sh_mmcif.c 38 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459
  1. /*
  2. * MMCIF eMMC driver.
  3. *
  4. * Copyright (C) 2010 Renesas Solutions Corp.
  5. * Yusuke Goda <yusuke.goda.sx@renesas.com>
  6. *
  7. * This program is free software; you can redistribute it and/or modify
  8. * it under the terms of the GNU General Public License as published by
  9. * the Free Software Foundation; either version 2 of the License.
  10. *
  11. *
  12. * TODO
  13. * 1. DMA
  14. * 2. Power management
  15. * 3. Handle MMC errors better
  16. *
  17. */
  18. /*
  19. * The MMCIF driver is now processing MMC requests asynchronously, according
  20. * to the Linux MMC API requirement.
  21. *
  22. * The MMCIF driver processes MMC requests in up to 3 stages: command, optional
  23. * data, and optional stop. To achieve asynchronous processing each of these
  24. * stages is split into two halves: a top and a bottom half. The top half
  25. * initialises the hardware, installs a timeout handler to handle completion
  26. * timeouts, and returns. In case of the command stage this immediately returns
  27. * control to the caller, leaving all further processing to run asynchronously.
  28. * All further request processing is performed by the bottom halves.
  29. *
  30. * The bottom half further consists of a "hard" IRQ handler, an IRQ handler
  31. * thread, a DMA completion callback, if DMA is used, a timeout work, and
  32. * request- and stage-specific handler methods.
  33. *
  34. * Each bottom half run begins with either a hardware interrupt, a DMA callback
  35. * invocation, or a timeout work run. In case of an error or a successful
  36. * processing completion, the MMC core is informed and the request processing is
  37. * finished. In case processing has to continue, i.e., if data has to be read
  38. * from or written to the card, or if a stop command has to be sent, the next
  39. * top half is called, which performs the necessary hardware handling and
  40. * reschedules the timeout work. This returns the driver state machine into the
  41. * bottom half waiting state.
  42. */
  43. #include <linux/bitops.h>
  44. #include <linux/clk.h>
  45. #include <linux/completion.h>
  46. #include <linux/delay.h>
  47. #include <linux/dma-mapping.h>
  48. #include <linux/dmaengine.h>
  49. #include <linux/mmc/card.h>
  50. #include <linux/mmc/core.h>
  51. #include <linux/mmc/host.h>
  52. #include <linux/mmc/mmc.h>
  53. #include <linux/mmc/sdio.h>
  54. #include <linux/mmc/sh_mmcif.h>
  55. #include <linux/pagemap.h>
  56. #include <linux/platform_device.h>
  57. #include <linux/pm_qos.h>
  58. #include <linux/pm_runtime.h>
  59. #include <linux/spinlock.h>
  60. #include <linux/module.h>
  61. #define DRIVER_NAME "sh_mmcif"
  62. #define DRIVER_VERSION "2010-04-28"
  63. /* CE_CMD_SET */
  64. #define CMD_MASK 0x3f000000
  65. #define CMD_SET_RTYP_NO ((0 << 23) | (0 << 22))
  66. #define CMD_SET_RTYP_6B ((0 << 23) | (1 << 22)) /* R1/R1b/R3/R4/R5 */
  67. #define CMD_SET_RTYP_17B ((1 << 23) | (0 << 22)) /* R2 */
  68. #define CMD_SET_RBSY (1 << 21) /* R1b */
  69. #define CMD_SET_CCSEN (1 << 20)
  70. #define CMD_SET_WDAT (1 << 19) /* 1: on data, 0: no data */
  71. #define CMD_SET_DWEN (1 << 18) /* 1: write, 0: read */
  72. #define CMD_SET_CMLTE (1 << 17) /* 1: multi block trans, 0: single */
  73. #define CMD_SET_CMD12EN (1 << 16) /* 1: CMD12 auto issue */
  74. #define CMD_SET_RIDXC_INDEX ((0 << 15) | (0 << 14)) /* index check */
  75. #define CMD_SET_RIDXC_BITS ((0 << 15) | (1 << 14)) /* check bits check */
  76. #define CMD_SET_RIDXC_NO ((1 << 15) | (0 << 14)) /* no check */
  77. #define CMD_SET_CRC7C ((0 << 13) | (0 << 12)) /* CRC7 check*/
  78. #define CMD_SET_CRC7C_BITS ((0 << 13) | (1 << 12)) /* check bits check*/
  79. #define CMD_SET_CRC7C_INTERNAL ((1 << 13) | (0 << 12)) /* internal CRC7 check*/
  80. #define CMD_SET_CRC16C (1 << 10) /* 0: CRC16 check*/
  81. #define CMD_SET_CRCSTE (1 << 8) /* 1: not receive CRC status */
  82. #define CMD_SET_TBIT (1 << 7) /* 1: tran mission bit "Low" */
  83. #define CMD_SET_OPDM (1 << 6) /* 1: open/drain */
  84. #define CMD_SET_CCSH (1 << 5)
  85. #define CMD_SET_DATW_1 ((0 << 1) | (0 << 0)) /* 1bit */
  86. #define CMD_SET_DATW_4 ((0 << 1) | (1 << 0)) /* 4bit */
  87. #define CMD_SET_DATW_8 ((1 << 1) | (0 << 0)) /* 8bit */
  88. /* CE_CMD_CTRL */
  89. #define CMD_CTRL_BREAK (1 << 0)
  90. /* CE_BLOCK_SET */
  91. #define BLOCK_SIZE_MASK 0x0000ffff
  92. /* CE_INT */
  93. #define INT_CCSDE (1 << 29)
  94. #define INT_CMD12DRE (1 << 26)
  95. #define INT_CMD12RBE (1 << 25)
  96. #define INT_CMD12CRE (1 << 24)
  97. #define INT_DTRANE (1 << 23)
  98. #define INT_BUFRE (1 << 22)
  99. #define INT_BUFWEN (1 << 21)
  100. #define INT_BUFREN (1 << 20)
  101. #define INT_CCSRCV (1 << 19)
  102. #define INT_RBSYE (1 << 17)
  103. #define INT_CRSPE (1 << 16)
  104. #define INT_CMDVIO (1 << 15)
  105. #define INT_BUFVIO (1 << 14)
  106. #define INT_WDATERR (1 << 11)
  107. #define INT_RDATERR (1 << 10)
  108. #define INT_RIDXERR (1 << 9)
  109. #define INT_RSPERR (1 << 8)
  110. #define INT_CCSTO (1 << 5)
  111. #define INT_CRCSTO (1 << 4)
  112. #define INT_WDATTO (1 << 3)
  113. #define INT_RDATTO (1 << 2)
  114. #define INT_RBSYTO (1 << 1)
  115. #define INT_RSPTO (1 << 0)
  116. #define INT_ERR_STS (INT_CMDVIO | INT_BUFVIO | INT_WDATERR | \
  117. INT_RDATERR | INT_RIDXERR | INT_RSPERR | \
  118. INT_CCSTO | INT_CRCSTO | INT_WDATTO | \
  119. INT_RDATTO | INT_RBSYTO | INT_RSPTO)
  120. /* CE_INT_MASK */
  121. #define MASK_ALL 0x00000000
  122. #define MASK_MCCSDE (1 << 29)
  123. #define MASK_MCMD12DRE (1 << 26)
  124. #define MASK_MCMD12RBE (1 << 25)
  125. #define MASK_MCMD12CRE (1 << 24)
  126. #define MASK_MDTRANE (1 << 23)
