i915_gem.c 107 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253
  1. /*
  2. * Copyright © 2008 Intel Corporation
  3. *
  4. * Permission is hereby granted, free of charge, to any person obtaining a
  5. * copy of this software and associated documentation files (the "Software"),
  6. * to deal in the Software without restriction, including without limitation
  7. * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8. * and/or sell copies of the Software, and to permit persons to whom the
  9. * Software is furnished to do so, subject to the following conditions:
  10. *
  11. * The above copyright notice and this permission notice (including the next
  12. * paragraph) shall be included in all copies or substantial portions of the
  13. * Software.
  14. *
  15. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  18. * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  20. * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
  21. * IN THE SOFTWARE.
  22. *
  23. * Authors:
  24. * Eric Anholt <eric@anholt.net>
  25. *
  26. */
  27. #include "drmP.h"
  28. #include "drm.h"
  29. #include "i915_drm.h"
  30. #include "i915_drv.h"
  31. #include "i915_trace.h"
  32. #include "intel_drv.h"
  33. #include <linux/shmem_fs.h>
  34. #include <linux/slab.h>
  35. #include <linux/swap.h>
  36. #include <linux/pci.h>
  37. static __must_check int i915_gem_object_flush_gpu_write_domain(struct drm_i915_gem_object *obj);
  38. static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
  39. static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
  40. static __must_check int i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj,
  41. bool write);
  42. static __must_check int i915_gem_object_set_cpu_read_domain_range(struct drm_i915_gem_object *obj,
  43. uint64_t offset,
  44. uint64_t size);
  45. static void i915_gem_object_set_to_full_cpu_read_domain(struct drm_i915_gem_object *obj);
  46. static __must_check int i915_gem_object_bind_to_gtt(struct drm_i915_gem_object *obj,
  47. unsigned alignment,
  48. bool map_and_fenceable);
  49. static void i915_gem_clear_fence_reg(struct drm_device *dev,
  50. struct drm_i915_fence_reg *reg);
  51. static int i915_gem_phys_pwrite(struct drm_device *dev,
  52. struct drm_i915_gem_object *obj,
  53. struct drm_i915_gem_pwrite *args,
  54. struct drm_file *file);
  55. static void i915_gem_free_object_tail(struct drm_i915_gem_object *obj);
  56. static int i915_gem_inactive_shrink(struct shrinker *shrinker,
  57. struct shrink_control *sc);
  58. static void i915_gem_object_truncate(struct drm_i915_gem_object *obj);
  59. /* some bookkeeping */
  60. static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
  61. size_t size)
  62. {
  63. dev_priv->mm.object_count++;
  64. dev_priv->mm.object_memory += size;
  65. }
  66. static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
  67. size_t size)
  68. {
  69. dev_priv->mm.object_count--;
  70. dev_priv->mm.object_memory -= size;
  71. }
  72. static int
  73. i915_gem_wait_for_error(struct drm_device *dev)
  74. {
  75. struct drm_i915_private *dev_priv = dev->dev_private;
  76. struct completion *x = &dev_priv->error_completion;
  77. unsigned long flags;
  78. int ret;
  79. if (!atomic_read(&dev_priv->mm.wedged))
  80. return 0;
  81. ret = wait_for_completion_interruptible(x);
  82. if (ret)
  83. return ret;
  84. if (atomic_read(&dev_priv->mm.wedged)) {
  85. /* GPU is hung, bump the completion count to account for
  86. * the token we just consumed so that we never hit zero and
  87. * end up waiting upon a subsequent completion event that
  88. * will never happen.
  89. */
  90. spin_lock_irqsave(&x->wait.lock, flags);
  91. x->done++;
  92. spin_unlock_irqrestore(&x->wait.lock, flags);
  93. }
  94. return 0;
  95. }
  96. int i915_mutex_lock_interruptible(struct drm_device *dev)
  97. {
  98. int ret;
  99. ret = i915_gem_wait_for_error(dev);
  100. if (ret)
  101. return ret;
  102. ret = mutex_lock_interruptible(&dev->struct_mutex);
  103. if (ret)
  104. return ret;
  105. WARN_ON(i915_verify_lists(dev));
  106. return 0;
  107. }
  108. static inline bool
  109. i915_gem_object_is_inactive(struct drm_i915_gem_object *obj)
  110. {
  111. return obj->gtt_space && !obj->active && obj->pin_count == 0;
  112. }
  113. void i915_gem_do_init(struct drm_device *dev,
  114. unsigned long start,
  115. unsigned long mappable_end,
  116. unsigned long end)
  117. {
  118. drm_i915_private_t *dev_priv = dev->dev_private;
  119. drm_mm_init(&dev_priv->mm.gtt_space, start, end - start);
  120. dev_priv->mm.gtt_start = start;
  121. dev_priv->mm.gtt_mappable_end = mappable_end;
  122. dev_priv->mm.gtt_end = end;
  123. dev_priv->mm.gtt_total = end - start;
  124. dev_priv->mm.mappable_gtt_total = min(end, mappable_end) - start;
  125. /* Take over this portion of the GTT */
  126. intel_gtt_clear_range(start / PAGE_SIZE, (end-start) / PAGE_SIZE);
  127. }
  128. int
  129. i915_gem_init_ioctl(struct drm_device *dev, void *data,
  130. struct drm_file *file)
  131. {
  132. struct drm_i915_gem_init *args = data;
  133. if (args->gtt_start >= args->gtt_end ||
  134. (args->gtt_end | args->gtt_start) & (PAGE_SIZE - 1))
  135. return -EINVAL;
  136. mutex_lock(&dev->struct_mutex);
  137. i915_gem_do_init(dev, args->gtt_start, args->gtt_end, args->gtt_end);
  138. mutex_unlock(&dev->struct_mutex);
  139. return 0;
  140. }
  141. int
  142. i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
  143. struct drm_file *file)
  144. {
  145. struct drm_i915_private *dev_priv = dev->dev_private;
  146. struct drm_i915_gem_get_aperture *args = data;
  147. struct drm_i915_gem_object *obj;
  148. size_t pinned;
  149. if (!(dev->driver->driver_features & DRIVER_GEM))
  150. return -ENODEV;
  151. pinned = 0;
  152. mutex_lock(&dev->struct_mutex);
  153. list_for_each_entry(obj, &dev_priv->mm.pinned_list, mm_list)
  154. pinned += obj->gtt_space->size;
  155. mutex_unlock(&dev->struct_mutex);
  156. args->aper_size = dev_priv->mm.gtt_total;
  157. args->aper_available_size = args->aper_size - pinned;
  158. return 0;
  159. }
  160. static int
  161. i915_gem_create(struct drm_file *file,
  162. struct drm_device *dev,
  163. uint64_t size,
  164. uint32_t *handle_p)
  165. {
  166. struct drm_i915_gem_object *obj;
  167. int ret;
  168. u32 handle;
  169. size = roundup(size, PAGE_SIZE);
  170. if (size == 0)
  171. return -EINVAL;
  172. /* Allocate the new object */
  173. obj = i915_gem_alloc_object(dev, size);
  174. if (obj == NULL)
  175. return -ENOMEM;
  176. ret = drm_gem_handle_create(file, &obj->base, &handle);
  177. if (ret) {
  178. drm_gem_object_release(&obj->base);
  179. i915_gem_info_remove_obj(dev->dev_private, obj->base.size);
  180. kfree(obj);
  181. return ret;
  182. }
  183. /* drop reference from allocate - handle holds it now */
  184. drm_gem_object_unreference(&obj->base);
  185. trace_i915_gem_object_create(obj);
  186. *handle_p = handle;
  187. return 0;
  188. }
  189. int
  190. i915_gem_dumb_create(struct drm_file *file,
  191. struct drm_device *dev,
  192. struct drm_mode_create_dumb *args)
  193. {
  194. /* have to work out size/pitch and return them */
  195. args->pitch = ALIGN(args->width * ((args->bpp + 7) / 8), 64);
  196. args->size = args->pitch * args->height;
  197. return i915_gem_create(file, dev,
  198. args->size, &args->handle);
  199. }
  200. int i915_gem_dumb_destroy(struct drm_file *file,
  201. struct drm_device *dev,
  202. uint32_t handle)
  203. {
  204. return drm_gem_handle_delete(file, handle);
  205. }
  206. /**
  207. * Creates a new mm object and returns a handle to it.
  208. */
  209. int
  210. i915_gem_create_ioctl(struct drm_device *dev, void *data,
  211. struct drm_file *file)
  212. {
  213. struct drm_i915_gem_create *args = data;
  214. return i915_gem_create(file, dev,
  215. args->size, &args->handle);
  216. }
  217. static int i915_gem_object_needs_bit17_swizzle(struct drm_i915_gem_object *obj)
  218. {
  219. drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
  220. return dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_9_10_17 &&
  221. obj->tiling_mode != I915_TILING_NONE;
  222. }
  223. /**
  224. * This is the fast shmem pread path, which attempts to copy_from_user directly
  225. * from the backing pages of the object to the user's address space. On a
  226. * fault, it fails so we can fall back to i915_gem_shmem_pwrite_slow().
  227. */
  228. static int
  229. i915_gem_shmem_pread_fast(struct drm_device *dev,
  230. struct drm_i915_gem_object *obj,
  231. struct drm_i915_gem_pread *args,
  232. struct drm_file *file)
  233. {
  234. struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
  235. ssize_t remain;
  236. loff_t offset;
  237. char __user *user_data;
  238. int page_offset, page_length;
  239. user_data = (char __user *) (uintptr_t) args->data_ptr;
  240. remain = args->size;
  241. offset = args->offset;
  242. while (remain > 0) {
  243. struct page *page;
  244. char *vaddr;
  245. int ret;
  246. /* Operation in this page
  247. *
  248. * page_offset = offset within page
  249. * page_length = bytes to copy for this page
  250. */
  251. page_offset = offset_in_page(offset);
  252. page_length = remain;
  253. if ((page_offset + remain) > PAGE_SIZE)
  254. page_length = PAGE_SIZE - page_offset;
  255. page = shmem_read_mapping_page(mapping, offset >> PAGE_SHIFT);
  256. if (IS_ERR(page))
  257. return PTR_ERR(page);
  258. vaddr = kmap_atomic(page);
  259. ret = __copy_to_user_inatomic(user_data,
  260. vaddr + page_offset,
  261. page_length);
  262. kunmap_atomic(vaddr);
  263. mark_page_accessed(page);
  264. page_cache_release(page);
  265. if (ret)
  266. return -EFAULT;
  267. remain -= page_length;
  268. user_data += page_length;
  269. offset += page_length;
  270. }
  271. return 0;
  272. }
  273. static inline int
  274. __copy_to_user_swizzled(char __user *cpu_vaddr,
  275. const char *gpu_vaddr, int gpu_offset,
  276. int length)
  277. {
  278. int ret, cpu_offset = 0;
  279. while (length > 0) {
  280. int cacheline_end = ALIGN(gpu_offset + 1, 64);
  281. int this_length = min(cacheline_end - gpu_offset, length);
  282. int swizzled_gpu_offset = gpu_offset ^ 64;
  283. ret = __copy_to_user(cpu_vaddr + cpu_offset,
  284. gpu_vaddr + swizzled_gpu_offset,
  285. this_length);
  286. if (ret)
  287. return ret + length;
  288. cpu_offset += this_length;
  289. gpu_offset += this_length;
  290. length -= this_length;
  291. }
  292. return 0;
  293. }
  294. static inline int
  295. __copy_from_user_swizzled(char __user *gpu_vaddr, int gpu_offset,
  296. const char *cpu_vaddr,
  297. int length)
  298. {
  299. int ret, cpu_offset = 0;
  300. while (length > 0) {
  301. int cacheline_end = ALIGN(gpu_offset + 1, 64);
  302. int this_length = min(cacheline_end - gpu_offset, length);
  303. int swizzled_gpu_offset = gpu_offset ^ 64;
  304. ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
  305. cpu_vaddr + cpu_offset,
  306. this_length);
  307. if (ret)
  308. return ret + length;
  309. cpu_offset += this_length;
  310. gpu_offset += this_length;
  311. length -= this_length;
  312. }
  313. return 0;
  314. }
  315. /**
  316. * This is the fallback shmem pread path, which allocates temporary storage
  317. * in kernel space to copy_to_user into outside of the struct_mutex, so we
  318. * can copy out of the object's backing pages while holding the struct mutex
  319. * and not take page faults.
  320. */
  321. static int
  322. i915_gem_shmem_pread_slow(struct drm_device *dev,
  323. struct drm_i915_gem_object *obj,
  324. struct drm_i915_gem_pread *args,
  325. struct drm_file *file)
  326. {
  327. struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
  328. char __user *user_data;
  329. ssize_t remain;
  330. loff_t offset;
  331. int shmem_page_offset, page_length, ret;
  332. int obj_do_bit17_swizzling, page_do_bit17_swizzling;
  333. user_data = (char __user *) (uintptr_t) args->data_ptr;
  334. remain = args->size;
  335. obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
  336. offset = args->offset;
  337. mutex_unlock(&dev->struct_mutex);
  338. while (remain > 0) {
  339. struct page *page;
  340. char *vaddr;
  341. /* Operation in this page
  342. *
  343. * shmem_page_offset = offset within page in shmem file
  344. * page_length = bytes to copy for this page
  345. */
  346. shmem_page_offset = offset_in_page(offset);
  347. page_length = remain;
  348. if ((shmem_page_offset + page_length) > PAGE_SIZE)
  349. page_length = PAGE_SIZE - shmem_page_offset;
  350. page = shmem_read_mapping_page(mapping, offset >> PAGE_SHIFT);
  351. if (IS_ERR(page)) {
  352. ret = PTR_ERR(page);
  353. goto out;
  354. }
  355. page_do_bit17_swizzling = obj_do_bit17_swizzling &&
  356. (page_to_phys(page) & (1 << 17)) != 0;
  357. vaddr = kmap(page);
  358. if (page_do_bit17_swizzling)
  359. ret = __copy_to_user_swizzled(user_data,
  360. vaddr, shmem_page_offset,
  361. page_length);
  362. else
  363. ret = __copy_to_user(user_data,
  364. vaddr + shmem_page_offset,
  365. page_length);
  366. kunmap(page);
  367. mark_page_accessed(page);
  368. page_cache_release(page);
  369. if (ret) {
  370. ret = -EFAULT;
  371. goto out;
  372. }
  373. remain -= page_length;
  374. user_data += page_length;
  375. offset += page_length;
  376. }
  377. out:
  378. mutex_lock(&dev->struct_mutex);
  379. /* Fixup: Kill any reinstated backing storage pages */
  380. if (obj->madv == __I915_MADV_PURGED)
  381. i915_gem_object_truncate(obj);
  382. return ret;
  383. }
  384. /**
  385. * Reads data from the object referenced by handle.
  386. *
  387. * On error, the contents of *data are undefined.
  388. */
  389. int
  390. i915_gem_pread_ioctl(struct drm_device *dev, void *data,
  391. struct drm_file *file)
  392. {
  393. struct drm_i915_gem_pread *args = data;
  394. struct drm_i915_gem_object *obj;
  395. int ret = 0;
  396. if (args->size == 0)
  397. return 0;
  398. if (!access_ok(VERIFY_WRITE,
  399. (char __user *)(uintptr_t)args->data_ptr,
  400. args->size))
  401. return -EFAULT;
  402. ret = fault_in_pages_writeable((char __user *)(uintptr_t)args->data_ptr,
  403. args->size);
  404. if (ret)
  405. return -EFAULT;
  406. ret = i915_mutex_lock_interruptible(dev);
  407. if (ret)
  408. return ret;
  409. obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
  410. if (&obj->base == NULL) {
  411. ret = -ENOENT;
  412. goto unlock;
  413. }
  414. /* Bounds check source. */
  415. if (args->offset > obj->base.size ||
  416. args->size > obj->base.size - args->offset) {
  417. ret = -EINVAL;
  418. goto out;
  419. }
  420. trace_i915_gem_object_pread(obj, args->offset, args->size);
  421. ret = i915_gem_object_set_cpu_read_domain_range(obj,
  422. args->offset,
  423. args->size);
  424. if (ret)
  425. goto out;
  426. ret = -EFAULT;
  427. if (!i915_gem_object_needs_bit17_swizzle(obj))
  428. ret = i915_gem_shmem_pread_fast(dev, obj, args, file);
  429. if (ret == -EFAULT)
  430. ret = i915_gem_shmem_pread_slow(dev, obj, args, file);
  431. out:
  432. drm_gem_object_unreference(&obj->base);
  433. unlock:
  434. mutex_unlock(&dev->struct_mutex);
  435. return ret;
  436. }
  437. /* This is the fast write path which cannot handle
  438. * page faults in the source data
  439. */
  440. static inline int
  441. fast_user_write(struct io_mapping *mapping,
  442. loff_t page_base, int page_offset,
  443. char __user *user_data,
  444. int length)
  445. {
  446. char *vaddr_atomic;
  447. unsigned long unwritten;
  448. vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
  449. unwritten = __copy_from_user_inatomic_nocache(vaddr_atomic + page_offset,
  450. user_data, length);
  451. io_mapping_unmap_atomic(vaddr_atomic);
  452. return unwritten;
  453. }
  454. /* Here's the write path which can sleep for
  455. * page faults
  456. */
  457. static inline void
  458. slow_kernel_write(struct io_mapping *mapping,
  459. loff_t gtt_base, int gtt_offset,
  460. struct page *user_page, int user_offset,
  461. int length)
  462. {
  463. char __iomem *dst_vaddr;
  464. char *src_vaddr;
  465. dst_vaddr = io_mapping_map_wc(mapping, gtt_base);
  466. src_vaddr = kmap(user_page);
  467. memcpy_toio(dst_vaddr + gtt_offset,
  468. src_vaddr + user_offset,
  469. length);
  470. kunmap(user_page);
  471. io_mapping_unmap(dst_vaddr);
  472. }
  473. /**
  474. * This is the fast pwrite path, where we copy the data directly from the
  475. * user into the GTT, uncached.
