rtc-mxc.c 12 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503
  1. /*
  2. * Copyright 2004-2008 Freescale Semiconductor, Inc. All Rights Reserved.
  3. *
  4. * The code contained herein is licensed under the GNU General Public
  5. * License. You may obtain a copy of the GNU General Public License
  6. * Version 2 or later at the following locations:
  7. *
  8. * http://www.opensource.org/licenses/gpl-license.html
  9. * http://www.gnu.org/copyleft/gpl.html
  10. */
  11. #include <linux/io.h>
  12. #include <linux/rtc.h>
  13. #include <linux/module.h>
  14. #include <linux/slab.h>
  15. #include <linux/interrupt.h>
  16. #include <linux/platform_device.h>
  17. #include <linux/clk.h>
  18. #include <mach/hardware.h>
  19. #define RTC_INPUT_CLK_32768HZ (0x00 << 5)
  20. #define RTC_INPUT_CLK_32000HZ (0x01 << 5)
  21. #define RTC_INPUT_CLK_38400HZ (0x02 << 5)
  22. #define RTC_SW_BIT (1 << 0)
  23. #define RTC_ALM_BIT (1 << 2)
  24. #define RTC_1HZ_BIT (1 << 4)
  25. #define RTC_2HZ_BIT (1 << 7)
  26. #define RTC_SAM0_BIT (1 << 8)
  27. #define RTC_SAM1_BIT (1 << 9)
  28. #define RTC_SAM2_BIT (1 << 10)
  29. #define RTC_SAM3_BIT (1 << 11)
  30. #define RTC_SAM4_BIT (1 << 12)
  31. #define RTC_SAM5_BIT (1 << 13)
  32. #define RTC_SAM6_BIT (1 << 14)
  33. #define RTC_SAM7_BIT (1 << 15)
  34. #define PIT_ALL_ON (RTC_2HZ_BIT | RTC_SAM0_BIT | RTC_SAM1_BIT | \
  35. RTC_SAM2_BIT | RTC_SAM3_BIT | RTC_SAM4_BIT | \
  36. RTC_SAM5_BIT | RTC_SAM6_BIT | RTC_SAM7_BIT)
  37. #define RTC_ENABLE_BIT (1 << 7)
  38. #define MAX_PIE_NUM 9
  39. #define MAX_PIE_FREQ 512
  40. static const u32 PIE_BIT_DEF[MAX_PIE_NUM][2] = {
  41. { 2, RTC_2HZ_BIT },
  42. { 4, RTC_SAM0_BIT },
  43. { 8, RTC_SAM1_BIT },
  44. { 16, RTC_SAM2_BIT },
  45. { 32, RTC_SAM3_BIT },
  46. { 64, RTC_SAM4_BIT },
  47. { 128, RTC_SAM5_BIT },
  48. { 256, RTC_SAM6_BIT },
  49. { MAX_PIE_FREQ, RTC_SAM7_BIT },
  50. };
  51. #define MXC_RTC_TIME 0
  52. #define MXC_RTC_ALARM 1
  53. #define RTC_HOURMIN 0x00 /* 32bit rtc hour/min counter reg */
  54. #define RTC_SECOND 0x04 /* 32bit rtc seconds counter reg */
  55. #define RTC_ALRM_HM 0x08 /* 32bit rtc alarm hour/min reg */
  56. #define RTC_ALRM_SEC 0x0C /* 32bit rtc alarm seconds reg */
  57. #define RTC_RTCCTL 0x10 /* 32bit rtc control reg */
  58. #define RTC_RTCISR 0x14 /* 32bit rtc interrupt status reg */
  59. #define RTC_RTCIENR 0x18 /* 32bit rtc interrupt enable reg */
  60. #define RTC_STPWCH 0x1C /* 32bit rtc stopwatch min reg */
  61. #define RTC_DAYR 0x20 /* 32bit rtc days counter reg */
  62. #define RTC_DAYALARM 0x24 /* 32bit rtc day alarm reg */
  63. #define RTC_TEST1 0x28 /* 32bit rtc test reg 1 */
  64. #define RTC_TEST2 0x2C /* 32bit rtc test reg 2 */
  65. #define RTC_TEST3 0x30 /* 32bit rtc test reg 3 */
  66. struct rtc_plat_data {
  67. struct rtc_device *rtc;
  68. void __iomem *ioaddr;
  69. int irq;
  70. struct clk *clk;
  71. struct rtc_time g_rtc_alarm;
  72. };
  73. /*
  74. * This function is used to obtain the RTC time or the alarm value in
  75. * second.