  127. #define MASK_MBUFRE (1 << 22)
  128. #define MASK_MBUFWEN (1 << 21)
  129. #define MASK_MBUFREN (1 << 20)
  130. #define MASK_MCCSRCV (1 << 19)
  131. #define MASK_MRBSYE (1 << 17)
  132. #define MASK_MCRSPE (1 << 16)
  133. #define MASK_MCMDVIO (1 << 15)
  134. #define MASK_MBUFVIO (1 << 14)
  135. #define MASK_MWDATERR (1 << 11)
  136. #define MASK_MRDATERR (1 << 10)
  137. #define MASK_MRIDXERR (1 << 9)
  138. #define MASK_MRSPERR (1 << 8)
  139. #define MASK_MCCSTO (1 << 5)
  140. #define MASK_MCRCSTO (1 << 4)
  141. #define MASK_MWDATTO (1 << 3)
  142. #define MASK_MRDATTO (1 << 2)
  143. #define MASK_MRBSYTO (1 << 1)
  144. #define MASK_MRSPTO (1 << 0)
  145. #define MASK_START_CMD (MASK_MCMDVIO | MASK_MBUFVIO | MASK_MWDATERR | \
  146. MASK_MRDATERR | MASK_MRIDXERR | MASK_MRSPERR | \
  147. MASK_MCCSTO | MASK_MCRCSTO | MASK_MWDATTO | \
  148. MASK_MRDATTO | MASK_MRBSYTO | MASK_MRSPTO)
  149. /* CE_HOST_STS1 */
  150. #define STS1_CMDSEQ (1 << 31)
  151. /* CE_HOST_STS2 */
  152. #define STS2_CRCSTE (1 << 31)
  153. #define STS2_CRC16E (1 << 30)
  154. #define STS2_AC12CRCE (1 << 29)
  155. #define STS2_RSPCRC7E (1 << 28)
  156. #define STS2_CRCSTEBE (1 << 27)
  157. #define STS2_RDATEBE (1 << 26)
  158. #define STS2_AC12REBE (1 << 25)
  159. #define STS2_RSPEBE (1 << 24)
  160. #define STS2_AC12IDXE (1 << 23)
  161. #define STS2_RSPIDXE (1 << 22)
  162. #define STS2_CCSTO (1 << 15)
  163. #define STS2_RDATTO (1 << 14)
  164. #define STS2_DATBSYTO (1 << 13)
  165. #define STS2_CRCSTTO (1 << 12)
  166. #define STS2_AC12BSYTO (1 << 11)
  167. #define STS2_RSPBSYTO (1 << 10)
  168. #define STS2_AC12RSPTO (1 << 9)
  169. #define STS2_RSPTO (1 << 8)
  170. #define STS2_CRC_ERR (STS2_CRCSTE | STS2_CRC16E | \
  171. STS2_AC12CRCE | STS2_RSPCRC7E | STS2_CRCSTEBE)
  172. #define STS2_TIMEOUT_ERR (STS2_CCSTO | STS2_RDATTO | \
  173. STS2_DATBSYTO | STS2_CRCSTTO | \
  174. STS2_AC12BSYTO | STS2_RSPBSYTO | \
  175. STS2_AC12RSPTO | STS2_RSPTO)
  176. #define CLKDEV_EMMC_DATA 52000000 /* 52MHz */
  177. #define CLKDEV_MMC_DATA 20000000 /* 20MHz */
  178. #define CLKDEV_INIT 400000 /* 400 KHz */
  179. enum mmcif_state {
  180. STATE_IDLE,
  181. STATE_REQUEST,
  182. STATE_IOS,
  183. };
  184. enum mmcif_wait_for {
  185. MMCIF_WAIT_FOR_REQUEST,
  186. MMCIF_WAIT_FOR_CMD,
  187. MMCIF_WAIT_FOR_MREAD,
  188. MMCIF_WAIT_FOR_MWRITE,
  189. MMCIF_WAIT_FOR_READ,
  190. MMCIF_WAIT_FOR_WRITE,
  191. MMCIF_WAIT_FOR_READ_END,
  192. MMCIF_WAIT_FOR_WRITE_END,
  193. MMCIF_WAIT_FOR_STOP,
  194. };
  195. struct sh_mmcif_host {
  196. struct mmc_host *mmc;
  197. struct mmc_request *mrq;
  198. struct platform_device *pd;
  199. struct sh_dmae_slave dma_slave_tx;
  200. struct sh_dmae_slave dma_slave_rx;
  201. struct clk *hclk;
  202. unsigned int clk;
  203. int bus_width;
  204. bool sd_error;
  205. bool dying;
  206. long timeout;
  207. void __iomem *addr;
  208. u32 *pio_ptr;
  209. spinlock_t lock; /* protect sh_mmcif_host::state */
  210. enum mmcif_state state;
  211. enum mmcif_wait_for wait_for;
  212. struct delayed_work timeout_work;
  213. size_t blocksize;
  214. int sg_idx;
  215. int sg_blkidx;
  216. bool power;
  217. bool card_present;
  218. /* DMA support */
  219. struct dma_chan *chan_rx;
  220. struct dma_chan *chan_tx;
  221. struct completion dma_complete;
  222. bool dma_active;
  223. };
  224. static inline void sh_mmcif_bitset(struct sh_mmcif_host *host,
  225. unsigned int reg, u32 val)
  226. {
  227. writel(val | readl(host->addr + reg), host->addr + reg);
  228. }
  229. static inline void sh_mmcif_bitclr(struct sh_mmcif_host *host,
  230. unsigned int reg, u32 val)
  231. {
  232. writel(~val & readl(host->addr + reg), host->addr + reg);
  233. }
  234. static void mmcif_dma_complete(void *arg)
  235. {
  236. struct sh_mmcif_host *host = arg;
  237. struct mmc_data *data = host->mrq->data;
  238. dev_dbg(&host->pd->dev, "Command completed\n");
  239. if (WARN(!data, "%s: NULL data in DMA completion!\n",
  240. dev_name(&host->pd->dev)))
  241. return;
  242. if (data->flags & MMC_DATA_READ)
  243. dma_unmap_sg(host->chan_rx->device->dev,
  244. data->sg, data->sg_len,
  245. DMA_FROM_DEVICE);
  246. else
  247. dma_unmap_sg(host->chan_tx->device->dev,
  248. data->sg, data->sg_len,
  249. DMA_TO_DEVICE);
  250. complete(&host->dma_complete);
  251. }
  252. static void sh_mmcif_start_dma_rx(struct sh_mmcif_host *host)
  253. {
  254. struct mmc_data *data = host->mrq->data;
  255. struct scatterlist *sg = data->sg;
  256. struct dma_async_tx_descriptor *desc = NULL;
  257. struct dma_chan *chan = host->chan_rx;
  258. dma_cookie_t cookie = -EINVAL;
  259. int ret;
  260. ret = dma_map_sg(chan->device->dev, sg, data->sg_len,
  261. DMA_FROM_DEVICE);
  262. if (ret > 0) {
  263. host->dma_active = true;
  264. desc = dmaengine_prep_slave_sg(chan, sg, ret,
  265. DMA_DEV_TO_MEM, DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
  266. }
  267. if (desc) {
  268. desc->callback = mmcif_dma_complete;
  269. desc->callback_param = host;
  270. cookie = dmaengine_submit(desc);
  271. sh_mmcif_bitset(host, MMCIF_CE_BUF_ACC, BUF_ACC_DMAREN);
  272. dma_async_issue_pending(chan);
  273. }
  274. dev_dbg(&host->pd->dev, "%s(): mapped %d -> %d, cookie %d\n",
  275. __func__, data->sg_len, ret, cookie);
  276. if (!desc) {
  277. /* DMA failed, fall back to PIO */
  278. if (ret >= 0)
  279. ret = -EIO;
  280. host->chan_rx = NULL;
  281. host->dma_active = false;
  282. dma_release_channel(chan);
  283. /* Free the Tx channel too */
  284. chan = host->chan_tx;
  285. if (chan) {
  286. host->chan_tx = NULL;
  287. dma_release_channel(chan);
  288. }
  289. dev_warn(&host->pd->dev,
  290. "DMA failed: %d, falling back to PIO\n", ret);