  476. */
  477. static int
  478. i915_gem_gtt_pwrite_fast(struct drm_device *dev,
  479. struct drm_i915_gem_object *obj,
  480. struct drm_i915_gem_pwrite *args,
  481. struct drm_file *file)
  482. {
  483. drm_i915_private_t *dev_priv = dev->dev_private;
  484. ssize_t remain;
  485. loff_t offset, page_base;
  486. char __user *user_data;
  487. int page_offset, page_length;
  488. user_data = (char __user *) (uintptr_t) args->data_ptr;
  489. remain = args->size;
  490. offset = obj->gtt_offset + args->offset;
  491. while (remain > 0) {
  492. /* Operation in this page
  493. *
  494. * page_base = page offset within aperture
  495. * page_offset = offset within page
  496. * page_length = bytes to copy for this page
  497. */
  498. page_base = offset & PAGE_MASK;
  499. page_offset = offset_in_page(offset);
  500. page_length = remain;
  501. if ((page_offset + remain) > PAGE_SIZE)
  502. page_length = PAGE_SIZE - page_offset;
  503. /* If we get a fault while copying data, then (presumably) our
  504. * source page isn't available. Return the error and we'll
  505. * retry in the slow path.
  506. */
  507. if (fast_user_write(dev_priv->mm.gtt_mapping, page_base,
  508. page_offset, user_data, page_length))
  509. return -EFAULT;
  510. remain -= page_length;
  511. user_data += page_length;
  512. offset += page_length;
  513. }
  514. return 0;
  515. }
  516. /**
  517. * This is the fallback GTT pwrite path, which uses get_user_pages to pin
  518. * the memory and maps it using kmap_atomic for copying.
  519. *
  520. * This code resulted in x11perf -rgb10text consuming about 10% more CPU
  521. * than using i915_gem_gtt_pwrite_fast on a G45 (32-bit).
  522. */
  523. static int
  524. i915_gem_gtt_pwrite_slow(struct drm_device *dev,
  525. struct drm_i915_gem_object *obj,
  526. struct drm_i915_gem_pwrite *args,
  527. struct drm_file *file)
  528. {
  529. drm_i915_private_t *dev_priv = dev->dev_private;
  530. ssize_t remain;
  531. loff_t gtt_page_base, offset;
  532. loff_t first_data_page, last_data_page, num_pages;
  533. loff_t pinned_pages, i;
  534. struct page **user_pages;
  535. struct mm_struct *mm = current->mm;
  536. int gtt_page_offset, data_page_offset, data_page_index, page_length;
  537. int ret;
  538. uint64_t data_ptr = args->data_ptr;
  539. remain = args->size;
  540. /* Pin the user pages containing the data. We can't fault while
  541. * holding the struct mutex, and all of the pwrite implementations
  542. * want to hold it while dereferencing the user data.
  543. */
  544. first_data_page = data_ptr / PAGE_SIZE;
  545. last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
  546. num_pages = last_data_page - first_data_page + 1;
  547. user_pages = drm_malloc_ab(num_pages, sizeof(struct page *));
  548. if (user_pages == NULL)
  549. return -ENOMEM;
  550. mutex_unlock(&dev->struct_mutex);
  551. down_read(&mm->mmap_sem);
  552. pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
  553. num_pages, 0, 0, user_pages, NULL);
  554. up_read(&mm->mmap_sem);
  555. mutex_lock(&dev->struct_mutex);
  556. if (pinned_pages < num_pages) {
  557. ret = -EFAULT;
  558. goto out_unpin_pages;
  559. }
  560. ret = i915_gem_object_set_to_gtt_domain(obj, true);
  561. if (ret)
  562. goto out_unpin_pages;
  563. ret = i915_gem_object_put_fence(obj);
  564. if (ret)
  565. goto out_unpin_pages;
  566. offset = obj->gtt_offset + args->offset;
  567. while (remain > 0) {
  568. /* Operation in this page
  569. *
  570. * gtt_page_base = page offset within aperture
  571. * gtt_page_offset = offset within page in aperture
  572. * data_page_index = page number in get_user_pages return
  573. * data_page_offset = offset with data_page_index page.
  574. * page_length = bytes to copy for this page
  575. */
  576. gtt_page_base = offset & PAGE_MASK;
  577. gtt_page_offset = offset_in_page(offset);
  578. data_page_index = data_ptr / PAGE_SIZE - first_data_page;
  579. data_page_offset = offset_in_page(data_ptr);
  580. page_length = remain;
  581. if ((gtt_page_offset + page_length) > PAGE_SIZE)
  582. page_length = PAGE_SIZE - gtt_page_offset;
  583. if ((data_page_offset + page_length) > PAGE_SIZE)
  584. page_length = PAGE_SIZE - data_page_offset;
  585. slow_kernel_write(dev_priv->mm.gtt_mapping,
  586. gtt_page_base, gtt_page_offset,
  587. user_pages[data_page_index],
  588. data_page_offset,
  589. page_length);
  590. remain -= page_length;
  591. offset += page_length;
  592. data_ptr += page_length;
  593. }
  594. out_unpin_pages:
  595. for (i = 0; i < pinned_pages; i++)
  596. page_cache_release(user_pages[i]);
  597. drm_free_large(user_pages);
  598. return ret;
  599. }
  600. /**
  601. * This is the fast shmem pwrite path, which attempts to directly
  602. * copy_from_user into the kmapped pages backing the object.
  603. */
  604. static int
  605. i915_gem_shmem_pwrite_fast(struct drm_device *dev,
  606. struct drm_i915_gem_object *obj,
  607. struct drm_i915_gem_pwrite *args,
  608. struct drm_file *file)
  609. {
  610. struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
  611. ssize_t remain;
  612. loff_t offset;
  613. char __user *user_data;
  614. int page_offset, page_length;
  615. user_data = (char __user *) (uintptr_t) args->data_ptr;
  616. remain = args->size;
  617. offset = args->offset;
  618. obj->dirty = 1;
  619. while (remain > 0) {
  620. struct page *page;
  621. char *vaddr;
  622. int ret;
  623. /* Operation in this page
  624. *
  625. * page_offset = offset within page
  626. * page_length = bytes to copy for this page
  627. */
  628. page_offset = offset_in_page(offset);
  629. page_length = remain;
  630. if ((page_offset + remain) > PAGE_SIZE)
  631. page_length = PAGE_SIZE - page_offset;
  632. page = shmem_read_mapping_page(mapping, offset >> PAGE_SHIFT);
  633. if (IS_ERR(page))
  634. return PTR_ERR(page);
  635. vaddr = kmap_atomic(page);
  636. ret = __copy_from_user_inatomic(vaddr + page_offset,
  637. user_data,
  638. page_length);
  639. kunmap_atomic(vaddr);
  640. set_page_dirty(page);
  641. mark_page_accessed(page);
  642. page_cache_release(page);
  643. /* If we get a fault while copying data, then (presumably) our
  644. * source page isn't available. Return the error and we'll
  645. * retry in the slow path.
  646. */
  647. if (ret)
  648. return -EFAULT;
  649. remain -= page_length;
  650. user_data += page_length;
  651. offset += page_length;
  652. }
  653. return 0;
  654. }
  655. /**
  656. * This is the fallback shmem pwrite path, which uses get_user_pages to pin
  657. * the memory and maps it using kmap_atomic for copying.
  658. *
  659. * This avoids taking mmap_sem for faulting on the user's address while the
  660. * struct_mutex is held.
  661. */
  662. static int
  663. i915_gem_shmem_pwrite_slow(struct drm_device *dev,
  664. struct drm_i915_gem_object *obj,
  665. struct drm_i915_gem_pwrite *args,
  666. struct drm_file *file)
  667. {
  668. struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
  669. ssize_t remain;
  670. loff_t offset;
  671. char __user *user_data;
  672. int shmem_page_offset, page_length, ret;
  673. int obj_do_bit17_swizzling, page_do_bit17_swizzling;
  674. user_data = (char __user *) (uintptr_t) args->data_ptr;
  675. remain = args->size;
  676. obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
  677. offset = args->offset;
  678. obj->dirty = 1;
  679. mutex_unlock(&dev->struct_mutex);
  680. while (remain > 0) {
  681. struct page *page;
  682. char *vaddr;
  683. /* Operation in this page
  684. *
  685. * shmem_page_offset = offset within page in shmem file
  686. * page_length = bytes to copy for this page
  687. */
  688. shmem_page_offset = offset_in_page(offset);
  689. page_length = remain;
  690. if ((shmem_page_offset + page_length) > PAGE_SIZE)
  691. page_length = PAGE_SIZE - shmem_page_offset;
  692. page = shmem_read_mapping_page(mapping, offset >> PAGE_SHIFT);
  693. if (IS_ERR(page)) {
  694. ret = PTR_ERR(page);
  695. goto out;
  696. }
  697. page_do_bit17_swizzling = obj_do_bit17_swizzling &&
  698. (page_to_phys(page) & (1 << 17)) != 0;
  699. vaddr = kmap(page);
  700. if (page_do_bit17_swizzling)
  701. ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
  702. user_data,
  703. page_length);
  704. else
  705. ret = __copy_from_user(vaddr + shmem_page_offset,
  706. user_data,
  707. page_length);
  708. kunmap(page);
  709. set_page_dirty(page);
  710. mark_page_accessed(page);
  711. page_cache_release(page);
  712. if (ret) {
  713. ret = -EFAULT;
  714. goto out;
  715. }
  716. remain -= page_length;
  717. user_data += page_length;
  718. offset += page_length;
  719. }
  720. out:
  721. mutex_lock(&dev->struct_mutex);
  722. /* Fixup: Kill any reinstated backing storage pages */
  723. if (obj->madv == __I915_MADV_PURGED)
  724. i915_gem_object_truncate(obj);
  725. /* and flush dirty cachelines in case the object isn't in the cpu write
  726. * domain anymore. */
  727. if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
  728. i915_gem_clflush_object(obj);
  729. intel_gtt_chipset_flush();
  730. }
  731. return ret;
  732. }
  733. /**
  734. * Writes data to the object referenced by handle.
  735. *
  736. * On error, the contents of the buffer that were to be modified are undefined.
  737. */
  738. int
  739. i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
  740. struct drm_file *file)
  741. {
  742. struct drm_i915_gem_pwrite *args = data;
  743. struct drm_i915_gem_object *obj;
  744. int ret;
  745. if (args->size == 0)
  746. return 0;
  747. if (!access_ok(VERIFY_READ,
  748. (char __user *)(uintptr_t)args->data_ptr,
  749. args->size))
  750. return -EFAULT;
  751. ret = fault_in_pages_readable((char __user *)(uintptr_t)args->data_ptr,
  752. args->size);
  753. if (ret)
  754. return -EFAULT;
  755. ret = i915_mutex_lock_interruptible(dev);
  756. if (ret)
  757. return ret;
  758. obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
  759. if (&obj->base == NULL) {
  760. ret = -ENOENT;
  761. goto unlock;
  762. }
  763. /* Bounds check destination. */
  764. if (args->offset > obj->base.size ||
  765. args->size > obj->base.size - args->offset) {
  766. ret = -EINVAL;
  767. goto out;
  768. }
  769. trace_i915_gem_object_pwrite(obj, args->offset, args->size);
  770. /* We can only do the GTT pwrite on untiled buffers, as otherwise
  771. * it would end up going through the fenced access, and we'll get
  772. * different detiling behavior between reading and writing.
  773. * pread/pwrite currently are reading and writing from the CPU
  774. * perspective, requiring manual detiling by the client.
  775. */
  776. if (obj->phys_obj) {
  777. ret = i915_gem_phys_pwrite(dev, obj, args, file);
  778. goto out;
  779. }
  780. if (obj->gtt_space &&
  781. obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
  782. ret = i915_gem_object_pin(obj, 0, true);
  783. if (ret)
  784. goto out;
  785. ret = i915_gem_object_set_to_gtt_domain(obj, true);
  786. if (ret)
  787. goto out_unpin;
  788. ret = i915_gem_object_put_fence(obj);
  789. if (ret)
  790. goto out_unpin;
  791. ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
  792. if (ret == -EFAULT)
  793. ret = i915_gem_gtt_pwrite_slow(dev, obj, args, file);
  794. out_unpin:
  795. i915_gem_object_unpin(obj);
  796. if (ret != -EFAULT)
  797. goto out;
  798. /* Fall through to the shmfs paths because the gtt paths might
  799. * fail with non-page-backed user pointers (e.g. gtt mappings
  800. * when moving data between textures). */
  801. }
  802. ret = i915_gem_object_set_to_cpu_domain(obj, 1);
  803. if (ret)
  804. goto out;
  805. ret = -EFAULT;
  806. if (!i915_gem_object_needs_bit17_swizzle(obj))
  807. ret = i915_gem_shmem_pwrite_fast(dev, obj, args, file);
  808. if (ret == -EFAULT)
  809. ret = i915_gem_shmem_pwrite_slow(dev, obj, args, file);
  810. out:
  811. drm_gem_object_unreference(&obj->base);
  812. unlock:
  813. mutex_unlock(&dev->struct_mutex);
  814. return ret;
  815. }
  816. /**
  817. * Called when user space prepares to use an object with the CPU, either
  818. * through the mmap ioctl's mapping or a GTT mapping.
  819. */
  820. int
  821. i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
  822. struct drm_file *file)
  823. {
  824. struct drm_i915_gem_set_domain *args = data;
  825. struct drm_i915_gem_object *obj;
  826. uint32_t read_domains = args->read_domains;
  827. uint32_t write_domain = args->write_domain;
  828. int ret;
  829. if (!(dev->driver->driver_features & DRIVER_GEM))
  830. return -ENODEV;
  831. /* Only handle setting domains to types used by the CPU. */
  832. if (write_domain & I915_GEM_GPU_DOMAINS)
  833. return -EINVAL;
  834. if (read_domains & I915_GEM_GPU_DOMAINS)
  835. return -EINVAL;
  836. /* Having something in the write domain implies it's in the read
  837. * domain, and only that read domain. Enforce that in the request.
  838. */
  839. if (write_domain != 0 && read_domains != write_domain)
  840. return -EINVAL;
  841. ret = i915_mutex_lock_interruptible(dev);
  842. if (ret)
  843. return ret;
  844. obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
  845. if (&obj->base == NULL) {
  846. ret = -ENOENT;
  847. goto unlock;
  848. }
  849. if (read_domains & I915_GEM_DOMAIN_GTT) {
  850. ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
  851. /* Silently promote "you're not bound, there was nothing to do"
  852. * to success, since the client was just asking us to
  853. * make sure everything was done.
  854. */
  855. if (ret == -EINVAL)
  856. ret = 0;
  857. } else {
  858. ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
  859. }
  860. drm_gem_object_unreference(&obj->base);
  861. unlock:
  862. mutex_unlock(&dev->struct_mutex);
  863. return ret;
  864. }
  865. /**
  866. * Called when user space has done writes to this buffer
  867. */
  868. int
  869. i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
  870. struct drm_file *file)
  871. {
  872. struct drm_i915_gem_sw_finish *args = data;
  873. struct drm_i915_gem_object *obj;
  874. int ret = 0;
  875. if (!(dev->driver->driver_features & DRIVER_GEM))
  876. return -ENODEV;
  877. ret = i915_mutex_lock_interruptible(dev);
  878. if (ret)
  879. return ret;
  880. obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
  881. if (&obj->base == NULL) {
  882. ret = -ENOENT;
  883. goto unlock;
  884. }
  885. /* Pinned buffers may be scanout, so flush the cache */
  886. if (obj->pin_count)
  887. i915_gem_object_flush_cpu_write_domain(obj);
  888. drm_gem_object_unreference(&obj->base);
  889. unlock:
  890. mutex_unlock(&dev->struct_mutex);
  891. return ret;
  892. }
  893. /**
  894. * Maps the contents of an object, returning the address it is mapped
  895. * into.
  896. *
  897. * While the mapping holds a reference on the contents of the object, it doesn't
  898. * imply a ref on the object itself.
  899. */
  900. int
  901. i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
  902. struct drm_file *file)
  903. {
  904. struct drm_i915_gem_mmap *args = data;
  905. struct drm_gem_object *obj;
  906. unsigned long addr;
  907. if (!(dev->driver->driver_features & DRIVER_GEM))
  908. return -ENODEV;
  909. obj = drm_gem_object_lookup(dev, file, args->handle);
  910. if (obj == NULL)
  911. return -ENOENT;
  912. down_write(&current->mm->mmap_sem);
  913. addr = do_mmap(obj->filp, 0, args->size,
  914. PROT_READ | PROT_WRITE, MAP_SHARED,
  915. args->offset);
  916. up_write(&current->mm->mmap_sem);
  917. drm_gem_object_unreference_unlocked(obj);
  918. if (IS_ERR((void *)addr))
  919. return addr;
  920. args->addr_ptr = (uint64_t) addr;
  921. return 0;
  922. }
  923. /**
  924. * i915_gem_fault - fault a page into the GTT
  925. * vma: VMA in question
  926. * vmf: fault info
  927. *
  928. * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
  929. * from userspace. The fault handler takes care of binding the object to
  930. * the GTT (if needed), allocating and programming a fence register (again,
  931. * only if needed based on whether the old reg is still valid or the object
  932. * is tiled) and inserting a new PTE into the faulting process.
  933. *
  934. * Note that the faulting process may involve evicting existing objects
  935. * from the GTT and/or fence registers to make room. So performance may
  936. * suffer if the GTT working set is large or there are few fence registers
  937. * left.
  938. */
  939. int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
  940. {
  941. struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
  942. struct drm_device *dev = obj->base.dev;
  943. drm_i915_private_t *dev_priv = dev->dev_private;
  944. pgoff_t page_offset;
  945. unsigned long pfn;
  946. int ret = 0;
  947. bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
  948. /* We don't use vmf->pgoff since that has the fake offset */
  949. page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
  950. PAGE_SHIFT;
  951. ret = i915_mutex_lock_interruptible(dev);
  952. if (ret)
  953. goto out;
  954. trace_i915_gem_object_fault(obj, page_offset, true, write);
  955. /* Now bind it into the GTT if needed */
  956. if (!obj->map_and_fenceable) {
  957. ret = i915_gem_object_unbind(obj);
  958. if (ret)
  959. goto unlock;
  960. }
  961. if (!obj->gtt_space) {
  962. ret = i915_gem_object_bind_to_gtt(obj, 0, true);
  963. if (ret)
  964. goto unlock;
  965. ret = i915_gem_object_set_to_gtt_domain(obj, write);
  966. if (ret)
  967. goto unlock;
  968. }
  969. if (obj->tiling_mode == I915_TILING_NONE)
  970. ret = i915_gem_object_put_fence(obj);
  971. else
  972. ret = i915_gem_object_get_fence(obj, NULL);
  973. if (ret)
  974. goto unlock;
  975. if (i915_gem_object_is_inactive(obj))
  976. list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
  977. obj->fault_mappable = true;
  978. pfn = ((dev->agp->base + obj->gtt_offset) >> PAGE_SHIFT) +
  979. page_offset;
  980. /* Finally, remap it using the new GTT offset */
  981. ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn);
  982. unlock:
  983. mutex_unlock(&dev->struct_mutex);
  984. out:
  985. switch (ret) {
  986. case -EIO:
  987. case -EAGAIN:
  988. /* Give the error handler a chance to run and move the
  989. * objects off the GPU active list. Next time we service the
  990. * fault, we should be able to transition the page into the
  991. * GTT without touching the GPU (and so avoid further
  992. * EIO/EGAIN). If the GPU is wedged, then there is no issue
  993. * with coherency, just lost writes.
