ctree.c 112 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372
  1. /*
  2. * Copyright (C) 2007,2008 Oracle. All rights reserved.
  3. *
  4. * This program is free software; you can redistribute it and/or
  5. * modify it under the terms of the GNU General Public
  6. * License v2 as published by the Free Software Foundation.
  7. *
  8. * This program is distributed in the hope that it will be useful,
  9. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  10. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  11. * General Public License for more details.
  12. *
  13. * You should have received a copy of the GNU General Public
  14. * License along with this program; if not, write to the
  15. * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
  16. * Boston, MA 021110-1307, USA.
  17. */
  18. #include <linux/sched.h>
  19. #include <linux/slab.h>
  20. #include "ctree.h"
  21. #include "disk-io.h"
  22. #include "transaction.h"
  23. #include "print-tree.h"
  24. #include "locking.h"
  25. static int split_node(struct btrfs_trans_handle *trans, struct btrfs_root
  26. *root, struct btrfs_path *path, int level);
  27. static int split_leaf(struct btrfs_trans_handle *trans, struct btrfs_root
  28. *root, struct btrfs_key *ins_key,
  29. struct btrfs_path *path, int data_size, int extend);
  30. static int push_node_left(struct btrfs_trans_handle *trans,
  31. struct btrfs_root *root, struct extent_buffer *dst,
  32. struct extent_buffer *src, int empty);
  33. static int balance_node_right(struct btrfs_trans_handle *trans,
  34. struct btrfs_root *root,
  35. struct extent_buffer *dst_buf,
  36. struct extent_buffer *src_buf);
  37. static void del_ptr(struct btrfs_trans_handle *trans, struct btrfs_root *root,
  38. struct btrfs_path *path, int level, int slot);
  39. struct btrfs_path *btrfs_alloc_path(void)
  40. {
  41. struct btrfs_path *path;
  42. path = kmem_cache_zalloc(btrfs_path_cachep, GFP_NOFS);
  43. return path;
  44. }
  45. /*
  46. * set all locked nodes in the path to blocking locks. This should
  47. * be done before scheduling
  48. */
  49. noinline void btrfs_set_path_blocking(struct btrfs_path *p)
  50. {
  51. int i;
  52. for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
  53. if (!p->nodes[i] || !p->locks[i])
  54. continue;
  55. btrfs_set_lock_blocking_rw(p->nodes[i], p->locks[i]);
  56. if (p->locks[i] == BTRFS_READ_LOCK)
  57. p->locks[i] = BTRFS_READ_LOCK_BLOCKING;
  58. else if (p->locks[i] == BTRFS_WRITE_LOCK)
  59. p->locks[i] = BTRFS_WRITE_LOCK_BLOCKING;
  60. }
  61. }
  62. /*
  63. * reset all the locked nodes in the patch to spinning locks.
  64. *
  65. * held is used to keep lockdep happy, when lockdep is enabled
  66. * we set held to a blocking lock before we go around and
  67. * retake all the spinlocks in the path. You can safely use NULL
  68. * for held
  69. */
  70. noinline void btrfs_clear_path_blocking(struct btrfs_path *p,
  71. struct extent_buffer *held, int held_rw)
  72. {
  73. int i;
  74. #ifdef CONFIG_DEBUG_LOCK_ALLOC
  75. /* lockdep really cares that we take all of these spinlocks
  76. * in the right order. If any of the locks in the path are not
  77. * currently blocking, it is going to complain. So, make really
  78. * really sure by forcing the path to blocking before we clear
  79. * the path blocking.
  80. */
  81. if (held) {
  82. btrfs_set_lock_blocking_rw(held, held_rw);
  83. if (held_rw == BTRFS_WRITE_LOCK)
  84. held_rw = BTRFS_WRITE_LOCK_BLOCKING;
  85. else if (held_rw == BTRFS_READ_LOCK)
  86. held_rw = BTRFS_READ_LOCK_BLOCKING;
  87. }
  88. btrfs_set_path_blocking(p);
  89. #endif
  90. for (i = BTRFS_MAX_LEVEL - 1; i >= 0; i--) {
  91. if (p->nodes[i] && p->locks[i]) {
  92. btrfs_clear_lock_blocking_rw(p->nodes[i], p->locks[i]);
  93. if (p->locks[i] == BTRFS_WRITE_LOCK_BLOCKING)
  94. p->locks[i] = BTRFS_WRITE_LOCK;
  95. else if (p->locks[i] == BTRFS_READ_LOCK_BLOCKING)
  96. p->locks[i] = BTRFS_READ_LOCK;
  97. }
  98. }
  99. #ifdef CONFIG_DEBUG_LOCK_ALLOC
  100. if (held)
  101. btrfs_clear_lock_blocking_rw(held, held_rw);
  102. #endif
  103. }
  104. /* this also releases the path */
  105. void btrfs_free_path(struct btrfs_path *p)
  106. {
  107. if (!p)
  108. return;
  109. btrfs_release_path(p);
  110. kmem_cache_free(btrfs_path_cachep, p);
  111. }
  112. /*
  113. * path release drops references on the extent buffers in the path
  114. * and it drops any locks held by this path
  115. *
  116. * It is safe to call this on paths that no locks or extent buffers held.
  117. */
  118. noinline void btrfs_release_path(struct btrfs_path *p)
  119. {
  120. int i;
  121. for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
  122. p->slots[i] = 0;
  123. if (!p->nodes[i])
  124. continue;
  125. if (p->locks[i]) {
  126. btrfs_tree_unlock_rw(p->nodes[i], p->locks[i]);
  127. p->locks[i] = 0;
  128. }
  129. free_extent_buffer(p->nodes[i]);
  130. p->nodes[i] = NULL;
  131. }
  132. }
  133. /*
  134. * safely gets a reference on the root node of a tree. A lock
  135. * is not taken, so a concurrent writer may put a different node
  136. * at the root of the tree. See btrfs_lock_root_node for the
  137. * looping required.
  138. *
  139. * The extent buffer returned by this has a reference taken, so
  140. * it won't disappear. It may stop being the root of the tree
  141. * at any time because there are no locks held.
  142. */
  143. struct extent_buffer *btrfs_root_node(struct btrfs_root *root)
  144. {
  145. struct extent_buffer *eb;
  146. while (1) {
  147. rcu_read_lock();
  148. eb = rcu_dereference(root->node);
  149. /*
  150. * RCU really hurts here, we could free up the root node because
  151. * it was cow'ed but we may not get the new root node yet so do
  152. * the inc_not_zero dance and if it doesn't work then
  153. * synchronize_rcu and try again.
  154. */
  155. if (atomic_inc_not_zero(&eb->refs)) {
  156. rcu_read_unlock();
  157. break;
  158. }
  159. rcu_read_unlock();
  160. synchronize_rcu();
  161. }
  162. return eb;
  163. }
  164. /* loop around taking references on and locking the root node of the
  165. * tree until you end up with a lock on the root. A locked buffer
  166. * is returned, with a reference held.
  167. */
  168. struct extent_buffer *btrfs_lock_root_node(struct btrfs_root *root)
  169. {
  170. struct extent_buffer *eb;
  171. while (1) {
  172. eb = btrfs_root_node(root);
  173. btrfs_tree_lock(eb);
  174. if (eb == root->node)
  175. break;
  176. btrfs_tree_unlock(eb);
  177. free_extent_buffer(eb);
  178. }
  179. return eb;
  180. }
  181. /* loop around taking references on and locking the root node of the
  182. * tree until you end up with a lock on the root. A locked buffer
  183. * is returned, with a reference held.
  184. */
  185. struct extent_buffer *btrfs_read_lock_root_node(struct btrfs_root *root)
  186. {
  187. struct extent_buffer *eb;
  188. while (1) {
  189. eb = btrfs_root_node(root);
  190. btrfs_tree_read_lock(eb);
  191. if (eb == root->node)
  192. break;
  193. btrfs_tree_read_unlock(eb);
  194. free_extent_buffer(eb);
  195. }
  196. return eb;
  197. }
  198. /* cowonly root (everything not a reference counted cow subvolume), just get
  199. * put onto a simple dirty list. transaction.c walks this to make sure they
  200. * get properly updated on disk.
  201. */
  202. static void add_root_to_dirty_list(struct btrfs_root *root)
  203. {
  204. if (root->track_dirty && list_empty(&root->dirty_list)) {
  205. list_add(&root->dirty_list,
  206. &root->fs_info->dirty_cowonly_roots);
  207. }
  208. }
  209. /*
  210. * used by snapshot creation to make a copy of a root for a tree with
  211. * a given objectid. The buffer with the new root node is returned in
  212. * cow_ret, and this func returns zero on success or a negative error code.
  213. */
  214. int btrfs_copy_root(struct btrfs_trans_handle *trans,
  215. struct btrfs_root *root,
  216. struct extent_buffer *buf,
  217. struct extent_buffer **cow_ret, u64 new_root_objectid)
  218. {
  219. struct extent_buffer *cow;
  220. int ret = 0;
  221. int level;
  222. struct btrfs_disk_key disk_key;
  223. WARN_ON(root->ref_cows && trans->transid !=
  224. root->fs_info->running_transaction->transid);
  225. WARN_ON(root->ref_cows && trans->transid != root->last_trans);
  226. level = btrfs_header_level(buf);
  227. if (level == 0)
  228. btrfs_item_key(buf, &disk_key, 0);
  229. else
  230. btrfs_node_key(buf, &disk_key, 0);
  231. cow = btrfs_alloc_free_block(trans, root, buf->len, 0,
  232. new_root_objectid, &disk_key, level,
  233. buf->start, 0, 1);
  234. if (IS_ERR(cow))
  235. return PTR_ERR(cow);
  236. copy_extent_buffer(cow, buf, 0, 0, cow->len);
  237. btrfs_set_header_bytenr(cow, cow->start);
  238. btrfs_set_header_generation(cow, trans->transid);
  239. btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
  240. btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
  241. BTRFS_HEADER_FLAG_RELOC);
  242. if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
  243. btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
  244. else
  245. btrfs_set_header_owner(cow, new_root_objectid);
  246. write_extent_buffer(cow, root->fs_info->fsid,
  247. (unsigned long)btrfs_header_fsid(cow),
  248. BTRFS_FSID_SIZE);
  249. WARN_ON(btrfs_header_generation(buf) > trans->transid);
  250. if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
  251. ret = btrfs_inc_ref(trans, root, cow, 1, 1);
  252. else
  253. ret = btrfs_inc_ref(trans, root, cow, 0, 1);
  254. if (ret)
  255. return ret;
  256. btrfs_mark_buffer_dirty(cow);
  257. *cow_ret = cow;
  258. return 0;
  259. }
  260. /*
  261. * check if the tree block can be shared by multiple trees
  262. */
  263. int btrfs_block_can_be_shared(struct btrfs_root *root,
  264. struct extent_buffer *buf)
  265. {
  266. /*
  267. * Tree blocks not in refernece counted trees and tree roots
  268. * are never shared. If a block was allocated after the last
  269. * snapshot and the block was not allocated by tree relocation,
  270. * we know the block is not shared.
  271. */
  272. if (root->ref_cows &&
  273. buf != root->node && buf != root->commit_root &&
  274. (btrfs_header_generation(buf) <=
  275. btrfs_root_last_snapshot(&root->root_item) ||
  276. btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)))
  277. return 1;
  278. #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
  279. if (root->ref_cows &&
  280. btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
  281. return 1;
  282. #endif
  283. return 0;
  284. }
  285. static noinline int update_ref_for_cow(struct btrfs_trans_handle *trans,
  286. struct btrfs_root *root,
  287. struct extent_buffer *buf,
  288. struct extent_buffer *cow,
  289. int *last_ref)
  290. {
  291. u64 refs;
  292. u64 owner;
  293. u64 flags;
  294. u64 new_flags = 0;
  295. int ret;
  296. /*
  297. * Backrefs update rules:
  298. *
  299. * Always use full backrefs for extent pointers in tree block
  300. * allocated by tree relocation.
  301. *
  302. * If a shared tree block is no longer referenced by its owner
  303. * tree (btrfs_header_owner(buf) == root->root_key.objectid),
  304. * use full backrefs for extent pointers in tree block.
  305. *
  306. * If a tree block is been relocating
  307. * (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID),
  308. * use full backrefs for extent pointers in tree block.
  309. * The reason for this is some operations (such as drop tree)
  310. * are only allowed for blocks use full backrefs.
  311. */
  312. if (btrfs_block_can_be_shared(root, buf)) {
  313. ret = btrfs_lookup_extent_info(trans, root, buf->start,
  314. buf->len, &refs, &flags);
  315. if (ret)
  316. return ret;
  317. if (refs == 0) {
  318. ret = -EROFS;
  319. btrfs_std_error(root->fs_info, ret);
  320. return ret;
  321. }
  322. } else {
  323. refs = 1;
  324. if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
  325. btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
  326. flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
  327. else
  328. flags = 0;
  329. }
  330. owner = btrfs_header_owner(buf);
  331. BUG_ON(owner == BTRFS_TREE_RELOC_OBJECTID &&
  332. !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
  333. if (refs > 1) {
  334. if ((owner == root->root_key.objectid ||
  335. root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) &&
  336. !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) {
  337. ret = btrfs_inc_ref(trans, root, buf, 1, 1);
  338. BUG_ON(ret); /* -ENOMEM */
  339. if (root->root_key.objectid ==
  340. BTRFS_TREE_RELOC_OBJECTID) {
  341. ret = btrfs_dec_ref(trans, root, buf, 0, 1);
  342. BUG_ON(ret); /* -ENOMEM */
  343. ret = btrfs_inc_ref(trans, root, cow, 1, 1);
  344. BUG_ON(ret); /* -ENOMEM */
  345. }
  346. new_flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
  347. } else {
  348. if (root->root_key.objectid ==
  349. BTRFS_TREE_RELOC_OBJECTID)
  350. ret = btrfs_inc_ref(trans, root, cow, 1, 1);
  351. else
  352. ret = btrfs_inc_ref(trans, root, cow, 0, 1);
  353. BUG_ON(ret); /* -ENOMEM */
  354. }
  355. if (new_flags != 0) {
  356. ret = btrfs_set_disk_extent_flags(trans, root,
  357. buf->start,
  358. buf->len,
  359. new_flags, 0);
  360. if (ret)
  361. return ret;
  362. }
  363. } else {
  364. if (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
  365. if (root->root_key.objectid ==
  366. BTRFS_TREE_RELOC_OBJECTID)
  367. ret = btrfs_inc_ref(trans, root, cow, 1, 1);
  368. else
  369. ret = btrfs_inc_ref(trans, root, cow, 0, 1);
  370. BUG_ON(ret); /* -ENOMEM */
  371. ret = btrfs_dec_ref(trans, root, buf, 1, 1);
  372. BUG_ON(ret); /* -ENOMEM */
  373. }
  374. clean_tree_block(trans, root, buf);
  375. *last_ref = 1;
  376. }
  377. return 0;
  378. }
  379. /*
  380. * does the dirty work in cow of a single block. The parent block (if
  381. * supplied) is updated to point to the new cow copy. The new buffer is marked
  382. * dirty and returned locked. If you modify the block it needs to be marked
  383. * dirty again.
  384. *
  385. * search_start -- an allocation hint for the new block
  386. *
  387. * empty_size -- a hint that you plan on doing more cow. This is the size in
  388. * bytes the allocator should try to find free next to the block it returns.
  389. * This is just a hint and may be ignored by the allocator.
  390. */
  391. static noinline int __btrfs_cow_block(struct btrfs_trans_handle *trans,
  392. struct btrfs_root *root,
  393. struct extent_buffer *buf,
  394. struct extent_buffer *parent, int parent_slot,
  395. struct extent_buffer **cow_ret,
  396. u64 search_start, u64 empty_size)
  397. {
  398. struct btrfs_disk_key disk_key;
  399. struct extent_buffer *cow;
  400. int level, ret;
  401. int last_ref = 0;
  402. int unlock_orig = 0;
  403. u64 parent_start;
  404. if (*cow_ret == buf)
  405. unlock_orig = 1;
  406. btrfs_assert_tree_locked(buf);
  407. WARN_ON(root->ref_cows && trans->transid !=
  408. root->fs_info->running_transaction->transid);
  409. WARN_ON(root->ref_cows && trans->transid != root->last_trans);
  410. level = btrfs_header_level(buf);
  411. if (level == 0)
  412. btrfs_item_key(buf, &disk_key, 0);
  413. else
  414. btrfs_node_key(buf, &disk_key, 0);
  415. if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) {
  416. if (parent)
  417. parent_start = parent->start;
  418. else
  419. parent_start = 0;
  420. } else
  421. parent_start = 0;
  422. cow = btrfs_alloc_free_block(trans, root, buf->len, parent_start,
  423. root->root_key.objectid, &disk_key,
  424. level, search_start, empty_size, 1);
  425. if (IS_ERR(cow))
  426. return PTR_ERR(cow);
  427. /* cow is set to blocking by btrfs_init_new_buffer */
  428. copy_extent_buffer(cow, buf, 0, 0, cow->len);
  429. btrfs_set_header_bytenr(cow, cow->start);
  430. btrfs_set_header_generation(cow, trans->transid);
  431. btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
  432. btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
  433. BTRFS_HEADER_FLAG_RELOC);
  434. if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
  435. btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
  436. else
  437. btrfs_set_header_owner(cow, root->root_key.objectid);
  438. write_extent_buffer(cow, root->fs_info->fsid,
  439. (unsigned long)btrfs_header_fsid(cow),
  440. BTRFS_FSID_SIZE);
  441. ret = update_ref_for_cow(trans, root, buf, cow, &last_ref);
  442. if (ret) {
  443. btrfs_abort_transaction(trans, root, ret);
  444. return ret;
  445. }
  446. if (root->ref_cows)
  447. btrfs_reloc_cow_block(trans, root, buf, cow);
  448. if (buf == root->node) {
  449. WARN_ON(parent && parent != buf);
  450. if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
  451. btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
  452. parent_start = buf->start;
  453. else
  454. parent_start = 0;
  455. extent_buffer_get(cow);
  456. rcu_assign_pointer(root->node, cow);
  457. btrfs_free_tree_block(trans, root, buf, parent_start,
  458. last_ref, 1);
  459. free_extent_buffer(buf);
  460. add_root_to_dirty_list(root);
  461. } else {
  462. if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
  463. parent_start = parent->start;
  464. else
  465. parent_start = 0;
  466. WARN_ON(trans->transid != btrfs_header_generation(parent));
  467. btrfs_set_node_blockptr(parent, parent_slot,
  468. cow->start);
  469. btrfs_set_node_ptr_generation(parent, parent_slot,
  470. trans->transid);
  471. btrfs_mark_buffer_dirty(parent);
  472. btrfs_free_tree_block(trans, root, buf, parent_start,
  473. last_ref, 1);
  474. }
  475. if (unlock_orig)
  476. btrfs_tree_unlock(buf);
  477. free_extent_buffer_stale(buf);
  478. btrfs_mark_buffer_dirty(cow);
  479. *cow_ret = cow;
  480. return 0;
  481. }
  482. static inline int should_cow_block(struct btrfs_trans_handle *trans,
  483. struct btrfs_root *root,
  484. struct extent_buffer *buf)
  485. {
  486. /* ensure we can see the force_cow */
  487. smp_rmb();
  488. /*
  489. * We do not need to cow a block if
  490. * 1) this block is not created or changed in this transaction;
  491. * 2) this block does not belong to TREE_RELOC tree;
  492. * 3) the root is not forced COW.
  493. *
  494. * What is forced COW:
  495. * when we create snapshot during commiting the transaction,
  496. * after we've finished coping src root, we must COW the shared
  497. * block to ensure the metadata consistency.
