i915_debugfs.c 51 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895
  1. /*
  2. * Copyright © 2008 Intel Corporation
  3. *
  4. * Permission is hereby granted, free of charge, to any person obtaining a
  5. * copy of this software and associated documentation files (the "Software"),
  6. * to deal in the Software without restriction, including without limitation
  7. * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8. * and/or sell copies of the Software, and to permit persons to whom the
  9. * Software is furnished to do so, subject to the following conditions:
  10. *
  11. * The above copyright notice and this permission notice (including the next
  12. * paragraph) shall be included in all copies or substantial portions of the
  13. * Software.
  14. *
  15. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  18. * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  20. * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
  21. * IN THE SOFTWARE.
  22. *
  23. * Authors:
  24. * Eric Anholt <eric@anholt.net>
  25. * Keith Packard <keithp@keithp.com>
  26. *
  27. */
  28. #include <linux/seq_file.h>
  29. #include <linux/debugfs.h>
  30. #include <linux/slab.h>
  31. #include <linux/export.h>
  32. #include "drmP.h"
  33. #include "drm.h"
  34. #include "intel_drv.h"
  35. #include "intel_ringbuffer.h"
  36. #include "i915_drm.h"
  37. #include "i915_drv.h"
  38. #define DRM_I915_RING_DEBUG 1
  39. #if defined(CONFIG_DEBUG_FS)
  40. enum {
  41. ACTIVE_LIST,
  42. FLUSHING_LIST,
  43. INACTIVE_LIST,
  44. PINNED_LIST,
  45. DEFERRED_FREE_LIST,
  46. };
  47. static const char *yesno(int v)
  48. {
  49. return v ? "yes" : "no";
  50. }
  51. static int i915_capabilities(struct seq_file *m, void *data)
  52. {
  53. struct drm_info_node *node = (struct drm_info_node *) m->private;
  54. struct drm_device *dev = node->minor->dev;
  55. const struct intel_device_info *info = INTEL_INFO(dev);
  56. seq_printf(m, "gen: %d\n", info->gen);
  57. seq_printf(m, "pch: %d\n", INTEL_PCH_TYPE(dev));
  58. #define B(x) seq_printf(m, #x ": %s\n", yesno(info->x))
  59. B(is_mobile);
  60. B(is_i85x);
  61. B(is_i915g);
  62. B(is_i945gm);
  63. B(is_g33);
  64. B(need_gfx_hws);
  65. B(is_g4x);
  66. B(is_pineview);
  67. B(is_broadwater);
  68. B(is_crestline);
  69. B(has_fbc);
  70. B(has_pipe_cxsr);
  71. B(has_hotplug);
  72. B(cursor_needs_physical);
  73. B(has_overlay);
  74. B(overlay_needs_physical);
  75. B(supports_tv);
  76. B(has_bsd_ring);
  77. B(has_blt_ring);
  78. B(has_llc);
  79. #undef B
  80. return 0;
  81. }
  82. static const char *get_pin_flag(struct drm_i915_gem_object *obj)
  83. {
  84. if (obj->user_pin_count > 0)
  85. return "P";
  86. else if (obj->pin_count > 0)
  87. return "p";
  88. else
  89. return " ";
  90. }
  91. static const char *get_tiling_flag(struct drm_i915_gem_object *obj)
  92. {
  93. switch (obj->tiling_mode) {
  94. default:
  95. case I915_TILING_NONE: return " ";
  96. case I915_TILING_X: return "X";
  97. case I915_TILING_Y: return "Y";
  98. }
  99. }
  100. static const char *cache_level_str(int type)
  101. {
  102. switch (type) {
  103. case I915_CACHE_NONE: return " uncached";
