
  2750. root->fs_info->dirty_metadata_bytes += buf->len;
  2751. spin_unlock(&root->fs_info->delalloc_lock);
  2752. }
  2753. }
  2754. void btrfs_btree_balance_dirty(struct btrfs_root *root, unsigned long nr)
  2755. {
  2756. /*
  2757. * looks as though older kernels can get into trouble with
  2758. * this code, they end up stuck in balance_dirty_pages forever
  2759. */
  2760. u64 num_dirty;
  2761. unsigned long thresh = 32 * 1024 * 1024;
  2762. if (current->flags & PF_MEMALLOC)
  2763. return;
  2764. btrfs_balance_delayed_items(root);
  2765. num_dirty = root->fs_info->dirty_metadata_bytes;
  2766. if (num_dirty > thresh) {
  2767. balance_dirty_pages_ratelimited_nr(
  2768. root->fs_info->btree_inode->i_mapping, 1);
  2769. }
  2770. return;
  2771. }
  2772. void __btrfs_btree_balance_dirty(struct btrfs_root *root, unsigned long nr)
  2773. {
  2774. /*
  2775. * looks as though older kernels can get into trouble with
  2776. * this code, they end up stuck in balance_dirty_pages forever
  2777. */
  2778. u64 num_dirty;
  2779. unsigned long thresh = 32 * 1024 * 1024;
  2780. if (current->flags & PF_MEMALLOC)
  2781. return;
  2782. num_dirty = root->fs_info->dirty_metadata_bytes;
  2783. if (num_dirty > thresh) {
  2784. balance_dirty_pages_ratelimited_nr(
  2785. root->fs_info->btree_inode->i_mapping, 1);
  2786. }
  2787. return;
  2788. }
  2789. int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid)
  2790. {
  2791. struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root;
  2792. return btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
  2793. }
  2794. static int btree_lock_page_hook(struct page *page, void *data,
  2795. void (*flush_fn)(void *))
  2796. {
  2797. struct inode *inode = page->mapping->host;
  2798. struct btrfs_root *root = BTRFS_I(inode)->root;
  2799. struct extent_buffer *eb;
  2800. /*
  2801. * We culled this eb but the page is still hanging out on the mapping,
  2802. * carry on.
  2803. */
  2804. if (!PagePrivate(page))
  2805. goto out;
  2806. eb = (struct extent_buffer *)page->private;
  2807. if (!eb) {
  2808. WARN_ON(1);
  2809. goto out;
  2810. }
  2811. if (page != eb->pages[0])
  2812. goto out;
  2813. if (!btrfs_try_tree_write_lock(eb)) {
  2814. flush_fn(data);
  2815. btrfs_tree_lock(eb);
  2816. }
  2817. btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
  2818. if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) {
  2819. spin_lock(&root->fs_info->delalloc_lock);
  2820. if (root->fs_info->dirty_metadata_bytes >= eb->len)
  2821. root->fs_info->dirty_metadata_bytes -= eb->len;
  2822. else
  2823. WARN_ON(1);
  2824. spin_unlock(&root->fs_info->delalloc_lock);
  2825. }
  2826. btrfs_tree_unlock(eb);
  2827. out:
  2828. if (!trylock_page(page)) {
  2829. flush_fn(data);
  2830. lock_page(page);
  2831. }
  2832. return 0;
  2833. }
  2834. static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
  2835. int read_only)
  2836. {
  2837. if (btrfs_super_csum_type(fs_info->super_copy) >= ARRAY_SIZE(btrfs_csum_sizes)) {
  2838. printk(KERN_ERR "btrfs: unsupported checksum algorithm\n");
  2839. return -EINVAL;
  2840. }
  2841. if (read_only)
  2842. return 0;
  2843. if (fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR) {
  2844. printk(KERN_WARNING "warning: mount fs with errors, "
  2845. "running btrfsck is recommended\n");
  2846. }
  2847. return 0;
  2848. }
  2849. int btrfs_error_commit_super(struct btrfs_root *root)
  2850. {
  2851. int ret;
  2852. mutex_lock(&root->fs_info->cleaner_mutex);
  2853. btrfs_run_delayed_iputs(root);
  2854. mutex_unlock(&root->fs_info->cleaner_mutex);
  2855. down_write(&root->fs_info->cleanup_work_sem);