  994. */
  995. set_need_resched();
  996. case 0:
  997. case -ERESTARTSYS:
  998. case -EINTR:
  999. return VM_FAULT_NOPAGE;
  1000. case -ENOMEM:
  1001. return VM_FAULT_OOM;
  1002. default:
  1003. return VM_FAULT_SIGBUS;
  1004. }
  1005. }
  1006. /**
  1007. * i915_gem_release_mmap - remove physical page mappings
  1008. * @obj: obj in question
  1009. *
  1010. * Preserve the reservation of the mmapping with the DRM core code, but
  1011. * relinquish ownership of the pages back to the system.
  1012. *
  1013. * It is vital that we remove the page mapping if we have mapped a tiled
  1014. * object through the GTT and then lose the fence register due to
  1015. * resource pressure. Similarly if the object has been moved out of the
  1016. * aperture, than pages mapped into userspace must be revoked. Removing the
  1017. * mapping will then trigger a page fault on the next user access, allowing
  1018. * fixup by i915_gem_fault().
  1019. */
  1020. void
  1021. i915_gem_release_mmap(struct drm_i915_gem_object *obj)
  1022. {
  1023. if (!obj->fault_mappable)
  1024. return;
  1025. if (obj->base.dev->dev_mapping)
  1026. unmap_mapping_range(obj->base.dev->dev_mapping,
  1027. (loff_t)obj->base.map_list.hash.key<<PAGE_SHIFT,
  1028. obj->base.size, 1);
  1029. obj->fault_mappable = false;
  1030. }
  1031. static uint32_t
  1032. i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
  1033. {
  1034. uint32_t gtt_size;
  1035. if (INTEL_INFO(dev)->gen >= 4 ||
  1036. tiling_mode == I915_TILING_NONE)
  1037. return size;
  1038. /* Previous chips need a power-of-two fence region when tiling */
  1039. if (INTEL_INFO(dev)->gen == 3)
  1040. gtt_size = 1024*1024;
  1041. else
  1042. gtt_size = 512*1024;
  1043. while (gtt_size < size)
  1044. gtt_size <<= 1;
  1045. return gtt_size;
  1046. }
  1047. /**
  1048. * i915_gem_get_gtt_alignment - return required GTT alignment for an object
  1049. * @obj: object to check
  1050. *
  1051. * Return the required GTT alignment for an object, taking into account
  1052. * potential fence register mapping.
  1053. */
  1054. static uint32_t
  1055. i915_gem_get_gtt_alignment(struct drm_device *dev,
  1056. uint32_t size,
  1057. int tiling_mode)
  1058. {
  1059. /*
  1060. * Minimum alignment is 4k (GTT page size), but might be greater
  1061. * if a fence register is needed for the object.
  1062. */
  1063. if (INTEL_INFO(dev)->gen >= 4 ||
  1064. tiling_mode == I915_TILING_NONE)
  1065. return 4096;
  1066. /*
  1067. * Previous chips need to be aligned to the size of the smallest
  1068. * fence register that can contain the object.
  1069. */
  1070. return i915_gem_get_gtt_size(dev, size, tiling_mode);
  1071. }
  1072. /**
  1073. * i915_gem_get_unfenced_gtt_alignment - return required GTT alignment for an
  1074. * unfenced object
  1075. * @dev: the device
  1076. * @size: size of the object
  1077. * @tiling_mode: tiling mode of the object
  1078. *
  1079. * Return the required GTT alignment for an object, only taking into account
  1080. * unfenced tiled surface requirements.
  1081. */
  1082. uint32_t
  1083. i915_gem_get_unfenced_gtt_alignment(struct drm_device *dev,
  1084. uint32_t size,
  1085. int tiling_mode)
  1086. {
  1087. /*
  1088. * Minimum alignment is 4k (GTT page size) for sane hw.
  1089. */
  1090. if (INTEL_INFO(dev)->gen >= 4 || IS_G33(dev) ||
  1091. tiling_mode == I915_TILING_NONE)
  1092. return 4096;
  1093. /* Previous hardware however needs to be aligned to a power-of-two
  1094. * tile height. The simplest method for determining this is to reuse
  1095. * the power-of-tile object size.
  1096. */
  1097. return i915_gem_get_gtt_size(dev, size, tiling_mode);
  1098. }
  1099. int
  1100. i915_gem_mmap_gtt(struct drm_file *file,
  1101. struct drm_device *dev,
  1102. uint32_t handle,
  1103. uint64_t *offset)
  1104. {
  1105. struct drm_i915_private *dev_priv = dev->dev_private;
  1106. struct drm_i915_gem_object *obj;
  1107. int ret;
  1108. if (!(dev->driver->driver_features & DRIVER_GEM))
  1109. return -ENODEV;
  1110. ret = i915_mutex_lock_interruptible(dev);
  1111. if (ret)
  1112. return ret;
  1113. obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
  1114. if (&obj->base == NULL) {
  1115. ret = -ENOENT;
  1116. goto unlock;
  1117. }
  1118. if (obj->base.size > dev_priv->mm.gtt_mappable_end) {
  1119. ret = -E2BIG;
  1120. goto out;
  1121. }
  1122. if (obj->madv != I915_MADV_WILLNEED) {
  1123. DRM_ERROR("Attempting to mmap a purgeable buffer\n");
  1124. ret = -EINVAL;
  1125. goto out;
  1126. }
  1127. if (!obj->base.map_list.map) {
  1128. ret = drm_gem_create_mmap_offset(&obj->base);
  1129. if (ret)
  1130. goto out;
  1131. }
  1132. *offset = (u64)obj->base.map_list.hash.key << PAGE_SHIFT;
  1133. out:
  1134. drm_gem_object_unreference(&obj->base);
  1135. unlock:
  1136. mutex_unlock(&dev->struct_mutex);
  1137. return ret;
  1138. }
  1139. /**
  1140. * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
  1141. * @dev: DRM device
  1142. * @data: GTT mapping ioctl data
  1143. * @file: GEM object info
  1144. *
  1145. * Simply returns the fake offset to userspace so it can mmap it.
  1146. * The mmap call will end up in drm_gem_mmap(), which will set things
  1147. * up so we can get faults in the handler above.
  1148. *
  1149. * The fault handler will take care of binding the object into the GTT
  1150. * (since it may have been evicted to make room for something), allocating
  1151. * a fence register, and mapping the appropriate aperture address into
  1152. * userspace.
  1153. */
  1154. int
  1155. i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
  1156. struct drm_file *file)
  1157. {
  1158. struct drm_i915_gem_mmap_gtt *args = data;
  1159. if (!(dev->driver->driver_features & DRIVER_GEM))
  1160. return -ENODEV;
  1161. return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
  1162. }
  1163. static int
  1164. i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj,
  1165. gfp_t gfpmask)
  1166. {
  1167. int page_count, i;
  1168. struct address_space *mapping;
  1169. struct inode *inode;
  1170. struct page *page;
  1171. /* Get the list of pages out of our struct file. They'll be pinned
  1172. * at this point until we release them.
  1173. */
  1174. page_count = obj->base.size / PAGE_SIZE;
  1175. BUG_ON(obj->pages != NULL);
  1176. obj->pages = drm_malloc_ab(page_count, sizeof(struct page *));
  1177. if (obj->pages == NULL)
  1178. return -ENOMEM;
  1179. inode = obj->base.filp->f_path.dentry->d_inode;
  1180. mapping = inode->i_mapping;
  1181. gfpmask |= mapping_gfp_mask(mapping);
  1182. for (i = 0; i < page_count; i++) {
  1183. page = shmem_read_mapping_page_gfp(mapping, i, gfpmask);
  1184. if (IS_ERR(page))
  1185. goto err_pages;
  1186. obj->pages[i] = page;
  1187. }
  1188. if (i915_gem_object_needs_bit17_swizzle(obj))
  1189. i915_gem_object_do_bit_17_swizzle(obj);
  1190. return 0;
  1191. err_pages:
  1192. while (i--)
  1193. page_cache_release(obj->pages[i]);
  1194. drm_free_large(obj->pages);
  1195. obj->pages = NULL;
  1196. return PTR_ERR(page);
  1197. }
  1198. static void
  1199. i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
  1200. {
  1201. int page_count = obj->base.size / PAGE_SIZE;
  1202. int i;
  1203. BUG_ON(obj->madv == __I915_MADV_PURGED);
  1204. if (i915_gem_object_needs_bit17_swizzle(obj))
  1205. i915_gem_object_save_bit_17_swizzle(obj);
  1206. if (obj->madv == I915_MADV_DONTNEED)
  1207. obj->dirty = 0;
  1208. for (i = 0; i < page_count; i++) {
  1209. if (obj->dirty)
  1210. set_page_dirty(obj->pages[i]);
  1211. if (obj->madv == I915_MADV_WILLNEED)
  1212. mark_page_accessed(obj->pages[i]);
  1213. page_cache_release(obj->pages[i]);
  1214. }
  1215. obj->dirty = 0;
  1216. drm_free_large(obj->pages);
  1217. obj->pages = NULL;
  1218. }
  1219. void
  1220. i915_gem_object_move_to_active(struct drm_i915_gem_object *obj,
  1221. struct intel_ring_buffer *ring,
  1222. u32 seqno)
  1223. {
  1224. struct drm_device *dev = obj->base.dev;
  1225. struct drm_i915_private *dev_priv = dev->dev_private;
  1226. BUG_ON(ring == NULL);
  1227. obj->ring = ring;
  1228. /* Add a reference if we're newly entering the active list. */
  1229. if (!obj->active) {
  1230. drm_gem_object_reference(&obj->base);
  1231. obj->active = 1;
  1232. }
  1233. /* Move from whatever list we were on to the tail of execution. */
  1234. list_move_tail(&obj->mm_list, &dev_priv->mm.active_list);
  1235. list_move_tail(&obj->ring_list, &ring->active_list);
  1236. obj->last_rendering_seqno = seqno;
  1237. if (obj->fenced_gpu_access) {
  1238. struct drm_i915_fence_reg *reg;
  1239. BUG_ON(obj->fence_reg == I915_FENCE_REG_NONE);
  1240. obj->last_fenced_seqno = seqno;
  1241. obj->last_fenced_ring = ring;
  1242. reg = &dev_priv->fence_regs[obj->fence_reg];
  1243. list_move_tail(&reg->lru_list, &dev_priv->mm.fence_list);
  1244. }
  1245. }
  1246. static void
  1247. i915_gem_object_move_off_active(struct drm_i915_gem_object *obj)
  1248. {
  1249. list_del_init(&obj->ring_list);
  1250. obj->last_rendering_seqno = 0;
  1251. }
  1252. static void
  1253. i915_gem_object_move_to_flushing(struct drm_i915_gem_object *obj)
  1254. {
  1255. struct drm_device *dev = obj->base.dev;
  1256. drm_i915_private_t *dev_priv = dev->dev_private;
  1257. BUG_ON(!obj->active);
  1258. list_move_tail(&obj->mm_list, &dev_priv->mm.flushing_list);
  1259. i915_gem_object_move_off_active(obj);
  1260. }
  1261. static void
  1262. i915_gem_object_move_to_inactive(struct drm_i915_gem_object *obj)
  1263. {
  1264. struct drm_device *dev = obj->base.dev;
  1265. struct drm_i915_private *dev_priv = dev->dev_private;
  1266. if (obj->pin_count != 0)
  1267. list_move_tail(&obj->mm_list, &dev_priv->mm.pinned_list);
  1268. else
  1269. list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
  1270. BUG_ON(!list_empty(&obj->gpu_write_list));
  1271. BUG_ON(!obj->active);
  1272. obj->ring = NULL;
  1273. i915_gem_object_move_off_active(obj);
  1274. obj->fenced_gpu_access = false;
  1275. obj->active = 0;
  1276. obj->pending_gpu_write = false;
  1277. drm_gem_object_unreference(&obj->base);
  1278. WARN_ON(i915_verify_lists(dev));
  1279. }
  1280. /* Immediately discard the backing storage */
  1281. static void
  1282. i915_gem_object_truncate(struct drm_i915_gem_object *obj)
  1283. {
  1284. struct inode *inode;
  1285. /* Our goal here is to return as much of the memory as
  1286. * is possible back to the system as we are called from OOM.
  1287. * To do this we must instruct the shmfs to drop all of its
  1288. * backing pages, *now*.
  1289. */
  1290. inode = obj->base.filp->f_path.dentry->d_inode;
  1291. shmem_truncate_range(inode, 0, (loff_t)-1);
  1292. obj->madv = __I915_MADV_PURGED;
  1293. }
  1294. static inline int
  1295. i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj)
  1296. {
  1297. return obj->madv == I915_MADV_DONTNEED;
  1298. }
  1299. static void
  1300. i915_gem_process_flushing_list(struct intel_ring_buffer *ring,
  1301. uint32_t flush_domains)
  1302. {
  1303. struct drm_i915_gem_object *obj, *next;
  1304. list_for_each_entry_safe(obj, next,
  1305. &ring->gpu_write_list,
  1306. gpu_write_list) {
  1307. if (obj->base.write_domain & flush_domains) {
  1308. uint32_t old_write_domain = obj->base.write_domain;
  1309. obj->base.write_domain = 0;
  1310. list_del_init(&obj->gpu_write_list);
  1311. i915_gem_object_move_to_active(obj, ring,
  1312. i915_gem_next_request_seqno(ring));
  1313. trace_i915_gem_object_change_domain(obj,
  1314. obj->base.read_domains,
  1315. old_write_domain);
  1316. }
  1317. }
  1318. }
  1319. static u32
  1320. i915_gem_get_seqno(struct drm_device *dev)
  1321. {
  1322. drm_i915_private_t *dev_priv = dev->dev_private;
  1323. u32 seqno = dev_priv->next_seqno;
  1324. /* reserve 0 for non-seqno */
  1325. if (++dev_priv->next_seqno == 0)
  1326. dev_priv->next_seqno = 1;
  1327. return seqno;
  1328. }
  1329. u32
  1330. i915_gem_next_request_seqno(struct intel_ring_buffer *ring)
  1331. {
  1332. if (ring->outstanding_lazy_request == 0)
  1333. ring->outstanding_lazy_request = i915_gem_get_seqno(ring->dev);
  1334. return ring->outstanding_lazy_request;
  1335. }
  1336. int
  1337. i915_add_request(struct intel_ring_buffer *ring,
  1338. struct drm_file *file,
  1339. struct drm_i915_gem_request *request)
  1340. {
  1341. drm_i915_private_t *dev_priv = ring->dev->dev_private;
  1342. uint32_t seqno;
  1343. u32 request_ring_position;
  1344. int was_empty;
  1345. int ret;
  1346. BUG_ON(request == NULL);
  1347. seqno = i915_gem_next_request_seqno(ring);
  1348. /* Record the position of the start of the request so that
  1349. * should we detect the updated seqno part-way through the
  1350. * GPU processing the request, we never over-estimate the
  1351. * position of the head.
  1352. */
  1353. request_ring_position = intel_ring_get_tail(ring);
  1354. ret = ring->add_request(ring, &seqno);
  1355. if (ret)
  1356. return ret;
  1357. trace_i915_gem_request_add(ring, seqno);
  1358. request->seqno = seqno;
  1359. request->ring = ring;
  1360. request->tail = request_ring_position;
  1361. request->emitted_jiffies = jiffies;
  1362. was_empty = list_empty(&ring->request_list);
  1363. list_add_tail(&request->list, &ring->request_list);
  1364. if (file) {
  1365. struct drm_i915_file_private *file_priv = file->driver_priv;
  1366. spin_lock(&file_priv->mm.lock);
  1367. request->file_priv = file_priv;
  1368. list_add_tail(&request->client_list,
  1369. &file_priv->mm.request_list);
  1370. spin_unlock(&file_priv->mm.lock);
  1371. }
  1372. ring->outstanding_lazy_request = 0;
  1373. if (!dev_priv->mm.suspended) {
  1374. if (i915_enable_hangcheck) {
  1375. mod_timer(&dev_priv->hangcheck_timer,
  1376. jiffies +
  1377. msecs_to_jiffies(DRM_I915_HANGCHECK_PERIOD));
  1378. }
  1379. if (was_empty)
  1380. queue_delayed_work(dev_priv->wq,
  1381. &dev_priv->mm.retire_work, HZ);
  1382. }
  1383. return 0;
  1384. }
  1385. static inline void
  1386. i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
  1387. {
  1388. struct drm_i915_file_private *file_priv = request->file_priv;
  1389. if (!file_priv)
  1390. return;
  1391. spin_lock(&file_priv->mm.lock);
  1392. if (request->file_priv) {
  1393. list_del(&request->client_list);
  1394. request->file_priv = NULL;
  1395. }
  1396. spin_unlock(&file_priv->mm.lock);
  1397. }
  1398. static void i915_gem_reset_ring_lists(struct drm_i915_private *dev_priv,
  1399. struct intel_ring_buffer *ring)
  1400. {
  1401. while (!list_empty(&ring->request_list)) {
  1402. struct drm_i915_gem_request *request;
  1403. request = list_first_entry(&ring->request_list,
  1404. struct drm_i915_gem_request,
  1405. list);
  1406. list_del(&request->list);
  1407. i915_gem_request_remove_from_client(request);
  1408. kfree(request);
  1409. }
  1410. while (!list_empty(&ring->active_list)) {
  1411. struct drm_i915_gem_object *obj;
  1412. obj = list_first_entry(&ring->active_list,
  1413. struct drm_i915_gem_object,
  1414. ring_list);
  1415. obj->base.write_domain = 0;
  1416. list_del_init(&obj->gpu_write_list);
  1417. i915_gem_object_move_to_inactive(obj);
  1418. }
  1419. }
  1420. static void i915_gem_reset_fences(struct drm_device *dev)
  1421. {
  1422. struct drm_i915_private *dev_priv = dev->dev_private;
  1423. int i;
  1424. for (i = 0; i < dev_priv->num_fence_regs; i++) {
  1425. struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
  1426. struct drm_i915_gem_object *obj = reg->obj;
  1427. if (!obj)
  1428. continue;
  1429. if (obj->tiling_mode)
  1430. i915_gem_release_mmap(obj);
  1431. reg->obj->fence_reg = I915_FENCE_REG_NONE;
  1432. reg->obj->fenced_gpu_access = false;
  1433. reg->obj->last_fenced_seqno = 0;
  1434. reg->obj->last_fenced_ring = NULL;
  1435. i915_gem_clear_fence_reg(dev, reg);
  1436. }
  1437. }
  1438. void i915_gem_reset(struct drm_device *dev)
  1439. {
  1440. struct drm_i915_private *dev_priv = dev->dev_private;
  1441. struct drm_i915_gem_object *obj;
  1442. int i;
  1443. for (i = 0; i < I915_NUM_RINGS; i++)
  1444. i915_gem_reset_ring_lists(dev_priv, &dev_priv->ring[i]);
  1445. /* Remove anything from the flushing lists. The GPU cache is likely
  1446. * to be lost on reset along with the data, so simply move the
  1447. * lost bo to the inactive list.