  498. */
  499. if (btrfs_header_generation(buf) == trans->transid &&
  500. !btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN) &&
  501. !(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID &&
  502. btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)) &&
  503. !root->force_cow)
  504. return 0;
  505. return 1;
  506. }
  507. /*
  508. * cows a single block, see __btrfs_cow_block for the real work.
  509. * This version of it has extra checks so that a block isn't cow'd more than
  510. * once per transaction, as long as it hasn't been written yet
  511. */
  512. noinline int btrfs_cow_block(struct btrfs_trans_handle *trans,
  513. struct btrfs_root *root, struct extent_buffer *buf,
  514. struct extent_buffer *parent, int parent_slot,
  515. struct extent_buffer **cow_ret)
  516. {
  517. u64 search_start;
  518. int ret;
  519. if (trans->transaction != root->fs_info->running_transaction) {
  520. printk(KERN_CRIT "trans %llu running %llu\n",
  521. (unsigned long long)trans->transid,
  522. (unsigned long long)
  523. root->fs_info->running_transaction->transid);
  524. WARN_ON(1);
  525. }
  526. if (trans->transid != root->fs_info->generation) {
  527. printk(KERN_CRIT "trans %llu running %llu\n",
  528. (unsigned long long)trans->transid,
  529. (unsigned long long)root->fs_info->generation);
  530. WARN_ON(1);
  531. }
  532. if (!should_cow_block(trans, root, buf)) {
  533. *cow_ret = buf;
  534. return 0;
  535. }
  536. search_start = buf->start & ~((u64)(1024 * 1024 * 1024) - 1);
  537. if (parent)
  538. btrfs_set_lock_blocking(parent);
  539. btrfs_set_lock_blocking(buf);
  540. ret = __btrfs_cow_block(trans, root, buf, parent,
  541. parent_slot, cow_ret, search_start, 0);
  542. trace_btrfs_cow_block(root, buf, *cow_ret);
  543. return ret;
  544. }
  545. /*
  546. * helper function for defrag to decide if two blocks pointed to by a
  547. * node are actually close by
  548. */
  549. static int close_blocks(u64 blocknr, u64 other, u32 blocksize)
  550. {
  551. if (blocknr < other && other - (blocknr + blocksize) < 32768)
  552. return 1;
  553. if (blocknr > other && blocknr - (other + blocksize) < 32768)
  554. return 1;
  555. return 0;
  556. }
  557. /*
  558. * compare two keys in a memcmp fashion
  559. */
  560. static int comp_keys(struct btrfs_disk_key *disk, struct btrfs_key *k2)
  561. {
  562. struct btrfs_key k1;
  563. btrfs_disk_key_to_cpu(&k1, disk);
  564. return btrfs_comp_cpu_keys(&k1, k2);
  565. }
  566. /*
  567. * same as comp_keys only with two btrfs_key's
  568. */
  569. int btrfs_comp_cpu_keys(struct btrfs_key *k1, struct btrfs_key *k2)
  570. {
  571. if (k1->objectid > k2->objectid)
  572. return 1;
  573. if (k1->objectid < k2->objectid)
  574. return -1;
  575. if (k1->type > k2->type)
  576. return 1;
  577. if (k1->type < k2->type)
  578. return -1;
  579. if (k1->offset > k2->offset)
  580. return 1;
  581. if (k1->offset < k2->offset)
  582. return -1;
  583. return 0;
  584. }
  585. /*
  586. * this is used by the defrag code to go through all the
  587. * leaves pointed to by a node and reallocate them so that
  588. * disk order is close to key order
  589. */
  590. int btrfs_realloc_node(struct btrfs_trans_handle *trans,
  591. struct btrfs_root *root, struct extent_buffer *parent,
  592. int start_slot, int cache_only, u64 *last_ret,
  593. struct btrfs_key *progress)
  594. {
  595. struct extent_buffer *cur;
  596. u64 blocknr;
  597. u64 gen;
  598. u64 search_start = *last_ret;
  599. u64 last_block = 0;
  600. u64 other;
  601. u32 parent_nritems;
  602. int end_slot;
  603. int i;
  604. int err = 0;
  605. int parent_level;
  606. int uptodate;
  607. u32 blocksize;
  608. int progress_passed = 0;
  609. struct btrfs_disk_key disk_key;
  610. parent_level = btrfs_header_level(parent);
  611. if (cache_only && parent_level != 1)
  612. return 0;
  613. if (trans->transaction != root->fs_info->running_transaction)
  614. WARN_ON(1);
  615. if (trans->transid != root->fs_info->generation)
  616. WARN_ON(1);
  617. parent_nritems = btrfs_header_nritems(parent);
  618. blocksize = btrfs_level_size(root, parent_level - 1);
  619. end_slot = parent_nritems;
  620. if (parent_nritems == 1)
  621. return 0;
  622. btrfs_set_lock_blocking(parent);
  623. for (i = start_slot; i < end_slot; i++) {
  624. int close = 1;
  625. btrfs_node_key(parent, &disk_key, i);
  626. if (!progress_passed && comp_keys(&disk_key, progress) < 0)
  627. continue;
  628. progress_passed = 1;
  629. blocknr = btrfs_node_blockptr(parent, i);
  630. gen = btrfs_node_ptr_generation(parent, i);
  631. if (last_block == 0)
  632. last_block = blocknr;
  633. if (i > 0) {
  634. other = btrfs_node_blockptr(parent, i - 1);
  635. close = close_blocks(blocknr, other, blocksize);
  636. }
  637. if (!close && i < end_slot - 2) {
  638. other = btrfs_node_blockptr(parent, i + 1);
  639. close = close_blocks(blocknr, other, blocksize);
  640. }
  641. if (close) {
  642. last_block = blocknr;
  643. continue;
  644. }
  645. cur = btrfs_find_tree_block(root, blocknr, blocksize);
  646. if (cur)
  647. uptodate = btrfs_buffer_uptodate(cur, gen);
  648. else
  649. uptodate = 0;
  650. if (!cur || !uptodate) {
  651. if (cache_only) {
  652. free_extent_buffer(cur);
  653. continue;
  654. }
  655. if (!cur) {
  656. cur = read_tree_block(root, blocknr,
  657. blocksize, gen);
  658. if (!cur)
  659. return -EIO;
  660. } else if (!uptodate) {
  661. btrfs_read_buffer(cur, gen);
  662. }
  663. }
  664. if (search_start == 0)
  665. search_start = last_block;
  666. btrfs_tree_lock(cur);
  667. btrfs_set_lock_blocking(cur);
  668. err = __btrfs_cow_block(trans, root, cur, parent, i,
  669. &cur, search_start,
  670. min(16 * blocksize,
  671. (end_slot - i) * blocksize));
  672. if (err) {
  673. btrfs_tree_unlock(cur);
  674. free_extent_buffer(cur);
  675. break;
  676. }
  677. search_start = cur->start;
  678. last_block = cur->start;
  679. *last_ret = search_start;
  680. btrfs_tree_unlock(cur);
  681. free_extent_buffer(cur);
  682. }
  683. return err;
  684. }
  685. /*
  686. * The leaf data grows from end-to-front in the node.
  687. * this returns the address of the start of the last item,
  688. * which is the stop of the leaf data stack
  689. */
  690. static inline unsigned int leaf_data_end(struct btrfs_root *root,
  691. struct extent_buffer *leaf)
  692. {
  693. u32 nr = btrfs_header_nritems(leaf);
  694. if (nr == 0)
  695. return BTRFS_LEAF_DATA_SIZE(root);
  696. return btrfs_item_offset_nr(leaf, nr - 1);
  697. }
  698. /*
  699. * search for key in the extent_buffer. The items start at offset p,
  700. * and they are item_size apart. There are 'max' items in p.
  701. *
  702. * the slot in the array is returned via slot, and it points to
  703. * the place where you would insert key if it is not found in
  704. * the array.
  705. *
  706. * slot may point to max if the key is bigger than all of the keys
  707. */
  708. static noinline int generic_bin_search(struct extent_buffer *eb,
  709. unsigned long p,
  710. int item_size, struct btrfs_key *key,
  711. int max, int *slot)
  712. {
  713. int low = 0;
  714. int high = max;
  715. int mid;
  716. int ret;
  717. struct btrfs_disk_key *tmp = NULL;
  718. struct btrfs_disk_key unaligned;
  719. unsigned long offset;
  720. char *kaddr = NULL;
  721. unsigned long map_start = 0;
  722. unsigned long map_len = 0;
  723. int err;
  724. while (low < high) {
  725. mid = (low + high) / 2;
  726. offset = p + mid * item_size;
  727. if (!kaddr || offset < map_start ||
  728. (offset + sizeof(struct btrfs_disk_key)) >
  729. map_start + map_len) {
  730. err = map_private_extent_buffer(eb, offset,
  731. sizeof(struct btrfs_disk_key),
  732. &kaddr, &map_start, &map_len);
  733. if (!err) {
  734. tmp = (struct btrfs_disk_key *)(kaddr + offset -
  735. map_start);
  736. } else {
  737. read_extent_buffer(eb, &unaligned,
  738. offset, sizeof(unaligned));
  739. tmp = &unaligned;
  740. }
  741. } else {
  742. tmp = (struct btrfs_disk_key *)(kaddr + offset -
  743. map_start);
  744. }
  745. ret = comp_keys(tmp, key);
  746. if (ret < 0)
  747. low = mid + 1;
  748. else if (ret > 0)
  749. high = mid;
  750. else {
  751. *slot = mid;
  752. return 0;
  753. }
  754. }
  755. *slot = low;
  756. return 1;
  757. }
  758. /*
  759. * simple bin_search frontend that does the right thing for
  760. * leaves vs nodes
  761. */
  762. static int bin_search(struct extent_buffer *eb, struct btrfs_key *key,
  763. int level, int *slot)
  764. {
  765. if (level == 0) {
  766. return generic_bin_search(eb,
  767. offsetof(struct btrfs_leaf, items),
  768. sizeof(struct btrfs_item),
  769. key, btrfs_header_nritems(eb),
  770. slot);
  771. } else {
  772. return generic_bin_search(eb,
  773. offsetof(struct btrfs_node, ptrs),
  774. sizeof(struct btrfs_key_ptr),
  775. key, btrfs_header_nritems(eb),
  776. slot);
  777. }
  778. return -1;
  779. }
  780. int btrfs_bin_search(struct extent_buffer *eb, struct btrfs_key *key,
  781. int level, int *slot)
  782. {
  783. return bin_search(eb, key, level, slot);
  784. }
  785. static void root_add_used(struct btrfs_root *root, u32 size)
  786. {
  787. spin_lock(&root->accounting_lock);
  788. btrfs_set_root_used(&root->root_item,
  789. btrfs_root_used(&root->root_item) + size);
  790. spin_unlock(&root->accounting_lock);
  791. }
  792. static void root_sub_used(struct btrfs_root *root, u32 size)
  793. {
  794. spin_lock(&root->accounting_lock);
  795. btrfs_set_root_used(&root->root_item,
  796. btrfs_root_used(&root->root_item) - size);
  797. spin_unlock(&root->accounting_lock);
  798. }
  799. /* given a node and slot number, this reads the blocks it points to. The
  800. * extent buffer is returned with a reference taken (but unlocked).
  801. * NULL is returned on error.
  802. */
  803. static noinline struct extent_buffer *read_node_slot(struct btrfs_root *root,
  804. struct extent_buffer *parent, int slot)
  805. {
  806. int level = btrfs_header_level(parent);
  807. if (slot < 0)
  808. return NULL;
  809. if (slot >= btrfs_header_nritems(parent))
  810. return NULL;
  811. BUG_ON(level == 0);
  812. return read_tree_block(root, btrfs_node_blockptr(parent, slot),
  813. btrfs_level_size(root, level - 1),
  814. btrfs_node_ptr_generation(parent, slot));
  815. }
  816. /*
  817. * node level balancing, used to make sure nodes are in proper order for
  818. * item deletion. We balance from the top down, so we have to make sure
  819. * that a deletion won't leave an node completely empty later on.
  820. */
  821. static noinline int balance_level(struct btrfs_trans_handle *trans,
  822. struct btrfs_root *root,
  823. struct btrfs_path *path, int level)
  824. {
  825. struct extent_buffer *right = NULL;
  826. struct extent_buffer *mid;
  827. struct extent_buffer *left = NULL;
  828. struct extent_buffer *parent = NULL;
  829. int ret = 0;
  830. int wret;
  831. int pslot;
  832. int orig_slot = path->slots[level];
  833. u64 orig_ptr;
  834. if (level == 0)
  835. return 0;
  836. mid = path->nodes[level];
  837. WARN_ON(path->locks[level] != BTRFS_WRITE_LOCK &&
  838. path->locks[level] != BTRFS_WRITE_LOCK_BLOCKING);
  839. WARN_ON(btrfs_header_generation(mid) != trans->transid);
  840. orig_ptr = btrfs_node_blockptr(mid, orig_slot);
  841. if (level < BTRFS_MAX_LEVEL - 1) {
  842. parent = path->nodes[level + 1];
  843. pslot = path->slots[level + 1];
  844. }
  845. /*
  846. * deal with the case where there is only one pointer in the root
  847. * by promoting the node below to a root
  848. */
  849. if (!parent) {
  850. struct extent_buffer *child;
  851. if (btrfs_header_nritems(mid) != 1)
  852. return 0;
  853. /* promote the child to a root */
  854. child = read_node_slot(root, mid, 0);
  855. if (!child) {
  856. ret = -EROFS;
  857. btrfs_std_error(root->fs_info, ret);
  858. goto enospc;
  859. }
  860. btrfs_tree_lock(child);
  861. btrfs_set_lock_blocking(child);
  862. ret = btrfs_cow_block(trans, root, child, mid, 0, &child);
  863. if (ret) {
  864. btrfs_tree_unlock(child);
  865. free_extent_buffer(child);
  866. goto enospc;
  867. }
  868. rcu_assign_pointer(root->node, child);
  869. add_root_to_dirty_list(root);
  870. btrfs_tree_unlock(child);
  871. path->locks[level] = 0;
  872. path->nodes[level] = NULL;
  873. clean_tree_block(trans, root, mid);
  874. btrfs_tree_unlock(mid);
  875. /* once for the path */
  876. free_extent_buffer(mid);
  877. root_sub_used(root, mid->len);
  878. btrfs_free_tree_block(trans, root, mid, 0, 1, 0);
  879. /* once for the root ptr */
  880. free_extent_buffer_stale(mid);
  881. return 0;
  882. }
  883. if (btrfs_header_nritems(mid) >
  884. BTRFS_NODEPTRS_PER_BLOCK(root) / 4)
  885. return 0;
  886. btrfs_header_nritems(mid);
  887. left = read_node_slot(root, parent, pslot - 1);
  888. if (left) {
  889. btrfs_tree_lock(left);
  890. btrfs_set_lock_blocking(left);
  891. wret = btrfs_cow_block(trans, root, left,
  892. parent, pslot - 1, &left);
  893. if (wret) {
  894. ret = wret;
  895. goto enospc;
  896. }
  897. }
  898. right = read_node_slot(root, parent, pslot + 1);
  899. if (right) {
  900. btrfs_tree_lock(right);
  901. btrfs_set_lock_blocking(right);
  902. wret = btrfs_cow_block(trans, root, right,
  903. parent, pslot + 1, &right);
  904. if (wret) {
  905. ret = wret;
  906. goto enospc;
  907. }
  908. }
  909. /* first, try to make some room in the middle buffer */
  910. if (left) {
  911. orig_slot += btrfs_header_nritems(left);
  912. wret = push_node_left(trans, root, left, mid, 1);
  913. if (wret < 0)
  914. ret = wret;
  915. btrfs_header_nritems(mid);
  916. }
  917. /*
  918. * then try to empty the right most buffer into the middle
  919. */
  920. if (right) {
  921. wret = push_node_left(trans, root, mid, right, 1);
  922. if (wret < 0 && wret != -ENOSPC)
  923. ret = wret;
  924. if (btrfs_header_nritems(right) == 0) {
  925. clean_tree_block(trans, root, right);
  926. btrfs_tree_unlock(right);
  927. del_ptr(trans, root, path, level + 1, pslot + 1);
  928. root_sub_used(root, right->len);
  929. btrfs_free_tree_block(trans, root, right, 0, 1, 0);
  930. free_extent_buffer_stale(right);
  931. right = NULL;
  932. } else {
  933. struct btrfs_disk_key right_key;
  934. btrfs_node_key(right, &right_key, 0);
  935. btrfs_set_node_key(parent, &right_key, pslot + 1);
  936. btrfs_mark_buffer_dirty(parent);
  937. }
  938. }
  939. if (btrfs_header_nritems(mid) == 1) {
  940. /*
  941. * we're not allowed to leave a node with one item in the
  942. * tree during a delete. A deletion from lower in the tree
  943. * could try to delete the only pointer in this node.
  944. * So, pull some keys from the left.
  945. * There has to be a left pointer at this point because
  946. * otherwise we would have pulled some pointers from the
  947. * right
  948. */
  949. if (!left) {
  950. ret = -EROFS;
  951. btrfs_std_error(root->fs_info, ret);
  952. goto enospc;
  953. }
  954. wret = balance_node_right(trans, root, mid, left);
  955. if (wret < 0) {
  956. ret = wret;
  957. goto enospc;
  958. }
  959. if (wret == 1) {
  960. wret = push_node_left(trans, root, left, mid, 1);
  961. if (wret < 0)
  962. ret = wret;
  963. }
  964. BUG_ON(wret == 1);
  965. }
  966. if (btrfs_header_nritems(mid) == 0) {
  967. clean_tree_block(trans, root, mid);
  968. btrfs_tree_unlock(mid);
  969. del_ptr(trans, root, path, level + 1, pslot);
  970. root_sub_used(root, mid->len);
  971. btrfs_free_tree_block(trans, root, mid, 0, 1, 0);
  972. free_extent_buffer_stale(mid);
  973. mid = NULL;
  974. } else {
  975. /* update the parent key to reflect our changes */
  976. struct btrfs_disk_key mid_key;
  977. btrfs_node_key(mid, &mid_key, 0);
  978. btrfs_set_node_key(parent, &mid_key, pslot);
  979. btrfs_mark_buffer_dirty(parent);
  980. }
  981. /* update the path */
  982. if (left) {
  983. if (btrfs_header_nritems(left) > orig_slot) {
  984. extent_buffer_get(left);
  985. /* left was locked after cow */
  986. path->nodes[level] = left;
  987. path->slots[level + 1] -= 1;
  988. path->slots[level] = orig_slot;
  989. if (mid) {
  990. btrfs_tree_unlock(mid);
  991. free_extent_buffer(mid);
  992. }
  993. } else {
  994. orig_slot -= btrfs_header_nritems(left);
  995. path->slots[level] = orig_slot;
  996. }
  997. }
  998. /* double check we haven't messed things up */
  999. if (orig_ptr !=
  1000. btrfs_node_blockptr(path->nodes[level], path->slots[level]))
  1001. BUG();
  1002. enospc:
  1003. if (right) {
  1004. btrfs_tree_unlock(right);
  1005. free_extent_buffer(right);
  1006. }
  1007. if (left) {
  1008. if (path->nodes[level] != left)
  1009. btrfs_tree_unlock(left);
  1010. free_extent_buffer(left);
  1011. }
  1012. return ret;
  1013. }
  1014. /* Node balancing for insertion. Here we only split or push nodes around
  1015. * when they are completely full. This is also done top down, so we
  1016. * have to be pessimistic.
