rc-main.c 31 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205
  1. /* rc-main.c - Remote Controller core module
  2. *
  3. * Copyright (C) 2009-2010 by Mauro Carvalho Chehab <mchehab@redhat.com>
  4. *
  5. * This program is free software; you can redistribute it and/or modify
  6. * it under the terms of the GNU General Public License as published by
  7. * the Free Software Foundation version 2 of the License.
  8. *
  9. * This program is distributed in the hope that it will be useful,
  10. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. * GNU General Public License for more details.
  13. */
  14. #include <media/rc-core.h>
  15. #include <linux/spinlock.h>
  16. #include <linux/delay.h>
  17. #include <linux/input.h>
  18. #include <linux/slab.h>
  19. #include <linux/device.h>
  20. #include <linux/module.h>
  21. #include "rc-core-priv.h"
  22. /* Sizes are in bytes, 256 bytes allows for 32 entries on x64 */
  23. #define IR_TAB_MIN_SIZE 256
  24. #define IR_TAB_MAX_SIZE 8192
  25. /* FIXME: IR_KEYPRESS_TIMEOUT should be protocol specific */
  26. #define IR_KEYPRESS_TIMEOUT 250
  27. /* Used to keep track of known keymaps */
  28. static LIST_HEAD(rc_map_list);
  29. static DEFINE_SPINLOCK(rc_map_lock);
  30. static struct rc_map_list *seek_rc_map(const char *name)
  31. {
  32. struct rc_map_list *map = NULL;
  33. spin_lock(&rc_map_lock);
  34. list_for_each_entry(map, &rc_map_list, list) {
  35. if (!strcmp(name, map->map.name)) {
  36. spin_unlock(&rc_map_lock);
  37. return map;
  38. }
  39. }
  40. spin_unlock(&rc_map_lock);
  41. return NULL;
  42. }
  43. struct rc_map *rc_map_get(const char *name)
  44. {
  45. struct rc_map_list *map;
  46. map = seek_rc_map(name);
  47. #ifdef MODULE
  48. if (!map) {
  49. int rc = request_module(name);
  50. if (rc < 0) {
  51. printk(KERN_ERR "Couldn't load IR keymap %s\n", name);
  52. return NULL;
  53. }
  54. msleep(20); /* Give some time for IR to register */
  55. map = seek_rc_map(name);
  56. }
  57. #endif
  58. if (!map) {
  59. printk(KERN_ERR "IR keymap %s not found\n", name);
  60. return NULL;
  61. }
  62. printk(KERN_INFO "Registered IR keymap %s\n", map->map.name);
  63. return &map->map;
  64. }
  65. EXPORT_SYMBOL_GPL(rc_map_get);
  66. int rc_map_register(struct rc_map_list *map)
  67. {
  68. spin_lock(&rc_map_lock);
  69. list_add_tail(&map->list, &rc_map_list);
  70. spin_unlock(&rc_map_lock);
  71. return 0;
  72. }
  73. EXPORT_SYMBOL_GPL(rc_map_register);
  74. void rc_map_unregister(struct rc_map_list *map)
  75. {
  76. spin_lock(&rc_map_lock);
  77. list_del(&map->list);
  78. spin_unlock(&rc_map_lock);
  79. }
  80. EXPORT_SYMBOL_GPL(rc_map_unregister);
  81. static struct rc_map_table empty[] = {
  82. { 0x2a, KEY_COFFEE },
  83. };
  84. static struct rc_map_list empty_map = {
  85. .map = {
  86. .scan = empty,
  87. .size = ARRAY_SIZE(empty),
  88. .rc_type = RC_TYPE_UNKNOWN, /* Legacy IR type */
  89. .name = RC_MAP_EMPTY,
  90. }
  91. };
  92. /**
  93. * ir_create_table() - initializes a scancode table
  94. * @rc_map: the rc_map to initialize
  95. * @name: name to assign to the table
  96. * @rc_type: ir type to assign to the new table
  97. * @size: initial size of the table
  98. * @return: zero on success or a negative error code
  99. *
  100. * This routine will initialize the rc_map and will allocate
  101. * memory to hold at least the specified number of elements.
  102. */
  103. static int ir_create_table(struct rc_map *rc_map,
  104. const char *name, u64 rc_type, size_t size)
  105. {
  106. rc_map->name = name;
  107. rc_map->rc_type = rc_type;
  108. rc_map->alloc = roundup_pow_of_two(size * sizeof(struct rc_map_table));
  109. rc_map->size = rc_map->alloc / sizeof(struct rc_map_table);
  110. rc_map->scan = kmalloc(rc_map->alloc, GFP_KERNEL);
  111. if (!rc_map->scan)
  112. return -ENOMEM;
  113. IR_dprintk(1, "Allocated space for %u keycode entries (%u bytes)\n",
  114. rc_map->size, rc_map->alloc);
  115. return 0;
  116. }
  117. /**
  118. * ir_free_table() - frees memory allocated by a scancode table
  119. * @rc_map: the table whose mappings need to be freed
  120. *
  121. * This routine will free memory alloctaed for key mappings used by given
  122. * scancode table.
  123. */
  124. static void ir_free_table(struct rc_map *rc_map)
  125. {
  126. rc_map->size = 0;
  127. kfree(rc_map->scan);
  128. rc_map->scan = NULL;
  129. }
  130. /**
  131. * ir_resize_table() - resizes a scancode table if necessary
  132. * @rc_map: the rc_map to resize
  133. * @gfp_flags: gfp flags to use when allocating memory
  134. * @return: zero on success or a negative error code
  135. *
  136. * This routine will shrink the rc_map if it has lots of
  137. * unused entries and grow it if it is full.
