raid10.c 96 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567
  1. /*
  2. * raid10.c : Multiple Devices driver for Linux
  3. *
  4. * Copyright (C) 2000-2004 Neil Brown
  5. *
  6. * RAID-10 support for md.
  7. *
  8. * Base on code in raid1.c. See raid1.c for further copyright information.
  9. *
  10. *
  11. * This program is free software; you can redistribute it and/or modify
  12. * it under the terms of the GNU General Public License as published by
  13. * the Free Software Foundation; either version 2, or (at your option)
  14. * any later version.
  15. *
  16. * You should have received a copy of the GNU General Public License
  17. * (for example /usr/src/linux/COPYING); if not, write to the Free
  18. * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  19. */
  20. #include <linux/slab.h>
  21. #include <linux/delay.h>
  22. #include <linux/blkdev.h>
  23. #include <linux/module.h>
  24. #include <linux/seq_file.h>
  25. #include <linux/ratelimit.h>
  26. #include "md.h"
  27. #include "raid10.h"
  28. #include "raid0.h"
  29. #include "bitmap.h"
  30. /*
  31. * RAID10 provides a combination of RAID0 and RAID1 functionality.
  32. * The layout of data is defined by
  33. * chunk_size
  34. * raid_disks
  35. * near_copies (stored in low byte of layout)
  36. * far_copies (stored in second byte of layout)
  37. * far_offset (stored in bit 16 of layout )
  38. *
  39. * The data to be stored is divided into chunks using chunksize.
  40. * Each device is divided into far_copies sections.
  41. * In each section, chunks are laid out in a style similar to raid0, but
  42. * near_copies copies of each chunk is stored (each on a different drive).
  43. * The starting device for each section is offset near_copies from the starting
  44. * device of the previous section.
  45. * Thus they are (near_copies*far_copies) of each chunk, and each is on a different
  46. * drive.
  47. * near_copies and far_copies must be at least one, and their product is at most
  48. * raid_disks.
  49. *
  50. * If far_offset is true, then the far_copies are handled a bit differently.
  51. * The copies are still in different stripes, but instead of be very far apart
  52. * on disk, there are adjacent stripes.
  53. */
  54. /*
  55. * Number of guaranteed r10bios in case of extreme VM load:
  56. */
  57. #define NR_RAID10_BIOS 256
  58. /* When there are this many requests queue to be written by
  59. * the raid10 thread, we become 'congested' to provide back-pressure
  60. * for writeback.
  61. */
  62. static int max_queued_requests = 1024;
  63. static void allow_barrier(struct r10conf *conf);
  64. static void lower_barrier(struct r10conf *conf);
  65. static int enough(struct r10conf *conf, int ignore);
  66. static void * r10bio_pool_alloc(gfp_t gfp_flags, void *data)
  67. {
  68. struct r10conf *conf = data;
  69. int size = offsetof(struct r10bio, devs[conf->copies]);
  70. /* allocate a r10bio with room for raid_disks entries in the
  71. * bios array */
  72. return kzalloc(size, gfp_flags);
  73. }
  74. static void r10bio_pool_free(void *r10_bio, void *data)
  75. {
  76. kfree(r10_bio);
  77. }
  78. /* Maximum size of each resync request */
  79. #define RESYNC_BLOCK_SIZE (64*1024)
  80. #define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE)
  81. /* amount of memory to reserve for resync requests */
  82. #define RESYNC_WINDOW (1024*1024)
  83. /* maximum number of concurrent requests, memory permitting */
  84. #define RESYNC_DEPTH (32*1024*1024/RESYNC_BLOCK_SIZE)
  85. /*
  86. * When performing a resync, we need to read and compare, so
  87. * we need as many pages are there are copies.
  88. * When performing a recovery, we need 2 bios, one for read,
  89. * one for write (we recover only one drive per r10buf)
  90. *
  91. */
  92. static void * r10buf_pool_alloc(gfp_t gfp_flags, void *data)
  93. {
  94. struct r10conf *conf = data;
  95. struct page *page;
  96. struct r10bio *r10_bio;
  97. struct bio *bio;
  98. int i, j;
  99. int nalloc;
  100. r10_bio = r10bio_pool_alloc(gfp_flags, conf);
  101. if (!r10_bio)
  102. return NULL;
  103. if (test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery))
  104. nalloc = conf->copies; /* resync */
  105. else
  106. nalloc = 2; /* recovery */
  107. /*
  108. * Allocate bios.
  109. */
  110. for (j = nalloc ; j-- ; ) {
  111. bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
  112. if (!bio)
  113. goto out_free_bio;
  114. r10_bio->devs[j].bio = bio;
  115. if (!conf->have_replacement)
  116. continue;
  117. bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
  118. if (!bio)
  119. goto out_free_bio;
  120. r10_bio->devs[j].repl_bio = bio;
  121. }
  122. /*
  123. * Allocate RESYNC_PAGES data pages and attach them
  124. * where needed.
  125. */
  126. for (j = 0 ; j < nalloc; j++) {
  127. struct bio *rbio = r10_bio->devs[j].repl_bio;
  128. bio = r10_bio->devs[j].bio;
  129. for (i = 0; i < RESYNC_PAGES; i++) {
  130. if (j == 1 && !test_bit(MD_RECOVERY_SYNC,
  131. &conf->mddev->recovery)) {
  132. /* we can share bv_page's during recovery */
  133. struct bio *rbio = r10_bio->devs[0].bio;
  134. page = rbio->bi_io_vec[i].bv_page;
  135. get_page(page);
  136. } else
  137. page = alloc_page(gfp_flags);
  138. if (unlikely(!page))
  139. goto out_free_pages;
  140. bio->bi_io_vec[i].bv_page = page;
  141. if (rbio)
  142. rbio->bi_io_vec[i].bv_page = page;
  143. }
  144. }
  145. return r10_bio;
  146. out_free_pages:
  147. for ( ; i > 0 ; i--)
  148. safe_put_page(bio->bi_io_vec[i-1].bv_page);
  149. while (j--)
  150. for (i = 0; i < RESYNC_PAGES ; i++)
  151. safe_put_page(r10_bio->devs[j].bio->bi_io_vec[i].bv_page);
  152. j = -1;
  153. out_free_bio:
  154. while (++j < nalloc) {
  155. bio_put(r10_bio->devs[j].bio);
  156. if (r10_bio->devs[j].repl_bio)
  157. bio_put(r10_bio->devs[j].repl_bio);
  158. }
  159. r10bio_pool_free(r10_bio, conf);
  160. return NULL;
  161. }
  162. static void r10buf_pool_free(void *__r10_bio, void *data)
  163. {
  164. int i;
  165. struct r10conf *conf = data;
  166. struct r10bio *r10bio = __r10_bio;
  167. int j;
  168. for (j=0; j < conf->copies; j++) {
  169. struct bio *bio = r10bio->devs[j].bio;
  170. if (bio) {
  171. for (i = 0; i < RESYNC_PAGES; i++) {
  172. safe_put_page(bio->bi_io_vec[i].bv_page);
  173. bio->bi_io_vec[i].bv_page = NULL;
  174. }
  175. bio_put(bio);
  176. }
  177. bio = r10bio->devs[j].repl_bio;
  178. if (bio)
  179. bio_put(bio);
  180. }
  181. r10bio_pool_free(r10bio, conf);
  182. }
  183. static void put_all_bios(struct r10conf *conf, struct r10bio *r10_bio)
  184. {
  185. int i;
  186. for (i = 0; i < conf->copies; i++) {
  187. struct bio **bio = & r10_bio->devs[i].bio;
  188. if (!BIO_SPECIAL(*bio))
  189. bio_put(*bio);
  190. *bio = NULL;
  191. bio = &r10_bio->devs[i].repl_bio;
  192. if (r10_bio->read_slot < 0 && !BIO_SPECIAL(*bio))
  193. bio_put(*bio);
  194. *bio = NULL;
  195. }
  196. }
  197. static void free_r10bio(struct r10bio *r10_bio)
  198. {
  199. struct r10conf *conf = r10_bio->mddev->private;
  200. put_all_bios(conf, r10_bio);
  201. mempool_free(r10_bio, conf->r10bio_pool);
  202. }
  203. static void put_buf(struct r10bio *r10_bio)
  204. {
  205. struct r10conf *conf = r10_bio->mddev->private;
  206. mempool_free(r10_bio, conf->r10buf_pool);
  207. lower_barrier(conf);
  208. }
  209. static void reschedule_retry(struct r10bio *r10_bio)
  210. {
  211. unsigned long flags;
  212. struct mddev *mddev = r10_bio->mddev;
  213. struct r10conf *conf = mddev->private;
  214. spin_lock_irqsave(&conf->device_lock, flags);
  215. list_add(&r10_bio->retry_list, &conf->retry_list);
  216. conf->nr_queued ++;
  217. spin_unlock_irqrestore(&conf->device_lock, flags);
  218. /* wake up frozen array... */
  219. wake_up(&conf->wait_barrier);
  220. md_wakeup_thread(mddev->thread);
  221. }
  222. /*
  223. * raid_end_bio_io() is called when we have finished servicing a mirrored
  224. * operation and are ready to return a success/failure code to the buffer
  225. * cache layer.
  226. */
  227. static void raid_end_bio_io(struct r10bio *r10_bio)
  228. {
  229. struct bio *bio = r10_bio->master_bio;
  230. int done;
  231. struct r10conf *conf = r10_bio->mddev->private;
  232. if (bio->bi_phys_segments) {
  233. unsigned long flags;
  234. spin_lock_irqsave(&conf->device_lock, flags);
  235. bio->bi_phys_segments--;
  236. done = (bio->bi_phys_segments == 0);
  237. spin_unlock_irqrestore(&conf->device_lock, flags);
  238. } else
  239. done = 1;
  240. if (!test_bit(R10BIO_Uptodate, &r10_bio->state))
  241. clear_bit(BIO_UPTODATE, &bio->bi_flags);
  242. if (done) {
  243. bio_endio(bio, 0);
  244. /*
  245. * Wake up any possible resync thread that waits for the device
  246. * to go idle.
  247. */
  248. allow_barrier(conf);
  249. }
  250. free_r10bio(r10_bio);
  251. }
  252. /*
  253. * Update disk head position estimator based on IRQ completion info.
  254. */
  255. static inline void update_head_pos(int slot, struct r10bio *r10_bio)
  256. {
  257. struct r10conf *conf = r10_bio->mddev->private;
  258. conf->mirrors[r10_bio->devs[slot].devnum].head_position =
  259. r10_bio->devs[slot].addr + (r10_bio->sectors);
  260. }
  261. /*
  262. * Find the disk number which triggered given bio
  263. */
  264. static int find_bio_disk(struct r10conf *conf, struct r10bio *r10_bio,
  265. struct bio *bio, int *slotp, int *replp)
  266. {
  267. int slot;
  268. int repl = 0;
  269. for (slot = 0; slot < conf->copies; slot++) {
  270. if (r10_bio->devs[slot].bio == bio)
  271. break;
  272. if (r10_bio->devs[slot].repl_bio == bio) {
  273. repl = 1;
  274. break;
  275. }
  276. }
  277. BUG_ON(slot == conf->copies);
  278. update_head_pos(slot, r10_bio);
  279. if (slotp)
  280. *slotp = slot;
  281. if (replp)
  282. *replp = repl;
  283. return r10_bio->devs[slot].devnum;
  284. }
  285. static void raid10_end_read_request(struct bio *bio, int error)
  286. {
  287. int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
  288. struct r10bio *r10_bio = bio->bi_private;
  289. int slot, dev;
  290. struct md_rdev *rdev;
  291. struct r10conf *conf = r10_bio->mddev->private;
  292. slot = r10_bio->read_slot;
  293. dev = r10_bio->devs[slot].devnum;
  294. rdev = r10_bio->devs[slot].rdev;
  295. /*
  296. * this branch is our 'one mirror IO has finished' event handler:
  297. */
  298. update_head_pos(slot, r10_bio);
  299. if (uptodate) {
  300. /*
  301. * Set R10BIO_Uptodate in our master bio, so that
  302. * we will return a good error code to the higher
  303. * levels even if IO on some other mirrored buffer fails.
  304. *
  305. * The 'master' represents the composite IO operation to
  306. * user-side. So if something waits for IO, then it will
  307. * wait for the 'master' bio.
  308. */
  309. set_bit(R10BIO_Uptodate, &r10_bio->state);
  310. } else {
  311. /* If all other devices that store this block have
  312. * failed, we want to return the error upwards rather
  313. * than fail the last device. Here we redefine
  314. * "uptodate" to mean "Don't want to retry"
  315. */
  316. unsigned long flags;
  317. spin_lock_irqsave(&conf->device_lock, flags);
  318. if (!enough(conf, rdev->raid_disk))
  319. uptodate = 1;
  320. spin_unlock_irqrestore(&conf->device_lock, flags);
  321. }
  322. if (uptodate) {
  323. raid_end_bio_io(r10_bio);
  324. rdev_dec_pending(rdev, conf->mddev);
  325. } else {
  326. /*
  327. * oops, read error - keep the refcount on the rdev
  328. */
  329. char b[BDEVNAME_SIZE];
  330. printk_ratelimited(KERN_ERR
  331. "md/raid10:%s: %s: rescheduling sector %llu\n",
  332. mdname(conf->mddev),
  333. bdevname(rdev->bdev, b),
  334. (unsigned long long)r10_bio->sector);
  335. set_bit(R10BIO_ReadError, &r10_bio->state);
  336. reschedule_retry(r10_bio);
  337. }
  338. }
  339. static void close_write(struct r10bio *r10_bio)
  340. {
  341. /* clear the bitmap if all writes complete successfully */
  342. bitmap_endwrite(r10_bio->mddev->bitmap, r10_bio->sector,
  343. r10_bio->sectors,
  344. !test_bit(R10BIO_Degraded, &r10_bio->state),
  345. 0);
  346. md_write_end(r10_bio->mddev);
  347. }
  348. static void one_write_done(struct r10bio *r10_bio)
  349. {
  350. if (atomic_dec_and_test(&r10_bio->remaining)) {
  351. if (test_bit(R10BIO_WriteError, &r10_bio->state))
  352. reschedule_retry(r10_bio);
  353. else {
  354. close_write(r10_bio);
  355. if (test_bit(R10BIO_MadeGood, &r10_bio->state))
  356. reschedule_retry(r10_bio);
  357. else
  358. raid_end_bio_io(r10_bio);
  359. }
  360. }
  361. }
  362. static void raid10_end_write_request(struct bio *bio, int error)
  363. {
  364. int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
  365. struct r10bio *r10_bio = bio->bi_private;
  366. int dev;
  367. int dec_rdev = 1;
  368. struct r10conf *conf = r10_bio->mddev->private;
  369. int slot, repl;
  370. struct md_rdev *rdev = NULL;
  371. dev = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
  372. if (repl)
  373. rdev = conf->mirrors[dev].replacement;
  374. if (!rdev) {
  375. smp_rmb();
  376. repl = 0;
  377. rdev = conf->mirrors[dev].rdev;
  378. }
  379. /*
  380. * this branch is our 'one mirror IO has finished' event handler:
  381. */
  382. if (!uptodate) {
  383. if (repl)
  384. /* Never record new bad blocks to replacement,
  385. * just fail it.
  386. */
  387. md_error(rdev->mddev, rdev);
  388. else {
  389. set_bit(WriteErrorSeen, &rdev->flags);
  390. if (!test_and_set_bit(WantReplacement, &rdev->flags))
  391. set_bit(MD_RECOVERY_NEEDED,
  392. &rdev->mddev->recovery);
  393. set_bit(R10BIO_WriteError, &r10_bio->state);
  394. dec_rdev = 0;
  395. }
  396. } else {
  397. /*
  398. * Set R10BIO_Uptodate in our master bio, so that
  399. * we will return a good error code for to the higher
  400. * levels even if IO on some other mirrored buffer fails.
  401. *
  402. * The 'master' represents the composite IO operation to
  403. * user-side. So if something waits for IO, then it will
  404. * wait for the 'master' bio.
  405. */
  406. sector_t first_bad;
  407. int bad_sectors;
  408. set_bit(R10BIO_Uptodate, &r10_bio->state);
  409. /* Maybe we can clear some bad blocks. */
  410. if (is_badblock(rdev,
  411. r10_bio->devs[slot].addr,
  412. r10_bio->sectors,
  413. &first_bad, &bad_sectors)) {
  414. bio_put(bio);
  415. if (repl)
  416. r10_bio->devs[slot].repl_bio = IO_MADE_GOOD;
  417. else
  418. r10_bio->devs[slot].bio = IO_MADE_GOOD;
  419. dec_rdev = 0;
  420. set_bit(R10BIO_MadeGood, &r10_bio->state);
  421. }
  422. }
  423. /*
  424. *
  425. * Let's see if all mirrored write operations have finished
  426. * already.
  427. */
  428. one_write_done(r10_bio);
  429. if (dec_rdev)
  430. rdev_dec_pending(conf->mirrors[dev].rdev, conf->mddev);
  431. }
  432. /*
  433. * RAID10 layout manager
  434. * As well as the chunksize and raid_disks count, there are two
  435. * parameters: near_copies and far_copies.