  104. case I915_CACHE_LLC: return " snooped (LLC)";
  105. case I915_CACHE_LLC_MLC: return " snooped (LLC+MLC)";
  106. default: return "";
  107. }
  108. }
  109. static void
  110. describe_obj(struct seq_file *m, struct drm_i915_gem_object *obj)
  111. {
  112. seq_printf(m, "%p: %s%s %8zdKiB %04x %04x %d %d%s%s%s",
  113. &obj->base,
  114. get_pin_flag(obj),
  115. get_tiling_flag(obj),
  116. obj->base.size / 1024,
  117. obj->base.read_domains,
  118. obj->base.write_domain,
  119. obj->last_rendering_seqno,
  120. obj->last_fenced_seqno,
  121. cache_level_str(obj->cache_level),
  122. obj->dirty ? " dirty" : "",
  123. obj->madv == I915_MADV_DONTNEED ? " purgeable" : "");
  124. if (obj->base.name)
  125. seq_printf(m, " (name: %d)", obj->base.name);
  126. if (obj->fence_reg != I915_FENCE_REG_NONE)
  127. seq_printf(m, " (fence: %d)", obj->fence_reg);
  128. if (obj->gtt_space != NULL)
  129. seq_printf(m, " (gtt offset: %08x, size: %08x)",
  130. obj->gtt_offset, (unsigned int)obj->gtt_space->size);
  131. if (obj->pin_mappable || obj->fault_mappable) {
  132. char s[3], *t = s;
  133. if (obj->pin_mappable)
  134. *t++ = 'p';
  135. if (obj->fault_mappable)
  136. *t++ = 'f';
  137. *t = '\0';
  138. seq_printf(m, " (%s mappable)", s);
  139. }
  140. if (obj->ring != NULL)
  141. seq_printf(m, " (%s)", obj->ring->name);
  142. }
  143. static int i915_gem_object_list_info(struct seq_file *m, void *data)
  144. {
  145. struct drm_info_node *node = (struct drm_info_node *) m->private;
  146. uintptr_t list = (uintptr_t) node->info_ent->data;
  147. struct list_head *head;
  148. struct drm_device *dev = node->minor->dev;
  149. drm_i915_private_t *dev_priv = dev->dev_private;
  150. struct drm_i915_gem_object *obj;
  151. size_t total_obj_size, total_gtt_size;
  152. int count, ret;
  153. ret = mutex_lock_interruptible(&dev->struct_mutex);
  154. if (ret)
  155. return ret;
  156. switch (list) {
  157. case ACTIVE_LIST:
  158. seq_printf(m, "Active:\n");
  159. head = &dev_priv->mm.active_list;
  160. break;
  161. case INACTIVE_LIST:
  162. seq_printf(m, "Inactive:\n");
  163. head = &dev_priv->mm.inactive_list;
  164. break;
  165. case PINNED_LIST:
  166. seq_printf(m, "Pinned:\n");
  167. head = &dev_priv->mm.pinned_list;
  168. break;
  169. case FLUSHING_LIST:
  170. seq_printf(m, "Flushing:\n");
  171. head = &dev_priv->mm.flushing_list;
  172. break;
  173. case DEFERRED_FREE_LIST:
  174. seq_printf(m, "Deferred free:\n");
  175. head = &dev_priv->mm.deferred_free_list;
  176. break;
  177. default:
  178. mutex_unlock(&dev->struct_mutex);
  179. return -EINVAL;
  180. }
  181. total_obj_size = total_gtt_size = count = 0;
  182. list_for_each_entry(obj, head, mm_list) {
  183. seq_printf(m, " ");
  184. describe_obj(m, obj);
  185. seq_printf(m, "\n");
  186. total_obj_size += obj->base.size;
  187. total_gtt_size += obj->gtt_space->size;
  188. count++;
  189. }
  190. mutex_unlock(&dev->struct_mutex);
  191. seq_printf(m, "Total %d objects, %zu bytes, %zu GTT size\n",
  192. count, total_obj_size, total_gtt_size);
  193. return 0;
  194. }
  195. #define count_objects(list, member) do { \
  196. list_for_each_entry(obj, list, member) { \
