pch_udc.c 90 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310
  1. /*
  2. * Copyright (C) 2011 LAPIS Semiconductor Co., Ltd.
  3. *
  4. * This program is free software; you can redistribute it and/or modify
  5. * it under the terms of the GNU General Public License as published by
  6. * the Free Software Foundation; version 2 of the License.
  7. */
  8. #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  9. #include <linux/kernel.h>
  10. #include <linux/module.h>
  11. #include <linux/pci.h>
  12. #include <linux/delay.h>
  13. #include <linux/errno.h>
  14. #include <linux/list.h>
  15. #include <linux/interrupt.h>
  16. #include <linux/usb/ch9.h>
  17. #include <linux/usb/gadget.h>
  18. #include <linux/gpio.h>
  19. #include <linux/irq.h>
  20. /* GPIO port for VBUS detecting */
  21. static int vbus_gpio_port = -1; /* GPIO port number (-1:Not used) */
  22. #define PCH_VBUS_PERIOD 3000 /* VBUS polling period (msec) */
  23. #define PCH_VBUS_INTERVAL 10 /* VBUS polling interval (msec) */
  24. /* Address offset of Registers */
  25. #define UDC_EP_REG_SHIFT 0x20 /* Offset to next EP */
  26. #define UDC_EPCTL_ADDR 0x00 /* Endpoint control */
  27. #define UDC_EPSTS_ADDR 0x04 /* Endpoint status */
  28. #define UDC_BUFIN_FRAMENUM_ADDR 0x08 /* buffer size in / frame number out */
  29. #define UDC_BUFOUT_MAXPKT_ADDR 0x0C /* buffer size out / maxpkt in */
  30. #define UDC_SUBPTR_ADDR 0x10 /* setup buffer pointer */
  31. #define UDC_DESPTR_ADDR 0x14 /* Data descriptor pointer */
  32. #define UDC_CONFIRM_ADDR 0x18 /* Write/Read confirmation */
  33. #define UDC_DEVCFG_ADDR 0x400 /* Device configuration */
  34. #define UDC_DEVCTL_ADDR 0x404 /* Device control */
  35. #define UDC_DEVSTS_ADDR 0x408 /* Device status */
  36. #define UDC_DEVIRQSTS_ADDR 0x40C /* Device irq status */
  37. #define UDC_DEVIRQMSK_ADDR 0x410 /* Device irq mask */
  38. #define UDC_EPIRQSTS_ADDR 0x414 /* Endpoint irq status */
  39. #define UDC_EPIRQMSK_ADDR 0x418 /* Endpoint irq mask */
  40. #define UDC_DEVLPM_ADDR 0x41C /* LPM control / status */
  41. #define UDC_CSR_BUSY_ADDR 0x4f0 /* UDC_CSR_BUSY Status register */
  42. #define UDC_SRST_ADDR 0x4fc /* SOFT RESET register */
  43. #define UDC_CSR_ADDR 0x500 /* USB_DEVICE endpoint register */
  44. /* Endpoint control register */
  45. /* Bit position */
  46. #define UDC_EPCTL_MRXFLUSH (1 << 12)
  47. #define UDC_EPCTL_RRDY (1 << 9)
  48. #define UDC_EPCTL_CNAK (1 << 8)
  49. #define UDC_EPCTL_SNAK (1 << 7)
  50. #define UDC_EPCTL_NAK (1 << 6)
  51. #define UDC_EPCTL_P (1 << 3)
  52. #define UDC_EPCTL_F (1 << 1)
  53. #define UDC_EPCTL_S (1 << 0)
  54. #define UDC_EPCTL_ET_SHIFT 4
  55. /* Mask patern */
  56. #define UDC_EPCTL_ET_MASK 0x00000030
  57. /* Value for ET field */
  58. #define UDC_EPCTL_ET_CONTROL 0
  59. #define UDC_EPCTL_ET_ISO 1
  60. #define UDC_EPCTL_ET_BULK 2
  61. #define UDC_EPCTL_ET_INTERRUPT 3
  62. /* Endpoint status register */
  63. /* Bit position */
  64. #define UDC_EPSTS_XFERDONE (1 << 27)
  65. #define UDC_EPSTS_RSS (1 << 26)
  66. #define UDC_EPSTS_RCS (1 << 25)
  67. #define UDC_EPSTS_TXEMPTY (1 << 24)
  68. #define UDC_EPSTS_TDC (1 << 10)
  69. #define UDC_EPSTS_HE (1 << 9)
  70. #define UDC_EPSTS_MRXFIFO_EMP (1 << 8)
  71. #define UDC_EPSTS_BNA (1 << 7)
  72. #define UDC_EPSTS_IN (1 << 6)
  73. #define UDC_EPSTS_OUT_SHIFT 4
  74. /* Mask patern */
  75. #define UDC_EPSTS_OUT_MASK 0x00000030
  76. #define UDC_EPSTS_ALL_CLR_MASK 0x1F0006F0
  77. /* Value for OUT field */
  78. #define UDC_EPSTS_OUT_SETUP 2
  79. #define UDC_EPSTS_OUT_DATA 1
  80. /* Device configuration register */
  81. /* Bit position */
  82. #define UDC_DEVCFG_CSR_PRG (1 << 17)
  83. #define UDC_DEVCFG_SP (1 << 3)
  84. /* SPD Valee */
  85. #define UDC_DEVCFG_SPD_HS 0x0
  86. #define UDC_DEVCFG_SPD_FS 0x1
  87. #define UDC_DEVCFG_SPD_LS 0x2
  88. /* Device control register */
  89. /* Bit position */
  90. #define UDC_DEVCTL_THLEN_SHIFT 24
  91. #define UDC_DEVCTL_BRLEN_SHIFT 16
  92. #define UDC_DEVCTL_CSR_DONE (1 << 13)
  93. #define UDC_DEVCTL_SD (1 << 10)
  94. #define UDC_DEVCTL_MODE (1 << 9)
  95. #define UDC_DEVCTL_BREN (1 << 8)
  96. #define UDC_DEVCTL_THE (1 << 7)
  97. #define UDC_DEVCTL_DU (1 << 4)
  98. #define UDC_DEVCTL_TDE (1 << 3)
  99. #define UDC_DEVCTL_RDE (1 << 2)
  100. #define UDC_DEVCTL_RES (1 << 0)
  101. /* Device status register */
  102. /* Bit position */
  103. #define UDC_DEVSTS_TS_SHIFT 18
  104. #define UDC_DEVSTS_ENUM_SPEED_SHIFT 13
  105. #define UDC_DEVSTS_ALT_SHIFT 8
  106. #define UDC_DEVSTS_INTF_SHIFT 4
  107. #define UDC_DEVSTS_CFG_SHIFT 0
  108. /* Mask patern */
  109. #define UDC_DEVSTS_TS_MASK 0xfffc0000
  110. #define UDC_DEVSTS_ENUM_SPEED_MASK 0x00006000
  111. #define UDC_DEVSTS_ALT_MASK 0x00000f00
  112. #define UDC_DEVSTS_INTF_MASK 0x000000f0
  113. #define UDC_DEVSTS_CFG_MASK 0x0000000f
  114. /* value for maximum speed for SPEED field */
  115. #define UDC_DEVSTS_ENUM_SPEED_FULL 1
  116. #define UDC_DEVSTS_ENUM_SPEED_HIGH 0
  117. #define UDC_DEVSTS_ENUM_SPEED_LOW 2
  118. #define UDC_DEVSTS_ENUM_SPEED_FULLX 3
  119. /* Device irq register */
  120. /* Bit position */
  121. #define UDC_DEVINT_RWKP (1 << 7)
  122. #define UDC_DEVINT_ENUM (1 << 6)
  123. #define UDC_DEVINT_SOF (1 << 5)
  124. #define UDC_DEVINT_US (1 << 4)
  125. #define UDC_DEVINT_UR (1 << 3)
  126. #define UDC_DEVINT_ES (1 << 2)
  127. #define UDC_DEVINT_SI (1 << 1)
  128. #define UDC_DEVINT_SC (1 << 0)
  129. /* Mask patern */
  130. #define UDC_DEVINT_MSK 0x7f
  131. /* Endpoint irq register */
  132. /* Bit position */
  133. #define UDC_EPINT_IN_SHIFT 0
  134. #define UDC_EPINT_OUT_SHIFT 16
  135. #define UDC_EPINT_IN_EP0 (1 << 0)
  136. #define UDC_EPINT_OUT_EP0 (1 << 16)
  137. /* Mask patern */
  138. #define UDC_EPINT_MSK_DISABLE_ALL 0xffffffff
  139. /* UDC_CSR_BUSY Status register */
  140. /* Bit position */
  141. #define UDC_CSR_BUSY (1 << 0)
  142. /* SOFT RESET register */
  143. /* Bit position */
  144. #define UDC_PSRST (1 << 1)
  145. #define UDC_SRST (1 << 0)
  146. /* USB_DEVICE endpoint register */
  147. /* Bit position */
  148. #define UDC_CSR_NE_NUM_SHIFT 0
  149. #define UDC_CSR_NE_DIR_SHIFT 4
  150. #define UDC_CSR_NE_TYPE_SHIFT 5
  151. #define UDC_CSR_NE_CFG_SHIFT 7
  152. #define UDC_CSR_NE_INTF_SHIFT 11
  153. #define UDC_CSR_NE_ALT_SHIFT 15
  154. #define UDC_CSR_NE_MAX_PKT_SHIFT 19
  155. /* Mask patern */
  156. #define UDC_CSR_NE_NUM_MASK 0x0000000f
  157. #define UDC_CSR_NE_DIR_MASK 0x00000010
  158. #define UDC_CSR_NE_TYPE_MASK 0x00000060
  159. #define UDC_CSR_NE_CFG_MASK 0x00000780
  160. #define UDC_CSR_NE_INTF_MASK 0x00007800
  161. #define UDC_CSR_NE_ALT_MASK 0x00078000
  162. #define UDC_CSR_NE_MAX_PKT_MASK 0x3ff80000
  163. #define PCH_UDC_CSR(ep) (UDC_CSR_ADDR + ep*4)
  164. #define PCH_UDC_EPINT(in, num)\
  165. (1 << (num + (in ? UDC_EPINT_IN_SHIFT : UDC_EPINT_OUT_SHIFT)))
  166. /* Index of endpoint */
  167. #define UDC_EP0IN_IDX 0
  168. #define UDC_EP0OUT_IDX 1
  169. #define UDC_EPIN_IDX(ep) (ep * 2)
  170. #define UDC_EPOUT_IDX(ep) (ep * 2 + 1)
  171. #define PCH_UDC_EP0 0
  172. #define PCH_UDC_EP1 1
  173. #define PCH_UDC_EP2 2
  174. #define PCH_UDC_EP3 3
  175. /* Number of endpoint */
  176. #define PCH_UDC_EP_NUM 32 /* Total number of EPs (16 IN,16 OUT) */
  177. #define PCH_UDC_USED_EP_NUM 4 /* EP number of EP's really used */
  178. /* Length Value */
  179. #define PCH_UDC_BRLEN 0x0F /* Burst length */
  180. #define PCH_UDC_THLEN 0x1F /* Threshold length */
  181. /* Value of EP Buffer Size */
  182. #define UDC_EP0IN_BUFF_SIZE 16
  183. #define UDC_EPIN_BUFF_SIZE 256
  184. #define UDC_EP0OUT_BUFF_SIZE 16
  185. #define UDC_EPOUT_BUFF_SIZE 256
  186. /* Value of EP maximum packet size */
  187. #define UDC_EP0IN_MAX_PKT_SIZE 64
  188. #define UDC_EP0OUT_MAX_PKT_SIZE 64
  189. #define UDC_BULK_MAX_PKT_SIZE 512
  190. /* DMA */
  191. #define DMA_DIR_RX 1 /* DMA for data receive */
  192. #define DMA_DIR_TX 2 /* DMA for data transmit */
  193. #define DMA_ADDR_INVALID (~(dma_addr_t)0)
  194. #define UDC_DMA_MAXPACKET 65536 /* maximum packet size for DMA */
  195. /**
  196. * struct pch_udc_data_dma_desc - Structure to hold DMA descriptor information
  197. * for data
  198. * @status: Status quadlet
  199. * @reserved: Reserved
  200. * @dataptr: Buffer descriptor
  201. * @next: Next descriptor
  202. */
  203. struct pch_udc_data_dma_desc {
  204. u32 status;
  205. u32 reserved;
  206. u32 dataptr;
  207. u32 next;
  208. };
  209. /**
  210. * struct pch_udc_stp_dma_desc - Structure to hold DMA descriptor information
  211. * for control data
  212. * @status: Status
  213. * @reserved: Reserved
  214. * @data12: First setup word
  215. * @data34: Second setup word
  216. */
  217. struct pch_udc_stp_dma_desc {
  218. u32 status;
  219. u32 reserved;
  220. struct usb_ctrlrequest request;
  221. } __attribute((packed));
  222. /* DMA status definitions */
  223. /* Buffer status */
  224. #define PCH_UDC_BUFF_STS 0xC0000000
  225. #define PCH_UDC_BS_HST_RDY 0x00000000
  226. #define PCH_UDC_BS_DMA_BSY 0x40000000
  227. #define PCH_UDC_BS_DMA_DONE 0x80000000
  228. #define PCH_UDC_BS_HST_BSY 0xC0000000
  229. /* Rx/Tx Status */
  230. #define PCH_UDC_RXTX_STS 0x30000000
  231. #define PCH_UDC_RTS_SUCC 0x00000000
  232. #define PCH_UDC_RTS_DESERR 0x10000000
  233. #define PCH_UDC_RTS_BUFERR 0x30000000
  234. /* Last Descriptor Indication */
  235. #define PCH_UDC_DMA_LAST 0x08000000
  236. /* Number of Rx/Tx Bytes Mask */
  237. #define PCH_UDC_RXTX_BYTES 0x0000ffff
  238. /**
  239. * struct pch_udc_cfg_data - Structure to hold current configuration
  240. * and interface information
  241. * @cur_cfg: current configuration in use
  242. * @cur_intf: current interface in use
  243. * @cur_alt: current alt interface in use
  244. */
  245. struct pch_udc_cfg_data {
  246. u16 cur_cfg;
  247. u16 cur_intf;
  248. u16 cur_alt;
  249. };
  250. /**
  251. * struct pch_udc_ep - Structure holding a PCH USB device Endpoint information
  252. * @ep: embedded ep request
  253. * @td_stp_phys: for setup request
  254. * @td_data_phys: for data request
  255. * @td_stp: for setup request
  256. * @td_data: for data request
  257. * @dev: reference to device struct
  258. * @offset_addr: offset address of ep register
  259. * @desc: for this ep
  260. * @queue: queue for requests
  261. * @num: endpoint number
  262. * @in: endpoint is IN
  263. * @halted: endpoint halted?