  138. */
  139. static int ir_resize_table(struct rc_map *rc_map, gfp_t gfp_flags)
  140. {
  141. unsigned int oldalloc = rc_map->alloc;
  142. unsigned int newalloc = oldalloc;
  143. struct rc_map_table *oldscan = rc_map->scan;
  144. struct rc_map_table *newscan;
  145. if (rc_map->size == rc_map->len) {
  146. /* All entries in use -> grow keytable */
  147. if (rc_map->alloc >= IR_TAB_MAX_SIZE)
  148. return -ENOMEM;
  149. newalloc *= 2;
  150. IR_dprintk(1, "Growing table to %u bytes\n", newalloc);
  151. }
  152. if ((rc_map->len * 3 < rc_map->size) && (oldalloc > IR_TAB_MIN_SIZE)) {
  153. /* Less than 1/3 of entries in use -> shrink keytable */
  154. newalloc /= 2;
  155. IR_dprintk(1, "Shrinking table to %u bytes\n", newalloc);
  156. }
  157. if (newalloc == oldalloc)
  158. return 0;
  159. newscan = kmalloc(newalloc, gfp_flags);
  160. if (!newscan) {
  161. IR_dprintk(1, "Failed to kmalloc %u bytes\n", newalloc);
  162. return -ENOMEM;
  163. }
  164. memcpy(newscan, rc_map->scan, rc_map->len * sizeof(struct rc_map_table));
  165. rc_map->scan = newscan;
  166. rc_map->alloc = newalloc;
  167. rc_map->size = rc_map->alloc / sizeof(struct rc_map_table);
  168. kfree(oldscan);
  169. return 0;
  170. }
  171. /**
  172. * ir_update_mapping() - set a keycode in the scancode->keycode table
  173. * @dev: the struct rc_dev device descriptor
  174. * @rc_map: scancode table to be adjusted
  175. * @index: index of the mapping that needs to be updated
  176. * @keycode: the desired keycode
  177. * @return: previous keycode assigned to the mapping
  178. *
  179. * This routine is used to update scancode->keycode mapping at given
  180. * position.
  181. */
  182. static unsigned int ir_update_mapping(struct rc_dev *dev,
  183. struct rc_map *rc_map,
  184. unsigned int index,
  185. unsigned int new_keycode)
  186. {
  187. int old_keycode = rc_map->scan[index].keycode;
  188. int i;
  189. /* Did the user wish to remove the mapping? */
  190. if (new_keycode == KEY_RESERVED || new_keycode == KEY_UNKNOWN) {
  191. IR_dprintk(1, "#%d: Deleting scan 0x%04x\n",
  192. index, rc_map->scan[index].scancode);
  193. rc_map->len--;
  194. memmove(&rc_map->scan[index], &rc_map->scan[index+ 1],
  195. (rc_map->len - index) * sizeof(struct rc_map_table));
  196. } else {
  197. IR_dprintk(1, "#%d: %s scan 0x%04x with key 0x%04x\n",
  198. index,
  199. old_keycode == KEY_RESERVED ? "New" : "Replacing",
  200. rc_map->scan[index].scancode, new_keycode);
  201. rc_map->scan[index].keycode = new_keycode;
  202. __set_bit(new_keycode, dev->input_dev->keybit);
  203. }
  204. if (old_keycode != KEY_RESERVED) {
  205. /* A previous mapping was updated... */
  206. __clear_bit(old_keycode, dev->input_dev->keybit);
  207. /* ... but another scancode might use the same keycode */
  208. for (i = 0; i < rc_map->len; i++) {
  209. if (rc_map->scan[i].keycode == old_keycode) {
  210. __set_bit(old_keycode, dev->input_dev->keybit);
  211. break;
  212. }
  213. }
  214. /* Possibly shrink the keytable, failure is not a problem */
  215. ir_resize_table(rc_map, GFP_ATOMIC);
  216. }
  217. return old_keycode;
  218. }
  219. /**
  220. * ir_establish_scancode() - set a keycode in the scancode->keycode table
  221. * @dev: the struct rc_dev device descriptor
  222. * @rc_map: scancode table to be searched
  223. * @scancode: the desired scancode
  224. * @resize: controls whether we allowed to resize the table to
  225. * accommodate not yet present scancodes
  226. * @return: index of the mapping containing scancode in question
  227. * or -1U in case of failure.
  228. *
  229. * This routine is used to locate given scancode in rc_map.
  230. * If scancode is not yet present the routine will allocate a new slot
  231. * for it.
  232. */
  233. static unsigned int ir_establish_scancode(struct rc_dev *dev,
  234. struct rc_map *rc_map,
  235. unsigned int scancode,
  236. bool resize)
  237. {
  238. unsigned int i;
  239. /*
  240. * Unfortunately, some hardware-based IR decoders don't provide
  241. * all bits for the complete IR code. In general, they provide only
  242. * the command part of the IR code. Yet, as it is possible to replace
  243. * the provided IR with another one, it is needed to allow loading
  244. * IR tables from other remotes. So, we support specifying a mask to
  245. * indicate the valid bits of the scancodes.
