m88rs2000.c 21 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904
  1. /*
  2. Driver for M88RS2000 demodulator and tuner
  3. Copyright (C) 2012 Malcolm Priestley (tvboxspy@gmail.com)
  4. Beta Driver
  5. Include various calculation code from DS3000 driver.
  6. Copyright (C) 2009 Konstantin Dimitrov.
  7. This program is free software; you can redistribute it and/or modify
  8. it under the terms of the GNU General Public License as published by
  9. the Free Software Foundation; either version 2 of the License, or
  10. (at your option) any later version.
  11. This program is distributed in the hope that it will be useful,
  12. but WITHOUT ANY WARRANTY; without even the implied warranty of
  13. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  14. GNU General Public License for more details.
  15. You should have received a copy of the GNU General Public License
  16. along with this program; if not, write to the Free Software
  17. Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  18. */
  19. #include <linux/init.h>
  20. #include <linux/module.h>
  21. #include <linux/device.h>
  22. #include <linux/jiffies.h>
  23. #include <linux/string.h>
  24. #include <linux/slab.h>
  25. #include <linux/types.h>
  26. #include "dvb_frontend.h"
  27. #include "m88rs2000.h"
  28. struct m88rs2000_state {
  29. struct i2c_adapter *i2c;
  30. const struct m88rs2000_config *config;
  31. struct dvb_frontend frontend;
  32. u8 no_lock_count;
  33. u32 tuner_frequency;
  34. u32 symbol_rate;
  35. fe_code_rate_t fec_inner;
  36. u8 tuner_level;
  37. int errmode;
  38. };
  39. static int m88rs2000_debug;
  40. module_param_named(debug, m88rs2000_debug, int, 0644);
  41. MODULE_PARM_DESC(debug, "set debugging level (1=info (or-able)).");
  42. #define dprintk(level, args...) do { \
  43. if (level & m88rs2000_debug) \
  44. printk(KERN_DEBUG "m88rs2000-fe: " args); \
  45. } while (0)
  46. #define deb_info(args...) dprintk(0x01, args)
  47. #define info(format, arg...) \
  48. printk(KERN_INFO "m88rs2000-fe: " format "\n" , ## arg)
  49. static int m88rs2000_writereg(struct m88rs2000_state *state, u8 tuner,
  50. u8 reg, u8 data)
  51. {
  52. int ret;
  53. u8 addr = (tuner == 0) ? state->config->tuner_addr :
  54. state->config->demod_addr;
  55. u8 buf[] = { reg, data };
  56. struct i2c_msg msg = {
  57. .addr = addr,
  58. .flags = 0,
  59. .buf = buf,
  60. .len = 2
  61. };
  62. ret = i2c_transfer(state->i2c, &msg, 1);
  63. if (ret != 1)
  64. deb_info("%s: writereg error (reg == 0x%02x, val == 0x%02x, "
  65. "ret == %i)\n", __func__, reg, data, ret);
  66. return (ret != 1) ? -EREMOTEIO : 0;
  67. }
  68. static int m88rs2000_demod_write(struct m88rs2000_state *state, u8 reg, u8 data)
  69. {
  70. return m88rs2000_writereg(state, 1, reg, data);
  71. }
  72. static int m88rs2000_tuner_write(struct m88rs2000_state *state, u8 reg, u8 data)
  73. {
  74. m88rs2000_demod_write(state, 0x81, 0x84);
  75. udelay(10);
  76. return m88rs2000_writereg(state, 0, reg, data);
  77. }
  78. static int m88rs2000_write(struct dvb_frontend *fe, const u8 buf[], int len)
  79. {
  80. struct m88rs2000_state *state = fe->demodulator_priv;