  1448. */
  1449. while (!list_empty(&dev_priv->mm.flushing_list)) {
  1450. obj = list_first_entry(&dev_priv->mm.flushing_list,
  1451. struct drm_i915_gem_object,
  1452. mm_list);
  1453. obj->base.write_domain = 0;
  1454. list_del_init(&obj->gpu_write_list);
  1455. i915_gem_object_move_to_inactive(obj);
  1456. }
  1457. /* Move everything out of the GPU domains to ensure we do any
  1458. * necessary invalidation upon reuse.
  1459. */
  1460. list_for_each_entry(obj,
  1461. &dev_priv->mm.inactive_list,
  1462. mm_list)
  1463. {
  1464. obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
  1465. }
  1466. /* The fence registers are invalidated so clear them out */
  1467. i915_gem_reset_fences(dev);
  1468. }
  1469. /**
  1470. * This function clears the request list as sequence numbers are passed.
  1471. */
  1472. void
  1473. i915_gem_retire_requests_ring(struct intel_ring_buffer *ring)
  1474. {
  1475. uint32_t seqno;
  1476. int i;
  1477. if (list_empty(&ring->request_list))
  1478. return;
  1479. WARN_ON(i915_verify_lists(ring->dev));
  1480. seqno = ring->get_seqno(ring);
  1481. for (i = 0; i < ARRAY_SIZE(ring->sync_seqno); i++)
  1482. if (seqno >= ring->sync_seqno[i])
  1483. ring->sync_seqno[i] = 0;
  1484. while (!list_empty(&ring->request_list)) {
  1485. struct drm_i915_gem_request *request;
  1486. request = list_first_entry(&ring->request_list,
  1487. struct drm_i915_gem_request,
  1488. list);
  1489. if (!i915_seqno_passed(seqno, request->seqno))
  1490. break;
  1491. trace_i915_gem_request_retire(ring, request->seqno);
  1492. /* We know the GPU must have read the request to have
  1493. * sent us the seqno + interrupt, so use the position
  1494. * of tail of the request to update the last known position
  1495. * of the GPU head.
  1496. */
  1497. ring->last_retired_head = request->tail;
  1498. list_del(&request->list);
  1499. i915_gem_request_remove_from_client(request);
  1500. kfree(request);
  1501. }
  1502. /* Move any buffers on the active list that are no longer referenced
  1503. * by the ringbuffer to the flushing/inactive lists as appropriate.
  1504. */
  1505. while (!list_empty(&ring->active_list)) {
  1506. struct drm_i915_gem_object *obj;
  1507. obj = list_first_entry(&ring->active_list,
  1508. struct drm_i915_gem_object,
  1509. ring_list);
  1510. if (!i915_seqno_passed(seqno, obj->last_rendering_seqno))
  1511. break;
  1512. if (obj->base.write_domain != 0)
  1513. i915_gem_object_move_to_flushing(obj);
  1514. else
  1515. i915_gem_object_move_to_inactive(obj);
  1516. }
  1517. if (unlikely(ring->trace_irq_seqno &&
  1518. i915_seqno_passed(seqno, ring->trace_irq_seqno))) {
  1519. ring->irq_put(ring);
  1520. ring->trace_irq_seqno = 0;
  1521. }
  1522. WARN_ON(i915_verify_lists(ring->dev));
  1523. }
  1524. void
  1525. i915_gem_retire_requests(struct drm_device *dev)
  1526. {
  1527. drm_i915_private_t *dev_priv = dev->dev_private;
  1528. int i;
  1529. if (!list_empty(&dev_priv->mm.deferred_free_list)) {
  1530. struct drm_i915_gem_object *obj, *next;
  1531. /* We must be careful that during unbind() we do not
  1532. * accidentally infinitely recurse into retire requests.
  1533. * Currently:
  1534. * retire -> free -> unbind -> wait -> retire_ring
  1535. */
  1536. list_for_each_entry_safe(obj, next,
  1537. &dev_priv->mm.deferred_free_list,
  1538. mm_list)
  1539. i915_gem_free_object_tail(obj);
  1540. }
  1541. for (i = 0; i < I915_NUM_RINGS; i++)
  1542. i915_gem_retire_requests_ring(&dev_priv->ring[i]);
  1543. }
  1544. static void
  1545. i915_gem_retire_work_handler(struct work_struct *work)
  1546. {
  1547. drm_i915_private_t *dev_priv;
  1548. struct drm_device *dev;
  1549. bool idle;
  1550. int i;
  1551. dev_priv = container_of(work, drm_i915_private_t,
  1552. mm.retire_work.work);
  1553. dev = dev_priv->dev;
  1554. /* Come back later if the device is busy... */
  1555. if (!mutex_trylock(&dev->struct_mutex)) {
  1556. queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
  1557. return;
  1558. }
  1559. i915_gem_retire_requests(dev);
  1560. /* Send a periodic flush down the ring so we don't hold onto GEM
  1561. * objects indefinitely.
  1562. */
  1563. idle = true;
  1564. for (i = 0; i < I915_NUM_RINGS; i++) {
  1565. struct intel_ring_buffer *ring = &dev_priv->ring[i];
  1566. if (!list_empty(&ring->gpu_write_list)) {
  1567. struct drm_i915_gem_request *request;
  1568. int ret;
  1569. ret = i915_gem_flush_ring(ring,
  1570. 0, I915_GEM_GPU_DOMAINS);
  1571. request = kzalloc(sizeof(*request), GFP_KERNEL);
  1572. if (ret || request == NULL ||
  1573. i915_add_request(ring, NULL, request))
  1574. kfree(request);
  1575. }
  1576. idle &= list_empty(&ring->request_list);
  1577. }
  1578. if (!dev_priv->mm.suspended && !idle)
  1579. queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
  1580. mutex_unlock(&dev->struct_mutex);
  1581. }
  1582. /**
  1583. * Waits for a sequence number to be signaled, and cleans up the
  1584. * request and object lists appropriately for that event.
  1585. */
  1586. int
  1587. i915_wait_request(struct intel_ring_buffer *ring,
  1588. uint32_t seqno,
  1589. bool do_retire)
  1590. {
  1591. drm_i915_private_t *dev_priv = ring->dev->dev_private;
  1592. u32 ier;
  1593. int ret = 0;
  1594. BUG_ON(seqno == 0);
  1595. if (atomic_read(&dev_priv->mm.wedged)) {
  1596. struct completion *x = &dev_priv->error_completion;
  1597. bool recovery_complete;
  1598. unsigned long flags;
  1599. /* Give the error handler a chance to run. */
  1600. spin_lock_irqsave(&x->wait.lock, flags);
  1601. recovery_complete = x->done > 0;
  1602. spin_unlock_irqrestore(&x->wait.lock, flags);
  1603. return recovery_complete ? -EIO : -EAGAIN;
  1604. }
  1605. if (seqno == ring->outstanding_lazy_request) {
  1606. struct drm_i915_gem_request *request;
  1607. request = kzalloc(sizeof(*request), GFP_KERNEL);
  1608. if (request == NULL)
  1609. return -ENOMEM;
  1610. ret = i915_add_request(ring, NULL, request);
  1611. if (ret) {
  1612. kfree(request);
  1613. return ret;
  1614. }
  1615. seqno = request->seqno;
  1616. }
  1617. if (!i915_seqno_passed(ring->get_seqno(ring), seqno)) {
  1618. if (HAS_PCH_SPLIT(ring->dev))
  1619. ier = I915_READ(DEIER) | I915_READ(GTIER);
  1620. else
  1621. ier = I915_READ(IER);
  1622. if (!ier) {
  1623. DRM_ERROR("something (likely vbetool) disabled "
  1624. "interrupts, re-enabling\n");
  1625. ring->dev->driver->irq_preinstall(ring->dev);
  1626. ring->dev->driver->irq_postinstall(ring->dev);
  1627. }
  1628. trace_i915_gem_request_wait_begin(ring, seqno);
  1629. ring->waiting_seqno = seqno;
  1630. if (ring->irq_get(ring)) {
  1631. if (dev_priv->mm.interruptible)
  1632. ret = wait_event_interruptible(ring->irq_queue,
  1633. i915_seqno_passed(ring->get_seqno(ring), seqno)
  1634. || atomic_read(&dev_priv->mm.wedged));
  1635. else
  1636. wait_event(ring->irq_queue,
  1637. i915_seqno_passed(ring->get_seqno(ring), seqno)
  1638. || atomic_read(&dev_priv->mm.wedged));
  1639. ring->irq_put(ring);
  1640. } else if (wait_for_atomic(i915_seqno_passed(ring->get_seqno(ring),
  1641. seqno) ||
  1642. atomic_read(&dev_priv->mm.wedged), 3000))
  1643. ret = -EBUSY;
  1644. ring->waiting_seqno = 0;
  1645. trace_i915_gem_request_wait_end(ring, seqno);
  1646. }
  1647. if (atomic_read(&dev_priv->mm.wedged))
  1648. ret = -EAGAIN;
  1649. /* Directly dispatch request retiring. While we have the work queue
  1650. * to handle this, the waiter on a request often wants an associated
  1651. * buffer to have made it to the inactive list, and we would need
  1652. * a separate wait queue to handle that.
  1653. */
  1654. if (ret == 0 && do_retire)
  1655. i915_gem_retire_requests_ring(ring);
  1656. return ret;
  1657. }
  1658. /**
  1659. * Ensures that all rendering to the object has completed and the object is
  1660. * safe to unbind from the GTT or access from the CPU.
  1661. */
  1662. int
  1663. i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj)
  1664. {
  1665. int ret;
  1666. /* This function only exists to support waiting for existing rendering,
  1667. * not for emitting required flushes.
  1668. */
  1669. BUG_ON((obj->base.write_domain & I915_GEM_GPU_DOMAINS) != 0);
  1670. /* If there is rendering queued on the buffer being evicted, wait for
  1671. * it.
  1672. */
  1673. if (obj->active) {
  1674. ret = i915_wait_request(obj->ring, obj->last_rendering_seqno,
  1675. true);
  1676. if (ret)
  1677. return ret;
  1678. }
  1679. return 0;
  1680. }
  1681. static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
  1682. {
  1683. u32 old_write_domain, old_read_domains;
  1684. /* Act a barrier for all accesses through the GTT */
  1685. mb();
  1686. /* Force a pagefault for domain tracking on next user access */
  1687. i915_gem_release_mmap(obj);
  1688. if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
  1689. return;
  1690. old_read_domains = obj->base.read_domains;
  1691. old_write_domain = obj->base.write_domain;
  1692. obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
  1693. obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;
  1694. trace_i915_gem_object_change_domain(obj,
  1695. old_read_domains,
  1696. old_write_domain);
  1697. }
  1698. /**
  1699. * Unbinds an object from the GTT aperture.
  1700. */
  1701. int
  1702. i915_gem_object_unbind(struct drm_i915_gem_object *obj)
  1703. {
  1704. drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
  1705. int ret = 0;
  1706. if (obj->gtt_space == NULL)
  1707. return 0;
  1708. if (obj->pin_count != 0) {
  1709. DRM_ERROR("Attempting to unbind pinned buffer\n");
  1710. return -EINVAL;
  1711. }
  1712. ret = i915_gem_object_finish_gpu(obj);
  1713. if (ret == -ERESTARTSYS)
  1714. return ret;
  1715. /* Continue on if we fail due to EIO, the GPU is hung so we
  1716. * should be safe and we need to cleanup or else we might
  1717. * cause memory corruption through use-after-free.
  1718. */
  1719. i915_gem_object_finish_gtt(obj);
  1720. /* Move the object to the CPU domain to ensure that
  1721. * any possible CPU writes while it's not in the GTT
  1722. * are flushed when we go to remap it.
  1723. */
  1724. if (ret == 0)
  1725. ret = i915_gem_object_set_to_cpu_domain(obj, 1);
  1726. if (ret == -ERESTARTSYS)
  1727. return ret;
  1728. if (ret) {
  1729. /* In the event of a disaster, abandon all caches and
  1730. * hope for the best.