  264. * @epsts: Endpoint status
  265. */
  266. struct pch_udc_ep {
  267. struct usb_ep ep;
  268. dma_addr_t td_stp_phys;
  269. dma_addr_t td_data_phys;
  270. struct pch_udc_stp_dma_desc *td_stp;
  271. struct pch_udc_data_dma_desc *td_data;
  272. struct pch_udc_dev *dev;
  273. unsigned long offset_addr;
  274. const struct usb_endpoint_descriptor *desc;
  275. struct list_head queue;
  276. unsigned num:5,
  277. in:1,
  278. halted:1;
  279. unsigned long epsts;
  280. };
  281. /**
  282. * struct pch_vbus_gpio_data - Structure holding GPIO informaton
  283. * for detecting VBUS
  284. * @port: gpio port number
  285. * @intr: gpio interrupt number
  286. * @irq_work_fall Structure for WorkQueue
  287. * @irq_work_rise Structure for WorkQueue
  288. */
  289. struct pch_vbus_gpio_data {
  290. int port;
  291. int intr;
  292. struct work_struct irq_work_fall;
  293. struct work_struct irq_work_rise;
  294. };
  295. /**
  296. * struct pch_udc_dev - Structure holding complete information
  297. * of the PCH USB device
  298. * @gadget: gadget driver data
  299. * @driver: reference to gadget driver bound
  300. * @pdev: reference to the PCI device
  301. * @ep: array of endpoints
  302. * @lock: protects all state
  303. * @active: enabled the PCI device
  304. * @stall: stall requested
  305. * @prot_stall: protcol stall requested
  306. * @irq_registered: irq registered with system
  307. * @mem_region: device memory mapped
  308. * @registered: driver regsitered with system
  309. * @suspended: driver in suspended state
  310. * @connected: gadget driver associated
  311. * @vbus_session: required vbus_session state
  312. * @set_cfg_not_acked: pending acknowledgement 4 setup
  313. * @waiting_zlp_ack: pending acknowledgement 4 ZLP
  314. * @data_requests: DMA pool for data requests
  315. * @stp_requests: DMA pool for setup requests
  316. * @dma_addr: DMA pool for received
  317. * @ep0out_buf: Buffer for DMA
  318. * @setup_data: Received setup data
  319. * @phys_addr: of device memory
  320. * @base_addr: for mapped device memory
  321. * @irq: IRQ line for the device
  322. * @cfg_data: current cfg, intf, and alt in use
  323. * @vbus_gpio: GPIO informaton for detecting VBUS
  324. */
  325. struct pch_udc_dev {
  326. struct usb_gadget gadget;
  327. struct usb_gadget_driver *driver;
  328. struct pci_dev *pdev;
  329. struct pch_udc_ep ep[PCH_UDC_EP_NUM];
  330. spinlock_t lock; /* protects all state */
  331. unsigned active:1,
  332. stall:1,
  333. prot_stall:1,
  334. irq_registered:1,
  335. mem_region:1,
  336. registered:1,
  337. suspended:1,
  338. connected:1,
  339. vbus_session:1,
  340. set_cfg_not_acked:1,
  341. waiting_zlp_ack:1;
  342. struct pci_pool *data_requests;
  343. struct pci_pool *stp_requests;
  344. dma_addr_t dma_addr;
  345. void *ep0out_buf;
  346. struct usb_ctrlrequest setup_data;
  347. unsigned long phys_addr;
  348. void __iomem *base_addr;
  349. unsigned irq;
  350. struct pch_udc_cfg_data cfg_data;
  351. struct pch_vbus_gpio_data vbus_gpio;
  352. };
  353. #define PCH_UDC_PCI_BAR 1
  354. #define PCI_DEVICE_ID_INTEL_EG20T_UDC 0x8808
  355. #define PCI_VENDOR_ID_ROHM 0x10DB
  356. #define PCI_DEVICE_ID_ML7213_IOH_UDC 0x801D
  357. #define PCI_DEVICE_ID_ML7831_IOH_UDC 0x8808
  358. static const char ep0_string[] = "ep0in";
  359. static DEFINE_SPINLOCK(udc_stall_spinlock); /* stall spin lock */
  360. struct pch_udc_dev *pch_udc; /* pointer to device object */
  361. static bool speed_fs;
  362. module_param_named(speed_fs, speed_fs, bool, S_IRUGO);
  363. MODULE_PARM_DESC(speed_fs, "true for Full speed operation");
  364. /**
  365. * struct pch_udc_request - Structure holding a PCH USB device request packet
  366. * @req: embedded ep request
  367. * @td_data_phys: phys. address
  368. * @td_data: first dma desc. of chain
  369. * @td_data_last: last dma desc. of chain
  370. * @queue: associated queue
  371. * @dma_going: DMA in progress for request
  372. * @dma_mapped: DMA memory mapped for request
  373. * @dma_done: DMA completed for request
  374. * @chain_len: chain length
  375. * @buf: Buffer memory for align adjustment
  376. * @dma: DMA memory for align adjustment
  377. */
  378. struct pch_udc_request {
  379. struct usb_request req;
  380. dma_addr_t td_data_phys;
  381. struct pch_udc_data_dma_desc *td_data;
  382. struct pch_udc_data_dma_desc *td_data_last;
  383. struct list_head queue;
  384. unsigned dma_going:1,
  385. dma_mapped:1,
  386. dma_done:1;
  387. unsigned chain_len;
  388. void *buf;
  389. dma_addr_t dma;
  390. };
  391. static inline u32 pch_udc_readl(struct pch_udc_dev *dev, unsigned long reg)
  392. {
  393. return ioread32(dev->base_addr + reg);
  394. }
  395. static inline void pch_udc_writel(struct pch_udc_dev *dev,
  396. unsigned long val, unsigned long reg)
  397. {
  398. iowrite32(val, dev->base_addr + reg);
  399. }
  400. static inline void pch_udc_bit_set(struct pch_udc_dev *dev,
  401. unsigned long reg,
  402. unsigned long bitmask)
  403. {
  404. pch_udc_writel(dev, pch_udc_readl(dev, reg) | bitmask, reg);
  405. }
  406. static inline void pch_udc_bit_clr(struct pch_udc_dev *dev,
  407. unsigned long reg,
  408. unsigned long bitmask)
  409. {
  410. pch_udc_writel(dev, pch_udc_readl(dev, reg) & ~(bitmask), reg);
  411. }
  412. static inline u32 pch_udc_ep_readl(struct pch_udc_ep *ep, unsigned long reg)
  413. {
  414. return ioread32(ep->dev->base_addr + ep->offset_addr + reg);
  415. }
  416. static inline void pch_udc_ep_writel(struct pch_udc_ep *ep,
  417. unsigned long val, unsigned long reg)
  418. {
  419. iowrite32(val, ep->dev->base_addr + ep->offset_addr + reg);
  420. }
  421. static inline void pch_udc_ep_bit_set(struct pch_udc_ep *ep,
  422. unsigned long reg,
  423. unsigned long bitmask)
  424. {
  425. pch_udc_ep_writel(ep, pch_udc_ep_readl(ep, reg) | bitmask, reg);
  426. }
  427. static inline void pch_udc_ep_bit_clr(struct pch_udc_ep *ep,
  428. unsigned long reg,
  429. unsigned long bitmask)
  430. {
  431. pch_udc_ep_writel(ep, pch_udc_ep_readl(ep, reg) & ~(bitmask), reg);
  432. }
  433. /**
  434. * pch_udc_csr_busy() - Wait till idle.
  435. * @dev: Reference to pch_udc_dev structure
  436. */
  437. static void pch_udc_csr_busy(struct pch_udc_dev *dev)
  438. {
  439. unsigned int count = 200;
  440. /* Wait till idle */
  441. while ((pch_udc_readl(dev, UDC_CSR_BUSY_ADDR) & UDC_CSR_BUSY)
  442. && --count)
  443. cpu_relax();
  444. if (!count)
  445. dev_err(&dev->pdev->dev, "%s: wait error\n", __func__);
  446. }
  447. /**
  448. * pch_udc_write_csr() - Write the command and status registers.
  449. * @dev: Reference to pch_udc_dev structure
  450. * @val: value to be written to CSR register
  451. * @addr: address of CSR register
  452. */
  453. static void pch_udc_write_csr(struct pch_udc_dev *dev, unsigned long val,
  454. unsigned int ep)
  455. {
  456. unsigned long reg = PCH_UDC_CSR(ep);
  457. pch_udc_csr_busy(dev); /* Wait till idle */
  458. pch_udc_writel(dev, val, reg);
  459. pch_udc_csr_busy(dev); /* Wait till idle */
  460. }
  461. /**
  462. * pch_udc_read_csr() - Read the command and status registers.
  463. * @dev: Reference to pch_udc_dev structure
  464. * @addr: address of CSR register
  465. *
  466. * Return codes: content of CSR register
  467. */
  468. static u32 pch_udc_read_csr(struct pch_udc_dev *dev, unsigned int ep)
  469. {
  470. unsigned long reg = PCH_UDC_CSR(ep);
  471. pch_udc_csr_busy(dev); /* Wait till idle */
  472. pch_udc_readl(dev, reg); /* Dummy read */
  473. pch_udc_csr_busy(dev); /* Wait till idle */
  474. return pch_udc_readl(dev, reg);
  475. }
  476. /**
  477. * pch_udc_rmt_wakeup() - Initiate for remote wakeup
  478. * @dev: Reference to pch_udc_dev structure
  479. */
  480. static inline void pch_udc_rmt_wakeup(struct pch_udc_dev *dev)
  481. {
  482. pch_udc_bit_set(dev, UDC_DEVCTL_ADDR, UDC_DEVCTL_RES);
  483. mdelay(1);
  484. pch_udc_bit_clr(dev, UDC_DEVCTL_ADDR, UDC_DEVCTL_RES);
  485. }
  486. /**
  487. * pch_udc_get_frame() - Get the current frame from device status register
  488. * @dev: Reference to pch_udc_dev structure
  489. * Retern current frame
  490. */
  491. static inline int pch_udc_get_frame(struct pch_udc_dev *dev)
  492. {
  493. u32 frame = pch_udc_readl(dev, UDC_DEVSTS_ADDR);
  494. return (frame & UDC_DEVSTS_TS_MASK) >> UDC_DEVSTS_TS_SHIFT;
  495. }
  496. /**
  497. * pch_udc_clear_selfpowered() - Clear the self power control
  498. * @dev: Reference to pch_udc_regs structure
  499. */
  500. static inline void pch_udc_clear_selfpowered(struct pch_udc_dev *dev)
  501. {
  502. pch_udc_bit_clr(dev, UDC_DEVCFG_ADDR, UDC_DEVCFG_SP);
  503. }
  504. /**
  505. * pch_udc_set_selfpowered() - Set the self power control
  506. * @dev: Reference to pch_udc_regs structure
  507. */
  508. static inline void pch_udc_set_selfpowered(struct pch_udc_dev *dev)
  509. {
  510. pch_udc_bit_set(dev, UDC_DEVCFG_ADDR, UDC_DEVCFG_SP);
  511. }
  512. /**
  513. * pch_udc_set_disconnect() - Set the disconnect status.
  514. * @dev: Reference to pch_udc_regs structure
  515. */
  516. static inline void pch_udc_set_disconnect(struct pch_udc_dev *dev)
  517. {
  518. pch_udc_bit_set(dev, UDC_DEVCTL_ADDR, UDC_DEVCTL_SD);
  519. }
  520. /**
  521. * pch_udc_clear_disconnect() - Clear the disconnect status.
  522. * @dev: Reference to pch_udc_regs structure
  523. */
  524. static void pch_udc_clear_disconnect(struct pch_udc_dev *dev)
  525. {
  526. /* Clear the disconnect */
  527. pch_udc_bit_set(dev, UDC_DEVCTL_ADDR, UDC_DEVCTL_RES);
  528. pch_udc_bit_clr(dev, UDC_DEVCTL_ADDR, UDC_DEVCTL_SD);
  529. mdelay(1);
  530. /* Resume USB signalling */
  531. pch_udc_bit_clr(dev, UDC_DEVCTL_ADDR, UDC_DEVCTL_RES);
  532. }
  533. /**
  534. * pch_udc_reconnect() - This API initializes usb device controller,
  535. * and clear the disconnect status.
  536. * @dev: Reference to pch_udc_regs structure
  537. */
  538. static void pch_udc_init(struct pch_udc_dev *dev);
  539. static void pch_udc_reconnect(struct pch_udc_dev *dev)
  540. {
  541. pch_udc_init(dev);
  542. /* enable device interrupts */
  543. /* pch_udc_enable_interrupts() */
  544. pch_udc_bit_clr(dev, UDC_DEVIRQMSK_ADDR,
  545. UDC_DEVINT_UR | UDC_DEVINT_ENUM);
  546. /* Clear the disconnect */
  547. pch_udc_bit_set(dev, UDC_DEVCTL_ADDR, UDC_DEVCTL_RES);
  548. pch_udc_bit_clr(dev, UDC_DEVCTL_ADDR, UDC_DEVCTL_SD);
  549. mdelay(1);
  550. /* Resume USB signalling */
  551. pch_udc_bit_clr(dev, UDC_DEVCTL_ADDR, UDC_DEVCTL_RES);
  552. }
  553. /**
  554. * pch_udc_vbus_session() - set or clearr the disconnect status.
  555. * @dev: Reference to pch_udc_regs structure
  556. * @is_active: Parameter specifying the action
  557. * 0: indicating VBUS power is ending
  558. * !0: indicating VBUS power is starting
  559. */
  560. static inline void pch_udc_vbus_session(struct pch_udc_dev *dev,
  561. int is_active)
  562. {
  563. if (is_active) {
  564. pch_udc_reconnect(dev);
  565. dev->vbus_session = 1;
  566. } else {
  567. if (dev->driver && dev->driver->disconnect) {
  568. spin_unlock(&dev->lock);
  569. dev->driver->disconnect(&dev->gadget);
  570. spin_lock(&dev->lock);
  571. }
  572. pch_udc_set_disconnect(dev);
  573. dev->vbus_session = 0;
  574. }
  575. }
  576. /**
  577. * pch_udc_ep_set_stall() - Set the stall of endpoint
  578. * @ep: Reference to structure of type pch_udc_ep_regs
  579. */
  580. static void pch_udc_ep_set_stall(struct pch_udc_ep *ep)
  581. {
  582. if (ep->in) {
  583. pch_udc_ep_bit_set(ep, UDC_EPCTL_ADDR, UDC_EPCTL_F);
  584. pch_udc_ep_bit_set(ep, UDC_EPCTL_ADDR, UDC_EPCTL_S);
  585. } else {
  586. pch_udc_ep_bit_set(ep, UDC_EPCTL_ADDR, UDC_EPCTL_S);
  587. }
  588. }
  589. /**
  590. * pch_udc_ep_clear_stall() - Clear the stall of endpoint
  591. * @ep: Reference to structure of type pch_udc_ep_regs
  592. */
  593. static inline void pch_udc_ep_clear_stall(struct pch_udc_ep *ep)
  594. {
  595. /* Clear the stall */
  596. pch_udc_ep_bit_clr(ep, UDC_EPCTL_ADDR, UDC_EPCTL_S);
  597. /* Clear NAK by writing CNAK */
  598. pch_udc_ep_bit_set(ep, UDC_EPCTL_ADDR, UDC_EPCTL_CNAK);
  599. }
  600. /**
  601. * pch_udc_ep_set_trfr_type() - Set the transfer type of endpoint
  602. * @ep: Reference to structure of type pch_udc_ep_regs
  603. * @type: Type of endpoint
  604. */
  605. static inline void pch_udc_ep_set_trfr_type(struct pch_udc_ep *ep,
  606. u8 type)
  607. {
  608. pch_udc_ep_writel(ep, ((type << UDC_EPCTL_ET_SHIFT) &
  609. UDC_EPCTL_ET_MASK), UDC_EPCTL_ADDR);
  610. }
  611. /**
  612. * pch_udc_ep_set_bufsz() - Set the maximum packet size for the endpoint
  613. * @ep: Reference to structure of type pch_udc_ep_regs
  614. * @buf_size: The buffer word size
  615. */
  616. static void pch_udc_ep_set_bufsz(struct pch_udc_ep *ep,
  617. u32 buf_size, u32 ep_in)
  618. {
  619. u32 data;
  620. if (ep_in) {
  621. data = pch_udc_ep_readl(ep, UDC_BUFIN_FRAMENUM_ADDR);
  622. data = (data & 0xffff0000) | (buf_size & 0xffff);
  623. pch_udc_ep_writel(ep, data, UDC_BUFIN_FRAMENUM_ADDR);
  624. } else {
  625. data = pch_udc_ep_readl(ep, UDC_BUFOUT_MAXPKT_ADDR);
  626. data = (buf_size << 16) | (data & 0xffff);
  627. pch_udc_ep_writel(ep, data, UDC_BUFOUT_MAXPKT_ADDR);
  628. }
  629. }
  630. /**
  631. * pch_udc_ep_set_maxpkt() - Set the Max packet size for the endpoint
  632. * @ep: Reference to structure of type pch_udc_ep_regs
  633. * @pkt_size: The packet byte size
  634. */
  635. static void pch_udc_ep_set_maxpkt(struct pch_udc_ep *ep, u32 pkt_size)
  636. {
  637. u32 data = pch_udc_ep_readl(ep, UDC_BUFOUT_MAXPKT_ADDR);
  638. data = (data & 0xffff0000) | (pkt_size & 0xffff);
  639. pch_udc_ep_writel(ep, data, UDC_BUFOUT_MAXPKT_ADDR);
  640. }
  641. /**
  642. * pch_udc_ep_set_subptr() - Set the Setup buffer pointer for the endpoint
  643. * @ep: Reference to structure of type pch_udc_ep_regs
  644. * @addr: Address of the register
  645. */
  646. static inline void pch_udc_ep_set_subptr(struct pch_udc_ep *ep, u32 addr)
  647. {
  648. pch_udc_ep_writel(ep, addr, UDC_SUBPTR_ADDR);
  649. }
  650. /**
  651. * pch_udc_ep_set_ddptr() - Set the Data descriptor pointer for the endpoint
  652. * @ep: Reference to structure of type pch_udc_ep_regs
  653. * @addr: Address of the register
  654. */
  655. static inline void pch_udc_ep_set_ddptr(struct pch_udc_ep *ep, u32 addr)
  656. {
  657. pch_udc_ep_writel(ep, addr, UDC_DESPTR_ADDR);
  658. }
  659. /**
  660. * pch_udc_ep_set_pd() - Set the poll demand bit for the endpoint
  661. * @ep: Reference to structure of type pch_udc_ep_regs
  662. */
  663. static inline void pch_udc_ep_set_pd(struct pch_udc_ep *ep)
  664. {
  665. pch_udc_ep_bit_set(ep, UDC_EPCTL_ADDR, UDC_EPCTL_P);
  666. }
  667. /**
  668. * pch_udc_ep_set_rrdy() - Set the receive ready bit for the endpoint
  669. * @ep: Reference to structure of type pch_udc_ep_regs
  670. */
  671. static inline void pch_udc_ep_set_rrdy(struct pch_udc_ep *ep)
  672. {
  673. pch_udc_ep_bit_set(ep, UDC_EPCTL_ADDR, UDC_EPCTL_RRDY);
  674. }
  675. /**
  676. * pch_udc_ep_clear_rrdy() - Clear the receive ready bit for the endpoint
  677. * @ep: Reference to structure of type pch_udc_ep_regs
  678. */
  679. static inline void pch_udc_ep_clear_rrdy(struct pch_udc_ep *ep)
  680. {
  681. pch_udc_ep_bit_clr(ep, UDC_EPCTL_ADDR, UDC_EPCTL_RRDY);
  682. }
  683. /**
  684. * pch_udc_set_dma() - Set the 'TDE' or RDE bit of device control
  685. * register depending on the direction specified
  686. * @dev: Reference to structure of type pch_udc_regs
  687. * @dir: whether Tx or Rx
  688. * DMA_DIR_RX: Receive
  689. * DMA_DIR_TX: Transmit
  690. */
  691. static inline void pch_udc_set_dma(struct pch_udc_dev *dev, int dir)
  692. {
  693. if (dir == DMA_DIR_RX)
  694. pch_udc_bit_set(dev, UDC_DEVCTL_ADDR, UDC_DEVCTL_RDE);
  695. else if (dir == DMA_DIR_TX)
  696. pch_udc_bit_set(dev, UDC_DEVCTL_ADDR, UDC_DEVCTL_TDE);
  697. }
  698. /**
  699. * pch_udc_clear_dma() - Clear the 'TDE' or RDE bit of device control
  700. * register depending on the direction specified
  701. * @dev: Reference to structure of type pch_udc_regs
  702. * @dir: Whether Tx or Rx
