bio.c 39 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688
  1. /*
  2. * Copyright (C) 2001 Jens Axboe <axboe@kernel.dk>
  3. *
  4. * This program is free software; you can redistribute it and/or modify
  5. * it under the terms of the GNU General Public License version 2 as
  6. * published by the Free Software Foundation.
  7. *
  8. * This program is distributed in the hope that it will be useful,
  9. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  10. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  11. * GNU General Public License for more details.
  12. *
  13. * You should have received a copy of the GNU General Public Licens
  14. * along with this program; if not, write to the Free Software
  15. * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-
  16. *
  17. */
  18. #include <linux/mm.h>
  19. #include <linux/swap.h>
  20. #include <linux/bio.h>
  21. #include <linux/blkdev.h>
  22. #include <linux/slab.h>
  23. #include <linux/init.h>
  24. #include <linux/kernel.h>
  25. #include <linux/export.h>
  26. #include <linux/mempool.h>
  27. #include <linux/workqueue.h>
  28. #include <scsi/sg.h> /* for struct sg_iovec */
  29. #include <trace/events/block.h>
  30. /*
  31. * Test patch to inline a certain number of bi_io_vec's inside the bio
  32. * itself, to shrink a bio data allocation from two mempool calls to one
  33. */
  34. #define BIO_INLINE_VECS 4
  35. static mempool_t *bio_split_pool __read_mostly;
  36. /*
  37. * if you change this list, also change bvec_alloc or things will
  38. * break badly! cannot be bigger than what you can fit into an
  39. * unsigned short
  40. */
  41. #define BV(x) { .nr_vecs = x, .name = "biovec-"__stringify(x) }
  42. static struct biovec_slab bvec_slabs[BIOVEC_NR_POOLS] __read_mostly = {
  43. BV(1), BV(4), BV(16), BV(64), BV(128), BV(BIO_MAX_PAGES),
  44. };
  45. #undef BV
  46. /*
  47. * fs_bio_set is the bio_set containing bio and iovec memory pools used by
  48. * IO code that does not need private memory pools.
  49. */
  50. struct bio_set *fs_bio_set;
  51. /*
  52. * Our slab pool management
  53. */
  54. struct bio_slab {
  55. struct kmem_cache *slab;
  56. unsigned int slab_ref;
  57. unsigned int slab_size;
  58. char name[8];
  59. };
  60. static DEFINE_MUTEX(bio_slab_lock);
  61. static struct bio_slab *bio_slabs;
  62. static unsigned int bio_slab_nr, bio_slab_max;
  63. static struct kmem_cache *bio_find_or_create_slab(unsigned int extra_size)
  64. {
  65. unsigned int sz = sizeof(struct bio) + extra_size;
  66. struct kmem_cache *slab = NULL;
  67. struct bio_slab *bslab;
  68. unsigned int i, entry = -1;
  69. mutex_lock(&bio_slab_lock);
  70. i = 0;
  71. while (i < bio_slab_nr) {
  72. bslab = &bio_slabs[i];
  73. if (!bslab->slab && entry == -1)
  74. entry = i;
  75. else if (bslab->slab_size == sz) {
  76. slab = bslab->slab;
  77. bslab->slab_ref++;
  78. break;
  79. }
  80. i++;
  81. }
  82. if (slab)
  83. goto out_unlock;
  84. if (bio_slab_nr == bio_slab_max && entry == -1) {
  85. bio_slab_max <<= 1;
  86. bio_slabs = krealloc(bio_slabs,
  87. bio_slab_max * sizeof(struct bio_slab),
  88. GFP_KERNEL);
  89. if (!bio_slabs)
  90. goto out_unlock;
  91. }
  92. if (entry == -1)
  93. entry = bio_slab_nr++;
  94. bslab = &bio_slabs[entry];
  95. snprintf(bslab->name, sizeof(bslab->name), "bio-%d", entry);
  96. slab = kmem_cache_create(bslab->name, sz, 0, SLAB_HWCACHE_ALIGN, NULL);
  97. if (!slab)
  98. goto out_unlock;
  99. printk(KERN_INFO "bio: create slab <%s> at %d\n", bslab->name, entry);
  100. bslab->slab = slab;
  101. bslab->slab_ref = 1;
  102. bslab->slab_size = sz;
  103. out_unlock:
  104. mutex_unlock(&bio_slab_lock);
  105. return slab;
  106. }
  107. static void bio_put_slab(struct bio_set *bs)
  108. {
  109. struct bio_slab *bslab = NULL;
  110. unsigned int i;
  111. mutex_lock(&bio_slab_lock);
  112. for (i = 0; i < bio_slab_nr; i++) {
  113. if (bs->bio_slab == bio_slabs[i].slab) {
  114. bslab = &bio_slabs[i];
  115. break;
  116. }
  117. }
  118. if (WARN(!bslab, KERN_ERR "bio: unable to find slab!\n"))
  119. goto out;
  120. WARN_ON(!bslab->slab_ref);
  121. if (--bslab->slab_ref)
  122. goto out;
  123. kmem_cache_destroy(bslab->slab);
  124. bslab->slab = NULL;
  125. out:
  126. mutex_unlock(&bio_slab_lock);
  127. }
  128. unsigned int bvec_nr_vecs(unsigned short idx)
  129. {
  130. return bvec_slabs[idx].nr_vecs;
  131. }
  132. void bvec_free_bs(struct bio_set *bs, struct bio_vec *bv, unsigned int idx)
  133. {
  134. BIO_BUG_ON(idx >= BIOVEC_NR_POOLS);
  135. if (idx == BIOVEC_MAX_IDX)
  136. mempool_free(bv, bs->bvec_pool);
  137. else {
  138. struct biovec_slab *bvs = bvec_slabs + idx;
  139. kmem_cache_free(bvs->slab, bv);
  140. }
  141. }
  142. struct bio_vec *bvec_alloc_bs(gfp_t gfp_mask, int nr, unsigned long *idx,
  143. struct bio_set *bs)
  144. {
  145. struct bio_vec *bvl;
  146. /*
  147. * see comment near bvec_array define!
  148. */
  149. switch (nr) {
  150. case 1:
  151. *idx = 0;
  152. break;
  153. case 2 ... 4:
  154. *idx = 1;
  155. break;
  156. case 5 ... 16:
  157. *idx = 2;
  158. break;
  159. case 17 ... 64:
  160. *idx = 3;
  161. break;
  162. case 65 ... 128:
  163. *idx = 4;
  164. break;
  165. case 129 ... BIO_MAX_PAGES:
  166. *idx = 5;
  167. break;
  168. default:
  169. return NULL;
  170. }
  171. /*
  172. * idx now points to the pool we want to allocate from. only the
  173. * 1-vec entry pool is mempool backed.
  174. */
  175. if (*idx == BIOVEC_MAX_IDX) {
  176. fallback:
  177. bvl = mempool_alloc(bs->bvec_pool, gfp_mask);
  178. } else {
  179. struct biovec_slab *bvs = bvec_slabs + *idx;
  180. gfp_t __gfp_mask = gfp_mask & ~(__GFP_WAIT | __GFP_IO);
  181. /*
  182. * Make this allocation restricted and don't dump info on
  183. * allocation failures, since we'll fallback to the mempool
  184. * in case of failure.