  246. */
  247. if (dev->scanmask)
  248. scancode &= dev->scanmask;
  249. /* First check if we already have a mapping for this ir command */
  250. for (i = 0; i < rc_map->len; i++) {
  251. if (rc_map->scan[i].scancode == scancode)
  252. return i;
  253. /* Keytable is sorted from lowest to highest scancode */
  254. if (rc_map->scan[i].scancode >= scancode)
  255. break;
  256. }
  257. /* No previous mapping found, we might need to grow the table */
  258. if (rc_map->size == rc_map->len) {
  259. if (!resize || ir_resize_table(rc_map, GFP_ATOMIC))
  260. return -1U;
  261. }
  262. /* i is the proper index to insert our new keycode */
  263. if (i < rc_map->len)
  264. memmove(&rc_map->scan[i + 1], &rc_map->scan[i],
  265. (rc_map->len - i) * sizeof(struct rc_map_table));
  266. rc_map->scan[i].scancode = scancode;
  267. rc_map->scan[i].keycode = KEY_RESERVED;
  268. rc_map->len++;
  269. return i;
  270. }
  271. /**
  272. * ir_setkeycode() - set a keycode in the scancode->keycode table
  273. * @idev: the struct input_dev device descriptor
  274. * @scancode: the desired scancode
  275. * @keycode: result
  276. * @return: -EINVAL if the keycode could not be inserted, otherwise zero.
  277. *
  278. * This routine is used to handle evdev EVIOCSKEY ioctl.
  279. */
  280. static int ir_setkeycode(struct input_dev *idev,
  281. const struct input_keymap_entry *ke,
  282. unsigned int *old_keycode)
  283. {
  284. struct rc_dev *rdev = input_get_drvdata(idev);
  285. struct rc_map *rc_map = &rdev->rc_map;
  286. unsigned int index;
  287. unsigned int scancode;
  288. int retval = 0;
  289. unsigned long flags;
  290. spin_lock_irqsave(&rc_map->lock, flags);
  291. if (ke->flags & INPUT_KEYMAP_BY_INDEX) {
  292. index = ke->index;
  293. if (index >= rc_map->len) {
  294. retval = -EINVAL;
  295. goto out;
  296. }
  297. } else {
  298. retval = input_scancode_to_scalar(ke, &scancode);
  299. if (retval)
  300. goto out;
  301. index = ir_establish_scancode(rdev, rc_map, scancode, true);
  302. if (index >= rc_map->len) {
  303. retval = -ENOMEM;
  304. goto out;
  305. }
  306. }
  307. *old_keycode = ir_update_mapping(rdev, rc_map, index, ke->keycode);
  308. out:
  309. spin_unlock_irqrestore(&rc_map->lock, flags);
  310. return retval;
  311. }
  312. /**
  313. * ir_setkeytable() - sets several entries in the scancode->keycode table
  314. * @dev: the struct rc_dev device descriptor
  315. * @to: the struct rc_map to copy entries to
  316. * @from: the struct rc_map to copy entries from
  317. * @return: -ENOMEM if all keycodes could not be inserted, otherwise zero.
  318. *
  319. * This routine is used to handle table initialization.
  320. */
  321. static int ir_setkeytable(struct rc_dev *dev,
  322. const struct rc_map *from)
  323. {
  324. struct rc_map *rc_map = &dev->rc_map;
  325. unsigned int i, index;
  326. int rc;
  327. rc = ir_create_table(rc_map, from->name,
  328. from->rc_type, from->size);
  329. if (rc)
  330. return rc;
  331. IR_dprintk(1, "Allocated space for %u keycode entries (%u bytes)\n",
  332. rc_map->size, rc_map->alloc);
  333. for (i = 0; i < from->size; i++) {
  334. index = ir_establish_scancode(dev, rc_map,
  335. from->scan[i].scancode, false);
  336. if (index >= rc_map->len) {
  337. rc = -ENOMEM;
  338. break;
  339. }
  340. ir_update_mapping(dev, rc_map, index,
  341. from->scan[i].keycode);
  342. }
  343. if (rc)
  344. ir_free_table(rc_map);
  345. return rc;
  346. }
  347. /**
  348. * ir_lookup_by_scancode() - locate mapping by scancode
  349. * @rc_map: the struct rc_map to search
  350. * @scancode: scancode to look for in the table
  351. * @return: index in the table, -1U if not found
  352. *
  353. * This routine performs binary search in RC keykeymap table for
  354. * given scancode.
  355. */
  356. static unsigned int ir_lookup_by_scancode(const struct rc_map *rc_map,
  357. unsigned int scancode)
  358. {
  359. int start = 0;
  360. int end = rc_map->len - 1;
  361. int mid;
  362. while (start <= end) {
  363. mid = (start + end) / 2;
  364. if (rc_map->scan[mid].scancode < scancode)
  365. start = mid + 1;
  366. else if (rc_map->scan[mid].scancode > scancode)
  367. end = mid - 1;
  368. else
  369. return mid;
  370. }
  371. return -1U;
  372. }
  373. /**
  374. * ir_getkeycode() - get a keycode from the scancode->keycode table
  375. * @idev: the struct input_dev device descriptor
  376. * @scancode: the desired scancode
  377. * @keycode: used to return the keycode, if found, or KEY_RESERVED
  378. * @return: always returns zero.
  379. *
  380. * This routine is used to handle evdev EVIOCGKEY ioctl.