  703. * DMA_DIR_RX: Receive
  704. * DMA_DIR_TX: Transmit
  705. */
  706. static inline void pch_udc_clear_dma(struct pch_udc_dev *dev, int dir)
  707. {
  708. if (dir == DMA_DIR_RX)
  709. pch_udc_bit_clr(dev, UDC_DEVCTL_ADDR, UDC_DEVCTL_RDE);
  710. else if (dir == DMA_DIR_TX)
  711. pch_udc_bit_clr(dev, UDC_DEVCTL_ADDR, UDC_DEVCTL_TDE);
  712. }
  713. /**
  714. * pch_udc_set_csr_done() - Set the device control register
  715. * CSR done field (bit 13)
  716. * @dev: reference to structure of type pch_udc_regs
  717. */
  718. static inline void pch_udc_set_csr_done(struct pch_udc_dev *dev)
  719. {
  720. pch_udc_bit_set(dev, UDC_DEVCTL_ADDR, UDC_DEVCTL_CSR_DONE);
  721. }
  722. /**
  723. * pch_udc_disable_interrupts() - Disables the specified interrupts
  724. * @dev: Reference to structure of type pch_udc_regs
  725. * @mask: Mask to disable interrupts
  726. */
  727. static inline void pch_udc_disable_interrupts(struct pch_udc_dev *dev,
  728. u32 mask)
  729. {
  730. pch_udc_bit_set(dev, UDC_DEVIRQMSK_ADDR, mask);
  731. }
  732. /**
  733. * pch_udc_enable_interrupts() - Enable the specified interrupts
  734. * @dev: Reference to structure of type pch_udc_regs
  735. * @mask: Mask to enable interrupts
  736. */
  737. static inline void pch_udc_enable_interrupts(struct pch_udc_dev *dev,
  738. u32 mask)
  739. {
  740. pch_udc_bit_clr(dev, UDC_DEVIRQMSK_ADDR, mask);
  741. }
  742. /**
  743. * pch_udc_disable_ep_interrupts() - Disable endpoint interrupts
  744. * @dev: Reference to structure of type pch_udc_regs
  745. * @mask: Mask to disable interrupts
  746. */
  747. static inline void pch_udc_disable_ep_interrupts(struct pch_udc_dev *dev,
  748. u32 mask)
  749. {
  750. pch_udc_bit_set(dev, UDC_EPIRQMSK_ADDR, mask);
  751. }
  752. /**
  753. * pch_udc_enable_ep_interrupts() - Enable endpoint interrupts
  754. * @dev: Reference to structure of type pch_udc_regs
  755. * @mask: Mask to enable interrupts
  756. */
  757. static inline void pch_udc_enable_ep_interrupts(struct pch_udc_dev *dev,
  758. u32 mask)
  759. {
  760. pch_udc_bit_clr(dev, UDC_EPIRQMSK_ADDR, mask);
  761. }
  762. /**
  763. * pch_udc_read_device_interrupts() - Read the device interrupts
  764. * @dev: Reference to structure of type pch_udc_regs
  765. * Retern The device interrupts
  766. */
  767. static inline u32 pch_udc_read_device_interrupts(struct pch_udc_dev *dev)
  768. {
  769. return pch_udc_readl(dev, UDC_DEVIRQSTS_ADDR);
  770. }
  771. /**
  772. * pch_udc_write_device_interrupts() - Write device interrupts
  773. * @dev: Reference to structure of type pch_udc_regs
  774. * @val: The value to be written to interrupt register
  775. */
  776. static inline void pch_udc_write_device_interrupts(struct pch_udc_dev *dev,
  777. u32 val)
  778. {
  779. pch_udc_writel(dev, val, UDC_DEVIRQSTS_ADDR);
  780. }
  781. /**
  782. * pch_udc_read_ep_interrupts() - Read the endpoint interrupts
  783. * @dev: Reference to structure of type pch_udc_regs
  784. * Retern The endpoint interrupt
  785. */
  786. static inline u32 pch_udc_read_ep_interrupts(struct pch_udc_dev *dev)
  787. {
  788. return pch_udc_readl(dev, UDC_EPIRQSTS_ADDR);
  789. }
  790. /**
  791. * pch_udc_write_ep_interrupts() - Clear endpoint interupts
  792. * @dev: Reference to structure of type pch_udc_regs
  793. * @val: The value to be written to interrupt register
  794. */
  795. static inline void pch_udc_write_ep_interrupts(struct pch_udc_dev *dev,
  796. u32 val)
  797. {
  798. pch_udc_writel(dev, val, UDC_EPIRQSTS_ADDR);
  799. }
  800. /**
  801. * pch_udc_read_device_status() - Read the device status
  802. * @dev: Reference to structure of type pch_udc_regs
  803. * Retern The device status
  804. */
  805. static inline u32 pch_udc_read_device_status(struct pch_udc_dev *dev)
  806. {
  807. return pch_udc_readl(dev, UDC_DEVSTS_ADDR);
  808. }
  809. /**
  810. * pch_udc_read_ep_control() - Read the endpoint control
  811. * @ep: Reference to structure of type pch_udc_ep_regs
  812. * Retern The endpoint control register value
  813. */
  814. static inline u32 pch_udc_read_ep_control(struct pch_udc_ep *ep)
  815. {
  816. return pch_udc_ep_readl(ep, UDC_EPCTL_ADDR);
  817. }
  818. /**
  819. * pch_udc_clear_ep_control() - Clear the endpoint control register
  820. * @ep: Reference to structure of type pch_udc_ep_regs
  821. * Retern The endpoint control register value
  822. */
  823. static inline void pch_udc_clear_ep_control(struct pch_udc_ep *ep)
  824. {
  825. return pch_udc_ep_writel(ep, 0, UDC_EPCTL_ADDR);
  826. }
  827. /**
  828. * pch_udc_read_ep_status() - Read the endpoint status
  829. * @ep: Reference to structure of type pch_udc_ep_regs
  830. * Retern The endpoint status
  831. */
  832. static inline u32 pch_udc_read_ep_status(struct pch_udc_ep *ep)
  833. {
  834. return pch_udc_ep_readl(ep, UDC_EPSTS_ADDR);
  835. }
  836. /**
  837. * pch_udc_clear_ep_status() - Clear the endpoint status
  838. * @ep: Reference to structure of type pch_udc_ep_regs
  839. * @stat: Endpoint status
  840. */
  841. static inline void pch_udc_clear_ep_status(struct pch_udc_ep *ep,
  842. u32 stat)
  843. {
  844. return pch_udc_ep_writel(ep, stat, UDC_EPSTS_ADDR);
  845. }
  846. /**
  847. * pch_udc_ep_set_nak() - Set the bit 7 (SNAK field)
  848. * of the endpoint control register
  849. * @ep: Reference to structure of type pch_udc_ep_regs
  850. */
  851. static inline void pch_udc_ep_set_nak(struct pch_udc_ep *ep)
  852. {
  853. pch_udc_ep_bit_set(ep, UDC_EPCTL_ADDR, UDC_EPCTL_SNAK);
  854. }
  855. /**
  856. * pch_udc_ep_clear_nak() - Set the bit 8 (CNAK field)
  857. * of the endpoint control register
  858. * @ep: reference to structure of type pch_udc_ep_regs
  859. */
  860. static void pch_udc_ep_clear_nak(struct pch_udc_ep *ep)
  861. {
  862. unsigned int loopcnt = 0;
  863. struct pch_udc_dev *dev = ep->dev;
  864. if (!(pch_udc_ep_readl(ep, UDC_EPCTL_ADDR) & UDC_EPCTL_NAK))
  865. return;
  866. if (!ep->in) {
  867. loopcnt = 10000;
  868. while (!(pch_udc_read_ep_status(ep) & UDC_EPSTS_MRXFIFO_EMP) &&
  869. --loopcnt)
  870. udelay(5);
  871. if (!loopcnt)
  872. dev_err(&dev->pdev->dev, "%s: RxFIFO not Empty\n",
  873. __func__);
  874. }
  875. loopcnt = 10000;
  876. while ((pch_udc_read_ep_control(ep) & UDC_EPCTL_NAK) && --loopcnt) {
  877. pch_udc_ep_bit_set(ep, UDC_EPCTL_ADDR, UDC_EPCTL_CNAK);
  878. udelay(5);
  879. }
  880. if (!loopcnt)
  881. dev_err(&dev->pdev->dev, "%s: Clear NAK not set for ep%d%s\n",
  882. __func__, ep->num, (ep->in ? "in" : "out"));
  883. }
  884. /**
  885. * pch_udc_ep_fifo_flush() - Flush the endpoint fifo
  886. * @ep: reference to structure of type pch_udc_ep_regs
  887. * @dir: direction of endpoint
  888. * 0: endpoint is OUT
  889. * !0: endpoint is IN
  890. */
  891. static void pch_udc_ep_fifo_flush(struct pch_udc_ep *ep, int dir)
  892. {
  893. if (dir) { /* IN ep */
  894. pch_udc_ep_bit_set(ep, UDC_EPCTL_ADDR, UDC_EPCTL_F);
  895. return;
  896. }
  897. }
  898. /**
  899. * pch_udc_ep_enable() - This api enables endpoint
  900. * @regs: Reference to structure pch_udc_ep_regs
  901. * @desc: endpoint descriptor
  902. */
  903. static void pch_udc_ep_enable(struct pch_udc_ep *ep,
  904. struct pch_udc_cfg_data *cfg,
  905. const struct usb_endpoint_descriptor *desc)
  906. {
  907. u32 val = 0;
  908. u32 buff_size = 0;
  909. pch_udc_ep_set_trfr_type(ep, desc->bmAttributes);
  910. if (ep->in)
  911. buff_size = UDC_EPIN_BUFF_SIZE;
  912. else
  913. buff_size = UDC_EPOUT_BUFF_SIZE;
  914. pch_udc_ep_set_bufsz(ep, buff_size, ep->in);
  915. pch_udc_ep_set_maxpkt(ep, usb_endpoint_maxp(desc));
  916. pch_udc_ep_set_nak(ep);
  917. pch_udc_ep_fifo_flush(ep, ep->in);
  918. /* Configure the endpoint */
  919. val = ep->num << UDC_CSR_NE_NUM_SHIFT | ep->in << UDC_CSR_NE_DIR_SHIFT |
  920. ((desc->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) <<
  921. UDC_CSR_NE_TYPE_SHIFT) |
  922. (cfg->cur_cfg << UDC_CSR_NE_CFG_SHIFT) |
  923. (cfg->cur_intf << UDC_CSR_NE_INTF_SHIFT) |
  924. (cfg->cur_alt << UDC_CSR_NE_ALT_SHIFT) |
  925. usb_endpoint_maxp(desc) << UDC_CSR_NE_MAX_PKT_SHIFT;
  926. if (ep->in)
  927. pch_udc_write_csr(ep->dev, val, UDC_EPIN_IDX(ep->num));
  928. else
  929. pch_udc_write_csr(ep->dev, val, UDC_EPOUT_IDX(ep->num));
  930. }
  931. /**
  932. * pch_udc_ep_disable() - This api disables endpoint
  933. * @regs: Reference to structure pch_udc_ep_regs
  934. */
  935. static void pch_udc_ep_disable(struct pch_udc_ep *ep)
  936. {
  937. if (ep->in) {
  938. /* flush the fifo */
  939. pch_udc_ep_writel(ep, UDC_EPCTL_F, UDC_EPCTL_ADDR);
  940. /* set NAK */
  941. pch_udc_ep_writel(ep, UDC_EPCTL_SNAK, UDC_EPCTL_ADDR);
  942. pch_udc_ep_bit_set(ep, UDC_EPSTS_ADDR, UDC_EPSTS_IN);
  943. } else {
  944. /* set NAK */
  945. pch_udc_ep_writel(ep, UDC_EPCTL_SNAK, UDC_EPCTL_ADDR);
  946. }
  947. /* reset desc pointer */
  948. pch_udc_ep_writel(ep, 0, UDC_DESPTR_ADDR);
  949. }
  950. /**
  951. * pch_udc_wait_ep_stall() - Wait EP stall.
  952. * @dev: Reference to pch_udc_dev structure
  953. */
  954. static void pch_udc_wait_ep_stall(struct pch_udc_ep *ep)
  955. {
  956. unsigned int count = 10000;
  957. /* Wait till idle */
  958. while ((pch_udc_read_ep_control(ep) & UDC_EPCTL_S) && --count)
  959. udelay(5);
  960. if (!count)
  961. dev_err(&ep->dev->pdev->dev, "%s: wait error\n", __func__);
  962. }
  963. /**
  964. * pch_udc_init() - This API initializes usb device controller
  965. * @dev: Rreference to pch_udc_regs structure
  966. */
  967. static void pch_udc_init(struct pch_udc_dev *dev)
  968. {
  969. if (NULL == dev) {
  970. pr_err("%s: Invalid address\n", __func__);
  971. return;
  972. }
  973. /* Soft Reset and Reset PHY */
  974. pch_udc_writel(dev, UDC_SRST, UDC_SRST_ADDR);
  975. pch_udc_writel(dev, UDC_SRST | UDC_PSRST, UDC_SRST_ADDR);
  976. mdelay(1);
  977. pch_udc_writel(dev, UDC_SRST, UDC_SRST_ADDR);
  978. pch_udc_writel(dev, 0x00, UDC_SRST_ADDR);
  979. mdelay(1);
  980. /* mask and clear all device interrupts */
  981. pch_udc_bit_set(dev, UDC_DEVIRQMSK_ADDR, UDC_DEVINT_MSK);
  982. pch_udc_bit_set(dev, UDC_DEVIRQSTS_ADDR, UDC_DEVINT_MSK);
  983. /* mask and clear all ep interrupts */
  984. pch_udc_bit_set(dev, UDC_EPIRQMSK_ADDR, UDC_EPINT_MSK_DISABLE_ALL);
  985. pch_udc_bit_set(dev, UDC_EPIRQSTS_ADDR, UDC_EPINT_MSK_DISABLE_ALL);
  986. /* enable dynamic CSR programmingi, self powered and device speed */
  987. if (speed_fs)
  988. pch_udc_bit_set(dev, UDC_DEVCFG_ADDR, UDC_DEVCFG_CSR_PRG |
  989. UDC_DEVCFG_SP | UDC_DEVCFG_SPD_FS);
  990. else /* defaul high speed */
  991. pch_udc_bit_set(dev, UDC_DEVCFG_ADDR, UDC_DEVCFG_CSR_PRG |
  992. UDC_DEVCFG_SP | UDC_DEVCFG_SPD_HS);
  993. pch_udc_bit_set(dev, UDC_DEVCTL_ADDR,
  994. (PCH_UDC_THLEN << UDC_DEVCTL_THLEN_SHIFT) |
  995. (PCH_UDC_BRLEN << UDC_DEVCTL_BRLEN_SHIFT) |
  996. UDC_DEVCTL_MODE | UDC_DEVCTL_BREN |
  997. UDC_DEVCTL_THE);
  998. }
  999. /**
  1000. * pch_udc_exit() - This API exit usb device controller
  1001. * @dev: Reference to pch_udc_regs structure
  1002. */
  1003. static void pch_udc_exit(struct pch_udc_dev *dev)
  1004. {
  1005. /* mask all device interrupts */
  1006. pch_udc_bit_set(dev, UDC_DEVIRQMSK_ADDR, UDC_DEVINT_MSK);
  1007. /* mask all ep interrupts */
  1008. pch_udc_bit_set(dev, UDC_EPIRQMSK_ADDR, UDC_EPINT_MSK_DISABLE_ALL);
  1009. /* put device in disconnected state */
  1010. pch_udc_set_disconnect(dev);
  1011. }
  1012. /**
  1013. * pch_udc_pcd_get_frame() - This API is invoked to get the current frame number
  1014. * @gadget: Reference to the gadget driver
  1015. *
  1016. * Return codes:
  1017. * 0: Success
  1018. * -EINVAL: If the gadget passed is NULL
  1019. */
  1020. static int pch_udc_pcd_get_frame(struct usb_gadget *gadget)
  1021. {
  1022. struct pch_udc_dev *dev;
  1023. if (!gadget)
  1024. return -EINVAL;
  1025. dev = container_of(gadget, struct pch_udc_dev, gadget);
  1026. return pch_udc_get_frame(dev);
  1027. }
  1028. /**
  1029. * pch_udc_pcd_wakeup() - This API is invoked to initiate a remote wakeup
  1030. * @gadget: Reference to the gadget driver
  1031. *
  1032. * Return codes:
  1033. * 0: Success
  1034. * -EINVAL: If the gadget passed is NULL
  1035. */
  1036. static int pch_udc_pcd_wakeup(struct usb_gadget *gadget)
  1037. {
  1038. struct pch_udc_dev *dev;
  1039. unsigned long flags;
  1040. if (!gadget)
  1041. return -EINVAL;
  1042. dev = container_of(gadget, struct pch_udc_dev, gadget);
  1043. spin_lock_irqsave(&dev->lock, flags);
  1044. pch_udc_rmt_wakeup(dev);
  1045. spin_unlock_irqrestore(&dev->lock, flags);
  1046. return 0;
  1047. }
  1048. /**
  1049. * pch_udc_pcd_selfpowered() - This API is invoked to specify whether the device
  1050. * is self powered or not
  1051. * @gadget: Reference to the gadget driver
  1052. * @value: Specifies self powered or not
  1053. *
  1054. * Return codes:
  1055. * 0: Success
  1056. * -EINVAL: If the gadget passed is NULL
  1057. */
  1058. static int pch_udc_pcd_selfpowered(struct usb_gadget *gadget, int value)
  1059. {
  1060. struct pch_udc_dev *dev;
  1061. if (!gadget)
  1062. return -EINVAL;
  1063. dev = container_of(gadget, struct pch_udc_dev, gadget);
  1064. if (value)
  1065. pch_udc_set_selfpowered(dev);
  1066. else
  1067. pch_udc_clear_selfpowered(dev);
  1068. return 0;
  1069. }
  1070. /**
  1071. * pch_udc_pcd_pullup() - This API is invoked to make the device
  1072. * visible/invisible to the host
  1073. * @gadget: Reference to the gadget driver
  1074. * @is_on: Specifies whether the pull up is made active or inactive
  1075. *
  1076. * Return codes:
  1077. * 0: Success
  1078. * -EINVAL: If the gadget passed is NULL
  1079. */
  1080. static int pch_udc_pcd_pullup(struct usb_gadget *gadget, int is_on)
  1081. {
  1082. struct pch_udc_dev *dev;
  1083. if (!gadget)
  1084. return -EINVAL;
  1085. dev = container_of(gadget, struct pch_udc_dev, gadget);
  1086. if (is_on) {
  1087. pch_udc_reconnect(dev);
  1088. } else {
  1089. if (dev->driver && dev->driver->disconnect) {
  1090. spin_unlock(&dev->lock);
  1091. dev->driver->disconnect(&dev->gadget);
  1092. spin_lock(&dev->lock);
  1093. }
  1094. pch_udc_set_disconnect(dev);
  1095. }
  1096. return 0;
  1097. }
  1098. /**
  1099. * pch_udc_pcd_vbus_session() - This API is used by a driver for an external
  1100. * transceiver (or GPIO) that
  1101. * detects a VBUS power session starting/ending
  1102. * @gadget: Reference to the gadget driver
  1103. * @is_active: specifies whether the session is starting or ending
  1104. *
  1105. * Return codes:
  1106. * 0: Success
  1107. * -EINVAL: If the gadget passed is NULL
  1108. */
  1109. static int pch_udc_pcd_vbus_session(struct usb_gadget *gadget, int is_active)
  1110. {
  1111. struct pch_udc_dev *dev;
  1112. if (!gadget)
  1113. return -EINVAL;
  1114. dev = container_of(gadget, struct pch_udc_dev, gadget);
  1115. pch_udc_vbus_session(dev, is_active);
  1116. return 0;
  1117. }
  1118. /**
  1119. * pch_udc_pcd_vbus_draw() - This API is used by gadget drivers during
  1120. * SET_CONFIGURATION calls to
  1121. * specify how much power the device can consume
  1122. * @gadget: Reference to the gadget driver
  1123. * @mA: specifies the current limit in 2mA unit
  1124. *
  1125. * Return codes:
  1126. * -EINVAL: If the gadget passed is NULL
  1127. * -EOPNOTSUPP:
  1128. */
  1129. static int pch_udc_pcd_vbus_draw(struct usb_gadget *gadget, unsigned int mA)
  1130. {
  1131. return -EOPNOTSUPP;
  1132. }
  1133. static int pch_udc_start(struct usb_gadget_driver *driver,
  1134. int (*bind)(struct usb_gadget *));
  1135. static int pch_udc_stop(struct usb_gadget_driver *driver);
  1136. static const struct usb_gadget_ops pch_udc_ops = {
  1137. .get_frame = pch_udc_pcd_get_frame,
  1138. .wakeup = pch_udc_pcd_wakeup,
  1139. .set_selfpowered = pch_udc_pcd_selfpowered,
  1140. .pullup = pch_udc_pcd_pullup,
  1141. .vbus_session = pch_udc_pcd_vbus_session,
  1142. .vbus_draw = pch_udc_pcd_vbus_draw,
  1143. .start = pch_udc_start,
  1144. .stop = pch_udc_stop,
  1145. };
  1146. /**
  1147. * pch_vbus_gpio_get_value() - This API gets value of GPIO port as VBUS status.