  185. */
  186. __gfp_mask |= __GFP_NOMEMALLOC | __GFP_NORETRY | __GFP_NOWARN;
  187. /*
  188. * Try a slab allocation. If this fails and __GFP_WAIT
  189. * is set, retry with the 1-entry mempool
  190. */
  191. bvl = kmem_cache_alloc(bvs->slab, __gfp_mask);
  192. if (unlikely(!bvl && (gfp_mask & __GFP_WAIT))) {
  193. *idx = BIOVEC_MAX_IDX;
  194. goto fallback;
  195. }
  196. }
  197. return bvl;
  198. }
  199. void bio_free(struct bio *bio, struct bio_set *bs)
  200. {
  201. void *p;
  202. if (bio_has_allocated_vec(bio))
  203. bvec_free_bs(bs, bio->bi_io_vec, BIO_POOL_IDX(bio));
  204. if (bio_integrity(bio))
  205. bio_integrity_free(bio, bs);
  206. /*
  207. * If we have front padding, adjust the bio pointer before freeing
  208. */
  209. p = bio;
  210. if (bs->front_pad)
  211. p -= bs->front_pad;
  212. mempool_free(p, bs->bio_pool);
  213. }
  214. EXPORT_SYMBOL(bio_free);
  215. void bio_init(struct bio *bio)
  216. {
  217. memset(bio, 0, sizeof(*bio));
  218. bio->bi_flags = 1 << BIO_UPTODATE;
  219. atomic_set(&bio->bi_cnt, 1);
  220. }
  221. EXPORT_SYMBOL(bio_init);
  222. /**
  223. * bio_alloc_bioset - allocate a bio for I/O
  224. * @gfp_mask: the GFP_ mask given to the slab allocator
  225. * @nr_iovecs: number of iovecs to pre-allocate
  226. * @bs: the bio_set to allocate from.
  227. *
  228. * Description:
  229. * bio_alloc_bioset will try its own mempool to satisfy the allocation.
  230. * If %__GFP_WAIT is set then we will block on the internal pool waiting
  231. * for a &struct bio to become free.
  232. *
  233. * Note that the caller must set ->bi_destructor on successful return
  234. * of a bio, to do the appropriate freeing of the bio once the reference
  235. * count drops to zero.
  236. **/
  237. struct bio *bio_alloc_bioset(gfp_t gfp_mask, int nr_iovecs, struct bio_set *bs)
  238. {
  239. unsigned long idx = BIO_POOL_NONE;
  240. struct bio_vec *bvl = NULL;
  241. struct bio *bio;
  242. void *p;
  243. p = mempool_alloc(bs->bio_pool, gfp_mask);
  244. if (unlikely(!p))
  245. return NULL;
  246. bio = p + bs->front_pad;
  247. bio_init(bio);
  248. if (unlikely(!nr_iovecs))
  249. goto out_set;
  250. if (nr_iovecs <= BIO_INLINE_VECS) {
  251. bvl = bio->bi_inline_vecs;
  252. nr_iovecs = BIO_INLINE_VECS;
  253. } else {
  254. bvl = bvec_alloc_bs(gfp_mask, nr_iovecs, &idx, bs);
  255. if (unlikely(!bvl))
  256. goto err_free;
  257. nr_iovecs = bvec_nr_vecs(idx);
  258. }
  259. out_set:
  260. bio->bi_flags |= idx << BIO_POOL_OFFSET;
  261. bio->bi_max_vecs = nr_iovecs;
  262. bio->bi_io_vec = bvl;
  263. return bio;
  264. err_free:
  265. mempool_free(p, bs->bio_pool);
  266. return NULL;
  267. }
  268. EXPORT_SYMBOL(bio_alloc_bioset);
  269. static void bio_fs_destructor(struct bio *bio)
  270. {
  271. bio_free(bio, fs_bio_set);
  272. }
  273. /**
  274. * bio_alloc - allocate a new bio, memory pool backed
  275. * @gfp_mask: allocation mask to use
  276. * @nr_iovecs: number of iovecs
  277. *
  278. * bio_alloc will allocate a bio and associated bio_vec array that can hold
  279. * at least @nr_iovecs entries. Allocations will be done from the
  280. * fs_bio_set. Also see @bio_alloc_bioset and @bio_kmalloc.
  281. *
  282. * If %__GFP_WAIT is set, then bio_alloc will always be able to allocate
  283. * a bio. This is due to the mempool guarantees. To make this work, callers
  284. * must never allocate more than 1 bio at a time from this pool. Callers
  285. * that need to allocate more than 1 bio must always submit the previously
  286. * allocated bio for IO before attempting to allocate a new one. Failure to
  287. * do so can cause livelocks under memory pressure.
  288. *
  289. * RETURNS:
  290. * Pointer to new bio on success, NULL on failure.
  291. */
  292. struct bio *bio_alloc(gfp_t gfp_mask, unsigned int nr_iovecs)
  293. {
  294. struct bio *bio = bio_alloc_bioset(gfp_mask, nr_iovecs, fs_bio_set);
  295. if (bio)
  296. bio->bi_destructor = bio_fs_destructor;
  297. return bio;
  298. }
  299. EXPORT_SYMBOL(bio_alloc);
  300. static void bio_kmalloc_destructor(struct bio *bio)
  301. {
  302. if (bio_integrity(bio))
  303. bio_integrity_free(bio, fs_bio_set);
  304. kfree(bio);
  305. }
  306. /**
  307. * bio_kmalloc - allocate a bio for I/O using kmalloc()
  308. * @gfp_mask: the GFP_ mask given to the slab allocator
  309. * @nr_iovecs: number of iovecs to pre-allocate
  310. *
  311. * Description:
  312. * Allocate a new bio with @nr_iovecs bvecs. If @gfp_mask contains
  313. * %__GFP_WAIT, the allocation is guaranteed to succeed.
  314. *
  315. **/
  316. struct bio *bio_kmalloc(gfp_t gfp_mask, unsigned int nr_iovecs)
  317. {
  318. struct bio *bio;
  319. if (nr_iovecs > UIO_MAXIOV)
  320. return NULL;
  321. bio = kmalloc(sizeof(struct bio) + nr_iovecs * sizeof(struct bio_vec),
  322. gfp_mask);
  323. if (unlikely(!bio))
  324. return NULL;
  325. bio_init(bio);
  326. bio->bi_flags |= BIO_POOL_NONE << BIO_POOL_OFFSET;
  327. bio->bi_max_vecs = nr_iovecs;
  328. bio->bi_io_vec = bio->bi_inline_vecs;
  329. bio->bi_destructor = bio_kmalloc_destructor;
  330. return bio;
  331. }
  332. EXPORT_SYMBOL(bio_kmalloc);
  333. void zero_fill_bio(struct bio *bio)
  334. {
  335. unsigned long flags;
  336. struct bio_vec *bv;
  337. int i;
  338. bio_for_each_segment(bv, bio, i) {
  339. char *data = bvec_kmap_irq(bv, &flags);
  340. memset(data, 0, bv->bv_len);
  341. flush_dcache_page(bv->bv_page);
  342. bvec_kunmap_irq(data, &flags);
  343. }
  344. }
  345. EXPORT_SYMBOL(zero_fill_bio);
  346. /**
  347. * bio_put - release a reference to a bio
  348. * @bio: bio to release reference to
  349. *
  350. * Description:
  351. * Put a reference to a &struct bio, either one you have gotten with
  352. * bio_alloc, bio_get or bio_clone. The last put of a bio will free it.