  436. * near_copies * far_copies must be <= raid_disks.
  437. * Normally one of these will be 1.
  438. * If both are 1, we get raid0.
  439. * If near_copies == raid_disks, we get raid1.
  440. *
  441. * Chunks are laid out in raid0 style with near_copies copies of the
  442. * first chunk, followed by near_copies copies of the next chunk and
  443. * so on.
  444. * If far_copies > 1, then after 1/far_copies of the array has been assigned
  445. * as described above, we start again with a device offset of near_copies.
  446. * So we effectively have another copy of the whole array further down all
  447. * the drives, but with blocks on different drives.
  448. * With this layout, and block is never stored twice on the one device.
  449. *
  450. * raid10_find_phys finds the sector offset of a given virtual sector
  451. * on each device that it is on.
  452. *
  453. * raid10_find_virt does the reverse mapping, from a device and a
  454. * sector offset to a virtual address
  455. */
  456. static void raid10_find_phys(struct r10conf *conf, struct r10bio *r10bio)
  457. {
  458. int n,f;
  459. sector_t sector;
  460. sector_t chunk;
  461. sector_t stripe;
  462. int dev;
  463. int slot = 0;
  464. /* now calculate first sector/dev */
  465. chunk = r10bio->sector >> conf->chunk_shift;
  466. sector = r10bio->sector & conf->chunk_mask;
  467. chunk *= conf->near_copies;
  468. stripe = chunk;
  469. dev = sector_div(stripe, conf->raid_disks);
  470. if (conf->far_offset)
  471. stripe *= conf->far_copies;
  472. sector += stripe << conf->chunk_shift;
  473. /* and calculate all the others */
  474. for (n=0; n < conf->near_copies; n++) {
  475. int d = dev;
  476. sector_t s = sector;
  477. r10bio->devs[slot].addr = sector;
  478. r10bio->devs[slot].devnum = d;
  479. slot++;
  480. for (f = 1; f < conf->far_copies; f++) {
  481. d += conf->near_copies;
  482. if (d >= conf->raid_disks)
  483. d -= conf->raid_disks;
  484. s += conf->stride;
  485. r10bio->devs[slot].devnum = d;
  486. r10bio->devs[slot].addr = s;
  487. slot++;
  488. }
  489. dev++;
  490. if (dev >= conf->raid_disks) {
  491. dev = 0;
  492. sector += (conf->chunk_mask + 1);
  493. }
  494. }
  495. BUG_ON(slot != conf->copies);
  496. }
  497. static sector_t raid10_find_virt(struct r10conf *conf, sector_t sector, int dev)
  498. {
  499. sector_t offset, chunk, vchunk;
  500. offset = sector & conf->chunk_mask;
  501. if (conf->far_offset) {
  502. int fc;
  503. chunk = sector >> conf->chunk_shift;
  504. fc = sector_div(chunk, conf->far_copies);
  505. dev -= fc * conf->near_copies;
  506. if (dev < 0)
  507. dev += conf->raid_disks;
  508. } else {
  509. while (sector >= conf->stride) {
  510. sector -= conf->stride;
  511. if (dev < conf->near_copies)
  512. dev += conf->raid_disks - conf->near_copies;
  513. else
  514. dev -= conf->near_copies;
  515. }
  516. chunk = sector >> conf->chunk_shift;
  517. }
  518. vchunk = chunk * conf->raid_disks + dev;
  519. sector_div(vchunk, conf->near_copies);
  520. return (vchunk << conf->chunk_shift) + offset;
  521. }
  522. /**
  523. * raid10_mergeable_bvec -- tell bio layer if a two requests can be merged
  524. * @q: request queue
  525. * @bvm: properties of new bio
  526. * @biovec: the request that could be merged to it.
  527. *
  528. * Return amount of bytes we can accept at this offset
  529. * This requires checking for end-of-chunk if near_copies != raid_disks,
  530. * and for subordinate merge_bvec_fns if merge_check_needed.
  531. */
  532. static int raid10_mergeable_bvec(struct request_queue *q,
  533. struct bvec_merge_data *bvm,
  534. struct bio_vec *biovec)
  535. {
  536. struct mddev *mddev = q->queuedata;
  537. struct r10conf *conf = mddev->private;
  538. sector_t sector = bvm->bi_sector + get_start_sect(bvm->bi_bdev);
  539. int max;
  540. unsigned int chunk_sectors = mddev->chunk_sectors;
  541. unsigned int bio_sectors = bvm->bi_size >> 9;
  542. if (conf->near_copies < conf->raid_disks) {
  543. max = (chunk_sectors - ((sector & (chunk_sectors - 1))
  544. + bio_sectors)) << 9;
  545. if (max < 0)
  546. /* bio_add cannot handle a negative return */
  547. max = 0;
  548. if (max <= biovec->bv_len && bio_sectors == 0)
  549. return biovec->bv_len;
  550. } else
  551. max = biovec->bv_len;
  552. if (mddev->merge_check_needed) {
  553. struct r10bio r10_bio;
  554. int s;
  555. r10_bio.sector = sector;
  556. raid10_find_phys(conf, &r10_bio);
  557. rcu_read_lock();
  558. for (s = 0; s < conf->copies; s++) {
  559. int disk = r10_bio.devs[s].devnum;
  560. struct md_rdev *rdev = rcu_dereference(
  561. conf->mirrors[disk].rdev);
  562. if (rdev && !test_bit(Faulty, &rdev->flags)) {
  563. struct request_queue *q =
  564. bdev_get_queue(rdev->bdev);
  565. if (q->merge_bvec_fn) {
  566. bvm->bi_sector = r10_bio.devs[s].addr
  567. + rdev->data_offset;
  568. bvm->bi_bdev = rdev->bdev;
  569. max = min(max, q->merge_bvec_fn(
  570. q, bvm, biovec));
  571. }
  572. }
  573. rdev = rcu_dereference(conf->mirrors[disk].replacement);
  574. if (rdev && !test_bit(Faulty, &rdev->flags)) {
  575. struct request_queue *q =
  576. bdev_get_queue(rdev->bdev);
  577. if (q->merge_bvec_fn) {
  578. bvm->bi_sector = r10_bio.devs[s].addr
  579. + rdev->data_offset;
  580. bvm->bi_bdev = rdev->bdev;
  581. max = min(max, q->merge_bvec_fn(
  582. q, bvm, biovec));
  583. }
  584. }
  585. }
  586. rcu_read_unlock();
  587. }
  588. return max;
  589. }
  590. /*
  591. * This routine returns the disk from which the requested read should
  592. * be done. There is a per-array 'next expected sequential IO' sector
  593. * number - if this matches on the next IO then we use the last disk.
  594. * There is also a per-disk 'last know head position' sector that is
  595. * maintained from IRQ contexts, both the normal and the resync IO
  596. * completion handlers update this position correctly. If there is no
  597. * perfect sequential match then we pick the disk whose head is closest.
  598. *
  599. * If there are 2 mirrors in the same 2 devices, performance degrades
  600. * because position is mirror, not device based.
  601. *
  602. * The rdev for the device selected will have nr_pending incremented.
  603. */
  604. /*
  605. * FIXME: possibly should rethink readbalancing and do it differently
  606. * depending on near_copies / far_copies geometry.
  607. */
  608. static struct md_rdev *read_balance(struct r10conf *conf,
  609. struct r10bio *r10_bio,
  610. int *max_sectors)
  611. {
  612. const sector_t this_sector = r10_bio->sector;
  613. int disk, slot;
  614. int sectors = r10_bio->sectors;
  615. int best_good_sectors;
  616. sector_t new_distance, best_dist;
  617. struct md_rdev *rdev, *best_rdev;
  618. int do_balance;
  619. int best_slot;
  620. raid10_find_phys(conf, r10_bio);
  621. rcu_read_lock();
  622. retry:
  623. sectors = r10_bio->sectors;
  624. best_slot = -1;
  625. best_rdev = NULL;
  626. best_dist = MaxSector;
  627. best_good_sectors = 0;
  628. do_balance = 1;
  629. /*
  630. * Check if we can balance. We can balance on the whole
  631. * device if no resync is going on (recovery is ok), or below
  632. * the resync window. We take the first readable disk when
  633. * above the resync window.
  634. */
  635. if (conf->mddev->recovery_cp < MaxSector
  636. && (this_sector + sectors >= conf->next_resync))
  637. do_balance = 0;
  638. for (slot = 0; slot < conf->copies ; slot++) {
  639. sector_t first_bad;
  640. int bad_sectors;
  641. sector_t dev_sector;
  642. if (r10_bio->devs[slot].bio == IO_BLOCKED)
  643. continue;
  644. disk = r10_bio->devs[slot].devnum;
  645. rdev = rcu_dereference(conf->mirrors[disk].replacement);
  646. if (rdev == NULL || test_bit(Faulty, &rdev->flags) ||
  647. test_bit(Unmerged, &rdev->flags) ||
  648. r10_bio->devs[slot].addr + sectors > rdev->recovery_offset)
  649. rdev = rcu_dereference(conf->mirrors[disk].rdev);
  650. if (rdev == NULL ||
  651. test_bit(Faulty, &rdev->flags) ||
  652. test_bit(Unmerged, &rdev->flags))
  653. continue;
  654. if (!test_bit(In_sync, &rdev->flags) &&
  655. r10_bio->devs[slot].addr + sectors > rdev->recovery_offset)
  656. continue;
  657. dev_sector = r10_bio->devs[slot].addr;
  658. if (is_badblock(rdev, dev_sector, sectors,
  659. &first_bad, &bad_sectors)) {
  660. if (best_dist < MaxSector)
  661. /* Already have a better slot */
  662. continue;
  663. if (first_bad <= dev_sector) {
  664. /* Cannot read here. If this is the
  665. * 'primary' device, then we must not read
  666. * beyond 'bad_sectors' from another device.
  667. */
  668. bad_sectors -= (dev_sector - first_bad);
  669. if (!do_balance && sectors > bad_sectors)
  670. sectors = bad_sectors;
  671. if (best_good_sectors > sectors)
  672. best_good_sectors = sectors;
  673. } else {
  674. sector_t good_sectors =
  675. first_bad - dev_sector;
  676. if (good_sectors > best_good_sectors) {
  677. best_good_sectors = good_sectors;
  678. best_slot = slot;
  679. best_rdev = rdev;
  680. }
  681. if (!do_balance)
  682. /* Must read from here */
  683. break;
  684. }
  685. continue;
  686. } else
  687. best_good_sectors = sectors;
  688. if (!do_balance)
  689. break;
  690. /* This optimisation is debatable, and completely destroys
  691. * sequential read speed for 'far copies' arrays. So only
  692. * keep it for 'near' arrays, and review those later.
  693. */
  694. if (conf->near_copies > 1 && !atomic_read(&rdev->nr_pending))
  695. break;
  696. /* for far > 1 always use the lowest address */
  697. if (conf->far_copies > 1)
  698. new_distance = r10_bio->devs[slot].addr;
  699. else
  700. new_distance = abs(r10_bio->devs[slot].addr -
  701. conf->mirrors[disk].head_position);
  702. if (new_distance < best_dist) {
  703. best_dist = new_distance;
  704. best_slot = slot;
  705. best_rdev = rdev;
  706. }
  707. }
  708. if (slot >= conf->copies) {
  709. slot = best_slot;
  710. rdev = best_rdev;
  711. }
  712. if (slot >= 0) {
  713. atomic_inc(&rdev->nr_pending);
  714. if (test_bit(Faulty, &rdev->flags)) {
  715. /* Cannot risk returning a device that failed
  716. * before we inc'ed nr_pending
  717. */
  718. rdev_dec_pending(rdev, conf->mddev);
  719. goto retry;
  720. }
  721. r10_bio->read_slot = slot;
  722. } else
  723. rdev = NULL;
  724. rcu_read_unlock();
  725. *max_sectors = best_good_sectors;
  726. return rdev;
  727. }
  728. static int raid10_congested(void *data, int bits)
  729. {
  730. struct mddev *mddev = data;
  731. struct r10conf *conf = mddev->private;
  732. int i, ret = 0;
  733. if ((bits & (1 << BDI_async_congested)) &&
  734. conf->pending_count >= max_queued_requests)
  735. return 1;
  736. if (mddev_congested(mddev, bits))
  737. return 1;
  738. rcu_read_lock();
  739. for (i = 0; i < conf->raid_disks && ret == 0; i++) {
  740. struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
  741. if (rdev && !test_bit(Faulty, &rdev->flags)) {
  742. struct request_queue *q = bdev_get_queue(rdev->bdev);
  743. ret |= bdi_congested(&q->backing_dev_info, bits);
  744. }
  745. }
  746. rcu_read_unlock();
  747. return ret;
  748. }
  749. static void flush_pending_writes(struct r10conf *conf)
  750. {
  751. /* Any writes that have been queued but are awaiting
  752. * bitmap updates get flushed here.
  753. */
  754. spin_lock_irq(&conf->device_lock);
  755. if (conf->pending_bio_list.head) {
  756. struct bio *bio;
  757. bio = bio_list_get(&conf->pending_bio_list);
  758. conf->pending_count = 0;
  759. spin_unlock_irq(&conf->device_lock);
  760. /* flush any pending bitmap writes to disk
  761. * before proceeding w/ I/O */
  762. bitmap_unplug(conf->mddev->bitmap);
  763. wake_up(&conf->wait_barrier);
  764. while (bio) { /* submit pending writes */
  765. struct bio *next = bio->bi_next;
  766. bio->bi_next = NULL;
  767. generic_make_request(bio);
  768. bio = next;
  769. }
  770. } else
  771. spin_unlock_irq(&conf->device_lock);
  772. }
  773. /* Barriers....
  774. * Sometimes we need to suspend IO while we do something else,
  775. * either some resync/recovery, or reconfigure the array.
  776. * To do this we raise a 'barrier'.
  777. * The 'barrier' is a counter that can be raised multiple times
  778. * to count how many activities are happening which preclude
  779. * normal IO.
  780. * We can only raise the barrier if there is no pending IO.
  781. * i.e. if nr_pending == 0.
  782. * We choose only to raise the barrier if no-one is waiting for the
  783. * barrier to go down. This means that as soon as an IO request
  784. * is ready, no other operations which require a barrier will start
  785. * until the IO request has had a chance.
  786. *
  787. * So: regular IO calls 'wait_barrier'. When that returns there
  788. * is no backgroup IO happening, It must arrange to call
  789. * allow_barrier when it has finished its IO.
  790. * backgroup IO calls must call raise_barrier. Once that returns
  791. * there is no normal IO happeing. It must arrange to call
  792. * lower_barrier when the particular background IO completes.
  793. */
  794. static void raise_barrier(struct r10conf *conf, int force)
  795. {
  796. BUG_ON(force && !conf->barrier);
  797. spin_lock_irq(&conf->resync_lock);
  798. /* Wait until no block IO is waiting (unless 'force') */
  799. wait_event_lock_irq(conf->wait_barrier, force || !conf->nr_waiting,
  800. conf->resync_lock, );
  801. /* block any new IO from starting */
  802. conf->barrier++;
  803. /* Now wait for all pending IO to complete */
  804. wait_event_lock_irq(conf->wait_barrier,
  805. !conf->nr_pending && conf->barrier < RESYNC_DEPTH,
  806. conf->resync_lock, );
  807. spin_unlock_irq(&conf->resync_lock);
  808. }
  809. static void lower_barrier(struct r10conf *conf)
  810. {
  811. unsigned long flags;
  812. spin_lock_irqsave(&conf->resync_lock, flags);
  813. conf->barrier--;
  814. spin_unlock_irqrestore(&conf->resync_lock, flags);
  815. wake_up(&conf->wait_barrier);
  816. }
  817. static void wait_barrier(struct r10conf *conf)
  818. {
  819. spin_lock_irq(&conf->resync_lock);
  820. if (conf->barrier) {
  821. conf->nr_waiting++;
  822. /* Wait for the barrier to drop.
  823. * However if there are already pending
  824. * requests (preventing the barrier from
  825. * rising completely), and the
  826. * pre-process bio queue isn't empty,
  827. * then don't wait, as we need to empty
  828. * that queue to get the nr_pending
  829. * count down.
  830. */
  831. wait_event_lock_irq(conf->wait_barrier,
  832. !conf->barrier ||
  833. (conf->nr_pending &&
  834. current->bio_list &&
  835. !bio_list_empty(current->bio_list)),
  836. conf->resync_lock,
  837. );
  838. conf->nr_waiting--;
  839. }
  840. conf->nr_pending++;
  841. spin_unlock_irq(&conf->resync_lock);
  842. }
  843. static void allow_barrier(struct r10conf *conf)
  844. {
  845. unsigned long flags;
  846. spin_lock_irqsave(&conf->resync_lock, flags);
  847. conf->nr_pending--;
  848. spin_unlock_irqrestore(&conf->resync_lock, flags);
  849. wake_up(&conf->wait_barrier);
  850. }
  851. static void freeze_array(struct r10conf *conf)
  852. {
  853. /* stop syncio and normal IO and wait for everything to
  854. * go quiet.