  76. */
  77. static u32 get_alarm_or_time(struct device *dev, int time_alarm)
  78. {
  79. struct platform_device *pdev = to_platform_device(dev);
  80. struct rtc_plat_data *pdata = platform_get_drvdata(pdev);
  81. void __iomem *ioaddr = pdata->ioaddr;
  82. u32 day = 0, hr = 0, min = 0, sec = 0, hr_min = 0;
  83. switch (time_alarm) {
  84. case MXC_RTC_TIME:
  85. day = readw(ioaddr + RTC_DAYR);
  86. hr_min = readw(ioaddr + RTC_HOURMIN);
  87. sec = readw(ioaddr + RTC_SECOND);
  88. break;
  89. case MXC_RTC_ALARM:
  90. day = readw(ioaddr + RTC_DAYALARM);
  91. hr_min = readw(ioaddr + RTC_ALRM_HM) & 0xffff;
  92. sec = readw(ioaddr + RTC_ALRM_SEC);
  93. break;
  94. }
  95. hr = hr_min >> 8;
  96. min = hr_min & 0xff;
  97. return (((day * 24 + hr) * 60) + min) * 60 + sec;
  98. }
  99. /*
  100. * This function sets the RTC alarm value or the time value.
  101. */
  102. static void set_alarm_or_time(struct device *dev, int time_alarm, u32 time)
  103. {
  104. u32 day, hr, min, sec, temp;
  105. struct platform_device *pdev = to_platform_device(dev);
  106. struct rtc_plat_data *pdata = platform_get_drvdata(pdev);
  107. void __iomem *ioaddr = pdata->ioaddr;
  108. day = time / 86400;
  109. time -= day * 86400;
  110. /* time is within a day now */
  111. hr = time / 3600;
  112. time -= hr * 3600;
  113. /* time is within an hour now */
  114. min = time / 60;
  115. sec = time - min * 60;
  116. temp = (hr << 8) + min;
  117. switch (time_alarm) {
  118. case MXC_RTC_TIME:
  119. writew(day, ioaddr + RTC_DAYR);
  120. writew(sec, ioaddr + RTC_SECOND);
  121. writew(temp, ioaddr + RTC_HOURMIN);
  122. break;
  123. case MXC_RTC_ALARM:
  124. writew(day, ioaddr + RTC_DAYALARM);
  125. writew(sec, ioaddr + RTC_ALRM_SEC);
  126. writew(temp, ioaddr + RTC_ALRM_HM);
  127. break;
  128. }
  129. }
  130. /*
  131. * This function updates the RTC alarm registers and then clears all the
  132. * interrupt status bits.