  353. **/
  354. void bio_put(struct bio *bio)
  355. {
  356. BIO_BUG_ON(!atomic_read(&bio->bi_cnt));
  357. /*
  358. * last put frees it
  359. */
  360. if (atomic_dec_and_test(&bio->bi_cnt)) {
  361. bio->bi_next = NULL;
  362. bio->bi_destructor(bio);
  363. }
  364. }
  365. EXPORT_SYMBOL(bio_put);
  366. inline int bio_phys_segments(struct request_queue *q, struct bio *bio)
  367. {
  368. if (unlikely(!bio_flagged(bio, BIO_SEG_VALID)))
  369. blk_recount_segments(q, bio);
  370. return bio->bi_phys_segments;
  371. }
  372. EXPORT_SYMBOL(bio_phys_segments);
  373. /**
  374. * __bio_clone - clone a bio
  375. * @bio: destination bio
  376. * @bio_src: bio to clone
  377. *
  378. * Clone a &bio. Caller will own the returned bio, but not
  379. * the actual data it points to. Reference count of returned
  380. * bio will be one.
  381. */
  382. void __bio_clone(struct bio *bio, struct bio *bio_src)
  383. {
  384. memcpy(bio->bi_io_vec, bio_src->bi_io_vec,
  385. bio_src->bi_max_vecs * sizeof(struct bio_vec));
  386. /*
  387. * most users will be overriding ->bi_bdev with a new target,
  388. * so we don't set nor calculate new physical/hw segment counts here
  389. */
  390. bio->bi_sector = bio_src->bi_sector;
  391. bio->bi_bdev = bio_src->bi_bdev;
  392. bio->bi_flags |= 1 << BIO_CLONED;
  393. bio->bi_rw = bio_src->bi_rw;
  394. bio->bi_vcnt = bio_src->bi_vcnt;
  395. bio->bi_size = bio_src->bi_size;
  396. bio->bi_idx = bio_src->bi_idx;
  397. }
  398. EXPORT_SYMBOL(__bio_clone);
  399. /**
  400. * bio_clone - clone a bio
  401. * @bio: bio to clone
  402. * @gfp_mask: allocation priority
  403. *
  404. * Like __bio_clone, only also allocates the returned bio
  405. */
  406. struct bio *bio_clone(struct bio *bio, gfp_t gfp_mask)
  407. {
  408. struct bio *b = bio_alloc_bioset(gfp_mask, bio->bi_max_vecs, fs_bio_set);
  409. if (!b)
  410. return NULL;
  411. b->bi_destructor = bio_fs_destructor;
  412. __bio_clone(b, bio);
  413. if (bio_integrity(bio)) {
  414. int ret;
  415. ret = bio_integrity_clone(b, bio, gfp_mask, fs_bio_set);
  416. if (ret < 0) {
  417. bio_put(b);
  418. return NULL;
  419. }
  420. }
  421. return b;
  422. }
  423. EXPORT_SYMBOL(bio_clone);
  424. /**
  425. * bio_get_nr_vecs - return approx number of vecs
  426. * @bdev: I/O target
  427. *
  428. * Return the approximate number of pages we can send to this target.
  429. * There's no guarantee that you will be able to fit this number of pages
  430. * into a bio, it does not account for dynamic restrictions that vary
  431. * on offset.
  432. */
  433. int bio_get_nr_vecs(struct block_device *bdev)
  434. {
  435. struct request_queue *q = bdev_get_queue(bdev);
  436. return min_t(unsigned,
  437. queue_max_segments(q),
  438. queue_max_sectors(q) / (PAGE_SIZE >> 9) + 1);
  439. }
  440. EXPORT_SYMBOL(bio_get_nr_vecs);
  441. static int __bio_add_page(struct request_queue *q, struct bio *bio, struct page
  442. *page, unsigned int len, unsigned int offset,
  443. unsigned short max_sectors)
  444. {
  445. int retried_segments = 0;
  446. struct bio_vec *bvec;
  447. /*
  448. * cloned bio must not modify vec list
  449. */
  450. if (unlikely(bio_flagged(bio, BIO_CLONED)))
  451. return 0;
  452. if (((bio->bi_size + len) >> 9) > max_sectors)
  453. return 0;
  454. /*
  455. * For filesystems with a blocksize smaller than the pagesize
  456. * we will often be called with the same page as last time and
  457. * a consecutive offset. Optimize this special case.
  458. */
  459. if (bio->bi_vcnt > 0) {
  460. struct bio_vec *prev = &bio->bi_io_vec[bio->bi_vcnt - 1];
  461. if (page == prev->bv_page &&
  462. offset == prev->bv_offset + prev->bv_len) {
  463. unsigned int prev_bv_len = prev->bv_len;
  464. prev->bv_len += len;
  465. if (q->merge_bvec_fn) {
  466. struct bvec_merge_data bvm = {
  467. /* prev_bvec is already charged in
  468. bi_size, discharge it in order to
  469. simulate merging updated prev_bvec
  470. as new bvec. */
  471. .bi_bdev = bio->bi_bdev,
  472. .bi_sector = bio->bi_sector,
  473. .bi_size = bio->bi_size - prev_bv_len,
  474. .bi_rw = bio->bi_rw,
  475. };
  476. if (q->merge_bvec_fn(q, &bvm, prev) < prev->bv_len) {
  477. prev->bv_len -= len;
  478. return 0;
  479. }
  480. }
  481. goto done;
  482. }
  483. }
  484. if (bio->bi_vcnt >= bio->bi_max_vecs)
  485. return 0;
  486. /*
  487. * we might lose a segment or two here, but rather that than
  488. * make this too complex.
  489. */
  490. while (bio->bi_phys_segments >= queue_max_segments(q)) {
  491. if (retried_segments)
  492. return 0;
  493. retried_segments = 1;
  494. blk_recount_segments(q, bio);
  495. }
  496. /*
  497. * setup the new entry, we might clear it again later if we
  498. * cannot add the page
  499. */
  500. bvec = &bio->bi_io_vec[bio->bi_vcnt];
  501. bvec->bv_page = page;
  502. bvec->bv_len = len;
  503. bvec->bv_offset = offset;
  504. /*
  505. * if queue has other restrictions (eg varying max sector size
  506. * depending on offset), it can specify a merge_bvec_fn in the
  507. * queue to get further control
  508. */
  509. if (q->merge_bvec_fn) {
  510. struct bvec_merge_data bvm = {
  511. .bi_bdev = bio->bi_bdev,
  512. .bi_sector = bio->bi_sector,
  513. .bi_size = bio->bi_size,
  514. .bi_rw = bio->bi_rw,
  515. };
  516. /*
  517. * merge_bvec_fn() returns number of bytes it can accept
  518. * at this offset
  519. */
  520. if (q->merge_bvec_fn(q, &bvm, bvec) < bvec->bv_len) {
  521. bvec->bv_page = NULL;
  522. bvec->bv_len = 0;
  523. bvec->bv_offset = 0;
  524. return 0;
  525. }
  526. }
  527. /* If we may be able to merge these biovecs, force a recount */
  528. if (bio->bi_vcnt && (BIOVEC_PHYS_MERGEABLE(bvec-1, bvec)))
  529. bio->bi_flags &= ~(1 << BIO_SEG_VALID);
  530. bio->bi_vcnt++;
  531. bio->bi_phys_segments++;
  532. done:
  533. bio->bi_size += len;
  534. return len;
  535. }
  536. /**
  537. * bio_add_pc_page - attempt to add page to bio
  538. * @q: the target queue
  539. * @bio: destination bio
  540. * @page: page to add
  541. * @len: vec entry length
  542. * @offset: vec entry offset
  543. *
  544. * Attempt to add a page to the bio_vec maplist. This can fail for a
  545. * number of reasons, such as the bio being full or target block device
  546. * limitations. The target block device must allow bio's up to PAGE_SIZE,
  547. * so it is always possible to add a single page to an empty bio.