  381. */
  382. static int ir_getkeycode(struct input_dev *idev,
  383. struct input_keymap_entry *ke)
  384. {
  385. struct rc_dev *rdev = input_get_drvdata(idev);
  386. struct rc_map *rc_map = &rdev->rc_map;
  387. struct rc_map_table *entry;
  388. unsigned long flags;
  389. unsigned int index;
  390. unsigned int scancode;
  391. int retval;
  392. spin_lock_irqsave(&rc_map->lock, flags);
  393. if (ke->flags & INPUT_KEYMAP_BY_INDEX) {
  394. index = ke->index;
  395. } else {
  396. retval = input_scancode_to_scalar(ke, &scancode);
  397. if (retval)
  398. goto out;
  399. index = ir_lookup_by_scancode(rc_map, scancode);
  400. }
  401. if (index < rc_map->len) {
  402. entry = &rc_map->scan[index];
  403. ke->index = index;
  404. ke->keycode = entry->keycode;
  405. ke->len = sizeof(entry->scancode);
  406. memcpy(ke->scancode, &entry->scancode, sizeof(entry->scancode));
  407. } else if (!(ke->flags & INPUT_KEYMAP_BY_INDEX)) {
  408. /*
  409. * We do not really know the valid range of scancodes
  410. * so let's respond with KEY_RESERVED to anything we
  411. * do not have mapping for [yet].
  412. */
  413. ke->index = index;
  414. ke->keycode = KEY_RESERVED;
  415. } else {
  416. retval = -EINVAL;
  417. goto out;
  418. }
  419. retval = 0;
  420. out:
  421. spin_unlock_irqrestore(&rc_map->lock, flags);
  422. return retval;
  423. }
  424. /**
  425. * rc_g_keycode_from_table() - gets the keycode that corresponds to a scancode
  426. * @dev: the struct rc_dev descriptor of the device
  427. * @scancode: the scancode to look for
  428. * @return: the corresponding keycode, or KEY_RESERVED
  429. *
  430. * This routine is used by drivers which need to convert a scancode to a
  431. * keycode. Normally it should not be used since drivers should have no
  432. * interest in keycodes.
  433. */
  434. u32 rc_g_keycode_from_table(struct rc_dev *dev, u32 scancode)
  435. {
  436. struct rc_map *rc_map = &dev->rc_map;
  437. unsigned int keycode;
  438. unsigned int index;
  439. unsigned long flags;
  440. spin_lock_irqsave(&rc_map->lock, flags);
  441. index = ir_lookup_by_scancode(rc_map, scancode);
  442. keycode = index < rc_map->len ?
  443. rc_map->scan[index].keycode : KEY_RESERVED;
  444. spin_unlock_irqrestore(&rc_map->lock, flags);
  445. if (keycode != KEY_RESERVED)
  446. IR_dprintk(1, "%s: scancode 0x%04x keycode 0x%02x\n",
  447. dev->input_name, scancode, keycode);
  448. return keycode;
  449. }
  450. EXPORT_SYMBOL_GPL(rc_g_keycode_from_table);
  451. /**
  452. * ir_do_keyup() - internal function to signal the release of a keypress
  453. * @dev: the struct rc_dev descriptor of the device
  454. * @sync: whether or not to call input_sync
  455. *
  456. * This function is used internally to release a keypress, it must be
  457. * called with keylock held.
  458. */
  459. static void ir_do_keyup(struct rc_dev *dev, bool sync)
  460. {
  461. if (!dev->keypressed)
  462. return;
  463. IR_dprintk(1, "keyup key 0x%04x\n", dev->last_keycode);
  464. input_report_key(dev->input_dev, dev->last_keycode, 0);
  465. if (sync)
  466. input_sync(dev->input_dev);
  467. dev->keypressed = false;
  468. }
  469. /**
  470. * rc_keyup() - signals the release of a keypress
  471. * @dev: the struct rc_dev descriptor of the device
  472. *
  473. * This routine is used to signal that a key has been released on the
  474. * remote control.
  475. */
  476. void rc_keyup(struct rc_dev *dev)
  477. {
  478. unsigned long flags;
  479. spin_lock_irqsave(&dev->keylock, flags);
  480. ir_do_keyup(dev, true);
  481. spin_unlock_irqrestore(&dev->keylock, flags);
  482. }
  483. EXPORT_SYMBOL_GPL(rc_keyup);
  484. /**
  485. * ir_timer_keyup() - generates a keyup event after a timeout
  486. * @cookie: a pointer to the struct rc_dev for the device
  487. *
  488. * This routine will generate a keyup event some time after a keydown event
  489. * is generated when no further activity has been detected.
  490. */
  491. static void ir_timer_keyup(unsigned long cookie)
  492. {
  493. struct rc_dev *dev = (struct rc_dev *)cookie;
  494. unsigned long flags;
  495. /*
  496. * ir->keyup_jiffies is used to prevent a race condition if a
  497. * hardware interrupt occurs at this point and the keyup timer
  498. * event is moved further into the future as a result.
  499. *
  500. * The timer will then be reactivated and this function called
  501. * again in the future. We need to exit gracefully in that case
  502. * to allow the input subsystem to do its auto-repeat magic or
  503. * a keyup event might follow immediately after the keydown.
  504. */
  505. spin_lock_irqsave(&dev->keylock, flags);
  506. if (time_is_before_eq_jiffies(dev->keyup_jiffies))
  507. ir_do_keyup(dev, true);
  508. spin_unlock_irqrestore(&dev->keylock, flags);
  509. }
  510. /**
  511. * rc_repeat() - signals that a key is still pressed
  512. * @dev: the struct rc_dev descriptor of the device
  513. *
  514. * This routine is used by IR decoders when a repeat message which does
  515. * not include the necessary bits to reproduce the scancode has been
  516. * received.