  855. * We increment barrier and nr_waiting, and then
  856. * wait until nr_pending match nr_queued+1
  857. * This is called in the context of one normal IO request
  858. * that has failed. Thus any sync request that might be pending
  859. * will be blocked by nr_pending, and we need to wait for
  860. * pending IO requests to complete or be queued for re-try.
  861. * Thus the number queued (nr_queued) plus this request (1)
  862. * must match the number of pending IOs (nr_pending) before
  863. * we continue.
  864. */
  865. spin_lock_irq(&conf->resync_lock);
  866. conf->barrier++;
  867. conf->nr_waiting++;
  868. wait_event_lock_irq(conf->wait_barrier,
  869. conf->nr_pending == conf->nr_queued+1,
  870. conf->resync_lock,
  871. flush_pending_writes(conf));
  872. spin_unlock_irq(&conf->resync_lock);
  873. }
  874. static void unfreeze_array(struct r10conf *conf)
  875. {
  876. /* reverse the effect of the freeze */
  877. spin_lock_irq(&conf->resync_lock);
  878. conf->barrier--;
  879. conf->nr_waiting--;
  880. wake_up(&conf->wait_barrier);
  881. spin_unlock_irq(&conf->resync_lock);
  882. }
  883. static void make_request(struct mddev *mddev, struct bio * bio)
  884. {
  885. struct r10conf *conf = mddev->private;
  886. struct r10bio *r10_bio;
  887. struct bio *read_bio;
  888. int i;
  889. int chunk_sects = conf->chunk_mask + 1;
  890. const int rw = bio_data_dir(bio);
  891. const unsigned long do_sync = (bio->bi_rw & REQ_SYNC);
  892. const unsigned long do_fua = (bio->bi_rw & REQ_FUA);
  893. unsigned long flags;
  894. struct md_rdev *blocked_rdev;
  895. int plugged;
  896. int sectors_handled;
  897. int max_sectors;
  898. if (unlikely(bio->bi_rw & REQ_FLUSH)) {
  899. md_flush_request(mddev, bio);
  900. return;
  901. }
  902. /* If this request crosses a chunk boundary, we need to
  903. * split it. This will only happen for 1 PAGE (or less) requests.
  904. */
  905. if (unlikely( (bio->bi_sector & conf->chunk_mask) + (bio->bi_size >> 9)
  906. > chunk_sects &&
  907. conf->near_copies < conf->raid_disks)) {
  908. struct bio_pair *bp;
  909. /* Sanity check -- queue functions should prevent this happening */
  910. if (bio->bi_vcnt != 1 ||
  911. bio->bi_idx != 0)
  912. goto bad_map;
  913. /* This is a one page bio that upper layers
  914. * refuse to split for us, so we need to split it.
  915. */
  916. bp = bio_split(bio,
  917. chunk_sects - (bio->bi_sector & (chunk_sects - 1)) );
  918. /* Each of these 'make_request' calls will call 'wait_barrier'.
  919. * If the first succeeds but the second blocks due to the resync
  920. * thread raising the barrier, we will deadlock because the
  921. * IO to the underlying device will be queued in generic_make_request
  922. * and will never complete, so will never reduce nr_pending.
  923. * So increment nr_waiting here so no new raise_barriers will
  924. * succeed, and so the second wait_barrier cannot block.
  925. */
  926. spin_lock_irq(&conf->resync_lock);
  927. conf->nr_waiting++;
  928. spin_unlock_irq(&conf->resync_lock);
  929. make_request(mddev, &bp->bio1);
  930. make_request(mddev, &bp->bio2);
  931. spin_lock_irq(&conf->resync_lock);
  932. conf->nr_waiting--;
  933. wake_up(&conf->wait_barrier);
  934. spin_unlock_irq(&conf->resync_lock);
  935. bio_pair_release(bp);
  936. return;
  937. bad_map:
  938. printk("md/raid10:%s: make_request bug: can't convert block across chunks"
  939. " or bigger than %dk %llu %d\n", mdname(mddev), chunk_sects/2,
  940. (unsigned long long)bio->bi_sector, bio->bi_size >> 10);
  941. bio_io_error(bio);
  942. return;
  943. }
  944. md_write_start(mddev, bio);
  945. /*
  946. * Register the new request and wait if the reconstruction
  947. * thread has put up a bar for new requests.
  948. * Continue immediately if no resync is active currently.
  949. */
  950. wait_barrier(conf);
  951. r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO);
  952. r10_bio->master_bio = bio;
  953. r10_bio->sectors = bio->bi_size >> 9;
  954. r10_bio->mddev = mddev;
  955. r10_bio->sector = bio->bi_sector;
  956. r10_bio->state = 0;
  957. /* We might need to issue multiple reads to different
  958. * devices if there are bad blocks around, so we keep
  959. * track of the number of reads in bio->bi_phys_segments.
  960. * If this is 0, there is only one r10_bio and no locking
  961. * will be needed when the request completes. If it is
  962. * non-zero, then it is the number of not-completed requests.
  963. */
  964. bio->bi_phys_segments = 0;
  965. clear_bit(BIO_SEG_VALID, &bio->bi_flags);
  966. if (rw == READ) {
  967. /*
  968. * read balancing logic:
  969. */
  970. struct md_rdev *rdev;
  971. int slot;
  972. read_again:
  973. rdev = read_balance(conf, r10_bio, &max_sectors);
  974. if (!rdev) {
  975. raid_end_bio_io(r10_bio);
  976. return;
  977. }
  978. slot = r10_bio->read_slot;
  979. read_bio = bio_clone_mddev(bio, GFP_NOIO, mddev);
  980. md_trim_bio(read_bio, r10_bio->sector - bio->bi_sector,
  981. max_sectors);
  982. r10_bio->devs[slot].bio = read_bio;
  983. r10_bio->devs[slot].rdev = rdev;
  984. read_bio->bi_sector = r10_bio->devs[slot].addr +
  985. rdev->data_offset;
  986. read_bio->bi_bdev = rdev->bdev;
  987. read_bio->bi_end_io = raid10_end_read_request;
  988. read_bio->bi_rw = READ | do_sync;
  989. read_bio->bi_private = r10_bio;
  990. if (max_sectors < r10_bio->sectors) {
  991. /* Could not read all from this device, so we will
  992. * need another r10_bio.
  993. */
  994. sectors_handled = (r10_bio->sectors + max_sectors
  995. - bio->bi_sector);
  996. r10_bio->sectors = max_sectors;
  997. spin_lock_irq(&conf->device_lock);
  998. if (bio->bi_phys_segments == 0)
  999. bio->bi_phys_segments = 2;
  1000. else
  1001. bio->bi_phys_segments++;
  1002. spin_unlock(&conf->device_lock);
  1003. /* Cannot call generic_make_request directly
  1004. * as that will be queued in __generic_make_request
  1005. * and subsequent mempool_alloc might block
  1006. * waiting for it. so hand bio over to raid10d.
  1007. */
  1008. reschedule_retry(r10_bio);
  1009. r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO);
  1010. r10_bio->master_bio = bio;
  1011. r10_bio->sectors = ((bio->bi_size >> 9)
  1012. - sectors_handled);
  1013. r10_bio->state = 0;
  1014. r10_bio->mddev = mddev;
  1015. r10_bio->sector = bio->bi_sector + sectors_handled;
  1016. goto read_again;
  1017. } else
  1018. generic_make_request(read_bio);
  1019. return;
  1020. }
  1021. /*
  1022. * WRITE:
  1023. */
  1024. if (conf->pending_count >= max_queued_requests) {
  1025. md_wakeup_thread(mddev->thread);
  1026. wait_event(conf->wait_barrier,
  1027. conf->pending_count < max_queued_requests);
  1028. }
  1029. /* first select target devices under rcu_lock and
  1030. * inc refcount on their rdev. Record them by setting
  1031. * bios[x] to bio
  1032. * If there are known/acknowledged bad blocks on any device
  1033. * on which we have seen a write error, we want to avoid
  1034. * writing to those blocks. This potentially requires several
  1035. * writes to write around the bad blocks. Each set of writes
  1036. * gets its own r10_bio with a set of bios attached. The number
  1037. * of r10_bios is recored in bio->bi_phys_segments just as with
  1038. * the read case.
  1039. */
  1040. plugged = mddev_check_plugged(mddev);
  1041. r10_bio->read_slot = -1; /* make sure repl_bio gets freed */
  1042. raid10_find_phys(conf, r10_bio);
  1043. retry_write:
  1044. blocked_rdev = NULL;
  1045. rcu_read_lock();
  1046. max_sectors = r10_bio->sectors;
  1047. for (i = 0; i < conf->copies; i++) {
  1048. int d = r10_bio->devs[i].devnum;
  1049. struct md_rdev *rdev = rcu_dereference(conf->mirrors[d].rdev);
  1050. struct md_rdev *rrdev = rcu_dereference(
  1051. conf->mirrors[d].replacement);
  1052. if (rdev == rrdev)
  1053. rrdev = NULL;
  1054. if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
  1055. atomic_inc(&rdev->nr_pending);
  1056. blocked_rdev = rdev;
  1057. break;
  1058. }
  1059. if (rrdev && unlikely(test_bit(Blocked, &rrdev->flags))) {
  1060. atomic_inc(&rrdev->nr_pending);
  1061. blocked_rdev = rrdev;
  1062. break;
  1063. }
  1064. if (rrdev && (test_bit(Faulty, &rrdev->flags)
  1065. || test_bit(Unmerged, &rrdev->flags)))
  1066. rrdev = NULL;
  1067. r10_bio->devs[i].bio = NULL;
  1068. r10_bio->devs[i].repl_bio = NULL;
  1069. if (!rdev || test_bit(Faulty, &rdev->flags) ||
  1070. test_bit(Unmerged, &rdev->flags)) {
  1071. set_bit(R10BIO_Degraded, &r10_bio->state);
  1072. continue;
  1073. }
  1074. if (test_bit(WriteErrorSeen, &rdev->flags)) {
  1075. sector_t first_bad;
  1076. sector_t dev_sector = r10_bio->devs[i].addr;
  1077. int bad_sectors;
  1078. int is_bad;
  1079. is_bad = is_badblock(rdev, dev_sector,
  1080. max_sectors,
  1081. &first_bad, &bad_sectors);
  1082. if (is_bad < 0) {
  1083. /* Mustn't write here until the bad block
  1084. * is acknowledged
  1085. */
  1086. atomic_inc(&rdev->nr_pending);
  1087. set_bit(BlockedBadBlocks, &rdev->flags);
  1088. blocked_rdev = rdev;
  1089. break;
  1090. }
  1091. if (is_bad && first_bad <= dev_sector) {
  1092. /* Cannot write here at all */
  1093. bad_sectors -= (dev_sector - first_bad);
  1094. if (bad_sectors < max_sectors)
  1095. /* Mustn't write more than bad_sectors
  1096. * to other devices yet
  1097. */
  1098. max_sectors = bad_sectors;
  1099. /* We don't set R10BIO_Degraded as that
  1100. * only applies if the disk is missing,
  1101. * so it might be re-added, and we want to
  1102. * know to recover this chunk.
  1103. * In this case the device is here, and the
  1104. * fact that this chunk is not in-sync is
  1105. * recorded in the bad block log.
  1106. */
  1107. continue;
  1108. }
  1109. if (is_bad) {
  1110. int good_sectors = first_bad - dev_sector;
  1111. if (good_sectors < max_sectors)
  1112. max_sectors = good_sectors;
  1113. }
  1114. }
  1115. r10_bio->devs[i].bio = bio;
  1116. atomic_inc(&rdev->nr_pending);
  1117. if (rrdev) {
  1118. r10_bio->devs[i].repl_bio = bio;
  1119. atomic_inc(&rrdev->nr_pending);
  1120. }
  1121. }
  1122. rcu_read_unlock();
  1123. if (unlikely(blocked_rdev)) {
  1124. /* Have to wait for this device to get unblocked, then retry */
  1125. int j;
  1126. int d;
  1127. for (j = 0; j < i; j++) {
  1128. if (r10_bio->devs[j].bio) {
  1129. d = r10_bio->devs[j].devnum;
  1130. rdev_dec_pending(conf->mirrors[d].rdev, mddev);
  1131. }
  1132. if (r10_bio->devs[j].repl_bio) {
  1133. struct md_rdev *rdev;
  1134. d = r10_bio->devs[j].devnum;
  1135. rdev = conf->mirrors[d].replacement;
  1136. if (!rdev) {
  1137. /* Race with remove_disk */
  1138. smp_mb();
  1139. rdev = conf->mirrors[d].rdev;
  1140. }
  1141. rdev_dec_pending(rdev, mddev);
  1142. }
  1143. }
  1144. allow_barrier(conf);
  1145. md_wait_for_blocked_rdev(blocked_rdev, mddev);
  1146. wait_barrier(conf);
  1147. goto retry_write;
  1148. }
  1149. if (max_sectors < r10_bio->sectors) {
  1150. /* We are splitting this into multiple parts, so
  1151. * we need to prepare for allocating another r10_bio.
  1152. */
  1153. r10_bio->sectors = max_sectors;
  1154. spin_lock_irq(&conf->device_lock);
  1155. if (bio->bi_phys_segments == 0)
  1156. bio->bi_phys_segments = 2;
  1157. else
  1158. bio->bi_phys_segments++;
  1159. spin_unlock_irq(&conf->device_lock);
  1160. }
  1161. sectors_handled = r10_bio->sector + max_sectors - bio->bi_sector;
  1162. atomic_set(&r10_bio->remaining, 1);
  1163. bitmap_startwrite(mddev->bitmap, r10_bio->sector, r10_bio->sectors, 0);
  1164. for (i = 0; i < conf->copies; i++) {
  1165. struct bio *mbio;
  1166. int d = r10_bio->devs[i].devnum;
  1167. if (!r10_bio->devs[i].bio)
  1168. continue;
  1169. mbio = bio_clone_mddev(bio, GFP_NOIO, mddev);
  1170. md_trim_bio(mbio, r10_bio->sector - bio->bi_sector,
  1171. max_sectors);
  1172. r10_bio->devs[i].bio = mbio;
  1173. mbio->bi_sector = (r10_bio->devs[i].addr+
  1174. conf->mirrors[d].rdev->data_offset);
  1175. mbio->bi_bdev = conf->mirrors[d].rdev->bdev;
  1176. mbio->bi_end_io = raid10_end_write_request;
  1177. mbio->bi_rw = WRITE | do_sync | do_fua;
  1178. mbio->bi_private = r10_bio;
  1179. atomic_inc(&r10_bio->remaining);
  1180. spin_lock_irqsave(&conf->device_lock, flags);
  1181. bio_list_add(&conf->pending_bio_list, mbio);
  1182. conf->pending_count++;
  1183. spin_unlock_irqrestore(&conf->device_lock, flags);
  1184. if (!r10_bio->devs[i].repl_bio)
  1185. continue;
  1186. mbio = bio_clone_mddev(bio, GFP_NOIO, mddev);
  1187. md_trim_bio(mbio, r10_bio->sector - bio->bi_sector,
  1188. max_sectors);
  1189. r10_bio->devs[i].repl_bio = mbio;
  1190. /* We are actively writing to the original device
  1191. * so it cannot disappear, so the replacement cannot
  1192. * become NULL here
  1193. */
  1194. mbio->bi_sector = (r10_bio->devs[i].addr+
  1195. conf->mirrors[d].replacement->data_offset);
  1196. mbio->bi_bdev = conf->mirrors[d].replacement->bdev;
  1197. mbio->bi_end_io = raid10_end_write_request;
  1198. mbio->bi_rw = WRITE | do_sync | do_fua;
  1199. mbio->bi_private = r10_bio;
  1200. atomic_inc(&r10_bio->remaining);
  1201. spin_lock_irqsave(&conf->device_lock, flags);
  1202. bio_list_add(&conf->pending_bio_list, mbio);
  1203. conf->pending_count++;
  1204. spin_unlock_irqrestore(&conf->device_lock, flags);
  1205. }
  1206. /* Don't remove the bias on 'remaining' (one_write_done) until
  1207. * after checking if we need to go around again.
  1208. */
  1209. if (sectors_handled < (bio->bi_size >> 9)) {
  1210. one_write_done(r10_bio);
  1211. /* We need another r10_bio. It has already been counted
  1212. * in bio->bi_phys_segments.
  1213. */
  1214. r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO);
  1215. r10_bio->master_bio = bio;
  1216. r10_bio->sectors = (bio->bi_size >> 9) - sectors_handled;
  1217. r10_bio->mddev = mddev;
  1218. r10_bio->sector = bio->bi_sector + sectors_handled;
  1219. r10_bio->state = 0;
  1220. goto retry_write;
  1221. }
  1222. one_write_done(r10_bio);
  1223. /* In case raid10d snuck in to freeze_array */
  1224. wake_up(&conf->wait_barrier);
  1225. if (do_sync || !mddev->bitmap || !plugged)
  1226. md_wakeup_thread(mddev->thread);
  1227. }
  1228. static void status(struct seq_file *seq, struct mddev *mddev)
  1229. {
  1230. struct r10conf *conf = mddev->private;
  1231. int i;
  1232. if (conf->near_copies < conf->raid_disks)
  1233. seq_printf(seq, " %dK chunks", mddev->chunk_sectors / 2);
  1234. if (conf->near_copies > 1)
  1235. seq_printf(seq, " %d near-copies", conf->near_copies);
  1236. if (conf->far_copies > 1) {
  1237. if (conf->far_offset)
  1238. seq_printf(seq, " %d offset-copies", conf->far_copies);
  1239. else
  1240. seq_printf(seq, " %d far-copies", conf->far_copies);
  1241. }
  1242. seq_printf(seq, " [%d/%d] [", conf->raid_disks,
  1243. conf->raid_disks - mddev->degraded);
  1244. for (i = 0; i < conf->raid_disks; i++)
  1245. seq_printf(seq, "%s",
  1246. conf->mirrors[i].rdev &&
  1247. test_bit(In_sync, &conf->mirrors[i].rdev->flags) ? "U" : "_");
  1248. seq_printf(seq, "]");
  1249. }
  1250. /* check if there are enough drives for
  1251. * every block to appear on atleast one.