  2856. up_write(&root->fs_info->cleanup_work_sem);
  2857. /* cleanup FS via transaction */
  2858. btrfs_cleanup_transaction(root);
  2859. ret = write_ctree_super(NULL, root, 0);
  2860. return ret;
  2861. }
  2862. static void btrfs_destroy_ordered_operations(struct btrfs_root *root)
  2863. {
  2864. struct btrfs_inode *btrfs_inode;
  2865. struct list_head splice;
  2866. INIT_LIST_HEAD(&splice);
  2867. mutex_lock(&root->fs_info->ordered_operations_mutex);
  2868. spin_lock(&root->fs_info->ordered_extent_lock);
  2869. list_splice_init(&root->fs_info->ordered_operations, &splice);
  2870. while (!list_empty(&splice)) {
  2871. btrfs_inode = list_entry(splice.next, struct btrfs_inode,
  2872. ordered_operations);
  2873. list_del_init(&btrfs_inode->ordered_operations);
  2874. btrfs_invalidate_inodes(btrfs_inode->root);
  2875. }
  2876. spin_unlock(&root->fs_info->ordered_extent_lock);
  2877. mutex_unlock(&root->fs_info->ordered_operations_mutex);
  2878. }
  2879. static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
  2880. {
  2881. struct list_head splice;
  2882. struct btrfs_ordered_extent *ordered;
  2883. struct inode *inode;
  2884. INIT_LIST_HEAD(&splice);
  2885. spin_lock(&root->fs_info->ordered_extent_lock);
  2886. list_splice_init(&root->fs_info->ordered_extents, &splice);
  2887. while (!list_empty(&splice)) {
  2888. ordered = list_entry(splice.next, struct btrfs_ordered_extent,
  2889. root_extent_list);
  2890. list_del_init(&ordered->root_extent_list);
  2891. atomic_inc(&ordered->refs);
  2892. /* the inode may be getting freed (in sys_unlink path). */
  2893. inode = igrab(ordered->inode);
  2894. spin_unlock(&root->fs_info->ordered_extent_lock);
  2895. if (inode)
  2896. iput(inode);
  2897. atomic_set(&ordered->refs, 1);
  2898. btrfs_put_ordered_extent(ordered);
  2899. spin_lock(&root->fs_info->ordered_extent_lock);
  2900. }
  2901. spin_unlock(&root->fs_info->ordered_extent_lock);
  2902. }
  2903. int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
  2904. struct btrfs_root *root)
  2905. {
  2906. struct rb_node *node;
  2907. struct btrfs_delayed_ref_root *delayed_refs;
  2908. struct btrfs_delayed_ref_node *ref;
  2909. int ret = 0;
  2910. delayed_refs = &trans->delayed_refs;
  2911. again:
  2912. spin_lock(&delayed_refs->lock);
  2913. if (delayed_refs->num_entries == 0) {
  2914. spin_unlock(&delayed_refs->lock);
  2915. printk(KERN_INFO "delayed_refs has NO entry\n");
  2916. return ret;
  2917. }
  2918. node = rb_first(&delayed_refs->root);
  2919. while (node) {
  2920. ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node);
  2921. node = rb_next(node);
  2922. ref->in_tree = 0;
  2923. rb_erase(&ref->rb_node, &delayed_refs->root);
  2924. delayed_refs->num_entries--;
  2925. atomic_set(&ref->refs, 1);
  2926. if (btrfs_delayed_ref_is_head(ref)) {
  2927. struct btrfs_delayed_ref_head *head;
  2928. head = btrfs_delayed_node_to_head(ref);
  2929. spin_unlock(&delayed_refs->lock);
  2930. mutex_lock(&head->mutex);
  2931. kfree(head->extent_op);
  2932. delayed_refs->num_heads--;
  2933. if (list_empty(&head->cluster))
  2934. delayed_refs->num_heads_ready--;
  2935. list_del_init(&head->cluster);
  2936. mutex_unlock(&head->mutex);
  2937. btrfs_put_delayed_ref(ref);
  2938. goto again;
  2939. }
  2940. spin_unlock(&delayed_refs->lock);
  2941. btrfs_put_delayed_ref(ref);
  2942. cond_resched();
  2943. spin_lock(&delayed_refs->lock);
  2944. }
  2945. spin_unlock(&delayed_refs->lock);
  2946. return ret;
  2947. }
  2948. static void btrfs_destroy_pending_snapshots(struct btrfs_transaction *t)
  2949. {
  2950. struct btrfs_pending_snapshot *snapshot;
  2951. struct list_head splice;