  291. sh_mmcif_bitclr(host, MMCIF_CE_BUF_ACC, BUF_ACC_DMAREN | BUF_ACC_DMAWEN);
  292. }
  293. dev_dbg(&host->pd->dev, "%s(): desc %p, cookie %d, sg[%d]\n", __func__,
  294. desc, cookie, data->sg_len);
  295. }
  296. static void sh_mmcif_start_dma_tx(struct sh_mmcif_host *host)
  297. {
  298. struct mmc_data *data = host->mrq->data;
  299. struct scatterlist *sg = data->sg;
  300. struct dma_async_tx_descriptor *desc = NULL;
  301. struct dma_chan *chan = host->chan_tx;
  302. dma_cookie_t cookie = -EINVAL;
  303. int ret;
  304. ret = dma_map_sg(chan->device->dev, sg, data->sg_len,
  305. DMA_TO_DEVICE);
  306. if (ret > 0) {
  307. host->dma_active = true;
  308. desc = dmaengine_prep_slave_sg(chan, sg, ret,
  309. DMA_MEM_TO_DEV, DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
  310. }
  311. if (desc) {
  312. desc->callback = mmcif_dma_complete;
  313. desc->callback_param = host;
  314. cookie = dmaengine_submit(desc);
  315. sh_mmcif_bitset(host, MMCIF_CE_BUF_ACC, BUF_ACC_DMAWEN);
  316. dma_async_issue_pending(chan);
  317. }
  318. dev_dbg(&host->pd->dev, "%s(): mapped %d -> %d, cookie %d\n",
  319. __func__, data->sg_len, ret, cookie);
  320. if (!desc) {
  321. /* DMA failed, fall back to PIO */
  322. if (ret >= 0)
  323. ret = -EIO;
  324. host->chan_tx = NULL;
  325. host->dma_active = false;
  326. dma_release_channel(chan);
  327. /* Free the Rx channel too */
  328. chan = host->chan_rx;
  329. if (chan) {
  330. host->chan_rx = NULL;
  331. dma_release_channel(chan);
  332. }
  333. dev_warn(&host->pd->dev,
  334. "DMA failed: %d, falling back to PIO\n", ret);
  335. sh_mmcif_bitclr(host, MMCIF_CE_BUF_ACC, BUF_ACC_DMAREN | BUF_ACC_DMAWEN);
  336. }
  337. dev_dbg(&host->pd->dev, "%s(): desc %p, cookie %d\n", __func__,
  338. desc, cookie);
  339. }
  340. static bool sh_mmcif_filter(struct dma_chan *chan, void *arg)
  341. {
  342. dev_dbg(chan->device->dev, "%s: slave data %p\n", __func__, arg);
  343. chan->private = arg;
  344. return true;
  345. }
  346. static void sh_mmcif_request_dma(struct sh_mmcif_host *host,
  347. struct sh_mmcif_plat_data *pdata)
  348. {
  349. struct sh_dmae_slave *tx, *rx;
  350. host->dma_active = false;
  351. /* We can only either use DMA for both Tx and Rx or not use it at all */
  352. if (pdata->dma) {
  353. dev_warn(&host->pd->dev,
  354. "Update your platform to use embedded DMA slave IDs\n");
  355. tx = &pdata->dma->chan_priv_tx;
  356. rx = &pdata->dma->chan_priv_rx;
  357. } else {
  358. tx = &host->dma_slave_tx;
  359. tx->slave_id = pdata->slave_id_tx;
  360. rx = &host->dma_slave_rx;
  361. rx->slave_id = pdata->slave_id_rx;
  362. }
  363. if (tx->slave_id > 0 && rx->slave_id > 0) {
  364. dma_cap_mask_t mask;
  365. dma_cap_zero(mask);
  366. dma_cap_set(DMA_SLAVE, mask);
  367. host->chan_tx = dma_request_channel(mask, sh_mmcif_filter, tx);
  368. dev_dbg(&host->pd->dev, "%s: TX: got channel %p\n", __func__,
  369. host->chan_tx);
  370. if (!host->chan_tx)
  371. return;
  372. host->chan_rx = dma_request_channel(mask, sh_mmcif_filter, rx);
  373. dev_dbg(&host->pd->dev, "%s: RX: got channel %p\n", __func__,
  374. host->chan_rx);
  375. if (!host->chan_rx) {
  376. dma_release_channel(host->chan_tx);
  377. host->chan_tx = NULL;
  378. return;
  379. }
  380. init_completion(&host->dma_complete);
  381. }
  382. }
  383. static void sh_mmcif_release_dma(struct sh_mmcif_host *host)
  384. {
  385. sh_mmcif_bitclr(host, MMCIF_CE_BUF_ACC, BUF_ACC_DMAREN | BUF_ACC_DMAWEN);
  386. /* Descriptors are freed automatically */
  387. if (host->chan_tx) {
  388. struct dma_chan *chan = host->chan_tx;
  389. host->chan_tx = NULL;
  390. dma_release_channel(chan);
  391. }
  392. if (host->chan_rx) {
  393. struct dma_chan *chan = host->chan_rx;
  394. host->chan_rx = NULL;
  395. dma_release_channel(chan);
  396. }
  397. host->dma_active = false;
  398. }
  399. static void sh_mmcif_clock_control(struct sh_mmcif_host *host, unsigned int clk)
  400. {
  401. struct sh_mmcif_plat_data *p = host->pd->dev.platform_data;
  402. sh_mmcif_bitclr(host, MMCIF_CE_CLK_CTRL, CLK_ENABLE);
  403. sh_mmcif_bitclr(host, MMCIF_CE_CLK_CTRL, CLK_CLEAR);
  404. if (!clk)
  405. return;
  406. if (p->sup_pclk && clk == host->clk)
  407. sh_mmcif_bitset(host, MMCIF_CE_CLK_CTRL, CLK_SUP_PCLK);
  408. else
  409. sh_mmcif_bitset(host, MMCIF_CE_CLK_CTRL, CLK_CLEAR &
  410. ((fls(host->clk / clk) - 1) << 16));
  411. sh_mmcif_bitset(host, MMCIF_CE_CLK_CTRL, CLK_ENABLE);
  412. }
  413. static void sh_mmcif_sync_reset(struct sh_mmcif_host *host)
  414. {
  415. u32 tmp;
  416. tmp = 0x010f0000 & sh_mmcif_readl(host->addr, MMCIF_CE_CLK_CTRL);
  417. sh_mmcif_writel(host->addr, MMCIF_CE_VERSION, SOFT_RST_ON);
  418. sh_mmcif_writel(host->addr, MMCIF_CE_VERSION, SOFT_RST_OFF);
  419. sh_mmcif_bitset(host, MMCIF_CE_CLK_CTRL, tmp |
  420. SRSPTO_256 | SRBSYTO_29 | SRWDTO_29 | SCCSTO_29);
  421. /* byte swap on */
  422. sh_mmcif_bitset(host, MMCIF_CE_BUF_ACC, BUF_ACC_ATYP);
  423. }
  424. static int sh_mmcif_error_manage(struct sh_mmcif_host *host)
  425. {
  426. u32 state1, state2;
  427. int ret, timeout;
  428. host->sd_error = false;
  429. state1 = sh_mmcif_readl(host->addr, MMCIF_CE_HOST_STS1);
  430. state2 = sh_mmcif_readl(host->addr, MMCIF_CE_HOST_STS2);
  431. dev_dbg(&host->pd->dev, "ERR HOST_STS1 = %08x\n", state1);
  432. dev_dbg(&host->pd->dev, "ERR HOST_STS2 = %08x\n", state2);
  433. if (state1 & STS1_CMDSEQ) {
  434. sh_mmcif_bitset(host, MMCIF_CE_CMD_CTRL, CMD_CTRL_BREAK);
  435. sh_mmcif_bitset(host, MMCIF_CE_CMD_CTRL, ~CMD_CTRL_BREAK);
  436. for (timeout = 10000000; timeout; timeout--) {
  437. if (!(sh_mmcif_readl(host->addr, MMCIF_CE_HOST_STS1)
  438. & STS1_CMDSEQ))
  439. break;
  440. mdelay(1);
  441. }
  442. if (!timeout) {