  1252. * Don't consider the device numbered 'ignore'
  1253. * as we might be about to remove it.
  1254. */
  1255. static int enough(struct r10conf *conf, int ignore)
  1256. {
  1257. int first = 0;
  1258. do {
  1259. int n = conf->copies;
  1260. int cnt = 0;
  1261. while (n--) {
  1262. if (conf->mirrors[first].rdev &&
  1263. first != ignore)
  1264. cnt++;
  1265. first = (first+1) % conf->raid_disks;
  1266. }
  1267. if (cnt == 0)
  1268. return 0;
  1269. } while (first != 0);
  1270. return 1;
  1271. }
  1272. static void error(struct mddev *mddev, struct md_rdev *rdev)
  1273. {
  1274. char b[BDEVNAME_SIZE];
  1275. struct r10conf *conf = mddev->private;
  1276. /*
  1277. * If it is not operational, then we have already marked it as dead
  1278. * else if it is the last working disks, ignore the error, let the
  1279. * next level up know.
  1280. * else mark the drive as failed
  1281. */
  1282. if (test_bit(In_sync, &rdev->flags)
  1283. && !enough(conf, rdev->raid_disk))
  1284. /*
  1285. * Don't fail the drive, just return an IO error.
  1286. */
  1287. return;
  1288. if (test_and_clear_bit(In_sync, &rdev->flags)) {
  1289. unsigned long flags;
  1290. spin_lock_irqsave(&conf->device_lock, flags);
  1291. mddev->degraded++;
  1292. spin_unlock_irqrestore(&conf->device_lock, flags);
  1293. /*
  1294. * if recovery is running, make sure it aborts.
  1295. */
  1296. set_bit(MD_RECOVERY_INTR, &mddev->recovery);
  1297. }
  1298. set_bit(Blocked, &rdev->flags);
  1299. set_bit(Faulty, &rdev->flags);
  1300. set_bit(MD_CHANGE_DEVS, &mddev->flags);
  1301. printk(KERN_ALERT
  1302. "md/raid10:%s: Disk failure on %s, disabling device.\n"
  1303. "md/raid10:%s: Operation continuing on %d devices.\n",
  1304. mdname(mddev), bdevname(rdev->bdev, b),
  1305. mdname(mddev), conf->raid_disks - mddev->degraded);
  1306. }
  1307. static void print_conf(struct r10conf *conf)
  1308. {
  1309. int i;
  1310. struct mirror_info *tmp;
  1311. printk(KERN_DEBUG "RAID10 conf printout:\n");
  1312. if (!conf) {
  1313. printk(KERN_DEBUG "(!conf)\n");
  1314. return;
  1315. }
  1316. printk(KERN_DEBUG " --- wd:%d rd:%d\n", conf->raid_disks - conf->mddev->degraded,
  1317. conf->raid_disks);
  1318. for (i = 0; i < conf->raid_disks; i++) {
  1319. char b[BDEVNAME_SIZE];
  1320. tmp = conf->mirrors + i;
  1321. if (tmp->rdev)
  1322. printk(KERN_DEBUG " disk %d, wo:%d, o:%d, dev:%s\n",
  1323. i, !test_bit(In_sync, &tmp->rdev->flags),
  1324. !test_bit(Faulty, &tmp->rdev->flags),
  1325. bdevname(tmp->rdev->bdev,b));
  1326. }
  1327. }
  1328. static void close_sync(struct r10conf *conf)
  1329. {
  1330. wait_barrier(conf);
  1331. allow_barrier(conf);
  1332. mempool_destroy(conf->r10buf_pool);
  1333. conf->r10buf_pool = NULL;
  1334. }
  1335. static int raid10_spare_active(struct mddev *mddev)
  1336. {
  1337. int i;
  1338. struct r10conf *conf = mddev->private;
  1339. struct mirror_info *tmp;
  1340. int count = 0;
  1341. unsigned long flags;
  1342. /*
  1343. * Find all non-in_sync disks within the RAID10 configuration
  1344. * and mark them in_sync
  1345. */
  1346. for (i = 0; i < conf->raid_disks; i++) {
  1347. tmp = conf->mirrors + i;
  1348. if (tmp->replacement
  1349. && tmp->replacement->recovery_offset == MaxSector
  1350. && !test_bit(Faulty, &tmp->replacement->flags)
  1351. && !test_and_set_bit(In_sync, &tmp->replacement->flags)) {
  1352. /* Replacement has just become active */
  1353. if (!tmp->rdev
  1354. || !test_and_clear_bit(In_sync, &tmp->rdev->flags))
  1355. count++;
  1356. if (tmp->rdev) {
  1357. /* Replaced device not technically faulty,
  1358. * but we need to be sure it gets removed
  1359. * and never re-added.
  1360. */
  1361. set_bit(Faulty, &tmp->rdev->flags);
  1362. sysfs_notify_dirent_safe(
  1363. tmp->rdev->sysfs_state);
  1364. }
  1365. sysfs_notify_dirent_safe(tmp->replacement->sysfs_state);
  1366. } else if (tmp->rdev
  1367. && !test_bit(Faulty, &tmp->rdev->flags)
  1368. && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
  1369. count++;
  1370. sysfs_notify_dirent(tmp->rdev->sysfs_state);
  1371. }
  1372. }
  1373. spin_lock_irqsave(&conf->device_lock, flags);
  1374. mddev->degraded -= count;
  1375. spin_unlock_irqrestore(&conf->device_lock, flags);
  1376. print_conf(conf);
  1377. return count;
  1378. }
  1379. static int raid10_add_disk(struct mddev *mddev, struct md_rdev *rdev)
  1380. {
  1381. struct r10conf *conf = mddev->private;
  1382. int err = -EEXIST;
  1383. int mirror;
  1384. int first = 0;
  1385. int last = conf->raid_disks - 1;
  1386. struct request_queue *q = bdev_get_queue(rdev->bdev);
  1387. if (mddev->recovery_cp < MaxSector)
  1388. /* only hot-add to in-sync arrays, as recovery is
  1389. * very different from resync
  1390. */
  1391. return -EBUSY;
  1392. if (rdev->saved_raid_disk < 0 && !enough(conf, -1))
  1393. return -EINVAL;
  1394. if (rdev->raid_disk >= 0)
  1395. first = last = rdev->raid_disk;
  1396. if (q->merge_bvec_fn) {
  1397. set_bit(Unmerged, &rdev->flags);
  1398. mddev->merge_check_needed = 1;
  1399. }
  1400. if (rdev->saved_raid_disk >= first &&
  1401. conf->mirrors[rdev->saved_raid_disk].rdev == NULL)
  1402. mirror = rdev->saved_raid_disk;
  1403. else
  1404. mirror = first;
  1405. for ( ; mirror <= last ; mirror++) {
  1406. struct mirror_info *p = &conf->mirrors[mirror];
  1407. if (p->recovery_disabled == mddev->recovery_disabled)
  1408. continue;
  1409. if (p->rdev) {
  1410. if (!test_bit(WantReplacement, &p->rdev->flags) ||
  1411. p->replacement != NULL)
  1412. continue;
  1413. clear_bit(In_sync, &rdev->flags);
  1414. set_bit(Replacement, &rdev->flags);
  1415. rdev->raid_disk = mirror;
  1416. err = 0;
  1417. disk_stack_limits(mddev->gendisk, rdev->bdev,
  1418. rdev->data_offset << 9);
  1419. conf->fullsync = 1;
  1420. rcu_assign_pointer(p->replacement, rdev);
  1421. break;
  1422. }
  1423. disk_stack_limits(mddev->gendisk, rdev->bdev,
  1424. rdev->data_offset << 9);
  1425. p->head_position = 0;
  1426. p->recovery_disabled = mddev->recovery_disabled - 1;
  1427. rdev->raid_disk = mirror;
  1428. err = 0;
  1429. if (rdev->saved_raid_disk != mirror)
  1430. conf->fullsync = 1;
  1431. rcu_assign_pointer(p->rdev, rdev);
  1432. break;
  1433. }
  1434. if (err == 0 && test_bit(Unmerged, &rdev->flags)) {
  1435. /* Some requests might not have seen this new
  1436. * merge_bvec_fn. We must wait for them to complete
  1437. * before merging the device fully.
  1438. * First we make sure any code which has tested
  1439. * our function has submitted the request, then
  1440. * we wait for all outstanding requests to complete.
  1441. */
  1442. synchronize_sched();
  1443. raise_barrier(conf, 0);
  1444. lower_barrier(conf);
  1445. clear_bit(Unmerged, &rdev->flags);
  1446. }
  1447. md_integrity_add_rdev(rdev, mddev);
  1448. print_conf(conf);
  1449. return err;
  1450. }
  1451. static int raid10_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
  1452. {
  1453. struct r10conf *conf = mddev->private;
  1454. int err = 0;
  1455. int number = rdev->raid_disk;
  1456. struct md_rdev **rdevp;
  1457. struct mirror_info *p = conf->mirrors + number;
  1458. print_conf(conf);
  1459. if (rdev == p->rdev)
  1460. rdevp = &p->rdev;
  1461. else if (rdev == p->replacement)
  1462. rdevp = &p->replacement;
  1463. else
  1464. return 0;
  1465. if (test_bit(In_sync, &rdev->flags) ||
  1466. atomic_read(&rdev->nr_pending)) {
  1467. err = -EBUSY;
  1468. goto abort;
  1469. }
  1470. /* Only remove faulty devices if recovery
  1471. * is not possible.
  1472. */
  1473. if (!test_bit(Faulty, &rdev->flags) &&
  1474. mddev->recovery_disabled != p->recovery_disabled &&
  1475. (!p->replacement || p->replacement == rdev) &&
  1476. enough(conf, -1)) {
  1477. err = -EBUSY;
  1478. goto abort;
  1479. }
  1480. *rdevp = NULL;
  1481. synchronize_rcu();
  1482. if (atomic_read(&rdev->nr_pending)) {
  1483. /* lost the race, try later */
  1484. err = -EBUSY;
  1485. *rdevp = rdev;
  1486. goto abort;
  1487. } else if (p->replacement) {
  1488. /* We must have just cleared 'rdev' */
  1489. p->rdev = p->replacement;
  1490. clear_bit(Replacement, &p->replacement->flags);
  1491. smp_mb(); /* Make sure other CPUs may see both as identical
  1492. * but will never see neither -- if they are careful.
  1493. */
  1494. p->replacement = NULL;
  1495. clear_bit(WantReplacement, &rdev->flags);
  1496. } else
  1497. /* We might have just remove the Replacement as faulty
  1498. * Clear the flag just in case
  1499. */
  1500. clear_bit(WantReplacement, &rdev->flags);
  1501. err = md_integrity_register(mddev);
  1502. abort:
  1503. print_conf(conf);
  1504. return err;
  1505. }
  1506. static void end_sync_read(struct bio *bio, int error)
  1507. {
  1508. struct r10bio *r10_bio = bio->bi_private;
  1509. struct r10conf *conf = r10_bio->mddev->private;
  1510. int d;
  1511. d = find_bio_disk(conf, r10_bio, bio, NULL, NULL);
  1512. if (test_bit(BIO_UPTODATE, &bio->bi_flags))
  1513. set_bit(R10BIO_Uptodate, &r10_bio->state);
  1514. else
  1515. /* The write handler will notice the lack of
  1516. * R10BIO_Uptodate and record any errors etc
  1517. */
  1518. atomic_add(r10_bio->sectors,
  1519. &conf->mirrors[d].rdev->corrected_errors);
  1520. /* for reconstruct, we always reschedule after a read.
  1521. * for resync, only after all reads
  1522. */
  1523. rdev_dec_pending(conf->mirrors[d].rdev, conf->mddev);
  1524. if (test_bit(R10BIO_IsRecover, &r10_bio->state) ||
  1525. atomic_dec_and_test(&r10_bio->remaining)) {
  1526. /* we have read all the blocks,
  1527. * do the comparison in process context in raid10d
  1528. */
  1529. reschedule_retry(r10_bio);
  1530. }
  1531. }
  1532. static void end_sync_request(struct r10bio *r10_bio)
  1533. {
  1534. struct mddev *mddev = r10_bio->mddev;
  1535. while (atomic_dec_and_test(&r10_bio->remaining)) {
  1536. if (r10_bio->master_bio == NULL) {
  1537. /* the primary of several recovery bios */
  1538. sector_t s = r10_bio->sectors;
  1539. if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
  1540. test_bit(R10BIO_WriteError, &r10_bio->state))
  1541. reschedule_retry(r10_bio);
  1542. else
  1543. put_buf(r10_bio);
  1544. md_done_sync(mddev, s, 1);
  1545. break;
  1546. } else {
  1547. struct r10bio *r10_bio2 = (struct r10bio *)r10_bio->master_bio;
  1548. if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
  1549. test_bit(R10BIO_WriteError, &r10_bio->state))
  1550. reschedule_retry(r10_bio);
  1551. else
  1552. put_buf(r10_bio);
  1553. r10_bio = r10_bio2;
  1554. }
  1555. }
  1556. }
  1557. static void end_sync_write(struct bio *bio, int error)
  1558. {
  1559. int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
  1560. struct r10bio *r10_bio = bio->bi_private;
  1561. struct mddev *mddev = r10_bio->mddev;
  1562. struct r10conf *conf = mddev->private;
  1563. int d;
  1564. sector_t first_bad;
  1565. int bad_sectors;
  1566. int slot;
  1567. int repl;
  1568. struct md_rdev *rdev = NULL;
  1569. d = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
  1570. if (repl)
  1571. rdev = conf->mirrors[d].replacement;
  1572. else
  1573. rdev = conf->mirrors[d].rdev;
  1574. if (!uptodate) {
  1575. if (repl)
  1576. md_error(mddev, rdev);
  1577. else {
  1578. set_bit(WriteErrorSeen, &rdev->flags);
  1579. if (!test_and_set_bit(WantReplacement, &rdev->flags))
  1580. set_bit(MD_RECOVERY_NEEDED,
  1581. &rdev->mddev->recovery);
  1582. set_bit(R10BIO_WriteError, &r10_bio->state);
  1583. }
  1584. } else if (is_badblock(rdev,
  1585. r10_bio->devs[slot].addr,
  1586. r10_bio->sectors,
  1587. &first_bad, &bad_sectors))
  1588. set_bit(R10BIO_MadeGood, &r10_bio->state);
  1589. rdev_dec_pending(rdev, mddev);
  1590. end_sync_request(r10_bio);
  1591. }
  1592. /*
  1593. * Note: sync and recover and handled very differently for raid10
  1594. * This code is for resync.
  1595. * For resync, we read through virtual addresses and read all blocks.
  1596. * If there is any error, we schedule a write. The lowest numbered
  1597. * drive is authoritative.
  1598. * However requests come for physical address, so we need to map.
  1599. * For every physical address there are raid_disks/copies virtual addresses,
  1600. * which is always are least one, but is not necessarly an integer.
  1601. * This means that a physical address can span multiple chunks, so we may
  1602. * have to submit multiple io requests for a single sync request.
  1603. */
  1604. /*
  1605. * We check if all blocks are in-sync and only write to blocks that
  1606. * aren't in sync
  1607. */
  1608. static void sync_request_write(struct mddev *mddev, struct r10bio *r10_bio)
  1609. {
  1610. struct r10conf *conf = mddev->private;
  1611. int i, first;
  1612. struct bio *tbio, *fbio;
  1613. atomic_set(&r10_bio->remaining, 1);
  1614. /* find the first device with a block */
  1615. for (i=0; i<conf->copies; i++)
  1616. if (test_bit(BIO_UPTODATE, &r10_bio->devs[i].bio->bi_flags))
  1617. break;
  1618. if (i == conf->copies)
  1619. goto done;
  1620. first = i;
  1621. fbio = r10_bio->devs[i].bio;
  1622. /* now find blocks with errors */
  1623. for (i=0 ; i < conf->copies ; i++) {
  1624. int j, d;
  1625. int vcnt = r10_bio->sectors >> (PAGE_SHIFT-9);
  1626. tbio = r10_bio->devs[i].bio;
  1627. if (tbio->bi_end_io != end_sync_read)
  1628. continue;
  1629. if (i == first)
  1630. continue;
  1631. if (test_bit(BIO_UPTODATE, &r10_bio->devs[i].bio->bi_flags)) {
  1632. /* We know that the bi_io_vec layout is the same for
  1633. * both 'first' and 'i', so we just compare them.