  2952. INIT_LIST_HEAD(&splice);
  2953. list_splice_init(&t->pending_snapshots, &splice);
  2954. while (!list_empty(&splice)) {
  2955. snapshot = list_entry(splice.next,
  2956. struct btrfs_pending_snapshot,
  2957. list);
  2958. list_del_init(&snapshot->list);
  2959. kfree(snapshot);
  2960. }
  2961. }
  2962. static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
  2963. {
  2964. struct btrfs_inode *btrfs_inode;
  2965. struct list_head splice;
  2966. INIT_LIST_HEAD(&splice);
  2967. spin_lock(&root->fs_info->delalloc_lock);
  2968. list_splice_init(&root->fs_info->delalloc_inodes, &splice);
  2969. while (!list_empty(&splice)) {
  2970. btrfs_inode = list_entry(splice.next, struct btrfs_inode,
  2971. delalloc_inodes);
  2972. list_del_init(&btrfs_inode->delalloc_inodes);
  2973. btrfs_invalidate_inodes(btrfs_inode->root);
  2974. }
  2975. spin_unlock(&root->fs_info->delalloc_lock);
  2976. }
  2977. static int btrfs_destroy_marked_extents(struct btrfs_root *root,
  2978. struct extent_io_tree *dirty_pages,
  2979. int mark)
  2980. {
  2981. int ret;
  2982. struct page *page;
  2983. struct inode *btree_inode = root->fs_info->btree_inode;
  2984. struct extent_buffer *eb;
  2985. u64 start = 0;
  2986. u64 end;
  2987. u64 offset;
  2988. unsigned long index;
  2989. while (1) {
  2990. ret = find_first_extent_bit(dirty_pages, start, &start, &end,
  2991. mark);
  2992. if (ret)
  2993. break;
  2994. clear_extent_bits(dirty_pages, start, end, mark, GFP_NOFS);
  2995. while (start <= end) {
  2996. index = start >> PAGE_CACHE_SHIFT;
  2997. start = (u64)(index + 1) << PAGE_CACHE_SHIFT;
  2998. page = find_get_page(btree_inode->i_mapping, index);
  2999. if (!page)
  3000. continue;
  3001. offset = page_offset(page);
  3002. spin_lock(&dirty_pages->buffer_lock);
  3003. eb = radix_tree_lookup(
  3004. &(&BTRFS_I(page->mapping->host)->io_tree)->buffer,
  3005. offset >> PAGE_CACHE_SHIFT);
  3006. spin_unlock(&dirty_pages->buffer_lock);
  3007. if (eb) {
  3008. ret = test_and_clear_bit(EXTENT_BUFFER_DIRTY,
  3009. &eb->bflags);
  3010. atomic_set(&eb->refs, 1);
  3011. }
  3012. if (PageWriteback(page))
  3013. end_page_writeback(page);
  3014. lock_page(page);
  3015. if (PageDirty(page)) {
  3016. clear_page_dirty_for_io(page);
  3017. spin_lock_irq(&page->mapping->tree_lock);
  3018. radix_tree_tag_clear(&page->mapping->page_tree,
  3019. page_index(page),
  3020. PAGECACHE_TAG_DIRTY);
  3021. spin_unlock_irq(&page->mapping->tree_lock);
  3022. }
  3023. page->mapping->a_ops->invalidatepage(page, 0);
  3024. unlock_page(page);
  3025. }
  3026. }
  3027. return ret;
  3028. }
  3029. static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
  3030. struct extent_io_tree *pinned_extents)
  3031. {
  3032. struct extent_io_tree *unpin;
  3033. u64 start;
  3034. u64 end;
  3035. int ret;
  3036. unpin = pinned_extents;
  3037. while (1) {
  3038. ret = find_first_extent_bit(unpin, 0, &start, &end,
  3039. EXTENT_DIRTY);
  3040. if (ret)
  3041. break;
  3042. /* opt_discard */
  3043. if (btrfs_test_opt(root, DISCARD))
  3044. ret = btrfs_error_discard_extent(root, start,
  3045. end + 1 - start,
  3046. NULL);
  3047. clear_extent_dirty(unpin, start, end, GFP_NOFS);
  3048. btrfs_error_unpin_extent_range(root, start, end);
  3049. cond_resched();
  3050. }
  3051. return 0;
  3052. }
  3053. void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans,
  3054. struct btrfs_root *root)
  3055. {
  3056. btrfs_destroy_delayed_refs(cur_trans, root);
  3057. btrfs_block_rsv_release(root, &root->fs_info->trans_block_rsv,
  3058. cur_trans->dirty_pages.dirty_bytes);
  3059. /* FIXME: cleanup wait for commit */