  548. *
  549. * This should only be used by REQ_PC bios.
  550. */
  551. int bio_add_pc_page(struct request_queue *q, struct bio *bio, struct page *page,
  552. unsigned int len, unsigned int offset)
  553. {
  554. return __bio_add_page(q, bio, page, len, offset,
  555. queue_max_hw_sectors(q));
  556. }
  557. EXPORT_SYMBOL(bio_add_pc_page);
  558. /**
  559. * bio_add_page - attempt to add page to bio
  560. * @bio: destination bio
  561. * @page: page to add
  562. * @len: vec entry length
  563. * @offset: vec entry offset
  564. *
  565. * Attempt to add a page to the bio_vec maplist. This can fail for a
  566. * number of reasons, such as the bio being full or target block device
  567. * limitations. The target block device must allow bio's up to PAGE_SIZE,
  568. * so it is always possible to add a single page to an empty bio.
  569. */
  570. int bio_add_page(struct bio *bio, struct page *page, unsigned int len,
  571. unsigned int offset)
  572. {
  573. struct request_queue *q = bdev_get_queue(bio->bi_bdev);
  574. return __bio_add_page(q, bio, page, len, offset, queue_max_sectors(q));
  575. }
  576. EXPORT_SYMBOL(bio_add_page);
  577. struct bio_map_data {
  578. struct bio_vec *iovecs;
  579. struct sg_iovec *sgvecs;
  580. int nr_sgvecs;
  581. int is_our_pages;
  582. };
  583. static void bio_set_map_data(struct bio_map_data *bmd, struct bio *bio,
  584. struct sg_iovec *iov, int iov_count,
  585. int is_our_pages)
  586. {
  587. memcpy(bmd->iovecs, bio->bi_io_vec, sizeof(struct bio_vec) * bio->bi_vcnt);
  588. memcpy(bmd->sgvecs, iov, sizeof(struct sg_iovec) * iov_count);
  589. bmd->nr_sgvecs = iov_count;
  590. bmd->is_our_pages = is_our_pages;
  591. bio->bi_private = bmd;
  592. }
  593. static void bio_free_map_data(struct bio_map_data *bmd)
  594. {
  595. kfree(bmd->iovecs);
  596. kfree(bmd->sgvecs);
  597. kfree(bmd);
  598. }
  599. static struct bio_map_data *bio_alloc_map_data(int nr_segs,
  600. unsigned int iov_count,
  601. gfp_t gfp_mask)
  602. {
  603. struct bio_map_data *bmd;
  604. if (iov_count > UIO_MAXIOV)
  605. return NULL;
  606. bmd = kmalloc(sizeof(*bmd), gfp_mask);
  607. if (!bmd)
  608. return NULL;
  609. bmd->iovecs = kmalloc(sizeof(struct bio_vec) * nr_segs, gfp_mask);
  610. if (!bmd->iovecs) {
  611. kfree(bmd);
  612. return NULL;
  613. }
  614. bmd->sgvecs = kmalloc(sizeof(struct sg_iovec) * iov_count, gfp_mask);
  615. if (bmd->sgvecs)
  616. return bmd;
  617. kfree(bmd->iovecs);
  618. kfree(bmd);
  619. return NULL;
  620. }
  621. static int __bio_copy_iov(struct bio *bio, struct bio_vec *iovecs,
  622. struct sg_iovec *iov, int iov_count,
  623. int to_user, int from_user, int do_free_page)
  624. {
  625. int ret = 0, i;
  626. struct bio_vec *bvec;
  627. int iov_idx = 0;
  628. unsigned int iov_off = 0;
  629. __bio_for_each_segment(bvec, bio, i, 0) {
  630. char *bv_addr = page_address(bvec->bv_page);
  631. unsigned int bv_len = iovecs[i].bv_len;
  632. while (bv_len && iov_idx < iov_count) {
  633. unsigned int bytes;
  634. char __user *iov_addr;
  635. bytes = min_t(unsigned int,
  636. iov[iov_idx].iov_len - iov_off, bv_len);
  637. iov_addr = iov[iov_idx].iov_base + iov_off;
  638. if (!ret) {
  639. if (to_user)
  640. ret = copy_to_user(iov_addr, bv_addr,
  641. bytes);
  642. if (from_user)
  643. ret = copy_from_user(bv_addr, iov_addr,
  644. bytes);
  645. if (ret)
  646. ret = -EFAULT;
  647. }
  648. bv_len -= bytes;
  649. bv_addr += bytes;
  650. iov_addr += bytes;
  651. iov_off += bytes;
  652. if (iov[iov_idx].iov_len == iov_off) {
  653. iov_idx++;
  654. iov_off = 0;
  655. }
  656. }
  657. if (do_free_page)
  658. __free_page(bvec->bv_page);
  659. }
  660. return ret;
  661. }
  662. /**
  663. * bio_uncopy_user - finish previously mapped bio
  664. * @bio: bio being terminated
  665. *
  666. * Free pages allocated from bio_copy_user() and write back data
  667. * to user space in case of a read.
  668. */
  669. int bio_uncopy_user(struct bio *bio)
  670. {
  671. struct bio_map_data *bmd = bio->bi_private;
  672. int ret = 0;
  673. if (!bio_flagged(bio, BIO_NULL_MAPPED))
  674. ret = __bio_copy_iov(bio, bmd->iovecs, bmd->sgvecs,
  675. bmd->nr_sgvecs, bio_data_dir(bio) == READ,
  676. 0, bmd->is_our_pages);
  677. bio_free_map_data(bmd);
  678. bio_put(bio);
  679. return ret;
  680. }
  681. EXPORT_SYMBOL(bio_uncopy_user);
  682. /**
  683. * bio_copy_user_iov - copy user data to bio
  684. * @q: destination block queue
  685. * @map_data: pointer to the rq_map_data holding pages (if necessary)
  686. * @iov: the iovec.
  687. * @iov_count: number of elements in the iovec
  688. * @write_to_vm: bool indicating writing to pages or not
  689. * @gfp_mask: memory allocation flags
  690. *
  691. * Prepares and returns a bio for indirect user io, bouncing data
  692. * to/from kernel pages as necessary. Must be paired with
  693. * call bio_uncopy_user() on io completion.