  517. */
  518. void rc_repeat(struct rc_dev *dev)
  519. {
  520. unsigned long flags;
  521. spin_lock_irqsave(&dev->keylock, flags);
  522. input_event(dev->input_dev, EV_MSC, MSC_SCAN, dev->last_scancode);
  523. input_sync(dev->input_dev);
  524. if (!dev->keypressed)
  525. goto out;
  526. dev->keyup_jiffies = jiffies + msecs_to_jiffies(IR_KEYPRESS_TIMEOUT);
  527. mod_timer(&dev->timer_keyup, dev->keyup_jiffies);
  528. out:
  529. spin_unlock_irqrestore(&dev->keylock, flags);
  530. }
  531. EXPORT_SYMBOL_GPL(rc_repeat);
  532. /**
  533. * ir_do_keydown() - internal function to process a keypress
  534. * @dev: the struct rc_dev descriptor of the device
  535. * @scancode: the scancode of the keypress
  536. * @keycode: the keycode of the keypress
  537. * @toggle: the toggle value of the keypress
  538. *
  539. * This function is used internally to register a keypress, it must be
  540. * called with keylock held.
  541. */
  542. static void ir_do_keydown(struct rc_dev *dev, int scancode,
  543. u32 keycode, u8 toggle)
  544. {
  545. bool new_event = !dev->keypressed ||
  546. dev->last_scancode != scancode ||
  547. dev->last_toggle != toggle;
  548. if (new_event && dev->keypressed)
  549. ir_do_keyup(dev, false);
  550. input_event(dev->input_dev, EV_MSC, MSC_SCAN, scancode);
  551. if (new_event && keycode != KEY_RESERVED) {
  552. /* Register a keypress */
  553. dev->keypressed = true;
  554. dev->last_scancode = scancode;
  555. dev->last_toggle = toggle;
  556. dev->last_keycode = keycode;
  557. IR_dprintk(1, "%s: key down event, "
  558. "key 0x%04x, scancode 0x%04x\n",
  559. dev->input_name, keycode, scancode);
  560. input_report_key(dev->input_dev, keycode, 1);
  561. }
  562. input_sync(dev->input_dev);
  563. }
  564. /**
  565. * rc_keydown() - generates input event for a key press
  566. * @dev: the struct rc_dev descriptor of the device
  567. * @scancode: the scancode that we're seeking
  568. * @toggle: the toggle value (protocol dependent, if the protocol doesn't
  569. * support toggle values, this should be set to zero)
  570. *
  571. * This routine is used to signal that a key has been pressed on the
  572. * remote control.
  573. */
  574. void rc_keydown(struct rc_dev *dev, int scancode, u8 toggle)
  575. {
  576. unsigned long flags;
  577. u32 keycode = rc_g_keycode_from_table(dev, scancode);
  578. spin_lock_irqsave(&dev->keylock, flags);
  579. ir_do_keydown(dev, scancode, keycode, toggle);
  580. if (dev->keypressed) {
  581. dev->keyup_jiffies = jiffies + msecs_to_jiffies(IR_KEYPRESS_TIMEOUT);
  582. mod_timer(&dev->timer_keyup, dev->keyup_jiffies);
  583. }
  584. spin_unlock_irqrestore(&dev->keylock, flags);
  585. }
  586. EXPORT_SYMBOL_GPL(rc_keydown);
  587. /**
  588. * rc_keydown_notimeout() - generates input event for a key press without
  589. * an automatic keyup event at a later time
  590. * @dev: the struct rc_dev descriptor of the device
  591. * @scancode: the scancode that we're seeking
  592. * @toggle: the toggle value (protocol dependent, if the protocol doesn't
  593. * support toggle values, this should be set to zero)
  594. *
  595. * This routine is used to signal that a key has been pressed on the
  596. * remote control. The driver must manually call rc_keyup() at a later stage.
  597. */
  598. void rc_keydown_notimeout(struct rc_dev *dev, int scancode, u8 toggle)
  599. {
  600. unsigned long flags;
  601. u32 keycode = rc_g_keycode_from_table(dev, scancode);
  602. spin_lock_irqsave(&dev->keylock, flags);
  603. ir_do_keydown(dev, scancode, keycode, toggle);
  604. spin_unlock_irqrestore(&dev->keylock, flags);
  605. }
  606. EXPORT_SYMBOL_GPL(rc_keydown_notimeout);
  607. static int ir_open(struct input_dev *idev)
  608. {
  609. struct rc_dev *rdev = input_get_drvdata(idev);
  610. return rdev->open(rdev);
  611. }
  612. static void ir_close(struct input_dev *idev)
  613. {
  614. struct rc_dev *rdev = input_get_drvdata(idev);
  615. if (rdev)
  616. rdev->close(rdev);
  617. }
  618. /* class for /sys/class/rc */
  619. static char *ir_devnode(struct device *dev, umode_t *mode)
  620. {
  621. return kasprintf(GFP_KERNEL, "rc/%s", dev_name(dev));
  622. }
  623. static struct class ir_input_class = {
  624. .name = "rc",
  625. .devnode = ir_devnode,
  626. };
  627. static struct {
  628. u64 type;
  629. char *name;
  630. } proto_names[] = {
  631. { RC_TYPE_UNKNOWN, "unknown" },
  632. { RC_TYPE_RC5, "rc-5" },
  633. { RC_TYPE_NEC, "nec" },
  634. { RC_TYPE_RC6, "rc-6" },
  635. { RC_TYPE_JVC, "jvc" },
  636. { RC_TYPE_SONY, "sony" },
  637. { RC_TYPE_RC5_SZ, "rc-5-sz" },
  638. { RC_TYPE_SANYO, "sanyo" },
  639. { RC_TYPE_MCE_KBD, "mce_kbd" },
  640. { RC_TYPE_LIRC, "lirc" },
  641. { RC_TYPE_OTHER, "other" },
  642. };
  643. #define PROTO_NONE "none"
  644. /**
  645. * show_protocols() - shows the current IR protocol(s)
  646. * @device: the device descriptor
  647. * @mattr: the device attribute struct (unused)
  648. * @buf: a pointer to the output buffer
  649. *
  650. * This routine is a callback routine for input read the IR protocol type(s).