  81. if (len != 2)
  82. return -EINVAL;
  83. return m88rs2000_writereg(state, 1, buf[0], buf[1]);
  84. }
  85. static u8 m88rs2000_readreg(struct m88rs2000_state *state, u8 tuner, u8 reg)
  86. {
  87. int ret;
  88. u8 b0[] = { reg };
  89. u8 b1[] = { 0 };
  90. u8 addr = (tuner == 0) ? state->config->tuner_addr :
  91. state->config->demod_addr;
  92. struct i2c_msg msg[] = {
  93. {
  94. .addr = addr,
  95. .flags = 0,
  96. .buf = b0,
  97. .len = 1
  98. }, {
  99. .addr = addr,
  100. .flags = I2C_M_RD,
  101. .buf = b1,
  102. .len = 1
  103. }
  104. };
  105. ret = i2c_transfer(state->i2c, msg, 2);
  106. if (ret != 2)
  107. deb_info("%s: readreg error (reg == 0x%02x, ret == %i)\n",
  108. __func__, reg, ret);
  109. return b1[0];
  110. }
  111. static u8 m88rs2000_demod_read(struct m88rs2000_state *state, u8 reg)
  112. {
  113. return m88rs2000_readreg(state, 1, reg);
  114. }
  115. static u8 m88rs2000_tuner_read(struct m88rs2000_state *state, u8 reg)
  116. {
  117. m88rs2000_demod_write(state, 0x81, 0x85);
  118. udelay(10);
  119. return m88rs2000_readreg(state, 0, reg);
  120. }
  121. static int m88rs2000_set_symbolrate(struct dvb_frontend *fe, u32 srate)
  122. {
  123. struct m88rs2000_state *state = fe->demodulator_priv;
  124. int ret;
  125. u32 temp;
  126. u8 b[3];
  127. if ((srate < 1000000) || (srate > 45000000))
  128. return -EINVAL;
  129. temp = srate / 1000;
  130. temp *= 11831;
  131. temp /= 68;
  132. temp -= 3;
  133. b[0] = (u8) (temp >> 16) & 0xff;
  134. b[1] = (u8) (temp >> 8) & 0xff;
  135. b[2] = (u8) temp & 0xff;
  136. ret = m88rs2000_demod_write(state, 0x93, b[2]);
  137. ret |= m88rs2000_demod_write(state, 0x94, b[1]);
  138. ret |= m88rs2000_demod_write(state, 0x95, b[0]);
  139. deb_info("m88rs2000: m88rs2000_set_symbolrate\n");
  140. return ret;
  141. }
  142. static int m88rs2000_send_diseqc_msg(struct dvb_frontend *fe,
  143. struct dvb_diseqc_master_cmd *m)
  144. {
  145. struct m88rs2000_state *state = fe->demodulator_priv;
  146. int i;
  147. u8 reg;
  148. deb_info("%s\n", __func__);
  149. m88rs2000_demod_write(state, 0x9a, 0x30);
  150. reg = m88rs2000_demod_read(state, 0xb2);
  151. reg &= 0x3f;
  152. m88rs2000_demod_write(state, 0xb2, reg);
  153. for (i = 0; i < m->msg_len; i++)
  154. m88rs2000_demod_write(state, 0xb3 + i, m->msg[i]);
  155. reg = m88rs2000_demod_read(state, 0xb1);
  156. reg &= 0x87;
  157. reg |= ((m->msg_len - 1) << 3) | 0x07;
  158. reg &= 0x7f;
  159. m88rs2000_demod_write(state, 0xb1, reg);
  160. for (i = 0; i < 15; i++) {
  161. if ((m88rs2000_demod_read(state, 0xb1) & 0x40) == 0x0)
  162. break;
  163. msleep(20);
  164. }
  165. reg = m88rs2000_demod_read(state, 0xb1);
  166. if ((reg & 0x40) > 0x0) {
  167. reg &= 0x7f;
  168. reg |= 0x40;
  169. m88rs2000_demod_write(state, 0xb1, reg);
  170. }
  171. reg = m88rs2000_demod_read(state, 0xb2);
  172. reg &= 0x3f;
  173. reg |= 0x80;
  174. m88rs2000_demod_write(state, 0xb2, reg);
  175. m88rs2000_demod_write(state, 0x9a, 0xb0);
  176. return 0;
  177. }
  178. static int m88rs2000_send_diseqc_burst(struct dvb_frontend *fe,
  179. fe_sec_mini_cmd_t burst)
  180. {
  181. struct m88rs2000_state *state = fe->demodulator_priv;