  1634. * All vec entries are PAGE_SIZE;
  1635. */
  1636. for (j = 0; j < vcnt; j++)
  1637. if (memcmp(page_address(fbio->bi_io_vec[j].bv_page),
  1638. page_address(tbio->bi_io_vec[j].bv_page),
  1639. PAGE_SIZE))
  1640. break;
  1641. if (j == vcnt)
  1642. continue;
  1643. mddev->resync_mismatches += r10_bio->sectors;
  1644. if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
  1645. /* Don't fix anything. */
  1646. continue;
  1647. }
  1648. /* Ok, we need to write this bio, either to correct an
  1649. * inconsistency or to correct an unreadable block.
  1650. * First we need to fixup bv_offset, bv_len and
  1651. * bi_vecs, as the read request might have corrupted these
  1652. */
  1653. tbio->bi_vcnt = vcnt;
  1654. tbio->bi_size = r10_bio->sectors << 9;
  1655. tbio->bi_idx = 0;
  1656. tbio->bi_phys_segments = 0;
  1657. tbio->bi_flags &= ~(BIO_POOL_MASK - 1);
  1658. tbio->bi_flags |= 1 << BIO_UPTODATE;
  1659. tbio->bi_next = NULL;
  1660. tbio->bi_rw = WRITE;
  1661. tbio->bi_private = r10_bio;
  1662. tbio->bi_sector = r10_bio->devs[i].addr;
  1663. for (j=0; j < vcnt ; j++) {
  1664. tbio->bi_io_vec[j].bv_offset = 0;
  1665. tbio->bi_io_vec[j].bv_len = PAGE_SIZE;
  1666. memcpy(page_address(tbio->bi_io_vec[j].bv_page),
  1667. page_address(fbio->bi_io_vec[j].bv_page),
  1668. PAGE_SIZE);
  1669. }
  1670. tbio->bi_end_io = end_sync_write;
  1671. d = r10_bio->devs[i].devnum;
  1672. atomic_inc(&conf->mirrors[d].rdev->nr_pending);
  1673. atomic_inc(&r10_bio->remaining);
  1674. md_sync_acct(conf->mirrors[d].rdev->bdev, tbio->bi_size >> 9);
  1675. tbio->bi_sector += conf->mirrors[d].rdev->data_offset;
  1676. tbio->bi_bdev = conf->mirrors[d].rdev->bdev;
  1677. generic_make_request(tbio);
  1678. }
  1679. /* Now write out to any replacement devices
  1680. * that are active
  1681. */
  1682. for (i = 0; i < conf->copies; i++) {
  1683. int j, d;
  1684. int vcnt = r10_bio->sectors >> (PAGE_SHIFT-9);
  1685. tbio = r10_bio->devs[i].repl_bio;
  1686. if (!tbio || !tbio->bi_end_io)
  1687. continue;
  1688. if (r10_bio->devs[i].bio->bi_end_io != end_sync_write
  1689. && r10_bio->devs[i].bio != fbio)
  1690. for (j = 0; j < vcnt; j++)
  1691. memcpy(page_address(tbio->bi_io_vec[j].bv_page),
  1692. page_address(fbio->bi_io_vec[j].bv_page),
  1693. PAGE_SIZE);
  1694. d = r10_bio->devs[i].devnum;
  1695. atomic_inc(&r10_bio->remaining);
  1696. md_sync_acct(conf->mirrors[d].replacement->bdev,
  1697. tbio->bi_size >> 9);
  1698. generic_make_request(tbio);
  1699. }
  1700. done:
  1701. if (atomic_dec_and_test(&r10_bio->remaining)) {
  1702. md_done_sync(mddev, r10_bio->sectors, 1);
  1703. put_buf(r10_bio);
  1704. }
  1705. }
  1706. /*
  1707. * Now for the recovery code.
  1708. * Recovery happens across physical sectors.
  1709. * We recover all non-is_sync drives by finding the virtual address of
  1710. * each, and then choose a working drive that also has that virt address.
  1711. * There is a separate r10_bio for each non-in_sync drive.
  1712. * Only the first two slots are in use. The first for reading,
  1713. * The second for writing.
  1714. *
  1715. */
  1716. static void fix_recovery_read_error(struct r10bio *r10_bio)
  1717. {
  1718. /* We got a read error during recovery.
  1719. * We repeat the read in smaller page-sized sections.
  1720. * If a read succeeds, write it to the new device or record
  1721. * a bad block if we cannot.
  1722. * If a read fails, record a bad block on both old and
  1723. * new devices.
  1724. */
  1725. struct mddev *mddev = r10_bio->mddev;
  1726. struct r10conf *conf = mddev->private;
  1727. struct bio *bio = r10_bio->devs[0].bio;
  1728. sector_t sect = 0;
  1729. int sectors = r10_bio->sectors;
  1730. int idx = 0;
  1731. int dr = r10_bio->devs[0].devnum;
  1732. int dw = r10_bio->devs[1].devnum;
  1733. while (sectors) {
  1734. int s = sectors;
  1735. struct md_rdev *rdev;
  1736. sector_t addr;
  1737. int ok;
  1738. if (s > (PAGE_SIZE>>9))
  1739. s = PAGE_SIZE >> 9;
  1740. rdev = conf->mirrors[dr].rdev;
  1741. addr = r10_bio->devs[0].addr + sect,
  1742. ok = sync_page_io(rdev,
  1743. addr,
  1744. s << 9,
  1745. bio->bi_io_vec[idx].bv_page,
  1746. READ, false);
  1747. if (ok) {
  1748. rdev = conf->mirrors[dw].rdev;
  1749. addr = r10_bio->devs[1].addr + sect;
  1750. ok = sync_page_io(rdev,
  1751. addr,
  1752. s << 9,
  1753. bio->bi_io_vec[idx].bv_page,
  1754. WRITE, false);
  1755. if (!ok) {
  1756. set_bit(WriteErrorSeen, &rdev->flags);
  1757. if (!test_and_set_bit(WantReplacement,
  1758. &rdev->flags))
  1759. set_bit(MD_RECOVERY_NEEDED,
  1760. &rdev->mddev->recovery);
  1761. }
  1762. }
  1763. if (!ok) {
  1764. /* We don't worry if we cannot set a bad block -
  1765. * it really is bad so there is no loss in not
  1766. * recording it yet
  1767. */
  1768. rdev_set_badblocks(rdev, addr, s, 0);
  1769. if (rdev != conf->mirrors[dw].rdev) {
  1770. /* need bad block on destination too */
  1771. struct md_rdev *rdev2 = conf->mirrors[dw].rdev;
  1772. addr = r10_bio->devs[1].addr + sect;
  1773. ok = rdev_set_badblocks(rdev2, addr, s, 0);
  1774. if (!ok) {
  1775. /* just abort the recovery */
  1776. printk(KERN_NOTICE
  1777. "md/raid10:%s: recovery aborted"
  1778. " due to read error\n",
  1779. mdname(mddev));
  1780. conf->mirrors[dw].recovery_disabled
  1781. = mddev->recovery_disabled;
  1782. set_bit(MD_RECOVERY_INTR,
  1783. &mddev->recovery);
  1784. break;
  1785. }
  1786. }
  1787. }
  1788. sectors -= s;
  1789. sect += s;
  1790. idx++;
  1791. }
  1792. }
  1793. static void recovery_request_write(struct mddev *mddev, struct r10bio *r10_bio)
  1794. {
  1795. struct r10conf *conf = mddev->private;
  1796. int d;
  1797. struct bio *wbio, *wbio2;
  1798. if (!test_bit(R10BIO_Uptodate, &r10_bio->state)) {
  1799. fix_recovery_read_error(r10_bio);
  1800. end_sync_request(r10_bio);
  1801. return;
  1802. }
  1803. /*
  1804. * share the pages with the first bio
  1805. * and submit the write request
  1806. */
  1807. d = r10_bio->devs[1].devnum;
  1808. wbio = r10_bio->devs[1].bio;
  1809. wbio2 = r10_bio->devs[1].repl_bio;
  1810. if (wbio->bi_end_io) {
  1811. atomic_inc(&conf->mirrors[d].rdev->nr_pending);
  1812. md_sync_acct(conf->mirrors[d].rdev->bdev, wbio->bi_size >> 9);
  1813. generic_make_request(wbio);
  1814. }
  1815. if (wbio2 && wbio2->bi_end_io) {
  1816. atomic_inc(&conf->mirrors[d].replacement->nr_pending);
  1817. md_sync_acct(conf->mirrors[d].replacement->bdev,
  1818. wbio2->bi_size >> 9);
  1819. generic_make_request(wbio2);
  1820. }
  1821. }
  1822. /*
  1823. * Used by fix_read_error() to decay the per rdev read_errors.
  1824. * We halve the read error count for every hour that has elapsed
  1825. * since the last recorded read error.
  1826. *
  1827. */
  1828. static void check_decay_read_errors(struct mddev *mddev, struct md_rdev *rdev)
  1829. {
  1830. struct timespec cur_time_mon;
  1831. unsigned long hours_since_last;
  1832. unsigned int read_errors = atomic_read(&rdev->read_errors);
  1833. ktime_get_ts(&cur_time_mon);
  1834. if (rdev->last_read_error.tv_sec == 0 &&
  1835. rdev->last_read_error.tv_nsec == 0) {
  1836. /* first time we've seen a read error */
  1837. rdev->last_read_error = cur_time_mon;
  1838. return;
  1839. }
  1840. hours_since_last = (cur_time_mon.tv_sec -
  1841. rdev->last_read_error.tv_sec) / 3600;
  1842. rdev->last_read_error = cur_time_mon;
  1843. /*
  1844. * if hours_since_last is > the number of bits in read_errors
  1845. * just set read errors to 0. We do this to avoid
  1846. * overflowing the shift of read_errors by hours_since_last.
  1847. */
  1848. if (hours_since_last >= 8 * sizeof(read_errors))
  1849. atomic_set(&rdev->read_errors, 0);
  1850. else
  1851. atomic_set(&rdev->read_errors, read_errors >> hours_since_last);
  1852. }
  1853. static int r10_sync_page_io(struct md_rdev *rdev, sector_t sector,
  1854. int sectors, struct page *page, int rw)
  1855. {
  1856. sector_t first_bad;
  1857. int bad_sectors;
  1858. if (is_badblock(rdev, sector, sectors, &first_bad, &bad_sectors)
  1859. && (rw == READ || test_bit(WriteErrorSeen, &rdev->flags)))
  1860. return -1;
  1861. if (sync_page_io(rdev, sector, sectors << 9, page, rw, false))
  1862. /* success */
  1863. return 1;
  1864. if (rw == WRITE) {
  1865. set_bit(WriteErrorSeen, &rdev->flags);
  1866. if (!test_and_set_bit(WantReplacement, &rdev->flags))
  1867. set_bit(MD_RECOVERY_NEEDED,
  1868. &rdev->mddev->recovery);
  1869. }
  1870. /* need to record an error - either for the block or the device */
  1871. if (!rdev_set_badblocks(rdev, sector, sectors, 0))
  1872. md_error(rdev->mddev, rdev);
  1873. return 0;
  1874. }
  1875. /*
  1876. * This is a kernel thread which:
  1877. *
  1878. * 1. Retries failed read operations on working mirrors.
  1879. * 2. Updates the raid superblock when problems encounter.
  1880. * 3. Performs writes following reads for array synchronising.
  1881. */
  1882. static void fix_read_error(struct r10conf *conf, struct mddev *mddev, struct r10bio *r10_bio)
  1883. {
  1884. int sect = 0; /* Offset from r10_bio->sector */
  1885. int sectors = r10_bio->sectors;
  1886. struct md_rdev*rdev;
  1887. int max_read_errors = atomic_read(&mddev->max_corr_read_errors);
  1888. int d = r10_bio->devs[r10_bio->read_slot].devnum;
  1889. /* still own a reference to this rdev, so it cannot
  1890. * have been cleared recently.
  1891. */
  1892. rdev = conf->mirrors[d].rdev;
  1893. if (test_bit(Faulty, &rdev->flags))
  1894. /* drive has already been failed, just ignore any
  1895. more fix_read_error() attempts */
  1896. return;
  1897. check_decay_read_errors(mddev, rdev);
  1898. atomic_inc(&rdev->read_errors);
  1899. if (atomic_read(&rdev->read_errors) > max_read_errors) {
  1900. char b[BDEVNAME_SIZE];
  1901. bdevname(rdev->bdev, b);
  1902. printk(KERN_NOTICE
  1903. "md/raid10:%s: %s: Raid device exceeded "
  1904. "read_error threshold [cur %d:max %d]\n",
  1905. mdname(mddev), b,
  1906. atomic_read(&rdev->read_errors), max_read_errors);
  1907. printk(KERN_NOTICE
  1908. "md/raid10:%s: %s: Failing raid device\n",
  1909. mdname(mddev), b);
  1910. md_error(mddev, conf->mirrors[d].rdev);
  1911. r10_bio->devs[r10_bio->read_slot].bio = IO_BLOCKED;
  1912. return;
  1913. }
  1914. while(sectors) {
  1915. int s = sectors;
  1916. int sl = r10_bio->read_slot;
  1917. int success = 0;
  1918. int start;
  1919. if (s > (PAGE_SIZE>>9))
  1920. s = PAGE_SIZE >> 9;
  1921. rcu_read_lock();
  1922. do {
  1923. sector_t first_bad;
  1924. int bad_sectors;
  1925. d = r10_bio->devs[sl].devnum;
  1926. rdev = rcu_dereference(conf->mirrors[d].rdev);
  1927. if (rdev &&
  1928. !test_bit(Unmerged, &rdev->flags) &&
  1929. test_bit(In_sync, &rdev->flags) &&
  1930. is_badblock(rdev, r10_bio->devs[sl].addr + sect, s,
  1931. &first_bad, &bad_sectors) == 0) {
  1932. atomic_inc(&rdev->nr_pending);
  1933. rcu_read_unlock();
  1934. success = sync_page_io(rdev,
  1935. r10_bio->devs[sl].addr +
  1936. sect,
  1937. s<<9,
  1938. conf->tmppage, READ, false);
  1939. rdev_dec_pending(rdev, mddev);
  1940. rcu_read_lock();
  1941. if (success)
  1942. break;
  1943. }
  1944. sl++;
  1945. if (sl == conf->copies)
  1946. sl = 0;
  1947. } while (!success && sl != r10_bio->read_slot);
  1948. rcu_read_unlock();
  1949. if (!success) {
  1950. /* Cannot read from anywhere, just mark the block
  1951. * as bad on the first device to discourage future
  1952. * reads.