  1148. * @dev: Reference to the driver structure
  1149. *
  1150. * Return value:
  1151. * 1: VBUS is high
  1152. * 0: VBUS is low
  1153. * -1: It is not enable to detect VBUS using GPIO
  1154. */
  1155. static int pch_vbus_gpio_get_value(struct pch_udc_dev *dev)
  1156. {
  1157. int vbus = 0;
  1158. if (dev->vbus_gpio.port)
  1159. vbus = gpio_get_value(dev->vbus_gpio.port) ? 1 : 0;
  1160. else
  1161. vbus = -1;
  1162. return vbus;
  1163. }
  1164. /**
  1165. * pch_vbus_gpio_work_fall() - This API keeps watch on VBUS becoming Low.
  1166. * If VBUS is Low, disconnect is processed
  1167. * @irq_work: Structure for WorkQueue
  1168. *
  1169. */
  1170. static void pch_vbus_gpio_work_fall(struct work_struct *irq_work)
  1171. {
  1172. struct pch_vbus_gpio_data *vbus_gpio = container_of(irq_work,
  1173. struct pch_vbus_gpio_data, irq_work_fall);
  1174. struct pch_udc_dev *dev =
  1175. container_of(vbus_gpio, struct pch_udc_dev, vbus_gpio);
  1176. int vbus_saved = -1;
  1177. int vbus;
  1178. int count;
  1179. if (!dev->vbus_gpio.port)
  1180. return;
  1181. for (count = 0; count < (PCH_VBUS_PERIOD / PCH_VBUS_INTERVAL);
  1182. count++) {
  1183. vbus = pch_vbus_gpio_get_value(dev);
  1184. if ((vbus_saved == vbus) && (vbus == 0)) {
  1185. dev_dbg(&dev->pdev->dev, "VBUS fell");
  1186. if (dev->driver
  1187. && dev->driver->disconnect) {
  1188. dev->driver->disconnect(
  1189. &dev->gadget);
  1190. }
  1191. if (dev->vbus_gpio.intr)
  1192. pch_udc_init(dev);
  1193. else
  1194. pch_udc_reconnect(dev);
  1195. return;
  1196. }
  1197. vbus_saved = vbus;
  1198. mdelay(PCH_VBUS_INTERVAL);
  1199. }
  1200. }
  1201. /**
  1202. * pch_vbus_gpio_work_rise() - This API checks VBUS is High.
  1203. * If VBUS is High, connect is processed
  1204. * @irq_work: Structure for WorkQueue
  1205. *
  1206. */
  1207. static void pch_vbus_gpio_work_rise(struct work_struct *irq_work)
  1208. {
  1209. struct pch_vbus_gpio_data *vbus_gpio = container_of(irq_work,
  1210. struct pch_vbus_gpio_data, irq_work_rise);
  1211. struct pch_udc_dev *dev =
  1212. container_of(vbus_gpio, struct pch_udc_dev, vbus_gpio);
  1213. int vbus;
  1214. if (!dev->vbus_gpio.port)
  1215. return;
  1216. mdelay(PCH_VBUS_INTERVAL);
  1217. vbus = pch_vbus_gpio_get_value(dev);
  1218. if (vbus == 1) {
  1219. dev_dbg(&dev->pdev->dev, "VBUS rose");
  1220. pch_udc_reconnect(dev);
  1221. return;
  1222. }
  1223. }
  1224. /**
  1225. * pch_vbus_gpio_irq() - IRQ handler for GPIO intrerrupt for changing VBUS
  1226. * @irq: Interrupt request number
  1227. * @dev: Reference to the device structure
  1228. *
  1229. * Return codes:
  1230. * 0: Success
  1231. * -EINVAL: GPIO port is invalid or can't be initialized.
  1232. */
  1233. static irqreturn_t pch_vbus_gpio_irq(int irq, void *data)
  1234. {
  1235. struct pch_udc_dev *dev = (struct pch_udc_dev *)data;
  1236. if (!dev->vbus_gpio.port || !dev->vbus_gpio.intr)
  1237. return IRQ_NONE;
  1238. if (pch_vbus_gpio_get_value(dev))
  1239. schedule_work(&dev->vbus_gpio.irq_work_rise);
  1240. else
  1241. schedule_work(&dev->vbus_gpio.irq_work_fall);
  1242. return IRQ_HANDLED;
  1243. }
  1244. /**
  1245. * pch_vbus_gpio_init() - This API initializes GPIO port detecting VBUS.
  1246. * @dev: Reference to the driver structure
  1247. * @vbus_gpio Number of GPIO port to detect gpio
  1248. *
  1249. * Return codes:
  1250. * 0: Success
  1251. * -EINVAL: GPIO port is invalid or can't be initialized.
  1252. */
  1253. static int pch_vbus_gpio_init(struct pch_udc_dev *dev, int vbus_gpio_port)
  1254. {
  1255. int err;
  1256. int irq_num = 0;
  1257. dev->vbus_gpio.port = 0;
  1258. dev->vbus_gpio.intr = 0;
  1259. if (vbus_gpio_port <= -1)
  1260. return -EINVAL;
  1261. err = gpio_is_valid(vbus_gpio_port);
  1262. if (!err) {
  1263. pr_err("%s: gpio port %d is invalid\n",
  1264. __func__, vbus_gpio_port);
  1265. return -EINVAL;
  1266. }
  1267. err = gpio_request(vbus_gpio_port, "pch_vbus");
  1268. if (err) {
  1269. pr_err("%s: can't request gpio port %d, err: %d\n",
  1270. __func__, vbus_gpio_port, err);
  1271. return -EINVAL;
  1272. }
  1273. dev->vbus_gpio.port = vbus_gpio_port;
  1274. gpio_direction_input(vbus_gpio_port);
  1275. INIT_WORK(&dev->vbus_gpio.irq_work_fall, pch_vbus_gpio_work_fall);
  1276. irq_num = gpio_to_irq(vbus_gpio_port);
  1277. if (irq_num > 0) {
  1278. irq_set_irq_type(irq_num, IRQ_TYPE_EDGE_BOTH);
  1279. err = request_irq(irq_num, pch_vbus_gpio_irq, 0,
  1280. "vbus_detect", dev);
  1281. if (!err) {
  1282. dev->vbus_gpio.intr = irq_num;
  1283. INIT_WORK(&dev->vbus_gpio.irq_work_rise,
  1284. pch_vbus_gpio_work_rise);
  1285. } else {
  1286. pr_err("%s: can't request irq %d, err: %d\n",
  1287. __func__, irq_num, err);
  1288. }
  1289. }
  1290. return 0;
  1291. }
  1292. /**
  1293. * pch_vbus_gpio_free() - This API frees resources of GPIO port
  1294. * @dev: Reference to the driver structure
  1295. */
  1296. static void pch_vbus_gpio_free(struct pch_udc_dev *dev)
  1297. {
  1298. if (dev->vbus_gpio.intr)
  1299. free_irq(dev->vbus_gpio.intr, dev);
  1300. if (dev->vbus_gpio.port)
  1301. gpio_free(dev->vbus_gpio.port);
  1302. }
  1303. /**
  1304. * complete_req() - This API is invoked from the driver when processing
  1305. * of a request is complete
  1306. * @ep: Reference to the endpoint structure
  1307. * @req: Reference to the request structure
  1308. * @status: Indicates the success/failure of completion
  1309. */
  1310. static void complete_req(struct pch_udc_ep *ep, struct pch_udc_request *req,
  1311. int status)
  1312. {
  1313. struct pch_udc_dev *dev;
  1314. unsigned halted = ep->halted;
  1315. list_del_init(&req->queue);
  1316. /* set new status if pending */
  1317. if (req->req.status == -EINPROGRESS)
  1318. req->req.status = status;
  1319. else
  1320. status = req->req.status;
  1321. dev = ep->dev;
  1322. if (req->dma_mapped) {
  1323. if (req->dma == DMA_ADDR_INVALID) {
  1324. if (ep->in)
  1325. dma_unmap_single(&dev->pdev->dev, req->req.dma,
  1326. req->req.length,
  1327. DMA_TO_DEVICE);
  1328. else
  1329. dma_unmap_single(&dev->pdev->dev, req->req.dma,
  1330. req->req.length,
  1331. DMA_FROM_DEVICE);
  1332. req->req.dma = DMA_ADDR_INVALID;
  1333. } else {
  1334. if (ep->in)
  1335. dma_unmap_single(&dev->pdev->dev, req->dma,
  1336. req->req.length,
  1337. DMA_TO_DEVICE);
  1338. else {
  1339. dma_unmap_single(&dev->pdev->dev, req->dma,
  1340. req->req.length,
  1341. DMA_FROM_DEVICE);
  1342. memcpy(req->req.buf, req->buf, req->req.length);
  1343. }
  1344. kfree(req->buf);
  1345. req->dma = DMA_ADDR_INVALID;
  1346. }
  1347. req->dma_mapped = 0;
  1348. }
  1349. ep->halted = 1;
  1350. spin_unlock(&dev->lock);
  1351. if (!ep->in)
  1352. pch_udc_ep_clear_rrdy(ep);
  1353. req->req.complete(&ep->ep, &req->req);
  1354. spin_lock(&dev->lock);
  1355. ep->halted = halted;
  1356. }
  1357. /**
  1358. * empty_req_queue() - This API empties the request queue of an endpoint
  1359. * @ep: Reference to the endpoint structure
  1360. */
  1361. static void empty_req_queue(struct pch_udc_ep *ep)
  1362. {
  1363. struct pch_udc_request *req;
  1364. ep->halted = 1;
  1365. while (!list_empty(&ep->queue)) {
  1366. req = list_entry(ep->queue.next, struct pch_udc_request, queue);
  1367. complete_req(ep, req, -ESHUTDOWN); /* Remove from list */
  1368. }
  1369. }
  1370. /**
  1371. * pch_udc_free_dma_chain() - This function frees the DMA chain created
  1372. * for the request
  1373. * @dev Reference to the driver structure
  1374. * @req Reference to the request to be freed
  1375. *
  1376. * Return codes:
  1377. * 0: Success
  1378. */
  1379. static void pch_udc_free_dma_chain(struct pch_udc_dev *dev,
  1380. struct pch_udc_request *req)
  1381. {
  1382. struct pch_udc_data_dma_desc *td = req->td_data;
  1383. unsigned i = req->chain_len;
  1384. dma_addr_t addr2;
  1385. dma_addr_t addr = (dma_addr_t)td->next;
  1386. td->next = 0x00;
  1387. for (; i > 1; --i) {
  1388. /* do not free first desc., will be done by free for request */
  1389. td = phys_to_virt(addr);
  1390. addr2 = (dma_addr_t)td->next;
  1391. pci_pool_free(dev->data_requests, td, addr);
  1392. td->next = 0x00;
  1393. addr = addr2;
  1394. }
  1395. req->chain_len = 1;
  1396. }
  1397. /**
  1398. * pch_udc_create_dma_chain() - This function creates or reinitializes
  1399. * a DMA chain
  1400. * @ep: Reference to the endpoint structure
  1401. * @req: Reference to the request
  1402. * @buf_len: The buffer length
  1403. * @gfp_flags: Flags to be used while mapping the data buffer
  1404. *
  1405. * Return codes:
  1406. * 0: success,
  1407. * -ENOMEM: pci_pool_alloc invocation fails
  1408. */
  1409. static int pch_udc_create_dma_chain(struct pch_udc_ep *ep,
  1410. struct pch_udc_request *req,
  1411. unsigned long buf_len,
  1412. gfp_t gfp_flags)
  1413. {
  1414. struct pch_udc_data_dma_desc *td = req->td_data, *last;
  1415. unsigned long bytes = req->req.length, i = 0;
  1416. dma_addr_t dma_addr;
  1417. unsigned len = 1;
  1418. if (req->chain_len > 1)
  1419. pch_udc_free_dma_chain(ep->dev, req);
  1420. if (req->dma == DMA_ADDR_INVALID)
  1421. td->dataptr = req->req.dma;
  1422. else
  1423. td->dataptr = req->dma;
  1424. td->status = PCH_UDC_BS_HST_BSY;
  1425. for (; ; bytes -= buf_len, ++len) {
  1426. td->status = PCH_UDC_BS_HST_BSY | min(buf_len, bytes);
  1427. if (bytes <= buf_len)
  1428. break;
  1429. last = td;
  1430. td = pci_pool_alloc(ep->dev->data_requests, gfp_flags,
  1431. &dma_addr);
  1432. if (!td)
  1433. goto nomem;
  1434. i += buf_len;
  1435. td->dataptr = req->td_data->dataptr + i;
  1436. last->next = dma_addr;
  1437. }
  1438. req->td_data_last = td;
  1439. td->status |= PCH_UDC_DMA_LAST;
  1440. td->next = req->td_data_phys;
  1441. req->chain_len = len;
  1442. return 0;
  1443. nomem:
  1444. if (len > 1) {
  1445. req->chain_len = len;
  1446. pch_udc_free_dma_chain(ep->dev, req);
  1447. }
  1448. req->chain_len = 1;
  1449. return -ENOMEM;
  1450. }
  1451. /**
  1452. * prepare_dma() - This function creates and initializes the DMA chain
  1453. * for the request
  1454. * @ep: Reference to the endpoint structure
  1455. * @req: Reference to the request
  1456. * @gfp: Flag to be used while mapping the data buffer
  1457. *
  1458. * Return codes:
  1459. * 0: Success
  1460. * Other 0: linux error number on failure
  1461. */
  1462. static int prepare_dma(struct pch_udc_ep *ep, struct pch_udc_request *req,
  1463. gfp_t gfp)
  1464. {
  1465. int retval;
  1466. /* Allocate and create a DMA chain */
  1467. retval = pch_udc_create_dma_chain(ep, req, ep->ep.maxpacket, gfp);
  1468. if (retval) {
  1469. pr_err("%s: could not create DMA chain:%d\n", __func__, retval);
  1470. return retval;
  1471. }
  1472. if (ep->in)
  1473. req->td_data->status = (req->td_data->status &
  1474. ~PCH_UDC_BUFF_STS) | PCH_UDC_BS_HST_RDY;
  1475. return 0;
  1476. }
  1477. /**
  1478. * process_zlp() - This function process zero length packets
  1479. * from the gadget driver
  1480. * @ep: Reference to the endpoint structure
  1481. * @req: Reference to the request
  1482. */
  1483. static void process_zlp(struct pch_udc_ep *ep, struct pch_udc_request *req)
  1484. {
  1485. struct pch_udc_dev *dev = ep->dev;
  1486. /* IN zlp's are handled by hardware */
  1487. complete_req(ep, req, 0);
  1488. /* if set_config or set_intf is waiting for ack by zlp
  1489. * then set CSR_DONE
  1490. */
  1491. if (dev->set_cfg_not_acked) {
  1492. pch_udc_set_csr_done(dev);
  1493. dev->set_cfg_not_acked = 0;
  1494. }
  1495. /* setup command is ACK'ed now by zlp */
  1496. if (!dev->stall && dev->waiting_zlp_ack) {
  1497. pch_udc_ep_clear_nak(&(dev->ep[UDC_EP0IN_IDX]));
  1498. dev->waiting_zlp_ack = 0;
  1499. }
  1500. }
  1501. /**
  1502. * pch_udc_start_rxrequest() - This function starts the receive requirement.