  182. u8 reg0, reg1;
  183. deb_info("%s\n", __func__);
  184. m88rs2000_demod_write(state, 0x9a, 0x30);
  185. msleep(50);
  186. reg0 = m88rs2000_demod_read(state, 0xb1);
  187. reg1 = m88rs2000_demod_read(state, 0xb2);
  188. /* TODO complete this section */
  189. m88rs2000_demod_write(state, 0xb2, reg1);
  190. m88rs2000_demod_write(state, 0xb1, reg0);
  191. m88rs2000_demod_write(state, 0x9a, 0xb0);
  192. return 0;
  193. }
  194. static int m88rs2000_set_tone(struct dvb_frontend *fe, fe_sec_tone_mode_t tone)
  195. {
  196. struct m88rs2000_state *state = fe->demodulator_priv;
  197. u8 reg0, reg1;
  198. m88rs2000_demod_write(state, 0x9a, 0x30);
  199. reg0 = m88rs2000_demod_read(state, 0xb1);
  200. reg1 = m88rs2000_demod_read(state, 0xb2);
  201. reg1 &= 0x3f;
  202. switch (tone) {
  203. case SEC_TONE_ON:
  204. reg0 |= 0x4;
  205. reg0 &= 0xbc;
  206. break;
  207. case SEC_TONE_OFF:
  208. reg1 |= 0x80;
  209. break;
  210. default:
  211. break;
  212. }
  213. m88rs2000_demod_write(state, 0xb2, reg1);
  214. m88rs2000_demod_write(state, 0xb1, reg0);
  215. m88rs2000_demod_write(state, 0x9a, 0xb0);
  216. return 0;
  217. }
  218. struct inittab {
  219. u8 cmd;
  220. u8 reg;
  221. u8 val;
  222. };
  223. struct inittab m88rs2000_setup[] = {
  224. {DEMOD_WRITE, 0x9a, 0x30},
  225. {DEMOD_WRITE, 0x00, 0x01},
  226. {WRITE_DELAY, 0x19, 0x00},
  227. {DEMOD_WRITE, 0x00, 0x00},
  228. {DEMOD_WRITE, 0x9a, 0xb0},
  229. {DEMOD_WRITE, 0x81, 0xc1},
  230. {TUNER_WRITE, 0x42, 0x73},
  231. {TUNER_WRITE, 0x05, 0x07},
  232. {TUNER_WRITE, 0x20, 0x27},
  233. {TUNER_WRITE, 0x07, 0x02},
  234. {TUNER_WRITE, 0x11, 0xff},
  235. {TUNER_WRITE, 0x60, 0xf9},
  236. {TUNER_WRITE, 0x08, 0x01},
  237. {TUNER_WRITE, 0x00, 0x41},
  238. {DEMOD_WRITE, 0x81, 0x81},
  239. {DEMOD_WRITE, 0x86, 0xc6},
  240. {DEMOD_WRITE, 0x9a, 0x30},
  241. {DEMOD_WRITE, 0xf0, 0x22},
  242. {DEMOD_WRITE, 0xf1, 0xbf},
  243. {DEMOD_WRITE, 0xb0, 0x45},
  244. {DEMOD_WRITE, 0xb2, 0x01}, /* set voltage pin always set 1*/
  245. {DEMOD_WRITE, 0x9a, 0xb0},
  246. {0xff, 0xaa, 0xff}
  247. };
  248. struct inittab m88rs2000_shutdown[] = {
  249. {DEMOD_WRITE, 0x9a, 0x30},
  250. {DEMOD_WRITE, 0xb0, 0x00},
  251. {DEMOD_WRITE, 0xf1, 0x89},
  252. {DEMOD_WRITE, 0x00, 0x01},
  253. {DEMOD_WRITE, 0x9a, 0xb0},
  254. {TUNER_WRITE, 0x00, 0x40},
  255. {DEMOD_WRITE, 0x81, 0x81},
  256. {0xff, 0xaa, 0xff}
  257. };
  258. struct inittab tuner_reset[] = {
  259. {TUNER_WRITE, 0x42, 0x73},
  260. {TUNER_WRITE, 0x05, 0x07},
  261. {TUNER_WRITE, 0x20, 0x27},
  262. {TUNER_WRITE, 0x07, 0x02},
  263. {TUNER_WRITE, 0x11, 0xff},
  264. {TUNER_WRITE, 0x60, 0xf9},
  265. {TUNER_WRITE, 0x08, 0x01},
  266. {TUNER_WRITE, 0x00, 0x41},
  267. {0xff, 0xaa, 0xff}
  268. };
  269. struct inittab fe_reset[] = {
  270. {DEMOD_WRITE, 0x00, 0x01},
  271. {DEMOD_WRITE, 0xf1, 0xbf},
  272. {DEMOD_WRITE, 0x00, 0x01},
  273. {DEMOD_WRITE, 0x20, 0x81},
  274. {DEMOD_WRITE, 0x21, 0x80},
  275. {DEMOD_WRITE, 0x10, 0x33},
  276. {DEMOD_WRITE, 0x11, 0x44},
  277. {DEMOD_WRITE, 0x12, 0x07},
  278. {DEMOD_WRITE, 0x18, 0x20},
  279. {DEMOD_WRITE, 0x28, 0x04},
  280. {DEMOD_WRITE, 0x29, 0x8e},