  1017. */
  1018. static noinline int push_nodes_for_insert(struct btrfs_trans_handle *trans,
  1019. struct btrfs_root *root,
  1020. struct btrfs_path *path, int level)
  1021. {
  1022. struct extent_buffer *right = NULL;
  1023. struct extent_buffer *mid;
  1024. struct extent_buffer *left = NULL;
  1025. struct extent_buffer *parent = NULL;
  1026. int ret = 0;
  1027. int wret;
  1028. int pslot;
  1029. int orig_slot = path->slots[level];
  1030. if (level == 0)
  1031. return 1;
  1032. mid = path->nodes[level];
  1033. WARN_ON(btrfs_header_generation(mid) != trans->transid);
  1034. if (level < BTRFS_MAX_LEVEL - 1) {
  1035. parent = path->nodes[level + 1];
  1036. pslot = path->slots[level + 1];
  1037. }
  1038. if (!parent)
  1039. return 1;
  1040. left = read_node_slot(root, parent, pslot - 1);
  1041. /* first, try to make some room in the middle buffer */
  1042. if (left) {
  1043. u32 left_nr;
  1044. btrfs_tree_lock(left);
  1045. btrfs_set_lock_blocking(left);
  1046. left_nr = btrfs_header_nritems(left);
  1047. if (left_nr >= BTRFS_NODEPTRS_PER_BLOCK(root) - 1) {
  1048. wret = 1;
  1049. } else {
  1050. ret = btrfs_cow_block(trans, root, left, parent,
  1051. pslot - 1, &left);
  1052. if (ret)
  1053. wret = 1;
  1054. else {
  1055. wret = push_node_left(trans, root,
  1056. left, mid, 0);
  1057. }
  1058. }
  1059. if (wret < 0)
  1060. ret = wret;
  1061. if (wret == 0) {
  1062. struct btrfs_disk_key disk_key;
  1063. orig_slot += left_nr;
  1064. btrfs_node_key(mid, &disk_key, 0);
  1065. btrfs_set_node_key(parent, &disk_key, pslot);
  1066. btrfs_mark_buffer_dirty(parent);
  1067. if (btrfs_header_nritems(left) > orig_slot) {
  1068. path->nodes[level] = left;
  1069. path->slots[level + 1] -= 1;
  1070. path->slots[level] = orig_slot;
  1071. btrfs_tree_unlock(mid);
  1072. free_extent_buffer(mid);
  1073. } else {
  1074. orig_slot -=
  1075. btrfs_header_nritems(left);
  1076. path->slots[level] = orig_slot;
  1077. btrfs_tree_unlock(left);
  1078. free_extent_buffer(left);
  1079. }
  1080. return 0;
  1081. }
  1082. btrfs_tree_unlock(left);
  1083. free_extent_buffer(left);
  1084. }
  1085. right = read_node_slot(root, parent, pslot + 1);
  1086. /*
  1087. * then try to empty the right most buffer into the middle
  1088. */
  1089. if (right) {
  1090. u32 right_nr;
  1091. btrfs_tree_lock(right);
  1092. btrfs_set_lock_blocking(right);
  1093. right_nr = btrfs_header_nritems(right);
  1094. if (right_nr >= BTRFS_NODEPTRS_PER_BLOCK(root) - 1) {
  1095. wret = 1;
  1096. } else {
  1097. ret = btrfs_cow_block(trans, root, right,
  1098. parent, pslot + 1,
  1099. &right);
  1100. if (ret)
  1101. wret = 1;
  1102. else {
  1103. wret = balance_node_right(trans, root,
  1104. right, mid);
  1105. }
  1106. }
  1107. if (wret < 0)
  1108. ret = wret;
  1109. if (wret == 0) {
  1110. struct btrfs_disk_key disk_key;
  1111. btrfs_node_key(right, &disk_key, 0);
  1112. btrfs_set_node_key(parent, &disk_key, pslot + 1);
  1113. btrfs_mark_buffer_dirty(parent);
  1114. if (btrfs_header_nritems(mid) <= orig_slot) {
  1115. path->nodes[level] = right;
  1116. path->slots[level + 1] += 1;
  1117. path->slots[level] = orig_slot -
  1118. btrfs_header_nritems(mid);
  1119. btrfs_tree_unlock(mid);
  1120. free_extent_buffer(mid);
  1121. } else {
  1122. btrfs_tree_unlock(right);
  1123. free_extent_buffer(right);
  1124. }
  1125. return 0;
  1126. }
  1127. btrfs_tree_unlock(right);
  1128. free_extent_buffer(right);
  1129. }
  1130. return 1;
  1131. }
  1132. /*
  1133. * readahead one full node of leaves, finding things that are close
  1134. * to the block in 'slot', and triggering ra on them.
  1135. */
  1136. static void reada_for_search(struct btrfs_root *root,
  1137. struct btrfs_path *path,
  1138. int level, int slot, u64 objectid)
  1139. {
  1140. struct extent_buffer *node;
  1141. struct btrfs_disk_key disk_key;
  1142. u32 nritems;
  1143. u64 search;
  1144. u64 target;
  1145. u64 nread = 0;
  1146. u64 gen;
  1147. int direction = path->reada;
  1148. struct extent_buffer *eb;
  1149. u32 nr;
  1150. u32 blocksize;
  1151. u32 nscan = 0;
  1152. if (level != 1)
  1153. return;
  1154. if (!path->nodes[level])
  1155. return;
  1156. node = path->nodes[level];
  1157. search = btrfs_node_blockptr(node, slot);
  1158. blocksize = btrfs_level_size(root, level - 1);
  1159. eb = btrfs_find_tree_block(root, search, blocksize);
  1160. if (eb) {
  1161. free_extent_buffer(eb);
  1162. return;
  1163. }
  1164. target = search;
  1165. nritems = btrfs_header_nritems(node);
  1166. nr = slot;
  1167. while (1) {
  1168. if (direction < 0) {
  1169. if (nr == 0)
  1170. break;
  1171. nr--;
  1172. } else if (direction > 0) {
  1173. nr++;
  1174. if (nr >= nritems)
  1175. break;
  1176. }
  1177. if (path->reada < 0 && objectid) {
  1178. btrfs_node_key(node, &disk_key, nr);
  1179. if (btrfs_disk_key_objectid(&disk_key) != objectid)
  1180. break;
  1181. }
  1182. search = btrfs_node_blockptr(node, nr);
  1183. if ((search <= target && target - search <= 65536) ||
  1184. (search > target && search - target <= 65536)) {
  1185. gen = btrfs_node_ptr_generation(node, nr);
  1186. readahead_tree_block(root, search, blocksize, gen);
  1187. nread += blocksize;
  1188. }
  1189. nscan++;
  1190. if ((nread > 65536 || nscan > 32))
  1191. break;
  1192. }
  1193. }
  1194. /*
  1195. * returns -EAGAIN if it had to drop the path, or zero if everything was in
  1196. * cache
  1197. */
  1198. static noinline int reada_for_balance(struct btrfs_root *root,
  1199. struct btrfs_path *path, int level)
  1200. {
  1201. int slot;
  1202. int nritems;
  1203. struct extent_buffer *parent;
  1204. struct extent_buffer *eb;
  1205. u64 gen;
  1206. u64 block1 = 0;
  1207. u64 block2 = 0;
  1208. int ret = 0;
  1209. int blocksize;
  1210. parent = path->nodes[level + 1];
  1211. if (!parent)
  1212. return 0;
  1213. nritems = btrfs_header_nritems(parent);
  1214. slot = path->slots[level + 1];
  1215. blocksize = btrfs_level_size(root, level);
  1216. if (slot > 0) {
  1217. block1 = btrfs_node_blockptr(parent, slot - 1);
  1218. gen = btrfs_node_ptr_generation(parent, slot - 1);
  1219. eb = btrfs_find_tree_block(root, block1, blocksize);
  1220. if (eb && btrfs_buffer_uptodate(eb, gen))
  1221. block1 = 0;
  1222. free_extent_buffer(eb);
  1223. }
  1224. if (slot + 1 < nritems) {
  1225. block2 = btrfs_node_blockptr(parent, slot + 1);
  1226. gen = btrfs_node_ptr_generation(parent, slot + 1);
  1227. eb = btrfs_find_tree_block(root, block2, blocksize);
  1228. if (eb && btrfs_buffer_uptodate(eb, gen))
  1229. block2 = 0;
  1230. free_extent_buffer(eb);
  1231. }
  1232. if (block1 || block2) {
  1233. ret = -EAGAIN;
  1234. /* release the whole path */
  1235. btrfs_release_path(path);
  1236. /* read the blocks */
  1237. if (block1)
  1238. readahead_tree_block(root, block1, blocksize, 0);
  1239. if (block2)
  1240. readahead_tree_block(root, block2, blocksize, 0);
  1241. if (block1) {
  1242. eb = read_tree_block(root, block1, blocksize, 0);
  1243. free_extent_buffer(eb);
  1244. }
  1245. if (block2) {
  1246. eb = read_tree_block(root, block2, blocksize, 0);
  1247. free_extent_buffer(eb);
  1248. }
  1249. }
  1250. return ret;
  1251. }
  1252. /*
  1253. * when we walk down the tree, it is usually safe to unlock the higher layers
  1254. * in the tree. The exceptions are when our path goes through slot 0, because
  1255. * operations on the tree might require changing key pointers higher up in the
  1256. * tree.
  1257. *
  1258. * callers might also have set path->keep_locks, which tells this code to keep
  1259. * the lock if the path points to the last slot in the block. This is part of
  1260. * walking through the tree, and selecting the next slot in the higher block.
  1261. *
  1262. * lowest_unlock sets the lowest level in the tree we're allowed to unlock. so
  1263. * if lowest_unlock is 1, level 0 won't be unlocked
  1264. */
  1265. static noinline void unlock_up(struct btrfs_path *path, int level,
  1266. int lowest_unlock, int min_write_lock_level,
  1267. int *write_lock_level)
  1268. {
  1269. int i;
  1270. int skip_level = level;
  1271. int no_skips = 0;
  1272. struct extent_buffer *t;
  1273. for (i = level; i < BTRFS_MAX_LEVEL; i++) {
  1274. if (!path->nodes[i])
  1275. break;
  1276. if (!path->locks[i])
  1277. break;
  1278. if (!no_skips && path->slots[i] == 0) {
  1279. skip_level = i + 1;
  1280. continue;
  1281. }
  1282. if (!no_skips && path->keep_locks) {
  1283. u32 nritems;
  1284. t = path->nodes[i];
  1285. nritems = btrfs_header_nritems(t);
  1286. if (nritems < 1 || path->slots[i] >= nritems - 1) {
  1287. skip_level = i + 1;
  1288. continue;
  1289. }
  1290. }
  1291. if (skip_level < i && i >= lowest_unlock)
  1292. no_skips = 1;
  1293. t = path->nodes[i];
  1294. if (i >= lowest_unlock && i > skip_level && path->locks[i]) {
  1295. btrfs_tree_unlock_rw(t, path->locks[i]);
  1296. path->locks[i] = 0;
  1297. if (write_lock_level &&
  1298. i > min_write_lock_level &&
  1299. i <= *write_lock_level) {
  1300. *write_lock_level = i - 1;
  1301. }
  1302. }
  1303. }
  1304. }
  1305. /*
  1306. * This releases any locks held in the path starting at level and
  1307. * going all the way up to the root.
  1308. *
  1309. * btrfs_search_slot will keep the lock held on higher nodes in a few
  1310. * corner cases, such as COW of the block at slot zero in the node. This
  1311. * ignores those rules, and it should only be called when there are no
  1312. * more updates to be done higher up in the tree.
  1313. */
  1314. noinline void btrfs_unlock_up_safe(struct btrfs_path *path, int level)
  1315. {
  1316. int i;
  1317. if (path->keep_locks)
  1318. return;
  1319. for (i = level; i < BTRFS_MAX_LEVEL; i++) {
  1320. if (!path->nodes[i])
  1321. continue;
  1322. if (!path->locks[i])
  1323. continue;
  1324. btrfs_tree_unlock_rw(path->nodes[i], path->locks[i]);
  1325. path->locks[i] = 0;
  1326. }
  1327. }
  1328. /*
  1329. * helper function for btrfs_search_slot. The goal is to find a block
  1330. * in cache without setting the path to blocking. If we find the block
  1331. * we return zero and the path is unchanged.
  1332. *
  1333. * If we can't find the block, we set the path blocking and do some
  1334. * reada. -EAGAIN is returned and the search must be repeated.
  1335. */
  1336. static int
  1337. read_block_for_search(struct btrfs_trans_handle *trans,
  1338. struct btrfs_root *root, struct btrfs_path *p,
  1339. struct extent_buffer **eb_ret, int level, int slot,
  1340. struct btrfs_key *key)
  1341. {
  1342. u64 blocknr;
  1343. u64 gen;
  1344. u32 blocksize;
  1345. struct extent_buffer *b = *eb_ret;
  1346. struct extent_buffer *tmp;
  1347. int ret;
  1348. blocknr = btrfs_node_blockptr(b, slot);
  1349. gen = btrfs_node_ptr_generation(b, slot);
  1350. blocksize = btrfs_level_size(root, level - 1);
  1351. tmp = btrfs_find_tree_block(root, blocknr, blocksize);
  1352. if (tmp) {
  1353. if (btrfs_buffer_uptodate(tmp, 0)) {
  1354. if (btrfs_buffer_uptodate(tmp, gen)) {
  1355. /*
  1356. * we found an up to date block without
  1357. * sleeping, return
  1358. * right away
  1359. */
  1360. *eb_ret = tmp;
  1361. return 0;
  1362. }
  1363. /* the pages were up to date, but we failed
  1364. * the generation number check. Do a full
  1365. * read for the generation number that is correct.
  1366. * We must do this without dropping locks so
  1367. * we can trust our generation number
  1368. */
  1369. free_extent_buffer(tmp);
  1370. btrfs_set_path_blocking(p);
  1371. tmp = read_tree_block(root, blocknr, blocksize, gen);
  1372. if (tmp && btrfs_buffer_uptodate(tmp, gen)) {
  1373. *eb_ret = tmp;
  1374. return 0;
  1375. }
  1376. free_extent_buffer(tmp);
  1377. btrfs_release_path(p);
  1378. return -EIO;
  1379. }
  1380. }
  1381. /*
  1382. * reduce lock contention at high levels
  1383. * of the btree by dropping locks before
  1384. * we read. Don't release the lock on the current
  1385. * level because we need to walk this node to figure
  1386. * out which blocks to read.
  1387. */
  1388. btrfs_unlock_up_safe(p, level + 1);
  1389. btrfs_set_path_blocking(p);
  1390. free_extent_buffer(tmp);
  1391. if (p->reada)
  1392. reada_for_search(root, p, level, slot, key->objectid);
  1393. btrfs_release_path(p);
  1394. ret = -EAGAIN;
  1395. tmp = read_tree_block(root, blocknr, blocksize, 0);
  1396. if (tmp) {
  1397. /*
  1398. * If the read above didn't mark this buffer up to date,
  1399. * it will never end up being up to date. Set ret to EIO now
  1400. * and give up so that our caller doesn't loop forever
  1401. * on our EAGAINs.
  1402. */
  1403. if (!btrfs_buffer_uptodate(tmp, 0))
  1404. ret = -EIO;
  1405. free_extent_buffer(tmp);
  1406. }
  1407. return ret;
  1408. }
  1409. /*
  1410. * helper function for btrfs_search_slot. This does all of the checks
  1411. * for node-level blocks and does any balancing required based on
  1412. * the ins_len.
  1413. *
  1414. * If no extra work was required, zero is returned. If we had to
  1415. * drop the path, -EAGAIN is returned and btrfs_search_slot must
  1416. * start over
  1417. */
  1418. static int
  1419. setup_nodes_for_search(struct btrfs_trans_handle *trans,
  1420. struct btrfs_root *root, struct btrfs_path *p,
  1421. struct extent_buffer *b, int level, int ins_len,
  1422. int *write_lock_level)
  1423. {
  1424. int ret;
  1425. if ((p->search_for_split || ins_len > 0) && btrfs_header_nritems(b) >=
  1426. BTRFS_NODEPTRS_PER_BLOCK(root) - 3) {
  1427. int sret;
  1428. if (*write_lock_level < level + 1) {
  1429. *write_lock_level = level + 1;
  1430. btrfs_release_path(p);
  1431. goto again;
  1432. }
  1433. sret = reada_for_balance(root, p, level);
  1434. if (sret)
  1435. goto again;
  1436. btrfs_set_path_blocking(p);
  1437. sret = split_node(trans, root, p, level);
  1438. btrfs_clear_path_blocking(p, NULL, 0);
  1439. BUG_ON(sret > 0);
  1440. if (sret) {
  1441. ret = sret;
  1442. goto done;
  1443. }
  1444. b = p->nodes[level];
  1445. } else if (ins_len < 0 && btrfs_header_nritems(b) <
  1446. BTRFS_NODEPTRS_PER_BLOCK(root) / 2) {
  1447. int sret;
  1448. if (*write_lock_level < level + 1) {
  1449. *write_lock_level = level + 1;
  1450. btrfs_release_path(p);
  1451. goto again;
  1452. }
  1453. sret = reada_for_balance(root, p, level);
  1454. if (sret)
  1455. goto again;
  1456. btrfs_set_path_blocking(p);
  1457. sret = balance_level(trans, root, p, level);
  1458. btrfs_clear_path_blocking(p, NULL, 0);
  1459. if (sret) {
  1460. ret = sret;
  1461. goto done;
  1462. }
  1463. b = p->nodes[level];
  1464. if (!b) {
  1465. btrfs_release_path(p);
  1466. goto again;
  1467. }
  1468. BUG_ON(btrfs_header_nritems(b) == 1);
  1469. }
  1470. return 0;
  1471. again:
  1472. ret = -EAGAIN;
  1473. done:
  1474. return ret;
  1475. }
  1476. /*
  1477. * look for key in the tree. path is filled in with nodes along the way
  1478. * if key is found, we return zero and you can find the item in the leaf
  1479. * level of the path (level 0)
  1480. *
  1481. * If the key isn't found, the path points to the slot where it should
  1482. * be inserted, and 1 is returned. If there are other errors during the
  1483. * search a negative error number is returned.