  694. */
  695. struct bio *bio_copy_user_iov(struct request_queue *q,
  696. struct rq_map_data *map_data,
  697. struct sg_iovec *iov, int iov_count,
  698. int write_to_vm, gfp_t gfp_mask)
  699. {
  700. struct bio_map_data *bmd;
  701. struct bio_vec *bvec;
  702. struct page *page;
  703. struct bio *bio;
  704. int i, ret;
  705. int nr_pages = 0;
  706. unsigned int len = 0;
  707. unsigned int offset = map_data ? map_data->offset & ~PAGE_MASK : 0;
  708. for (i = 0; i < iov_count; i++) {
  709. unsigned long uaddr;
  710. unsigned long end;
  711. unsigned long start;
  712. uaddr = (unsigned long)iov[i].iov_base;
  713. end = (uaddr + iov[i].iov_len + PAGE_SIZE - 1) >> PAGE_SHIFT;
  714. start = uaddr >> PAGE_SHIFT;
  715. /*
  716. * Overflow, abort
  717. */
  718. if (end < start)
  719. return ERR_PTR(-EINVAL);
  720. nr_pages += end - start;
  721. len += iov[i].iov_len;
  722. }
  723. if (offset)
  724. nr_pages++;
  725. bmd = bio_alloc_map_data(nr_pages, iov_count, gfp_mask);
  726. if (!bmd)
  727. return ERR_PTR(-ENOMEM);
  728. ret = -ENOMEM;
  729. bio = bio_kmalloc(gfp_mask, nr_pages);
  730. if (!bio)
  731. goto out_bmd;
  732. if (!write_to_vm)
  733. bio->bi_rw |= REQ_WRITE;
  734. ret = 0;
  735. if (map_data) {
  736. nr_pages = 1 << map_data->page_order;
  737. i = map_data->offset / PAGE_SIZE;
  738. }
  739. while (len) {
  740. unsigned int bytes = PAGE_SIZE;
  741. bytes -= offset;
  742. if (bytes > len)
  743. bytes = len;
  744. if (map_data) {
  745. if (i == map_data->nr_entries * nr_pages) {
  746. ret = -ENOMEM;
  747. break;
  748. }
  749. page = map_data->pages[i / nr_pages];
  750. page += (i % nr_pages);
  751. i++;
  752. } else {
  753. page = alloc_page(q->bounce_gfp | gfp_mask);
  754. if (!page) {
  755. ret = -ENOMEM;
  756. break;
  757. }
  758. }
  759. if (bio_add_pc_page(q, bio, page, bytes, offset) < bytes)
  760. break;
  761. len -= bytes;
  762. offset = 0;
  763. }
  764. if (ret)
  765. goto cleanup;
  766. /*
  767. * success
  768. */
  769. if ((!write_to_vm && (!map_data || !map_data->null_mapped)) ||
  770. (map_data && map_data->from_user)) {
  771. ret = __bio_copy_iov(bio, bio->bi_io_vec, iov, iov_count, 0, 1, 0);
  772. if (ret)
  773. goto cleanup;
  774. }
  775. bio_set_map_data(bmd, bio, iov, iov_count, map_data ? 0 : 1);
  776. return bio;
  777. cleanup:
  778. if (!map_data)
  779. bio_for_each_segment(bvec, bio, i)
  780. __free_page(bvec->bv_page);
  781. bio_put(bio);
  782. out_bmd:
  783. bio_free_map_data(bmd);
  784. return ERR_PTR(ret);
  785. }
  786. /**
  787. * bio_copy_user - copy user data to bio
  788. * @q: destination block queue
  789. * @map_data: pointer to the rq_map_data holding pages (if necessary)
  790. * @uaddr: start of user address
  791. * @len: length in bytes
  792. * @write_to_vm: bool indicating writing to pages or not
  793. * @gfp_mask: memory allocation flags
  794. *
  795. * Prepares and returns a bio for indirect user io, bouncing data
  796. * to/from kernel pages as necessary. Must be paired with
  797. * call bio_uncopy_user() on io completion.
  798. */
  799. struct bio *bio_copy_user(struct request_queue *q, struct rq_map_data *map_data,
  800. unsigned long uaddr, unsigned int len,
  801. int write_to_vm, gfp_t gfp_mask)
  802. {
  803. struct sg_iovec iov;
  804. iov.iov_base = (void __user *)uaddr;
  805. iov.iov_len = len;
  806. return bio_copy_user_iov(q, map_data, &iov, 1, write_to_vm, gfp_mask);
  807. }
  808. EXPORT_SYMBOL(bio_copy_user);
  809. static struct bio *__bio_map_user_iov(struct request_queue *q,
  810. struct block_device *bdev,
  811. struct sg_iovec *iov, int iov_count,
  812. int write_to_vm, gfp_t gfp_mask)
  813. {
  814. int i, j;
  815. int nr_pages = 0;
  816. struct page **pages;
  817. struct bio *bio;
  818. int cur_page = 0;
  819. int ret, offset;
  820. for (i = 0; i < iov_count; i++) {
  821. unsigned long uaddr = (unsigned long)iov[i].iov_base;
  822. unsigned long len = iov[i].iov_len;
  823. unsigned long end = (uaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
  824. unsigned long start = uaddr >> PAGE_SHIFT;
  825. /*
  826. * Overflow, abort
  827. */
  828. if (end < start)
  829. return ERR_PTR(-EINVAL);
  830. nr_pages += end - start;
  831. /*
  832. * buffer must be aligned to at least hardsector size for now
  833. */
  834. if (uaddr & queue_dma_alignment(q))
  835. return ERR_PTR(-EINVAL);
  836. }
  837. if (!nr_pages)
  838. return ERR_PTR(-EINVAL);
  839. bio = bio_kmalloc(gfp_mask, nr_pages);
  840. if (!bio)
  841. return ERR_PTR(-ENOMEM);
  842. ret = -ENOMEM;
  843. pages = kcalloc(nr_pages, sizeof(struct page *), gfp_mask);
  844. if (!pages)
  845. goto out;
  846. for (i = 0; i < iov_count; i++) {
  847. unsigned long uaddr = (unsigned long)iov[i].iov_base;
  848. unsigned long len = iov[i].iov_len;
  849. unsigned long end = (uaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
  850. unsigned long start = uaddr >> PAGE_SHIFT;
  851. const int local_nr_pages = end - start;
  852. const int page_limit = cur_page + local_nr_pages;
  853. ret = get_user_pages_fast(uaddr, local_nr_pages,
  854. write_to_vm, &pages[cur_page]);
  855. if (ret < local_nr_pages) {
  856. ret = -EFAULT;
  857. goto out_unmap;
  858. }
  859. offset = uaddr & ~PAGE_MASK;
  860. for (j = cur_page; j < page_limit; j++) {
  861. unsigned int bytes = PAGE_SIZE - offset;
  862. if (len <= 0)
  863. break;
  864. if (bytes > len)
  865. bytes = len;
  866. /*
  867. * sorry...
  868. */
  869. if (bio_add_pc_page(q, bio, pages[j], bytes, offset) <
  870. bytes)
  871. break;
  872. len -= bytes;
  873. offset = 0;
  874. }
  875. cur_page = j;
  876. /*
  877. * release the pages we didn't map into the bio, if any
  878. */
  879. while (j < page_limit)
  880. page_cache_release(pages[j++]);
  881. }
  882. kfree(pages);
  883. /*
  884. * set data direction, and check if mapped pages need bouncing
  885. */
  886. if (!write_to_vm)
  887. bio->bi_rw |= REQ_WRITE;
  888. bio->bi_bdev = bdev;
  889. bio->bi_flags |= (1 << BIO_USER_MAPPED);
  890. return bio;
  891. out_unmap:
  892. for (i = 0; i < nr_pages; i++) {
  893. if(!pages[i])
  894. break;
  895. page_cache_release(pages[i]);
  896. }
  897. out:
  898. kfree(pages);
  899. bio_put(bio);
  900. return ERR_PTR(ret);
  901. }
  902. /**
  903. * bio_map_user - map user address into bio
  904. * @q: the struct request_queue for the bio
  905. * @bdev: destination block device
  906. * @uaddr: start of user address
  907. * @len: length in bytes
  908. * @write_to_vm: bool indicating writing to pages or not
  909. * @gfp_mask: memory allocation flags
  910. *
  911. * Map the user space address into a bio suitable for io to a block
  912. * device. Returns an error pointer in case of error.