  651. * it is trigged by reading /sys/class/rc/rc?/protocols.
  652. * It returns the protocol names of supported protocols.
  653. * Enabled protocols are printed in brackets.
  654. *
  655. * dev->lock is taken to guard against races between device
  656. * registration, store_protocols and show_protocols.
  657. */
  658. static ssize_t show_protocols(struct device *device,
  659. struct device_attribute *mattr, char *buf)
  660. {
  661. struct rc_dev *dev = to_rc_dev(device);
  662. u64 allowed, enabled;
  663. char *tmp = buf;
  664. int i;
  665. /* Device is being removed */
  666. if (!dev)
  667. return -EINVAL;
  668. mutex_lock(&dev->lock);
  669. if (dev->driver_type == RC_DRIVER_SCANCODE) {
  670. enabled = dev->rc_map.rc_type;
  671. allowed = dev->allowed_protos;
  672. } else {
  673. enabled = dev->raw->enabled_protocols;
  674. allowed = ir_raw_get_allowed_protocols();
  675. }
  676. IR_dprintk(1, "allowed - 0x%llx, enabled - 0x%llx\n",
  677. (long long)allowed,
  678. (long long)enabled);
  679. for (i = 0; i < ARRAY_SIZE(proto_names); i++) {
  680. if (allowed & enabled & proto_names[i].type)
  681. tmp += sprintf(tmp, "[%s] ", proto_names[i].name);
  682. else if (allowed & proto_names[i].type)
  683. tmp += sprintf(tmp, "%s ", proto_names[i].name);
  684. }
  685. if (tmp != buf)
  686. tmp--;
  687. *tmp = '\n';
  688. mutex_unlock(&dev->lock);
  689. return tmp + 1 - buf;
  690. }
  691. /**
  692. * store_protocols() - changes the current IR protocol(s)
  693. * @device: the device descriptor
  694. * @mattr: the device attribute struct (unused)
  695. * @buf: a pointer to the input buffer
  696. * @len: length of the input buffer
  697. *
  698. * This routine is for changing the IR protocol type.
  699. * It is trigged by writing to /sys/class/rc/rc?/protocols.
  700. * Writing "+proto" will add a protocol to the list of enabled protocols.
  701. * Writing "-proto" will remove a protocol from the list of enabled protocols.
  702. * Writing "proto" will enable only "proto".
  703. * Writing "none" will disable all protocols.
  704. * Returns -EINVAL if an invalid protocol combination or unknown protocol name
  705. * is used, otherwise @len.
  706. *
  707. * dev->lock is taken to guard against races between device
  708. * registration, store_protocols and show_protocols.
  709. */
  710. static ssize_t store_protocols(struct device *device,
  711. struct device_attribute *mattr,
  712. const char *data,
  713. size_t len)
  714. {
  715. struct rc_dev *dev = to_rc_dev(device);
  716. bool enable, disable;
  717. const char *tmp;
  718. u64 type;
  719. u64 mask;
  720. int rc, i, count = 0;
  721. unsigned long flags;
  722. ssize_t ret;
  723. /* Device is being removed */
  724. if (!dev)
  725. return -EINVAL;
  726. mutex_lock(&dev->lock);
  727. if (dev->driver_type == RC_DRIVER_SCANCODE)
  728. type = dev->rc_map.rc_type;
  729. else if (dev->raw)
  730. type = dev->raw->enabled_protocols;
  731. else {
  732. IR_dprintk(1, "Protocol switching not supported\n");
  733. ret = -EINVAL;
  734. goto out;
  735. }
  736. while ((tmp = strsep((char **) &data, " \n")) != NULL) {
  737. if (!*tmp)
  738. break;
  739. if (*tmp == '+') {
  740. enable = true;
  741. disable = false;
  742. tmp++;
  743. } else if (*tmp == '-') {
  744. enable = false;
  745. disable = true;
  746. tmp++;
  747. } else {
  748. enable = false;
  749. disable = false;
  750. }
  751. if (!enable && !disable && !strncasecmp(tmp, PROTO_NONE, sizeof(PROTO_NONE))) {
  752. tmp += sizeof(PROTO_NONE);
  753. mask = 0;
  754. count++;
  755. } else {
  756. for (i = 0; i < ARRAY_SIZE(proto_names); i++) {
  757. if (!strcasecmp(tmp, proto_names[i].name)) {
  758. tmp += strlen(proto_names[i].name);
  759. mask = proto_names[i].type;
  760. break;
  761. }
  762. }
  763. if (i == ARRAY_SIZE(proto_names)) {
  764. IR_dprintk(1, "Unknown protocol: '%s'\n", tmp);
  765. ret = -EINVAL;
  766. goto out;
  767. }
  768. count++;
  769. }
  770. if (enable)
  771. type |= mask;
  772. else if (disable)
  773. type &= ~mask;
  774. else
  775. type = mask;
  776. }
  777. if (!count) {
  778. IR_dprintk(1, "Protocol not specified\n");
  779. ret = -EINVAL;
  780. goto out;
  781. }