  133. */
  134. static int rtc_update_alarm(struct device *dev, struct rtc_time *alrm)
  135. {
  136. struct rtc_time alarm_tm, now_tm;
  137. unsigned long now, time;
  138. struct platform_device *pdev = to_platform_device(dev);
  139. struct rtc_plat_data *pdata = platform_get_drvdata(pdev);
  140. void __iomem *ioaddr = pdata->ioaddr;
  141. now = get_alarm_or_time(dev, MXC_RTC_TIME);
  142. rtc_time_to_tm(now, &now_tm);
  143. alarm_tm.tm_year = now_tm.tm_year;
  144. alarm_tm.tm_mon = now_tm.tm_mon;
  145. alarm_tm.tm_mday = now_tm.tm_mday;
  146. alarm_tm.tm_hour = alrm->tm_hour;
  147. alarm_tm.tm_min = alrm->tm_min;
  148. alarm_tm.tm_sec = alrm->tm_sec;
  149. rtc_tm_to_time(&alarm_tm, &time);
  150. /* clear all the interrupt status bits */
  151. writew(readw(ioaddr + RTC_RTCISR), ioaddr + RTC_RTCISR);
  152. set_alarm_or_time(dev, MXC_RTC_ALARM, time);
  153. return 0;
  154. }
  155. static void mxc_rtc_irq_enable(struct device *dev, unsigned int bit,
  156. unsigned int enabled)
  157. {
  158. struct platform_device *pdev = to_platform_device(dev);
  159. struct rtc_plat_data *pdata = platform_get_drvdata(pdev);
  160. void __iomem *ioaddr = pdata->ioaddr;
  161. u32 reg;
  162. spin_lock_irq(&pdata->rtc->irq_lock);
  163. reg = readw(ioaddr + RTC_RTCIENR);
  164. if (enabled)
  165. reg |= bit;
  166. else
  167. reg &= ~bit;
  168. writew(reg, ioaddr + RTC_RTCIENR);
  169. spin_unlock_irq(&pdata->rtc->irq_lock);
  170. }
  171. /* This function is the RTC interrupt service routine. */
  172. static irqreturn_t mxc_rtc_interrupt(int irq, void *dev_id)
  173. {
  174. struct platform_device *pdev = dev_id;
  175. struct rtc_plat_data *pdata = platform_get_drvdata(pdev);
  176. void __iomem *ioaddr = pdata->ioaddr;
  177. u32 status;
  178. u32 events = 0;
  179. spin_lock_irq(&pdata->rtc->irq_lock);
  180. status = readw(ioaddr + RTC_RTCISR) & readw(ioaddr + RTC_RTCIENR);
  181. /* clear interrupt sources */
  182. writew(status, ioaddr + RTC_RTCISR);
  183. /* update irq data & counter */
  184. if (status & RTC_ALM_BIT) {
  185. events |= (RTC_AF | RTC_IRQF);
  186. /* RTC alarm should be one-shot */
  187. mxc_rtc_irq_enable(&pdev->dev, RTC_ALM_BIT, 0);
  188. }
  189. if (status & RTC_1HZ_BIT)
  190. events |= (RTC_UF | RTC_IRQF);
  191. if (status & PIT_ALL_ON)
  192. events |= (RTC_PF | RTC_IRQF);
  193. rtc_update_irq(pdata->rtc, 1, events);
  194. spin_unlock_irq(&pdata->rtc->irq_lock);
  195. return IRQ_HANDLED;
  196. }
  197. /*
  198. * Clear all interrupts and release the IRQ
  199. */
  200. static void mxc_rtc_release(struct device *dev)
  201. {
  202. struct platform_device *pdev = to_platform_device(dev);
  203. struct rtc_plat_data *pdata = platform_get_drvdata(pdev);
  204. void __iomem *ioaddr = pdata->ioaddr;
  205. spin_lock_irq(&pdata->rtc->irq_lock);
  206. /* Disable all rtc interrupts */
  207. writew(0, ioaddr + RTC_RTCIENR);
  208. /* Clear all interrupt status */
  209. writew(0xffffffff, ioaddr + RTC_RTCISR);
  210. spin_unlock_irq(&pdata->rtc->irq_lock);
  211. }
  212. static int mxc_rtc_alarm_irq_enable(struct device *dev, unsigned int enabled)
  213. {
  214. mxc_rtc_irq_enable(dev, RTC_ALM_BIT, enabled);
  215. return 0;
  216. }
  217. /*
  218. * This function reads the current RTC time into tm in Gregorian date.
  219. */
  220. static int mxc_rtc_read_time(struct device *dev, struct rtc_time *tm)
  221. {
  222. u32 val;
  223. /* Avoid roll-over from reading the different registers */
  224. do {
  225. val = get_alarm_or_time(dev, MXC_RTC_TIME);
  226. } while (val != get_alarm_or_time(dev, MXC_RTC_TIME));
  227. rtc_time_to_tm(val, tm);
  228. return 0;
  229. }
  230. /*
  231. * This function sets the internal RTC time based on tm in Gregorian date.