  281. {DEMOD_WRITE, 0x3b, 0xff},
  282. {DEMOD_WRITE, 0x32, 0x10},
  283. {DEMOD_WRITE, 0x33, 0x02},
  284. {DEMOD_WRITE, 0x34, 0x30},
  285. {DEMOD_WRITE, 0x35, 0xff},
  286. {DEMOD_WRITE, 0x38, 0x50},
  287. {DEMOD_WRITE, 0x39, 0x68},
  288. {DEMOD_WRITE, 0x3c, 0x7f},
  289. {DEMOD_WRITE, 0x3d, 0x0f},
  290. {DEMOD_WRITE, 0x45, 0x20},
  291. {DEMOD_WRITE, 0x46, 0x24},
  292. {DEMOD_WRITE, 0x47, 0x7c},
  293. {DEMOD_WRITE, 0x48, 0x16},
  294. {DEMOD_WRITE, 0x49, 0x04},
  295. {DEMOD_WRITE, 0x4a, 0x01},
  296. {DEMOD_WRITE, 0x4b, 0x78},
  297. {DEMOD_WRITE, 0X4d, 0xd2},
  298. {DEMOD_WRITE, 0x4e, 0x6d},
  299. {DEMOD_WRITE, 0x50, 0x30},
  300. {DEMOD_WRITE, 0x51, 0x30},
  301. {DEMOD_WRITE, 0x54, 0x7b},
  302. {DEMOD_WRITE, 0x56, 0x09},
  303. {DEMOD_WRITE, 0x58, 0x59},
  304. {DEMOD_WRITE, 0x59, 0x37},
  305. {DEMOD_WRITE, 0x63, 0xfa},
  306. {0xff, 0xaa, 0xff}
  307. };
  308. struct inittab fe_trigger[] = {
  309. {DEMOD_WRITE, 0x97, 0x04},
  310. {DEMOD_WRITE, 0x99, 0x77},
  311. {DEMOD_WRITE, 0x9b, 0x64},
  312. {DEMOD_WRITE, 0x9e, 0x00},
  313. {DEMOD_WRITE, 0x9f, 0xf8},
  314. {DEMOD_WRITE, 0xa0, 0x20},
  315. {DEMOD_WRITE, 0xa1, 0xe0},
  316. {DEMOD_WRITE, 0xa3, 0x38},
  317. {DEMOD_WRITE, 0x98, 0xff},
  318. {DEMOD_WRITE, 0xc0, 0x0f},
  319. {DEMOD_WRITE, 0x89, 0x01},
  320. {DEMOD_WRITE, 0x00, 0x00},
  321. {WRITE_DELAY, 0x0a, 0x00},
  322. {DEMOD_WRITE, 0x00, 0x01},
  323. {DEMOD_WRITE, 0x00, 0x00},
  324. {DEMOD_WRITE, 0x9a, 0xb0},
  325. {0xff, 0xaa, 0xff}
  326. };
  327. static int m88rs2000_tab_set(struct m88rs2000_state *state,
  328. struct inittab *tab)
  329. {
  330. int ret = 0;
  331. u8 i;
  332. if (tab == NULL)
  333. return -EINVAL;
  334. for (i = 0; i < 255; i++) {
  335. switch (tab[i].cmd) {
  336. case 0x01:
  337. ret = m88rs2000_demod_write(state, tab[i].reg,
  338. tab[i].val);
  339. break;
  340. case 0x02:
  341. ret = m88rs2000_tuner_write(state, tab[i].reg,
  342. tab[i].val);
  343. break;
  344. case 0x10:
  345. if (tab[i].reg > 0)
  346. mdelay(tab[i].reg);
  347. break;
  348. case 0xff:
  349. if (tab[i].reg == 0xaa && tab[i].val == 0xff)
  350. return 0;
  351. case 0x00:
  352. break;
  353. default:
  354. return -EINVAL;
  355. }
  356. if (ret < 0)
  357. return -ENODEV;
  358. }
  359. return 0;
  360. }
  361. static int m88rs2000_set_voltage(struct dvb_frontend *fe, fe_sec_voltage_t volt)
  362. {
  363. deb_info("%s: %s\n", __func__,
  364. volt == SEC_VOLTAGE_13 ? "SEC_VOLTAGE_13" :
  365. volt == SEC_VOLTAGE_18 ? "SEC_VOLTAGE_18" : "??");
  366. return 0;
  367. }
  368. static int m88rs2000_startup(struct m88rs2000_state *state)
  369. {
  370. int ret = 0;
  371. u8 reg;
  372. reg = m88rs2000_tuner_read(state, 0x00);
  373. if ((reg & 0x40) == 0)
  374. ret = -ENODEV;
  375. return ret;
  376. }
  377. static int m88rs2000_init(struct dvb_frontend *fe)
  378. {
  379. struct m88rs2000_state *state = fe->demodulator_priv;
  380. int ret;
  381. deb_info("m88rs2000: init chip\n");
  382. /* Setup frontend from shutdown/cold */
  383. ret = m88rs2000_tab_set(state, m88rs2000_setup);
  384. return ret;
  385. }
  386. static int m88rs2000_sleep(struct dvb_frontend *fe)
  387. {