  443. dev_err(&host->pd->dev,
  444. "Forced end of command sequence timeout err\n");
  445. return -EIO;
  446. }
  447. sh_mmcif_sync_reset(host);
  448. dev_dbg(&host->pd->dev, "Forced end of command sequence\n");
  449. return -EIO;
  450. }
  451. if (state2 & STS2_CRC_ERR) {
  452. dev_dbg(&host->pd->dev, ": CRC error\n");
  453. ret = -EIO;
  454. } else if (state2 & STS2_TIMEOUT_ERR) {
  455. dev_dbg(&host->pd->dev, ": Timeout\n");
  456. ret = -ETIMEDOUT;
  457. } else {
  458. dev_dbg(&host->pd->dev, ": End/Index error\n");
  459. ret = -EIO;
  460. }
  461. return ret;
  462. }
  463. static bool sh_mmcif_next_block(struct sh_mmcif_host *host, u32 *p)
  464. {
  465. struct mmc_data *data = host->mrq->data;
  466. host->sg_blkidx += host->blocksize;
  467. /* data->sg->length must be a multiple of host->blocksize? */
  468. BUG_ON(host->sg_blkidx > data->sg->length);
  469. if (host->sg_blkidx == data->sg->length) {
  470. host->sg_blkidx = 0;
  471. if (++host->sg_idx < data->sg_len)
  472. host->pio_ptr = sg_virt(++data->sg);
  473. } else {
  474. host->pio_ptr = p;
  475. }
  476. if (host->sg_idx == data->sg_len)
  477. return false;
  478. return true;
  479. }
  480. static void sh_mmcif_single_read(struct sh_mmcif_host *host,
  481. struct mmc_request *mrq)
  482. {
  483. host->blocksize = (sh_mmcif_readl(host->addr, MMCIF_CE_BLOCK_SET) &
  484. BLOCK_SIZE_MASK) + 3;
  485. host->wait_for = MMCIF_WAIT_FOR_READ;
  486. schedule_delayed_work(&host->timeout_work, host->timeout);
  487. /* buf read enable */
  488. sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFREN);
  489. }
  490. static bool sh_mmcif_read_block(struct sh_mmcif_host *host)
  491. {
  492. struct mmc_data *data = host->mrq->data;
  493. u32 *p = sg_virt(data->sg);
  494. int i;
  495. if (host->sd_error) {
  496. data->error = sh_mmcif_error_manage(host);
  497. return false;
  498. }
  499. for (i = 0; i < host->blocksize / 4; i++)
  500. *p++ = sh_mmcif_readl(host->addr, MMCIF_CE_DATA);
  501. /* buffer read end */
  502. sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFRE);
  503. host->wait_for = MMCIF_WAIT_FOR_READ_END;
  504. return true;
  505. }
  506. static void sh_mmcif_multi_read(struct sh_mmcif_host *host,
  507. struct mmc_request *mrq)
  508. {
  509. struct mmc_data *data = mrq->data;
  510. if (!data->sg_len || !data->sg->length)
  511. return;
  512. host->blocksize = sh_mmcif_readl(host->addr, MMCIF_CE_BLOCK_SET) &
  513. BLOCK_SIZE_MASK;
  514. host->wait_for = MMCIF_WAIT_FOR_MREAD;
  515. host->sg_idx = 0;
  516. host->sg_blkidx = 0;
  517. host->pio_ptr = sg_virt(data->sg);
  518. schedule_delayed_work(&host->timeout_work, host->timeout);
  519. sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFREN);
  520. }
  521. static bool sh_mmcif_mread_block(struct sh_mmcif_host *host)
  522. {
  523. struct mmc_data *data = host->mrq->data;
  524. u32 *p = host->pio_ptr;
  525. int i;
  526. if (host->sd_error) {
  527. data->error = sh_mmcif_error_manage(host);
  528. return false;
  529. }
  530. BUG_ON(!data->sg->length);
  531. for (i = 0; i < host->blocksize / 4; i++)
  532. *p++ = sh_mmcif_readl(host->addr, MMCIF_CE_DATA);
  533. if (!sh_mmcif_next_block(host, p))
  534. return false;
  535. schedule_delayed_work(&host->timeout_work, host->timeout);
  536. sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFREN);
  537. return true;
  538. }
  539. static void sh_mmcif_single_write(struct sh_mmcif_host *host,
  540. struct mmc_request *mrq)
  541. {
  542. host->blocksize = (sh_mmcif_readl(host->addr, MMCIF_CE_BLOCK_SET) &
  543. BLOCK_SIZE_MASK) + 3;
  544. host->wait_for = MMCIF_WAIT_FOR_WRITE;
  545. schedule_delayed_work(&host->timeout_work, host->timeout);
  546. /* buf write enable */
  547. sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFWEN);
  548. }
  549. static bool sh_mmcif_write_block(struct sh_mmcif_host *host)
  550. {
  551. struct mmc_data *data = host->mrq->data;
  552. u32 *p = sg_virt(data->sg);
  553. int i;
  554. if (host->sd_error) {
  555. data->error = sh_mmcif_error_manage(host);
  556. return false;
  557. }
  558. for (i = 0; i < host->blocksize / 4; i++)
  559. sh_mmcif_writel(host->addr, MMCIF_CE_DATA, *p++);
  560. /* buffer write end */
  561. sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MDTRANE);
  562. host->wait_for = MMCIF_WAIT_FOR_WRITE_END;
  563. return true;
  564. }
  565. static void sh_mmcif_multi_write(struct sh_mmcif_host *host,
  566. struct mmc_request *mrq)
  567. {
  568. struct mmc_data *data = mrq->data;
  569. if (!data->sg_len || !data->sg->length)
  570. return;
  571. host->blocksize = sh_mmcif_readl(host->addr, MMCIF_CE_BLOCK_SET) &
  572. BLOCK_SIZE_MASK;
  573. host->wait_for = MMCIF_WAIT_FOR_MWRITE;
  574. host->sg_idx = 0;
  575. host->sg_blkidx = 0;
  576. host->pio_ptr = sg_virt(data->sg);
  577. schedule_delayed_work(&host->timeout_work, host->timeout);
  578. sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFWEN);
  579. }
  580. static bool sh_mmcif_mwrite_block(struct sh_mmcif_host *host)
  581. {
  582. struct mmc_data *data = host->mrq->data;
  583. u32 *p = host->pio_ptr;
  584. int i;
  585. if (host->sd_error) {
  586. data->error = sh_mmcif_error_manage(host);
  587. return false;
  588. }
  589. BUG_ON(!data->sg->length);
  590. for (i = 0; i < host->blocksize / 4; i++)
  591. sh_mmcif_writel(host->addr, MMCIF_CE_DATA, *p++);
  592. if (!sh_mmcif_next_block(host, p))
  593. return false;
  594. schedule_delayed_work(&host->timeout_work, host->timeout);
  595. sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFWEN);
  596. return true;
  597. }
  598. static void sh_mmcif_get_response(struct sh_mmcif_host *host,
  599. struct mmc_command *cmd)