  1953. */
  1954. int dn = r10_bio->devs[r10_bio->read_slot].devnum;
  1955. rdev = conf->mirrors[dn].rdev;
  1956. if (!rdev_set_badblocks(
  1957. rdev,
  1958. r10_bio->devs[r10_bio->read_slot].addr
  1959. + sect,
  1960. s, 0)) {
  1961. md_error(mddev, rdev);
  1962. r10_bio->devs[r10_bio->read_slot].bio
  1963. = IO_BLOCKED;
  1964. }
  1965. break;
  1966. }
  1967. start = sl;
  1968. /* write it back and re-read */
  1969. rcu_read_lock();
  1970. while (sl != r10_bio->read_slot) {
  1971. char b[BDEVNAME_SIZE];
  1972. if (sl==0)
  1973. sl = conf->copies;
  1974. sl--;
  1975. d = r10_bio->devs[sl].devnum;
  1976. rdev = rcu_dereference(conf->mirrors[d].rdev);
  1977. if (!rdev ||
  1978. test_bit(Unmerged, &rdev->flags) ||
  1979. !test_bit(In_sync, &rdev->flags))
  1980. continue;
  1981. atomic_inc(&rdev->nr_pending);
  1982. rcu_read_unlock();
  1983. if (r10_sync_page_io(rdev,
  1984. r10_bio->devs[sl].addr +
  1985. sect,
  1986. s<<9, conf->tmppage, WRITE)
  1987. == 0) {
  1988. /* Well, this device is dead */
  1989. printk(KERN_NOTICE
  1990. "md/raid10:%s: read correction "
  1991. "write failed"
  1992. " (%d sectors at %llu on %s)\n",
  1993. mdname(mddev), s,
  1994. (unsigned long long)(
  1995. sect + rdev->data_offset),
  1996. bdevname(rdev->bdev, b));
  1997. printk(KERN_NOTICE "md/raid10:%s: %s: failing "
  1998. "drive\n",
  1999. mdname(mddev),
  2000. bdevname(rdev->bdev, b));
  2001. }
  2002. rdev_dec_pending(rdev, mddev);
  2003. rcu_read_lock();
  2004. }
  2005. sl = start;
  2006. while (sl != r10_bio->read_slot) {
  2007. char b[BDEVNAME_SIZE];
  2008. if (sl==0)
  2009. sl = conf->copies;
  2010. sl--;
  2011. d = r10_bio->devs[sl].devnum;
  2012. rdev = rcu_dereference(conf->mirrors[d].rdev);
  2013. if (!rdev ||
  2014. !test_bit(In_sync, &rdev->flags))
  2015. continue;
  2016. atomic_inc(&rdev->nr_pending);
  2017. rcu_read_unlock();
  2018. switch (r10_sync_page_io(rdev,
  2019. r10_bio->devs[sl].addr +
  2020. sect,
  2021. s<<9, conf->tmppage,
  2022. READ)) {
  2023. case 0:
  2024. /* Well, this device is dead */
  2025. printk(KERN_NOTICE
  2026. "md/raid10:%s: unable to read back "
  2027. "corrected sectors"
  2028. " (%d sectors at %llu on %s)\n",
  2029. mdname(mddev), s,
  2030. (unsigned long long)(
  2031. sect + rdev->data_offset),
  2032. bdevname(rdev->bdev, b));
  2033. printk(KERN_NOTICE "md/raid10:%s: %s: failing "
  2034. "drive\n",
  2035. mdname(mddev),
  2036. bdevname(rdev->bdev, b));
  2037. break;
  2038. case 1:
  2039. printk(KERN_INFO
  2040. "md/raid10:%s: read error corrected"
  2041. " (%d sectors at %llu on %s)\n",
  2042. mdname(mddev), s,
  2043. (unsigned long long)(
  2044. sect + rdev->data_offset),
  2045. bdevname(rdev->bdev, b));
  2046. atomic_add(s, &rdev->corrected_errors);
  2047. }
  2048. rdev_dec_pending(rdev, mddev);
  2049. rcu_read_lock();
  2050. }
  2051. rcu_read_unlock();
  2052. sectors -= s;
  2053. sect += s;
  2054. }
  2055. }
  2056. static void bi_complete(struct bio *bio, int error)
  2057. {
  2058. complete((struct completion *)bio->bi_private);
  2059. }
  2060. static int submit_bio_wait(int rw, struct bio *bio)
  2061. {
  2062. struct completion event;
  2063. rw |= REQ_SYNC;
  2064. init_completion(&event);
  2065. bio->bi_private = &event;
  2066. bio->bi_end_io = bi_complete;
  2067. submit_bio(rw, bio);
  2068. wait_for_completion(&event);
  2069. return test_bit(BIO_UPTODATE, &bio->bi_flags);
  2070. }
  2071. static int narrow_write_error(struct r10bio *r10_bio, int i)
  2072. {
  2073. struct bio *bio = r10_bio->master_bio;
  2074. struct mddev *mddev = r10_bio->mddev;
  2075. struct r10conf *conf = mddev->private;
  2076. struct md_rdev *rdev = conf->mirrors[r10_bio->devs[i].devnum].rdev;
  2077. /* bio has the data to be written to slot 'i' where
  2078. * we just recently had a write error.
  2079. * We repeatedly clone the bio and trim down to one block,
  2080. * then try the write. Where the write fails we record
  2081. * a bad block.
  2082. * It is conceivable that the bio doesn't exactly align with
  2083. * blocks. We must handle this.
  2084. *
  2085. * We currently own a reference to the rdev.
  2086. */
  2087. int block_sectors;
  2088. sector_t sector;
  2089. int sectors;
  2090. int sect_to_write = r10_bio->sectors;
  2091. int ok = 1;
  2092. if (rdev->badblocks.shift < 0)
  2093. return 0;
  2094. block_sectors = 1 << rdev->badblocks.shift;
  2095. sector = r10_bio->sector;
  2096. sectors = ((r10_bio->sector + block_sectors)
  2097. & ~(sector_t)(block_sectors - 1))
  2098. - sector;
  2099. while (sect_to_write) {
  2100. struct bio *wbio;
  2101. if (sectors > sect_to_write)
  2102. sectors = sect_to_write;
  2103. /* Write at 'sector' for 'sectors' */
  2104. wbio = bio_clone_mddev(bio, GFP_NOIO, mddev);
  2105. md_trim_bio(wbio, sector - bio->bi_sector, sectors);
  2106. wbio->bi_sector = (r10_bio->devs[i].addr+
  2107. rdev->data_offset+
  2108. (sector - r10_bio->sector));
  2109. wbio->bi_bdev = rdev->bdev;
  2110. if (submit_bio_wait(WRITE, wbio) == 0)
  2111. /* Failure! */
  2112. ok = rdev_set_badblocks(rdev, sector,
  2113. sectors, 0)
  2114. && ok;
  2115. bio_put(wbio);
  2116. sect_to_write -= sectors;
  2117. sector += sectors;
  2118. sectors = block_sectors;
  2119. }
  2120. return ok;
  2121. }
  2122. static void handle_read_error(struct mddev *mddev, struct r10bio *r10_bio)
  2123. {
  2124. int slot = r10_bio->read_slot;
  2125. struct bio *bio;
  2126. struct r10conf *conf = mddev->private;
  2127. struct md_rdev *rdev = r10_bio->devs[slot].rdev;
  2128. char b[BDEVNAME_SIZE];
  2129. unsigned long do_sync;
  2130. int max_sectors;
  2131. /* we got a read error. Maybe the drive is bad. Maybe just
  2132. * the block and we can fix it.
  2133. * We freeze all other IO, and try reading the block from
  2134. * other devices. When we find one, we re-write
  2135. * and check it that fixes the read error.
  2136. * This is all done synchronously while the array is
  2137. * frozen.
  2138. */
  2139. bio = r10_bio->devs[slot].bio;
  2140. bdevname(bio->bi_bdev, b);
  2141. bio_put(bio);
  2142. r10_bio->devs[slot].bio = NULL;
  2143. if (mddev->ro == 0) {
  2144. freeze_array(conf);
  2145. fix_read_error(conf, mddev, r10_bio);
  2146. unfreeze_array(conf);
  2147. } else
  2148. r10_bio->devs[slot].bio = IO_BLOCKED;
  2149. rdev_dec_pending(rdev, mddev);
  2150. read_more:
  2151. rdev = read_balance(conf, r10_bio, &max_sectors);
  2152. if (rdev == NULL) {
  2153. printk(KERN_ALERT "md/raid10:%s: %s: unrecoverable I/O"
  2154. " read error for block %llu\n",
  2155. mdname(mddev), b,
  2156. (unsigned long long)r10_bio->sector);
  2157. raid_end_bio_io(r10_bio);
  2158. return;
  2159. }
  2160. do_sync = (r10_bio->master_bio->bi_rw & REQ_SYNC);
  2161. slot = r10_bio->read_slot;
  2162. printk_ratelimited(
  2163. KERN_ERR
  2164. "md/raid10:%s: %s: redirecting"
  2165. "sector %llu to another mirror\n",
  2166. mdname(mddev),
  2167. bdevname(rdev->bdev, b),
  2168. (unsigned long long)r10_bio->sector);
  2169. bio = bio_clone_mddev(r10_bio->master_bio,
  2170. GFP_NOIO, mddev);
  2171. md_trim_bio(bio,
  2172. r10_bio->sector - bio->bi_sector,
  2173. max_sectors);
  2174. r10_bio->devs[slot].bio = bio;
  2175. r10_bio->devs[slot].rdev = rdev;
  2176. bio->bi_sector = r10_bio->devs[slot].addr
  2177. + rdev->data_offset;
  2178. bio->bi_bdev = rdev->bdev;
  2179. bio->bi_rw = READ | do_sync;
  2180. bio->bi_private = r10_bio;
  2181. bio->bi_end_io = raid10_end_read_request;
  2182. if (max_sectors < r10_bio->sectors) {
  2183. /* Drat - have to split this up more */
  2184. struct bio *mbio = r10_bio->master_bio;
  2185. int sectors_handled =
  2186. r10_bio->sector + max_sectors
  2187. - mbio->bi_sector;
  2188. r10_bio->sectors = max_sectors;
  2189. spin_lock_irq(&conf->device_lock);
  2190. if (mbio->bi_phys_segments == 0)
  2191. mbio->bi_phys_segments = 2;
  2192. else
  2193. mbio->bi_phys_segments++;
  2194. spin_unlock_irq(&conf->device_lock);
  2195. generic_make_request(bio);
  2196. r10_bio = mempool_alloc(conf->r10bio_pool,
  2197. GFP_NOIO);
  2198. r10_bio->master_bio = mbio;
  2199. r10_bio->sectors = (mbio->bi_size >> 9)
  2200. - sectors_handled;
  2201. r10_bio->state = 0;
  2202. set_bit(R10BIO_ReadError,
  2203. &r10_bio->state);
  2204. r10_bio->mddev = mddev;
  2205. r10_bio->sector = mbio->bi_sector
  2206. + sectors_handled;
  2207. goto read_more;
  2208. } else
  2209. generic_make_request(bio);
  2210. }
  2211. static void handle_write_completed(struct r10conf *conf, struct r10bio *r10_bio)
  2212. {
  2213. /* Some sort of write request has finished and it
  2214. * succeeded in writing where we thought there was a
  2215. * bad block. So forget the bad block.
  2216. * Or possibly if failed and we need to record
  2217. * a bad block.
  2218. */
  2219. int m;
  2220. struct md_rdev *rdev;
  2221. if (test_bit(R10BIO_IsSync, &r10_bio->state) ||
  2222. test_bit(R10BIO_IsRecover, &r10_bio->state)) {
  2223. for (m = 0; m < conf->copies; m++) {
  2224. int dev = r10_bio->devs[m].devnum;
  2225. rdev = conf->mirrors[dev].rdev;
  2226. if (r10_bio->devs[m].bio == NULL)
  2227. continue;
  2228. if (test_bit(BIO_UPTODATE,
  2229. &r10_bio->devs[m].bio->bi_flags)) {
  2230. rdev_clear_badblocks(
  2231. rdev,
  2232. r10_bio->devs[m].addr,
  2233. r10_bio->sectors);
  2234. } else {
  2235. if (!rdev_set_badblocks(
  2236. rdev,
  2237. r10_bio->devs[m].addr,
  2238. r10_bio->sectors, 0))
  2239. md_error(conf->mddev, rdev);
  2240. }
  2241. rdev = conf->mirrors[dev].replacement;
  2242. if (r10_bio->devs[m].repl_bio == NULL)
  2243. continue;
  2244. if (test_bit(BIO_UPTODATE,
  2245. &r10_bio->devs[m].repl_bio->bi_flags)) {
  2246. rdev_clear_badblocks(
  2247. rdev,
  2248. r10_bio->devs[m].addr,
  2249. r10_bio->sectors);
  2250. } else {
  2251. if (!rdev_set_badblocks(
  2252. rdev,
  2253. r10_bio->devs[m].addr,
  2254. r10_bio->sectors, 0))
  2255. md_error(conf->mddev, rdev);
  2256. }
  2257. }
  2258. put_buf(r10_bio);
  2259. } else {
  2260. for (m = 0; m < conf->copies; m++) {
  2261. int dev = r10_bio->devs[m].devnum;
  2262. struct bio *bio = r10_bio->devs[m].bio;
  2263. rdev = conf->mirrors[dev].rdev;
  2264. if (bio == IO_MADE_GOOD) {
  2265. rdev_clear_badblocks(
  2266. rdev,
  2267. r10_bio->devs[m].addr,
  2268. r10_bio->sectors);
  2269. rdev_dec_pending(rdev, conf->mddev);
  2270. } else if (bio != NULL &&
  2271. !test_bit(BIO_UPTODATE, &bio->bi_flags)) {
  2272. if (!narrow_write_error(r10_bio, m)) {
  2273. md_error(conf->mddev, rdev);
  2274. set_bit(R10BIO_Degraded,
  2275. &r10_bio->state);
  2276. }
  2277. rdev_dec_pending(rdev, conf->mddev);
  2278. }
  2279. bio = r10_bio->devs[m].repl_bio;
  2280. rdev = conf->mirrors[dev].replacement;
  2281. if (rdev && bio == IO_MADE_GOOD) {
  2282. rdev_clear_badblocks(
  2283. rdev,
  2284. r10_bio->devs[m].addr,
  2285. r10_bio->sectors);
  2286. rdev_dec_pending(rdev, conf->mddev);
  2287. }
  2288. }
  2289. if (test_bit(R10BIO_WriteError,
  2290. &r10_bio->state))
  2291. close_write(r10_bio);
  2292. raid_end_bio_io(r10_bio);
  2293. }
  2294. }
  2295. static void raid10d(struct mddev *mddev)
  2296. {
  2297. struct r10bio *r10_bio;
  2298. unsigned long flags;
  2299. struct r10conf *conf = mddev->private;
  2300. struct list_head *head = &conf->retry_list;
  2301. struct blk_plug plug;
  2302. md_check_recovery(mddev);
  2303. blk_start_plug(&plug);
  2304. for (;;) {
  2305. flush_pending_writes(conf);
  2306. spin_lock_irqsave(&conf->device_lock, flags);
  2307. if (list_empty(head)) {
  2308. spin_unlock_irqrestore(&conf->device_lock, flags);
  2309. break;
  2310. }
  2311. r10_bio = list_entry(head->prev, struct r10bio, retry_list);
  2312. list_del(head->prev);
  2313. conf->nr_queued--;
  2314. spin_unlock_irqrestore(&conf->device_lock, flags);
  2315. mddev = r10_bio->mddev;
  2316. conf = mddev->private;
  2317. if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
  2318. test_bit(R10BIO_WriteError, &r10_bio->state))
  2319. handle_write_completed(conf, r10_bio);
  2320. else if (test_bit(R10BIO_IsSync, &r10_bio->state))
  2321. sync_request_write(mddev, r10_bio);
  2322. else if (test_bit(R10BIO_IsRecover, &r10_bio->state))
  2323. recovery_request_write(mddev, r10_bio);
  2324. else if (test_bit(R10BIO_ReadError, &r10_bio->state))
  2325. handle_read_error(mddev, r10_bio);
  2326. else {
  2327. /* just a partial read to be scheduled from a
  2328. * separate context
  2329. */
  2330. int slot = r10_bio->read_slot;
  2331. generic_make_request(r10_bio->devs[slot].bio);
  2332. }
  2333. cond_resched();
  2334. if (mddev->flags & ~(1<<MD_CHANGE_PENDING))
  2335. md_check_recovery(mddev);
  2336. }
  2337. blk_finish_plug(&plug);
  2338. }
  2339. static int init_resync(struct r10conf *conf)
  2340. {
  2341. int buffs;
  2342. int i;
  2343. buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
  2344. BUG_ON(conf->r10buf_pool);
  2345. conf->have_replacement = 0;
  2346. for (i = 0; i < conf->raid_disks; i++)
  2347. if (conf->mirrors[i].replacement)
  2348. conf->have_replacement = 1;
  2349. conf->r10buf_pool = mempool_create(buffs, r10buf_pool_alloc, r10buf_pool_free, conf);
  2350. if (!conf->r10buf_pool)
  2351. return -ENOMEM;
  2352. conf->next_resync = 0;
  2353. return 0;
  2354. }
  2355. /*
  2356. * perform a "sync" on one "block"
  2357. *
  2358. * We need to make sure that no normal I/O request - particularly write
  2359. * requests - conflict with active sync requests.
  2360. *
  2361. * This is achieved by tracking pending requests and a 'barrier' concept
  2362. * that can be installed to exclude normal IO requests.
  2363. *
  2364. * Resync and recovery are handled very differently.
  2365. * We differentiate by looking at MD_RECOVERY_SYNC in mddev->recovery.
  2366. *
  2367. * For resync, we iterate over virtual addresses, read all copies,
  2368. * and update if there are differences. If only one copy is live,
  2369. * skip it.
  2370. * For recovery, we iterate over physical addresses, read a good
  2371. * value for each non-in_sync drive, and over-write.
  2372. *
  2373. * So, for recovery we may have several outstanding complex requests for a
  2374. * given address, one for each out-of-sync device. We model this by allocating
  2375. * a number of r10_bio structures, one for each out-of-sync device.
  2376. * As we setup these structures, we collect all bio's together into a list
  2377. * which we then process collectively to add pages, and then process again
  2378. * to pass to generic_make_request.
  2379. *
  2380. * The r10_bio structures are linked using a borrowed master_bio pointer.
  2381. * This link is counted in ->remaining. When the r10_bio that points to NULL
  2382. * has its remaining count decremented to 0, the whole complex operation
  2383. * is complete.
  2384. *
  2385. */
  2386. static sector_t sync_request(struct mddev *mddev, sector_t sector_nr,
  2387. int *skipped, int go_faster)
  2388. {
  2389. struct r10conf *conf = mddev->private;
  2390. struct r10bio *r10_bio;
  2391. struct bio *biolist = NULL, *bio;
  2392. sector_t max_sector, nr_sectors;
  2393. int i;
  2394. int max_sync;
  2395. sector_t sync_blocks;
  2396. sector_t sectors_skipped = 0;
  2397. int chunks_skipped = 0;
  2398. if (!conf->r10buf_pool)
  2399. if (init_resync(conf))
  2400. return 0;
  2401. skipped:
  2402. max_sector = mddev->dev_sectors;
  2403. if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
  2404. max_sector = mddev->resync_max_sectors;
  2405. if (sector_nr >= max_sector) {
  2406. /* If we aborted, we need to abort the
  2407. * sync on the 'current' bitmap chucks (there can
  2408. * be several when recovering multiple devices).