  913. */
  914. struct bio *bio_map_user(struct request_queue *q, struct block_device *bdev,
  915. unsigned long uaddr, unsigned int len, int write_to_vm,
  916. gfp_t gfp_mask)
  917. {
  918. struct sg_iovec iov;
  919. iov.iov_base = (void __user *)uaddr;
  920. iov.iov_len = len;
  921. return bio_map_user_iov(q, bdev, &iov, 1, write_to_vm, gfp_mask);
  922. }
  923. EXPORT_SYMBOL(bio_map_user);
  924. /**
  925. * bio_map_user_iov - map user sg_iovec table into bio
  926. * @q: the struct request_queue for the bio
  927. * @bdev: destination block device
  928. * @iov: the iovec.
  929. * @iov_count: number of elements in the iovec
  930. * @write_to_vm: bool indicating writing to pages or not
  931. * @gfp_mask: memory allocation flags
  932. *
  933. * Map the user space address into a bio suitable for io to a block
  934. * device. Returns an error pointer in case of error.
  935. */
  936. struct bio *bio_map_user_iov(struct request_queue *q, struct block_device *bdev,
  937. struct sg_iovec *iov, int iov_count,
  938. int write_to_vm, gfp_t gfp_mask)
  939. {
  940. struct bio *bio;
  941. bio = __bio_map_user_iov(q, bdev, iov, iov_count, write_to_vm,
  942. gfp_mask);
  943. if (IS_ERR(bio))
  944. return bio;
  945. /*
  946. * subtle -- if __bio_map_user() ended up bouncing a bio,
  947. * it would normally disappear when its bi_end_io is run.
  948. * however, we need it for the unmap, so grab an extra
  949. * reference to it
  950. */
  951. bio_get(bio);
  952. return bio;
  953. }
  954. static void __bio_unmap_user(struct bio *bio)
  955. {
  956. struct bio_vec *bvec;
  957. int i;
  958. /*
  959. * make sure we dirty pages we wrote to
  960. */
  961. __bio_for_each_segment(bvec, bio, i, 0) {
  962. if (bio_data_dir(bio) == READ)
  963. set_page_dirty_lock(bvec->bv_page);
  964. page_cache_release(bvec->bv_page);
  965. }
  966. bio_put(bio);
  967. }
  968. /**
  969. * bio_unmap_user - unmap a bio
  970. * @bio: the bio being unmapped
  971. *
  972. * Unmap a bio previously mapped by bio_map_user(). Must be called with
  973. * a process context.
  974. *
  975. * bio_unmap_user() may sleep.
  976. */
  977. void bio_unmap_user(struct bio *bio)
  978. {
  979. __bio_unmap_user(bio);
  980. bio_put(bio);
  981. }
  982. EXPORT_SYMBOL(bio_unmap_user);
  983. static void bio_map_kern_endio(struct bio *bio, int err)
  984. {
  985. bio_put(bio);
  986. }
  987. static struct bio *__bio_map_kern(struct request_queue *q, void *data,
  988. unsigned int len, gfp_t gfp_mask)
  989. {
  990. unsigned long kaddr = (unsigned long)data;
  991. unsigned long end = (kaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
  992. unsigned long start = kaddr >> PAGE_SHIFT;
  993. const int nr_pages = end - start;
  994. int offset, i;
  995. struct bio *bio;
  996. bio = bio_kmalloc(gfp_mask, nr_pages);
  997. if (!bio)
  998. return ERR_PTR(-ENOMEM);
  999. offset = offset_in_page(kaddr);
  1000. for (i = 0; i < nr_pages; i++) {
  1001. unsigned int bytes = PAGE_SIZE - offset;
  1002. if (len <= 0)
  1003. break;
  1004. if (bytes > len)
  1005. bytes = len;
  1006. if (bio_add_pc_page(q, bio, virt_to_page(data), bytes,
  1007. offset) < bytes)
  1008. break;
  1009. data += bytes;
  1010. len -= bytes;
  1011. offset = 0;
  1012. }
  1013. bio->bi_end_io = bio_map_kern_endio;
  1014. return bio;
  1015. }
  1016. /**
  1017. * bio_map_kern - map kernel address into bio
  1018. * @q: the struct request_queue for the bio
  1019. * @data: pointer to buffer to map
  1020. * @len: length in bytes
  1021. * @gfp_mask: allocation flags for bio allocation
  1022. *
  1023. * Map the kernel address into a bio suitable for io to a block
  1024. * device. Returns an error pointer in case of error.
  1025. */
  1026. struct bio *bio_map_kern(struct request_queue *q, void *data, unsigned int len,
  1027. gfp_t gfp_mask)
  1028. {
  1029. struct bio *bio;
  1030. bio = __bio_map_kern(q, data, len, gfp_mask);
  1031. if (IS_ERR(bio))
  1032. return bio;
  1033. if (bio->bi_size == len)
  1034. return bio;
  1035. /*
  1036. * Don't support partial mappings.
  1037. */
  1038. bio_put(bio);
  1039. return ERR_PTR(-EINVAL);
  1040. }
  1041. EXPORT_SYMBOL(bio_map_kern);
  1042. static void bio_copy_kern_endio(struct bio *bio, int err)
  1043. {
  1044. struct bio_vec *bvec;
  1045. const int read = bio_data_dir(bio) == READ;
  1046. struct bio_map_data *bmd = bio->bi_private;
  1047. int i;
  1048. char *p = bmd->sgvecs[0].iov_base;
  1049. __bio_for_each_segment(bvec, bio, i, 0) {
  1050. char *addr = page_address(bvec->bv_page);
  1051. int len = bmd->iovecs[i].bv_len;
  1052. if (read)
  1053. memcpy(p, addr, len);
  1054. __free_page(bvec->bv_page);
  1055. p += len;
  1056. }
  1057. bio_free_map_data(bmd);
  1058. bio_put(bio);
  1059. }
  1060. /**
  1061. * bio_copy_kern - copy kernel address into bio
  1062. * @q: the struct request_queue for the bio
  1063. * @data: pointer to buffer to copy
  1064. * @len: length in bytes
  1065. * @gfp_mask: allocation flags for bio and page allocation
  1066. * @reading: data direction is READ
  1067. *
  1068. * copy the kernel address into a bio suitable for io to a block
  1069. * device. Returns an error pointer in case of error.
  1070. */
  1071. struct bio *bio_copy_kern(struct request_queue *q, void *data, unsigned int len,
  1072. gfp_t gfp_mask, int reading)
  1073. {
  1074. struct bio *bio;
  1075. struct bio_vec *bvec;
  1076. int i;
  1077. bio = bio_copy_user(q, NULL, (unsigned long)data, len, 1, gfp_mask);
  1078. if (IS_ERR(bio))
  1079. return bio;
  1080. if (!reading) {
  1081. void *p = data;
  1082. bio_for_each_segment(bvec, bio, i) {
  1083. char *addr = page_address(bvec->bv_page);
  1084. memcpy(addr, p, bvec->bv_len);
  1085. p += bvec->bv_len;
  1086. }
  1087. }
  1088. bio->bi_end_io = bio_copy_kern_endio;
  1089. return bio;
  1090. }
  1091. EXPORT_SYMBOL(bio_copy_kern);
  1092. /*
  1093. * bio_set_pages_dirty() and bio_check_pages_dirty() are support functions
  1094. * for performing direct-IO in BIOs.