  3060. cur_trans->in_commit = 1;
  3061. cur_trans->blocked = 1;
  3062. if (waitqueue_active(&root->fs_info->transaction_blocked_wait))
  3063. wake_up(&root->fs_info->transaction_blocked_wait);
  3064. cur_trans->blocked = 0;
  3065. if (waitqueue_active(&root->fs_info->transaction_wait))
  3066. wake_up(&root->fs_info->transaction_wait);
  3067. cur_trans->commit_done = 1;
  3068. if (waitqueue_active(&cur_trans->commit_wait))
  3069. wake_up(&cur_trans->commit_wait);
  3070. btrfs_destroy_pending_snapshots(cur_trans);
  3071. btrfs_destroy_marked_extents(root, &cur_trans->dirty_pages,
  3072. EXTENT_DIRTY);
  3073. /*
  3074. memset(cur_trans, 0, sizeof(*cur_trans));
  3075. kmem_cache_free(btrfs_transaction_cachep, cur_trans);
  3076. */
  3077. }
  3078. int btrfs_cleanup_transaction(struct btrfs_root *root)
  3079. {
  3080. struct btrfs_transaction *t;
  3081. LIST_HEAD(list);
  3082. mutex_lock(&root->fs_info->transaction_kthread_mutex);
  3083. spin_lock(&root->fs_info->trans_lock);
  3084. list_splice_init(&root->fs_info->trans_list, &list);
  3085. root->fs_info->trans_no_join = 1;
  3086. spin_unlock(&root->fs_info->trans_lock);
  3087. while (!list_empty(&list)) {
  3088. t = list_entry(list.next, struct btrfs_transaction, list);
  3089. if (!t)
  3090. break;
  3091. btrfs_destroy_ordered_operations(root);
  3092. btrfs_destroy_ordered_extents(root);
  3093. btrfs_destroy_delayed_refs(t, root);
  3094. btrfs_block_rsv_release(root,
  3095. &root->fs_info->trans_block_rsv,
  3096. t->dirty_pages.dirty_bytes);
  3097. /* FIXME: cleanup wait for commit */
  3098. t->in_commit = 1;
  3099. t->blocked = 1;
  3100. if (waitqueue_active(&root->fs_info->transaction_blocked_wait))
  3101. wake_up(&root->fs_info->transaction_blocked_wait);
  3102. t->blocked = 0;
  3103. if (waitqueue_active(&root->fs_info->transaction_wait))
  3104. wake_up(&root->fs_info->transaction_wait);
  3105. t->commit_done = 1;
  3106. if (waitqueue_active(&t->commit_wait))
  3107. wake_up(&t->commit_wait);
  3108. btrfs_destroy_pending_snapshots(t);
  3109. btrfs_destroy_delalloc_inodes(root);
  3110. spin_lock(&root->fs_info->trans_lock);
  3111. root->fs_info->running_transaction = NULL;
  3112. spin_unlock(&root->fs_info->trans_lock);
  3113. btrfs_destroy_marked_extents(root, &t->dirty_pages,
  3114. EXTENT_DIRTY);
  3115. btrfs_destroy_pinned_extent(root,
  3116. root->fs_info->pinned_extents);
  3117. atomic_set(&t->use_count, 0);
  3118. list_del_init(&t->list);
  3119. memset(t, 0, sizeof(*t));
  3120. kmem_cache_free(btrfs_transaction_cachep, t);
  3121. }
  3122. spin_lock(&root->fs_info->trans_lock);
  3123. root->fs_info->trans_no_join = 0;
  3124. spin_unlock(&root->fs_info->trans_lock);
  3125. mutex_unlock(&root->fs_info->transaction_kthread_mutex);
  3126. return 0;
  3127. }
  3128. static int btree_writepage_io_failed_hook(struct bio *bio, struct page *page,
  3129. u64 start, u64 end,
  3130. struct extent_state *state)
  3131. {
  3132. struct super_block *sb = page->mapping->host->i_sb;
  3133. struct btrfs_fs_info *fs_info = btrfs_sb(sb);
  3134. btrfs_error(fs_info, -EIO,
  3135. "Error occured while writing out btree at %llu", start);
  3136. return -EIO;
  3137. }
  3138. static struct extent_io_ops btree_extent_io_ops = {
  3139. .write_cache_pages_lock_hook = btree_lock_page_hook,
  3140. .readpage_end_io_hook = btree_readpage_end_io_hook,
  3141. .readpage_io_failed_hook = btree_io_failed_hook,
  3142. .submit_bio_hook = btree_submit_bio_hook,
  3143. /* note we're sharing with inode.c for the merge bio hook */
  3144. .merge_bio_hook = btrfs_merge_bio_hook,
  3145. .writepage_io_failed_hook = btree_writepage_io_failed_hook,
  3146. };