  2409. * as we may have started syncing it but not finished.
  2410. * We can find the current address in
  2411. * mddev->curr_resync, but for recovery,
  2412. * we need to convert that to several
  2413. * virtual addresses.
  2414. */
  2415. if (mddev->curr_resync < max_sector) { /* aborted */
  2416. if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
  2417. bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
  2418. &sync_blocks, 1);
  2419. else for (i=0; i<conf->raid_disks; i++) {
  2420. sector_t sect =
  2421. raid10_find_virt(conf, mddev->curr_resync, i);
  2422. bitmap_end_sync(mddev->bitmap, sect,
  2423. &sync_blocks, 1);
  2424. }
  2425. } else {
  2426. /* completed sync */
  2427. if ((!mddev->bitmap || conf->fullsync)
  2428. && conf->have_replacement
  2429. && test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
  2430. /* Completed a full sync so the replacements
  2431. * are now fully recovered.
  2432. */
  2433. for (i = 0; i < conf->raid_disks; i++)
  2434. if (conf->mirrors[i].replacement)
  2435. conf->mirrors[i].replacement
  2436. ->recovery_offset
  2437. = MaxSector;
  2438. }
  2439. conf->fullsync = 0;
  2440. }
  2441. bitmap_close_sync(mddev->bitmap);
  2442. close_sync(conf);
  2443. *skipped = 1;
  2444. return sectors_skipped;
  2445. }
  2446. if (chunks_skipped >= conf->raid_disks) {
  2447. /* if there has been nothing to do on any drive,
  2448. * then there is nothing to do at all..
  2449. */
  2450. *skipped = 1;
  2451. return (max_sector - sector_nr) + sectors_skipped;
  2452. }
  2453. if (max_sector > mddev->resync_max)
  2454. max_sector = mddev->resync_max; /* Don't do IO beyond here */
  2455. /* make sure whole request will fit in a chunk - if chunks
  2456. * are meaningful
  2457. */
  2458. if (conf->near_copies < conf->raid_disks &&
  2459. max_sector > (sector_nr | conf->chunk_mask))
  2460. max_sector = (sector_nr | conf->chunk_mask) + 1;
  2461. /*
  2462. * If there is non-resync activity waiting for us then
  2463. * put in a delay to throttle resync.
  2464. */
  2465. if (!go_faster && conf->nr_waiting)
  2466. msleep_interruptible(1000);
  2467. /* Again, very different code for resync and recovery.
  2468. * Both must result in an r10bio with a list of bios that
  2469. * have bi_end_io, bi_sector, bi_bdev set,
  2470. * and bi_private set to the r10bio.
  2471. * For recovery, we may actually create several r10bios
  2472. * with 2 bios in each, that correspond to the bios in the main one.
  2473. * In this case, the subordinate r10bios link back through a
  2474. * borrowed master_bio pointer, and the counter in the master
  2475. * includes a ref from each subordinate.
  2476. */
  2477. /* First, we decide what to do and set ->bi_end_io
  2478. * To end_sync_read if we want to read, and
  2479. * end_sync_write if we will want to write.
  2480. */
  2481. max_sync = RESYNC_PAGES << (PAGE_SHIFT-9);
  2482. if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
  2483. /* recovery... the complicated one */
  2484. int j;
  2485. r10_bio = NULL;
  2486. for (i=0 ; i<conf->raid_disks; i++) {
  2487. int still_degraded;
  2488. struct r10bio *rb2;
  2489. sector_t sect;
  2490. int must_sync;
  2491. int any_working;
  2492. struct mirror_info *mirror = &conf->mirrors[i];
  2493. if ((mirror->rdev == NULL ||
  2494. test_bit(In_sync, &mirror->rdev->flags))
  2495. &&
  2496. (mirror->replacement == NULL ||
  2497. test_bit(Faulty,
  2498. &mirror->replacement->flags)))
  2499. continue;
  2500. still_degraded = 0;
  2501. /* want to reconstruct this device */
  2502. rb2 = r10_bio;
  2503. sect = raid10_find_virt(conf, sector_nr, i);
  2504. /* Unless we are doing a full sync, or a replacement
  2505. * we only need to recover the block if it is set in
  2506. * the bitmap
  2507. */
  2508. must_sync = bitmap_start_sync(mddev->bitmap, sect,
  2509. &sync_blocks, 1);
  2510. if (sync_blocks < max_sync)
  2511. max_sync = sync_blocks;
  2512. if (!must_sync &&
  2513. mirror->replacement == NULL &&
  2514. !conf->fullsync) {
  2515. /* yep, skip the sync_blocks here, but don't assume
  2516. * that there will never be anything to do here
  2517. */
  2518. chunks_skipped = -1;
  2519. continue;
  2520. }
  2521. r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO);
  2522. raise_barrier(conf, rb2 != NULL);
  2523. atomic_set(&r10_bio->remaining, 0);
  2524. r10_bio->master_bio = (struct bio*)rb2;
  2525. if (rb2)
  2526. atomic_inc(&rb2->remaining);
  2527. r10_bio->mddev = mddev;
  2528. set_bit(R10BIO_IsRecover, &r10_bio->state);
  2529. r10_bio->sector = sect;
  2530. raid10_find_phys(conf, r10_bio);
  2531. /* Need to check if the array will still be
  2532. * degraded
  2533. */
  2534. for (j=0; j<conf->raid_disks; j++)
  2535. if (conf->mirrors[j].rdev == NULL ||
  2536. test_bit(Faulty, &conf->mirrors[j].rdev->flags)) {
  2537. still_degraded = 1;
  2538. break;
  2539. }
  2540. must_sync = bitmap_start_sync(mddev->bitmap, sect,
  2541. &sync_blocks, still_degraded);
  2542. any_working = 0;
  2543. for (j=0; j<conf->copies;j++) {
  2544. int k;
  2545. int d = r10_bio->devs[j].devnum;
  2546. sector_t from_addr, to_addr;
  2547. struct md_rdev *rdev;
  2548. sector_t sector, first_bad;
  2549. int bad_sectors;
  2550. if (!conf->mirrors[d].rdev ||
  2551. !test_bit(In_sync, &conf->mirrors[d].rdev->flags))
  2552. continue;
  2553. /* This is where we read from */
  2554. any_working = 1;
  2555. rdev = conf->mirrors[d].rdev;
  2556. sector = r10_bio->devs[j].addr;
  2557. if (is_badblock(rdev, sector, max_sync,
  2558. &first_bad, &bad_sectors)) {
  2559. if (first_bad > sector)
  2560. max_sync = first_bad - sector;
  2561. else {
  2562. bad_sectors -= (sector
  2563. - first_bad);
  2564. if (max_sync > bad_sectors)
  2565. max_sync = bad_sectors;
  2566. continue;
  2567. }
  2568. }
  2569. bio = r10_bio->devs[0].bio;
  2570. bio->bi_next = biolist;
  2571. biolist = bio;
  2572. bio->bi_private = r10_bio;
  2573. bio->bi_end_io = end_sync_read;
  2574. bio->bi_rw = READ;
  2575. from_addr = r10_bio->devs[j].addr;
  2576. bio->bi_sector = from_addr + rdev->data_offset;
  2577. bio->bi_bdev = rdev->bdev;
  2578. atomic_inc(&rdev->nr_pending);
  2579. /* and we write to 'i' (if not in_sync) */
  2580. for (k=0; k<conf->copies; k++)
  2581. if (r10_bio->devs[k].devnum == i)
  2582. break;
  2583. BUG_ON(k == conf->copies);
  2584. to_addr = r10_bio->devs[k].addr;
  2585. r10_bio->devs[0].devnum = d;
  2586. r10_bio->devs[0].addr = from_addr;
  2587. r10_bio->devs[1].devnum = i;
  2588. r10_bio->devs[1].addr = to_addr;
  2589. rdev = mirror->rdev;
  2590. if (!test_bit(In_sync, &rdev->flags)) {
  2591. bio = r10_bio->devs[1].bio;
  2592. bio->bi_next = biolist;
  2593. biolist = bio;
  2594. bio->bi_private = r10_bio;
  2595. bio->bi_end_io = end_sync_write;
  2596. bio->bi_rw = WRITE;
  2597. bio->bi_sector = to_addr
  2598. + rdev->data_offset;
  2599. bio->bi_bdev = rdev->bdev;
  2600. atomic_inc(&r10_bio->remaining);
  2601. } else
  2602. r10_bio->devs[1].bio->bi_end_io = NULL;
  2603. /* and maybe write to replacement */
  2604. bio = r10_bio->devs[1].repl_bio;
  2605. if (bio)
  2606. bio->bi_end_io = NULL;
  2607. rdev = mirror->replacement;
  2608. /* Note: if rdev != NULL, then bio
  2609. * cannot be NULL as r10buf_pool_alloc will
  2610. * have allocated it.
  2611. * So the second test here is pointless.
  2612. * But it keeps semantic-checkers happy, and
  2613. * this comment keeps human reviewers
  2614. * happy.
  2615. */
  2616. if (rdev == NULL || bio == NULL ||
  2617. test_bit(Faulty, &rdev->flags))
  2618. break;
  2619. bio->bi_next = biolist;
  2620. biolist = bio;
  2621. bio->bi_private = r10_bio;
  2622. bio->bi_end_io = end_sync_write;
  2623. bio->bi_rw = WRITE;
  2624. bio->bi_sector = to_addr + rdev->data_offset;
  2625. bio->bi_bdev = rdev->bdev;
  2626. atomic_inc(&r10_bio->remaining);
  2627. break;
  2628. }
  2629. if (j == conf->copies) {
  2630. /* Cannot recover, so abort the recovery or
  2631. * record a bad block */
  2632. put_buf(r10_bio);
  2633. if (rb2)
  2634. atomic_dec(&rb2->remaining);
  2635. r10_bio = rb2;
  2636. if (any_working) {
  2637. /* problem is that there are bad blocks
  2638. * on other device(s)
  2639. */
  2640. int k;
  2641. for (k = 0; k < conf->copies; k++)
  2642. if (r10_bio->devs[k].devnum == i)
  2643. break;
  2644. if (!test_bit(In_sync,
  2645. &mirror->rdev->flags)
  2646. && !rdev_set_badblocks(
  2647. mirror->rdev,
  2648. r10_bio->devs[k].addr,
  2649. max_sync, 0))
  2650. any_working = 0;
  2651. if (mirror->replacement &&
  2652. !rdev_set_badblocks(
  2653. mirror->replacement,
  2654. r10_bio->devs[k].addr,
  2655. max_sync, 0))
  2656. any_working = 0;
  2657. }
  2658. if (!any_working) {
  2659. if (!test_and_set_bit(MD_RECOVERY_INTR,
  2660. &mddev->recovery))
  2661. printk(KERN_INFO "md/raid10:%s: insufficient "
  2662. "working devices for recovery.\n",
  2663. mdname(mddev));
  2664. mirror->recovery_disabled
  2665. = mddev->recovery_disabled;
  2666. }
  2667. break;
  2668. }
  2669. }
  2670. if (biolist == NULL) {
  2671. while (r10_bio) {
  2672. struct r10bio *rb2 = r10_bio;
  2673. r10_bio = (struct r10bio*) rb2->master_bio;
  2674. rb2->master_bio = NULL;
  2675. put_buf(rb2);
  2676. }
  2677. goto giveup;
  2678. }
  2679. } else {
  2680. /* resync. Schedule a read for every block at this virt offset */
  2681. int count = 0;
  2682. bitmap_cond_end_sync(mddev->bitmap, sector_nr);
  2683. if (!bitmap_start_sync(mddev->bitmap, sector_nr,
  2684. &sync_blocks, mddev->degraded) &&
  2685. !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED,
  2686. &mddev->recovery)) {
  2687. /* We can skip this block */
  2688. *skipped = 1;
  2689. return sync_blocks + sectors_skipped;
  2690. }
  2691. if (sync_blocks < max_sync)
  2692. max_sync = sync_blocks;
  2693. r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO);
  2694. r10_bio->mddev = mddev;
  2695. atomic_set(&r10_bio->remaining, 0);
  2696. raise_barrier(conf, 0);
  2697. conf->next_resync = sector_nr;
  2698. r10_bio->master_bio = NULL;
  2699. r10_bio->sector = sector_nr;
  2700. set_bit(R10BIO_IsSync, &r10_bio->state);
  2701. raid10_find_phys(conf, r10_bio);
  2702. r10_bio->sectors = (sector_nr | conf->chunk_mask) - sector_nr +1;
  2703. for (i=0; i<conf->copies; i++) {
  2704. int d = r10_bio->devs[i].devnum;
  2705. sector_t first_bad, sector;
  2706. int bad_sectors;
  2707. if (r10_bio->devs[i].repl_bio)
  2708. r10_bio->devs[i].repl_bio->bi_end_io = NULL;
  2709. bio = r10_bio->devs[i].bio;
  2710. bio->bi_end_io = NULL;
  2711. clear_bit(BIO_UPTODATE, &bio->bi_flags);
  2712. if (conf->mirrors[d].rdev == NULL ||
  2713. test_bit(Faulty, &conf->mirrors[d].rdev->flags))
  2714. continue;
  2715. sector = r10_bio->devs[i].addr;
  2716. if (is_badblock(conf->mirrors[d].rdev,
  2717. sector, max_sync,
  2718. &first_bad, &bad_sectors)) {
  2719. if (first_bad > sector)
  2720. max_sync = first_bad - sector;
  2721. else {
  2722. bad_sectors -= (sector - first_bad);
  2723. if (max_sync > bad_sectors)
  2724. max_sync = max_sync;
  2725. continue;
  2726. }
  2727. }
  2728. atomic_inc(&conf->mirrors[d].rdev->nr_pending);
  2729. atomic_inc(&r10_bio->remaining);
  2730. bio->bi_next = biolist;
  2731. biolist = bio;
  2732. bio->bi_private = r10_bio;
  2733. bio->bi_end_io = end_sync_read;
  2734. bio->bi_rw = READ;
  2735. bio->bi_sector = sector +
  2736. conf->mirrors[d].rdev->data_offset;
  2737. bio->bi_bdev = conf->mirrors[d].rdev->bdev;
  2738. count++;
  2739. if (conf->mirrors[d].replacement == NULL ||
  2740. test_bit(Faulty,
  2741. &conf->mirrors[d].replacement->flags))
  2742. continue;
  2743. /* Need to set up for writing to the replacement */
  2744. bio = r10_bio->devs[i].repl_bio;
  2745. clear_bit(BIO_UPTODATE, &bio->bi_flags);
  2746. sector = r10_bio->devs[i].addr;
  2747. atomic_inc(&conf->mirrors[d].rdev->nr_pending);
  2748. bio->bi_next = biolist;
  2749. biolist = bio;
  2750. bio->bi_private = r10_bio;
  2751. bio->bi_end_io = end_sync_write;
  2752. bio->bi_rw = WRITE;
  2753. bio->bi_sector = sector +
  2754. conf->mirrors[d].replacement->data_offset;
  2755. bio->bi_bdev = conf->mirrors[d].replacement->bdev;
  2756. count++;
  2757. }
  2758. if (count < 2) {
  2759. for (i=0; i<conf->copies; i++) {
  2760. int d = r10_bio->devs[i].devnum;
  2761. if (r10_bio->devs[i].bio->bi_end_io)
  2762. rdev_dec_pending(conf->mirrors[d].rdev,
  2763. mddev);
  2764. if (r10_bio->devs[i].repl_bio &&
  2765. r10_bio->devs[i].repl_bio->bi_end_io)
  2766. rdev_dec_pending(
  2767. conf->mirrors[d].replacement,
  2768. mddev);
  2769. }
  2770. put_buf(r10_bio);
  2771. biolist = NULL;
  2772. goto giveup;
  2773. }
  2774. }
  2775. for (bio = biolist; bio ; bio=bio->bi_next) {
  2776. bio->bi_flags &= ~(BIO_POOL_MASK - 1);
  2777. if (bio->bi_end_io)
  2778. bio->bi_flags |= 1 << BIO_UPTODATE;
  2779. bio->bi_vcnt = 0;
  2780. bio->bi_idx = 0;
  2781. bio->bi_phys_segments = 0;
  2782. bio->bi_size = 0;
  2783. }
  2784. nr_sectors = 0;
  2785. if (sector_nr + max_sync < max_sector)
  2786. max_sector = sector_nr + max_sync;
  2787. do {
  2788. struct page *page;
  2789. int len = PAGE_SIZE;
  2790. if (sector_nr + (len>>9) > max_sector)
  2791. len = (max_sector - sector_nr) << 9;
  2792. if (len == 0)
  2793. break;
  2794. for (bio= biolist ; bio ; bio=bio->bi_next) {
  2795. struct bio *bio2;
  2796. page = bio->bi_io_vec[bio->bi_vcnt].bv_page;
  2797. if (bio_add_page(bio, page, len, 0))
  2798. continue;
  2799. /* stop here */
  2800. bio->bi_io_vec[bio->bi_vcnt].bv_page = page;
  2801. for (bio2 = biolist;
  2802. bio2 && bio2 != bio;
  2803. bio2 = bio2->bi_next) {
  2804. /* remove last page from this bio */
  2805. bio2->bi_vcnt--;
  2806. bio2->bi_size -= len;
  2807. bio2->bi_flags &= ~(1<< BIO_SEG_VALID);
  2808. }
  2809. goto bio_full;
  2810. }
  2811. nr_sectors += len>>9;
  2812. sector_nr += len>>9;
  2813. } while (biolist->bi_vcnt < RESYNC_PAGES);
  2814. bio_full:
  2815. r10_bio->sectors = nr_sectors;
  2816. while (biolist) {
  2817. bio = biolist;
  2818. biolist = biolist->bi_next;
  2819. bio->bi_next = NULL;
  2820. r10_bio = bio->bi_private;
  2821. r10_bio->sectors = nr_sectors;
  2822. if (bio->bi_end_io == end_sync_read) {
  2823. md_sync_acct(bio->bi_bdev, nr_sectors);
  2824. generic_make_request(bio);
  2825. }
  2826. }
  2827. if (sectors_skipped)
  2828. /* pretend they weren't skipped, it makes
  2829. * no important difference in this case
  2830. */
  2831. md_done_sync(mddev, sectors_skipped, 1);
  2832. return sectors_skipped + nr_sectors;
  2833. giveup:
  2834. /* There is nowhere to write, so all non-sync
  2835. * drives must be failed or in resync, all drives
  2836. * have a bad block, so try the next chunk...