  1731. */
  1732. i915_gem_clflush_object(obj);
  1733. obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
  1734. }
  1735. /* release the fence reg _after_ flushing */
  1736. ret = i915_gem_object_put_fence(obj);
  1737. if (ret == -ERESTARTSYS)
  1738. return ret;
  1739. trace_i915_gem_object_unbind(obj);
  1740. i915_gem_gtt_unbind_object(obj);
  1741. if (obj->has_aliasing_ppgtt_mapping) {
  1742. i915_ppgtt_unbind_object(dev_priv->mm.aliasing_ppgtt, obj);
  1743. obj->has_aliasing_ppgtt_mapping = 0;
  1744. }
  1745. i915_gem_object_put_pages_gtt(obj);
  1746. list_del_init(&obj->gtt_list);
  1747. list_del_init(&obj->mm_list);
  1748. /* Avoid an unnecessary call to unbind on rebind. */
  1749. obj->map_and_fenceable = true;
  1750. drm_mm_put_block(obj->gtt_space);
  1751. obj->gtt_space = NULL;
  1752. obj->gtt_offset = 0;
  1753. if (i915_gem_object_is_purgeable(obj))
  1754. i915_gem_object_truncate(obj);
  1755. return ret;
  1756. }
  1757. int
  1758. i915_gem_flush_ring(struct intel_ring_buffer *ring,
  1759. uint32_t invalidate_domains,
  1760. uint32_t flush_domains)
  1761. {
  1762. int ret;
  1763. if (((invalidate_domains | flush_domains) & I915_GEM_GPU_DOMAINS) == 0)
  1764. return 0;
  1765. trace_i915_gem_ring_flush(ring, invalidate_domains, flush_domains);
  1766. ret = ring->flush(ring, invalidate_domains, flush_domains);
  1767. if (ret)
  1768. return ret;
  1769. if (flush_domains & I915_GEM_GPU_DOMAINS)
  1770. i915_gem_process_flushing_list(ring, flush_domains);
  1771. return 0;
  1772. }
  1773. static int i915_ring_idle(struct intel_ring_buffer *ring, bool do_retire)
  1774. {
  1775. int ret;
  1776. if (list_empty(&ring->gpu_write_list) && list_empty(&ring->active_list))
  1777. return 0;
  1778. if (!list_empty(&ring->gpu_write_list)) {
  1779. ret = i915_gem_flush_ring(ring,
  1780. I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
  1781. if (ret)
  1782. return ret;
  1783. }
  1784. return i915_wait_request(ring, i915_gem_next_request_seqno(ring),
  1785. do_retire);
  1786. }
  1787. int i915_gpu_idle(struct drm_device *dev, bool do_retire)
  1788. {
  1789. drm_i915_private_t *dev_priv = dev->dev_private;
  1790. int ret, i;
  1791. /* Flush everything onto the inactive list. */
  1792. for (i = 0; i < I915_NUM_RINGS; i++) {
  1793. ret = i915_ring_idle(&dev_priv->ring[i], do_retire);
  1794. if (ret)
  1795. return ret;
  1796. }
  1797. return 0;
  1798. }
  1799. static int sandybridge_write_fence_reg(struct drm_i915_gem_object *obj,
  1800. struct intel_ring_buffer *pipelined)
  1801. {
  1802. struct drm_device *dev = obj->base.dev;
  1803. drm_i915_private_t *dev_priv = dev->dev_private;
  1804. u32 size = obj->gtt_space->size;
  1805. int regnum = obj->fence_reg;
  1806. uint64_t val;
  1807. val = (uint64_t)((obj->gtt_offset + size - 4096) &
  1808. 0xfffff000) << 32;
  1809. val |= obj->gtt_offset & 0xfffff000;
  1810. val |= (uint64_t)((obj->stride / 128) - 1) <<
  1811. SANDYBRIDGE_FENCE_PITCH_SHIFT;
  1812. if (obj->tiling_mode == I915_TILING_Y)
  1813. val |= 1 << I965_FENCE_TILING_Y_SHIFT;
  1814. val |= I965_FENCE_REG_VALID;
  1815. if (pipelined) {
  1816. int ret = intel_ring_begin(pipelined, 6);
  1817. if (ret)
  1818. return ret;
  1819. intel_ring_emit(pipelined, MI_NOOP);
  1820. intel_ring_emit(pipelined, MI_LOAD_REGISTER_IMM(2));
  1821. intel_ring_emit(pipelined, FENCE_REG_SANDYBRIDGE_0 + regnum*8);
  1822. intel_ring_emit(pipelined, (u32)val);
  1823. intel_ring_emit(pipelined, FENCE_REG_SANDYBRIDGE_0 + regnum*8 + 4);
  1824. intel_ring_emit(pipelined, (u32)(val >> 32));
  1825. intel_ring_advance(pipelined);
  1826. } else
  1827. I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + regnum * 8, val);
  1828. return 0;
  1829. }
  1830. static int i965_write_fence_reg(struct drm_i915_gem_object *obj,
  1831. struct intel_ring_buffer *pipelined)
  1832. {
  1833. struct drm_device *dev = obj->base.dev;
  1834. drm_i915_private_t *dev_priv = dev->dev_private;
  1835. u32 size = obj->gtt_space->size;
  1836. int regnum = obj->fence_reg;
  1837. uint64_t val;
  1838. val = (uint64_t)((obj->gtt_offset + size - 4096) &
  1839. 0xfffff000) << 32;
  1840. val |= obj->gtt_offset & 0xfffff000;
  1841. val |= ((obj->stride / 128) - 1) << I965_FENCE_PITCH_SHIFT;
  1842. if (obj->tiling_mode == I915_TILING_Y)
  1843. val |= 1 << I965_FENCE_TILING_Y_SHIFT;
  1844. val |= I965_FENCE_REG_VALID;
  1845. if (pipelined) {
  1846. int ret = intel_ring_begin(pipelined, 6);
  1847. if (ret)
  1848. return ret;
  1849. intel_ring_emit(pipelined, MI_NOOP);
  1850. intel_ring_emit(pipelined, MI_LOAD_REGISTER_IMM(2));
  1851. intel_ring_emit(pipelined, FENCE_REG_965_0 + regnum*8);
  1852. intel_ring_emit(pipelined, (u32)val);
  1853. intel_ring_emit(pipelined, FENCE_REG_965_0 + regnum*8 + 4);
  1854. intel_ring_emit(pipelined, (u32)(val >> 32));
  1855. intel_ring_advance(pipelined);
  1856. } else
  1857. I915_WRITE64(FENCE_REG_965_0 + regnum * 8, val);
  1858. return 0;
  1859. }
  1860. static int i915_write_fence_reg(struct drm_i915_gem_object *obj,
  1861. struct intel_ring_buffer *pipelined)
  1862. {
  1863. struct drm_device *dev = obj->base.dev;
  1864. drm_i915_private_t *dev_priv = dev->dev_private;
  1865. u32 size = obj->gtt_space->size;
  1866. u32 fence_reg, val, pitch_val;
  1867. int tile_width;
  1868. if (WARN((obj->gtt_offset & ~I915_FENCE_START_MASK) ||
  1869. (size & -size) != size ||
  1870. (obj->gtt_offset & (size - 1)),
  1871. "object 0x%08x [fenceable? %d] not 1M or pot-size (0x%08x) aligned\n",
  1872. obj->gtt_offset, obj->map_and_fenceable, size))
  1873. return -EINVAL;
  1874. if (obj->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev))
  1875. tile_width = 128;
  1876. else
  1877. tile_width = 512;
  1878. /* Note: pitch better be a power of two tile widths */
  1879. pitch_val = obj->stride / tile_width;
  1880. pitch_val = ffs(pitch_val) - 1;
  1881. val = obj->gtt_offset;
  1882. if (obj->tiling_mode == I915_TILING_Y)
  1883. val |= 1 << I830_FENCE_TILING_Y_SHIFT;
  1884. val |= I915_FENCE_SIZE_BITS(size);
  1885. val |= pitch_val << I830_FENCE_PITCH_SHIFT;
  1886. val |= I830_FENCE_REG_VALID;
  1887. fence_reg = obj->fence_reg;
  1888. if (fence_reg < 8)
  1889. fence_reg = FENCE_REG_830_0 + fence_reg * 4;
  1890. else
  1891. fence_reg = FENCE_REG_945_8 + (fence_reg - 8) * 4;
  1892. if (pipelined) {
  1893. int ret = intel_ring_begin(pipelined, 4);
  1894. if (ret)
  1895. return ret;
  1896. intel_ring_emit(pipelined, MI_NOOP);
  1897. intel_ring_emit(pipelined, MI_LOAD_REGISTER_IMM(1));
  1898. intel_ring_emit(pipelined, fence_reg);
  1899. intel_ring_emit(pipelined, val);
  1900. intel_ring_advance(pipelined);
  1901. } else
  1902. I915_WRITE(fence_reg, val);
  1903. return 0;
  1904. }
  1905. static int i830_write_fence_reg(struct drm_i915_gem_object *obj,
  1906. struct intel_ring_buffer *pipelined)
  1907. {
  1908. struct drm_device *dev = obj->base.dev;
  1909. drm_i915_private_t *dev_priv = dev->dev_private;
  1910. u32 size = obj->gtt_space->size;
  1911. int regnum = obj->fence_reg;
  1912. uint32_t val;
  1913. uint32_t pitch_val;
  1914. if (WARN((obj->gtt_offset & ~I830_FENCE_START_MASK) ||
  1915. (size & -size) != size ||
  1916. (obj->gtt_offset & (size - 1)),
  1917. "object 0x%08x not 512K or pot-size 0x%08x aligned\n",
  1918. obj->gtt_offset, size))
  1919. return -EINVAL;
  1920. pitch_val = obj->stride / 128;
  1921. pitch_val = ffs(pitch_val) - 1;
  1922. val = obj->gtt_offset;
  1923. if (obj->tiling_mode == I915_TILING_Y)
  1924. val |= 1 << I830_FENCE_TILING_Y_SHIFT;
  1925. val |= I830_FENCE_SIZE_BITS(size);
  1926. val |= pitch_val << I830_FENCE_PITCH_SHIFT;
  1927. val |= I830_FENCE_REG_VALID;
  1928. if (pipelined) {
  1929. int ret = intel_ring_begin(pipelined, 4);
  1930. if (ret)
  1931. return ret;
  1932. intel_ring_emit(pipelined, MI_NOOP);
  1933. intel_ring_emit(pipelined, MI_LOAD_REGISTER_IMM(1));
  1934. intel_ring_emit(pipelined, FENCE_REG_830_0 + regnum*4);
  1935. intel_ring_emit(pipelined, val);
  1936. intel_ring_advance(pipelined);
  1937. } else
  1938. I915_WRITE(FENCE_REG_830_0 + regnum * 4, val);
  1939. return 0;
  1940. }
  1941. static bool ring_passed_seqno(struct intel_ring_buffer *ring, u32 seqno)
  1942. {
  1943. return i915_seqno_passed(ring->get_seqno(ring), seqno);
  1944. }
  1945. static int
  1946. i915_gem_object_flush_fence(struct drm_i915_gem_object *obj,
  1947. struct intel_ring_buffer *pipelined)
  1948. {
  1949. int ret;
  1950. if (obj->fenced_gpu_access) {
  1951. if (obj->base.write_domain & I915_GEM_GPU_DOMAINS) {
  1952. ret = i915_gem_flush_ring(obj->last_fenced_ring,
  1953. 0, obj->base.write_domain);
  1954. if (ret)
  1955. return ret;
  1956. }
  1957. obj->fenced_gpu_access = false;
  1958. }
  1959. if (obj->last_fenced_seqno && pipelined != obj->last_fenced_ring) {
  1960. if (!ring_passed_seqno(obj->last_fenced_ring,
  1961. obj->last_fenced_seqno)) {
  1962. ret = i915_wait_request(obj->last_fenced_ring,
  1963. obj->last_fenced_seqno,
  1964. true);
  1965. if (ret)
  1966. return ret;
  1967. }
  1968. obj->last_fenced_seqno = 0;
  1969. obj->last_fenced_ring = NULL;
  1970. }
  1971. /* Ensure that all CPU reads are completed before installing a fence
  1972. * and all writes before removing the fence.
  1973. */
  1974. if (obj->base.read_domains & I915_GEM_DOMAIN_GTT)
  1975. mb();
  1976. return 0;
  1977. }
  1978. int
  1979. i915_gem_object_put_fence(struct drm_i915_gem_object *obj)
  1980. {
  1981. int ret;
  1982. if (obj->tiling_mode)
  1983. i915_gem_release_mmap(obj);
  1984. ret = i915_gem_object_flush_fence(obj, NULL);
  1985. if (ret)
  1986. return ret;
  1987. if (obj->fence_reg != I915_FENCE_REG_NONE) {
  1988. struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
  1989. WARN_ON(dev_priv->fence_regs[obj->fence_reg].pin_count);
  1990. i915_gem_clear_fence_reg(obj->base.dev,
  1991. &dev_priv->fence_regs[obj->fence_reg]);
  1992. obj->fence_reg = I915_FENCE_REG_NONE;
  1993. }
  1994. return 0;
  1995. }
  1996. static struct drm_i915_fence_reg *
  1997. i915_find_fence_reg(struct drm_device *dev,
  1998. struct intel_ring_buffer *pipelined)
  1999. {
  2000. struct drm_i915_private *dev_priv = dev->dev_private;
  2001. struct drm_i915_fence_reg *reg, *first, *avail;
  2002. int i;
  2003. /* First try to find a free reg */
  2004. avail = NULL;
  2005. for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
  2006. reg = &dev_priv->fence_regs[i];
  2007. if (!reg->obj)
  2008. return reg;
  2009. if (!reg->pin_count)
  2010. avail = reg;
  2011. }
  2012. if (avail == NULL)
  2013. return NULL;
  2014. /* None available, try to steal one or wait for a user to finish */
  2015. avail = first = NULL;
  2016. list_for_each_entry(reg, &dev_priv->mm.fence_list, lru_list) {
  2017. if (reg->pin_count)
  2018. continue;
  2019. if (first == NULL)
  2020. first = reg;
  2021. if (!pipelined ||
  2022. !reg->obj->last_fenced_ring ||
  2023. reg->obj->last_fenced_ring == pipelined) {
  2024. avail = reg;
  2025. break;
  2026. }
  2027. }
  2028. if (avail == NULL)
  2029. avail = first;
  2030. return avail;
  2031. }
  2032. /**
  2033. * i915_gem_object_get_fence - set up a fence reg for an object
  2034. * @obj: object to map through a fence reg
  2035. * @pipelined: ring on which to queue the change, or NULL for CPU access
  2036. * @interruptible: must we wait uninterruptibly for the register to retire?
  2037. *
  2038. * When mapping objects through the GTT, userspace wants to be able to write
  2039. * to them without having to worry about swizzling if the object is tiled.
  2040. *
  2041. * This function walks the fence regs looking for a free one for @obj,
  2042. * stealing one if it can't find any.
  2043. *
  2044. * It then sets up the reg based on the object's properties: address, pitch
  2045. * and tiling format.
  2046. */
  2047. int
  2048. i915_gem_object_get_fence(struct drm_i915_gem_object *obj,
  2049. struct intel_ring_buffer *pipelined)
  2050. {
  2051. struct drm_device *dev = obj->base.dev;
  2052. struct drm_i915_private *dev_priv = dev->dev_private;
  2053. struct drm_i915_fence_reg *reg;
  2054. int ret;
  2055. /* XXX disable pipelining. There are bugs. Shocking. */
  2056. pipelined = NULL;
  2057. /* Just update our place in the LRU if our fence is getting reused. */
  2058. if (obj->fence_reg != I915_FENCE_REG_NONE) {
  2059. reg = &dev_priv->fence_regs[obj->fence_reg];
  2060. list_move_tail(&reg->lru_list, &dev_priv->mm.fence_list);
  2061. if (obj->tiling_changed) {
  2062. ret = i915_gem_object_flush_fence(obj, pipelined);
  2063. if (ret)
  2064. return ret;
  2065. if (!obj->fenced_gpu_access && !obj->last_fenced_seqno)
  2066. pipelined = NULL;
  2067. if (pipelined) {
  2068. reg->setup_seqno =
  2069. i915_gem_next_request_seqno(pipelined);
  2070. obj->last_fenced_seqno = reg->setup_seqno;
  2071. obj->last_fenced_ring = pipelined;
  2072. }
  2073. goto update;
  2074. }
  2075. if (!pipelined) {
  2076. if (reg->setup_seqno) {
  2077. if (!ring_passed_seqno(obj->last_fenced_ring,
  2078. reg->setup_seqno)) {
  2079. ret = i915_wait_request(obj->last_fenced_ring,
  2080. reg->setup_seqno,
  2081. true);
  2082. if (ret)
  2083. return ret;
  2084. }
  2085. reg->setup_seqno = 0;
  2086. }
  2087. } else if (obj->last_fenced_ring &&
  2088. obj->last_fenced_ring != pipelined) {
  2089. ret = i915_gem_object_flush_fence(obj, pipelined);
  2090. if (ret)
  2091. return ret;
  2092. }
  2093. return 0;
  2094. }
  2095. reg = i915_find_fence_reg(dev, pipelined);
  2096. if (reg == NULL)
  2097. return -EDEADLK;
  2098. ret = i915_gem_object_flush_fence(obj, pipelined);
  2099. if (ret)
  2100. return ret;
  2101. if (reg->obj) {
  2102. struct drm_i915_gem_object *old = reg->obj;
  2103. drm_gem_object_reference(&old->base);
  2104. if (old->tiling_mode)
  2105. i915_gem_release_mmap(old);
  2106. ret = i915_gem_object_flush_fence(old, pipelined);
  2107. if (ret) {
  2108. drm_gem_object_unreference(&old->base);
  2109. return ret;
  2110. }
  2111. if (old->last_fenced_seqno == 0 && obj->last_fenced_seqno == 0)
  2112. pipelined = NULL;
  2113. old->fence_reg = I915_FENCE_REG_NONE;
  2114. old->last_fenced_ring = pipelined;
  2115. old->last_fenced_seqno =
  2116. pipelined ? i915_gem_next_request_seqno(pipelined) : 0;
  2117. drm_gem_object_unreference(&old->base);
  2118. } else if (obj->last_fenced_seqno == 0)
  2119. pipelined = NULL;
  2120. reg->obj = obj;
  2121. list_move_tail(&reg->lru_list, &dev_priv->mm.fence_list);
  2122. obj->fence_reg = reg - dev_priv->fence_regs;
  2123. obj->last_fenced_ring = pipelined;
  2124. reg->setup_seqno =
  2125. pipelined ? i915_gem_next_request_seqno(pipelined) : 0;
  2126. obj->last_fenced_seqno = reg->setup_seqno;
  2127. update:
  2128. obj->tiling_changed = false;
  2129. switch (INTEL_INFO(dev)->gen) {
  2130. case 7:
  2131. case 6:
  2132. ret = sandybridge_write_fence_reg(obj, pipelined);
  2133. break;
  2134. case 5:
  2135. case 4:
  2136. ret = i965_write_fence_reg(obj, pipelined);
  2137. break;
  2138. case 3:
  2139. ret = i915_write_fence_reg(obj, pipelined);
  2140. break;
  2141. case 2:
  2142. ret = i830_write_fence_reg(obj, pipelined);
  2143. break;
  2144. }
  2145. return ret;
  2146. }
  2147. /**
  2148. * i915_gem_clear_fence_reg - clear out fence register info
  2149. * @obj: object to clear
  2150. *
  2151. * Zeroes out the fence register itself and clears out the associated
  2152. * data structures in dev_priv and obj.
  2153. */
  2154. static void
  2155. i915_gem_clear_fence_reg(struct drm_device *dev,
  2156. struct drm_i915_fence_reg *reg)
  2157. {
  2158. drm_i915_private_t *dev_priv = dev->dev_private;
  2159. uint32_t fence_reg = reg - dev_priv->fence_regs;
  2160. switch (INTEL_INFO(dev)->gen) {
  2161. case 7:
  2162. case 6:
  2163. I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + fence_reg*8, 0);
  2164. break;
  2165. case 5:
  2166. case 4:
  2167. I915_WRITE64(FENCE_REG_965_0 + fence_reg*8, 0);
  2168. break;
  2169. case 3:
  2170. if (fence_reg >= 8)
  2171. fence_reg = FENCE_REG_945_8 + (fence_reg - 8) * 4;
  2172. else
  2173. case 2:
  2174. fence_reg = FENCE_REG_830_0 + fence_reg * 4;
  2175. I915_WRITE(fence_reg, 0);
  2176. break;
  2177. }
  2178. list_del_init(&reg->lru_list);
  2179. reg->obj = NULL;
  2180. reg->setup_seqno = 0;
  2181. reg->pin_count = 0;
  2182. }
  2183. /**
  2184. * Finds free space in the GTT aperture and binds the object there.
  2185. */
  2186. static int
  2187. i915_gem_object_bind_to_gtt(struct drm_i915_gem_object *obj,
  2188. unsigned alignment,
  2189. bool map_and_fenceable)
  2190. {
  2191. struct drm_device *dev = obj->base.dev;
  2192. drm_i915_private_t *dev_priv = dev->dev_private;
  2193. struct drm_mm_node *free_space;
  2194. gfp_t gfpmask = __GFP_NORETRY | __GFP_NOWARN;
  2195. u32 size, fence_size, fence_alignment, unfenced_alignment;
  2196. bool mappable, fenceable;
  2197. int ret;
  2198. if (obj->madv != I915_MADV_WILLNEED) {
  2199. DRM_ERROR("Attempting to bind a purgeable object\n");
  2200. return -EINVAL;
  2201. }
  2202. fence_size = i915_gem_get_gtt_size(dev,
  2203. obj->base.size,
  2204. obj->tiling_mode);
  2205. fence_alignment = i915_gem_get_gtt_alignment(dev,
  2206. obj->base.size,
  2207. obj->tiling_mode);
  2208. unfenced_alignment =
  2209. i915_gem_get_unfenced_gtt_alignment(dev,
  2210. obj->base.size,
  2211. obj->tiling_mode);
  2212. if (alignment == 0)
  2213. alignment = map_and_fenceable ? fence_alignment :
  2214. unfenced_alignment;
  2215. if (map_and_fenceable && alignment & (fence_alignment - 1)) {
  2216. DRM_ERROR("Invalid object alignment requested %u\n", alignment);
  2217. return -EINVAL;
  2218. }
  2219. size = map_and_fenceable ? fence_size : obj->base.size;
  2220. /* If the object is bigger than the entire aperture, reject it early
  2221. * before evicting everything in a vain attempt to find space.