  232. */
  233. static int mxc_rtc_set_mmss(struct device *dev, unsigned long time)
  234. {
  235. /*
  236. * TTC_DAYR register is 9-bit in MX1 SoC, save time and day of year only
  237. */
  238. if (cpu_is_mx1()) {
  239. struct rtc_time tm;
  240. rtc_time_to_tm(time, &tm);
  241. tm.tm_year = 70;
  242. rtc_tm_to_time(&tm, &time);
  243. }
  244. /* Avoid roll-over from reading the different registers */
  245. do {
  246. set_alarm_or_time(dev, MXC_RTC_TIME, time);
  247. } while (time != get_alarm_or_time(dev, MXC_RTC_TIME));
  248. return 0;
  249. }
  250. /*
  251. * This function reads the current alarm value into the passed in 'alrm'
  252. * argument. It updates the alrm's pending field value based on the whether
  253. * an alarm interrupt occurs or not.
  254. */
  255. static int mxc_rtc_read_alarm(struct device *dev, struct rtc_wkalrm *alrm)
  256. {
  257. struct platform_device *pdev = to_platform_device(dev);
  258. struct rtc_plat_data *pdata = platform_get_drvdata(pdev);
  259. void __iomem *ioaddr = pdata->ioaddr;
  260. rtc_time_to_tm(get_alarm_or_time(dev, MXC_RTC_ALARM), &alrm->time);
  261. alrm->pending = ((readw(ioaddr + RTC_RTCISR) & RTC_ALM_BIT)) ? 1 : 0;
  262. return 0;
  263. }
  264. /*
  265. * This function sets the RTC alarm based on passed in alrm.
  266. */
  267. static int mxc_rtc_set_alarm(struct device *dev, struct rtc_wkalrm *alrm)
  268. {
  269. struct platform_device *pdev = to_platform_device(dev);
  270. struct rtc_plat_data *pdata = platform_get_drvdata(pdev);
  271. int ret;
  272. ret = rtc_update_alarm(dev, &alrm->time);
  273. if (ret)
  274. return ret;
  275. memcpy(&pdata->g_rtc_alarm, &alrm->time, sizeof(struct rtc_time));
  276. mxc_rtc_irq_enable(dev, RTC_ALM_BIT, alrm->enabled);
  277. return 0;
  278. }
  279. /* RTC layer */
  280. static struct rtc_class_ops mxc_rtc_ops = {
  281. .release = mxc_rtc_release,
  282. .read_time = mxc_rtc_read_time,
  283. .set_mmss = mxc_rtc_set_mmss,
  284. .read_alarm = mxc_rtc_read_alarm,
  285. .set_alarm = mxc_rtc_set_alarm,
  286. .alarm_irq_enable = mxc_rtc_alarm_irq_enable,
  287. };
  288. static int __init mxc_rtc_probe(struct platform_device *pdev)
  289. {
  290. struct resource *res;
  291. struct rtc_device *rtc;
  292. struct rtc_plat_data *pdata = NULL;
  293. u32 reg;
  294. unsigned long rate;
  295. int ret;
  296. res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
  297. if (!res)
  298. return -ENODEV;
  299. pdata = devm_kzalloc(&pdev->dev, sizeof(*pdata), GFP_KERNEL);
  300. if (!pdata)
  301. return -ENOMEM;
  302. if (!devm_request_mem_region(&pdev->dev, res->start,
  303. resource_size(res), pdev->name))
  304. return -EBUSY;
  305. pdata->ioaddr = devm_ioremap(&pdev->dev, res->start,
  306. resource_size(res));
  307. pdata->clk = clk_get(&pdev->dev, "rtc");
  308. if (IS_ERR(pdata->clk)) {
  309. dev_err(&pdev->dev, "unable to get clock!\n");
  310. ret = PTR_ERR(pdata->clk);
  311. goto exit_free_pdata;
  312. }
  313. clk_enable(pdata->clk);
  314. rate = clk_get_rate(pdata->clk);
  315. if (rate == 32768)