  197. size += obj->gtt_space->size; \
  198. ++count; \
  199. if (obj->map_and_fenceable) { \
  200. mappable_size += obj->gtt_space->size; \
  201. ++mappable_count; \
  202. } \
  203. } \
  204. } while (0)
  205. static int i915_gem_object_info(struct seq_file *m, void* data)
  206. {
  207. struct drm_info_node *node = (struct drm_info_node *) m->private;
  208. struct drm_device *dev = node->minor->dev;
  209. struct drm_i915_private *dev_priv = dev->dev_private;
  210. u32 count, mappable_count;
  211. size_t size, mappable_size;
  212. struct drm_i915_gem_object *obj;
  213. int ret;
  214. ret = mutex_lock_interruptible(&dev->struct_mutex);
  215. if (ret)
  216. return ret;
  217. seq_printf(m, "%u objects, %zu bytes\n",
  218. dev_priv->mm.object_count,
  219. dev_priv->mm.object_memory);
  220. size = count = mappable_size = mappable_count = 0;
  221. count_objects(&dev_priv->mm.gtt_list, gtt_list);
  222. seq_printf(m, "%u [%u] objects, %zu [%zu] bytes in gtt\n",
  223. count, mappable_count, size, mappable_size);
  224. size = count = mappable_size = mappable_count = 0;
  225. count_objects(&dev_priv->mm.active_list, mm_list);
  226. count_objects(&dev_priv->mm.flushing_list, mm_list);
  227. seq_printf(m, " %u [%u] active objects, %zu [%zu] bytes\n",
  228. count, mappable_count, size, mappable_size);
  229. size = count = mappable_size = mappable_count = 0;
  230. count_objects(&dev_priv->mm.pinned_list, mm_list);
  231. seq_printf(m, " %u [%u] pinned objects, %zu [%zu] bytes\n",
  232. count, mappable_count, size, mappable_size);
  233. size = count = mappable_size = mappable_count = 0;
  234. count_objects(&dev_priv->mm.inactive_list, mm_list);
  235. seq_printf(m, " %u [%u] inactive objects, %zu [%zu] bytes\n",
  236. count, mappable_count, size, mappable_size);
  237. size = count = mappable_size = mappable_count = 0;
  238. count_objects(&dev_priv->mm.deferred_free_list, mm_list);
  239. seq_printf(m, " %u [%u] freed objects, %zu [%zu] bytes\n",
  240. count, mappable_count, size, mappable_size);
  241. size = count = mappable_size = mappable_count = 0;
  242. list_for_each_entry(obj, &dev_priv->mm.gtt_list, gtt_list) {
  243. if (obj->fault_mappable) {
  244. size += obj->gtt_space->size;
  245. ++count;
  246. }
  247. if (obj->pin_mappable) {
  248. mappable_size += obj->gtt_space->size;
  249. ++mappable_count;
  250. }
  251. }
  252. seq_printf(m, "%u pinned mappable objects, %zu bytes\n",
  253. mappable_count, mappable_size);
  254. seq_printf(m, "%u fault mappable objects, %zu bytes\n",
  255. count, size);
  256. seq_printf(m, "%zu [%zu] gtt total\n",
  257. dev_priv->mm.gtt_total, dev_priv->mm.mappable_gtt_total);
  258. mutex_unlock(&dev->struct_mutex);
  259. return 0;
  260. }
  261. static int i915_gem_gtt_info(struct seq_file *m, void* data)
  262. {
  263. struct drm_info_node *node = (struct drm_info_node *) m->private;
  264. struct drm_device *dev = node->minor->dev;
  265. struct drm_i915_private *dev_priv = dev->dev_private;
  266. struct drm_i915_gem_object *obj;
  267. size_t total_obj_size, total_gtt_size;
  268. int count, ret;
  269. ret = mutex_lock_interruptible(&dev->struct_mutex);
  270. if (ret)