  1484. *
  1485. * if ins_len > 0, nodes and leaves will be split as we walk down the
  1486. * tree. if ins_len < 0, nodes will be merged as we walk down the tree (if
  1487. * possible)
  1488. */
  1489. int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root
  1490. *root, struct btrfs_key *key, struct btrfs_path *p, int
  1491. ins_len, int cow)
  1492. {
  1493. struct extent_buffer *b;
  1494. int slot;
  1495. int ret;
  1496. int err;
  1497. int level;
  1498. int lowest_unlock = 1;
  1499. int root_lock;
  1500. /* everything at write_lock_level or lower must be write locked */
  1501. int write_lock_level = 0;
  1502. u8 lowest_level = 0;
  1503. int min_write_lock_level;
  1504. lowest_level = p->lowest_level;
  1505. WARN_ON(lowest_level && ins_len > 0);
  1506. WARN_ON(p->nodes[0] != NULL);
  1507. if (ins_len < 0) {
  1508. lowest_unlock = 2;
  1509. /* when we are removing items, we might have to go up to level
  1510. * two as we update tree pointers Make sure we keep write
  1511. * for those levels as well
  1512. */
  1513. write_lock_level = 2;
  1514. } else if (ins_len > 0) {
  1515. /*
  1516. * for inserting items, make sure we have a write lock on
  1517. * level 1 so we can update keys
  1518. */
  1519. write_lock_level = 1;
  1520. }
  1521. if (!cow)
  1522. write_lock_level = -1;
  1523. if (cow && (p->keep_locks || p->lowest_level))
  1524. write_lock_level = BTRFS_MAX_LEVEL;
  1525. min_write_lock_level = write_lock_level;
  1526. again:
  1527. /*
  1528. * we try very hard to do read locks on the root
  1529. */
  1530. root_lock = BTRFS_READ_LOCK;
  1531. level = 0;
  1532. if (p->search_commit_root) {
  1533. /*
  1534. * the commit roots are read only
  1535. * so we always do read locks
  1536. */
  1537. b = root->commit_root;
  1538. extent_buffer_get(b);
  1539. level = btrfs_header_level(b);
  1540. if (!p->skip_locking)
  1541. btrfs_tree_read_lock(b);
  1542. } else {
  1543. if (p->skip_locking) {
  1544. b = btrfs_root_node(root);
  1545. level = btrfs_header_level(b);
  1546. } else {
  1547. /* we don't know the level of the root node
  1548. * until we actually have it read locked
  1549. */
  1550. b = btrfs_read_lock_root_node(root);
  1551. level = btrfs_header_level(b);
  1552. if (level <= write_lock_level) {
  1553. /* whoops, must trade for write lock */
  1554. btrfs_tree_read_unlock(b);
  1555. free_extent_buffer(b);
  1556. b = btrfs_lock_root_node(root);
  1557. root_lock = BTRFS_WRITE_LOCK;
  1558. /* the level might have changed, check again */
  1559. level = btrfs_header_level(b);
  1560. }
  1561. }
  1562. }
  1563. p->nodes[level] = b;
  1564. if (!p->skip_locking)
  1565. p->locks[level] = root_lock;
  1566. while (b) {
  1567. level = btrfs_header_level(b);
  1568. /*
  1569. * setup the path here so we can release it under lock
  1570. * contention with the cow code
  1571. */
  1572. if (cow) {
  1573. /*
  1574. * if we don't really need to cow this block
  1575. * then we don't want to set the path blocking,
  1576. * so we test it here
  1577. */
  1578. if (!should_cow_block(trans, root, b))
  1579. goto cow_done;
  1580. btrfs_set_path_blocking(p);
  1581. /*
  1582. * must have write locks on this node and the
  1583. * parent
  1584. */
  1585. if (level + 1 > write_lock_level) {
  1586. write_lock_level = level + 1;
  1587. btrfs_release_path(p);
  1588. goto again;
  1589. }
  1590. err = btrfs_cow_block(trans, root, b,
  1591. p->nodes[level + 1],
  1592. p->slots[level + 1], &b);
  1593. if (err) {
  1594. ret = err;
  1595. goto done;
  1596. }
  1597. }
  1598. cow_done:
  1599. BUG_ON(!cow && ins_len);
  1600. p->nodes[level] = b;
  1601. btrfs_clear_path_blocking(p, NULL, 0);
  1602. /*
  1603. * we have a lock on b and as long as we aren't changing
  1604. * the tree, there is no way to for the items in b to change.
  1605. * It is safe to drop the lock on our parent before we
  1606. * go through the expensive btree search on b.
  1607. *
  1608. * If cow is true, then we might be changing slot zero,
  1609. * which may require changing the parent. So, we can't
  1610. * drop the lock until after we know which slot we're
  1611. * operating on.
  1612. */
  1613. if (!cow)
  1614. btrfs_unlock_up_safe(p, level + 1);
  1615. ret = bin_search(b, key, level, &slot);
  1616. if (level != 0) {
  1617. int dec = 0;
  1618. if (ret && slot > 0) {
  1619. dec = 1;
  1620. slot -= 1;
  1621. }
  1622. p->slots[level] = slot;
  1623. err = setup_nodes_for_search(trans, root, p, b, level,
  1624. ins_len, &write_lock_level);
  1625. if (err == -EAGAIN)
  1626. goto again;
  1627. if (err) {
  1628. ret = err;
  1629. goto done;
  1630. }
  1631. b = p->nodes[level];
  1632. slot = p->slots[level];
  1633. /*
  1634. * slot 0 is special, if we change the key
  1635. * we have to update the parent pointer
  1636. * which means we must have a write lock
  1637. * on the parent
  1638. */
  1639. if (slot == 0 && cow &&
  1640. write_lock_level < level + 1) {
  1641. write_lock_level = level + 1;
  1642. btrfs_release_path(p);
  1643. goto again;
  1644. }
  1645. unlock_up(p, level, lowest_unlock,
  1646. min_write_lock_level, &write_lock_level);
  1647. if (level == lowest_level) {
  1648. if (dec)
  1649. p->slots[level]++;
  1650. goto done;
  1651. }
  1652. err = read_block_for_search(trans, root, p,
  1653. &b, level, slot, key);
  1654. if (err == -EAGAIN)
  1655. goto again;
  1656. if (err) {
  1657. ret = err;
  1658. goto done;
  1659. }
  1660. if (!p->skip_locking) {
  1661. level = btrfs_header_level(b);
  1662. if (level <= write_lock_level) {
  1663. err = btrfs_try_tree_write_lock(b);
  1664. if (!err) {
  1665. btrfs_set_path_blocking(p);
  1666. btrfs_tree_lock(b);
  1667. btrfs_clear_path_blocking(p, b,
  1668. BTRFS_WRITE_LOCK);
  1669. }
  1670. p->locks[level] = BTRFS_WRITE_LOCK;
  1671. } else {
  1672. err = btrfs_try_tree_read_lock(b);
  1673. if (!err) {
  1674. btrfs_set_path_blocking(p);
  1675. btrfs_tree_read_lock(b);
  1676. btrfs_clear_path_blocking(p, b,
  1677. BTRFS_READ_LOCK);
  1678. }
  1679. p->locks[level] = BTRFS_READ_LOCK;
  1680. }
  1681. p->nodes[level] = b;
  1682. }
  1683. } else {
  1684. p->slots[level] = slot;
  1685. if (ins_len > 0 &&
  1686. btrfs_leaf_free_space(root, b) < ins_len) {
  1687. if (write_lock_level < 1) {
  1688. write_lock_level = 1;
  1689. btrfs_release_path(p);
  1690. goto again;
  1691. }
  1692. btrfs_set_path_blocking(p);
  1693. err = split_leaf(trans, root, key,
  1694. p, ins_len, ret == 0);
  1695. btrfs_clear_path_blocking(p, NULL, 0);
  1696. BUG_ON(err > 0);
  1697. if (err) {
  1698. ret = err;
  1699. goto done;
  1700. }
  1701. }
  1702. if (!p->search_for_split)
  1703. unlock_up(p, level, lowest_unlock,
  1704. min_write_lock_level, &write_lock_level);
  1705. goto done;
  1706. }
  1707. }
  1708. ret = 1;
  1709. done:
  1710. /*
  1711. * we don't really know what they plan on doing with the path
  1712. * from here on, so for now just mark it as blocking
  1713. */
  1714. if (!p->leave_spinning)
  1715. btrfs_set_path_blocking(p);
  1716. if (ret < 0)
  1717. btrfs_release_path(p);
  1718. return ret;
  1719. }
  1720. /*
  1721. * adjust the pointers going up the tree, starting at level
  1722. * making sure the right key of each node is points to 'key'.
  1723. * This is used after shifting pointers to the left, so it stops
  1724. * fixing up pointers when a given leaf/node is not in slot 0 of the
  1725. * higher levels
  1726. *
  1727. */
  1728. static void fixup_low_keys(struct btrfs_trans_handle *trans,
  1729. struct btrfs_root *root, struct btrfs_path *path,
  1730. struct btrfs_disk_key *key, int level)
  1731. {
  1732. int i;
  1733. struct extent_buffer *t;
  1734. for (i = level; i < BTRFS_MAX_LEVEL; i++) {
  1735. int tslot = path->slots[i];
  1736. if (!path->nodes[i])
  1737. break;
  1738. t = path->nodes[i];
  1739. btrfs_set_node_key(t, key, tslot);
  1740. btrfs_mark_buffer_dirty(path->nodes[i]);
  1741. if (tslot != 0)
  1742. break;
  1743. }
  1744. }
  1745. /*
  1746. * update item key.
  1747. *
  1748. * This function isn't completely safe. It's the caller's responsibility
  1749. * that the new key won't break the order
  1750. */
  1751. void btrfs_set_item_key_safe(struct btrfs_trans_handle *trans,
  1752. struct btrfs_root *root, struct btrfs_path *path,
  1753. struct btrfs_key *new_key)
  1754. {
  1755. struct btrfs_disk_key disk_key;
  1756. struct extent_buffer *eb;
  1757. int slot;
  1758. eb = path->nodes[0];
  1759. slot = path->slots[0];
  1760. if (slot > 0) {
  1761. btrfs_item_key(eb, &disk_key, slot - 1);
  1762. BUG_ON(comp_keys(&disk_key, new_key) >= 0);
  1763. }
  1764. if (slot < btrfs_header_nritems(eb) - 1) {
  1765. btrfs_item_key(eb, &disk_key, slot + 1);
  1766. BUG_ON(comp_keys(&disk_key, new_key) <= 0);
  1767. }
  1768. btrfs_cpu_key_to_disk(&disk_key, new_key);
  1769. btrfs_set_item_key(eb, &disk_key, slot);
  1770. btrfs_mark_buffer_dirty(eb);
  1771. if (slot == 0)
  1772. fixup_low_keys(trans, root, path, &disk_key, 1);
  1773. }
  1774. /*
  1775. * try to push data from one node into the next node left in the
  1776. * tree.
  1777. *
  1778. * returns 0 if some ptrs were pushed left, < 0 if there was some horrible
  1779. * error, and > 0 if there was no room in the left hand block.
  1780. */
  1781. static int push_node_left(struct btrfs_trans_handle *trans,
  1782. struct btrfs_root *root, struct extent_buffer *dst,
  1783. struct extent_buffer *src, int empty)
  1784. {
  1785. int push_items = 0;
  1786. int src_nritems;
  1787. int dst_nritems;
  1788. int ret = 0;
  1789. src_nritems = btrfs_header_nritems(src);
  1790. dst_nritems = btrfs_header_nritems(dst);
  1791. push_items = BTRFS_NODEPTRS_PER_BLOCK(root) - dst_nritems;
  1792. WARN_ON(btrfs_header_generation(src) != trans->transid);
  1793. WARN_ON(btrfs_header_generation(dst) != trans->transid);
  1794. if (!empty && src_nritems <= 8)
  1795. return 1;
  1796. if (push_items <= 0)
  1797. return 1;
  1798. if (empty) {
  1799. push_items = min(src_nritems, push_items);
  1800. if (push_items < src_nritems) {
  1801. /* leave at least 8 pointers in the node if
  1802. * we aren't going to empty it
  1803. */
  1804. if (src_nritems - push_items < 8) {
  1805. if (push_items <= 8)
  1806. return 1;
  1807. push_items -= 8;
  1808. }
  1809. }
  1810. } else
  1811. push_items = min(src_nritems - 8, push_items);
  1812. copy_extent_buffer(dst, src,
  1813. btrfs_node_key_ptr_offset(dst_nritems),
  1814. btrfs_node_key_ptr_offset(0),
  1815. push_items * sizeof(struct btrfs_key_ptr));
  1816. if (push_items < src_nritems) {
  1817. memmove_extent_buffer(src, btrfs_node_key_ptr_offset(0),
  1818. btrfs_node_key_ptr_offset(push_items),
  1819. (src_nritems - push_items) *
  1820. sizeof(struct btrfs_key_ptr));
  1821. }
  1822. btrfs_set_header_nritems(src, src_nritems - push_items);
  1823. btrfs_set_header_nritems(dst, dst_nritems + push_items);
  1824. btrfs_mark_buffer_dirty(src);
  1825. btrfs_mark_buffer_dirty(dst);
  1826. return ret;
  1827. }
  1828. /*
  1829. * try to push data from one node into the next node right in the
  1830. * tree.
  1831. *
  1832. * returns 0 if some ptrs were pushed, < 0 if there was some horrible
  1833. * error, and > 0 if there was no room in the right hand block.
  1834. *
  1835. * this will only push up to 1/2 the contents of the left node over
  1836. */
  1837. static int balance_node_right(struct btrfs_trans_handle *trans,
  1838. struct btrfs_root *root,
  1839. struct extent_buffer *dst,
  1840. struct extent_buffer *src)
  1841. {
  1842. int push_items = 0;
  1843. int max_push;
  1844. int src_nritems;
  1845. int dst_nritems;
  1846. int ret = 0;
  1847. WARN_ON(btrfs_header_generation(src) != trans->transid);
  1848. WARN_ON(btrfs_header_generation(dst) != trans->transid);
  1849. src_nritems = btrfs_header_nritems(src);
  1850. dst_nritems = btrfs_header_nritems(dst);
  1851. push_items = BTRFS_NODEPTRS_PER_BLOCK(root) - dst_nritems;
  1852. if (push_items <= 0)
  1853. return 1;
  1854. if (src_nritems < 4)
  1855. return 1;
  1856. max_push = src_nritems / 2 + 1;
  1857. /* don't try to empty the node */
  1858. if (max_push >= src_nritems)
  1859. return 1;
  1860. if (max_push < push_items)
  1861. push_items = max_push;
  1862. memmove_extent_buffer(dst, btrfs_node_key_ptr_offset(push_items),
  1863. btrfs_node_key_ptr_offset(0),
  1864. (dst_nritems) *
  1865. sizeof(struct btrfs_key_ptr));
  1866. copy_extent_buffer(dst, src,
  1867. btrfs_node_key_ptr_offset(0),
  1868. btrfs_node_key_ptr_offset(src_nritems - push_items),
  1869. push_items * sizeof(struct btrfs_key_ptr));
  1870. btrfs_set_header_nritems(src, src_nritems - push_items);
  1871. btrfs_set_header_nritems(dst, dst_nritems + push_items);
  1872. btrfs_mark_buffer_dirty(src);
  1873. btrfs_mark_buffer_dirty(dst);
  1874. return ret;
  1875. }
  1876. /*
  1877. * helper function to insert a new root level in the tree.
  1878. * A new node is allocated, and a single item is inserted to
  1879. * point to the existing root
  1880. *
  1881. * returns zero on success or < 0 on failure.
  1882. */
  1883. static noinline int insert_new_root(struct btrfs_trans_handle *trans,
  1884. struct btrfs_root *root,
  1885. struct btrfs_path *path, int level)
  1886. {
  1887. u64 lower_gen;
  1888. struct extent_buffer *lower;
  1889. struct extent_buffer *c;
  1890. struct extent_buffer *old;
  1891. struct btrfs_disk_key lower_key;
  1892. BUG_ON(path->nodes[level]);
  1893. BUG_ON(path->nodes[level-1] != root->node);
  1894. lower = path->nodes[level-1];
  1895. if (level == 1)
  1896. btrfs_item_key(lower, &lower_key, 0);
  1897. else
  1898. btrfs_node_key(lower, &lower_key, 0);
  1899. c = btrfs_alloc_free_block(trans, root, root->nodesize, 0,
  1900. root->root_key.objectid, &lower_key,
  1901. level, root->node->start, 0, 0);
  1902. if (IS_ERR(c))
  1903. return PTR_ERR(c);
  1904. root_add_used(root, root->nodesize);
  1905. memset_extent_buffer(c, 0, 0, sizeof(struct btrfs_header));
  1906. btrfs_set_header_nritems(c, 1);
  1907. btrfs_set_header_level(c, level);
  1908. btrfs_set_header_bytenr(c, c->start);
  1909. btrfs_set_header_generation(c, trans->transid);
  1910. btrfs_set_header_backref_rev(c, BTRFS_MIXED_BACKREF_REV);
  1911. btrfs_set_header_owner(c, root->root_key.objectid);
  1912. write_extent_buffer(c, root->fs_info->fsid,
  1913. (unsigned long)btrfs_header_fsid(c),
  1914. BTRFS_FSID_SIZE);
  1915. write_extent_buffer(c, root->fs_info->chunk_tree_uuid,
  1916. (unsigned long)btrfs_header_chunk_tree_uuid(c),
  1917. BTRFS_UUID_SIZE);
  1918. btrfs_set_node_key(c, &lower_key, 0);
  1919. btrfs_set_node_blockptr(c, 0, lower->start);
  1920. lower_gen = btrfs_header_generation(lower);
  1921. WARN_ON(lower_gen != trans->transid);
  1922. btrfs_set_node_ptr_generation(c, 0, lower_gen);
  1923. btrfs_mark_buffer_dirty(c);
  1924. old = root->node;
  1925. rcu_assign_pointer(root->node, c);
  1926. /* the super has an extra ref to root->node */
  1927. free_extent_buffer(old);
  1928. add_root_to_dirty_list(root);
  1929. extent_buffer_get(c);
  1930. path->nodes[level] = c;
  1931. path->locks[level] = BTRFS_WRITE_LOCK;
  1932. path->slots[level] = 0;
  1933. return 0;
  1934. }
  1935. /*
  1936. * worker function to insert a single pointer in a node.
  1937. * the node should have enough room for the pointer already
  1938. *
  1939. * slot and level indicate where you want the key to go, and
  1940. * blocknr is the block the key points to.
  1941. */
  1942. static void insert_ptr(struct btrfs_trans_handle *trans,
  1943. struct btrfs_root *root, struct btrfs_path *path,
  1944. struct btrfs_disk_key *key, u64 bytenr,
  1945. int slot, int level)
  1946. {
  1947. struct extent_buffer *lower;
  1948. int nritems;
  1949. BUG_ON(!path->nodes[level]);
  1950. btrfs_assert_tree_locked(path->nodes[level]);
  1951. lower = path->nodes[level];
  1952. nritems = btrfs_header_nritems(lower);
  1953. BUG_ON(slot > nritems);
  1954. BUG_ON(nritems == BTRFS_NODEPTRS_PER_BLOCK(root));
  1955. if (slot != nritems) {
  1956. memmove_extent_buffer(lower,
  1957. btrfs_node_key_ptr_offset(slot + 1),
  1958. btrfs_node_key_ptr_offset(slot),
  1959. (nritems - slot) * sizeof(struct btrfs_key_ptr));
  1960. }
  1961. btrfs_set_node_key(lower, key, slot);
  1962. btrfs_set_node_blockptr(lower, slot, bytenr);
  1963. WARN_ON(trans->transid == 0);
  1964. btrfs_set_node_ptr_generation(lower, slot, trans->transid);
  1965. btrfs_set_header_nritems(lower, nritems + 1);
  1966. btrfs_mark_buffer_dirty(lower);
  1967. }
  1968. /*
  1969. * split the node at the specified level in path in two.
  1970. * The path is corrected to point to the appropriate node after the split
  1971. *
  1972. * Before splitting this tries to make some room in the node by pushing
  1973. * left and right, if either one works, it returns right away.