  600. {
  601. if (cmd->flags & MMC_RSP_136) {
  602. cmd->resp[0] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP3);
  603. cmd->resp[1] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP2);
  604. cmd->resp[2] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP1);
  605. cmd->resp[3] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP0);
  606. } else
  607. cmd->resp[0] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP0);
  608. }
  609. static void sh_mmcif_get_cmd12response(struct sh_mmcif_host *host,
  610. struct mmc_command *cmd)
  611. {
  612. cmd->resp[0] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP_CMD12);
  613. }
  614. static u32 sh_mmcif_set_cmd(struct sh_mmcif_host *host,
  615. struct mmc_request *mrq)
  616. {
  617. struct mmc_data *data = mrq->data;
  618. struct mmc_command *cmd = mrq->cmd;
  619. u32 opc = cmd->opcode;
  620. u32 tmp = 0;
  621. /* Response Type check */
  622. switch (mmc_resp_type(cmd)) {
  623. case MMC_RSP_NONE:
  624. tmp |= CMD_SET_RTYP_NO;
  625. break;
  626. case MMC_RSP_R1:
  627. case MMC_RSP_R1B:
  628. case MMC_RSP_R3:
  629. tmp |= CMD_SET_RTYP_6B;
  630. break;
  631. case MMC_RSP_R2:
  632. tmp |= CMD_SET_RTYP_17B;
  633. break;
  634. default:
  635. dev_err(&host->pd->dev, "Unsupported response type.\n");
  636. break;
  637. }
  638. switch (opc) {
  639. /* RBSY */
  640. case MMC_SWITCH:
  641. case MMC_STOP_TRANSMISSION:
  642. case MMC_SET_WRITE_PROT:
  643. case MMC_CLR_WRITE_PROT:
  644. case MMC_ERASE:
  645. tmp |= CMD_SET_RBSY;
  646. break;
  647. }
  648. /* WDAT / DATW */
  649. if (data) {
  650. tmp |= CMD_SET_WDAT;
  651. switch (host->bus_width) {
  652. case MMC_BUS_WIDTH_1:
  653. tmp |= CMD_SET_DATW_1;
  654. break;
  655. case MMC_BUS_WIDTH_4:
  656. tmp |= CMD_SET_DATW_4;
  657. break;
  658. case MMC_BUS_WIDTH_8:
  659. tmp |= CMD_SET_DATW_8;
  660. break;
  661. default:
  662. dev_err(&host->pd->dev, "Unsupported bus width.\n");
  663. break;
  664. }
  665. }
  666. /* DWEN */
  667. if (opc == MMC_WRITE_BLOCK || opc == MMC_WRITE_MULTIPLE_BLOCK)
  668. tmp |= CMD_SET_DWEN;
  669. /* CMLTE/CMD12EN */
  670. if (opc == MMC_READ_MULTIPLE_BLOCK || opc == MMC_WRITE_MULTIPLE_BLOCK) {
  671. tmp |= CMD_SET_CMLTE | CMD_SET_CMD12EN;
  672. sh_mmcif_bitset(host, MMCIF_CE_BLOCK_SET,
  673. data->blocks << 16);
  674. }
  675. /* RIDXC[1:0] check bits */
  676. if (opc == MMC_SEND_OP_COND || opc == MMC_ALL_SEND_CID ||
  677. opc == MMC_SEND_CSD || opc == MMC_SEND_CID)
  678. tmp |= CMD_SET_RIDXC_BITS;
  679. /* RCRC7C[1:0] check bits */
  680. if (opc == MMC_SEND_OP_COND)
  681. tmp |= CMD_SET_CRC7C_BITS;
  682. /* RCRC7C[1:0] internal CRC7 */
  683. if (opc == MMC_ALL_SEND_CID ||
  684. opc == MMC_SEND_CSD || opc == MMC_SEND_CID)
  685. tmp |= CMD_SET_CRC7C_INTERNAL;
  686. return (opc << 24) | tmp;
  687. }
  688. static int sh_mmcif_data_trans(struct sh_mmcif_host *host,
  689. struct mmc_request *mrq, u32 opc)
  690. {
  691. switch (opc) {
  692. case MMC_READ_MULTIPLE_BLOCK:
  693. sh_mmcif_multi_read(host, mrq);
  694. return 0;
  695. case MMC_WRITE_MULTIPLE_BLOCK:
  696. sh_mmcif_multi_write(host, mrq);
  697. return 0;
  698. case MMC_WRITE_BLOCK:
  699. sh_mmcif_single_write(host, mrq);
  700. return 0;
  701. case MMC_READ_SINGLE_BLOCK:
  702. case MMC_SEND_EXT_CSD:
  703. sh_mmcif_single_read(host, mrq);
  704. return 0;
  705. default:
  706. dev_err(&host->pd->dev, "UNSUPPORTED CMD = d'%08d\n", opc);
  707. return -EINVAL;
  708. }
  709. }
  710. static void sh_mmcif_start_cmd(struct sh_mmcif_host *host,
  711. struct mmc_request *mrq)
  712. {
  713. struct mmc_command *cmd = mrq->cmd;
  714. u32 opc = cmd->opcode;
  715. u32 mask;
  716. switch (opc) {
  717. /* response busy check */
  718. case MMC_SWITCH:
  719. case MMC_STOP_TRANSMISSION:
  720. case MMC_SET_WRITE_PROT:
  721. case MMC_CLR_WRITE_PROT:
  722. case MMC_ERASE:
  723. mask = MASK_START_CMD | MASK_MRBSYE;
  724. break;
  725. default:
  726. mask = MASK_START_CMD | MASK_MCRSPE;
  727. break;
  728. }
  729. if (mrq->data) {
  730. sh_mmcif_writel(host->addr, MMCIF_CE_BLOCK_SET, 0);
  731. sh_mmcif_writel(host->addr, MMCIF_CE_BLOCK_SET,
  732. mrq->data->blksz);
  733. }
  734. opc = sh_mmcif_set_cmd(host, mrq);
  735. sh_mmcif_writel(host->addr, MMCIF_CE_INT, 0xD80430C0);
  736. sh_mmcif_writel(host->addr, MMCIF_CE_INT_MASK, mask);
  737. /* set arg */
  738. sh_mmcif_writel(host->addr, MMCIF_CE_ARG, cmd->arg);
  739. /* set cmd */
  740. sh_mmcif_writel(host->addr, MMCIF_CE_CMD_SET, opc);
  741. host->wait_for = MMCIF_WAIT_FOR_CMD;
  742. schedule_delayed_work(&host->timeout_work, host->timeout);
  743. }
  744. static void sh_mmcif_stop_cmd(struct sh_mmcif_host *host,
  745. struct mmc_request *mrq)
  746. {
  747. switch (mrq->cmd->opcode) {
  748. case MMC_READ_MULTIPLE_BLOCK:
  749. sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MCMD12DRE);
  750. break;
  751. case MMC_WRITE_MULTIPLE_BLOCK:
  752. sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MCMD12RBE);
  753. break;
  754. default:
  755. dev_err(&host->pd->dev, "unsupported stop cmd\n");
  756. mrq->stop->error = sh_mmcif_error_manage(host);
  757. return;
  758. }
  759. host->wait_for = MMCIF_WAIT_FOR_STOP;
  760. schedule_delayed_work(&host->timeout_work, host->timeout);
  761. }
  762. static void sh_mmcif_request(struct mmc_host *mmc, struct mmc_request *mrq)
  763. {
  764. struct sh_mmcif_host *host = mmc_priv(mmc);
  765. unsigned long flags;
  766. spin_lock_irqsave(&host->lock, flags);
  767. if (host->state != STATE_IDLE) {
  768. spin_unlock_irqrestore(&host->lock, flags);
  769. mrq->cmd->error = -EAGAIN;
  770. mmc_request_done(mmc, mrq);
  771. return;
  772. }
  773. host->state = STATE_REQUEST;