  2837. */
  2838. if (sector_nr + max_sync < max_sector)
  2839. max_sector = sector_nr + max_sync;
  2840. sectors_skipped += (max_sector - sector_nr);
  2841. chunks_skipped ++;
  2842. sector_nr = max_sector;
  2843. goto skipped;
  2844. }
  2845. static sector_t
  2846. raid10_size(struct mddev *mddev, sector_t sectors, int raid_disks)
  2847. {
  2848. sector_t size;
  2849. struct r10conf *conf = mddev->private;
  2850. if (!raid_disks)
  2851. raid_disks = conf->raid_disks;
  2852. if (!sectors)
  2853. sectors = conf->dev_sectors;
  2854. size = sectors >> conf->chunk_shift;
  2855. sector_div(size, conf->far_copies);
  2856. size = size * raid_disks;
  2857. sector_div(size, conf->near_copies);
  2858. return size << conf->chunk_shift;
  2859. }
  2860. static struct r10conf *setup_conf(struct mddev *mddev)
  2861. {
  2862. struct r10conf *conf = NULL;
  2863. int nc, fc, fo;
  2864. sector_t stride, size;
  2865. int err = -EINVAL;
  2866. if (mddev->new_chunk_sectors < (PAGE_SIZE >> 9) ||
  2867. !is_power_of_2(mddev->new_chunk_sectors)) {
  2868. printk(KERN_ERR "md/raid10:%s: chunk size must be "
  2869. "at least PAGE_SIZE(%ld) and be a power of 2.\n",
  2870. mdname(mddev), PAGE_SIZE);
  2871. goto out;
  2872. }
  2873. nc = mddev->new_layout & 255;
  2874. fc = (mddev->new_layout >> 8) & 255;
  2875. fo = mddev->new_layout & (1<<16);
  2876. if ((nc*fc) <2 || (nc*fc) > mddev->raid_disks ||
  2877. (mddev->new_layout >> 17)) {
  2878. printk(KERN_ERR "md/raid10:%s: unsupported raid10 layout: 0x%8x\n",
  2879. mdname(mddev), mddev->new_layout);
  2880. goto out;
  2881. }
  2882. err = -ENOMEM;
  2883. conf = kzalloc(sizeof(struct r10conf), GFP_KERNEL);
  2884. if (!conf)
  2885. goto out;
  2886. conf->mirrors = kzalloc(sizeof(struct mirror_info)*mddev->raid_disks,
  2887. GFP_KERNEL);
  2888. if (!conf->mirrors)
  2889. goto out;
  2890. conf->tmppage = alloc_page(GFP_KERNEL);
  2891. if (!conf->tmppage)
  2892. goto out;
  2893. conf->raid_disks = mddev->raid_disks;
  2894. conf->near_copies = nc;
  2895. conf->far_copies = fc;
  2896. conf->copies = nc*fc;
  2897. conf->far_offset = fo;
  2898. conf->chunk_mask = mddev->new_chunk_sectors - 1;
  2899. conf->chunk_shift = ffz(~mddev->new_chunk_sectors);
  2900. conf->r10bio_pool = mempool_create(NR_RAID10_BIOS, r10bio_pool_alloc,
  2901. r10bio_pool_free, conf);
  2902. if (!conf->r10bio_pool)
  2903. goto out;
  2904. size = mddev->dev_sectors >> conf->chunk_shift;
  2905. sector_div(size, fc);
  2906. size = size * conf->raid_disks;
  2907. sector_div(size, nc);
  2908. /* 'size' is now the number of chunks in the array */
  2909. /* calculate "used chunks per device" in 'stride' */
  2910. stride = size * conf->copies;
  2911. /* We need to round up when dividing by raid_disks to
  2912. * get the stride size.
  2913. */
  2914. stride += conf->raid_disks - 1;
  2915. sector_div(stride, conf->raid_disks);
  2916. conf->dev_sectors = stride << conf->chunk_shift;
  2917. if (fo)
  2918. stride = 1;
  2919. else
  2920. sector_div(stride, fc);
  2921. conf->stride = stride << conf->chunk_shift;
  2922. spin_lock_init(&conf->device_lock);
  2923. INIT_LIST_HEAD(&conf->retry_list);
  2924. spin_lock_init(&conf->resync_lock);
  2925. init_waitqueue_head(&conf->wait_barrier);
  2926. conf->thread = md_register_thread(raid10d, mddev, NULL);
  2927. if (!conf->thread)
  2928. goto out;
  2929. conf->mddev = mddev;
  2930. return conf;
  2931. out:
  2932. printk(KERN_ERR "md/raid10:%s: couldn't allocate memory.\n",
  2933. mdname(mddev));
  2934. if (conf) {
  2935. if (conf->r10bio_pool)
  2936. mempool_destroy(conf->r10bio_pool);
  2937. kfree(conf->mirrors);
  2938. safe_put_page(conf->tmppage);
  2939. kfree(conf);
  2940. }
  2941. return ERR_PTR(err);
  2942. }
  2943. static int run(struct mddev *mddev)
  2944. {
  2945. struct r10conf *conf;
  2946. int i, disk_idx, chunk_size;
  2947. struct mirror_info *disk;
  2948. struct md_rdev *rdev;
  2949. sector_t size;
  2950. /*
  2951. * copy the already verified devices into our private RAID10
  2952. * bookkeeping area. [whatever we allocate in run(),
  2953. * should be freed in stop()]
  2954. */
  2955. if (mddev->private == NULL) {
  2956. conf = setup_conf(mddev);
  2957. if (IS_ERR(conf))
  2958. return PTR_ERR(conf);
  2959. mddev->private = conf;
  2960. }
  2961. conf = mddev->private;
  2962. if (!conf)
  2963. goto out;
  2964. mddev->thread = conf->thread;
  2965. conf->thread = NULL;
  2966. chunk_size = mddev->chunk_sectors << 9;
  2967. blk_queue_io_min(mddev->queue, chunk_size);
  2968. if (conf->raid_disks % conf->near_copies)
  2969. blk_queue_io_opt(mddev->queue, chunk_size * conf->raid_disks);
  2970. else
  2971. blk_queue_io_opt(mddev->queue, chunk_size *
  2972. (conf->raid_disks / conf->near_copies));
  2973. rdev_for_each(rdev, mddev) {
  2974. disk_idx = rdev->raid_disk;
  2975. if (disk_idx >= conf->raid_disks
  2976. || disk_idx < 0)
  2977. continue;
  2978. disk = conf->mirrors + disk_idx;
  2979. if (test_bit(Replacement, &rdev->flags)) {
  2980. if (disk->replacement)
  2981. goto out_free_conf;
  2982. disk->replacement = rdev;
  2983. } else {
  2984. if (disk->rdev)
  2985. goto out_free_conf;
  2986. disk->rdev = rdev;
  2987. }
  2988. disk_stack_limits(mddev->gendisk, rdev->bdev,
  2989. rdev->data_offset << 9);
  2990. disk->head_position = 0;
  2991. }
  2992. /* need to check that every block has at least one working mirror */
  2993. if (!enough(conf, -1)) {
  2994. printk(KERN_ERR "md/raid10:%s: not enough operational mirrors.\n",
  2995. mdname(mddev));
  2996. goto out_free_conf;
  2997. }
  2998. mddev->degraded = 0;
  2999. for (i = 0; i < conf->raid_disks; i++) {
  3000. disk = conf->mirrors + i;
  3001. if (!disk->rdev && disk->replacement) {
  3002. /* The replacement is all we have - use it */
  3003. disk->rdev = disk->replacement;
  3004. disk->replacement = NULL;
  3005. clear_bit(Replacement, &disk->rdev->flags);
  3006. }
  3007. if (!disk->rdev ||
  3008. !test_bit(In_sync, &disk->rdev->flags)) {
  3009. disk->head_position = 0;
  3010. mddev->degraded++;
  3011. if (disk->rdev)
  3012. conf->fullsync = 1;
  3013. }
  3014. disk->recovery_disabled = mddev->recovery_disabled - 1;
  3015. }
  3016. if (mddev->recovery_cp != MaxSector)
  3017. printk(KERN_NOTICE "md/raid10:%s: not clean"
  3018. " -- starting background reconstruction\n",
  3019. mdname(mddev));
  3020. printk(KERN_INFO
  3021. "md/raid10:%s: active with %d out of %d devices\n",
  3022. mdname(mddev), conf->raid_disks - mddev->degraded,
  3023. conf->raid_disks);
  3024. /*
  3025. * Ok, everything is just fine now
  3026. */
  3027. mddev->dev_sectors = conf->dev_sectors;
  3028. size = raid10_size(mddev, 0, 0);
  3029. md_set_array_sectors(mddev, size);
  3030. mddev->resync_max_sectors = size;
  3031. mddev->queue->backing_dev_info.congested_fn = raid10_congested;
  3032. mddev->queue->backing_dev_info.congested_data = mddev;
  3033. /* Calculate max read-ahead size.
  3034. * We need to readahead at least twice a whole stripe....
  3035. * maybe...
  3036. */
  3037. {
  3038. int stripe = conf->raid_disks *
  3039. ((mddev->chunk_sectors << 9) / PAGE_SIZE);
  3040. stripe /= conf->near_copies;
  3041. if (mddev->queue->backing_dev_info.ra_pages < 2* stripe)
  3042. mddev->queue->backing_dev_info.ra_pages = 2* stripe;
  3043. }
  3044. blk_queue_merge_bvec(mddev->queue, raid10_mergeable_bvec);
  3045. if (md_integrity_register(mddev))
  3046. goto out_free_conf;
  3047. return 0;
  3048. out_free_conf:
  3049. md_unregister_thread(&mddev->thread);
  3050. if (conf->r10bio_pool)
  3051. mempool_destroy(conf->r10bio_pool);
  3052. safe_put_page(conf->tmppage);
  3053. kfree(conf->mirrors);
  3054. kfree(conf);
  3055. mddev->private = NULL;
  3056. out:
  3057. return -EIO;
  3058. }
  3059. static int stop(struct mddev *mddev)
  3060. {
  3061. struct r10conf *conf = mddev->private;
  3062. raise_barrier(conf, 0);
  3063. lower_barrier(conf);
  3064. md_unregister_thread(&mddev->thread);
  3065. blk_sync_queue(mddev->queue); /* the unplug fn references 'conf'*/
  3066. if (conf->r10bio_pool)
  3067. mempool_destroy(conf->r10bio_pool);
  3068. kfree(conf->mirrors);
  3069. kfree(conf);
  3070. mddev->private = NULL;
  3071. return 0;
  3072. }
  3073. static void raid10_quiesce(struct mddev *mddev, int state)
  3074. {
  3075. struct r10conf *conf = mddev->private;
  3076. switch(state) {
  3077. case 1:
  3078. raise_barrier(conf, 0);
  3079. break;
  3080. case 0:
  3081. lower_barrier(conf);
  3082. break;
  3083. }
  3084. }
  3085. static int raid10_resize(struct mddev *mddev, sector_t sectors)
  3086. {
  3087. /* Resize of 'far' arrays is not supported.
  3088. * For 'near' and 'offset' arrays we can set the
  3089. * number of sectors used to be an appropriate multiple
  3090. * of the chunk size.
  3091. * For 'offset', this is far_copies*chunksize.
  3092. * For 'near' the multiplier is the LCM of
  3093. * near_copies and raid_disks.
  3094. * So if far_copies > 1 && !far_offset, fail.
  3095. * Else find LCM(raid_disks, near_copy)*far_copies and
  3096. * multiply by chunk_size. Then round to this number.
  3097. * This is mostly done by raid10_size()
  3098. */
  3099. struct r10conf *conf = mddev->private;
  3100. sector_t oldsize, size;
  3101. if (conf->far_copies > 1 && !conf->far_offset)
  3102. return -EINVAL;
  3103. oldsize = raid10_size(mddev, 0, 0);
  3104. size = raid10_size(mddev, sectors, 0);
  3105. md_set_array_sectors(mddev, size);
  3106. if (mddev->array_sectors > size)
  3107. return -EINVAL;
  3108. set_capacity(mddev->gendisk, mddev->array_sectors);
  3109. revalidate_disk(mddev->gendisk);
  3110. if (sectors > mddev->dev_sectors &&
  3111. mddev->recovery_cp > oldsize) {
  3112. mddev->recovery_cp = oldsize;
  3113. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  3114. }
  3115. mddev->dev_sectors = sectors;
  3116. mddev->resync_max_sectors = size;
  3117. return 0;
  3118. }
  3119. static void *raid10_takeover_raid0(struct mddev *mddev)
  3120. {
  3121. struct md_rdev *rdev;
  3122. struct r10conf *conf;
  3123. if (mddev->degraded > 0) {
  3124. printk(KERN_ERR "md/raid10:%s: Error: degraded raid0!\n",
  3125. mdname(mddev));
  3126. return ERR_PTR(-EINVAL);
  3127. }
  3128. /* Set new parameters */
  3129. mddev->new_level = 10;
  3130. /* new layout: far_copies = 1, near_copies = 2 */
  3131. mddev->new_layout = (1<<8) + 2;
  3132. mddev->new_chunk_sectors = mddev->chunk_sectors;
  3133. mddev->delta_disks = mddev->raid_disks;
  3134. mddev->raid_disks *= 2;
  3135. /* make sure it will be not marked as dirty */
  3136. mddev->recovery_cp = MaxSector;
  3137. conf = setup_conf(mddev);
  3138. if (!IS_ERR(conf)) {
  3139. rdev_for_each(rdev, mddev)
  3140. if (rdev->raid_disk >= 0)
  3141. rdev->new_raid_disk = rdev->raid_disk * 2;
  3142. conf->barrier = 1;
  3143. }
  3144. return conf;
  3145. }
  3146. static void *raid10_takeover(struct mddev *mddev)
  3147. {
  3148. struct r0conf *raid0_conf;
  3149. /* raid10 can take over:
  3150. * raid0 - providing it has only two drives
  3151. */
  3152. if (mddev->level == 0) {
  3153. /* for raid0 takeover only one zone is supported */
  3154. raid0_conf = mddev->private;
  3155. if (raid0_conf->nr_strip_zones > 1) {
  3156. printk(KERN_ERR "md/raid10:%s: cannot takeover raid 0"
  3157. " with more than one zone.\n",
  3158. mdname(mddev));
  3159. return ERR_PTR(-EINVAL);
  3160. }
  3161. return raid10_takeover_raid0(mddev);
  3162. }
  3163. return ERR_PTR(-EINVAL);
  3164. }
  3165. static struct md_personality raid10_personality =
  3166. {
  3167. .name = "raid10",
  3168. .level = 10,
  3169. .owner = THIS_MODULE,
  3170. .make_request = make_request,
  3171. .run = run,
  3172. .stop = stop,
  3173. .status = status,
  3174. .error_handler = error,
  3175. .hot_add_disk = raid10_add_disk,
  3176. .hot_remove_disk= raid10_remove_disk,
  3177. .spare_active = raid10_spare_active,
  3178. .sync_request = sync_request,
  3179. .quiesce = raid10_quiesce,
  3180. .size = raid10_size,
  3181. .resize = raid10_resize,
  3182. .takeover = raid10_takeover,
  3183. };
  3184. static int __init raid_init(void)
  3185. {
  3186. return register_md_personality(&raid10_personality);
  3187. }
  3188. static void raid_exit(void)
  3189. {
  3190. unregister_md_personality(&raid10_personality);
  3191. }
  3192. module_init(raid_init);
  3193. module_exit(raid_exit);
  3194. MODULE_LICENSE("GPL");
  3195. MODULE_DESCRIPTION("RAID10 (striped mirror) personality for MD");
  3196. MODULE_ALIAS("md-personality-9"); /* RAID10 */
  3197. MODULE_ALIAS("md-raid10");
  3198. MODULE_ALIAS("md-level-10");
  3199. module_param(max_queued_requests, int, S_IRUGO|S_IWUSR);