  388. struct m88rs2000_state *state = fe->demodulator_priv;
  389. int ret;
  390. /* Shutdown the frondend */
  391. ret = m88rs2000_tab_set(state, m88rs2000_shutdown);
  392. return ret;
  393. }
  394. static int m88rs2000_read_status(struct dvb_frontend *fe, fe_status_t *status)
  395. {
  396. struct m88rs2000_state *state = fe->demodulator_priv;
  397. u8 reg = m88rs2000_demod_read(state, 0x8c);
  398. *status = 0;
  399. if ((reg & 0x7) == 0x7) {
  400. *status = FE_HAS_CARRIER | FE_HAS_SIGNAL | FE_HAS_VITERBI
  401. | FE_HAS_LOCK;
  402. if (state->config->set_ts_params)
  403. state->config->set_ts_params(fe, CALL_IS_READ);
  404. }
  405. return 0;
  406. }
  407. /* Extact code for these unknown but lmedm04 driver uses interupt callbacks */
  408. static int m88rs2000_read_ber(struct dvb_frontend *fe, u32 *ber)
  409. {
  410. deb_info("m88rs2000_read_ber %d\n", *ber);
  411. *ber = 0;
  412. return 0;
  413. }
  414. static int m88rs2000_read_signal_strength(struct dvb_frontend *fe,
  415. u16 *strength)
  416. {
  417. *strength = 0;
  418. return 0;
  419. }
  420. static int m88rs2000_read_snr(struct dvb_frontend *fe, u16 *snr)
  421. {
  422. deb_info("m88rs2000_read_snr %d\n", *snr);
  423. *snr = 0;
  424. return 0;
  425. }
  426. static int m88rs2000_read_ucblocks(struct dvb_frontend *fe, u32 *ucblocks)
  427. {
  428. deb_info("m88rs2000_read_ber %d\n", *ucblocks);
  429. *ucblocks = 0;
  430. return 0;
  431. }
  432. static int m88rs2000_tuner_gate_ctrl(struct m88rs2000_state *state, u8 offset)
  433. {
  434. int ret;
  435. ret = m88rs2000_tuner_write(state, 0x51, 0x1f - offset);
  436. ret |= m88rs2000_tuner_write(state, 0x51, 0x1f);
  437. ret |= m88rs2000_tuner_write(state, 0x50, offset);
  438. ret |= m88rs2000_tuner_write(state, 0x50, 0x00);
  439. msleep(20);
  440. return ret;
  441. }
  442. static int m88rs2000_set_tuner_rf(struct dvb_frontend *fe)
  443. {
  444. struct m88rs2000_state *state = fe->demodulator_priv;
  445. int reg;
  446. reg = m88rs2000_tuner_read(state, 0x3d);
  447. reg &= 0x7f;
  448. if (reg < 0x16)
  449. reg = 0xa1;
  450. else if (reg == 0x16)
  451. reg = 0x99;
  452. else
  453. reg = 0xf9;
  454. m88rs2000_tuner_write(state, 0x60, reg);
  455. reg = m88rs2000_tuner_gate_ctrl(state, 0x08);
  456. if (fe->ops.i2c_gate_ctrl)
  457. fe->ops.i2c_gate_ctrl(fe, 0);
  458. return reg;
  459. }
  460. static int m88rs2000_set_tuner(struct dvb_frontend *fe, u16 *offset)
  461. {
  462. struct dtv_frontend_properties *c = &fe->dtv_property_cache;
  463. struct m88rs2000_state *state = fe->demodulator_priv;
  464. int ret;
  465. u32 frequency = c->frequency;
  466. s32 offset_khz;
  467. s32 tmp;
  468. u32 symbol_rate = (c->symbol_rate / 1000);
  469. u32 f3db, gdiv28;
  470. u16 value, ndiv, lpf_coeff;
  471. u8 lpf_mxdiv, mlpf_max, mlpf_min, nlpf;
  472. u8 lo = 0x01, div4 = 0x0;
  473. /* Reset Tuner */
  474. ret = m88rs2000_tab_set(state, tuner_reset);
  475. /* Calculate frequency divider */
  476. if (frequency < 1060000) {
  477. lo |= 0x10;
  478. div4 = 0x1;
  479. ndiv = (frequency * 14 * 4) / FE_CRYSTAL_KHZ;
  480. } else
  481. ndiv = (frequency * 14 * 2) / FE_CRYSTAL_KHZ;