  1095. *
  1096. * The problem is that we cannot run set_page_dirty() from interrupt context
  1097. * because the required locks are not interrupt-safe. So what we can do is to
  1098. * mark the pages dirty _before_ performing IO. And in interrupt context,
  1099. * check that the pages are still dirty. If so, fine. If not, redirty them
  1100. * in process context.
  1101. *
  1102. * We special-case compound pages here: normally this means reads into hugetlb
  1103. * pages. The logic in here doesn't really work right for compound pages
  1104. * because the VM does not uniformly chase down the head page in all cases.
  1105. * But dirtiness of compound pages is pretty meaningless anyway: the VM doesn't
  1106. * handle them at all. So we skip compound pages here at an early stage.
  1107. *
  1108. * Note that this code is very hard to test under normal circumstances because
  1109. * direct-io pins the pages with get_user_pages(). This makes
  1110. * is_page_cache_freeable return false, and the VM will not clean the pages.
  1111. * But other code (eg, pdflush) could clean the pages if they are mapped
  1112. * pagecache.
  1113. *
  1114. * Simply disabling the call to bio_set_pages_dirty() is a good way to test the
  1115. * deferred bio dirtying paths.
  1116. */
  1117. /*
  1118. * bio_set_pages_dirty() will mark all the bio's pages as dirty.
  1119. */
  1120. void bio_set_pages_dirty(struct bio *bio)
  1121. {
  1122. struct bio_vec *bvec = bio->bi_io_vec;
  1123. int i;
  1124. for (i = 0; i < bio->bi_vcnt; i++) {
  1125. struct page *page = bvec[i].bv_page;
  1126. if (page && !PageCompound(page))
  1127. set_page_dirty_lock(page);
  1128. }
  1129. }
  1130. static void bio_release_pages(struct bio *bio)
  1131. {
  1132. struct bio_vec *bvec = bio->bi_io_vec;
  1133. int i;
  1134. for (i = 0; i < bio->bi_vcnt; i++) {
  1135. struct page *page = bvec[i].bv_page;
  1136. if (page)
  1137. put_page(page);
  1138. }
  1139. }
  1140. /*
  1141. * bio_check_pages_dirty() will check that all the BIO's pages are still dirty.
  1142. * If they are, then fine. If, however, some pages are clean then they must
  1143. * have been written out during the direct-IO read. So we take another ref on
  1144. * the BIO and the offending pages and re-dirty the pages in process context.
  1145. *
  1146. * It is expected that bio_check_pages_dirty() will wholly own the BIO from
  1147. * here on. It will run one page_cache_release() against each page and will
  1148. * run one bio_put() against the BIO.
  1149. */
  1150. static void bio_dirty_fn(struct work_struct *work);
  1151. static DECLARE_WORK(bio_dirty_work, bio_dirty_fn);
  1152. static DEFINE_SPINLOCK(bio_dirty_lock);
  1153. static struct bio *bio_dirty_list;
  1154. /*
  1155. * This runs in process context
  1156. */
  1157. static void bio_dirty_fn(struct work_struct *work)
  1158. {
  1159. unsigned long flags;
  1160. struct bio *bio;
  1161. spin_lock_irqsave(&bio_dirty_lock, flags);
  1162. bio = bio_dirty_list;
  1163. bio_dirty_list = NULL;
  1164. spin_unlock_irqrestore(&bio_dirty_lock, flags);
  1165. while (bio) {
  1166. struct bio *next = bio->bi_private;
  1167. bio_set_pages_dirty(bio);
  1168. bio_release_pages(bio);
  1169. bio_put(bio);
  1170. bio = next;
  1171. }
  1172. }
  1173. void bio_check_pages_dirty(struct bio *bio)
  1174. {
  1175. struct bio_vec *bvec = bio->bi_io_vec;
  1176. int nr_clean_pages = 0;
  1177. int i;
  1178. for (i = 0; i < bio->bi_vcnt; i++) {
  1179. struct page *page = bvec[i].bv_page;
  1180. if (PageDirty(page) || PageCompound(page)) {
  1181. page_cache_release(page);
  1182. bvec[i].bv_page = NULL;
  1183. } else {
  1184. nr_clean_pages++;
  1185. }
  1186. }
  1187. if (nr_clean_pages) {
  1188. unsigned long flags;
  1189. spin_lock_irqsave(&bio_dirty_lock, flags);
  1190. bio->bi_private = bio_dirty_list;
  1191. bio_dirty_list = bio;
  1192. spin_unlock_irqrestore(&bio_dirty_lock, flags);
  1193. schedule_work(&bio_dirty_work);
  1194. } else {
  1195. bio_put(bio);
  1196. }
  1197. }
  1198. #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
  1199. void bio_flush_dcache_pages(struct bio *bi)
  1200. {
  1201. int i;
  1202. struct bio_vec *bvec;
  1203. bio_for_each_segment(bvec, bi, i)
  1204. flush_dcache_page(bvec->bv_page);
  1205. }
  1206. EXPORT_SYMBOL(bio_flush_dcache_pages);
  1207. #endif
  1208. /**
  1209. * bio_endio - end I/O on a bio
  1210. * @bio: bio
  1211. * @error: error, if any
  1212. *
  1213. * Description:
  1214. * bio_endio() will end I/O on the whole bio. bio_endio() is the
  1215. * preferred way to end I/O on a bio, it takes care of clearing
  1216. * BIO_UPTODATE on error. @error is 0 on success, and and one of the
  1217. * established -Exxxx (-EIO, for instance) error values in case
  1218. * something went wrong. No one should call bi_end_io() directly on a
  1219. * bio unless they own it and thus know that it has an end_io
  1220. * function.