  782. if (dev->change_protocol) {
  783. rc = dev->change_protocol(dev, type);
  784. if (rc < 0) {
  785. IR_dprintk(1, "Error setting protocols to 0x%llx\n",
  786. (long long)type);
  787. ret = -EINVAL;
  788. goto out;
  789. }
  790. }
  791. if (dev->driver_type == RC_DRIVER_SCANCODE) {
  792. spin_lock_irqsave(&dev->rc_map.lock, flags);
  793. dev->rc_map.rc_type = type;
  794. spin_unlock_irqrestore(&dev->rc_map.lock, flags);
  795. } else {
  796. dev->raw->enabled_protocols = type;
  797. }
  798. IR_dprintk(1, "Current protocol(s): 0x%llx\n",
  799. (long long)type);
  800. ret = len;
  801. out:
  802. mutex_unlock(&dev->lock);
  803. return ret;
  804. }
  805. static void rc_dev_release(struct device *device)
  806. {
  807. }
  808. #define ADD_HOTPLUG_VAR(fmt, val...) \
  809. do { \
  810. int err = add_uevent_var(env, fmt, val); \
  811. if (err) \
  812. return err; \
  813. } while (0)
  814. static int rc_dev_uevent(struct device *device, struct kobj_uevent_env *env)
  815. {
  816. struct rc_dev *dev = to_rc_dev(device);
  817. if (!dev || !dev->input_dev)
  818. return -ENODEV;
  819. if (dev->rc_map.name)
  820. ADD_HOTPLUG_VAR("NAME=%s", dev->rc_map.name);
  821. if (dev->driver_name)
  822. ADD_HOTPLUG_VAR("DRV_NAME=%s", dev->driver_name);
  823. return 0;
  824. }
  825. /*
  826. * Static device attribute struct with the sysfs attributes for IR's
  827. */
  828. static DEVICE_ATTR(protocols, S_IRUGO | S_IWUSR,
  829. show_protocols, store_protocols);
  830. static struct attribute *rc_dev_attrs[] = {
  831. &dev_attr_protocols.attr,
  832. NULL,
  833. };
  834. static struct attribute_group rc_dev_attr_grp = {
  835. .attrs = rc_dev_attrs,
  836. };
  837. static const struct attribute_group *rc_dev_attr_groups[] = {
  838. &rc_dev_attr_grp,
  839. NULL
  840. };
  841. static struct device_type rc_dev_type = {
  842. .groups = rc_dev_attr_groups,
  843. .release = rc_dev_release,
  844. .uevent = rc_dev_uevent,
  845. };
  846. struct rc_dev *rc_allocate_device(void)
  847. {
  848. struct rc_dev *dev;
  849. dev = kzalloc(sizeof(*dev), GFP_KERNEL);
  850. if (!dev)
  851. return NULL;
  852. dev->input_dev = input_allocate_device();
  853. if (!dev->input_dev) {
  854. kfree(dev);
  855. return NULL;
  856. }
  857. dev->input_dev->getkeycode = ir_getkeycode;
  858. dev->input_dev->setkeycode = ir_setkeycode;
  859. input_set_drvdata(dev->input_dev, dev);
  860. spin_lock_init(&dev->rc_map.lock);
  861. spin_lock_init(&dev->keylock);
  862. mutex_init(&dev->lock);
  863. setup_timer(&dev->timer_keyup, ir_timer_keyup, (unsigned long)dev);
  864. dev->dev.type = &rc_dev_type;
  865. dev->dev.class = &ir_input_class;
  866. device_initialize(&dev->dev);
  867. __module_get(THIS_MODULE);
  868. return dev;
  869. }
  870. EXPORT_SYMBOL_GPL(rc_allocate_device);
  871. void rc_free_device(struct rc_dev *dev)
  872. {
  873. if (!dev)
  874. return;
  875. if (dev->input_dev)
  876. input_free_device(dev->input_dev);
  877. put_device(&dev->dev);
  878. kfree(dev);
  879. module_put(THIS_MODULE);
  880. }
  881. EXPORT_SYMBOL_GPL(rc_free_device);
  882. int rc_register_device(struct rc_dev *dev)
  883. {
  884. static bool raw_init = false; /* raw decoders loaded? */
  885. static atomic_t devno = ATOMIC_INIT(0);
  886. struct rc_map *rc_map;
  887. const char *path;
  888. int rc;
  889. if (!dev || !dev->map_name)
  890. return -EINVAL;
  891. rc_map = rc_map_get(dev->map_name);
  892. if (!rc_map)
  893. rc_map = rc_map_get(RC_MAP_EMPTY);
  894. if (!rc_map || !rc_map->scan || rc_map->size == 0)
  895. return -EINVAL;
  896. set_bit(EV_KEY, dev->input_dev->evbit);
  897. set_bit(EV_REP, dev->input_dev->evbit);
  898. set_bit(EV_MSC, dev->input_dev->evbit);
  899. set_bit(MSC_SCAN, dev->input_dev->mscbit);
  900. if (dev->open)
  901. dev->input_dev->open = ir_open;
  902. if (dev->close)
  903. dev->input_dev->close = ir_close;
  904. /*
  905. * Take the lock here, as the device sysfs node will appear
  906. * when device_add() is called, which may trigger an ir-keytable udev
  907. * rule, which will in turn call show_protocols and access either
  908. * dev->rc_map.rc_type or dev->raw->enabled_protocols before it has
  909. * been initialized.