  2222. */
  2223. if (obj->base.size >
  2224. (map_and_fenceable ? dev_priv->mm.gtt_mappable_end : dev_priv->mm.gtt_total)) {
  2225. DRM_ERROR("Attempting to bind an object larger than the aperture\n");
  2226. return -E2BIG;
  2227. }
  2228. search_free:
  2229. if (map_and_fenceable)
  2230. free_space =
  2231. drm_mm_search_free_in_range(&dev_priv->mm.gtt_space,
  2232. size, alignment, 0,
  2233. dev_priv->mm.gtt_mappable_end,
  2234. 0);
  2235. else
  2236. free_space = drm_mm_search_free(&dev_priv->mm.gtt_space,
  2237. size, alignment, 0);
  2238. if (free_space != NULL) {
  2239. if (map_and_fenceable)
  2240. obj->gtt_space =
  2241. drm_mm_get_block_range_generic(free_space,
  2242. size, alignment, 0,
  2243. dev_priv->mm.gtt_mappable_end,
  2244. 0);
  2245. else
  2246. obj->gtt_space =
  2247. drm_mm_get_block(free_space, size, alignment);
  2248. }
  2249. if (obj->gtt_space == NULL) {
  2250. /* If the gtt is empty and we're still having trouble
  2251. * fitting our object in, we're out of memory.
  2252. */
  2253. ret = i915_gem_evict_something(dev, size, alignment,
  2254. map_and_fenceable);
  2255. if (ret)
  2256. return ret;
  2257. goto search_free;
  2258. }
  2259. ret = i915_gem_object_get_pages_gtt(obj, gfpmask);
  2260. if (ret) {
  2261. drm_mm_put_block(obj->gtt_space);
  2262. obj->gtt_space = NULL;
  2263. if (ret == -ENOMEM) {
  2264. /* first try to reclaim some memory by clearing the GTT */
  2265. ret = i915_gem_evict_everything(dev, false);
  2266. if (ret) {
  2267. /* now try to shrink everyone else */
  2268. if (gfpmask) {
  2269. gfpmask = 0;
  2270. goto search_free;
  2271. }
  2272. return -ENOMEM;
  2273. }
  2274. goto search_free;
  2275. }
  2276. return ret;
  2277. }
  2278. ret = i915_gem_gtt_bind_object(obj);
  2279. if (ret) {
  2280. i915_gem_object_put_pages_gtt(obj);
  2281. drm_mm_put_block(obj->gtt_space);
  2282. obj->gtt_space = NULL;
  2283. if (i915_gem_evict_everything(dev, false))
  2284. return ret;
  2285. goto search_free;
  2286. }
  2287. list_add_tail(&obj->gtt_list, &dev_priv->mm.gtt_list);
  2288. list_add_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
  2289. /* Assert that the object is not currently in any GPU domain. As it
  2290. * wasn't in the GTT, there shouldn't be any way it could have been in
  2291. * a GPU cache
  2292. */
  2293. BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
  2294. BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
  2295. obj->gtt_offset = obj->gtt_space->start;
  2296. fenceable =
  2297. obj->gtt_space->size == fence_size &&
  2298. (obj->gtt_space->start & (fence_alignment - 1)) == 0;
  2299. mappable =
  2300. obj->gtt_offset + obj->base.size <= dev_priv->mm.gtt_mappable_end;
  2301. obj->map_and_fenceable = mappable && fenceable;
  2302. trace_i915_gem_object_bind(obj, map_and_fenceable);
  2303. return 0;
  2304. }
  2305. void
  2306. i915_gem_clflush_object(struct drm_i915_gem_object *obj)
  2307. {
  2308. /* If we don't have a page list set up, then we're not pinned
  2309. * to GPU, and we can ignore the cache flush because it'll happen
  2310. * again at bind time.
  2311. */
  2312. if (obj->pages == NULL)
  2313. return;
  2314. /* If the GPU is snooping the contents of the CPU cache,
  2315. * we do not need to manually clear the CPU cache lines. However,
  2316. * the caches are only snooped when the render cache is
  2317. * flushed/invalidated. As we always have to emit invalidations
  2318. * and flushes when moving into and out of the RENDER domain, correct
  2319. * snooping behaviour occurs naturally as the result of our domain
  2320. * tracking.
  2321. */
  2322. if (obj->cache_level != I915_CACHE_NONE)
  2323. return;
  2324. trace_i915_gem_object_clflush(obj);
  2325. drm_clflush_pages(obj->pages, obj->base.size / PAGE_SIZE);
  2326. }
  2327. /** Flushes any GPU write domain for the object if it's dirty. */
  2328. static int
  2329. i915_gem_object_flush_gpu_write_domain(struct drm_i915_gem_object *obj)
  2330. {
  2331. if ((obj->base.write_domain & I915_GEM_GPU_DOMAINS) == 0)
  2332. return 0;
  2333. /* Queue the GPU write cache flushing we need. */
  2334. return i915_gem_flush_ring(obj->ring, 0, obj->base.write_domain);
  2335. }
  2336. /** Flushes the GTT write domain for the object if it's dirty. */
  2337. static void
  2338. i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
  2339. {
  2340. uint32_t old_write_domain;
  2341. if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
  2342. return;
  2343. /* No actual flushing is required for the GTT write domain. Writes
  2344. * to it immediately go to main memory as far as we know, so there's
  2345. * no chipset flush. It also doesn't land in render cache.
  2346. *
  2347. * However, we do have to enforce the order so that all writes through
  2348. * the GTT land before any writes to the device, such as updates to
  2349. * the GATT itself.
  2350. */
  2351. wmb();
  2352. old_write_domain = obj->base.write_domain;
  2353. obj->base.write_domain = 0;
  2354. trace_i915_gem_object_change_domain(obj,
  2355. obj->base.read_domains,
  2356. old_write_domain);
  2357. }
  2358. /** Flushes the CPU write domain for the object if it's dirty. */
  2359. static void
  2360. i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
  2361. {
  2362. uint32_t old_write_domain;
  2363. if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
  2364. return;
  2365. i915_gem_clflush_object(obj);
  2366. intel_gtt_chipset_flush();
  2367. old_write_domain = obj->base.write_domain;
  2368. obj->base.write_domain = 0;
  2369. trace_i915_gem_object_change_domain(obj,
  2370. obj->base.read_domains,
  2371. old_write_domain);
  2372. }
  2373. /**
  2374. * Moves a single object to the GTT read, and possibly write domain.
  2375. *
  2376. * This function returns when the move is complete, including waiting on
  2377. * flushes to occur.
  2378. */
  2379. int
  2380. i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
  2381. {
  2382. uint32_t old_write_domain, old_read_domains;
  2383. int ret;
  2384. /* Not valid to be called on unbound objects. */
  2385. if (obj->gtt_space == NULL)
  2386. return -EINVAL;
  2387. if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
  2388. return 0;
  2389. ret = i915_gem_object_flush_gpu_write_domain(obj);
  2390. if (ret)
  2391. return ret;
  2392. if (obj->pending_gpu_write || write) {
  2393. ret = i915_gem_object_wait_rendering(obj);
  2394. if (ret)
  2395. return ret;
  2396. }
  2397. i915_gem_object_flush_cpu_write_domain(obj);
  2398. old_write_domain = obj->base.write_domain;
  2399. old_read_domains = obj->base.read_domains;
  2400. /* It should now be out of any other write domains, and we can update
  2401. * the domain values for our changes.
  2402. */
  2403. BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
  2404. obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
  2405. if (write) {
  2406. obj->base.read_domains = I915_GEM_DOMAIN_GTT;
  2407. obj->base.write_domain = I915_GEM_DOMAIN_GTT;
  2408. obj->dirty = 1;
  2409. }
  2410. trace_i915_gem_object_change_domain(obj,
  2411. old_read_domains,
  2412. old_write_domain);
  2413. return 0;
  2414. }
  2415. int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
  2416. enum i915_cache_level cache_level)
  2417. {
  2418. struct drm_device *dev = obj->base.dev;
  2419. drm_i915_private_t *dev_priv = dev->dev_private;
  2420. int ret;
  2421. if (obj->cache_level == cache_level)
  2422. return 0;
  2423. if (obj->pin_count) {
  2424. DRM_DEBUG("can not change the cache level of pinned objects\n");
  2425. return -EBUSY;
  2426. }
  2427. if (obj->gtt_space) {
  2428. ret = i915_gem_object_finish_gpu(obj);
  2429. if (ret)
  2430. return ret;
  2431. i915_gem_object_finish_gtt(obj);
  2432. /* Before SandyBridge, you could not use tiling or fence
  2433. * registers with snooped memory, so relinquish any fences
  2434. * currently pointing to our region in the aperture.
  2435. */
  2436. if (INTEL_INFO(obj->base.dev)->gen < 6) {
  2437. ret = i915_gem_object_put_fence(obj);
  2438. if (ret)
  2439. return ret;
  2440. }
  2441. i915_gem_gtt_rebind_object(obj, cache_level);
  2442. if (obj->has_aliasing_ppgtt_mapping)
  2443. i915_ppgtt_bind_object(dev_priv->mm.aliasing_ppgtt,
  2444. obj, cache_level);
  2445. }
  2446. if (cache_level == I915_CACHE_NONE) {
  2447. u32 old_read_domains, old_write_domain;
  2448. /* If we're coming from LLC cached, then we haven't
  2449. * actually been tracking whether the data is in the
  2450. * CPU cache or not, since we only allow one bit set
  2451. * in obj->write_domain and have been skipping the clflushes.
  2452. * Just set it to the CPU cache for now.
  2453. */
  2454. WARN_ON(obj->base.write_domain & ~I915_GEM_DOMAIN_CPU);
  2455. WARN_ON(obj->base.read_domains & ~I915_GEM_DOMAIN_CPU);
  2456. old_read_domains = obj->base.read_domains;
  2457. old_write_domain = obj->base.write_domain;
  2458. obj->base.read_domains = I915_GEM_DOMAIN_CPU;
  2459. obj->base.write_domain = I915_GEM_DOMAIN_CPU;
  2460. trace_i915_gem_object_change_domain(obj,
  2461. old_read_domains,
  2462. old_write_domain);
  2463. }
  2464. obj->cache_level = cache_level;
  2465. return 0;
  2466. }
  2467. /*
  2468. * Prepare buffer for display plane (scanout, cursors, etc).
  2469. * Can be called from an uninterruptible phase (modesetting) and allows
  2470. * any flushes to be pipelined (for pageflips).
  2471. *
  2472. * For the display plane, we want to be in the GTT but out of any write
  2473. * domains. So in many ways this looks like set_to_gtt_domain() apart from the
  2474. * ability to pipeline the waits, pinning and any additional subtleties
  2475. * that may differentiate the display plane from ordinary buffers.
  2476. */
  2477. int
  2478. i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
  2479. u32 alignment,
  2480. struct intel_ring_buffer *pipelined)
  2481. {
  2482. u32 old_read_domains, old_write_domain;
  2483. int ret;
  2484. ret = i915_gem_object_flush_gpu_write_domain(obj);
  2485. if (ret)
  2486. return ret;
  2487. if (pipelined != obj->ring) {
  2488. ret = i915_gem_object_wait_rendering(obj);
  2489. if (ret == -ERESTARTSYS)
  2490. return ret;
  2491. }
  2492. /* The display engine is not coherent with the LLC cache on gen6. As
  2493. * a result, we make sure that the pinning that is about to occur is
  2494. * done with uncached PTEs. This is lowest common denominator for all
  2495. * chipsets.
  2496. *
  2497. * However for gen6+, we could do better by using the GFDT bit instead
  2498. * of uncaching, which would allow us to flush all the LLC-cached data
  2499. * with that bit in the PTE to main memory with just one PIPE_CONTROL.
  2500. */
  2501. ret = i915_gem_object_set_cache_level(obj, I915_CACHE_NONE);
  2502. if (ret)
  2503. return ret;
  2504. /* As the user may map the buffer once pinned in the display plane
  2505. * (e.g. libkms for the bootup splash), we have to ensure that we
  2506. * always use map_and_fenceable for all scanout buffers.
  2507. */
  2508. ret = i915_gem_object_pin(obj, alignment, true);
  2509. if (ret)
  2510. return ret;
  2511. i915_gem_object_flush_cpu_write_domain(obj);
  2512. old_write_domain = obj->base.write_domain;
  2513. old_read_domains = obj->base.read_domains;
  2514. /* It should now be out of any other write domains, and we can update
  2515. * the domain values for our changes.
  2516. */
  2517. BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
  2518. obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
  2519. trace_i915_gem_object_change_domain(obj,
  2520. old_read_domains,
  2521. old_write_domain);
  2522. return 0;
  2523. }
  2524. int
  2525. i915_gem_object_finish_gpu(struct drm_i915_gem_object *obj)
  2526. {
  2527. int ret;
  2528. if ((obj->base.read_domains & I915_GEM_GPU_DOMAINS) == 0)
  2529. return 0;
  2530. if (obj->base.write_domain & I915_GEM_GPU_DOMAINS) {
  2531. ret = i915_gem_flush_ring(obj->ring, 0, obj->base.write_domain);
  2532. if (ret)
  2533. return ret;
  2534. }
  2535. ret = i915_gem_object_wait_rendering(obj);
  2536. if (ret)
  2537. return ret;
  2538. /* Ensure that we invalidate the GPU's caches and TLBs. */
  2539. obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
  2540. return 0;
  2541. }
  2542. /**
  2543. * Moves a single object to the CPU read, and possibly write domain.
  2544. *
  2545. * This function returns when the move is complete, including waiting on
  2546. * flushes to occur.
  2547. */
  2548. static int
  2549. i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
  2550. {
  2551. uint32_t old_write_domain, old_read_domains;
  2552. int ret;
  2553. if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
  2554. return 0;
  2555. ret = i915_gem_object_flush_gpu_write_domain(obj);
  2556. if (ret)
  2557. return ret;
  2558. ret = i915_gem_object_wait_rendering(obj);
  2559. if (ret)
  2560. return ret;
  2561. i915_gem_object_flush_gtt_write_domain(obj);
  2562. /* If we have a partially-valid cache of the object in the CPU,
  2563. * finish invalidating it and free the per-page flags.
  2564. */
  2565. i915_gem_object_set_to_full_cpu_read_domain(obj);
  2566. old_write_domain = obj->base.write_domain;
  2567. old_read_domains = obj->base.read_domains;
  2568. /* Flush the CPU cache if it's still invalid. */
  2569. if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
  2570. i915_gem_clflush_object(obj);
  2571. obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
  2572. }
  2573. /* It should now be out of any other write domains, and we can update
  2574. * the domain values for our changes.
  2575. */
  2576. BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
  2577. /* If we're writing through the CPU, then the GPU read domains will
  2578. * need to be invalidated at next use.
  2579. */
  2580. if (write) {
  2581. obj->base.read_domains = I915_GEM_DOMAIN_CPU;
  2582. obj->base.write_domain = I915_GEM_DOMAIN_CPU;
  2583. }
  2584. trace_i915_gem_object_change_domain(obj,
  2585. old_read_domains,
  2586. old_write_domain);
  2587. return 0;
  2588. }
  2589. /**
  2590. * Moves the object from a partially CPU read to a full one.
  2591. *
  2592. * Note that this only resolves i915_gem_object_set_cpu_read_domain_range(),
  2593. * and doesn't handle transitioning from !(read_domains & I915_GEM_DOMAIN_CPU).
  2594. */
  2595. static void
  2596. i915_gem_object_set_to_full_cpu_read_domain(struct drm_i915_gem_object *obj)
  2597. {
  2598. if (!obj->page_cpu_valid)
  2599. return;
  2600. /* If we're partially in the CPU read domain, finish moving it in.
  2601. */
  2602. if (obj->base.read_domains & I915_GEM_DOMAIN_CPU) {
  2603. int i;
  2604. for (i = 0; i <= (obj->base.size - 1) / PAGE_SIZE; i++) {
  2605. if (obj->page_cpu_valid[i])
  2606. continue;
  2607. drm_clflush_pages(obj->pages + i, 1);
  2608. }
  2609. }
  2610. /* Free the page_cpu_valid mappings which are now stale, whether
  2611. * or not we've got I915_GEM_DOMAIN_CPU.
  2612. */
  2613. kfree(obj->page_cpu_valid);
  2614. obj->page_cpu_valid = NULL;
  2615. }
  2616. /**
  2617. * Set the CPU read domain on a range of the object.
  2618. *
  2619. * The object ends up with I915_GEM_DOMAIN_CPU in its read flags although it's
  2620. * not entirely valid. The page_cpu_valid member of the object flags which
  2621. * pages have been flushed, and will be respected by
  2622. * i915_gem_object_set_to_cpu_domain() if it's called on to get a valid mapping
  2623. * of the whole object.
  2624. *
  2625. * This function returns when the move is complete, including waiting on
  2626. * flushes to occur.
  2627. */
  2628. static int
  2629. i915_gem_object_set_cpu_read_domain_range(struct drm_i915_gem_object *obj,
  2630. uint64_t offset, uint64_t size)
  2631. {
  2632. uint32_t old_read_domains;
  2633. int i, ret;
  2634. if (offset == 0 && size == obj->base.size)
  2635. return i915_gem_object_set_to_cpu_domain(obj, 0);
  2636. ret = i915_gem_object_flush_gpu_write_domain(obj);
  2637. if (ret)
  2638. return ret;
  2639. ret = i915_gem_object_wait_rendering(obj);
  2640. if (ret)
  2641. return ret;
  2642. i915_gem_object_flush_gtt_write_domain(obj);
  2643. /* If we're already fully in the CPU read domain, we're done. */
  2644. if (obj->page_cpu_valid == NULL &&
  2645. (obj->base.read_domains & I915_GEM_DOMAIN_CPU) != 0)
  2646. return 0;
  2647. /* Otherwise, create/clear the per-page CPU read domain flag if we're
  2648. * newly adding I915_GEM_DOMAIN_CPU
  2649. */
  2650. if (obj->page_cpu_valid == NULL) {
  2651. obj->page_cpu_valid = kzalloc(obj->base.size / PAGE_SIZE,
  2652. GFP_KERNEL);
  2653. if (obj->page_cpu_valid == NULL)
  2654. return -ENOMEM;
  2655. } else if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0)
  2656. memset(obj->page_cpu_valid, 0, obj->base.size / PAGE_SIZE);
  2657. /* Flush the cache on any pages that are still invalid from the CPU's
  2658. * perspective.
  2659. */
  2660. for (i = offset / PAGE_SIZE; i <= (offset + size - 1) / PAGE_SIZE;
  2661. i++) {
  2662. if (obj->page_cpu_valid[i])
  2663. continue;
  2664. drm_clflush_pages(obj->pages + i, 1);
  2665. obj->page_cpu_valid[i] = 1;
  2666. }
  2667. /* It should now be out of any other write domains, and we can update
  2668. * the domain values for our changes.