  316. reg = RTC_INPUT_CLK_32768HZ;
  317. else if (rate == 32000)
  318. reg = RTC_INPUT_CLK_32000HZ;
  319. else if (rate == 38400)
  320. reg = RTC_INPUT_CLK_38400HZ;
  321. else {
  322. dev_err(&pdev->dev, "rtc clock is not valid (%lu)\n", rate);
  323. ret = -EINVAL;
  324. goto exit_put_clk;
  325. }
  326. reg |= RTC_ENABLE_BIT;
  327. writew(reg, (pdata->ioaddr + RTC_RTCCTL));
  328. if (((readw(pdata->ioaddr + RTC_RTCCTL)) & RTC_ENABLE_BIT) == 0) {
  329. dev_err(&pdev->dev, "hardware module can't be enabled!\n");
  330. ret = -EIO;
  331. goto exit_put_clk;
  332. }
  333. platform_set_drvdata(pdev, pdata);
  334. /* Configure and enable the RTC */
  335. pdata->irq = platform_get_irq(pdev, 0);
  336. if (pdata->irq >= 0 &&
  337. devm_request_irq(&pdev->dev, pdata->irq, mxc_rtc_interrupt,
  338. IRQF_SHARED, pdev->name, pdev) < 0) {
  339. dev_warn(&pdev->dev, "interrupt not available.\n");
  340. pdata->irq = -1;
  341. }
  342. if (pdata->irq >=0)
  343. device_init_wakeup(&pdev->dev, 1);
  344. rtc = rtc_device_register(pdev->name, &pdev->dev, &mxc_rtc_ops,
  345. THIS_MODULE);
  346. if (IS_ERR(rtc)) {
  347. ret = PTR_ERR(rtc);
  348. goto exit_clr_drvdata;
  349. }
  350. pdata->rtc = rtc;
  351. return 0;
  352. exit_clr_drvdata:
  353. platform_set_drvdata(pdev, NULL);
  354. exit_put_clk:
  355. clk_disable(pdata->clk);
  356. clk_put(pdata->clk);
  357. exit_free_pdata:
  358. return ret;
  359. }
  360. static int __exit mxc_rtc_remove(struct platform_device *pdev)
  361. {
  362. struct rtc_plat_data *pdata = platform_get_drvdata(pdev);
  363. rtc_device_unregister(pdata->rtc);
  364. clk_disable(pdata->clk);
  365. clk_put(pdata->clk);
  366. platform_set_drvdata(pdev, NULL);
  367. return 0;
  368. }
  369. #ifdef CONFIG_PM
  370. static int mxc_rtc_suspend(struct device *dev)
  371. {
  372. struct rtc_plat_data *pdata = dev_get_drvdata(dev);
  373. if (device_may_wakeup(dev))
  374. enable_irq_wake(pdata->irq);
  375. return 0;
  376. }
  377. static int mxc_rtc_resume(struct device *dev)
  378. {
  379. struct rtc_plat_data *pdata = dev_get_drvdata(dev);
  380. if (device_may_wakeup(dev))
  381. disable_irq_wake(pdata->irq);
  382. return 0;
  383. }
  384. static struct dev_pm_ops mxc_rtc_pm_ops = {
  385. .suspend = mxc_rtc_suspend,
  386. .resume = mxc_rtc_resume,
  387. };
  388. #endif
  389. static struct platform_driver mxc_rtc_driver = {
  390. .driver = {
  391. .name = "mxc_rtc",
  392. #ifdef CONFIG_PM
  393. .pm = &mxc_rtc_pm_ops,
  394. #endif
  395. .owner = THIS_MODULE,
  396. },
  397. .remove = __exit_p(mxc_rtc_remove),
  398. };
  399. static int __init mxc_rtc_init(void)
  400. {
  401. return platform_driver_probe(&mxc_rtc_driver, mxc_rtc_probe);
  402. }
  403. static void __exit mxc_rtc_exit(void)
  404. {
  405. platform_driver_unregister(&mxc_rtc_driver);
  406. }
  407. module_init(mxc_rtc_init);
  408. module_exit(mxc_rtc_exit);
  409. MODULE_AUTHOR("Daniel Mack <daniel@caiaq.de>");
  410. MODULE_DESCRIPTION("RTC driver for Freescale MXC");
  411. MODULE_LICENSE("GPL");