  1974. *
  1975. * returns 0 on success and < 0 on failure
  1976. */
  1977. static noinline int split_node(struct btrfs_trans_handle *trans,
  1978. struct btrfs_root *root,
  1979. struct btrfs_path *path, int level)
  1980. {
  1981. struct extent_buffer *c;
  1982. struct extent_buffer *split;
  1983. struct btrfs_disk_key disk_key;
  1984. int mid;
  1985. int ret;
  1986. u32 c_nritems;
  1987. c = path->nodes[level];
  1988. WARN_ON(btrfs_header_generation(c) != trans->transid);
  1989. if (c == root->node) {
  1990. /* trying to split the root, lets make a new one */
  1991. ret = insert_new_root(trans, root, path, level + 1);
  1992. if (ret)
  1993. return ret;
  1994. } else {
  1995. ret = push_nodes_for_insert(trans, root, path, level);
  1996. c = path->nodes[level];
  1997. if (!ret && btrfs_header_nritems(c) <
  1998. BTRFS_NODEPTRS_PER_BLOCK(root) - 3)
  1999. return 0;
  2000. if (ret < 0)
  2001. return ret;
  2002. }
  2003. c_nritems = btrfs_header_nritems(c);
  2004. mid = (c_nritems + 1) / 2;
  2005. btrfs_node_key(c, &disk_key, mid);
  2006. split = btrfs_alloc_free_block(trans, root, root->nodesize, 0,
  2007. root->root_key.objectid,
  2008. &disk_key, level, c->start, 0, 0);
  2009. if (IS_ERR(split))
  2010. return PTR_ERR(split);
  2011. root_add_used(root, root->nodesize);
  2012. memset_extent_buffer(split, 0, 0, sizeof(struct btrfs_header));
  2013. btrfs_set_header_level(split, btrfs_header_level(c));
  2014. btrfs_set_header_bytenr(split, split->start);
  2015. btrfs_set_header_generation(split, trans->transid);
  2016. btrfs_set_header_backref_rev(split, BTRFS_MIXED_BACKREF_REV);
  2017. btrfs_set_header_owner(split, root->root_key.objectid);
  2018. write_extent_buffer(split, root->fs_info->fsid,
  2019. (unsigned long)btrfs_header_fsid(split),
  2020. BTRFS_FSID_SIZE);
  2021. write_extent_buffer(split, root->fs_info->chunk_tree_uuid,
  2022. (unsigned long)btrfs_header_chunk_tree_uuid(split),
  2023. BTRFS_UUID_SIZE);
  2024. copy_extent_buffer(split, c,
  2025. btrfs_node_key_ptr_offset(0),
  2026. btrfs_node_key_ptr_offset(mid),
  2027. (c_nritems - mid) * sizeof(struct btrfs_key_ptr));
  2028. btrfs_set_header_nritems(split, c_nritems - mid);
  2029. btrfs_set_header_nritems(c, mid);
  2030. ret = 0;
  2031. btrfs_mark_buffer_dirty(c);
  2032. btrfs_mark_buffer_dirty(split);
  2033. insert_ptr(trans, root, path, &disk_key, split->start,
  2034. path->slots[level + 1] + 1, level + 1);
  2035. if (path->slots[level] >= mid) {
  2036. path->slots[level] -= mid;
  2037. btrfs_tree_unlock(c);
  2038. free_extent_buffer(c);
  2039. path->nodes[level] = split;
  2040. path->slots[level + 1] += 1;
  2041. } else {
  2042. btrfs_tree_unlock(split);
  2043. free_extent_buffer(split);
  2044. }
  2045. return ret;
  2046. }
  2047. /*
  2048. * how many bytes are required to store the items in a leaf. start
  2049. * and nr indicate which items in the leaf to check. This totals up the
  2050. * space used both by the item structs and the item data
  2051. */
  2052. static int leaf_space_used(struct extent_buffer *l, int start, int nr)
  2053. {
  2054. int data_len;
  2055. int nritems = btrfs_header_nritems(l);
  2056. int end = min(nritems, start + nr) - 1;
  2057. if (!nr)
  2058. return 0;
  2059. data_len = btrfs_item_end_nr(l, start);
  2060. data_len = data_len - btrfs_item_offset_nr(l, end);
  2061. data_len += sizeof(struct btrfs_item) * nr;
  2062. WARN_ON(data_len < 0);
  2063. return data_len;
  2064. }
  2065. /*
  2066. * The space between the end of the leaf items and
  2067. * the start of the leaf data. IOW, how much room
  2068. * the leaf has left for both items and data
  2069. */
  2070. noinline int btrfs_leaf_free_space(struct btrfs_root *root,
  2071. struct extent_buffer *leaf)
  2072. {
  2073. int nritems = btrfs_header_nritems(leaf);
  2074. int ret;
  2075. ret = BTRFS_LEAF_DATA_SIZE(root) - leaf_space_used(leaf, 0, nritems);
  2076. if (ret < 0) {
  2077. printk(KERN_CRIT "leaf free space ret %d, leaf data size %lu, "
  2078. "used %d nritems %d\n",
  2079. ret, (unsigned long) BTRFS_LEAF_DATA_SIZE(root),
  2080. leaf_space_used(leaf, 0, nritems), nritems);
  2081. }
  2082. return ret;
  2083. }
  2084. /*
  2085. * min slot controls the lowest index we're willing to push to the
  2086. * right. We'll push up to and including min_slot, but no lower
  2087. */
  2088. static noinline int __push_leaf_right(struct btrfs_trans_handle *trans,
  2089. struct btrfs_root *root,
  2090. struct btrfs_path *path,
  2091. int data_size, int empty,
  2092. struct extent_buffer *right,
  2093. int free_space, u32 left_nritems,
  2094. u32 min_slot)
  2095. {
  2096. struct extent_buffer *left = path->nodes[0];
  2097. struct extent_buffer *upper = path->nodes[1];
  2098. struct btrfs_map_token token;
  2099. struct btrfs_disk_key disk_key;
  2100. int slot;
  2101. u32 i;
  2102. int push_space = 0;
  2103. int push_items = 0;
  2104. struct btrfs_item *item;
  2105. u32 nr;
  2106. u32 right_nritems;
  2107. u32 data_end;
  2108. u32 this_item_size;
  2109. btrfs_init_map_token(&token);
  2110. if (empty)
  2111. nr = 0;
  2112. else
  2113. nr = max_t(u32, 1, min_slot);
  2114. if (path->slots[0] >= left_nritems)
  2115. push_space += data_size;
  2116. slot = path->slots[1];
  2117. i = left_nritems - 1;
  2118. while (i >= nr) {
  2119. item = btrfs_item_nr(left, i);
  2120. if (!empty && push_items > 0) {
  2121. if (path->slots[0] > i)
  2122. break;
  2123. if (path->slots[0] == i) {
  2124. int space = btrfs_leaf_free_space(root, left);
  2125. if (space + push_space * 2 > free_space)
  2126. break;
  2127. }
  2128. }
  2129. if (path->slots[0] == i)
  2130. push_space += data_size;
  2131. this_item_size = btrfs_item_size(left, item);
  2132. if (this_item_size + sizeof(*item) + push_space > free_space)
  2133. break;
  2134. push_items++;
  2135. push_space += this_item_size + sizeof(*item);
  2136. if (i == 0)
  2137. break;
  2138. i--;
  2139. }
  2140. if (push_items == 0)
  2141. goto out_unlock;
  2142. if (!empty && push_items == left_nritems)
  2143. WARN_ON(1);
  2144. /* push left to right */
  2145. right_nritems = btrfs_header_nritems(right);
  2146. push_space = btrfs_item_end_nr(left, left_nritems - push_items);
  2147. push_space -= leaf_data_end(root, left);
  2148. /* make room in the right data area */
  2149. data_end = leaf_data_end(root, right);
  2150. memmove_extent_buffer(right,
  2151. btrfs_leaf_data(right) + data_end - push_space,
  2152. btrfs_leaf_data(right) + data_end,
  2153. BTRFS_LEAF_DATA_SIZE(root) - data_end);
  2154. /* copy from the left data area */
  2155. copy_extent_buffer(right, left, btrfs_leaf_data(right) +
  2156. BTRFS_LEAF_DATA_SIZE(root) - push_space,
  2157. btrfs_leaf_data(left) + leaf_data_end(root, left),
  2158. push_space);
  2159. memmove_extent_buffer(right, btrfs_item_nr_offset(push_items),
  2160. btrfs_item_nr_offset(0),
  2161. right_nritems * sizeof(struct btrfs_item));
  2162. /* copy the items from left to right */
  2163. copy_extent_buffer(right, left, btrfs_item_nr_offset(0),
  2164. btrfs_item_nr_offset(left_nritems - push_items),
  2165. push_items * sizeof(struct btrfs_item));
  2166. /* update the item pointers */
  2167. right_nritems += push_items;
  2168. btrfs_set_header_nritems(right, right_nritems);
  2169. push_space = BTRFS_LEAF_DATA_SIZE(root);
  2170. for (i = 0; i < right_nritems; i++) {
  2171. item = btrfs_item_nr(right, i);
  2172. push_space -= btrfs_token_item_size(right, item, &token);
  2173. btrfs_set_token_item_offset(right, item, push_space, &token);
  2174. }
  2175. left_nritems -= push_items;
  2176. btrfs_set_header_nritems(left, left_nritems);
  2177. if (left_nritems)
  2178. btrfs_mark_buffer_dirty(left);
  2179. else
  2180. clean_tree_block(trans, root, left);
  2181. btrfs_mark_buffer_dirty(right);
  2182. btrfs_item_key(right, &disk_key, 0);
  2183. btrfs_set_node_key(upper, &disk_key, slot + 1);
  2184. btrfs_mark_buffer_dirty(upper);
  2185. /* then fixup the leaf pointer in the path */
  2186. if (path->slots[0] >= left_nritems) {
  2187. path->slots[0] -= left_nritems;
  2188. if (btrfs_header_nritems(path->nodes[0]) == 0)
  2189. clean_tree_block(trans, root, path->nodes[0]);
  2190. btrfs_tree_unlock(path->nodes[0]);
  2191. free_extent_buffer(path->nodes[0]);
  2192. path->nodes[0] = right;
  2193. path->slots[1] += 1;
  2194. } else {
  2195. btrfs_tree_unlock(right);
  2196. free_extent_buffer(right);
  2197. }
  2198. return 0;
  2199. out_unlock:
  2200. btrfs_tree_unlock(right);
  2201. free_extent_buffer(right);
  2202. return 1;
  2203. }
  2204. /*
  2205. * push some data in the path leaf to the right, trying to free up at
  2206. * least data_size bytes. returns zero if the push worked, nonzero otherwise
  2207. *
  2208. * returns 1 if the push failed because the other node didn't have enough
  2209. * room, 0 if everything worked out and < 0 if there were major errors.
  2210. *
  2211. * this will push starting from min_slot to the end of the leaf. It won't
  2212. * push any slot lower than min_slot
  2213. */
  2214. static int push_leaf_right(struct btrfs_trans_handle *trans, struct btrfs_root
  2215. *root, struct btrfs_path *path,
  2216. int min_data_size, int data_size,
  2217. int empty, u32 min_slot)
  2218. {
  2219. struct extent_buffer *left = path->nodes[0];
  2220. struct extent_buffer *right;
  2221. struct extent_buffer *upper;
  2222. int slot;
  2223. int free_space;
  2224. u32 left_nritems;
  2225. int ret;
  2226. if (!path->nodes[1])
  2227. return 1;
  2228. slot = path->slots[1];
  2229. upper = path->nodes[1];
  2230. if (slot >= btrfs_header_nritems(upper) - 1)
  2231. return 1;
  2232. btrfs_assert_tree_locked(path->nodes[1]);
  2233. right = read_node_slot(root, upper, slot + 1);
  2234. if (right == NULL)
  2235. return 1;
  2236. btrfs_tree_lock(right);
  2237. btrfs_set_lock_blocking(right);
  2238. free_space = btrfs_leaf_free_space(root, right);
  2239. if (free_space < data_size)
  2240. goto out_unlock;
  2241. /* cow and double check */
  2242. ret = btrfs_cow_block(trans, root, right, upper,
  2243. slot + 1, &right);
  2244. if (ret)
  2245. goto out_unlock;
  2246. free_space = btrfs_leaf_free_space(root, right);
  2247. if (free_space < data_size)
  2248. goto out_unlock;
  2249. left_nritems = btrfs_header_nritems(left);
  2250. if (left_nritems == 0)
  2251. goto out_unlock;
  2252. return __push_leaf_right(trans, root, path, min_data_size, empty,
  2253. right, free_space, left_nritems, min_slot);
  2254. out_unlock:
  2255. btrfs_tree_unlock(right);
  2256. free_extent_buffer(right);
  2257. return 1;
  2258. }
  2259. /*
  2260. * push some data in the path leaf to the left, trying to free up at
  2261. * least data_size bytes. returns zero if the push worked, nonzero otherwise
  2262. *
  2263. * max_slot can put a limit on how far into the leaf we'll push items. The
  2264. * item at 'max_slot' won't be touched. Use (u32)-1 to make us do all the
  2265. * items
  2266. */
  2267. static noinline int __push_leaf_left(struct btrfs_trans_handle *trans,
  2268. struct btrfs_root *root,
  2269. struct btrfs_path *path, int data_size,
  2270. int empty, struct extent_buffer *left,
  2271. int free_space, u32 right_nritems,
  2272. u32 max_slot)
  2273. {
  2274. struct btrfs_disk_key disk_key;
  2275. struct extent_buffer *right = path->nodes[0];
  2276. int i;
  2277. int push_space = 0;
  2278. int push_items = 0;
  2279. struct btrfs_item *item;
  2280. u32 old_left_nritems;
  2281. u32 nr;
  2282. int ret = 0;
  2283. u32 this_item_size;
  2284. u32 old_left_item_size;
  2285. struct btrfs_map_token token;
  2286. btrfs_init_map_token(&token);
  2287. if (empty)
  2288. nr = min(right_nritems, max_slot);
  2289. else
  2290. nr = min(right_nritems - 1, max_slot);
  2291. for (i = 0; i < nr; i++) {
  2292. item = btrfs_item_nr(right, i);
  2293. if (!empty && push_items > 0) {
  2294. if (path->slots[0] < i)
  2295. break;
  2296. if (path->slots[0] == i) {
  2297. int space = btrfs_leaf_free_space(root, right);
  2298. if (space + push_space * 2 > free_space)
  2299. break;
  2300. }
  2301. }
  2302. if (path->slots[0] == i)
  2303. push_space += data_size;
  2304. this_item_size = btrfs_item_size(right, item);
  2305. if (this_item_size + sizeof(*item) + push_space > free_space)
  2306. break;
  2307. push_items++;
  2308. push_space += this_item_size + sizeof(*item);
  2309. }
  2310. if (push_items == 0) {
  2311. ret = 1;
  2312. goto out;
  2313. }
  2314. if (!empty && push_items == btrfs_header_nritems(right))
  2315. WARN_ON(1);
  2316. /* push data from right to left */
  2317. copy_extent_buffer(left, right,
  2318. btrfs_item_nr_offset(btrfs_header_nritems(left)),
  2319. btrfs_item_nr_offset(0),
  2320. push_items * sizeof(struct btrfs_item));
  2321. push_space = BTRFS_LEAF_DATA_SIZE(root) -
  2322. btrfs_item_offset_nr(right, push_items - 1);
  2323. copy_extent_buffer(left, right, btrfs_leaf_data(left) +
  2324. leaf_data_end(root, left) - push_space,
  2325. btrfs_leaf_data(right) +
  2326. btrfs_item_offset_nr(right, push_items - 1),
  2327. push_space);
  2328. old_left_nritems = btrfs_header_nritems(left);
  2329. BUG_ON(old_left_nritems <= 0);
  2330. old_left_item_size = btrfs_item_offset_nr(left, old_left_nritems - 1);
  2331. for (i = old_left_nritems; i < old_left_nritems + push_items; i++) {
  2332. u32 ioff;
  2333. item = btrfs_item_nr(left, i);
  2334. ioff = btrfs_token_item_offset(left, item, &token);
  2335. btrfs_set_token_item_offset(left, item,
  2336. ioff - (BTRFS_LEAF_DATA_SIZE(root) - old_left_item_size),
  2337. &token);
  2338. }
  2339. btrfs_set_header_nritems(left, old_left_nritems + push_items);
  2340. /* fixup right node */
  2341. if (push_items > right_nritems) {
  2342. printk(KERN_CRIT "push items %d nr %u\n", push_items,
  2343. right_nritems);
  2344. WARN_ON(1);
  2345. }
  2346. if (push_items < right_nritems) {
  2347. push_space = btrfs_item_offset_nr(right, push_items - 1) -
  2348. leaf_data_end(root, right);
  2349. memmove_extent_buffer(right, btrfs_leaf_data(right) +
  2350. BTRFS_LEAF_DATA_SIZE(root) - push_space,
  2351. btrfs_leaf_data(right) +
  2352. leaf_data_end(root, right), push_space);
  2353. memmove_extent_buffer(right, btrfs_item_nr_offset(0),
  2354. btrfs_item_nr_offset(push_items),
  2355. (btrfs_header_nritems(right) - push_items) *
  2356. sizeof(struct btrfs_item));
  2357. }
  2358. right_nritems -= push_items;
  2359. btrfs_set_header_nritems(right, right_nritems);
  2360. push_space = BTRFS_LEAF_DATA_SIZE(root);
  2361. for (i = 0; i < right_nritems; i++) {
  2362. item = btrfs_item_nr(right, i);
  2363. push_space = push_space - btrfs_token_item_size(right,
  2364. item, &token);
  2365. btrfs_set_token_item_offset(right, item, push_space, &token);
  2366. }
  2367. btrfs_mark_buffer_dirty(left);
  2368. if (right_nritems)
  2369. btrfs_mark_buffer_dirty(right);
  2370. else
  2371. clean_tree_block(trans, root, right);
  2372. btrfs_item_key(right, &disk_key, 0);
  2373. fixup_low_keys(trans, root, path, &disk_key, 1);
  2374. /* then fixup the leaf pointer in the path */
  2375. if (path->slots[0] < push_items) {
  2376. path->slots[0] += old_left_nritems;
  2377. btrfs_tree_unlock(path->nodes[0]);
  2378. free_extent_buffer(path->nodes[0]);
  2379. path->nodes[0] = left;
  2380. path->slots[1] -= 1;
  2381. } else {
  2382. btrfs_tree_unlock(left);
  2383. free_extent_buffer(left);
  2384. path->slots[0] -= push_items;
  2385. }
  2386. BUG_ON(path->slots[0] < 0);
  2387. return ret;
  2388. out:
  2389. btrfs_tree_unlock(left);
  2390. free_extent_buffer(left);
  2391. return ret;
  2392. }
  2393. /*
  2394. * push some data in the path leaf to the left, trying to free up at
  2395. * least data_size bytes. returns zero if the push worked, nonzero otherwise
  2396. *
  2397. * max_slot can put a limit on how far into the leaf we'll push items. The
  2398. * item at 'max_slot' won't be touched. Use (u32)-1 to make us push all the
  2399. * items
  2400. */
  2401. static int push_leaf_left(struct btrfs_trans_handle *trans, struct btrfs_root
  2402. *root, struct btrfs_path *path, int min_data_size,
  2403. int data_size, int empty, u32 max_slot)
  2404. {
  2405. struct extent_buffer *right = path->nodes[0];
  2406. struct extent_buffer *left;
  2407. int slot;
  2408. int free_space;
  2409. u32 right_nritems;
  2410. int ret = 0;
  2411. slot = path->slots[1];
  2412. if (slot == 0)
  2413. return 1;
  2414. if (!path->nodes[1])
  2415. return 1;
  2416. right_nritems = btrfs_header_nritems(right);
  2417. if (right_nritems == 0)
  2418. return 1;
  2419. btrfs_assert_tree_locked(path->nodes[1]);
  2420. left = read_node_slot(root, path->nodes[1], slot - 1);
  2421. if (left == NULL)
  2422. return 1;
  2423. btrfs_tree_lock(left);
  2424. btrfs_set_lock_blocking(left);
  2425. free_space = btrfs_leaf_free_space(root, left);
  2426. if (free_space < data_size) {
  2427. ret = 1;
  2428. goto out;
  2429. }
  2430. /* cow and double check */
  2431. ret = btrfs_cow_block(trans, root, left,
  2432. path->nodes[1], slot - 1, &left);
  2433. if (ret) {
  2434. /* we hit -ENOSPC, but it isn't fatal here */
  2435. if (ret == -ENOSPC)
  2436. ret = 1;
  2437. goto out;
  2438. }
  2439. free_space = btrfs_leaf_free_space(root, left);
  2440. if (free_space < data_size) {
  2441. ret = 1;
  2442. goto out;
  2443. }
  2444. return __push_leaf_left(trans, root, path, min_data_size,
  2445. empty, left, free_space, right_nritems,
  2446. max_slot);
  2447. out:
  2448. btrfs_tree_unlock(left);
  2449. free_extent_buffer(left);
  2450. return ret;
  2451. }
  2452. /*
  2453. * split the path's leaf in two, making sure there is at least data_size
  2454. * available for the resulting leaf level of the path.