  482. ndiv = ndiv + ndiv % 2;
  483. ndiv = ndiv - 1024;
  484. ret = m88rs2000_tuner_write(state, 0x10, 0x80 | lo);
  485. /* Set frequency divider */
  486. ret |= m88rs2000_tuner_write(state, 0x01, (ndiv >> 8) & 0xf);
  487. ret |= m88rs2000_tuner_write(state, 0x02, ndiv & 0xff);
  488. ret |= m88rs2000_tuner_write(state, 0x03, 0x06);
  489. ret |= m88rs2000_tuner_gate_ctrl(state, 0x10);
  490. if (ret < 0)
  491. return -ENODEV;
  492. /* Tuner Frequency Range */
  493. ret = m88rs2000_tuner_write(state, 0x10, lo);
  494. ret |= m88rs2000_tuner_gate_ctrl(state, 0x08);
  495. /* Tuner RF */
  496. ret |= m88rs2000_set_tuner_rf(fe);
  497. gdiv28 = (FE_CRYSTAL_KHZ / 1000 * 1694 + 500) / 1000;
  498. ret |= m88rs2000_tuner_write(state, 0x04, gdiv28 & 0xff);
  499. ret |= m88rs2000_tuner_gate_ctrl(state, 0x04);
  500. if (ret < 0)
  501. return -ENODEV;
  502. value = m88rs2000_tuner_read(state, 0x26);
  503. f3db = (symbol_rate * 135) / 200 + 2000;
  504. f3db += FREQ_OFFSET_LOW_SYM_RATE;
  505. if (f3db < 7000)
  506. f3db = 7000;
  507. if (f3db > 40000)
  508. f3db = 40000;
  509. gdiv28 = gdiv28 * 207 / (value * 2 + 151);
  510. mlpf_max = gdiv28 * 135 / 100;
  511. mlpf_min = gdiv28 * 78 / 100;
  512. if (mlpf_max > 63)
  513. mlpf_max = 63;
  514. lpf_coeff = 2766;
  515. nlpf = (f3db * gdiv28 * 2 / lpf_coeff /
  516. (FE_CRYSTAL_KHZ / 1000) + 1) / 2;
  517. if (nlpf > 23)
  518. nlpf = 23;
  519. if (nlpf < 1)
  520. nlpf = 1;
  521. lpf_mxdiv = (nlpf * (FE_CRYSTAL_KHZ / 1000)
  522. * lpf_coeff * 2 / f3db + 1) / 2;
  523. if (lpf_mxdiv < mlpf_min) {
  524. nlpf++;
  525. lpf_mxdiv = (nlpf * (FE_CRYSTAL_KHZ / 1000)
  526. * lpf_coeff * 2 / f3db + 1) / 2;
  527. }
  528. if (lpf_mxdiv > mlpf_max)
  529. lpf_mxdiv = mlpf_max;
  530. ret = m88rs2000_tuner_write(state, 0x04, lpf_mxdiv);
  531. ret |= m88rs2000_tuner_write(state, 0x06, nlpf);
  532. ret |= m88rs2000_tuner_gate_ctrl(state, 0x04);
  533. ret |= m88rs2000_tuner_gate_ctrl(state, 0x01);
  534. msleep(80);
  535. /* calculate offset assuming 96000kHz*/
  536. offset_khz = (ndiv - ndiv % 2 + 1024) * FE_CRYSTAL_KHZ
  537. / 14 / (div4 + 1) / 2;
  538. offset_khz -= frequency;
  539. tmp = offset_khz;
  540. tmp *= 65536;
  541. tmp = (2 * tmp + 96000) / (2 * 96000);
  542. if (tmp < 0)
  543. tmp += 65536;
  544. *offset = tmp & 0xffff;
  545. if (fe->ops.i2c_gate_ctrl)
  546. fe->ops.i2c_gate_ctrl(fe, 0);
  547. return (ret < 0) ? -EINVAL : 0;
  548. }
  549. static int m88rs2000_set_fec(struct m88rs2000_state *state,
  550. fe_code_rate_t fec)
  551. {
  552. int ret;
  553. u16 fec_set;
  554. switch (fec) {
  555. /* This is not confirmed kept for reference */
  556. /* case FEC_1_2:
  557. fec_set = 0x88;
  558. break;
  559. case FEC_2_3:
  560. fec_set = 0x68;
  561. break;
  562. case FEC_3_4:
  563. fec_set = 0x48;
  564. break;
  565. case FEC_5_6:
  566. fec_set = 0x28;
  567. break;
  568. case FEC_7_8:
  569. fec_set = 0x18;
  570. break; */
  571. case FEC_AUTO:
  572. default:
  573. fec_set = 0x08;
  574. }
  575. ret = m88rs2000_demod_write(state, 0x76, fec_set);
  576. return 0;
  577. }
  578. static fe_code_rate_t m88rs2000_get_fec(struct m88rs2000_state *state)