  2669. */
  2670. BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
  2671. old_read_domains = obj->base.read_domains;
  2672. obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
  2673. trace_i915_gem_object_change_domain(obj,
  2674. old_read_domains,
  2675. obj->base.write_domain);
  2676. return 0;
  2677. }
  2678. /* Throttle our rendering by waiting until the ring has completed our requests
  2679. * emitted over 20 msec ago.
  2680. *
  2681. * Note that if we were to use the current jiffies each time around the loop,
  2682. * we wouldn't escape the function with any frames outstanding if the time to
  2683. * render a frame was over 20ms.
  2684. *
  2685. * This should get us reasonable parallelism between CPU and GPU but also
  2686. * relatively low latency when blocking on a particular request to finish.
  2687. */
  2688. static int
  2689. i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
  2690. {
  2691. struct drm_i915_private *dev_priv = dev->dev_private;
  2692. struct drm_i915_file_private *file_priv = file->driver_priv;
  2693. unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
  2694. struct drm_i915_gem_request *request;
  2695. struct intel_ring_buffer *ring = NULL;
  2696. u32 seqno = 0;
  2697. int ret;
  2698. if (atomic_read(&dev_priv->mm.wedged))
  2699. return -EIO;
  2700. spin_lock(&file_priv->mm.lock);
  2701. list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
  2702. if (time_after_eq(request->emitted_jiffies, recent_enough))
  2703. break;
  2704. ring = request->ring;
  2705. seqno = request->seqno;
  2706. }
  2707. spin_unlock(&file_priv->mm.lock);
  2708. if (seqno == 0)
  2709. return 0;
  2710. ret = 0;
  2711. if (!i915_seqno_passed(ring->get_seqno(ring), seqno)) {
  2712. /* And wait for the seqno passing without holding any locks and
  2713. * causing extra latency for others. This is safe as the irq
  2714. * generation is designed to be run atomically and so is
  2715. * lockless.
  2716. */
  2717. if (ring->irq_get(ring)) {
  2718. ret = wait_event_interruptible(ring->irq_queue,
  2719. i915_seqno_passed(ring->get_seqno(ring), seqno)
  2720. || atomic_read(&dev_priv->mm.wedged));
  2721. ring->irq_put(ring);
  2722. if (ret == 0 && atomic_read(&dev_priv->mm.wedged))
  2723. ret = -EIO;
  2724. } else if (wait_for_atomic(i915_seqno_passed(ring->get_seqno(ring),
  2725. seqno) ||
  2726. atomic_read(&dev_priv->mm.wedged), 3000)) {
  2727. ret = -EBUSY;
  2728. }
  2729. }
  2730. if (ret == 0)
  2731. queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
  2732. return ret;
  2733. }
  2734. int
  2735. i915_gem_object_pin(struct drm_i915_gem_object *obj,
  2736. uint32_t alignment,
  2737. bool map_and_fenceable)
  2738. {
  2739. struct drm_device *dev = obj->base.dev;
  2740. struct drm_i915_private *dev_priv = dev->dev_private;
  2741. int ret;
  2742. BUG_ON(obj->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT);
  2743. WARN_ON(i915_verify_lists(dev));
  2744. if (obj->gtt_space != NULL) {
  2745. if ((alignment && obj->gtt_offset & (alignment - 1)) ||
  2746. (map_and_fenceable && !obj->map_and_fenceable)) {
  2747. WARN(obj->pin_count,
  2748. "bo is already pinned with incorrect alignment:"
  2749. " offset=%x, req.alignment=%x, req.map_and_fenceable=%d,"
  2750. " obj->map_and_fenceable=%d\n",
  2751. obj->gtt_offset, alignment,
  2752. map_and_fenceable,
  2753. obj->map_and_fenceable);
  2754. ret = i915_gem_object_unbind(obj);
  2755. if (ret)
  2756. return ret;
  2757. }
  2758. }
  2759. if (obj->gtt_space == NULL) {
  2760. ret = i915_gem_object_bind_to_gtt(obj, alignment,
  2761. map_and_fenceable);
  2762. if (ret)
  2763. return ret;
  2764. }
  2765. if (obj->pin_count++ == 0) {
  2766. if (!obj->active)
  2767. list_move_tail(&obj->mm_list,
  2768. &dev_priv->mm.pinned_list);
  2769. }
  2770. obj->pin_mappable |= map_and_fenceable;
  2771. WARN_ON(i915_verify_lists(dev));
  2772. return 0;
  2773. }
  2774. void
  2775. i915_gem_object_unpin(struct drm_i915_gem_object *obj)
  2776. {
  2777. struct drm_device *dev = obj->base.dev;
  2778. drm_i915_private_t *dev_priv = dev->dev_private;
  2779. WARN_ON(i915_verify_lists(dev));
  2780. BUG_ON(obj->pin_count == 0);
  2781. BUG_ON(obj->gtt_space == NULL);
  2782. if (--obj->pin_count == 0) {
  2783. if (!obj->active)
  2784. list_move_tail(&obj->mm_list,
  2785. &dev_priv->mm.inactive_list);
  2786. obj->pin_mappable = false;
  2787. }
  2788. WARN_ON(i915_verify_lists(dev));
  2789. }
  2790. int
  2791. i915_gem_pin_ioctl(struct drm_device *dev, void *data,
  2792. struct drm_file *file)
  2793. {
  2794. struct drm_i915_gem_pin *args = data;
  2795. struct drm_i915_gem_object *obj;
  2796. int ret;
  2797. ret = i915_mutex_lock_interruptible(dev);
  2798. if (ret)
  2799. return ret;
  2800. obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
  2801. if (&obj->base == NULL) {
  2802. ret = -ENOENT;
  2803. goto unlock;
  2804. }
  2805. if (obj->madv != I915_MADV_WILLNEED) {
  2806. DRM_ERROR("Attempting to pin a purgeable buffer\n");
  2807. ret = -EINVAL;
  2808. goto out;
  2809. }
  2810. if (obj->pin_filp != NULL && obj->pin_filp != file) {
  2811. DRM_ERROR("Already pinned in i915_gem_pin_ioctl(): %d\n",
  2812. args->handle);
  2813. ret = -EINVAL;
  2814. goto out;
  2815. }
  2816. obj->user_pin_count++;
  2817. obj->pin_filp = file;
  2818. if (obj->user_pin_count == 1) {
  2819. ret = i915_gem_object_pin(obj, args->alignment, true);
  2820. if (ret)
  2821. goto out;
  2822. }
  2823. /* XXX - flush the CPU caches for pinned objects
  2824. * as the X server doesn't manage domains yet
  2825. */
  2826. i915_gem_object_flush_cpu_write_domain(obj);
  2827. args->offset = obj->gtt_offset;
  2828. out:
  2829. drm_gem_object_unreference(&obj->base);
  2830. unlock:
  2831. mutex_unlock(&dev->struct_mutex);
  2832. return ret;
  2833. }
  2834. int
  2835. i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
  2836. struct drm_file *file)
  2837. {
  2838. struct drm_i915_gem_pin *args = data;
  2839. struct drm_i915_gem_object *obj;
  2840. int ret;
  2841. ret = i915_mutex_lock_interruptible(dev);
  2842. if (ret)
  2843. return ret;
  2844. obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
  2845. if (&obj->base == NULL) {
  2846. ret = -ENOENT;
  2847. goto unlock;
  2848. }
  2849. if (obj->pin_filp != file) {
  2850. DRM_ERROR("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
  2851. args->handle);
  2852. ret = -EINVAL;
  2853. goto out;
  2854. }
  2855. obj->user_pin_count--;
  2856. if (obj->user_pin_count == 0) {
  2857. obj->pin_filp = NULL;
  2858. i915_gem_object_unpin(obj);
  2859. }
  2860. out:
  2861. drm_gem_object_unreference(&obj->base);
  2862. unlock:
  2863. mutex_unlock(&dev->struct_mutex);
  2864. return ret;
  2865. }
  2866. int
  2867. i915_gem_busy_ioctl(struct drm_device *dev, void *data,
  2868. struct drm_file *file)
  2869. {
  2870. struct drm_i915_gem_busy *args = data;
  2871. struct drm_i915_gem_object *obj;
  2872. int ret;
  2873. ret = i915_mutex_lock_interruptible(dev);
  2874. if (ret)
  2875. return ret;
  2876. obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
  2877. if (&obj->base == NULL) {
  2878. ret = -ENOENT;
  2879. goto unlock;
  2880. }
  2881. /* Count all active objects as busy, even if they are currently not used
  2882. * by the gpu. Users of this interface expect objects to eventually
  2883. * become non-busy without any further actions, therefore emit any
  2884. * necessary flushes here.
  2885. */
  2886. args->busy = obj->active;
  2887. if (args->busy) {
  2888. /* Unconditionally flush objects, even when the gpu still uses this
  2889. * object. Userspace calling this function indicates that it wants to
  2890. * use this buffer rather sooner than later, so issuing the required
  2891. * flush earlier is beneficial.
  2892. */
  2893. if (obj->base.write_domain & I915_GEM_GPU_DOMAINS) {
  2894. ret = i915_gem_flush_ring(obj->ring,
  2895. 0, obj->base.write_domain);
  2896. } else if (obj->ring->outstanding_lazy_request ==
  2897. obj->last_rendering_seqno) {
  2898. struct drm_i915_gem_request *request;
  2899. /* This ring is not being cleared by active usage,
  2900. * so emit a request to do so.
  2901. */
  2902. request = kzalloc(sizeof(*request), GFP_KERNEL);
  2903. if (request) {
  2904. ret = i915_add_request(obj->ring, NULL, request);
  2905. if (ret)
  2906. kfree(request);
  2907. } else
  2908. ret = -ENOMEM;
  2909. }
  2910. /* Update the active list for the hardware's current position.
  2911. * Otherwise this only updates on a delayed timer or when irqs
  2912. * are actually unmasked, and our working set ends up being
  2913. * larger than required.
  2914. */
  2915. i915_gem_retire_requests_ring(obj->ring);
  2916. args->busy = obj->active;
  2917. }
  2918. drm_gem_object_unreference(&obj->base);
  2919. unlock:
  2920. mutex_unlock(&dev->struct_mutex);
  2921. return ret;
  2922. }
  2923. int
  2924. i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
  2925. struct drm_file *file_priv)
  2926. {
  2927. return i915_gem_ring_throttle(dev, file_priv);
  2928. }
  2929. int
  2930. i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
  2931. struct drm_file *file_priv)
  2932. {
  2933. struct drm_i915_gem_madvise *args = data;
  2934. struct drm_i915_gem_object *obj;
  2935. int ret;
  2936. switch (args->madv) {
  2937. case I915_MADV_DONTNEED:
  2938. case I915_MADV_WILLNEED:
  2939. break;
  2940. default:
  2941. return -EINVAL;
  2942. }
  2943. ret = i915_mutex_lock_interruptible(dev);
  2944. if (ret)
  2945. return ret;
  2946. obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle));
  2947. if (&obj->base == NULL) {
  2948. ret = -ENOENT;
  2949. goto unlock;
  2950. }
  2951. if (obj->pin_count) {
  2952. ret = -EINVAL;
  2953. goto out;
  2954. }
  2955. if (obj->madv != __I915_MADV_PURGED)
  2956. obj->madv = args->madv;
  2957. /* if the object is no longer bound, discard its backing storage */
  2958. if (i915_gem_object_is_purgeable(obj) &&
  2959. obj->gtt_space == NULL)
  2960. i915_gem_object_truncate(obj);
  2961. args->retained = obj->madv != __I915_MADV_PURGED;
  2962. out:
  2963. drm_gem_object_unreference(&obj->base);
  2964. unlock:
  2965. mutex_unlock(&dev->struct_mutex);
  2966. return ret;
  2967. }
  2968. struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
  2969. size_t size)
  2970. {
  2971. struct drm_i915_private *dev_priv = dev->dev_private;
  2972. struct drm_i915_gem_object *obj;
  2973. struct address_space *mapping;
  2974. obj = kzalloc(sizeof(*obj), GFP_KERNEL);
  2975. if (obj == NULL)
  2976. return NULL;
  2977. if (drm_gem_object_init(dev, &obj->base, size) != 0) {
  2978. kfree(obj);
  2979. return NULL;
  2980. }
  2981. mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
  2982. mapping_set_gfp_mask(mapping, GFP_HIGHUSER | __GFP_RECLAIMABLE);
  2983. i915_gem_info_add_obj(dev_priv, size);
  2984. obj->base.write_domain = I915_GEM_DOMAIN_CPU;
  2985. obj->base.read_domains = I915_GEM_DOMAIN_CPU;
  2986. if (HAS_LLC(dev)) {
  2987. /* On some devices, we can have the GPU use the LLC (the CPU
  2988. * cache) for about a 10% performance improvement
  2989. * compared to uncached. Graphics requests other than
  2990. * display scanout are coherent with the CPU in
  2991. * accessing this cache. This means in this mode we
  2992. * don't need to clflush on the CPU side, and on the
  2993. * GPU side we only need to flush internal caches to
  2994. * get data visible to the CPU.
  2995. *
  2996. * However, we maintain the display planes as UC, and so
  2997. * need to rebind when first used as such.
  2998. */
  2999. obj->cache_level = I915_CACHE_LLC;
  3000. } else
  3001. obj->cache_level = I915_CACHE_NONE;
  3002. obj->base.driver_private = NULL;
  3003. obj->fence_reg = I915_FENCE_REG_NONE;
  3004. INIT_LIST_HEAD(&obj->mm_list);
  3005. INIT_LIST_HEAD(&obj->gtt_list);
  3006. INIT_LIST_HEAD(&obj->ring_list);
  3007. INIT_LIST_HEAD(&obj->exec_list);
  3008. INIT_LIST_HEAD(&obj->gpu_write_list);
  3009. obj->madv = I915_MADV_WILLNEED;
  3010. /* Avoid an unnecessary call to unbind on the first bind. */
  3011. obj->map_and_fenceable = true;
  3012. return obj;
  3013. }
  3014. int i915_gem_init_object(struct drm_gem_object *obj)
  3015. {
  3016. BUG();
  3017. return 0;
  3018. }
  3019. static void i915_gem_free_object_tail(struct drm_i915_gem_object *obj)
  3020. {
  3021. struct drm_device *dev = obj->base.dev;
  3022. drm_i915_private_t *dev_priv = dev->dev_private;
  3023. int ret;
  3024. ret = i915_gem_object_unbind(obj);
  3025. if (ret == -ERESTARTSYS) {
  3026. list_move(&obj->mm_list,
  3027. &dev_priv->mm.deferred_free_list);
  3028. return;
  3029. }
  3030. trace_i915_gem_object_destroy(obj);
  3031. if (obj->base.map_list.map)
  3032. drm_gem_free_mmap_offset(&obj->base);
  3033. drm_gem_object_release(&obj->base);
  3034. i915_gem_info_remove_obj(dev_priv, obj->base.size);
  3035. kfree(obj->page_cpu_valid);
  3036. kfree(obj->bit_17);
  3037. kfree(obj);
  3038. }
  3039. void i915_gem_free_object(struct drm_gem_object *gem_obj)
  3040. {
  3041. struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
  3042. struct drm_device *dev = obj->base.dev;
  3043. while (obj->pin_count > 0)
  3044. i915_gem_object_unpin(obj);
  3045. if (obj->phys_obj)
  3046. i915_gem_detach_phys_object(dev, obj);
  3047. i915_gem_free_object_tail(obj);
  3048. }
  3049. int
  3050. i915_gem_idle(struct drm_device *dev)
  3051. {
  3052. drm_i915_private_t *dev_priv = dev->dev_private;
  3053. int ret;
  3054. mutex_lock(&dev->struct_mutex);
  3055. if (dev_priv->mm.suspended) {
  3056. mutex_unlock(&dev->struct_mutex);
  3057. return 0;
  3058. }
  3059. ret = i915_gpu_idle(dev, true);
  3060. if (ret) {
  3061. mutex_unlock(&dev->struct_mutex);
  3062. return ret;
  3063. }
  3064. /* Under UMS, be paranoid and evict. */
  3065. if (!drm_core_check_feature(dev, DRIVER_MODESET)) {
  3066. ret = i915_gem_evict_inactive(dev, false);
  3067. if (ret) {
  3068. mutex_unlock(&dev->struct_mutex);
  3069. return ret;
  3070. }
  3071. }
  3072. i915_gem_reset_fences(dev);
  3073. /* Hack! Don't let anybody do execbuf while we don't control the chip.
  3074. * We need to replace this with a semaphore, or something.
  3075. * And not confound mm.suspended!