  774. spin_unlock_irqrestore(&host->lock, flags);
  775. switch (mrq->cmd->opcode) {
  776. /* MMCIF does not support SD/SDIO command */
  777. case SD_IO_SEND_OP_COND:
  778. case MMC_APP_CMD:
  779. host->state = STATE_IDLE;
  780. mrq->cmd->error = -ETIMEDOUT;
  781. mmc_request_done(mmc, mrq);
  782. return;
  783. case MMC_SEND_EXT_CSD: /* = SD_SEND_IF_COND (8) */
  784. if (!mrq->data) {
  785. /* send_if_cond cmd (not support) */
  786. host->state = STATE_IDLE;
  787. mrq->cmd->error = -ETIMEDOUT;
  788. mmc_request_done(mmc, mrq);
  789. return;
  790. }
  791. break;
  792. default:
  793. break;
  794. }
  795. host->mrq = mrq;
  796. sh_mmcif_start_cmd(host, mrq);
  797. }
  798. static void sh_mmcif_set_ios(struct mmc_host *mmc, struct mmc_ios *ios)
  799. {
  800. struct sh_mmcif_host *host = mmc_priv(mmc);
  801. struct sh_mmcif_plat_data *p = host->pd->dev.platform_data;
  802. unsigned long flags;
  803. spin_lock_irqsave(&host->lock, flags);
  804. if (host->state != STATE_IDLE) {
  805. spin_unlock_irqrestore(&host->lock, flags);
  806. return;
  807. }
  808. host->state = STATE_IOS;
  809. spin_unlock_irqrestore(&host->lock, flags);
  810. if (ios->power_mode == MMC_POWER_UP) {
  811. if (!host->card_present) {
  812. /* See if we also get DMA */
  813. sh_mmcif_request_dma(host, host->pd->dev.platform_data);
  814. host->card_present = true;
  815. }
  816. } else if (ios->power_mode == MMC_POWER_OFF || !ios->clock) {
  817. /* clock stop */
  818. sh_mmcif_clock_control(host, 0);
  819. if (ios->power_mode == MMC_POWER_OFF) {
  820. if (host->card_present) {
  821. sh_mmcif_release_dma(host);
  822. host->card_present = false;
  823. }
  824. }
  825. if (host->power) {
  826. pm_runtime_put(&host->pd->dev);
  827. host->power = false;
  828. if (p->down_pwr && ios->power_mode == MMC_POWER_OFF)
  829. p->down_pwr(host->pd);
  830. }
  831. host->state = STATE_IDLE;
  832. return;
  833. }
  834. if (ios->clock) {
  835. if (!host->power) {
  836. if (p->set_pwr)
  837. p->set_pwr(host->pd, ios->power_mode);
  838. pm_runtime_get_sync(&host->pd->dev);
  839. host->power = true;
  840. sh_mmcif_sync_reset(host);
  841. }
  842. sh_mmcif_clock_control(host, ios->clock);
  843. }
  844. host->bus_width = ios->bus_width;
  845. host->state = STATE_IDLE;
  846. }
  847. static int sh_mmcif_get_cd(struct mmc_host *mmc)
  848. {
  849. struct sh_mmcif_host *host = mmc_priv(mmc);
  850. struct sh_mmcif_plat_data *p = host->pd->dev.platform_data;
  851. if (!p->get_cd)
  852. return -ENOSYS;
  853. else
  854. return p->get_cd(host->pd);
  855. }
  856. static struct mmc_host_ops sh_mmcif_ops = {
  857. .request = sh_mmcif_request,
  858. .set_ios = sh_mmcif_set_ios,
  859. .get_cd = sh_mmcif_get_cd,
  860. };
  861. static bool sh_mmcif_end_cmd(struct sh_mmcif_host *host)
  862. {
  863. struct mmc_command *cmd = host->mrq->cmd;
  864. struct mmc_data *data = host->mrq->data;
  865. long time;
  866. if (host->sd_error) {
  867. switch (cmd->opcode) {
  868. case MMC_ALL_SEND_CID:
  869. case MMC_SELECT_CARD:
  870. case MMC_APP_CMD:
  871. cmd->error = -ETIMEDOUT;
  872. host->sd_error = false;
  873. break;
  874. default:
  875. cmd->error = sh_mmcif_error_manage(host);
  876. dev_dbg(&host->pd->dev, "Cmd(d'%d) error %d\n",
  877. cmd->opcode, cmd->error);
  878. break;
  879. }
  880. return false;
  881. }
  882. if (!(cmd->flags & MMC_RSP_PRESENT)) {
  883. cmd->error = 0;
  884. return false;
  885. }
  886. sh_mmcif_get_response(host, cmd);
  887. if (!data)
  888. return false;
  889. if (data->flags & MMC_DATA_READ) {
  890. if (host->chan_rx)
  891. sh_mmcif_start_dma_rx(host);
  892. } else {
  893. if (host->chan_tx)
  894. sh_mmcif_start_dma_tx(host);
  895. }
  896. if (!host->dma_active) {
  897. data->error = sh_mmcif_data_trans(host, host->mrq, cmd->opcode);
  898. if (!data->error)
  899. return true;
  900. return false;
  901. }
  902. /* Running in the IRQ thread, can sleep */
  903. time = wait_for_completion_interruptible_timeout(&host->dma_complete,
  904. host->timeout);
  905. if (host->sd_error) {
  906. dev_err(host->mmc->parent,
  907. "Error IRQ while waiting for DMA completion!\n");
  908. /* Woken up by an error IRQ: abort DMA */
  909. if (data->flags & MMC_DATA_READ)
  910. dmaengine_terminate_all(host->chan_rx);
  911. else
  912. dmaengine_terminate_all(host->chan_tx);
  913. data->error = sh_mmcif_error_manage(host);
  914. } else if (!time) {
  915. data->error = -ETIMEDOUT;
  916. } else if (time < 0) {
  917. data->error = time;
  918. }
  919. sh_mmcif_bitclr(host, MMCIF_CE_BUF_ACC,
  920. BUF_ACC_DMAREN | BUF_ACC_DMAWEN);
  921. host->dma_active = false;
  922. if (data->error)
  923. data->bytes_xfered = 0;
  924. return false;
  925. }
  926. static irqreturn_t sh_mmcif_irqt(int irq, void *dev_id)
  927. {
  928. struct sh_mmcif_host *host = dev_id;
  929. struct mmc_request *mrq = host->mrq;
  930. struct mmc_data *data = mrq->data;
  931. cancel_delayed_work_sync(&host->timeout_work);
  932. /*
  933. * All handlers return true, if processing continues, and false, if the
  934. * request has to be completed - successfully or not
  935. */
  936. switch (host->wait_for) {
  937. case MMCIF_WAIT_FOR_REQUEST:
  938. /* We're too late, the timeout has already kicked in */
  939. return IRQ_HANDLED;
  940. case MMCIF_WAIT_FOR_CMD:
  941. if (sh_mmcif_end_cmd(host))
  942. /* Wait for data */
  943. return IRQ_HANDLED;
  944. break;
  945. case MMCIF_WAIT_FOR_MREAD:
  946. if (sh_mmcif_mread_block(host))
  947. /* Wait for more data */
  948. return IRQ_HANDLED;
  949. break;
  950. case MMCIF_WAIT_FOR_READ:
  951. if (sh_mmcif_read_block(host))
  952. /* Wait for data end */
  953. return IRQ_HANDLED;
  954. break;
  955. case MMCIF_WAIT_FOR_MWRITE:
  956. if (sh_mmcif_mwrite_block(host))
  957. /* Wait data to write */
  958. return IRQ_HANDLED;
  959. break;
  960. case MMCIF_WAIT_FOR_WRITE:
  961. if (sh_mmcif_write_block(host))
  962. /* Wait for data end */
  963. return IRQ_HANDLED;
  964. break;
  965. case MMCIF_WAIT_FOR_STOP:
  966. if (host->sd_error) {
  967. mrq->stop->error = sh_mmcif_error_manage(host);
  968. break;
  969. }
  970. sh_mmcif_get_cmd12response(host, mrq->stop);
  971. mrq->stop->error = 0;
  972. break;
  973. case MMCIF_WAIT_FOR_READ_END:
  974. case MMCIF_WAIT_FOR_WRITE_END:
  975. if (host->sd_error)
  976. data->error = sh_mmcif_error_manage(host);
  977. break;
  978. default:
  979. BUG();
  980. }
  981. if (host->wait_for != MMCIF_WAIT_FOR_STOP) {
  982. if (!mrq->cmd->error && data && !data->error)
  983. data->bytes_xfered =
  984. data->blocks * data->blksz;
  985. if (mrq->stop && !mrq->cmd->error && (!data || !data->error)) {
  986. sh_mmcif_stop_cmd(host, mrq);
  987. if (!mrq->stop->error)
  988. return IRQ_HANDLED;
  989. }
  990. }
  991. host->wait_for = MMCIF_WAIT_FOR_REQUEST;
  992. host->state = STATE_IDLE;
  993. host->mrq = NULL;
  994. mmc_request_done(host->mmc, mrq);
  995. return IRQ_HANDLED;
  996. }
  997. static irqreturn_t sh_mmcif_intr(int irq, void *dev_id)
  998. {
  999. struct sh_mmcif_host *host = dev_id;
  1000. u32 state;
  1001. int err = 0;
  1002. state = sh_mmcif_readl(host->addr, MMCIF_CE_INT);
  1003. if (state & INT_ERR_STS) {
  1004. /* error interrupts - process first */
  1005. sh_mmcif_writel(host->addr, MMCIF_CE_INT, ~state);
  1006. sh_mmcif_bitclr(host, MMCIF_CE_INT_MASK, state);
  1007. err = 1;
  1008. } else if (state & INT_RBSYE) {
  1009. sh_mmcif_writel(host->addr, MMCIF_CE_INT,
  1010. ~(INT_RBSYE | INT_CRSPE));
  1011. sh_mmcif_bitclr(host, MMCIF_CE_INT_MASK, MASK_MRBSYE);
  1012. } else if (state & INT_CRSPE) {
  1013. sh_mmcif_writel(host->addr, MMCIF_CE_INT, ~INT_CRSPE);
  1014. sh_mmcif_bitclr(host, MMCIF_CE_INT_MASK, MASK_MCRSPE);
  1015. } else if (state & INT_BUFREN) {
  1016. sh_mmcif_writel(host->addr, MMCIF_CE_INT, ~INT_BUFREN);
  1017. sh_mmcif_bitclr(host, MMCIF_CE_INT_MASK, MASK_MBUFREN);
  1018. } else if (state & INT_BUFWEN) {
  1019. sh_mmcif_writel(host->addr, MMCIF_CE_INT, ~INT_BUFWEN);
  1020. sh_mmcif_bitclr(host, MMCIF_CE_INT_MASK, MASK_MBUFWEN);
  1021. } else if (state & INT_CMD12DRE) {
  1022. sh_mmcif_writel(host->addr, MMCIF_CE_INT,
  1023. ~(INT_CMD12DRE | INT_CMD12RBE |
  1024. INT_CMD12CRE | INT_BUFRE));
  1025. sh_mmcif_bitclr(host, MMCIF_CE_INT_MASK, MASK_MCMD12DRE);
  1026. } else if (state & INT_BUFRE) {
  1027. sh_mmcif_writel(host->addr, MMCIF_CE_INT, ~INT_BUFRE);
  1028. sh_mmcif_bitclr(host, MMCIF_CE_INT_MASK, MASK_MBUFRE);
  1029. } else if (state & INT_DTRANE) {
  1030. sh_mmcif_writel(host->addr, MMCIF_CE_INT, ~INT_DTRANE);
  1031. sh_mmcif_bitclr(host, MMCIF_CE_INT_MASK, MASK_MDTRANE);
  1032. } else if (state & INT_CMD12RBE) {
  1033. sh_mmcif_writel(host->addr, MMCIF_CE_INT,
  1034. ~(INT_CMD12RBE | INT_CMD12CRE));
  1035. sh_mmcif_bitclr(host, MMCIF_CE_INT_MASK, MASK_MCMD12RBE);
  1036. } else {
  1037. dev_dbg(&host->pd->dev, "Unsupported interrupt: 0x%x\n", state);
  1038. sh_mmcif_writel(host->addr, MMCIF_CE_INT, ~state);
  1039. sh_mmcif_bitclr(host, MMCIF_CE_INT_MASK, state);
  1040. err = 1;
  1041. }
  1042. if (err) {
  1043. host->sd_error = true;
  1044. dev_dbg(&host->pd->dev, "int err state = %08x\n", state);
  1045. }
  1046. if (state & ~(INT_CMD12RBE | INT_CMD12CRE)) {
  1047. if (!host->dma_active)
  1048. return IRQ_WAKE_THREAD;
  1049. else if (host->sd_error)
  1050. mmcif_dma_complete(host);
  1051. } else {
  1052. dev_dbg(&host->pd->dev, "Unexpected IRQ 0x%x\n", state);
  1053. }
  1054. return IRQ_HANDLED;
  1055. }
  1056. static void mmcif_timeout_work(struct work_struct *work)
  1057. {
  1058. struct delayed_work *d = container_of(work, struct delayed_work, work);
  1059. struct sh_mmcif_host *host = container_of(d, struct sh_mmcif_host, timeout_work);
  1060. struct mmc_request *mrq = host->mrq;
  1061. if (host->dying)
  1062. /* Don't run after mmc_remove_host() */
  1063. return;
  1064. /*
  1065. * Handle races with cancel_delayed_work(), unless
  1066. * cancel_delayed_work_sync() is used
  1067. */
  1068. switch (host->wait_for) {
  1069. case MMCIF_WAIT_FOR_CMD:
  1070. mrq->cmd->error = sh_mmcif_error_manage(host);
  1071. break;
  1072. case MMCIF_WAIT_FOR_STOP:
  1073. mrq->stop->error = sh_mmcif_error_manage(host);
  1074. break;
  1075. case MMCIF_WAIT_FOR_MREAD:
  1076. case MMCIF_WAIT_FOR_MWRITE:
  1077. case MMCIF_WAIT_FOR_READ:
  1078. case MMCIF_WAIT_FOR_WRITE:
  1079. case MMCIF_WAIT_FOR_READ_END:
  1080. case MMCIF_WAIT_FOR_WRITE_END:
  1081. mrq->data->error = sh_mmcif_error_manage(host);
  1082. break;
  1083. default:
  1084. BUG();
  1085. }
  1086. host->state = STATE_IDLE;
  1087. host->wait_for = MMCIF_WAIT_FOR_REQUEST;
  1088. host->mrq = NULL;
  1089. mmc_request_done(host->mmc, mrq);
  1090. }
  1091. static int __devinit sh_mmcif_probe(struct platform_device *pdev)
  1092. {
  1093. int ret = 0, irq[2];
  1094. struct mmc_host *mmc;
  1095. struct sh_mmcif_host *host;
  1096. struct sh_mmcif_plat_data *pd;
  1097. struct resource *res;
  1098. void __iomem *reg;
  1099. char clk_name[8];
  1100. irq[0] = platform_get_irq(pdev, 0);
  1101. irq[1] = platform_get_irq(pdev, 1);
  1102. if (irq[0] < 0 || irq[1] < 0) {
  1103. dev_err(&pdev->dev, "Get irq error\n");
  1104. return -ENXIO;
  1105. }
  1106. res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
  1107. if (!res) {
  1108. dev_err(&pdev->dev, "platform_get_resource error.\n");
  1109. return -ENXIO;
  1110. }
  1111. reg = ioremap(res->start, resource_size(res));