  1503. * @ep: Reference to the endpoint structure
  1504. * @req: Reference to the request structure
  1505. */
  1506. static void pch_udc_start_rxrequest(struct pch_udc_ep *ep,
  1507. struct pch_udc_request *req)
  1508. {
  1509. struct pch_udc_data_dma_desc *td_data;
  1510. pch_udc_clear_dma(ep->dev, DMA_DIR_RX);
  1511. td_data = req->td_data;
  1512. /* Set the status bits for all descriptors */
  1513. while (1) {
  1514. td_data->status = (td_data->status & ~PCH_UDC_BUFF_STS) |
  1515. PCH_UDC_BS_HST_RDY;
  1516. if ((td_data->status & PCH_UDC_DMA_LAST) == PCH_UDC_DMA_LAST)
  1517. break;
  1518. td_data = phys_to_virt(td_data->next);
  1519. }
  1520. /* Write the descriptor pointer */
  1521. pch_udc_ep_set_ddptr(ep, req->td_data_phys);
  1522. req->dma_going = 1;
  1523. pch_udc_enable_ep_interrupts(ep->dev, UDC_EPINT_OUT_EP0 << ep->num);
  1524. pch_udc_set_dma(ep->dev, DMA_DIR_RX);
  1525. pch_udc_ep_clear_nak(ep);
  1526. pch_udc_ep_set_rrdy(ep);
  1527. }
  1528. /**
  1529. * pch_udc_pcd_ep_enable() - This API enables the endpoint. It is called
  1530. * from gadget driver
  1531. * @usbep: Reference to the USB endpoint structure
  1532. * @desc: Reference to the USB endpoint descriptor structure
  1533. *
  1534. * Return codes:
  1535. * 0: Success
  1536. * -EINVAL:
  1537. * -ESHUTDOWN:
  1538. */
  1539. static int pch_udc_pcd_ep_enable(struct usb_ep *usbep,
  1540. const struct usb_endpoint_descriptor *desc)
  1541. {
  1542. struct pch_udc_ep *ep;
  1543. struct pch_udc_dev *dev;
  1544. unsigned long iflags;
  1545. if (!usbep || (usbep->name == ep0_string) || !desc ||
  1546. (desc->bDescriptorType != USB_DT_ENDPOINT) || !desc->wMaxPacketSize)
  1547. return -EINVAL;
  1548. ep = container_of(usbep, struct pch_udc_ep, ep);
  1549. dev = ep->dev;
  1550. if (!dev->driver || (dev->gadget.speed == USB_SPEED_UNKNOWN))
  1551. return -ESHUTDOWN;
  1552. spin_lock_irqsave(&dev->lock, iflags);
  1553. ep->desc = desc;
  1554. ep->halted = 0;
  1555. pch_udc_ep_enable(ep, &ep->dev->cfg_data, desc);
  1556. ep->ep.maxpacket = usb_endpoint_maxp(desc);
  1557. pch_udc_enable_ep_interrupts(ep->dev, PCH_UDC_EPINT(ep->in, ep->num));
  1558. spin_unlock_irqrestore(&dev->lock, iflags);
  1559. return 0;
  1560. }
  1561. /**
  1562. * pch_udc_pcd_ep_disable() - This API disables endpoint and is called
  1563. * from gadget driver
  1564. * @usbep Reference to the USB endpoint structure
  1565. *
  1566. * Return codes:
  1567. * 0: Success
  1568. * -EINVAL:
  1569. */
  1570. static int pch_udc_pcd_ep_disable(struct usb_ep *usbep)
  1571. {
  1572. struct pch_udc_ep *ep;
  1573. struct pch_udc_dev *dev;
  1574. unsigned long iflags;
  1575. if (!usbep)
  1576. return -EINVAL;
  1577. ep = container_of(usbep, struct pch_udc_ep, ep);
  1578. dev = ep->dev;
  1579. if ((usbep->name == ep0_string) || !ep->desc)
  1580. return -EINVAL;
  1581. spin_lock_irqsave(&ep->dev->lock, iflags);
  1582. empty_req_queue(ep);
  1583. ep->halted = 1;
  1584. pch_udc_ep_disable(ep);
  1585. pch_udc_disable_ep_interrupts(ep->dev, PCH_UDC_EPINT(ep->in, ep->num));
  1586. ep->desc = NULL;
  1587. ep->ep.desc = NULL;
  1588. INIT_LIST_HEAD(&ep->queue);
  1589. spin_unlock_irqrestore(&ep->dev->lock, iflags);
  1590. return 0;
  1591. }
  1592. /**
  1593. * pch_udc_alloc_request() - This function allocates request structure.
  1594. * It is called by gadget driver
  1595. * @usbep: Reference to the USB endpoint structure
  1596. * @gfp: Flag to be used while allocating memory
  1597. *
  1598. * Return codes:
  1599. * NULL: Failure
  1600. * Allocated address: Success
  1601. */
  1602. static struct usb_request *pch_udc_alloc_request(struct usb_ep *usbep,
  1603. gfp_t gfp)
  1604. {
  1605. struct pch_udc_request *req;
  1606. struct pch_udc_ep *ep;
  1607. struct pch_udc_data_dma_desc *dma_desc;
  1608. struct pch_udc_dev *dev;
  1609. if (!usbep)
  1610. return NULL;
  1611. ep = container_of(usbep, struct pch_udc_ep, ep);
  1612. dev = ep->dev;
  1613. req = kzalloc(sizeof *req, gfp);
  1614. if (!req)
  1615. return NULL;
  1616. req->req.dma = DMA_ADDR_INVALID;
  1617. req->dma = DMA_ADDR_INVALID;
  1618. INIT_LIST_HEAD(&req->queue);
  1619. if (!ep->dev->dma_addr)
  1620. return &req->req;
  1621. /* ep0 in requests are allocated from data pool here */
  1622. dma_desc = pci_pool_alloc(ep->dev->data_requests, gfp,
  1623. &req->td_data_phys);
  1624. if (NULL == dma_desc) {
  1625. kfree(req);
  1626. return NULL;
  1627. }
  1628. /* prevent from using desc. - set HOST BUSY */
  1629. dma_desc->status |= PCH_UDC_BS_HST_BSY;
  1630. dma_desc->dataptr = __constant_cpu_to_le32(DMA_ADDR_INVALID);
  1631. req->td_data = dma_desc;
  1632. req->td_data_last = dma_desc;
  1633. req->chain_len = 1;
  1634. return &req->req;
  1635. }
  1636. /**
  1637. * pch_udc_free_request() - This function frees request structure.
  1638. * It is called by gadget driver
  1639. * @usbep: Reference to the USB endpoint structure
  1640. * @usbreq: Reference to the USB request
  1641. */
  1642. static void pch_udc_free_request(struct usb_ep *usbep,
  1643. struct usb_request *usbreq)
  1644. {
  1645. struct pch_udc_ep *ep;
  1646. struct pch_udc_request *req;
  1647. struct pch_udc_dev *dev;
  1648. if (!usbep || !usbreq)
  1649. return;
  1650. ep = container_of(usbep, struct pch_udc_ep, ep);
  1651. req = container_of(usbreq, struct pch_udc_request, req);
  1652. dev = ep->dev;
  1653. if (!list_empty(&req->queue))
  1654. dev_err(&dev->pdev->dev, "%s: %s req=0x%p queue not empty\n",
  1655. __func__, usbep->name, req);
  1656. if (req->td_data != NULL) {
  1657. if (req->chain_len > 1)
  1658. pch_udc_free_dma_chain(ep->dev, req);
  1659. pci_pool_free(ep->dev->data_requests, req->td_data,
  1660. req->td_data_phys);
  1661. }
  1662. kfree(req);
  1663. }
  1664. /**
  1665. * pch_udc_pcd_queue() - This function queues a request packet. It is called
  1666. * by gadget driver
  1667. * @usbep: Reference to the USB endpoint structure
  1668. * @usbreq: Reference to the USB request
  1669. * @gfp: Flag to be used while mapping the data buffer
  1670. *
  1671. * Return codes:
  1672. * 0: Success
  1673. * linux error number: Failure
  1674. */
  1675. static int pch_udc_pcd_queue(struct usb_ep *usbep, struct usb_request *usbreq,
  1676. gfp_t gfp)
  1677. {
  1678. int retval = 0;
  1679. struct pch_udc_ep *ep;
  1680. struct pch_udc_dev *dev;
  1681. struct pch_udc_request *req;
  1682. unsigned long iflags;
  1683. if (!usbep || !usbreq || !usbreq->complete || !usbreq->buf)
  1684. return -EINVAL;
  1685. ep = container_of(usbep, struct pch_udc_ep, ep);
  1686. dev = ep->dev;
  1687. if (!ep->desc && ep->num)
  1688. return -EINVAL;
  1689. req = container_of(usbreq, struct pch_udc_request, req);
  1690. if (!list_empty(&req->queue))
  1691. return -EINVAL;
  1692. if (!dev->driver || (dev->gadget.speed == USB_SPEED_UNKNOWN))
  1693. return -ESHUTDOWN;
  1694. spin_lock_irqsave(&dev->lock, iflags);
  1695. /* map the buffer for dma */
  1696. if (usbreq->length &&
  1697. ((usbreq->dma == DMA_ADDR_INVALID) || !usbreq->dma)) {
  1698. if (!((unsigned long)(usbreq->buf) & 0x03)) {
  1699. if (ep->in)
  1700. usbreq->dma = dma_map_single(&dev->pdev->dev,
  1701. usbreq->buf,
  1702. usbreq->length,
  1703. DMA_TO_DEVICE);
  1704. else
  1705. usbreq->dma = dma_map_single(&dev->pdev->dev,
  1706. usbreq->buf,
  1707. usbreq->length,
  1708. DMA_FROM_DEVICE);
  1709. } else {
  1710. req->buf = kzalloc(usbreq->length, GFP_ATOMIC);
  1711. if (!req->buf) {
  1712. retval = -ENOMEM;
  1713. goto probe_end;
  1714. }
  1715. if (ep->in) {
  1716. memcpy(req->buf, usbreq->buf, usbreq->length);
  1717. req->dma = dma_map_single(&dev->pdev->dev,
  1718. req->buf,
  1719. usbreq->length,
  1720. DMA_TO_DEVICE);
  1721. } else
  1722. req->dma = dma_map_single(&dev->pdev->dev,
  1723. req->buf,
  1724. usbreq->length,
  1725. DMA_FROM_DEVICE);
  1726. }
  1727. req->dma_mapped = 1;
  1728. }
  1729. if (usbreq->length > 0) {
  1730. retval = prepare_dma(ep, req, GFP_ATOMIC);
  1731. if (retval)
  1732. goto probe_end;
  1733. }
  1734. usbreq->actual = 0;
  1735. usbreq->status = -EINPROGRESS;
  1736. req->dma_done = 0;
  1737. if (list_empty(&ep->queue) && !ep->halted) {
  1738. /* no pending transfer, so start this req */
  1739. if (!usbreq->length) {
  1740. process_zlp(ep, req);
  1741. retval = 0;
  1742. goto probe_end;
  1743. }
  1744. if (!ep->in) {
  1745. pch_udc_start_rxrequest(ep, req);
  1746. } else {
  1747. /*
  1748. * For IN trfr the descriptors will be programmed and
  1749. * P bit will be set when
  1750. * we get an IN token
  1751. */
  1752. pch_udc_wait_ep_stall(ep);
  1753. pch_udc_ep_clear_nak(ep);
  1754. pch_udc_enable_ep_interrupts(ep->dev, (1 << ep->num));
  1755. }
  1756. }
  1757. /* Now add this request to the ep's pending requests */
  1758. if (req != NULL)
  1759. list_add_tail(&req->queue, &ep->queue);
  1760. probe_end:
  1761. spin_unlock_irqrestore(&dev->lock, iflags);
  1762. return retval;
  1763. }
  1764. /**
  1765. * pch_udc_pcd_dequeue() - This function de-queues a request packet.
  1766. * It is called by gadget driver
  1767. * @usbep: Reference to the USB endpoint structure
  1768. * @usbreq: Reference to the USB request
  1769. *
  1770. * Return codes:
  1771. * 0: Success
  1772. * linux error number: Failure
  1773. */
  1774. static int pch_udc_pcd_dequeue(struct usb_ep *usbep,
  1775. struct usb_request *usbreq)
  1776. {
  1777. struct pch_udc_ep *ep;
  1778. struct pch_udc_request *req;
  1779. struct pch_udc_dev *dev;
  1780. unsigned long flags;
  1781. int ret = -EINVAL;
  1782. ep = container_of(usbep, struct pch_udc_ep, ep);
  1783. dev = ep->dev;
  1784. if (!usbep || !usbreq || (!ep->desc && ep->num))
  1785. return ret;
  1786. req = container_of(usbreq, struct pch_udc_request, req);
  1787. spin_lock_irqsave(&ep->dev->lock, flags);
  1788. /* make sure it's still queued on this endpoint */
  1789. list_for_each_entry(req, &ep->queue, queue) {
  1790. if (&req->req == usbreq) {
  1791. pch_udc_ep_set_nak(ep);
  1792. if (!list_empty(&req->queue))
  1793. complete_req(ep, req, -ECONNRESET);
  1794. ret = 0;
  1795. break;
  1796. }
  1797. }
  1798. spin_unlock_irqrestore(&ep->dev->lock, flags);
  1799. return ret;
  1800. }
  1801. /**
  1802. * pch_udc_pcd_set_halt() - This function Sets or clear the endpoint halt
  1803. * feature
  1804. * @usbep: Reference to the USB endpoint structure
  1805. * @halt: Specifies whether to set or clear the feature
  1806. *
  1807. * Return codes:
  1808. * 0: Success
  1809. * linux error number: Failure
  1810. */
  1811. static int pch_udc_pcd_set_halt(struct usb_ep *usbep, int halt)
  1812. {
  1813. struct pch_udc_ep *ep;
  1814. struct pch_udc_dev *dev;
  1815. unsigned long iflags;
  1816. int ret;
  1817. if (!usbep)
  1818. return -EINVAL;
  1819. ep = container_of(usbep, struct pch_udc_ep, ep);
  1820. dev = ep->dev;
  1821. if (!ep->desc && !ep->num)
  1822. return -EINVAL;
  1823. if (!ep->dev->driver || (ep->dev->gadget.speed == USB_SPEED_UNKNOWN))
  1824. return -ESHUTDOWN;
  1825. spin_lock_irqsave(&udc_stall_spinlock, iflags);
  1826. if (list_empty(&ep->queue)) {
  1827. if (halt) {
  1828. if (ep->num == PCH_UDC_EP0)
  1829. ep->dev->stall = 1;
  1830. pch_udc_ep_set_stall(ep);
  1831. pch_udc_enable_ep_interrupts(ep->dev,
  1832. PCH_UDC_EPINT(ep->in,
  1833. ep->num));
  1834. } else {
  1835. pch_udc_ep_clear_stall(ep);
  1836. }
  1837. ret = 0;
  1838. } else {
  1839. ret = -EAGAIN;
  1840. }
  1841. spin_unlock_irqrestore(&udc_stall_spinlock, iflags);
  1842. return ret;
  1843. }
  1844. /**
  1845. * pch_udc_pcd_set_wedge() - This function Sets or clear the endpoint
  1846. * halt feature
  1847. * @usbep: Reference to the USB endpoint structure
  1848. * @halt: Specifies whether to set or clear the feature
  1849. *
  1850. * Return codes:
  1851. * 0: Success
  1852. * linux error number: Failure
  1853. */
  1854. static int pch_udc_pcd_set_wedge(struct usb_ep *usbep)
  1855. {
  1856. struct pch_udc_ep *ep;
  1857. struct pch_udc_dev *dev;
  1858. unsigned long iflags;
  1859. int ret;
  1860. if (!usbep)
  1861. return -EINVAL;
  1862. ep = container_of(usbep, struct pch_udc_ep, ep);
  1863. dev = ep->dev;
  1864. if (!ep->desc && !ep->num)
  1865. return -EINVAL;
  1866. if (!ep->dev->driver || (ep->dev->gadget.speed == USB_SPEED_UNKNOWN))
  1867. return -ESHUTDOWN;
  1868. spin_lock_irqsave(&udc_stall_spinlock, iflags);
  1869. if (!list_empty(&ep->queue)) {
  1870. ret = -EAGAIN;
  1871. } else {
  1872. if (ep->num == PCH_UDC_EP0)
  1873. ep->dev->stall = 1;
  1874. pch_udc_ep_set_stall(ep);
  1875. pch_udc_enable_ep_interrupts(ep->dev,
  1876. PCH_UDC_EPINT(ep->in, ep->num));
  1877. ep->dev->prot_stall = 1;
  1878. ret = 0;
  1879. }
  1880. spin_unlock_irqrestore(&udc_stall_spinlock, iflags);
  1881. return ret;
  1882. }
  1883. /**
  1884. * pch_udc_pcd_fifo_flush() - This function Flush the FIFO of specified endpoint
  1885. * @usbep: Reference to the USB endpoint structure
  1886. */
  1887. static void pch_udc_pcd_fifo_flush(struct usb_ep *usbep)
  1888. {
  1889. struct pch_udc_ep *ep;
  1890. if (!usbep)
  1891. return;
  1892. ep = container_of(usbep, struct pch_udc_ep, ep);
  1893. if (ep->desc || !ep->num)
  1894. pch_udc_ep_fifo_flush(ep, ep->in);
  1895. }
  1896. static const struct usb_ep_ops pch_udc_ep_ops = {
  1897. .enable = pch_udc_pcd_ep_enable,
  1898. .disable = pch_udc_pcd_ep_disable,
  1899. .alloc_request = pch_udc_alloc_request,
  1900. .free_request = pch_udc_free_request,
  1901. .queue = pch_udc_pcd_queue,
  1902. .dequeue = pch_udc_pcd_dequeue,