  1221. **/
  1222. void bio_endio(struct bio *bio, int error)
  1223. {
  1224. if (error)
  1225. clear_bit(BIO_UPTODATE, &bio->bi_flags);
  1226. else if (!test_bit(BIO_UPTODATE, &bio->bi_flags))
  1227. error = -EIO;
  1228. if (bio->bi_end_io)
  1229. bio->bi_end_io(bio, error);
  1230. }
  1231. EXPORT_SYMBOL(bio_endio);
  1232. void bio_pair_release(struct bio_pair *bp)
  1233. {
  1234. if (atomic_dec_and_test(&bp->cnt)) {
  1235. struct bio *master = bp->bio1.bi_private;
  1236. bio_endio(master, bp->error);
  1237. mempool_free(bp, bp->bio2.bi_private);
  1238. }
  1239. }
  1240. EXPORT_SYMBOL(bio_pair_release);
  1241. static void bio_pair_end_1(struct bio *bi, int err)
  1242. {
  1243. struct bio_pair *bp = container_of(bi, struct bio_pair, bio1);
  1244. if (err)
  1245. bp->error = err;
  1246. bio_pair_release(bp);
  1247. }
  1248. static void bio_pair_end_2(struct bio *bi, int err)
  1249. {
  1250. struct bio_pair *bp = container_of(bi, struct bio_pair, bio2);
  1251. if (err)
  1252. bp->error = err;
  1253. bio_pair_release(bp);
  1254. }
  1255. /*
  1256. * split a bio - only worry about a bio with a single page in its iovec
  1257. */
  1258. struct bio_pair *bio_split(struct bio *bi, int first_sectors)
  1259. {
  1260. struct bio_pair *bp = mempool_alloc(bio_split_pool, GFP_NOIO);
  1261. if (!bp)
  1262. return bp;
  1263. trace_block_split(bdev_get_queue(bi->bi_bdev), bi,
  1264. bi->bi_sector + first_sectors);
  1265. BUG_ON(bi->bi_vcnt != 1);
  1266. BUG_ON(bi->bi_idx != 0);
  1267. atomic_set(&bp->cnt, 3);
  1268. bp->error = 0;
  1269. bp->bio1 = *bi;
  1270. bp->bio2 = *bi;
  1271. bp->bio2.bi_sector += first_sectors;
  1272. bp->bio2.bi_size -= first_sectors << 9;
  1273. bp->bio1.bi_size = first_sectors << 9;
  1274. bp->bv1 = bi->bi_io_vec[0];
  1275. bp->bv2 = bi->bi_io_vec[0];
  1276. bp->bv2.bv_offset += first_sectors << 9;
  1277. bp->bv2.bv_len -= first_sectors << 9;
  1278. bp->bv1.bv_len = first_sectors << 9;
  1279. bp->bio1.bi_io_vec = &bp->bv1;
  1280. bp->bio2.bi_io_vec = &bp->bv2;
  1281. bp->bio1.bi_max_vecs = 1;
  1282. bp->bio2.bi_max_vecs = 1;
  1283. bp->bio1.bi_end_io = bio_pair_end_1;
  1284. bp->bio2.bi_end_io = bio_pair_end_2;
  1285. bp->bio1.bi_private = bi;
  1286. bp->bio2.bi_private = bio_split_pool;
  1287. if (bio_integrity(bi))
  1288. bio_integrity_split(bi, bp, first_sectors);
  1289. return bp;
  1290. }
  1291. EXPORT_SYMBOL(bio_split);
  1292. /**
  1293. * bio_sector_offset - Find hardware sector offset in bio
  1294. * @bio: bio to inspect
  1295. * @index: bio_vec index
  1296. * @offset: offset in bv_page
  1297. *
  1298. * Return the number of hardware sectors between beginning of bio
  1299. * and an end point indicated by a bio_vec index and an offset
  1300. * within that vector's page.
  1301. */
  1302. sector_t bio_sector_offset(struct bio *bio, unsigned short index,
  1303. unsigned int offset)
  1304. {
  1305. unsigned int sector_sz;
  1306. struct bio_vec *bv;
  1307. sector_t sectors;
  1308. int i;
  1309. sector_sz = queue_logical_block_size(bio->bi_bdev->bd_disk->queue);
  1310. sectors = 0;
  1311. if (index >= bio->bi_idx)
  1312. index = bio->bi_vcnt - 1;
  1313. __bio_for_each_segment(bv, bio, i, 0) {
  1314. if (i == index) {
  1315. if (offset > bv->bv_offset)
  1316. sectors += (offset - bv->bv_offset) / sector_sz;
  1317. break;
  1318. }
  1319. sectors += bv->bv_len / sector_sz;
  1320. }
  1321. return sectors;
  1322. }
  1323. EXPORT_SYMBOL(bio_sector_offset);
  1324. /*
  1325. * create memory pools for biovec's in a bio_set.
  1326. * use the global biovec slabs created for general use.
  1327. */
  1328. static int biovec_create_pools(struct bio_set *bs, int pool_entries)
  1329. {
  1330. struct biovec_slab *bp = bvec_slabs + BIOVEC_MAX_IDX;
  1331. bs->bvec_pool = mempool_create_slab_pool(pool_entries, bp->slab);
  1332. if (!bs->bvec_pool)
  1333. return -ENOMEM;
  1334. return 0;
  1335. }
  1336. static void biovec_free_pools(struct bio_set *bs)
  1337. {
  1338. mempool_destroy(bs->bvec_pool);
  1339. }
  1340. void bioset_free(struct bio_set *bs)
  1341. {
  1342. if (bs->bio_pool)
  1343. mempool_destroy(bs->bio_pool);
  1344. bioset_integrity_free(bs);
  1345. biovec_free_pools(bs);
  1346. bio_put_slab(bs);
  1347. kfree(bs);
  1348. }
  1349. EXPORT_SYMBOL(bioset_free);
  1350. /**
  1351. * bioset_create - Create a bio_set
  1352. * @pool_size: Number of bio and bio_vecs to cache in the mempool
  1353. * @front_pad: Number of bytes to allocate in front of the returned bio
  1354. *
  1355. * Description:
  1356. * Set up a bio_set to be used with @bio_alloc_bioset. Allows the caller
  1357. * to ask for a number of bytes to be allocated in front of the bio.
  1358. * Front pad allocation is useful for embedding the bio inside
  1359. * another structure, to avoid allocating extra data to go with the bio.
  1360. * Note that the bio must be embedded at the END of that structure always,
  1361. * or things will break badly.
  1362. */
  1363. struct bio_set *bioset_create(unsigned int pool_size, unsigned int front_pad)
  1364. {
  1365. unsigned int back_pad = BIO_INLINE_VECS * sizeof(struct bio_vec);
  1366. struct bio_set *bs;
  1367. bs = kzalloc(sizeof(*bs), GFP_KERNEL);
  1368. if (!bs)
  1369. return NULL;
  1370. bs->front_pad = front_pad;
  1371. bs->bio_slab = bio_find_or_create_slab(front_pad + back_pad);
  1372. if (!bs->bio_slab) {
  1373. kfree(bs);
  1374. return NULL;
  1375. }
  1376. bs->bio_pool = mempool_create_slab_pool(pool_size, bs->bio_slab);
  1377. if (!bs->bio_pool)
  1378. goto bad;
  1379. if (!biovec_create_pools(bs, pool_size))
  1380. return bs;
  1381. bad:
  1382. bioset_free(bs);
  1383. return NULL;
  1384. }
  1385. EXPORT_SYMBOL(bioset_create);
  1386. static void __init biovec_init_slabs(void)
  1387. {
  1388. int i;
  1389. for (i = 0; i < BIOVEC_NR_POOLS; i++) {
  1390. int size;
  1391. struct biovec_slab *bvs = bvec_slabs + i;
  1392. if (bvs->nr_vecs <= BIO_INLINE_VECS) {
  1393. bvs->slab = NULL;
  1394. continue;
  1395. }
  1396. size = bvs->nr_vecs * sizeof(struct bio_vec);
  1397. bvs->slab = kmem_cache_create(bvs->name, size, 0,
  1398. SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
  1399. }
  1400. }
  1401. static int __init init_bio(void)
  1402. {
  1403. bio_slab_max = 2;
  1404. bio_slab_nr = 0;
  1405. bio_slabs = kzalloc(bio_slab_max * sizeof(struct bio_slab), GFP_KERNEL);
  1406. if (!bio_slabs)
  1407. panic("bio: can't allocate bios\n");
  1408. bio_integrity_init();
  1409. biovec_init_slabs();
  1410. fs_bio_set = bioset_create(BIO_POOL_SIZE, 0);
  1411. if (!fs_bio_set)
  1412. panic("bio: can't allocate bios\n");
  1413. if (bioset_integrity_create(fs_bio_set, BIO_POOL_SIZE))
  1414. panic("bio: can't create integrity pool\n");
  1415. bio_split_pool = mempool_create_kmalloc_pool(BIO_SPLIT_ENTRIES,
  1416. sizeof(struct bio_pair));
  1417. if (!bio_split_pool)
  1418. panic("bio: can't create split pool\n");
  1419. return 0;
  1420. }
  1421. subsys_initcall(init_bio);