  2455. */
  2456. static noinline void copy_for_split(struct btrfs_trans_handle *trans,
  2457. struct btrfs_root *root,
  2458. struct btrfs_path *path,
  2459. struct extent_buffer *l,
  2460. struct extent_buffer *right,
  2461. int slot, int mid, int nritems)
  2462. {
  2463. int data_copy_size;
  2464. int rt_data_off;
  2465. int i;
  2466. struct btrfs_disk_key disk_key;
  2467. struct btrfs_map_token token;
  2468. btrfs_init_map_token(&token);
  2469. nritems = nritems - mid;
  2470. btrfs_set_header_nritems(right, nritems);
  2471. data_copy_size = btrfs_item_end_nr(l, mid) - leaf_data_end(root, l);
  2472. copy_extent_buffer(right, l, btrfs_item_nr_offset(0),
  2473. btrfs_item_nr_offset(mid),
  2474. nritems * sizeof(struct btrfs_item));
  2475. copy_extent_buffer(right, l,
  2476. btrfs_leaf_data(right) + BTRFS_LEAF_DATA_SIZE(root) -
  2477. data_copy_size, btrfs_leaf_data(l) +
  2478. leaf_data_end(root, l), data_copy_size);
  2479. rt_data_off = BTRFS_LEAF_DATA_SIZE(root) -
  2480. btrfs_item_end_nr(l, mid);
  2481. for (i = 0; i < nritems; i++) {
  2482. struct btrfs_item *item = btrfs_item_nr(right, i);
  2483. u32 ioff;
  2484. ioff = btrfs_token_item_offset(right, item, &token);
  2485. btrfs_set_token_item_offset(right, item,
  2486. ioff + rt_data_off, &token);
  2487. }
  2488. btrfs_set_header_nritems(l, mid);
  2489. btrfs_item_key(right, &disk_key, 0);
  2490. insert_ptr(trans, root, path, &disk_key, right->start,
  2491. path->slots[1] + 1, 1);
  2492. btrfs_mark_buffer_dirty(right);
  2493. btrfs_mark_buffer_dirty(l);
  2494. BUG_ON(path->slots[0] != slot);
  2495. if (mid <= slot) {
  2496. btrfs_tree_unlock(path->nodes[0]);
  2497. free_extent_buffer(path->nodes[0]);
  2498. path->nodes[0] = right;
  2499. path->slots[0] -= mid;
  2500. path->slots[1] += 1;
  2501. } else {
  2502. btrfs_tree_unlock(right);
  2503. free_extent_buffer(right);
  2504. }
  2505. BUG_ON(path->slots[0] < 0);
  2506. }
  2507. /*
  2508. * double splits happen when we need to insert a big item in the middle
  2509. * of a leaf. A double split can leave us with 3 mostly empty leaves:
  2510. * leaf: [ slots 0 - N] [ our target ] [ N + 1 - total in leaf ]
  2511. * A B C
  2512. *
  2513. * We avoid this by trying to push the items on either side of our target
  2514. * into the adjacent leaves. If all goes well we can avoid the double split
  2515. * completely.
  2516. */
  2517. static noinline int push_for_double_split(struct btrfs_trans_handle *trans,
  2518. struct btrfs_root *root,
  2519. struct btrfs_path *path,
  2520. int data_size)
  2521. {
  2522. int ret;
  2523. int progress = 0;
  2524. int slot;
  2525. u32 nritems;
  2526. slot = path->slots[0];
  2527. /*
  2528. * try to push all the items after our slot into the
  2529. * right leaf
  2530. */
  2531. ret = push_leaf_right(trans, root, path, 1, data_size, 0, slot);
  2532. if (ret < 0)
  2533. return ret;
  2534. if (ret == 0)
  2535. progress++;
  2536. nritems = btrfs_header_nritems(path->nodes[0]);
  2537. /*
  2538. * our goal is to get our slot at the start or end of a leaf. If
  2539. * we've done so we're done
  2540. */
  2541. if (path->slots[0] == 0 || path->slots[0] == nritems)
  2542. return 0;
  2543. if (btrfs_leaf_free_space(root, path->nodes[0]) >= data_size)
  2544. return 0;
  2545. /* try to push all the items before our slot into the next leaf */
  2546. slot = path->slots[0];
  2547. ret = push_leaf_left(trans, root, path, 1, data_size, 0, slot);
  2548. if (ret < 0)
  2549. return ret;
  2550. if (ret == 0)
  2551. progress++;
  2552. if (progress)
  2553. return 0;
  2554. return 1;
  2555. }
  2556. /*
  2557. * split the path's leaf in two, making sure there is at least data_size
  2558. * available for the resulting leaf level of the path.
  2559. *
  2560. * returns 0 if all went well and < 0 on failure.
  2561. */
  2562. static noinline int split_leaf(struct btrfs_trans_handle *trans,
  2563. struct btrfs_root *root,
  2564. struct btrfs_key *ins_key,
  2565. struct btrfs_path *path, int data_size,
  2566. int extend)
  2567. {
  2568. struct btrfs_disk_key disk_key;
  2569. struct extent_buffer *l;
  2570. u32 nritems;
  2571. int mid;
  2572. int slot;
  2573. struct extent_buffer *right;
  2574. int ret = 0;
  2575. int wret;
  2576. int split;
  2577. int num_doubles = 0;
  2578. int tried_avoid_double = 0;
  2579. l = path->nodes[0];
  2580. slot = path->slots[0];
  2581. if (extend && data_size + btrfs_item_size_nr(l, slot) +
  2582. sizeof(struct btrfs_item) > BTRFS_LEAF_DATA_SIZE(root))
  2583. return -EOVERFLOW;
  2584. /* first try to make some room by pushing left and right */
  2585. if (data_size) {
  2586. wret = push_leaf_right(trans, root, path, data_size,
  2587. data_size, 0, 0);
  2588. if (wret < 0)
  2589. return wret;
  2590. if (wret) {
  2591. wret = push_leaf_left(trans, root, path, data_size,
  2592. data_size, 0, (u32)-1);
  2593. if (wret < 0)
  2594. return wret;
  2595. }
  2596. l = path->nodes[0];
  2597. /* did the pushes work? */
  2598. if (btrfs_leaf_free_space(root, l) >= data_size)
  2599. return 0;
  2600. }
  2601. if (!path->nodes[1]) {
  2602. ret = insert_new_root(trans, root, path, 1);
  2603. if (ret)
  2604. return ret;
  2605. }
  2606. again:
  2607. split = 1;
  2608. l = path->nodes[0];
  2609. slot = path->slots[0];
  2610. nritems = btrfs_header_nritems(l);
  2611. mid = (nritems + 1) / 2;
  2612. if (mid <= slot) {
  2613. if (nritems == 1 ||
  2614. leaf_space_used(l, mid, nritems - mid) + data_size >
  2615. BTRFS_LEAF_DATA_SIZE(root)) {
  2616. if (slot >= nritems) {
  2617. split = 0;
  2618. } else {
  2619. mid = slot;
  2620. if (mid != nritems &&
  2621. leaf_space_used(l, mid, nritems - mid) +
  2622. data_size > BTRFS_LEAF_DATA_SIZE(root)) {
  2623. if (data_size && !tried_avoid_double)
  2624. goto push_for_double;
  2625. split = 2;
  2626. }
  2627. }
  2628. }
  2629. } else {
  2630. if (leaf_space_used(l, 0, mid) + data_size >
  2631. BTRFS_LEAF_DATA_SIZE(root)) {
  2632. if (!extend && data_size && slot == 0) {
  2633. split = 0;
  2634. } else if ((extend || !data_size) && slot == 0) {
  2635. mid = 1;
  2636. } else {
  2637. mid = slot;
  2638. if (mid != nritems &&
  2639. leaf_space_used(l, mid, nritems - mid) +
  2640. data_size > BTRFS_LEAF_DATA_SIZE(root)) {
  2641. if (data_size && !tried_avoid_double)
  2642. goto push_for_double;
  2643. split = 2 ;
  2644. }
  2645. }
  2646. }
  2647. }
  2648. if (split == 0)
  2649. btrfs_cpu_key_to_disk(&disk_key, ins_key);
  2650. else
  2651. btrfs_item_key(l, &disk_key, mid);
  2652. right = btrfs_alloc_free_block(trans, root, root->leafsize, 0,
  2653. root->root_key.objectid,
  2654. &disk_key, 0, l->start, 0, 0);
  2655. if (IS_ERR(right))
  2656. return PTR_ERR(right);
  2657. root_add_used(root, root->leafsize);
  2658. memset_extent_buffer(right, 0, 0, sizeof(struct btrfs_header));
  2659. btrfs_set_header_bytenr(right, right->start);
  2660. btrfs_set_header_generation(right, trans->transid);
  2661. btrfs_set_header_backref_rev(right, BTRFS_MIXED_BACKREF_REV);
  2662. btrfs_set_header_owner(right, root->root_key.objectid);
  2663. btrfs_set_header_level(right, 0);
  2664. write_extent_buffer(right, root->fs_info->fsid,
  2665. (unsigned long)btrfs_header_fsid(right),
  2666. BTRFS_FSID_SIZE);
  2667. write_extent_buffer(right, root->fs_info->chunk_tree_uuid,
  2668. (unsigned long)btrfs_header_chunk_tree_uuid(right),
  2669. BTRFS_UUID_SIZE);
  2670. if (split == 0) {
  2671. if (mid <= slot) {
  2672. btrfs_set_header_nritems(right, 0);
  2673. insert_ptr(trans, root, path, &disk_key, right->start,
  2674. path->slots[1] + 1, 1);
  2675. btrfs_tree_unlock(path->nodes[0]);
  2676. free_extent_buffer(path->nodes[0]);
  2677. path->nodes[0] = right;
  2678. path->slots[0] = 0;
  2679. path->slots[1] += 1;
  2680. } else {
  2681. btrfs_set_header_nritems(right, 0);
  2682. insert_ptr(trans, root, path, &disk_key, right->start,
  2683. path->slots[1], 1);
  2684. btrfs_tree_unlock(path->nodes[0]);
  2685. free_extent_buffer(path->nodes[0]);
  2686. path->nodes[0] = right;
  2687. path->slots[0] = 0;
  2688. if (path->slots[1] == 0)
  2689. fixup_low_keys(trans, root, path,
  2690. &disk_key, 1);
  2691. }
  2692. btrfs_mark_buffer_dirty(right);
  2693. return ret;
  2694. }
  2695. copy_for_split(trans, root, path, l, right, slot, mid, nritems);
  2696. if (split == 2) {
  2697. BUG_ON(num_doubles != 0);
  2698. num_doubles++;
  2699. goto again;
  2700. }
  2701. return 0;
  2702. push_for_double:
  2703. push_for_double_split(trans, root, path, data_size);
  2704. tried_avoid_double = 1;
  2705. if (btrfs_leaf_free_space(root, path->nodes[0]) >= data_size)
  2706. return 0;
  2707. goto again;
  2708. }
  2709. static noinline int setup_leaf_for_split(struct btrfs_trans_handle *trans,
  2710. struct btrfs_root *root,
  2711. struct btrfs_path *path, int ins_len)
  2712. {
  2713. struct btrfs_key key;
  2714. struct extent_buffer *leaf;
  2715. struct btrfs_file_extent_item *fi;
  2716. u64 extent_len = 0;
  2717. u32 item_size;
  2718. int ret;
  2719. leaf = path->nodes[0];
  2720. btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
  2721. BUG_ON(key.type != BTRFS_EXTENT_DATA_KEY &&
  2722. key.type != BTRFS_EXTENT_CSUM_KEY);
  2723. if (btrfs_leaf_free_space(root, leaf) >= ins_len)
  2724. return 0;
  2725. item_size = btrfs_item_size_nr(leaf, path->slots[0]);
  2726. if (key.type == BTRFS_EXTENT_DATA_KEY) {
  2727. fi = btrfs_item_ptr(leaf, path->slots[0],
  2728. struct btrfs_file_extent_item);
  2729. extent_len = btrfs_file_extent_num_bytes(leaf, fi);
  2730. }
  2731. btrfs_release_path(path);
  2732. path->keep_locks = 1;
  2733. path->search_for_split = 1;
  2734. ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
  2735. path->search_for_split = 0;
  2736. if (ret < 0)
  2737. goto err;
  2738. ret = -EAGAIN;
  2739. leaf = path->nodes[0];
  2740. /* if our item isn't there or got smaller, return now */
  2741. if (ret > 0 || item_size != btrfs_item_size_nr(leaf, path->slots[0]))
  2742. goto err;
  2743. /* the leaf has changed, it now has room. return now */
  2744. if (btrfs_leaf_free_space(root, path->nodes[0]) >= ins_len)
  2745. goto err;
  2746. if (key.type == BTRFS_EXTENT_DATA_KEY) {
  2747. fi = btrfs_item_ptr(leaf, path->slots[0],
  2748. struct btrfs_file_extent_item);
  2749. if (extent_len != btrfs_file_extent_num_bytes(leaf, fi))
  2750. goto err;
  2751. }
  2752. btrfs_set_path_blocking(path);
  2753. ret = split_leaf(trans, root, &key, path, ins_len, 1);
  2754. if (ret)
  2755. goto err;
  2756. path->keep_locks = 0;
  2757. btrfs_unlock_up_safe(path, 1);
  2758. return 0;
  2759. err:
  2760. path->keep_locks = 0;
  2761. return ret;
  2762. }
  2763. static noinline int split_item(struct btrfs_trans_handle *trans,
  2764. struct btrfs_root *root,
  2765. struct btrfs_path *path,
  2766. struct btrfs_key *new_key,
  2767. unsigned long split_offset)
  2768. {
  2769. struct extent_buffer *leaf;
  2770. struct btrfs_item *item;
  2771. struct btrfs_item *new_item;
  2772. int slot;
  2773. char *buf;
  2774. u32 nritems;
  2775. u32 item_size;
  2776. u32 orig_offset;
  2777. struct btrfs_disk_key disk_key;
  2778. leaf = path->nodes[0];
  2779. BUG_ON(btrfs_leaf_free_space(root, leaf) < sizeof(struct btrfs_item));
  2780. btrfs_set_path_blocking(path);
  2781. item = btrfs_item_nr(leaf, path->slots[0]);
  2782. orig_offset = btrfs_item_offset(leaf, item);
  2783. item_size = btrfs_item_size(leaf, item);
  2784. buf = kmalloc(item_size, GFP_NOFS);
  2785. if (!buf)
  2786. return -ENOMEM;
  2787. read_extent_buffer(leaf, buf, btrfs_item_ptr_offset(leaf,
  2788. path->slots[0]), item_size);
  2789. slot = path->slots[0] + 1;
  2790. nritems = btrfs_header_nritems(leaf);
  2791. if (slot != nritems) {
  2792. /* shift the items */
  2793. memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + 1),
  2794. btrfs_item_nr_offset(slot),
  2795. (nritems - slot) * sizeof(struct btrfs_item));
  2796. }
  2797. btrfs_cpu_key_to_disk(&disk_key, new_key);
  2798. btrfs_set_item_key(leaf, &disk_key, slot);
  2799. new_item = btrfs_item_nr(leaf, slot);
  2800. btrfs_set_item_offset(leaf, new_item, orig_offset);
  2801. btrfs_set_item_size(leaf, new_item, item_size - split_offset);
  2802. btrfs_set_item_offset(leaf, item,
  2803. orig_offset + item_size - split_offset);
  2804. btrfs_set_item_size(leaf, item, split_offset);
  2805. btrfs_set_header_nritems(leaf, nritems + 1);
  2806. /* write the data for the start of the original item */
  2807. write_extent_buffer(leaf, buf,
  2808. btrfs_item_ptr_offset(leaf, path->slots[0]),
  2809. split_offset);
  2810. /* write the data for the new item */
  2811. write_extent_buffer(leaf, buf + split_offset,
  2812. btrfs_item_ptr_offset(leaf, slot),
  2813. item_size - split_offset);
  2814. btrfs_mark_buffer_dirty(leaf);
  2815. BUG_ON(btrfs_leaf_free_space(root, leaf) < 0);
  2816. kfree(buf);
  2817. return 0;
  2818. }
  2819. /*
  2820. * This function splits a single item into two items,
  2821. * giving 'new_key' to the new item and splitting the
  2822. * old one at split_offset (from the start of the item).
  2823. *
  2824. * The path may be released by this operation. After
  2825. * the split, the path is pointing to the old item. The
  2826. * new item is going to be in the same node as the old one.
  2827. *
  2828. * Note, the item being split must be smaller enough to live alone on
  2829. * a tree block with room for one extra struct btrfs_item
  2830. *
  2831. * This allows us to split the item in place, keeping a lock on the
  2832. * leaf the entire time.
  2833. */
  2834. int btrfs_split_item(struct btrfs_trans_handle *trans,
  2835. struct btrfs_root *root,
  2836. struct btrfs_path *path,
  2837. struct btrfs_key *new_key,
  2838. unsigned long split_offset)
  2839. {
  2840. int ret;
  2841. ret = setup_leaf_for_split(trans, root, path,
  2842. sizeof(struct btrfs_item));
  2843. if (ret)
  2844. return ret;
  2845. ret = split_item(trans, root, path, new_key, split_offset);
  2846. return ret;
  2847. }
  2848. /*
  2849. * This function duplicate a item, giving 'new_key' to the new item.
  2850. * It guarantees both items live in the same tree leaf and the new item
  2851. * is contiguous with the original item.
  2852. *
  2853. * This allows us to split file extent in place, keeping a lock on the
  2854. * leaf the entire time.
  2855. */
  2856. int btrfs_duplicate_item(struct btrfs_trans_handle *trans,
  2857. struct btrfs_root *root,
  2858. struct btrfs_path *path,
  2859. struct btrfs_key *new_key)
  2860. {
  2861. struct extent_buffer *leaf;
  2862. int ret;
  2863. u32 item_size;
  2864. leaf = path->nodes[0];
  2865. item_size = btrfs_item_size_nr(leaf, path->slots[0]);
  2866. ret = setup_leaf_for_split(trans, root, path,
  2867. item_size + sizeof(struct btrfs_item));
  2868. if (ret)
  2869. return ret;
  2870. path->slots[0]++;
  2871. setup_items_for_insert(trans, root, path, new_key, &item_size,
  2872. item_size, item_size +
  2873. sizeof(struct btrfs_item), 1);
  2874. leaf = path->nodes[0];
  2875. memcpy_extent_buffer(leaf,
  2876. btrfs_item_ptr_offset(leaf, path->slots[0]),
  2877. btrfs_item_ptr_offset(leaf, path->slots[0] - 1),
  2878. item_size);
  2879. return 0;
  2880. }
  2881. /*
  2882. * make the item pointed to by the path smaller. new_size indicates
  2883. * how small to make it, and from_end tells us if we just chop bytes
  2884. * off the end of the item or if we shift the item to chop bytes off
  2885. * the front.