  910. */
  911. mutex_lock(&dev->lock);
  912. dev->devno = (unsigned long)(atomic_inc_return(&devno) - 1);
  913. dev_set_name(&dev->dev, "rc%ld", dev->devno);
  914. dev_set_drvdata(&dev->dev, dev);
  915. rc = device_add(&dev->dev);
  916. if (rc)
  917. goto out_unlock;
  918. rc = ir_setkeytable(dev, rc_map);
  919. if (rc)
  920. goto out_dev;
  921. dev->input_dev->dev.parent = &dev->dev;
  922. memcpy(&dev->input_dev->id, &dev->input_id, sizeof(dev->input_id));
  923. dev->input_dev->phys = dev->input_phys;
  924. dev->input_dev->name = dev->input_name;
  925. rc = input_register_device(dev->input_dev);
  926. if (rc)
  927. goto out_table;
  928. /*
  929. * Default delay of 250ms is too short for some protocols, especially
  930. * since the timeout is currently set to 250ms. Increase it to 500ms,
  931. * to avoid wrong repetition of the keycodes. Note that this must be
  932. * set after the call to input_register_device().
  933. */
  934. dev->input_dev->rep[REP_DELAY] = 500;
  935. /*
  936. * As a repeat event on protocols like RC-5 and NEC take as long as
  937. * 110/114ms, using 33ms as a repeat period is not the right thing
  938. * to do.
  939. */
  940. dev->input_dev->rep[REP_PERIOD] = 125;
  941. path = kobject_get_path(&dev->dev.kobj, GFP_KERNEL);
  942. printk(KERN_INFO "%s: %s as %s\n",
  943. dev_name(&dev->dev),
  944. dev->input_name ? dev->input_name : "Unspecified device",
  945. path ? path : "N/A");
  946. kfree(path);
  947. if (dev->driver_type == RC_DRIVER_IR_RAW) {
  948. /* Load raw decoders, if they aren't already */
  949. if (!raw_init) {
  950. IR_dprintk(1, "Loading raw decoders\n");
  951. ir_raw_init();
  952. raw_init = true;
  953. }
  954. rc = ir_raw_event_register(dev);
  955. if (rc < 0)
  956. goto out_input;
  957. }
  958. if (dev->change_protocol) {
  959. rc = dev->change_protocol(dev, rc_map->rc_type);
  960. if (rc < 0)
  961. goto out_raw;
  962. }
  963. mutex_unlock(&dev->lock);
  964. IR_dprintk(1, "Registered rc%ld (driver: %s, remote: %s, mode %s)\n",
  965. dev->devno,
  966. dev->driver_name ? dev->driver_name : "unknown",
  967. rc_map->name ? rc_map->name : "unknown",
  968. dev->driver_type == RC_DRIVER_IR_RAW ? "raw" : "cooked");
  969. return 0;
  970. out_raw:
  971. if (dev->driver_type == RC_DRIVER_IR_RAW)
  972. ir_raw_event_unregister(dev);
  973. out_input:
  974. input_unregister_device(dev->input_dev);
  975. dev->input_dev = NULL;
  976. out_table:
  977. ir_free_table(&dev->rc_map);
  978. out_dev:
  979. device_del(&dev->dev);
  980. out_unlock:
  981. mutex_unlock(&dev->lock);
  982. return rc;
  983. }
  984. EXPORT_SYMBOL_GPL(rc_register_device);
  985. void rc_unregister_device(struct rc_dev *dev)
  986. {
  987. if (!dev)
  988. return;
  989. del_timer_sync(&dev->timer_keyup);
  990. if (dev->driver_type == RC_DRIVER_IR_RAW)
  991. ir_raw_event_unregister(dev);
  992. /* Freeing the table should also call the stop callback */
  993. ir_free_table(&dev->rc_map);
  994. IR_dprintk(1, "Freed keycode table\n");
  995. input_unregister_device(dev->input_dev);
  996. dev->input_dev = NULL;
  997. device_del(&dev->dev);
  998. rc_free_device(dev);
  999. }
  1000. EXPORT_SYMBOL_GPL(rc_unregister_device);
  1001. /*
  1002. * Init/exit code for the module. Basically, creates/removes /sys/class/rc
  1003. */
  1004. static int __init rc_core_init(void)
  1005. {
  1006. int rc = class_register(&ir_input_class);
  1007. if (rc) {
  1008. printk(KERN_ERR "rc_core: unable to register rc class\n");
  1009. return rc;
  1010. }
  1011. rc_map_register(&empty_map);
  1012. return 0;
  1013. }
  1014. static void __exit rc_core_exit(void)
  1015. {
  1016. class_unregister(&ir_input_class);
  1017. rc_map_unregister(&empty_map);
  1018. }
  1019. module_init(rc_core_init);
  1020. module_exit(rc_core_exit);
  1021. int rc_core_debug; /* ir_debug level (0,1,2) */
  1022. EXPORT_SYMBOL_GPL(rc_core_debug);
  1023. module_param_named(debug, rc_core_debug, int, 0644);
  1024. MODULE_AUTHOR("Mauro Carvalho Chehab <mchehab@redhat.com>");
  1025. MODULE_LICENSE("GPL");