  1903. .set_halt = pch_udc_pcd_set_halt,
  1904. .set_wedge = pch_udc_pcd_set_wedge,
  1905. .fifo_status = NULL,
  1906. .fifo_flush = pch_udc_pcd_fifo_flush,
  1907. };
  1908. /**
  1909. * pch_udc_init_setup_buff() - This function initializes the SETUP buffer
  1910. * @td_stp: Reference to the SETP buffer structure
  1911. */
  1912. static void pch_udc_init_setup_buff(struct pch_udc_stp_dma_desc *td_stp)
  1913. {
  1914. static u32 pky_marker;
  1915. if (!td_stp)
  1916. return;
  1917. td_stp->reserved = ++pky_marker;
  1918. memset(&td_stp->request, 0xFF, sizeof td_stp->request);
  1919. td_stp->status = PCH_UDC_BS_HST_RDY;
  1920. }
  1921. /**
  1922. * pch_udc_start_next_txrequest() - This function starts
  1923. * the next transmission requirement
  1924. * @ep: Reference to the endpoint structure
  1925. */
  1926. static void pch_udc_start_next_txrequest(struct pch_udc_ep *ep)
  1927. {
  1928. struct pch_udc_request *req;
  1929. struct pch_udc_data_dma_desc *td_data;
  1930. if (pch_udc_read_ep_control(ep) & UDC_EPCTL_P)
  1931. return;
  1932. if (list_empty(&ep->queue))
  1933. return;
  1934. /* next request */
  1935. req = list_entry(ep->queue.next, struct pch_udc_request, queue);
  1936. if (req->dma_going)
  1937. return;
  1938. if (!req->td_data)
  1939. return;
  1940. pch_udc_wait_ep_stall(ep);
  1941. req->dma_going = 1;
  1942. pch_udc_ep_set_ddptr(ep, 0);
  1943. td_data = req->td_data;
  1944. while (1) {
  1945. td_data->status = (td_data->status & ~PCH_UDC_BUFF_STS) |
  1946. PCH_UDC_BS_HST_RDY;
  1947. if ((td_data->status & PCH_UDC_DMA_LAST) == PCH_UDC_DMA_LAST)
  1948. break;
  1949. td_data = phys_to_virt(td_data->next);
  1950. }
  1951. pch_udc_ep_set_ddptr(ep, req->td_data_phys);
  1952. pch_udc_set_dma(ep->dev, DMA_DIR_TX);
  1953. pch_udc_ep_set_pd(ep);
  1954. pch_udc_enable_ep_interrupts(ep->dev, PCH_UDC_EPINT(ep->in, ep->num));
  1955. pch_udc_ep_clear_nak(ep);
  1956. }
  1957. /**
  1958. * pch_udc_complete_transfer() - This function completes a transfer
  1959. * @ep: Reference to the endpoint structure
  1960. */
  1961. static void pch_udc_complete_transfer(struct pch_udc_ep *ep)
  1962. {
  1963. struct pch_udc_request *req;
  1964. struct pch_udc_dev *dev = ep->dev;
  1965. if (list_empty(&ep->queue))
  1966. return;
  1967. req = list_entry(ep->queue.next, struct pch_udc_request, queue);
  1968. if ((req->td_data_last->status & PCH_UDC_BUFF_STS) !=
  1969. PCH_UDC_BS_DMA_DONE)
  1970. return;
  1971. if ((req->td_data_last->status & PCH_UDC_RXTX_STS) !=
  1972. PCH_UDC_RTS_SUCC) {
  1973. dev_err(&dev->pdev->dev, "Invalid RXTX status (0x%08x) "
  1974. "epstatus=0x%08x\n",
  1975. (req->td_data_last->status & PCH_UDC_RXTX_STS),
  1976. (int)(ep->epsts));
  1977. return;
  1978. }
  1979. req->req.actual = req->req.length;
  1980. req->td_data_last->status = PCH_UDC_BS_HST_BSY | PCH_UDC_DMA_LAST;
  1981. req->td_data->status = PCH_UDC_BS_HST_BSY | PCH_UDC_DMA_LAST;
  1982. complete_req(ep, req, 0);
  1983. req->dma_going = 0;
  1984. if (!list_empty(&ep->queue)) {
  1985. pch_udc_wait_ep_stall(ep);
  1986. pch_udc_ep_clear_nak(ep);
  1987. pch_udc_enable_ep_interrupts(ep->dev,
  1988. PCH_UDC_EPINT(ep->in, ep->num));
  1989. } else {
  1990. pch_udc_disable_ep_interrupts(ep->dev,
  1991. PCH_UDC_EPINT(ep->in, ep->num));
  1992. }
  1993. }
  1994. /**
  1995. * pch_udc_complete_receiver() - This function completes a receiver
  1996. * @ep: Reference to the endpoint structure
  1997. */
  1998. static void pch_udc_complete_receiver(struct pch_udc_ep *ep)
  1999. {
  2000. struct pch_udc_request *req;
  2001. struct pch_udc_dev *dev = ep->dev;
  2002. unsigned int count;
  2003. struct pch_udc_data_dma_desc *td;
  2004. dma_addr_t addr;
  2005. if (list_empty(&ep->queue))
  2006. return;
  2007. /* next request */
  2008. req = list_entry(ep->queue.next, struct pch_udc_request, queue);
  2009. pch_udc_clear_dma(ep->dev, DMA_DIR_RX);
  2010. pch_udc_ep_set_ddptr(ep, 0);
  2011. if ((req->td_data_last->status & PCH_UDC_BUFF_STS) ==
  2012. PCH_UDC_BS_DMA_DONE)
  2013. td = req->td_data_last;
  2014. else
  2015. td = req->td_data;
  2016. while (1) {
  2017. if ((td->status & PCH_UDC_RXTX_STS) != PCH_UDC_RTS_SUCC) {
  2018. dev_err(&dev->pdev->dev, "Invalid RXTX status=0x%08x "
  2019. "epstatus=0x%08x\n",
  2020. (req->td_data->status & PCH_UDC_RXTX_STS),
  2021. (int)(ep->epsts));
  2022. return;
  2023. }
  2024. if ((td->status & PCH_UDC_BUFF_STS) == PCH_UDC_BS_DMA_DONE)
  2025. if (td->status | PCH_UDC_DMA_LAST) {
  2026. count = td->status & PCH_UDC_RXTX_BYTES;
  2027. break;
  2028. }
  2029. if (td == req->td_data_last) {
  2030. dev_err(&dev->pdev->dev, "Not complete RX descriptor");
  2031. return;
  2032. }
  2033. addr = (dma_addr_t)td->next;
  2034. td = phys_to_virt(addr);
  2035. }
  2036. /* on 64k packets the RXBYTES field is zero */
  2037. if (!count && (req->req.length == UDC_DMA_MAXPACKET))
  2038. count = UDC_DMA_MAXPACKET;
  2039. req->td_data->status |= PCH_UDC_DMA_LAST;
  2040. td->status |= PCH_UDC_BS_HST_BSY;
  2041. req->dma_going = 0;
  2042. req->req.actual = count;
  2043. complete_req(ep, req, 0);
  2044. /* If there is a new/failed requests try that now */
  2045. if (!list_empty(&ep->queue)) {
  2046. req = list_entry(ep->queue.next, struct pch_udc_request, queue);
  2047. pch_udc_start_rxrequest(ep, req);
  2048. }
  2049. }
  2050. /**
  2051. * pch_udc_svc_data_in() - This function process endpoint interrupts
  2052. * for IN endpoints
  2053. * @dev: Reference to the device structure
  2054. * @ep_num: Endpoint that generated the interrupt
  2055. */
  2056. static void pch_udc_svc_data_in(struct pch_udc_dev *dev, int ep_num)
  2057. {
  2058. u32 epsts;
  2059. struct pch_udc_ep *ep;
  2060. ep = &dev->ep[UDC_EPIN_IDX(ep_num)];
  2061. epsts = ep->epsts;
  2062. ep->epsts = 0;
  2063. if (!(epsts & (UDC_EPSTS_IN | UDC_EPSTS_BNA | UDC_EPSTS_HE |
  2064. UDC_EPSTS_TDC | UDC_EPSTS_RCS | UDC_EPSTS_TXEMPTY |
  2065. UDC_EPSTS_RSS | UDC_EPSTS_XFERDONE)))
  2066. return;
  2067. if ((epsts & UDC_EPSTS_BNA))
  2068. return;
  2069. if (epsts & UDC_EPSTS_HE)
  2070. return;
  2071. if (epsts & UDC_EPSTS_RSS) {
  2072. pch_udc_ep_set_stall(ep);
  2073. pch_udc_enable_ep_interrupts(ep->dev,
  2074. PCH_UDC_EPINT(ep->in, ep->num));
  2075. }
  2076. if (epsts & UDC_EPSTS_RCS) {
  2077. if (!dev->prot_stall) {
  2078. pch_udc_ep_clear_stall(ep);
  2079. } else {
  2080. pch_udc_ep_set_stall(ep);
  2081. pch_udc_enable_ep_interrupts(ep->dev,
  2082. PCH_UDC_EPINT(ep->in, ep->num));
  2083. }
  2084. }
  2085. if (epsts & UDC_EPSTS_TDC)
  2086. pch_udc_complete_transfer(ep);
  2087. /* On IN interrupt, provide data if we have any */
  2088. if ((epsts & UDC_EPSTS_IN) && !(epsts & UDC_EPSTS_RSS) &&
  2089. !(epsts & UDC_EPSTS_TDC) && !(epsts & UDC_EPSTS_TXEMPTY))
  2090. pch_udc_start_next_txrequest(ep);
  2091. }
  2092. /**
  2093. * pch_udc_svc_data_out() - Handles interrupts from OUT endpoint
  2094. * @dev: Reference to the device structure
  2095. * @ep_num: Endpoint that generated the interrupt
  2096. */
  2097. static void pch_udc_svc_data_out(struct pch_udc_dev *dev, int ep_num)
  2098. {
  2099. u32 epsts;
  2100. struct pch_udc_ep *ep;
  2101. struct pch_udc_request *req = NULL;
  2102. ep = &dev->ep[UDC_EPOUT_IDX(ep_num)];
  2103. epsts = ep->epsts;
  2104. ep->epsts = 0;
  2105. if ((epsts & UDC_EPSTS_BNA) && (!list_empty(&ep->queue))) {
  2106. /* next request */
  2107. req = list_entry(ep->queue.next, struct pch_udc_request,
  2108. queue);
  2109. if ((req->td_data_last->status & PCH_UDC_BUFF_STS) !=
  2110. PCH_UDC_BS_DMA_DONE) {
  2111. if (!req->dma_going)
  2112. pch_udc_start_rxrequest(ep, req);
  2113. return;
  2114. }
  2115. }
  2116. if (epsts & UDC_EPSTS_HE)
  2117. return;
  2118. if (epsts & UDC_EPSTS_RSS) {
  2119. pch_udc_ep_set_stall(ep);
  2120. pch_udc_enable_ep_interrupts(ep->dev,
  2121. PCH_UDC_EPINT(ep->in, ep->num));
  2122. }
  2123. if (epsts & UDC_EPSTS_RCS) {
  2124. if (!dev->prot_stall) {
  2125. pch_udc_ep_clear_stall(ep);
  2126. } else {
  2127. pch_udc_ep_set_stall(ep);
  2128. pch_udc_enable_ep_interrupts(ep->dev,
  2129. PCH_UDC_EPINT(ep->in, ep->num));
  2130. }
  2131. }
  2132. if (((epsts & UDC_EPSTS_OUT_MASK) >> UDC_EPSTS_OUT_SHIFT) ==
  2133. UDC_EPSTS_OUT_DATA) {
  2134. if (ep->dev->prot_stall == 1) {
  2135. pch_udc_ep_set_stall(ep);
  2136. pch_udc_enable_ep_interrupts(ep->dev,
  2137. PCH_UDC_EPINT(ep->in, ep->num));
  2138. } else {
  2139. pch_udc_complete_receiver(ep);
  2140. }
  2141. }
  2142. if (list_empty(&ep->queue))
  2143. pch_udc_set_dma(dev, DMA_DIR_RX);
  2144. }
  2145. /**
  2146. * pch_udc_svc_control_in() - Handle Control IN endpoint interrupts
  2147. * @dev: Reference to the device structure
  2148. */
  2149. static void pch_udc_svc_control_in(struct pch_udc_dev *dev)
  2150. {
  2151. u32 epsts;
  2152. struct pch_udc_ep *ep;
  2153. struct pch_udc_ep *ep_out;
  2154. ep = &dev->ep[UDC_EP0IN_IDX];
  2155. ep_out = &dev->ep[UDC_EP0OUT_IDX];
  2156. epsts = ep->epsts;
  2157. ep->epsts = 0;
  2158. if (!(epsts & (UDC_EPSTS_IN | UDC_EPSTS_BNA | UDC_EPSTS_HE |
  2159. UDC_EPSTS_TDC | UDC_EPSTS_RCS | UDC_EPSTS_TXEMPTY |
  2160. UDC_EPSTS_XFERDONE)))
  2161. return;
  2162. if ((epsts & UDC_EPSTS_BNA))
  2163. return;
  2164. if (epsts & UDC_EPSTS_HE)
  2165. return;
  2166. if ((epsts & UDC_EPSTS_TDC) && (!dev->stall)) {
  2167. pch_udc_complete_transfer(ep);
  2168. pch_udc_clear_dma(dev, DMA_DIR_RX);
  2169. ep_out->td_data->status = (ep_out->td_data->status &
  2170. ~PCH_UDC_BUFF_STS) |
  2171. PCH_UDC_BS_HST_RDY;
  2172. pch_udc_ep_clear_nak(ep_out);
  2173. pch_udc_set_dma(dev, DMA_DIR_RX);
  2174. pch_udc_ep_set_rrdy(ep_out);
  2175. }
  2176. /* On IN interrupt, provide data if we have any */
  2177. if ((epsts & UDC_EPSTS_IN) && !(epsts & UDC_EPSTS_TDC) &&
  2178. !(epsts & UDC_EPSTS_TXEMPTY))
  2179. pch_udc_start_next_txrequest(ep);
  2180. }
  2181. /**
  2182. * pch_udc_svc_control_out() - Routine that handle Control
  2183. * OUT endpoint interrupts
  2184. * @dev: Reference to the device structure
  2185. */
  2186. static void pch_udc_svc_control_out(struct pch_udc_dev *dev)
  2187. {
  2188. u32 stat;
  2189. int setup_supported;
  2190. struct pch_udc_ep *ep;
  2191. ep = &dev->ep[UDC_EP0OUT_IDX];
  2192. stat = ep->epsts;
  2193. ep->epsts = 0;
  2194. /* If setup data */
  2195. if (((stat & UDC_EPSTS_OUT_MASK) >> UDC_EPSTS_OUT_SHIFT) ==
  2196. UDC_EPSTS_OUT_SETUP) {
  2197. dev->stall = 0;
  2198. dev->ep[UDC_EP0IN_IDX].halted = 0;
  2199. dev->ep[UDC_EP0OUT_IDX].halted = 0;
  2200. dev->setup_data = ep->td_stp->request;
  2201. pch_udc_init_setup_buff(ep->td_stp);
  2202. pch_udc_clear_dma(dev, DMA_DIR_RX);
  2203. pch_udc_ep_fifo_flush(&(dev->ep[UDC_EP0IN_IDX]),
  2204. dev->ep[UDC_EP0IN_IDX].in);
  2205. if ((dev->setup_data.bRequestType & USB_DIR_IN))
  2206. dev->gadget.ep0 = &dev->ep[UDC_EP0IN_IDX].ep;
  2207. else /* OUT */
  2208. dev->gadget.ep0 = &ep->ep;
  2209. spin_unlock(&dev->lock);
  2210. /* If Mass storage Reset */
  2211. if ((dev->setup_data.bRequestType == 0x21) &&
  2212. (dev->setup_data.bRequest == 0xFF))
  2213. dev->prot_stall = 0;
  2214. /* call gadget with setup data received */
  2215. setup_supported = dev->driver->setup(&dev->gadget,
  2216. &dev->setup_data);
  2217. spin_lock(&dev->lock);
  2218. if (dev->setup_data.bRequestType & USB_DIR_IN) {
  2219. ep->td_data->status = (ep->td_data->status &
  2220. ~PCH_UDC_BUFF_STS) |
  2221. PCH_UDC_BS_HST_RDY;
  2222. pch_udc_ep_set_ddptr(ep, ep->td_data_phys);
  2223. }
  2224. /* ep0 in returns data on IN phase */
  2225. if (setup_supported >= 0 && setup_supported <
  2226. UDC_EP0IN_MAX_PKT_SIZE) {
  2227. pch_udc_ep_clear_nak(&(dev->ep[UDC_EP0IN_IDX]));
  2228. /* Gadget would have queued a request when
  2229. * we called the setup */
  2230. if (!(dev->setup_data.bRequestType & USB_DIR_IN)) {
  2231. pch_udc_set_dma(dev, DMA_DIR_RX);
  2232. pch_udc_ep_clear_nak(ep);
  2233. }
  2234. } else if (setup_supported < 0) {
  2235. /* if unsupported request, then stall */
  2236. pch_udc_ep_set_stall(&(dev->ep[UDC_EP0IN_IDX]));
  2237. pch_udc_enable_ep_interrupts(ep->dev,
  2238. PCH_UDC_EPINT(ep->in, ep->num));
  2239. dev->stall = 0;
  2240. pch_udc_set_dma(dev, DMA_DIR_RX);
  2241. } else {
  2242. dev->waiting_zlp_ack = 1;
  2243. }
  2244. } else if ((((stat & UDC_EPSTS_OUT_MASK) >> UDC_EPSTS_OUT_SHIFT) ==
  2245. UDC_EPSTS_OUT_DATA) && !dev->stall) {
  2246. pch_udc_clear_dma(dev, DMA_DIR_RX);
  2247. pch_udc_ep_set_ddptr(ep, 0);
  2248. if (!list_empty(&ep->queue)) {
  2249. ep->epsts = stat;
  2250. pch_udc_svc_data_out(dev, PCH_UDC_EP0);
  2251. }
  2252. pch_udc_set_dma(dev, DMA_DIR_RX);
  2253. }
  2254. pch_udc_ep_set_rrdy(ep);
  2255. }
  2256. /**
  2257. * pch_udc_postsvc_epinters() - This function enables end point interrupts
  2258. * and clears NAK status
  2259. * @dev: Reference to the device structure
  2260. * @ep_num: End point number
  2261. */
  2262. static void pch_udc_postsvc_epinters(struct pch_udc_dev *dev, int ep_num)
  2263. {
  2264. struct pch_udc_ep *ep;
  2265. struct pch_udc_request *req;
  2266. ep = &dev->ep[UDC_EPIN_IDX(ep_num)];
  2267. if (!list_empty(&ep->queue)) {
  2268. req = list_entry(ep->queue.next, struct pch_udc_request, queue);
  2269. pch_udc_enable_ep_interrupts(ep->dev,
  2270. PCH_UDC_EPINT(ep->in, ep->num));
  2271. pch_udc_ep_clear_nak(ep);
  2272. }
  2273. }
  2274. /**
  2275. * pch_udc_read_all_epstatus() - This function read all endpoint status
  2276. * @dev: Reference to the device structure
  2277. * @ep_intr: Status of endpoint interrupt