  1112. if (!reg) {
  1113. dev_err(&pdev->dev, "ioremap error.\n");
  1114. return -ENOMEM;
  1115. }
  1116. pd = pdev->dev.platform_data;
  1117. if (!pd) {
  1118. dev_err(&pdev->dev, "sh_mmcif plat data error.\n");
  1119. ret = -ENXIO;
  1120. goto clean_up;
  1121. }
  1122. mmc = mmc_alloc_host(sizeof(struct sh_mmcif_host), &pdev->dev);
  1123. if (!mmc) {
  1124. ret = -ENOMEM;
  1125. goto clean_up;
  1126. }
  1127. host = mmc_priv(mmc);
  1128. host->mmc = mmc;
  1129. host->addr = reg;
  1130. host->timeout = 1000;
  1131. snprintf(clk_name, sizeof(clk_name), "mmc%d", pdev->id);
  1132. host->hclk = clk_get(&pdev->dev, clk_name);
  1133. if (IS_ERR(host->hclk)) {
  1134. dev_err(&pdev->dev, "cannot get clock \"%s\"\n", clk_name);
  1135. ret = PTR_ERR(host->hclk);
  1136. goto clean_up1;
  1137. }
  1138. clk_enable(host->hclk);
  1139. host->clk = clk_get_rate(host->hclk);
  1140. host->pd = pdev;
  1141. spin_lock_init(&host->lock);
  1142. mmc->ops = &sh_mmcif_ops;
  1143. mmc->f_max = host->clk;
  1144. /* close to 400KHz */
  1145. if (mmc->f_max < 51200000)
  1146. mmc->f_min = mmc->f_max / 128;
  1147. else if (mmc->f_max < 102400000)
  1148. mmc->f_min = mmc->f_max / 256;
  1149. else
  1150. mmc->f_min = mmc->f_max / 512;
  1151. if (pd->ocr)
  1152. mmc->ocr_avail = pd->ocr;
  1153. mmc->caps = MMC_CAP_MMC_HIGHSPEED;
  1154. if (pd->caps)
  1155. mmc->caps |= pd->caps;
  1156. mmc->max_segs = 32;
  1157. mmc->max_blk_size = 512;
  1158. mmc->max_req_size = PAGE_CACHE_SIZE * mmc->max_segs;
  1159. mmc->max_blk_count = mmc->max_req_size / mmc->max_blk_size;
  1160. mmc->max_seg_size = mmc->max_req_size;
  1161. sh_mmcif_sync_reset(host);
  1162. platform_set_drvdata(pdev, host);
  1163. pm_runtime_enable(&pdev->dev);
  1164. host->power = false;
  1165. ret = pm_runtime_resume(&pdev->dev);
  1166. if (ret < 0)
  1167. goto clean_up2;
  1168. INIT_DELAYED_WORK(&host->timeout_work, mmcif_timeout_work);
  1169. sh_mmcif_writel(host->addr, MMCIF_CE_INT_MASK, MASK_ALL);
  1170. ret = request_threaded_irq(irq[0], sh_mmcif_intr, sh_mmcif_irqt, 0, "sh_mmc:error", host);
  1171. if (ret) {
  1172. dev_err(&pdev->dev, "request_irq error (sh_mmc:error)\n");
  1173. goto clean_up3;
  1174. }
  1175. ret = request_threaded_irq(irq[1], sh_mmcif_intr, sh_mmcif_irqt, 0, "sh_mmc:int", host);
  1176. if (ret) {
  1177. dev_err(&pdev->dev, "request_irq error (sh_mmc:int)\n");
  1178. goto clean_up4;
  1179. }
  1180. ret = mmc_add_host(mmc);
  1181. if (ret < 0)
  1182. goto clean_up5;
  1183. dev_pm_qos_expose_latency_limit(&pdev->dev, 100);
  1184. dev_info(&pdev->dev, "driver version %s\n", DRIVER_VERSION);
  1185. dev_dbg(&pdev->dev, "chip ver H'%04x\n",
  1186. sh_mmcif_readl(host->addr, MMCIF_CE_VERSION) & 0x0000ffff);
  1187. return ret;
  1188. clean_up5:
  1189. free_irq(irq[1], host);
  1190. clean_up4:
  1191. free_irq(irq[0], host);
  1192. clean_up3:
  1193. pm_runtime_suspend(&pdev->dev);
  1194. clean_up2:
  1195. pm_runtime_disable(&pdev->dev);
  1196. clk_disable(host->hclk);
  1197. clean_up1:
  1198. mmc_free_host(mmc);
  1199. clean_up:
  1200. if (reg)
  1201. iounmap(reg);
  1202. return ret;
  1203. }
  1204. static int __devexit sh_mmcif_remove(struct platform_device *pdev)
  1205. {
  1206. struct sh_mmcif_host *host = platform_get_drvdata(pdev);
  1207. int irq[2];
  1208. host->dying = true;
  1209. pm_runtime_get_sync(&pdev->dev);
  1210. dev_pm_qos_hide_latency_limit(&pdev->dev);
  1211. mmc_remove_host(host->mmc);
  1212. sh_mmcif_writel(host->addr, MMCIF_CE_INT_MASK, MASK_ALL);
  1213. /*
  1214. * FIXME: cancel_delayed_work(_sync)() and free_irq() race with the
  1215. * mmc_remove_host() call above. But swapping order doesn't help either
  1216. * (a query on the linux-mmc mailing list didn't bring any replies).
  1217. */
  1218. cancel_delayed_work_sync(&host->timeout_work);
  1219. if (host->addr)
  1220. iounmap(host->addr);
  1221. irq[0] = platform_get_irq(pdev, 0);
  1222. irq[1] = platform_get_irq(pdev, 1);
  1223. free_irq(irq[0], host);
  1224. free_irq(irq[1], host);
  1225. platform_set_drvdata(pdev, NULL);
  1226. clk_disable(host->hclk);
  1227. mmc_free_host(host->mmc);
  1228. pm_runtime_put_sync(&pdev->dev);
  1229. pm_runtime_disable(&pdev->dev);
  1230. return 0;
  1231. }
  1232. #ifdef CONFIG_PM
  1233. static int sh_mmcif_suspend(struct device *dev)
  1234. {
  1235. struct platform_device *pdev = to_platform_device(dev);
  1236. struct sh_mmcif_host *host = platform_get_drvdata(pdev);
  1237. int ret = mmc_suspend_host(host->mmc);
  1238. if (!ret) {
  1239. sh_mmcif_writel(host->addr, MMCIF_CE_INT_MASK, MASK_ALL);
  1240. clk_disable(host->hclk);
  1241. }
  1242. return ret;
  1243. }
  1244. static int sh_mmcif_resume(struct device *dev)
  1245. {
  1246. struct platform_device *pdev = to_platform_device(dev);
  1247. struct sh_mmcif_host *host = platform_get_drvdata(pdev);
  1248. clk_enable(host->hclk);
  1249. return mmc_resume_host(host->mmc);
  1250. }
  1251. #else
  1252. #define sh_mmcif_suspend NULL
  1253. #define sh_mmcif_resume NULL
  1254. #endif /* CONFIG_PM */
  1255. static const struct dev_pm_ops sh_mmcif_dev_pm_ops = {
  1256. .suspend = sh_mmcif_suspend,
  1257. .resume = sh_mmcif_resume,
  1258. };
  1259. static struct platform_driver sh_mmcif_driver = {
  1260. .probe = sh_mmcif_probe,
  1261. .remove = sh_mmcif_remove,
  1262. .driver = {
  1263. .name = DRIVER_NAME,
  1264. .pm = &sh_mmcif_dev_pm_ops,
  1265. },
  1266. };
  1267. module_platform_driver(sh_mmcif_driver);
  1268. MODULE_DESCRIPTION("SuperH on-chip MMC/eMMC interface driver");
  1269. MODULE_LICENSE("GPL");
  1270. MODULE_ALIAS("platform:" DRIVER_NAME);
  1271. MODULE_AUTHOR("Yusuke Goda <yusuke.goda.sx@renesas.com>");