  579. {
  580. u8 reg;
  581. m88rs2000_demod_write(state, 0x9a, 0x30);
  582. reg = m88rs2000_demod_read(state, 0x76);
  583. m88rs2000_demod_write(state, 0x9a, 0xb0);
  584. switch (reg) {
  585. case 0x88:
  586. return FEC_1_2;
  587. case 0x68:
  588. return FEC_2_3;
  589. case 0x48:
  590. return FEC_3_4;
  591. case 0x28:
  592. return FEC_5_6;
  593. case 0x18:
  594. return FEC_7_8;
  595. case 0x08:
  596. default:
  597. break;
  598. }
  599. return FEC_AUTO;
  600. }
  601. static int m88rs2000_set_frontend(struct dvb_frontend *fe)
  602. {
  603. struct m88rs2000_state *state = fe->demodulator_priv;
  604. struct dtv_frontend_properties *c = &fe->dtv_property_cache;
  605. fe_status_t status;
  606. int i, ret;
  607. u16 offset = 0;
  608. u8 reg;
  609. state->no_lock_count = 0;
  610. if (c->delivery_system != SYS_DVBS) {
  611. deb_info("%s: unsupported delivery "
  612. "system selected (%d)\n",
  613. __func__, c->delivery_system);
  614. return -EOPNOTSUPP;
  615. }
  616. /* Set Tuner */
  617. ret = m88rs2000_set_tuner(fe, &offset);
  618. if (ret < 0)
  619. return -ENODEV;
  620. ret = m88rs2000_demod_write(state, 0x9a, 0x30);
  621. /* Unknown usually 0xc6 sometimes 0xc1 */
  622. reg = m88rs2000_demod_read(state, 0x86);
  623. ret |= m88rs2000_demod_write(state, 0x86, reg);
  624. /* Offset lower nibble always 0 */
  625. ret |= m88rs2000_demod_write(state, 0x9c, (offset >> 8));
  626. ret |= m88rs2000_demod_write(state, 0x9d, offset & 0xf0);
  627. /* Reset Demod */
  628. ret = m88rs2000_tab_set(state, fe_reset);
  629. if (ret < 0)
  630. return -ENODEV;
  631. /* Unknown */
  632. reg = m88rs2000_demod_read(state, 0x70);
  633. ret = m88rs2000_demod_write(state, 0x70, reg);
  634. /* Set FEC */
  635. ret |= m88rs2000_set_fec(state, c->fec_inner);
  636. ret |= m88rs2000_demod_write(state, 0x85, 0x1);
  637. ret |= m88rs2000_demod_write(state, 0x8a, 0xbf);
  638. ret |= m88rs2000_demod_write(state, 0x8d, 0x1e);
  639. ret |= m88rs2000_demod_write(state, 0x90, 0xf1);
  640. ret |= m88rs2000_demod_write(state, 0x91, 0x08);
  641. if (ret < 0)
  642. return -ENODEV;
  643. /* Set Symbol Rate */
  644. ret = m88rs2000_set_symbolrate(fe, c->symbol_rate);
  645. if (ret < 0)
  646. return -ENODEV;
  647. /* Set up Demod */
  648. ret = m88rs2000_tab_set(state, fe_trigger);
  649. if (ret < 0)
  650. return -ENODEV;
  651. for (i = 0; i < 25; i++) {
  652. u8 reg = m88rs2000_demod_read(state, 0x8c);
  653. if ((reg & 0x7) == 0x7) {
  654. status = FE_HAS_LOCK;
  655. break;
  656. }
  657. state->no_lock_count++;
  658. if (state->no_lock_count > 15) {
  659. reg = m88rs2000_demod_read(state, 0x70);
  660. reg ^= 0x4;
  661. m88rs2000_demod_write(state, 0x70, reg);
  662. state->no_lock_count = 0;
  663. }
  664. if (state->no_lock_count == 20)
  665. m88rs2000_set_tuner_rf(fe);
  666. msleep(20);
  667. }
  668. if (status & FE_HAS_LOCK) {
  669. state->fec_inner = m88rs2000_get_fec(state);
  670. /* Uknown suspect SNR level */
  671. reg = m88rs2000_demod_read(state, 0x65);
  672. }
  673. state->tuner_frequency = c->frequency;
  674. state->symbol_rate = c->symbol_rate;
  675. return 0;
  676. }