  3076. */
  3077. dev_priv->mm.suspended = 1;
  3078. del_timer_sync(&dev_priv->hangcheck_timer);
  3079. i915_kernel_lost_context(dev);
  3080. i915_gem_cleanup_ringbuffer(dev);
  3081. mutex_unlock(&dev->struct_mutex);
  3082. /* Cancel the retire work handler, which should be idle now. */
  3083. cancel_delayed_work_sync(&dev_priv->mm.retire_work);
  3084. return 0;
  3085. }
  3086. void i915_gem_init_swizzling(struct drm_device *dev)
  3087. {
  3088. drm_i915_private_t *dev_priv = dev->dev_private;
  3089. if (INTEL_INFO(dev)->gen < 5 ||
  3090. dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
  3091. return;
  3092. I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
  3093. DISP_TILE_SURFACE_SWIZZLING);
  3094. if (IS_GEN5(dev))
  3095. return;
  3096. I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
  3097. if (IS_GEN6(dev))
  3098. I915_WRITE(ARB_MODE, ARB_MODE_ENABLE(ARB_MODE_SWIZZLE_SNB));
  3099. else
  3100. I915_WRITE(ARB_MODE, ARB_MODE_ENABLE(ARB_MODE_SWIZZLE_IVB));
  3101. }
  3102. void i915_gem_init_ppgtt(struct drm_device *dev)
  3103. {
  3104. drm_i915_private_t *dev_priv = dev->dev_private;
  3105. uint32_t pd_offset;
  3106. struct intel_ring_buffer *ring;
  3107. int i;
  3108. if (!dev_priv->mm.aliasing_ppgtt)
  3109. return;
  3110. pd_offset = dev_priv->mm.aliasing_ppgtt->pd_offset;
  3111. pd_offset /= 64; /* in cachelines, */
  3112. pd_offset <<= 16;
  3113. if (INTEL_INFO(dev)->gen == 6) {
  3114. uint32_t ecochk = I915_READ(GAM_ECOCHK);
  3115. I915_WRITE(GAM_ECOCHK, ecochk | ECOCHK_SNB_BIT |
  3116. ECOCHK_PPGTT_CACHE64B);
  3117. I915_WRITE(GFX_MODE, GFX_MODE_ENABLE(GFX_PPGTT_ENABLE));
  3118. } else if (INTEL_INFO(dev)->gen >= 7) {
  3119. I915_WRITE(GAM_ECOCHK, ECOCHK_PPGTT_CACHE64B);
  3120. /* GFX_MODE is per-ring on gen7+ */
  3121. }
  3122. for (i = 0; i < I915_NUM_RINGS; i++) {
  3123. ring = &dev_priv->ring[i];
  3124. if (INTEL_INFO(dev)->gen >= 7)
  3125. I915_WRITE(RING_MODE_GEN7(ring),
  3126. GFX_MODE_ENABLE(GFX_PPGTT_ENABLE));
  3127. I915_WRITE(RING_PP_DIR_DCLV(ring), PP_DIR_DCLV_2G);
  3128. I915_WRITE(RING_PP_DIR_BASE(ring), pd_offset);
  3129. }
  3130. }
  3131. int
  3132. i915_gem_init_hw(struct drm_device *dev)
  3133. {
  3134. drm_i915_private_t *dev_priv = dev->dev_private;
  3135. int ret;
  3136. i915_gem_init_swizzling(dev);
  3137. ret = intel_init_render_ring_buffer(dev);
  3138. if (ret)
  3139. return ret;
  3140. if (HAS_BSD(dev)) {
  3141. ret = intel_init_bsd_ring_buffer(dev);
  3142. if (ret)
  3143. goto cleanup_render_ring;
  3144. }
  3145. if (HAS_BLT(dev)) {
  3146. ret = intel_init_blt_ring_buffer(dev);
  3147. if (ret)
  3148. goto cleanup_bsd_ring;
  3149. }
  3150. dev_priv->next_seqno = 1;
  3151. i915_gem_init_ppgtt(dev);
  3152. return 0;
  3153. cleanup_bsd_ring:
  3154. intel_cleanup_ring_buffer(&dev_priv->ring[VCS]);
  3155. cleanup_render_ring:
  3156. intel_cleanup_ring_buffer(&dev_priv->ring[RCS]);
  3157. return ret;
  3158. }
  3159. void
  3160. i915_gem_cleanup_ringbuffer(struct drm_device *dev)
  3161. {
  3162. drm_i915_private_t *dev_priv = dev->dev_private;
  3163. int i;
  3164. for (i = 0; i < I915_NUM_RINGS; i++)
  3165. intel_cleanup_ring_buffer(&dev_priv->ring[i]);
  3166. }
  3167. int
  3168. i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
  3169. struct drm_file *file_priv)
  3170. {
  3171. drm_i915_private_t *dev_priv = dev->dev_private;
  3172. int ret, i;
  3173. if (drm_core_check_feature(dev, DRIVER_MODESET))
  3174. return 0;
  3175. if (atomic_read(&dev_priv->mm.wedged)) {
  3176. DRM_ERROR("Reenabling wedged hardware, good luck\n");
  3177. atomic_set(&dev_priv->mm.wedged, 0);
  3178. }
  3179. mutex_lock(&dev->struct_mutex);
  3180. dev_priv->mm.suspended = 0;
  3181. ret = i915_gem_init_hw(dev);
  3182. if (ret != 0) {
  3183. mutex_unlock(&dev->struct_mutex);
  3184. return ret;
  3185. }
  3186. BUG_ON(!list_empty(&dev_priv->mm.active_list));
  3187. BUG_ON(!list_empty(&dev_priv->mm.flushing_list));
  3188. BUG_ON(!list_empty(&dev_priv->mm.inactive_list));
  3189. for (i = 0; i < I915_NUM_RINGS; i++) {
  3190. BUG_ON(!list_empty(&dev_priv->ring[i].active_list));
  3191. BUG_ON(!list_empty(&dev_priv->ring[i].request_list));
  3192. }
  3193. mutex_unlock(&dev->struct_mutex);
  3194. ret = drm_irq_install(dev);
  3195. if (ret)
  3196. goto cleanup_ringbuffer;
  3197. return 0;
  3198. cleanup_ringbuffer:
  3199. mutex_lock(&dev->struct_mutex);
  3200. i915_gem_cleanup_ringbuffer(dev);
  3201. dev_priv->mm.suspended = 1;
  3202. mutex_unlock(&dev->struct_mutex);
  3203. return ret;
  3204. }
  3205. int
  3206. i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
  3207. struct drm_file *file_priv)
  3208. {
  3209. if (drm_core_check_feature(dev, DRIVER_MODESET))
  3210. return 0;
  3211. drm_irq_uninstall(dev);
  3212. return i915_gem_idle(dev);
  3213. }
  3214. void
  3215. i915_gem_lastclose(struct drm_device *dev)
  3216. {
  3217. int ret;
  3218. if (drm_core_check_feature(dev, DRIVER_MODESET))
  3219. return;
  3220. ret = i915_gem_idle(dev);
  3221. if (ret)
  3222. DRM_ERROR("failed to idle hardware: %d\n", ret);
  3223. }
  3224. static void
  3225. init_ring_lists(struct intel_ring_buffer *ring)
  3226. {
  3227. INIT_LIST_HEAD(&ring->active_list);
  3228. INIT_LIST_HEAD(&ring->request_list);
  3229. INIT_LIST_HEAD(&ring->gpu_write_list);
  3230. }
  3231. void
  3232. i915_gem_load(struct drm_device *dev)
  3233. {
  3234. int i;
  3235. drm_i915_private_t *dev_priv = dev->dev_private;
  3236. INIT_LIST_HEAD(&dev_priv->mm.active_list);
  3237. INIT_LIST_HEAD(&dev_priv->mm.flushing_list);
  3238. INIT_LIST_HEAD(&dev_priv->mm.inactive_list);
  3239. INIT_LIST_HEAD(&dev_priv->mm.pinned_list);
  3240. INIT_LIST_HEAD(&dev_priv->mm.fence_list);
  3241. INIT_LIST_HEAD(&dev_priv->mm.deferred_free_list);
  3242. INIT_LIST_HEAD(&dev_priv->mm.gtt_list);
  3243. for (i = 0; i < I915_NUM_RINGS; i++)
  3244. init_ring_lists(&dev_priv->ring[i]);
  3245. for (i = 0; i < I915_MAX_NUM_FENCES; i++)
  3246. INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
  3247. INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
  3248. i915_gem_retire_work_handler);
  3249. init_completion(&dev_priv->error_completion);
  3250. /* On GEN3 we really need to make sure the ARB C3 LP bit is set */
  3251. if (IS_GEN3(dev)) {
  3252. u32 tmp = I915_READ(MI_ARB_STATE);
  3253. if (!(tmp & MI_ARB_C3_LP_WRITE_ENABLE)) {
  3254. /* arb state is a masked write, so set bit + bit in mask */
  3255. tmp = MI_ARB_C3_LP_WRITE_ENABLE | (MI_ARB_C3_LP_WRITE_ENABLE << MI_ARB_MASK_SHIFT);
  3256. I915_WRITE(MI_ARB_STATE, tmp);
  3257. }
  3258. }
  3259. dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;
  3260. /* Old X drivers will take 0-2 for front, back, depth buffers */
  3261. if (!drm_core_check_feature(dev, DRIVER_MODESET))
  3262. dev_priv->fence_reg_start = 3;
  3263. if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
  3264. dev_priv->num_fence_regs = 16;
  3265. else
  3266. dev_priv->num_fence_regs = 8;
  3267. /* Initialize fence registers to zero */
  3268. for (i = 0; i < dev_priv->num_fence_regs; i++) {
  3269. i915_gem_clear_fence_reg(dev, &dev_priv->fence_regs[i]);
  3270. }
  3271. i915_gem_detect_bit_6_swizzle(dev);
  3272. init_waitqueue_head(&dev_priv->pending_flip_queue);
  3273. dev_priv->mm.interruptible = true;
  3274. dev_priv->mm.inactive_shrinker.shrink = i915_gem_inactive_shrink;
  3275. dev_priv->mm.inactive_shrinker.seeks = DEFAULT_SEEKS;
  3276. register_shrinker(&dev_priv->mm.inactive_shrinker);
  3277. }
  3278. /*
  3279. * Create a physically contiguous memory object for this object
  3280. * e.g. for cursor + overlay regs
  3281. */
  3282. static int i915_gem_init_phys_object(struct drm_device *dev,
  3283. int id, int size, int align)
  3284. {
  3285. drm_i915_private_t *dev_priv = dev->dev_private;
  3286. struct drm_i915_gem_phys_object *phys_obj;
  3287. int ret;
  3288. if (dev_priv->mm.phys_objs[id - 1] || !size)
  3289. return 0;
  3290. phys_obj = kzalloc(sizeof(struct drm_i915_gem_phys_object), GFP_KERNEL);
  3291. if (!phys_obj)
  3292. return -ENOMEM;
  3293. phys_obj->id = id;
  3294. phys_obj->handle = drm_pci_alloc(dev, size, align);
  3295. if (!phys_obj->handle) {
  3296. ret = -ENOMEM;
  3297. goto kfree_obj;
  3298. }
  3299. #ifdef CONFIG_X86
  3300. set_memory_wc((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
  3301. #endif
  3302. dev_priv->mm.phys_objs[id - 1] = phys_obj;
  3303. return 0;
  3304. kfree_obj:
  3305. kfree(phys_obj);
  3306. return ret;
  3307. }
  3308. static void i915_gem_free_phys_object(struct drm_device *dev, int id)
  3309. {
  3310. drm_i915_private_t *dev_priv = dev->dev_private;
  3311. struct drm_i915_gem_phys_object *phys_obj;
  3312. if (!dev_priv->mm.phys_objs[id - 1])
  3313. return;
  3314. phys_obj = dev_priv->mm.phys_objs[id - 1];
  3315. if (phys_obj->cur_obj) {
  3316. i915_gem_detach_phys_object(dev, phys_obj->cur_obj);
  3317. }
  3318. #ifdef CONFIG_X86
  3319. set_memory_wb((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
  3320. #endif
  3321. drm_pci_free(dev, phys_obj->handle);
  3322. kfree(phys_obj);
  3323. dev_priv->mm.phys_objs[id - 1] = NULL;
  3324. }
  3325. void i915_gem_free_all_phys_object(struct drm_device *dev)
  3326. {
  3327. int i;
  3328. for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++)
  3329. i915_gem_free_phys_object(dev, i);
  3330. }
  3331. void i915_gem_detach_phys_object(struct drm_device *dev,
  3332. struct drm_i915_gem_object *obj)
  3333. {
  3334. struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
  3335. char *vaddr;
  3336. int i;
  3337. int page_count;
  3338. if (!obj->phys_obj)
  3339. return;
  3340. vaddr = obj->phys_obj->handle->vaddr;
  3341. page_count = obj->base.size / PAGE_SIZE;
  3342. for (i = 0; i < page_count; i++) {
  3343. struct page *page = shmem_read_mapping_page(mapping, i);
  3344. if (!IS_ERR(page)) {
  3345. char *dst = kmap_atomic(page);
  3346. memcpy(dst, vaddr + i*PAGE_SIZE, PAGE_SIZE);
  3347. kunmap_atomic(dst);
  3348. drm_clflush_pages(&page, 1);
  3349. set_page_dirty(page);
  3350. mark_page_accessed(page);
  3351. page_cache_release(page);
  3352. }
  3353. }
  3354. intel_gtt_chipset_flush();
  3355. obj->phys_obj->cur_obj = NULL;
  3356. obj->phys_obj = NULL;
  3357. }
  3358. int
  3359. i915_gem_attach_phys_object(struct drm_device *dev,
  3360. struct drm_i915_gem_object *obj,
  3361. int id,
  3362. int align)
  3363. {
  3364. struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
  3365. drm_i915_private_t *dev_priv = dev->dev_private;
  3366. int ret = 0;
  3367. int page_count;
  3368. int i;
  3369. if (id > I915_MAX_PHYS_OBJECT)
  3370. return -EINVAL;
  3371. if (obj->phys_obj) {
  3372. if (obj->phys_obj->id == id)
  3373. return 0;
  3374. i915_gem_detach_phys_object(dev, obj);
  3375. }
  3376. /* create a new object */
  3377. if (!dev_priv->mm.phys_objs[id - 1]) {
  3378. ret = i915_gem_init_phys_object(dev, id,
  3379. obj->base.size, align);
  3380. if (ret) {
  3381. DRM_ERROR("failed to init phys object %d size: %zu\n",
  3382. id, obj->base.size);
  3383. return ret;
  3384. }
  3385. }
  3386. /* bind to the object */
  3387. obj->phys_obj = dev_priv->mm.phys_objs[id - 1];
  3388. obj->phys_obj->cur_obj = obj;
  3389. page_count = obj->base.size / PAGE_SIZE;
  3390. for (i = 0; i < page_count; i++) {
  3391. struct page *page;
  3392. char *dst, *src;
  3393. page = shmem_read_mapping_page(mapping, i);
  3394. if (IS_ERR(page))
  3395. return PTR_ERR(page);
  3396. src = kmap_atomic(page);
  3397. dst = obj->phys_obj->handle->vaddr + (i * PAGE_SIZE);
  3398. memcpy(dst, src, PAGE_SIZE);
  3399. kunmap_atomic(src);
  3400. mark_page_accessed(page);
  3401. page_cache_release(page);
  3402. }
  3403. return 0;
  3404. }
  3405. static int
  3406. i915_gem_phys_pwrite(struct drm_device *dev,
  3407. struct drm_i915_gem_object *obj,
  3408. struct drm_i915_gem_pwrite *args,
  3409. struct drm_file *file_priv)
  3410. {
  3411. void *vaddr = obj->phys_obj->handle->vaddr + args->offset;
  3412. char __user *user_data = (char __user *) (uintptr_t) args->data_ptr;
  3413. if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
  3414. unsigned long unwritten;
  3415. /* The physical object once assigned is fixed for the lifetime
  3416. * of the obj, so we can safely drop the lock and continue
  3417. * to access vaddr.
  3418. */
  3419. mutex_unlock(&dev->struct_mutex);
  3420. unwritten = copy_from_user(vaddr, user_data, args->size);
  3421. mutex_lock(&dev->struct_mutex);
  3422. if (unwritten)
  3423. return -EFAULT;
  3424. }
  3425. intel_gtt_chipset_flush();
  3426. return 0;
  3427. }
  3428. void i915_gem_release(struct drm_device *dev, struct drm_file *file)
  3429. {
  3430. struct drm_i915_file_private *file_priv = file->driver_priv;
  3431. /* Clean up our request list when the client is going away, so that
  3432. * later retire_requests won't dereference our soon-to-be-gone
  3433. * file_priv.
  3434. */
  3435. spin_lock(&file_priv->mm.lock);
  3436. while (!list_empty(&file_priv->mm.request_list)) {
  3437. struct drm_i915_gem_request *request;
  3438. request = list_first_entry(&file_priv->mm.request_list,
  3439. struct drm_i915_gem_request,
  3440. client_list);
  3441. list_del(&request->client_list);
  3442. request->file_priv = NULL;
  3443. }
  3444. spin_unlock(&file_priv->mm.lock);
  3445. }
  3446. static int
  3447. i915_gpu_is_active(struct drm_device *dev)
  3448. {
  3449. drm_i915_private_t *dev_priv = dev->dev_private;
  3450. int lists_empty;
  3451. lists_empty = list_empty(&dev_priv->mm.flushing_list) &&
  3452. list_empty(&dev_priv->mm.active_list);
  3453. return !lists_empty;
  3454. }
  3455. static int
  3456. i915_gem_inactive_shrink(struct shrinker *shrinker, struct shrink_control *sc)
  3457. {
  3458. struct drm_i915_private *dev_priv =
  3459. container_of(shrinker,
  3460. struct drm_i915_private,
  3461. mm.inactive_shrinker);
  3462. struct drm_device *dev = dev_priv->dev;
  3463. struct drm_i915_gem_object *obj, *next;
  3464. int nr_to_scan = sc->nr_to_scan;
  3465. int cnt;
  3466. if (!mutex_trylock(&dev->struct_mutex))
  3467. return 0;
  3468. /* "fast-path" to count number of available objects */
  3469. if (nr_to_scan == 0) {
  3470. cnt = 0;
  3471. list_for_each_entry(obj,
  3472. &dev_priv->mm.inactive_list,
  3473. mm_list)
  3474. cnt++;
  3475. mutex_unlock(&dev->struct_mutex);
  3476. return cnt / 100 * sysctl_vfs_cache_pressure;
  3477. }
  3478. rescan:
  3479. /* first scan for clean buffers */
  3480. i915_gem_retire_requests(dev);
  3481. list_for_each_entry_safe(obj, next,
  3482. &dev_priv->mm.inactive_list,
  3483. mm_list) {
  3484. if (i915_gem_object_is_purgeable(obj)) {
  3485. if (i915_gem_object_unbind(obj) == 0 &&
  3486. --nr_to_scan == 0)
  3487. break;
  3488. }
  3489. }
  3490. /* second pass, evict/count anything still on the inactive list */
  3491. cnt = 0;
  3492. list_for_each_entry_safe(obj, next,
  3493. &dev_priv->mm.inactive_list,
  3494. mm_list) {
  3495. if (nr_to_scan &&
  3496. i915_gem_object_unbind(obj) == 0)
  3497. nr_to_scan--;
  3498. else
  3499. cnt++;
  3500. }
  3501. if (nr_to_scan && i915_gpu_is_active(dev)) {
  3502. /*
  3503. * We are desperate for pages, so as a last resort, wait
  3504. * for the GPU to finish and discard whatever we can.
  3505. * This has a dramatic impact to reduce the number of
  3506. * OOM-killer events whilst running the GPU aggressively.
  3507. */
  3508. if (i915_gpu_idle(dev, true) == 0)
  3509. goto rescan;
  3510. }
  3511. mutex_unlock(&dev->struct_mutex);
  3512. return cnt / 100 * sysctl_vfs_cache_pressure;
  3513. }