  2278. */
  2279. static void pch_udc_read_all_epstatus(struct pch_udc_dev *dev, u32 ep_intr)
  2280. {
  2281. int i;
  2282. struct pch_udc_ep *ep;
  2283. for (i = 0; i < PCH_UDC_USED_EP_NUM; i++) {
  2284. /* IN */
  2285. if (ep_intr & (0x1 << i)) {
  2286. ep = &dev->ep[UDC_EPIN_IDX(i)];
  2287. ep->epsts = pch_udc_read_ep_status(ep);
  2288. pch_udc_clear_ep_status(ep, ep->epsts);
  2289. }
  2290. /* OUT */
  2291. if (ep_intr & (0x10000 << i)) {
  2292. ep = &dev->ep[UDC_EPOUT_IDX(i)];
  2293. ep->epsts = pch_udc_read_ep_status(ep);
  2294. pch_udc_clear_ep_status(ep, ep->epsts);
  2295. }
  2296. }
  2297. }
  2298. /**
  2299. * pch_udc_activate_control_ep() - This function enables the control endpoints
  2300. * for traffic after a reset
  2301. * @dev: Reference to the device structure
  2302. */
  2303. static void pch_udc_activate_control_ep(struct pch_udc_dev *dev)
  2304. {
  2305. struct pch_udc_ep *ep;
  2306. u32 val;
  2307. /* Setup the IN endpoint */
  2308. ep = &dev->ep[UDC_EP0IN_IDX];
  2309. pch_udc_clear_ep_control(ep);
  2310. pch_udc_ep_fifo_flush(ep, ep->in);
  2311. pch_udc_ep_set_bufsz(ep, UDC_EP0IN_BUFF_SIZE, ep->in);
  2312. pch_udc_ep_set_maxpkt(ep, UDC_EP0IN_MAX_PKT_SIZE);
  2313. /* Initialize the IN EP Descriptor */
  2314. ep->td_data = NULL;
  2315. ep->td_stp = NULL;
  2316. ep->td_data_phys = 0;
  2317. ep->td_stp_phys = 0;
  2318. /* Setup the OUT endpoint */
  2319. ep = &dev->ep[UDC_EP0OUT_IDX];
  2320. pch_udc_clear_ep_control(ep);
  2321. pch_udc_ep_fifo_flush(ep, ep->in);
  2322. pch_udc_ep_set_bufsz(ep, UDC_EP0OUT_BUFF_SIZE, ep->in);
  2323. pch_udc_ep_set_maxpkt(ep, UDC_EP0OUT_MAX_PKT_SIZE);
  2324. val = UDC_EP0OUT_MAX_PKT_SIZE << UDC_CSR_NE_MAX_PKT_SHIFT;
  2325. pch_udc_write_csr(ep->dev, val, UDC_EP0OUT_IDX);
  2326. /* Initialize the SETUP buffer */
  2327. pch_udc_init_setup_buff(ep->td_stp);
  2328. /* Write the pointer address of dma descriptor */
  2329. pch_udc_ep_set_subptr(ep, ep->td_stp_phys);
  2330. /* Write the pointer address of Setup descriptor */
  2331. pch_udc_ep_set_ddptr(ep, ep->td_data_phys);
  2332. /* Initialize the dma descriptor */
  2333. ep->td_data->status = PCH_UDC_DMA_LAST;
  2334. ep->td_data->dataptr = dev->dma_addr;
  2335. ep->td_data->next = ep->td_data_phys;
  2336. pch_udc_ep_clear_nak(ep);
  2337. }
  2338. /**
  2339. * pch_udc_svc_ur_interrupt() - This function handles a USB reset interrupt
  2340. * @dev: Reference to driver structure
  2341. */
  2342. static void pch_udc_svc_ur_interrupt(struct pch_udc_dev *dev)
  2343. {
  2344. struct pch_udc_ep *ep;
  2345. int i;
  2346. pch_udc_clear_dma(dev, DMA_DIR_TX);
  2347. pch_udc_clear_dma(dev, DMA_DIR_RX);
  2348. /* Mask all endpoint interrupts */
  2349. pch_udc_disable_ep_interrupts(dev, UDC_EPINT_MSK_DISABLE_ALL);
  2350. /* clear all endpoint interrupts */
  2351. pch_udc_write_ep_interrupts(dev, UDC_EPINT_MSK_DISABLE_ALL);
  2352. for (i = 0; i < PCH_UDC_EP_NUM; i++) {
  2353. ep = &dev->ep[i];
  2354. pch_udc_clear_ep_status(ep, UDC_EPSTS_ALL_CLR_MASK);
  2355. pch_udc_clear_ep_control(ep);
  2356. pch_udc_ep_set_ddptr(ep, 0);
  2357. pch_udc_write_csr(ep->dev, 0x00, i);
  2358. }
  2359. dev->stall = 0;
  2360. dev->prot_stall = 0;
  2361. dev->waiting_zlp_ack = 0;
  2362. dev->set_cfg_not_acked = 0;
  2363. /* disable ep to empty req queue. Skip the control EP's */
  2364. for (i = 0; i < (PCH_UDC_USED_EP_NUM*2); i++) {
  2365. ep = &dev->ep[i];
  2366. pch_udc_ep_set_nak(ep);
  2367. pch_udc_ep_fifo_flush(ep, ep->in);
  2368. /* Complete request queue */
  2369. empty_req_queue(ep);
  2370. }
  2371. if (dev->driver && dev->driver->disconnect) {
  2372. spin_unlock(&dev->lock);
  2373. dev->driver->disconnect(&dev->gadget);
  2374. spin_lock(&dev->lock);
  2375. }
  2376. }
  2377. /**
  2378. * pch_udc_svc_enum_interrupt() - This function handles a USB speed enumeration
  2379. * done interrupt
  2380. * @dev: Reference to driver structure
  2381. */
  2382. static void pch_udc_svc_enum_interrupt(struct pch_udc_dev *dev)
  2383. {
  2384. u32 dev_stat, dev_speed;
  2385. u32 speed = USB_SPEED_FULL;
  2386. dev_stat = pch_udc_read_device_status(dev);
  2387. dev_speed = (dev_stat & UDC_DEVSTS_ENUM_SPEED_MASK) >>
  2388. UDC_DEVSTS_ENUM_SPEED_SHIFT;
  2389. switch (dev_speed) {
  2390. case UDC_DEVSTS_ENUM_SPEED_HIGH:
  2391. speed = USB_SPEED_HIGH;
  2392. break;
  2393. case UDC_DEVSTS_ENUM_SPEED_FULL:
  2394. speed = USB_SPEED_FULL;
  2395. break;
  2396. case UDC_DEVSTS_ENUM_SPEED_LOW:
  2397. speed = USB_SPEED_LOW;
  2398. break;
  2399. default:
  2400. BUG();
  2401. }
  2402. dev->gadget.speed = speed;
  2403. pch_udc_activate_control_ep(dev);
  2404. pch_udc_enable_ep_interrupts(dev, UDC_EPINT_IN_EP0 | UDC_EPINT_OUT_EP0);
  2405. pch_udc_set_dma(dev, DMA_DIR_TX);
  2406. pch_udc_set_dma(dev, DMA_DIR_RX);
  2407. pch_udc_ep_set_rrdy(&(dev->ep[UDC_EP0OUT_IDX]));
  2408. /* enable device interrupts */
  2409. pch_udc_enable_interrupts(dev, UDC_DEVINT_UR | UDC_DEVINT_US |
  2410. UDC_DEVINT_ES | UDC_DEVINT_ENUM |
  2411. UDC_DEVINT_SI | UDC_DEVINT_SC);
  2412. }
  2413. /**
  2414. * pch_udc_svc_intf_interrupt() - This function handles a set interface
  2415. * interrupt
  2416. * @dev: Reference to driver structure
  2417. */
  2418. static void pch_udc_svc_intf_interrupt(struct pch_udc_dev *dev)
  2419. {
  2420. u32 reg, dev_stat = 0;
  2421. int i, ret;
  2422. dev_stat = pch_udc_read_device_status(dev);
  2423. dev->cfg_data.cur_intf = (dev_stat & UDC_DEVSTS_INTF_MASK) >>
  2424. UDC_DEVSTS_INTF_SHIFT;
  2425. dev->cfg_data.cur_alt = (dev_stat & UDC_DEVSTS_ALT_MASK) >>
  2426. UDC_DEVSTS_ALT_SHIFT;
  2427. dev->set_cfg_not_acked = 1;
  2428. /* Construct the usb request for gadget driver and inform it */
  2429. memset(&dev->setup_data, 0 , sizeof dev->setup_data);
  2430. dev->setup_data.bRequest = USB_REQ_SET_INTERFACE;
  2431. dev->setup_data.bRequestType = USB_RECIP_INTERFACE;
  2432. dev->setup_data.wValue = cpu_to_le16(dev->cfg_data.cur_alt);
  2433. dev->setup_data.wIndex = cpu_to_le16(dev->cfg_data.cur_intf);
  2434. /* programm the Endpoint Cfg registers */
  2435. /* Only one end point cfg register */
  2436. reg = pch_udc_read_csr(dev, UDC_EP0OUT_IDX);
  2437. reg = (reg & ~UDC_CSR_NE_INTF_MASK) |
  2438. (dev->cfg_data.cur_intf << UDC_CSR_NE_INTF_SHIFT);
  2439. reg = (reg & ~UDC_CSR_NE_ALT_MASK) |
  2440. (dev->cfg_data.cur_alt << UDC_CSR_NE_ALT_SHIFT);
  2441. pch_udc_write_csr(dev, reg, UDC_EP0OUT_IDX);
  2442. for (i = 0; i < PCH_UDC_USED_EP_NUM * 2; i++) {
  2443. /* clear stall bits */
  2444. pch_udc_ep_clear_stall(&(dev->ep[i]));
  2445. dev->ep[i].halted = 0;
  2446. }
  2447. dev->stall = 0;
  2448. spin_unlock(&dev->lock);
  2449. ret = dev->driver->setup(&dev->gadget, &dev->setup_data);
  2450. spin_lock(&dev->lock);
  2451. }
  2452. /**
  2453. * pch_udc_svc_cfg_interrupt() - This function handles a set configuration
  2454. * interrupt
  2455. * @dev: Reference to driver structure
  2456. */
  2457. static void pch_udc_svc_cfg_interrupt(struct pch_udc_dev *dev)
  2458. {
  2459. int i, ret;
  2460. u32 reg, dev_stat = 0;
  2461. dev_stat = pch_udc_read_device_status(dev);
  2462. dev->set_cfg_not_acked = 1;
  2463. dev->cfg_data.cur_cfg = (dev_stat & UDC_DEVSTS_CFG_MASK) >>
  2464. UDC_DEVSTS_CFG_SHIFT;
  2465. /* make usb request for gadget driver */
  2466. memset(&dev->setup_data, 0 , sizeof dev->setup_data);
  2467. dev->setup_data.bRequest = USB_REQ_SET_CONFIGURATION;
  2468. dev->setup_data.wValue = cpu_to_le16(dev->cfg_data.cur_cfg);
  2469. /* program the NE registers */
  2470. /* Only one end point cfg register */
  2471. reg = pch_udc_read_csr(dev, UDC_EP0OUT_IDX);
  2472. reg = (reg & ~UDC_CSR_NE_CFG_MASK) |
  2473. (dev->cfg_data.cur_cfg << UDC_CSR_NE_CFG_SHIFT);
  2474. pch_udc_write_csr(dev, reg, UDC_EP0OUT_IDX);
  2475. for (i = 0; i < PCH_UDC_USED_EP_NUM * 2; i++) {
  2476. /* clear stall bits */
  2477. pch_udc_ep_clear_stall(&(dev->ep[i]));
  2478. dev->ep[i].halted = 0;
  2479. }
  2480. dev->stall = 0;
  2481. /* call gadget zero with setup data received */
  2482. spin_unlock(&dev->lock);
  2483. ret = dev->driver->setup(&dev->gadget, &dev->setup_data);
  2484. spin_lock(&dev->lock);
  2485. }
  2486. /**
  2487. * pch_udc_dev_isr() - This function services device interrupts
  2488. * by invoking appropriate routines.
  2489. * @dev: Reference to the device structure
  2490. * @dev_intr: The Device interrupt status.
  2491. */
  2492. static void pch_udc_dev_isr(struct pch_udc_dev *dev, u32 dev_intr)
  2493. {
  2494. int vbus;
  2495. /* USB Reset Interrupt */
  2496. if (dev_intr & UDC_DEVINT_UR) {
  2497. pch_udc_svc_ur_interrupt(dev);
  2498. dev_dbg(&dev->pdev->dev, "USB_RESET\n");
  2499. }
  2500. /* Enumeration Done Interrupt */
  2501. if (dev_intr & UDC_DEVINT_ENUM) {
  2502. pch_udc_svc_enum_interrupt(dev);
  2503. dev_dbg(&dev->pdev->dev, "USB_ENUM\n");
  2504. }
  2505. /* Set Interface Interrupt */
  2506. if (dev_intr & UDC_DEVINT_SI)
  2507. pch_udc_svc_intf_interrupt(dev);
  2508. /* Set Config Interrupt */
  2509. if (dev_intr & UDC_DEVINT_SC)
  2510. pch_udc_svc_cfg_interrupt(dev);
  2511. /* USB Suspend interrupt */
  2512. if (dev_intr & UDC_DEVINT_US) {
  2513. if (dev->driver
  2514. && dev->driver->suspend) {
  2515. spin_unlock(&dev->lock);
  2516. dev->driver->suspend(&dev->gadget);
  2517. spin_lock(&dev->lock);
  2518. }
  2519. vbus = pch_vbus_gpio_get_value(dev);
  2520. if ((dev->vbus_session == 0)
  2521. && (vbus != 1)) {
  2522. if (dev->driver && dev->driver->disconnect) {
  2523. spin_unlock(&dev->lock);
  2524. dev->driver->disconnect(&dev->gadget);
  2525. spin_lock(&dev->lock);
  2526. }
  2527. pch_udc_reconnect(dev);
  2528. } else if ((dev->vbus_session == 0)
  2529. && (vbus == 1)
  2530. && !dev->vbus_gpio.intr)
  2531. schedule_work(&dev->vbus_gpio.irq_work_fall);
  2532. dev_dbg(&dev->pdev->dev, "USB_SUSPEND\n");
  2533. }
  2534. /* Clear the SOF interrupt, if enabled */
  2535. if (dev_intr & UDC_DEVINT_SOF)
  2536. dev_dbg(&dev->pdev->dev, "SOF\n");
  2537. /* ES interrupt, IDLE > 3ms on the USB */
  2538. if (dev_intr & UDC_DEVINT_ES)
  2539. dev_dbg(&dev->pdev->dev, "ES\n");
  2540. /* RWKP interrupt */
  2541. if (dev_intr & UDC_DEVINT_RWKP)
  2542. dev_dbg(&dev->pdev->dev, "RWKP\n");
  2543. }
  2544. /**
  2545. * pch_udc_isr() - This function handles interrupts from the PCH USB Device
  2546. * @irq: Interrupt request number
  2547. * @dev: Reference to the device structure
  2548. */
  2549. static irqreturn_t pch_udc_isr(int irq, void *pdev)
  2550. {
  2551. struct pch_udc_dev *dev = (struct pch_udc_dev *) pdev;
  2552. u32 dev_intr, ep_intr;
  2553. int i;
  2554. dev_intr = pch_udc_read_device_interrupts(dev);
  2555. ep_intr = pch_udc_read_ep_interrupts(dev);
  2556. /* For a hot plug, this find that the controller is hung up. */
  2557. if (dev_intr == ep_intr)
  2558. if (dev_intr == pch_udc_readl(dev, UDC_DEVCFG_ADDR)) {
  2559. dev_dbg(&dev->pdev->dev, "UDC: Hung up\n");
  2560. /* The controller is reset */
  2561. pch_udc_writel(dev, UDC_SRST, UDC_SRST_ADDR);
  2562. return IRQ_HANDLED;
  2563. }
  2564. if (dev_intr)
  2565. /* Clear device interrupts */
  2566. pch_udc_write_device_interrupts(dev, dev_intr);
  2567. if (ep_intr)
  2568. /* Clear ep interrupts */
  2569. pch_udc_write_ep_interrupts(dev, ep_intr);
  2570. if (!dev_intr && !ep_intr)
  2571. return IRQ_NONE;
  2572. spin_lock(&dev->lock);
  2573. if (dev_intr)
  2574. pch_udc_dev_isr(dev, dev_intr);
  2575. if (ep_intr) {
  2576. pch_udc_read_all_epstatus(dev, ep_intr);
  2577. /* Process Control In interrupts, if present */
  2578. if (ep_intr & UDC_EPINT_IN_EP0) {
  2579. pch_udc_svc_control_in(dev);
  2580. pch_udc_postsvc_epinters(dev, 0);
  2581. }
  2582. /* Process Control Out interrupts, if present */
  2583. if (ep_intr & UDC_EPINT_OUT_EP0)
  2584. pch_udc_svc_control_out(dev);
  2585. /* Process data in end point interrupts */
  2586. for (i = 1; i < PCH_UDC_USED_EP_NUM; i++) {
  2587. if (ep_intr & (1 << i)) {
  2588. pch_udc_svc_data_in(dev, i);
  2589. pch_udc_postsvc_epinters(dev, i);
  2590. }
  2591. }
  2592. /* Process data out end point interrupts */
  2593. for (i = UDC_EPINT_OUT_SHIFT + 1; i < (UDC_EPINT_OUT_SHIFT +
  2594. PCH_UDC_USED_EP_NUM); i++)
  2595. if (ep_intr & (1 << i))
  2596. pch_udc_svc_data_out(dev, i -
  2597. UDC_EPINT_OUT_SHIFT);
  2598. }
  2599. spin_unlock(&dev->lock);
  2600. return IRQ_HANDLED;
  2601. }
  2602. /**
  2603. * pch_udc_setup_ep0() - This function enables control endpoint for traffic
  2604. * @dev: Reference to the device structure
  2605. */
  2606. static void pch_udc_setup_ep0(struct pch_udc_dev *dev)
  2607. {
  2608. /* enable ep0 interrupts */
  2609. pch_udc_enable_ep_interrupts(dev, UDC_EPINT_IN_EP0 |
  2610. UDC_EPINT_OUT_EP0);
  2611. /* enable device interrupts */
  2612. pch_udc_enable_interrupts(dev, UDC_DEVINT_UR | UDC_DEVINT_US |
  2613. UDC_DEVINT_ES | UDC_DEVINT_ENUM |
  2614. UDC_DEVINT_SI | UDC_DEVINT_SC);
  2615. }
  2616. /**
  2617. * gadget_release() - Free the gadget driver private data
  2618. * @pdev reference to struct pci_dev
  2619. */
  2620. static void gadget_release(struct device *pdev)
  2621. {
  2622. struct pch_udc_dev *dev = dev_get_drvdata(pdev);
  2623. kfree(dev);
  2624. }
  2625. /**
  2626. * pch_udc_pcd_reinit() - This API initializes the endpoint structures
  2627. * @dev: Reference to the driver structure
  2628. */
  2629. static void pch_udc_pcd_reinit(struct pch_udc_dev *dev)
  2630. {
  2631. const char *const ep_string[] = {
  2632. ep0_string, "ep0out", "ep1in", "ep1out", "ep2in", "ep2out",
  2633. "ep3in", "ep3out", "ep4in", "ep4out", "ep5in", "ep5out",