  2886. */
  2887. void btrfs_truncate_item(struct btrfs_trans_handle *trans,
  2888. struct btrfs_root *root,
  2889. struct btrfs_path *path,
  2890. u32 new_size, int from_end)
  2891. {
  2892. int slot;
  2893. struct extent_buffer *leaf;
  2894. struct btrfs_item *item;
  2895. u32 nritems;
  2896. unsigned int data_end;
  2897. unsigned int old_data_start;
  2898. unsigned int old_size;
  2899. unsigned int size_diff;
  2900. int i;
  2901. struct btrfs_map_token token;
  2902. btrfs_init_map_token(&token);
  2903. leaf = path->nodes[0];
  2904. slot = path->slots[0];
  2905. old_size = btrfs_item_size_nr(leaf, slot);
  2906. if (old_size == new_size)
  2907. return;
  2908. nritems = btrfs_header_nritems(leaf);
  2909. data_end = leaf_data_end(root, leaf);
  2910. old_data_start = btrfs_item_offset_nr(leaf, slot);
  2911. size_diff = old_size - new_size;
  2912. BUG_ON(slot < 0);
  2913. BUG_ON(slot >= nritems);
  2914. /*
  2915. * item0..itemN ... dataN.offset..dataN.size .. data0.size
  2916. */
  2917. /* first correct the data pointers */
  2918. for (i = slot; i < nritems; i++) {
  2919. u32 ioff;
  2920. item = btrfs_item_nr(leaf, i);
  2921. ioff = btrfs_token_item_offset(leaf, item, &token);
  2922. btrfs_set_token_item_offset(leaf, item,
  2923. ioff + size_diff, &token);
  2924. }
  2925. /* shift the data */
  2926. if (from_end) {
  2927. memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
  2928. data_end + size_diff, btrfs_leaf_data(leaf) +
  2929. data_end, old_data_start + new_size - data_end);
  2930. } else {
  2931. struct btrfs_disk_key disk_key;
  2932. u64 offset;
  2933. btrfs_item_key(leaf, &disk_key, slot);
  2934. if (btrfs_disk_key_type(&disk_key) == BTRFS_EXTENT_DATA_KEY) {
  2935. unsigned long ptr;
  2936. struct btrfs_file_extent_item *fi;
  2937. fi = btrfs_item_ptr(leaf, slot,
  2938. struct btrfs_file_extent_item);
  2939. fi = (struct btrfs_file_extent_item *)(
  2940. (unsigned long)fi - size_diff);
  2941. if (btrfs_file_extent_type(leaf, fi) ==
  2942. BTRFS_FILE_EXTENT_INLINE) {
  2943. ptr = btrfs_item_ptr_offset(leaf, slot);
  2944. memmove_extent_buffer(leaf, ptr,
  2945. (unsigned long)fi,
  2946. offsetof(struct btrfs_file_extent_item,
  2947. disk_bytenr));
  2948. }
  2949. }
  2950. memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
  2951. data_end + size_diff, btrfs_leaf_data(leaf) +
  2952. data_end, old_data_start - data_end);
  2953. offset = btrfs_disk_key_offset(&disk_key);
  2954. btrfs_set_disk_key_offset(&disk_key, offset + size_diff);
  2955. btrfs_set_item_key(leaf, &disk_key, slot);
  2956. if (slot == 0)
  2957. fixup_low_keys(trans, root, path, &disk_key, 1);
  2958. }
  2959. item = btrfs_item_nr(leaf, slot);
  2960. btrfs_set_item_size(leaf, item, new_size);
  2961. btrfs_mark_buffer_dirty(leaf);
  2962. if (btrfs_leaf_free_space(root, leaf) < 0) {
  2963. btrfs_print_leaf(root, leaf);
  2964. BUG();
  2965. }
  2966. }
  2967. /*
  2968. * make the item pointed to by the path bigger, data_size is the new size.
  2969. */
  2970. void btrfs_extend_item(struct btrfs_trans_handle *trans,
  2971. struct btrfs_root *root, struct btrfs_path *path,
  2972. u32 data_size)
  2973. {
  2974. int slot;
  2975. struct extent_buffer *leaf;
  2976. struct btrfs_item *item;
  2977. u32 nritems;
  2978. unsigned int data_end;
  2979. unsigned int old_data;
  2980. unsigned int old_size;
  2981. int i;
  2982. struct btrfs_map_token token;
  2983. btrfs_init_map_token(&token);
  2984. leaf = path->nodes[0];
  2985. nritems = btrfs_header_nritems(leaf);
  2986. data_end = leaf_data_end(root, leaf);
  2987. if (btrfs_leaf_free_space(root, leaf) < data_size) {
  2988. btrfs_print_leaf(root, leaf);
  2989. BUG();
  2990. }
  2991. slot = path->slots[0];
  2992. old_data = btrfs_item_end_nr(leaf, slot);
  2993. BUG_ON(slot < 0);
  2994. if (slot >= nritems) {
  2995. btrfs_print_leaf(root, leaf);
  2996. printk(KERN_CRIT "slot %d too large, nritems %d\n",
  2997. slot, nritems);
  2998. BUG_ON(1);
  2999. }
  3000. /*
  3001. * item0..itemN ... dataN.offset..dataN.size .. data0.size
  3002. */
  3003. /* first correct the data pointers */
  3004. for (i = slot; i < nritems; i++) {
  3005. u32 ioff;
  3006. item = btrfs_item_nr(leaf, i);
  3007. ioff = btrfs_token_item_offset(leaf, item, &token);
  3008. btrfs_set_token_item_offset(leaf, item,
  3009. ioff - data_size, &token);
  3010. }
  3011. /* shift the data */
  3012. memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
  3013. data_end - data_size, btrfs_leaf_data(leaf) +
  3014. data_end, old_data - data_end);
  3015. data_end = old_data;
  3016. old_size = btrfs_item_size_nr(leaf, slot);
  3017. item = btrfs_item_nr(leaf, slot);
  3018. btrfs_set_item_size(leaf, item, old_size + data_size);
  3019. btrfs_mark_buffer_dirty(leaf);
  3020. if (btrfs_leaf_free_space(root, leaf) < 0) {
  3021. btrfs_print_leaf(root, leaf);
  3022. BUG();
  3023. }
  3024. }
  3025. /*
  3026. * Given a key and some data, insert items into the tree.
  3027. * This does all the path init required, making room in the tree if needed.
  3028. * Returns the number of keys that were inserted.
  3029. */
  3030. int btrfs_insert_some_items(struct btrfs_trans_handle *trans,
  3031. struct btrfs_root *root,
  3032. struct btrfs_path *path,
  3033. struct btrfs_key *cpu_key, u32 *data_size,
  3034. int nr)
  3035. {
  3036. struct extent_buffer *leaf;
  3037. struct btrfs_item *item;
  3038. int ret = 0;
  3039. int slot;
  3040. int i;
  3041. u32 nritems;
  3042. u32 total_data = 0;
  3043. u32 total_size = 0;
  3044. unsigned int data_end;
  3045. struct btrfs_disk_key disk_key;
  3046. struct btrfs_key found_key;
  3047. struct btrfs_map_token token;
  3048. btrfs_init_map_token(&token);
  3049. for (i = 0; i < nr; i++) {
  3050. if (total_size + data_size[i] + sizeof(struct btrfs_item) >
  3051. BTRFS_LEAF_DATA_SIZE(root)) {
  3052. break;
  3053. nr = i;
  3054. }
  3055. total_data += data_size[i];
  3056. total_size += data_size[i] + sizeof(struct btrfs_item);
  3057. }
  3058. BUG_ON(nr == 0);
  3059. ret = btrfs_search_slot(trans, root, cpu_key, path, total_size, 1);
  3060. if (ret == 0)
  3061. return -EEXIST;
  3062. if (ret < 0)
  3063. goto out;
  3064. leaf = path->nodes[0];
  3065. nritems = btrfs_header_nritems(leaf);
  3066. data_end = leaf_data_end(root, leaf);
  3067. if (btrfs_leaf_free_space(root, leaf) < total_size) {
  3068. for (i = nr; i >= 0; i--) {
  3069. total_data -= data_size[i];
  3070. total_size -= data_size[i] + sizeof(struct btrfs_item);
  3071. if (total_size < btrfs_leaf_free_space(root, leaf))
  3072. break;
  3073. }
  3074. nr = i;
  3075. }
  3076. slot = path->slots[0];
  3077. BUG_ON(slot < 0);
  3078. if (slot != nritems) {
  3079. unsigned int old_data = btrfs_item_end_nr(leaf, slot);
  3080. item = btrfs_item_nr(leaf, slot);
  3081. btrfs_item_key_to_cpu(leaf, &found_key, slot);
  3082. /* figure out how many keys we can insert in here */
  3083. total_data = data_size[0];
  3084. for (i = 1; i < nr; i++) {
  3085. if (btrfs_comp_cpu_keys(&found_key, cpu_key + i) <= 0)
  3086. break;
  3087. total_data += data_size[i];
  3088. }
  3089. nr = i;
  3090. if (old_data < data_end) {
  3091. btrfs_print_leaf(root, leaf);
  3092. printk(KERN_CRIT "slot %d old_data %d data_end %d\n",
  3093. slot, old_data, data_end);
  3094. BUG_ON(1);
  3095. }
  3096. /*
  3097. * item0..itemN ... dataN.offset..dataN.size .. data0.size
  3098. */
  3099. /* first correct the data pointers */
  3100. for (i = slot; i < nritems; i++) {
  3101. u32 ioff;
  3102. item = btrfs_item_nr(leaf, i);
  3103. ioff = btrfs_token_item_offset(leaf, item, &token);
  3104. btrfs_set_token_item_offset(leaf, item,
  3105. ioff - total_data, &token);
  3106. }
  3107. /* shift the items */
  3108. memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + nr),
  3109. btrfs_item_nr_offset(slot),
  3110. (nritems - slot) * sizeof(struct btrfs_item));
  3111. /* shift the data */
  3112. memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
  3113. data_end - total_data, btrfs_leaf_data(leaf) +
  3114. data_end, old_data - data_end);
  3115. data_end = old_data;
  3116. } else {
  3117. /*
  3118. * this sucks but it has to be done, if we are inserting at
  3119. * the end of the leaf only insert 1 of the items, since we
  3120. * have no way of knowing whats on the next leaf and we'd have
  3121. * to drop our current locks to figure it out
  3122. */
  3123. nr = 1;
  3124. }
  3125. /* setup the item for the new data */
  3126. for (i = 0; i < nr; i++) {
  3127. btrfs_cpu_key_to_disk(&disk_key, cpu_key + i);
  3128. btrfs_set_item_key(leaf, &disk_key, slot + i);
  3129. item = btrfs_item_nr(leaf, slot + i);
  3130. btrfs_set_token_item_offset(leaf, item,
  3131. data_end - data_size[i], &token);
  3132. data_end -= data_size[i];
  3133. btrfs_set_token_item_size(leaf, item, data_size[i], &token);
  3134. }
  3135. btrfs_set_header_nritems(leaf, nritems + nr);
  3136. btrfs_mark_buffer_dirty(leaf);
  3137. ret = 0;
  3138. if (slot == 0) {
  3139. btrfs_cpu_key_to_disk(&disk_key, cpu_key);
  3140. fixup_low_keys(trans, root, path, &disk_key, 1);
  3141. }
  3142. if (btrfs_leaf_free_space(root, leaf) < 0) {
  3143. btrfs_print_leaf(root, leaf);
  3144. BUG();
  3145. }
  3146. out:
  3147. if (!ret)
  3148. ret = nr;
  3149. return ret;
  3150. }
  3151. /*
  3152. * this is a helper for btrfs_insert_empty_items, the main goal here is
  3153. * to save stack depth by doing the bulk of the work in a function
  3154. * that doesn't call btrfs_search_slot
  3155. */
  3156. void setup_items_for_insert(struct btrfs_trans_handle *trans,
  3157. struct btrfs_root *root, struct btrfs_path *path,
  3158. struct btrfs_key *cpu_key, u32 *data_size,
  3159. u32 total_data, u32 total_size, int nr)
  3160. {
  3161. struct btrfs_item *item;
  3162. int i;
  3163. u32 nritems;
  3164. unsigned int data_end;
  3165. struct btrfs_disk_key disk_key;
  3166. struct extent_buffer *leaf;
  3167. int slot;
  3168. struct btrfs_map_token token;
  3169. btrfs_init_map_token(&token);
  3170. leaf = path->nodes[0];
  3171. slot = path->slots[0];
  3172. nritems = btrfs_header_nritems(leaf);
  3173. data_end = leaf_data_end(root, leaf);
  3174. if (btrfs_leaf_free_space(root, leaf) < total_size) {
  3175. btrfs_print_leaf(root, leaf);
  3176. printk(KERN_CRIT "not enough freespace need %u have %d\n",
  3177. total_size, btrfs_leaf_free_space(root, leaf));
  3178. BUG();
  3179. }
  3180. if (slot != nritems) {
  3181. unsigned int old_data = btrfs_item_end_nr(leaf, slot);
  3182. if (old_data < data_end) {
  3183. btrfs_print_leaf(root, leaf);
  3184. printk(KERN_CRIT "slot %d old_data %d data_end %d\n",
  3185. slot, old_data, data_end);
  3186. BUG_ON(1);
  3187. }
  3188. /*
  3189. * item0..itemN ... dataN.offset..dataN.size .. data0.size
  3190. */
  3191. /* first correct the data pointers */
  3192. for (i = slot; i < nritems; i++) {
  3193. u32 ioff;
  3194. item = btrfs_item_nr(leaf, i);
  3195. ioff = btrfs_token_item_offset(leaf, item, &token);
  3196. btrfs_set_token_item_offset(leaf, item,
  3197. ioff - total_data, &token);
  3198. }
  3199. /* shift the items */
  3200. memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + nr),
  3201. btrfs_item_nr_offset(slot),
  3202. (nritems - slot) * sizeof(struct btrfs_item));
  3203. /* shift the data */
  3204. memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
  3205. data_end - total_data, btrfs_leaf_data(leaf) +
  3206. data_end, old_data - data_end);
  3207. data_end = old_data;
  3208. }
  3209. /* setup the item for the new data */
  3210. for (i = 0; i < nr; i++) {
  3211. btrfs_cpu_key_to_disk(&disk_key, cpu_key + i);
  3212. btrfs_set_item_key(leaf, &disk_key, slot + i);
  3213. item = btrfs_item_nr(leaf, slot + i);
  3214. btrfs_set_token_item_offset(leaf, item,
  3215. data_end - data_size[i], &token);
  3216. data_end -= data_size[i];
  3217. btrfs_set_token_item_size(leaf, item, data_size[i], &token);
  3218. }
  3219. btrfs_set_header_nritems(leaf, nritems + nr);
  3220. if (slot == 0) {
  3221. btrfs_cpu_key_to_disk(&disk_key, cpu_key);
  3222. fixup_low_keys(trans, root, path, &disk_key, 1);
  3223. }
  3224. btrfs_unlock_up_safe(path, 1);
  3225. btrfs_mark_buffer_dirty(leaf);
  3226. if (btrfs_leaf_free_space(root, leaf) < 0) {
  3227. btrfs_print_leaf(root, leaf);
  3228. BUG();
  3229. }
  3230. }
  3231. /*
  3232. * Given a key and some data, insert items into the tree.
  3233. * This does all the path init required, making room in the tree if needed.
  3234. */
  3235. int btrfs_insert_empty_items(struct btrfs_trans_handle *trans,
  3236. struct btrfs_root *root,
  3237. struct btrfs_path *path,
  3238. struct btrfs_key *cpu_key, u32 *data_size,
  3239. int nr)
  3240. {
  3241. int ret = 0;
  3242. int slot;
  3243. int i;
  3244. u32 total_size = 0;
  3245. u32 total_data = 0;
  3246. for (i = 0; i < nr; i++)
  3247. total_data += data_size[i];
  3248. total_size = total_data + (nr * sizeof(struct btrfs_item));
  3249. ret = btrfs_search_slot(trans, root, cpu_key, path, total_size, 1);
  3250. if (ret == 0)
  3251. return -EEXIST;
  3252. if (ret < 0)
  3253. return ret;
  3254. slot = path->slots[0];
  3255. BUG_ON(slot < 0);
  3256. setup_items_for_insert(trans, root, path, cpu_key, data_size,
  3257. total_data, total_size, nr);
  3258. return 0;
  3259. }
  3260. /*
  3261. * Given a key and some data, insert an item into the tree.
  3262. * This does all the path init required, making room in the tree if needed.
  3263. */
  3264. int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root
  3265. *root, struct btrfs_key *cpu_key, void *data, u32
  3266. data_size)
  3267. {
  3268. int ret = 0;
  3269. struct btrfs_path *path;
  3270. struct extent_buffer *leaf;
  3271. unsigned long ptr;
  3272. path = btrfs_alloc_path();
  3273. if (!path)
  3274. return -ENOMEM;
  3275. ret = btrfs_insert_empty_item(trans, root, path, cpu_key, data_size);
  3276. if (!ret) {
  3277. leaf = path->nodes[0];
  3278. ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
  3279. write_extent_buffer(leaf, data, ptr, data_size);
  3280. btrfs_mark_buffer_dirty(leaf);
  3281. }
  3282. btrfs_free_path(path);
  3283. return ret;
  3284. }
  3285. /*
  3286. * delete the pointer from a given node.
  3287. *
  3288. * the tree should have been previously balanced so the deletion does not
  3289. * empty a node.
  3290. */
  3291. static void del_ptr(struct btrfs_trans_handle *trans, struct btrfs_root *root,
  3292. struct btrfs_path *path, int level, int slot)
  3293. {
  3294. struct extent_buffer *parent = path->nodes[level];
  3295. u32 nritems;
  3296. nritems = btrfs_header_nritems(parent);
  3297. if (slot != nritems - 1) {
  3298. memmove_extent_buffer(parent,
  3299. btrfs_node_key_ptr_offset(slot),
  3300. btrfs_node_key_ptr_offset(slot + 1),
  3301. sizeof(struct btrfs_key_ptr) *
  3302. (nritems - slot - 1));
  3303. }
  3304. nritems--;
  3305. btrfs_set_header_nritems(parent, nritems);
  3306. if (nritems == 0 && parent == root->node) {
  3307. BUG_ON(btrfs_header_level(root->node) != 1);
  3308. /* just turn the root into a leaf and break */
  3309. btrfs_set_header_level(root->node, 0);
  3310. } else if (slot == 0) {
  3311. struct btrfs_disk_key disk_key;
  3312. btrfs_node_key(parent, &disk_key, 0);
  3313. fixup_low_keys(trans, root, path, &disk_key, level + 1);
  3314. }
  3315. btrfs_mark_buffer_dirty(parent);
  3316. }
  3317. /*
  3318. * a helper function to delete the leaf pointed to by path->slots[1] and
  3319. * path->nodes[1].
  3320. *
  3321. * This deletes the pointer in path->nodes[1] and frees the leaf
  3322. * block extent. zero is returned if it all worked out, < 0 otherwise.
  3323. *
  3324. * The path must have already been setup for deleting the leaf, including
  3325. * all the proper balancing. path->nodes[1] must be locked.