  677. static int m88rs2000_get_frontend(struct dvb_frontend *fe)
  678. {
  679. struct dtv_frontend_properties *c = &fe->dtv_property_cache;
  680. struct m88rs2000_state *state = fe->demodulator_priv;
  681. c->fec_inner = state->fec_inner;
  682. c->frequency = state->tuner_frequency;
  683. c->symbol_rate = state->symbol_rate;
  684. return 0;
  685. }
  686. static int m88rs2000_i2c_gate_ctrl(struct dvb_frontend *fe, int enable)
  687. {
  688. struct m88rs2000_state *state = fe->demodulator_priv;
  689. if (enable)
  690. m88rs2000_demod_write(state, 0x81, 0x84);
  691. else
  692. m88rs2000_demod_write(state, 0x81, 0x81);
  693. udelay(10);
  694. return 0;
  695. }
  696. static void m88rs2000_release(struct dvb_frontend *fe)
  697. {
  698. struct m88rs2000_state *state = fe->demodulator_priv;
  699. kfree(state);
  700. }
  701. static struct dvb_frontend_ops m88rs2000_ops = {
  702. .delsys = { SYS_DVBS },
  703. .info = {
  704. .name = "M88RS2000 DVB-S",
  705. .frequency_min = 950000,
  706. .frequency_max = 2150000,
  707. .frequency_stepsize = 1000, /* kHz for QPSK frontends */
  708. .frequency_tolerance = 5000,
  709. .symbol_rate_min = 1000000,
  710. .symbol_rate_max = 45000000,
  711. .symbol_rate_tolerance = 500, /* ppm */
  712. .caps = FE_CAN_FEC_1_2 | FE_CAN_FEC_2_3 | FE_CAN_FEC_3_4 |
  713. FE_CAN_FEC_5_6 | FE_CAN_FEC_7_8 |
  714. FE_CAN_QPSK |
  715. FE_CAN_FEC_AUTO
  716. },
  717. .release = m88rs2000_release,
  718. .init = m88rs2000_init,
  719. .sleep = m88rs2000_sleep,
  720. .write = m88rs2000_write,
  721. .i2c_gate_ctrl = m88rs2000_i2c_gate_ctrl,
  722. .read_status = m88rs2000_read_status,
  723. .read_ber = m88rs2000_read_ber,
  724. .read_signal_strength = m88rs2000_read_signal_strength,
  725. .read_snr = m88rs2000_read_snr,
  726. .read_ucblocks = m88rs2000_read_ucblocks,
  727. .diseqc_send_master_cmd = m88rs2000_send_diseqc_msg,
  728. .diseqc_send_burst = m88rs2000_send_diseqc_burst,
  729. .set_tone = m88rs2000_set_tone,
  730. .set_voltage = m88rs2000_set_voltage,
  731. .set_frontend = m88rs2000_set_frontend,
  732. .get_frontend = m88rs2000_get_frontend,
  733. };
  734. struct dvb_frontend *m88rs2000_attach(const struct m88rs2000_config *config,
  735. struct i2c_adapter *i2c)
  736. {
  737. struct m88rs2000_state *state = NULL;
  738. /* allocate memory for the internal state */
  739. state = kzalloc(sizeof(struct m88rs2000_state), GFP_KERNEL);
  740. if (state == NULL)
  741. goto error;
  742. /* setup the state */
  743. state->config = config;
  744. state->i2c = i2c;
  745. state->tuner_frequency = 0;
  746. state->symbol_rate = 0;
  747. state->fec_inner = 0;
  748. if (m88rs2000_startup(state) < 0)
  749. goto error;
  750. /* create dvb_frontend */
  751. memcpy(&state->frontend.ops, &m88rs2000_ops,
  752. sizeof(struct dvb_frontend_ops));
  753. state->frontend.demodulator_priv = state;
  754. return &state->frontend;
  755. error:
  756. kfree(state);
  757. return NULL;
  758. }
  759. EXPORT_SYMBOL(m88rs2000_attach);
  760. MODULE_DESCRIPTION("M88RS2000 DVB-S Demodulator driver");
  761. MODULE_AUTHOR("Malcolm Priestley tvboxspy@gmail.com");
  762. MODULE_LICENSE("GPL");
  763. MODULE_VERSION("1.13");