  2634. "ep6in", "ep6out", "ep7in", "ep7out", "ep8in", "ep8out",
  2635. "ep9in", "ep9out", "ep10in", "ep10out", "ep11in", "ep11out",
  2636. "ep12in", "ep12out", "ep13in", "ep13out", "ep14in", "ep14out",
  2637. "ep15in", "ep15out",
  2638. };
  2639. int i;
  2640. dev->gadget.speed = USB_SPEED_UNKNOWN;
  2641. INIT_LIST_HEAD(&dev->gadget.ep_list);
  2642. /* Initialize the endpoints structures */
  2643. memset(dev->ep, 0, sizeof dev->ep);
  2644. for (i = 0; i < PCH_UDC_EP_NUM; i++) {
  2645. struct pch_udc_ep *ep = &dev->ep[i];
  2646. ep->dev = dev;
  2647. ep->halted = 1;
  2648. ep->num = i / 2;
  2649. ep->in = ~i & 1;
  2650. ep->ep.name = ep_string[i];
  2651. ep->ep.ops = &pch_udc_ep_ops;
  2652. if (ep->in)
  2653. ep->offset_addr = ep->num * UDC_EP_REG_SHIFT;
  2654. else
  2655. ep->offset_addr = (UDC_EPINT_OUT_SHIFT + ep->num) *
  2656. UDC_EP_REG_SHIFT;
  2657. /* need to set ep->ep.maxpacket and set Default Configuration?*/
  2658. ep->ep.maxpacket = UDC_BULK_MAX_PKT_SIZE;
  2659. list_add_tail(&ep->ep.ep_list, &dev->gadget.ep_list);
  2660. INIT_LIST_HEAD(&ep->queue);
  2661. }
  2662. dev->ep[UDC_EP0IN_IDX].ep.maxpacket = UDC_EP0IN_MAX_PKT_SIZE;
  2663. dev->ep[UDC_EP0OUT_IDX].ep.maxpacket = UDC_EP0OUT_MAX_PKT_SIZE;
  2664. /* remove ep0 in and out from the list. They have own pointer */
  2665. list_del_init(&dev->ep[UDC_EP0IN_IDX].ep.ep_list);
  2666. list_del_init(&dev->ep[UDC_EP0OUT_IDX].ep.ep_list);
  2667. dev->gadget.ep0 = &dev->ep[UDC_EP0IN_IDX].ep;
  2668. INIT_LIST_HEAD(&dev->gadget.ep0->ep_list);
  2669. }
  2670. /**
  2671. * pch_udc_pcd_init() - This API initializes the driver structure
  2672. * @dev: Reference to the driver structure
  2673. *
  2674. * Return codes:
  2675. * 0: Success
  2676. */
  2677. static int pch_udc_pcd_init(struct pch_udc_dev *dev)
  2678. {
  2679. pch_udc_init(dev);
  2680. pch_udc_pcd_reinit(dev);
  2681. pch_vbus_gpio_init(dev, vbus_gpio_port);
  2682. return 0;
  2683. }
  2684. /**
  2685. * init_dma_pools() - create dma pools during initialization
  2686. * @pdev: reference to struct pci_dev
  2687. */
  2688. static int init_dma_pools(struct pch_udc_dev *dev)
  2689. {
  2690. struct pch_udc_stp_dma_desc *td_stp;
  2691. struct pch_udc_data_dma_desc *td_data;
  2692. /* DMA setup */
  2693. dev->data_requests = pci_pool_create("data_requests", dev->pdev,
  2694. sizeof(struct pch_udc_data_dma_desc), 0, 0);
  2695. if (!dev->data_requests) {
  2696. dev_err(&dev->pdev->dev, "%s: can't get request data pool\n",
  2697. __func__);
  2698. return -ENOMEM;
  2699. }
  2700. /* dma desc for setup data */
  2701. dev->stp_requests = pci_pool_create("setup requests", dev->pdev,
  2702. sizeof(struct pch_udc_stp_dma_desc), 0, 0);
  2703. if (!dev->stp_requests) {
  2704. dev_err(&dev->pdev->dev, "%s: can't get setup request pool\n",
  2705. __func__);
  2706. return -ENOMEM;
  2707. }
  2708. /* setup */
  2709. td_stp = pci_pool_alloc(dev->stp_requests, GFP_KERNEL,
  2710. &dev->ep[UDC_EP0OUT_IDX].td_stp_phys);
  2711. if (!td_stp) {
  2712. dev_err(&dev->pdev->dev,
  2713. "%s: can't allocate setup dma descriptor\n", __func__);
  2714. return -ENOMEM;
  2715. }
  2716. dev->ep[UDC_EP0OUT_IDX].td_stp = td_stp;
  2717. /* data: 0 packets !? */
  2718. td_data = pci_pool_alloc(dev->data_requests, GFP_KERNEL,
  2719. &dev->ep[UDC_EP0OUT_IDX].td_data_phys);
  2720. if (!td_data) {
  2721. dev_err(&dev->pdev->dev,
  2722. "%s: can't allocate data dma descriptor\n", __func__);
  2723. return -ENOMEM;
  2724. }
  2725. dev->ep[UDC_EP0OUT_IDX].td_data = td_data;
  2726. dev->ep[UDC_EP0IN_IDX].td_stp = NULL;
  2727. dev->ep[UDC_EP0IN_IDX].td_stp_phys = 0;
  2728. dev->ep[UDC_EP0IN_IDX].td_data = NULL;
  2729. dev->ep[UDC_EP0IN_IDX].td_data_phys = 0;
  2730. dev->ep0out_buf = kzalloc(UDC_EP0OUT_BUFF_SIZE * 4, GFP_KERNEL);
  2731. if (!dev->ep0out_buf)
  2732. return -ENOMEM;
  2733. dev->dma_addr = dma_map_single(&dev->pdev->dev, dev->ep0out_buf,
  2734. UDC_EP0OUT_BUFF_SIZE * 4,
  2735. DMA_FROM_DEVICE);
  2736. return 0;
  2737. }
  2738. static int pch_udc_start(struct usb_gadget_driver *driver,
  2739. int (*bind)(struct usb_gadget *))
  2740. {
  2741. struct pch_udc_dev *dev = pch_udc;
  2742. int retval;
  2743. if (!driver || (driver->max_speed == USB_SPEED_UNKNOWN) || !bind ||
  2744. !driver->setup || !driver->unbind || !driver->disconnect) {
  2745. dev_err(&dev->pdev->dev,
  2746. "%s: invalid driver parameter\n", __func__);
  2747. return -EINVAL;
  2748. }
  2749. if (!dev)
  2750. return -ENODEV;
  2751. if (dev->driver) {
  2752. dev_err(&dev->pdev->dev, "%s: already bound\n", __func__);
  2753. return -EBUSY;
  2754. }
  2755. driver->driver.bus = NULL;
  2756. dev->driver = driver;
  2757. dev->gadget.dev.driver = &driver->driver;
  2758. /* Invoke the bind routine of the gadget driver */
  2759. retval = bind(&dev->gadget);
  2760. if (retval) {
  2761. dev_err(&dev->pdev->dev, "%s: binding to %s returning %d\n",
  2762. __func__, driver->driver.name, retval);
  2763. dev->driver = NULL;
  2764. dev->gadget.dev.driver = NULL;
  2765. return retval;
  2766. }
  2767. /* get ready for ep0 traffic */
  2768. pch_udc_setup_ep0(dev);
  2769. /* clear SD */
  2770. if ((pch_vbus_gpio_get_value(dev) != 0) || !dev->vbus_gpio.intr)
  2771. pch_udc_clear_disconnect(dev);
  2772. dev->connected = 1;
  2773. return 0;
  2774. }
  2775. static int pch_udc_stop(struct usb_gadget_driver *driver)
  2776. {
  2777. struct pch_udc_dev *dev = pch_udc;
  2778. if (!dev)
  2779. return -ENODEV;
  2780. if (!driver || (driver != dev->driver)) {
  2781. dev_err(&dev->pdev->dev,
  2782. "%s: invalid driver parameter\n", __func__);
  2783. return -EINVAL;
  2784. }
  2785. pch_udc_disable_interrupts(dev, UDC_DEVINT_MSK);
  2786. /* Assures that there are no pending requests with this driver */
  2787. driver->disconnect(&dev->gadget);
  2788. driver->unbind(&dev->gadget);
  2789. dev->gadget.dev.driver = NULL;
  2790. dev->driver = NULL;
  2791. dev->connected = 0;
  2792. /* set SD */
  2793. pch_udc_set_disconnect(dev);
  2794. return 0;
  2795. }
  2796. static void pch_udc_shutdown(struct pci_dev *pdev)
  2797. {
  2798. struct pch_udc_dev *dev = pci_get_drvdata(pdev);
  2799. pch_udc_disable_interrupts(dev, UDC_DEVINT_MSK);
  2800. pch_udc_disable_ep_interrupts(dev, UDC_EPINT_MSK_DISABLE_ALL);
  2801. /* disable the pullup so the host will think we're gone */
  2802. pch_udc_set_disconnect(dev);
  2803. }
  2804. static void pch_udc_remove(struct pci_dev *pdev)
  2805. {
  2806. struct pch_udc_dev *dev = pci_get_drvdata(pdev);
  2807. usb_del_gadget_udc(&dev->gadget);
  2808. /* gadget driver must not be registered */
  2809. if (dev->driver)
  2810. dev_err(&pdev->dev,
  2811. "%s: gadget driver still bound!!!\n", __func__);
  2812. /* dma pool cleanup */
  2813. if (dev->data_requests)
  2814. pci_pool_destroy(dev->data_requests);
  2815. if (dev->stp_requests) {
  2816. /* cleanup DMA desc's for ep0in */
  2817. if (dev->ep[UDC_EP0OUT_IDX].td_stp) {
  2818. pci_pool_free(dev->stp_requests,
  2819. dev->ep[UDC_EP0OUT_IDX].td_stp,
  2820. dev->ep[UDC_EP0OUT_IDX].td_stp_phys);
  2821. }
  2822. if (dev->ep[UDC_EP0OUT_IDX].td_data) {
  2823. pci_pool_free(dev->stp_requests,
  2824. dev->ep[UDC_EP0OUT_IDX].td_data,
  2825. dev->ep[UDC_EP0OUT_IDX].td_data_phys);
  2826. }
  2827. pci_pool_destroy(dev->stp_requests);
  2828. }
  2829. if (dev->dma_addr)
  2830. dma_unmap_single(&dev->pdev->dev, dev->dma_addr,
  2831. UDC_EP0OUT_BUFF_SIZE * 4, DMA_FROM_DEVICE);
  2832. kfree(dev->ep0out_buf);
  2833. pch_vbus_gpio_free(dev);
  2834. pch_udc_exit(dev);
  2835. if (dev->irq_registered)
  2836. free_irq(pdev->irq, dev);
  2837. if (dev->base_addr)
  2838. iounmap(dev->base_addr);
  2839. if (dev->mem_region)
  2840. release_mem_region(dev->phys_addr,
  2841. pci_resource_len(pdev, PCH_UDC_PCI_BAR));
  2842. if (dev->active)
  2843. pci_disable_device(pdev);
  2844. if (dev->registered)
  2845. device_unregister(&dev->gadget.dev);
  2846. kfree(dev);
  2847. pci_set_drvdata(pdev, NULL);
  2848. }
  2849. #ifdef CONFIG_PM
  2850. static int pch_udc_suspend(struct pci_dev *pdev, pm_message_t state)
  2851. {
  2852. struct pch_udc_dev *dev = pci_get_drvdata(pdev);
  2853. pch_udc_disable_interrupts(dev, UDC_DEVINT_MSK);
  2854. pch_udc_disable_ep_interrupts(dev, UDC_EPINT_MSK_DISABLE_ALL);
  2855. pci_disable_device(pdev);
  2856. pci_enable_wake(pdev, PCI_D3hot, 0);
  2857. if (pci_save_state(pdev)) {
  2858. dev_err(&pdev->dev,
  2859. "%s: could not save PCI config state\n", __func__);
  2860. return -ENOMEM;
  2861. }
  2862. pci_set_power_state(pdev, pci_choose_state(pdev, state));
  2863. return 0;
  2864. }
  2865. static int pch_udc_resume(struct pci_dev *pdev)
  2866. {
  2867. int ret;
  2868. pci_set_power_state(pdev, PCI_D0);
  2869. pci_restore_state(pdev);
  2870. ret = pci_enable_device(pdev);
  2871. if (ret) {
  2872. dev_err(&pdev->dev, "%s: pci_enable_device failed\n", __func__);
  2873. return ret;
  2874. }
  2875. pci_enable_wake(pdev, PCI_D3hot, 0);
  2876. return 0;
  2877. }
  2878. #else
  2879. #define pch_udc_suspend NULL
  2880. #define pch_udc_resume NULL
  2881. #endif /* CONFIG_PM */
  2882. static int pch_udc_probe(struct pci_dev *pdev,
  2883. const struct pci_device_id *id)
  2884. {
  2885. unsigned long resource;
  2886. unsigned long len;
  2887. int retval;
  2888. struct pch_udc_dev *dev;
  2889. /* one udc only */
  2890. if (pch_udc) {
  2891. pr_err("%s: already probed\n", __func__);
  2892. return -EBUSY;
  2893. }
  2894. /* init */
  2895. dev = kzalloc(sizeof *dev, GFP_KERNEL);
  2896. if (!dev) {
  2897. pr_err("%s: no memory for device structure\n", __func__);
  2898. return -ENOMEM;
  2899. }
  2900. /* pci setup */
  2901. if (pci_enable_device(pdev) < 0) {
  2902. kfree(dev);
  2903. pr_err("%s: pci_enable_device failed\n", __func__);
  2904. return -ENODEV;
  2905. }
  2906. dev->active = 1;
  2907. pci_set_drvdata(pdev, dev);
  2908. /* PCI resource allocation */
  2909. resource = pci_resource_start(pdev, 1);
  2910. len = pci_resource_len(pdev, 1);
  2911. if (!request_mem_region(resource, len, KBUILD_MODNAME)) {
  2912. dev_err(&pdev->dev, "%s: pci device used already\n", __func__);
  2913. retval = -EBUSY;
  2914. goto finished;
  2915. }
  2916. dev->phys_addr = resource;
  2917. dev->mem_region = 1;
  2918. dev->base_addr = ioremap_nocache(resource, len);
  2919. if (!dev->base_addr) {
  2920. pr_err("%s: device memory cannot be mapped\n", __func__);
  2921. retval = -ENOMEM;
  2922. goto finished;
  2923. }
  2924. if (!pdev->irq) {
  2925. dev_err(&pdev->dev, "%s: irq not set\n", __func__);
  2926. retval = -ENODEV;
  2927. goto finished;
  2928. }
  2929. pch_udc = dev;
  2930. /* initialize the hardware */
  2931. if (pch_udc_pcd_init(dev)) {
  2932. retval = -ENODEV;
  2933. goto finished;
  2934. }
  2935. if (request_irq(pdev->irq, pch_udc_isr, IRQF_SHARED, KBUILD_MODNAME,
  2936. dev)) {
  2937. dev_err(&pdev->dev, "%s: request_irq(%d) fail\n", __func__,
  2938. pdev->irq);
  2939. retval = -ENODEV;
  2940. goto finished;
  2941. }
  2942. dev->irq = pdev->irq;
  2943. dev->irq_registered = 1;
  2944. pci_set_master(pdev);
  2945. pci_try_set_mwi(pdev);
  2946. /* device struct setup */
  2947. spin_lock_init(&dev->lock);
  2948. dev->pdev = pdev;
  2949. dev->gadget.ops = &pch_udc_ops;
  2950. retval = init_dma_pools(dev);
  2951. if (retval)
  2952. goto finished;
  2953. dev_set_name(&dev->gadget.dev, "gadget");
  2954. dev->gadget.dev.parent = &pdev->dev;
  2955. dev->gadget.dev.dma_mask = pdev->dev.dma_mask;
  2956. dev->gadget.dev.release = gadget_release;
  2957. dev->gadget.name = KBUILD_MODNAME;
  2958. dev->gadget.max_speed = USB_SPEED_HIGH;
  2959. retval = device_register(&dev->gadget.dev);
  2960. if (retval)
  2961. goto finished;
  2962. dev->registered = 1;
  2963. /* Put the device in disconnected state till a driver is bound */
  2964. pch_udc_set_disconnect(dev);
  2965. retval = usb_add_gadget_udc(&pdev->dev, &dev->gadget);
  2966. if (retval)
  2967. goto finished;
  2968. return 0;
  2969. finished:
  2970. pch_udc_remove(pdev);
  2971. return retval;
  2972. }
  2973. static DEFINE_PCI_DEVICE_TABLE(pch_udc_pcidev_id) = {
  2974. {
  2975. PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_EG20T_UDC),
  2976. .class = (PCI_CLASS_SERIAL_USB << 8) | 0xfe,
  2977. .class_mask = 0xffffffff,
  2978. },
  2979. {
  2980. PCI_DEVICE(PCI_VENDOR_ID_ROHM, PCI_DEVICE_ID_ML7213_IOH_UDC),
  2981. .class = (PCI_CLASS_SERIAL_USB << 8) | 0xfe,
  2982. .class_mask = 0xffffffff,
  2983. },
  2984. {
  2985. PCI_DEVICE(PCI_VENDOR_ID_ROHM, PCI_DEVICE_ID_ML7831_IOH_UDC),
  2986. .class = (PCI_CLASS_SERIAL_USB << 8) | 0xfe,
  2987. .class_mask = 0xffffffff,
  2988. },
  2989. { 0 },
  2990. };
  2991. MODULE_DEVICE_TABLE(pci, pch_udc_pcidev_id);
  2992. static struct pci_driver pch_udc_driver = {
  2993. .name = KBUILD_MODNAME,
  2994. .id_table = pch_udc_pcidev_id,
  2995. .probe = pch_udc_probe,
  2996. .remove = pch_udc_remove,
  2997. .suspend = pch_udc_suspend,
  2998. .resume = pch_udc_resume,
  2999. .shutdown = pch_udc_shutdown,
  3000. };
  3001. static int __init pch_udc_pci_init(void)
  3002. {
  3003. return pci_register_driver(&pch_udc_driver);
  3004. }
  3005. module_init(pch_udc_pci_init);
  3006. static void __exit pch_udc_pci_exit(void)
  3007. {
  3008. pci_unregister_driver(&pch_udc_driver);
  3009. }
  3010. module_exit(pch_udc_pci_exit);
  3011. MODULE_DESCRIPTION("Intel EG20T USB Device Controller");
  3012. MODULE_AUTHOR("LAPIS Semiconductor, <tomoya-linux@dsn.lapis-semi.com>");
  3013. MODULE_LICENSE("GPL");