  3326. */
  3327. static noinline void btrfs_del_leaf(struct btrfs_trans_handle *trans,
  3328. struct btrfs_root *root,
  3329. struct btrfs_path *path,
  3330. struct extent_buffer *leaf)
  3331. {
  3332. WARN_ON(btrfs_header_generation(leaf) != trans->transid);
  3333. del_ptr(trans, root, path, 1, path->slots[1]);
  3334. /*
  3335. * btrfs_free_extent is expensive, we want to make sure we
  3336. * aren't holding any locks when we call it
  3337. */
  3338. btrfs_unlock_up_safe(path, 0);
  3339. root_sub_used(root, leaf->len);
  3340. extent_buffer_get(leaf);
  3341. btrfs_free_tree_block(trans, root, leaf, 0, 1, 0);
  3342. free_extent_buffer_stale(leaf);
  3343. }
  3344. /*
  3345. * delete the item at the leaf level in path. If that empties
  3346. * the leaf, remove it from the tree
  3347. */
  3348. int btrfs_del_items(struct btrfs_trans_handle *trans, struct btrfs_root *root,
  3349. struct btrfs_path *path, int slot, int nr)
  3350. {
  3351. struct extent_buffer *leaf;
  3352. struct btrfs_item *item;
  3353. int last_off;
  3354. int dsize = 0;
  3355. int ret = 0;
  3356. int wret;
  3357. int i;
  3358. u32 nritems;
  3359. struct btrfs_map_token token;
  3360. btrfs_init_map_token(&token);
  3361. leaf = path->nodes[0];
  3362. last_off = btrfs_item_offset_nr(leaf, slot + nr - 1);
  3363. for (i = 0; i < nr; i++)
  3364. dsize += btrfs_item_size_nr(leaf, slot + i);
  3365. nritems = btrfs_header_nritems(leaf);
  3366. if (slot + nr != nritems) {
  3367. int data_end = leaf_data_end(root, leaf);
  3368. memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
  3369. data_end + dsize,
  3370. btrfs_leaf_data(leaf) + data_end,
  3371. last_off - data_end);
  3372. for (i = slot + nr; i < nritems; i++) {
  3373. u32 ioff;
  3374. item = btrfs_item_nr(leaf, i);
  3375. ioff = btrfs_token_item_offset(leaf, item, &token);
  3376. btrfs_set_token_item_offset(leaf, item,
  3377. ioff + dsize, &token);
  3378. }
  3379. memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot),
  3380. btrfs_item_nr_offset(slot + nr),
  3381. sizeof(struct btrfs_item) *
  3382. (nritems - slot - nr));
  3383. }
  3384. btrfs_set_header_nritems(leaf, nritems - nr);
  3385. nritems -= nr;
  3386. /* delete the leaf if we've emptied it */
  3387. if (nritems == 0) {
  3388. if (leaf == root->node) {
  3389. btrfs_set_header_level(leaf, 0);
  3390. } else {
  3391. btrfs_set_path_blocking(path);
  3392. clean_tree_block(trans, root, leaf);
  3393. btrfs_del_leaf(trans, root, path, leaf);
  3394. }
  3395. } else {
  3396. int used = leaf_space_used(leaf, 0, nritems);
  3397. if (slot == 0) {
  3398. struct btrfs_disk_key disk_key;
  3399. btrfs_item_key(leaf, &disk_key, 0);
  3400. fixup_low_keys(trans, root, path, &disk_key, 1);
  3401. }
  3402. /* delete the leaf if it is mostly empty */
  3403. if (used < BTRFS_LEAF_DATA_SIZE(root) / 3) {
  3404. /* push_leaf_left fixes the path.
  3405. * make sure the path still points to our leaf
  3406. * for possible call to del_ptr below
  3407. */
  3408. slot = path->slots[1];
  3409. extent_buffer_get(leaf);
  3410. btrfs_set_path_blocking(path);
  3411. wret = push_leaf_left(trans, root, path, 1, 1,
  3412. 1, (u32)-1);
  3413. if (wret < 0 && wret != -ENOSPC)
  3414. ret = wret;
  3415. if (path->nodes[0] == leaf &&
  3416. btrfs_header_nritems(leaf)) {
  3417. wret = push_leaf_right(trans, root, path, 1,
  3418. 1, 1, 0);
  3419. if (wret < 0 && wret != -ENOSPC)
  3420. ret = wret;
  3421. }
  3422. if (btrfs_header_nritems(leaf) == 0) {
  3423. path->slots[1] = slot;
  3424. btrfs_del_leaf(trans, root, path, leaf);
  3425. free_extent_buffer(leaf);
  3426. ret = 0;
  3427. } else {
  3428. /* if we're still in the path, make sure
  3429. * we're dirty. Otherwise, one of the
  3430. * push_leaf functions must have already
  3431. * dirtied this buffer
  3432. */
  3433. if (path->nodes[0] == leaf)
  3434. btrfs_mark_buffer_dirty(leaf);
  3435. free_extent_buffer(leaf);
  3436. }
  3437. } else {
  3438. btrfs_mark_buffer_dirty(leaf);
  3439. }
  3440. }
  3441. return ret;
  3442. }
  3443. /*
  3444. * search the tree again to find a leaf with lesser keys
  3445. * returns 0 if it found something or 1 if there are no lesser leaves.
  3446. * returns < 0 on io errors.
  3447. *
  3448. * This may release the path, and so you may lose any locks held at the
  3449. * time you call it.
  3450. */
  3451. int btrfs_prev_leaf(struct btrfs_root *root, struct btrfs_path *path)
  3452. {
  3453. struct btrfs_key key;
  3454. struct btrfs_disk_key found_key;
  3455. int ret;
  3456. btrfs_item_key_to_cpu(path->nodes[0], &key, 0);
  3457. if (key.offset > 0)
  3458. key.offset--;
  3459. else if (key.type > 0)
  3460. key.type--;
  3461. else if (key.objectid > 0)
  3462. key.objectid--;
  3463. else
  3464. return 1;
  3465. btrfs_release_path(path);
  3466. ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
  3467. if (ret < 0)
  3468. return ret;
  3469. btrfs_item_key(path->nodes[0], &found_key, 0);
  3470. ret = comp_keys(&found_key, &key);
  3471. if (ret < 0)
  3472. return 0;
  3473. return 1;
  3474. }
  3475. /*
  3476. * A helper function to walk down the tree starting at min_key, and looking
  3477. * for nodes or leaves that are either in cache or have a minimum
  3478. * transaction id. This is used by the btree defrag code, and tree logging
  3479. *
  3480. * This does not cow, but it does stuff the starting key it finds back
  3481. * into min_key, so you can call btrfs_search_slot with cow=1 on the
  3482. * key and get a writable path.
  3483. *
  3484. * This does lock as it descends, and path->keep_locks should be set
  3485. * to 1 by the caller.
  3486. *
  3487. * This honors path->lowest_level to prevent descent past a given level
  3488. * of the tree.
  3489. *
  3490. * min_trans indicates the oldest transaction that you are interested
  3491. * in walking through. Any nodes or leaves older than min_trans are
  3492. * skipped over (without reading them).
  3493. *
  3494. * returns zero if something useful was found, < 0 on error and 1 if there
  3495. * was nothing in the tree that matched the search criteria.
  3496. */
  3497. int btrfs_search_forward(struct btrfs_root *root, struct btrfs_key *min_key,
  3498. struct btrfs_key *max_key,
  3499. struct btrfs_path *path, int cache_only,
  3500. u64 min_trans)
  3501. {
  3502. struct extent_buffer *cur;
  3503. struct btrfs_key found_key;
  3504. int slot;
  3505. int sret;
  3506. u32 nritems;
  3507. int level;
  3508. int ret = 1;
  3509. WARN_ON(!path->keep_locks);
  3510. again:
  3511. cur = btrfs_read_lock_root_node(root);
  3512. level = btrfs_header_level(cur);
  3513. WARN_ON(path->nodes[level]);
  3514. path->nodes[level] = cur;
  3515. path->locks[level] = BTRFS_READ_LOCK;
  3516. if (btrfs_header_generation(cur) < min_trans) {
  3517. ret = 1;
  3518. goto out;
  3519. }
  3520. while (1) {
  3521. nritems = btrfs_header_nritems(cur);
  3522. level = btrfs_header_level(cur);
  3523. sret = bin_search(cur, min_key, level, &slot);
  3524. /* at the lowest level, we're done, setup the path and exit */
  3525. if (level == path->lowest_level) {
  3526. if (slot >= nritems)
  3527. goto find_next_key;
  3528. ret = 0;
  3529. path->slots[level] = slot;
  3530. btrfs_item_key_to_cpu(cur, &found_key, slot);
  3531. goto out;
  3532. }
  3533. if (sret && slot > 0)
  3534. slot--;
  3535. /*
  3536. * check this node pointer against the cache_only and
  3537. * min_trans parameters. If it isn't in cache or is too
  3538. * old, skip to the next one.
  3539. */
  3540. while (slot < nritems) {
  3541. u64 blockptr;
  3542. u64 gen;
  3543. struct extent_buffer *tmp;
  3544. struct btrfs_disk_key disk_key;
  3545. blockptr = btrfs_node_blockptr(cur, slot);
  3546. gen = btrfs_node_ptr_generation(cur, slot);
  3547. if (gen < min_trans) {
  3548. slot++;
  3549. continue;
  3550. }
  3551. if (!cache_only)
  3552. break;
  3553. if (max_key) {
  3554. btrfs_node_key(cur, &disk_key, slot);
  3555. if (comp_keys(&disk_key, max_key) >= 0) {
  3556. ret = 1;
  3557. goto out;
  3558. }
  3559. }
  3560. tmp = btrfs_find_tree_block(root, blockptr,
  3561. btrfs_level_size(root, level - 1));
  3562. if (tmp && btrfs_buffer_uptodate(tmp, gen)) {
  3563. free_extent_buffer(tmp);
  3564. break;
  3565. }
  3566. if (tmp)
  3567. free_extent_buffer(tmp);
  3568. slot++;
  3569. }
  3570. find_next_key:
  3571. /*
  3572. * we didn't find a candidate key in this node, walk forward
  3573. * and find another one
  3574. */
  3575. if (slot >= nritems) {
  3576. path->slots[level] = slot;
  3577. btrfs_set_path_blocking(path);
  3578. sret = btrfs_find_next_key(root, path, min_key, level,
  3579. cache_only, min_trans);
  3580. if (sret == 0) {
  3581. btrfs_release_path(path);
  3582. goto again;
  3583. } else {
  3584. goto out;
  3585. }
  3586. }
  3587. /* save our key for returning back */
  3588. btrfs_node_key_to_cpu(cur, &found_key, slot);
  3589. path->slots[level] = slot;
  3590. if (level == path->lowest_level) {
  3591. ret = 0;
  3592. unlock_up(path, level, 1, 0, NULL);
  3593. goto out;
  3594. }
  3595. btrfs_set_path_blocking(path);
  3596. cur = read_node_slot(root, cur, slot);
  3597. BUG_ON(!cur); /* -ENOMEM */
  3598. btrfs_tree_read_lock(cur);
  3599. path->locks[level - 1] = BTRFS_READ_LOCK;
  3600. path->nodes[level - 1] = cur;
  3601. unlock_up(path, level, 1, 0, NULL);
  3602. btrfs_clear_path_blocking(path, NULL, 0);
  3603. }
  3604. out:
  3605. if (ret == 0)
  3606. memcpy(min_key, &found_key, sizeof(found_key));
  3607. btrfs_set_path_blocking(path);
  3608. return ret;
  3609. }
  3610. /*
  3611. * this is similar to btrfs_next_leaf, but does not try to preserve
  3612. * and fixup the path. It looks for and returns the next key in the
  3613. * tree based on the current path and the cache_only and min_trans
  3614. * parameters.
  3615. *
  3616. * 0 is returned if another key is found, < 0 if there are any errors
  3617. * and 1 is returned if there are no higher keys in the tree
  3618. *
  3619. * path->keep_locks should be set to 1 on the search made before
  3620. * calling this function.
  3621. */
  3622. int btrfs_find_next_key(struct btrfs_root *root, struct btrfs_path *path,
  3623. struct btrfs_key *key, int level,
  3624. int cache_only, u64 min_trans)
  3625. {
  3626. int slot;
  3627. struct extent_buffer *c;
  3628. WARN_ON(!path->keep_locks);
  3629. while (level < BTRFS_MAX_LEVEL) {
  3630. if (!path->nodes[level])
  3631. return 1;
  3632. slot = path->slots[level] + 1;
  3633. c = path->nodes[level];
  3634. next:
  3635. if (slot >= btrfs_header_nritems(c)) {
  3636. int ret;
  3637. int orig_lowest;
  3638. struct btrfs_key cur_key;
  3639. if (level + 1 >= BTRFS_MAX_LEVEL ||
  3640. !path->nodes[level + 1])
  3641. return 1;
  3642. if (path->locks[level + 1]) {
  3643. level++;
  3644. continue;
  3645. }
  3646. slot = btrfs_header_nritems(c) - 1;
  3647. if (level == 0)
  3648. btrfs_item_key_to_cpu(c, &cur_key, slot);
  3649. else
  3650. btrfs_node_key_to_cpu(c, &cur_key, slot);
  3651. orig_lowest = path->lowest_level;
  3652. btrfs_release_path(path);
  3653. path->lowest_level = level;
  3654. ret = btrfs_search_slot(NULL, root, &cur_key, path,
  3655. 0, 0);
  3656. path->lowest_level = orig_lowest;
  3657. if (ret < 0)
  3658. return ret;
  3659. c = path->nodes[level];
  3660. slot = path->slots[level];
  3661. if (ret == 0)
  3662. slot++;
  3663. goto next;
  3664. }
  3665. if (level == 0)
  3666. btrfs_item_key_to_cpu(c, key, slot);
  3667. else {
  3668. u64 blockptr = btrfs_node_blockptr(c, slot);
  3669. u64 gen = btrfs_node_ptr_generation(c, slot);
  3670. if (cache_only) {
  3671. struct extent_buffer *cur;
  3672. cur = btrfs_find_tree_block(root, blockptr,
  3673. btrfs_level_size(root, level - 1));
  3674. if (!cur || !btrfs_buffer_uptodate(cur, gen)) {
  3675. slot++;
  3676. if (cur)
  3677. free_extent_buffer(cur);
  3678. goto next;
  3679. }
  3680. free_extent_buffer(cur);
  3681. }
  3682. if (gen < min_trans) {
  3683. slot++;
  3684. goto next;
  3685. }
  3686. btrfs_node_key_to_cpu(c, key, slot);
  3687. }
  3688. return 0;
  3689. }
  3690. return 1;
  3691. }
  3692. /*
  3693. * search the tree again to find a leaf with greater keys
  3694. * returns 0 if it found something or 1 if there are no greater leaves.
  3695. * returns < 0 on io errors.
  3696. */
  3697. int btrfs_next_leaf(struct btrfs_root *root, struct btrfs_path *path)
  3698. {
  3699. int slot;
  3700. int level;
  3701. struct extent_buffer *c;
  3702. struct extent_buffer *next;
  3703. struct btrfs_key key;
  3704. u32 nritems;
  3705. int ret;
  3706. int old_spinning = path->leave_spinning;
  3707. int next_rw_lock = 0;
  3708. nritems = btrfs_header_nritems(path->nodes[0]);
  3709. if (nritems == 0)
  3710. return 1;
  3711. btrfs_item_key_to_cpu(path->nodes[0], &key, nritems - 1);
  3712. again:
  3713. level = 1;
  3714. next = NULL;
  3715. next_rw_lock = 0;
  3716. btrfs_release_path(path);
  3717. path->keep_locks = 1;
  3718. path->leave_spinning = 1;
  3719. ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
  3720. path->keep_locks = 0;
  3721. if (ret < 0)
  3722. return ret;
  3723. nritems = btrfs_header_nritems(path->nodes[0]);
  3724. /*
  3725. * by releasing the path above we dropped all our locks. A balance
  3726. * could have added more items next to the key that used to be
  3727. * at the very end of the block. So, check again here and
  3728. * advance the path if there are now more items available.
  3729. */
  3730. if (nritems > 0 && path->slots[0] < nritems - 1) {
  3731. if (ret == 0)
  3732. path->slots[0]++;
  3733. ret = 0;
  3734. goto done;
  3735. }
  3736. while (level < BTRFS_MAX_LEVEL) {
  3737. if (!path->nodes[level]) {
  3738. ret = 1;
  3739. goto done;
  3740. }
  3741. slot = path->slots[level] + 1;
  3742. c = path->nodes[level];
  3743. if (slot >= btrfs_header_nritems(c)) {
  3744. level++;
  3745. if (level == BTRFS_MAX_LEVEL) {
  3746. ret = 1;
  3747. goto done;
  3748. }
  3749. continue;
  3750. }
  3751. if (next) {
  3752. btrfs_tree_unlock_rw(next, next_rw_lock);
  3753. free_extent_buffer(next);
  3754. }
  3755. next = c;
  3756. next_rw_lock = path->locks[level];
  3757. ret = read_block_for_search(NULL, root, path, &next, level,
  3758. slot, &key);
  3759. if (ret == -EAGAIN)
  3760. goto again;
  3761. if (ret < 0) {
  3762. btrfs_release_path(path);
  3763. goto done;
  3764. }
  3765. if (!path->skip_locking) {
  3766. ret = btrfs_try_tree_read_lock(next);
  3767. if (!ret) {
  3768. btrfs_set_path_blocking(path);
  3769. btrfs_tree_read_lock(next);
  3770. btrfs_clear_path_blocking(path, next,
  3771. BTRFS_READ_LOCK);
  3772. }
  3773. next_rw_lock = BTRFS_READ_LOCK;
  3774. }
  3775. break;
  3776. }
  3777. path->slots[level] = slot;
  3778. while (1) {
  3779. level--;
  3780. c = path->nodes[level];
  3781. if (path->locks[level])
  3782. btrfs_tree_unlock_rw(c, path->locks[level]);
  3783. free_extent_buffer(c);
  3784. path->nodes[level] = next;
  3785. path->slots[level] = 0;
  3786. if (!path->skip_locking)
  3787. path->locks[level] = next_rw_lock;
  3788. if (!level)
  3789. break;
  3790. ret = read_block_for_search(NULL, root, path, &next, level,
  3791. 0, &key);
  3792. if (ret == -EAGAIN)
  3793. goto again;
  3794. if (ret < 0) {
  3795. btrfs_release_path(path);
  3796. goto done;
  3797. }
  3798. if (!path->skip_locking) {
  3799. ret = btrfs_try_tree_read_lock(next);
  3800. if (!ret) {
  3801. btrfs_set_path_blocking(path);
  3802. btrfs_tree_read_lock(next);
  3803. btrfs_clear_path_blocking(path, next,
  3804. BTRFS_READ_LOCK);
  3805. }
  3806. next_rw_lock = BTRFS_READ_LOCK;
  3807. }
  3808. }
  3809. ret = 0;
  3810. done:
  3811. unlock_up(path, 0, 1, 0, NULL);
  3812. path->leave_spinning = old_spinning;
  3813. if (!old_spinning)
  3814. btrfs_set_path_blocking(path);
  3815. return ret;
  3816. }
  3817. /*
  3818. * this uses btrfs_prev_leaf to walk backwards in the tree, and keeps
  3819. * searching until it gets past min_objectid or finds an item of 'type'
  3820. *
  3821. * returns 0 if something is found, 1 if nothing was found and < 0 on error
  3822. */
  3823. int btrfs_previous_item(struct btrfs_root *root,
  3824. struct btrfs_path *path, u64 min_objectid,
  3825. int type)
  3826. {
  3827. struct btrfs_key found_key;
  3828. struct extent_buffer *leaf;
  3829. u32 nritems;
  3830. int ret;
  3831. while (1) {
  3832. if (path->slots[0] == 0) {
  3833. btrfs_set_path_blocking(path);
  3834. ret = btrfs_prev_leaf(root, path);
  3835. if (ret != 0)
  3836. return ret;
  3837. } else {
  3838. path->slots[0]--;
  3839. }
  3840. leaf = path->nodes[0];
  3841. nritems = btrfs_header_nritems(leaf);
  3842. if (nritems == 0)
  3843. return 1;
  3844. if (path->slots[0] == nritems)
  3845. path->slots[0]--;
  3846. btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
  3847. if (found_key.objectid < min_objectid)
  3848. break;
  3849. if (found_key.type == type)
  3850. return 0;
  3851. if (found_key.objectid == min_objectid &&
  3852. found_key.type < type)
  3853. break;
  3854. }
  3855. return 1;
  3856. }