  271. return ret;
  272. total_obj_size = total_gtt_size = count = 0;
  273. list_for_each_entry(obj, &dev_priv->mm.gtt_list, gtt_list) {
  274. seq_printf(m, " ");
  275. describe_obj(m, obj);
  276. seq_printf(m, "\n");
  277. total_obj_size += obj->base.size;
  278. total_gtt_size += obj->gtt_space->size;
  279. count++;
  280. }
  281. mutex_unlock(&dev->struct_mutex);
  282. seq_printf(m, "Total %d objects, %zu bytes, %zu GTT size\n",
  283. count, total_obj_size, total_gtt_size);
  284. return 0;
  285. }
  286. static int i915_gem_pageflip_info(struct seq_file *m, void *data)
  287. {
  288. struct drm_info_node *node = (struct drm_info_node *) m->private;
  289. struct drm_device *dev = node->minor->dev;
  290. unsigned long flags;
  291. struct intel_crtc *crtc;
  292. list_for_each_entry(crtc, &dev->mode_config.crtc_list, base.head) {
  293. const char pipe = pipe_name(crtc->pipe);
  294. const char plane = plane_name(crtc->plane);
  295. struct intel_unpin_work *work;
  296. spin_lock_irqsave(&dev->event_lock, flags);
  297. work = crtc->unpin_work;
  298. if (work == NULL) {
  299. seq_printf(m, "No flip due on pipe %c (plane %c)\n",
  300. pipe, plane);
  301. } else {
  302. if (!work->pending) {
  303. seq_printf(m, "Flip queued on pipe %c (plane %c)\n",
  304. pipe, plane);
  305. } else {
  306. seq_printf(m, "Flip pending (waiting for vsync) on pipe %c (plane %c)\n",
  307. pipe, plane);
  308. }
  309. if (work->enable_stall_check)
  310. seq_printf(m, "Stall check enabled, ");
  311. else
  312. seq_printf(m, "Stall check waiting for page flip ioctl, ");
  313. seq_printf(m, "%d prepares\n", work->pending);
  314. if (work->old_fb_obj) {
  315. struct drm_i915_gem_object *obj = work->old_fb_obj;
  316. if (obj)
  317. seq_printf(m, "Old framebuffer gtt_offset 0x%08x\n", obj->gtt_offset);
  318. }
  319. if (work->pending_flip_obj) {
  320. struct drm_i915_gem_object *obj = work->pending_flip_obj;
  321. if (obj)
  322. seq_printf(m, "New framebuffer gtt_offset 0x%08x\n", obj->gtt_offset);
  323. }
  324. }
  325. spin_unlock_irqrestore(&dev->event_lock, flags);
  326. }
  327. return 0;
  328. }
  329. static int i915_gem_request_info(struct seq_file *m, void *data)
  330. {
  331. struct drm_info_node *node = (struct drm_info_node *) m->private;
  332. struct drm_device *dev = node->minor->dev;
  333. drm_i915_private_t *dev_priv = dev->dev_private;
  334. struct drm_i915_gem_request *gem_request;
  335. int ret, count;
  336. ret = mutex_lock_interruptible(&dev->struct_mutex);
  337. if (ret)
  338. return ret;
  339. count = 0;
  340. if (!list_empty(&dev_priv->ring[RCS].request_list)) {
  341. seq_printf(m, "Render requests:\n");
  342. list_for_each_entry(gem_request,
  343. &dev_priv->ring[RCS].request_list,
  344. list) {
  345. seq_printf(m, " %d @ %d\n",
  346. gem_request->seqno,
  347. (int) (jiffies - gem_request->emitted_jiffies));
  348. }
  349. count++;
  350. }
  351. if (!list_empty(&dev_priv->ring[VCS].request_list)) {
  352. seq_printf(m, "BSD requests:\n");
  353. list_for_each_entry(gem_request,
  354. &dev_priv->ring[VCS].request_list,
  355. list) {
  356. seq_printf(m, " %d @ %d\n",
  357. gem_request->seqno,
  358. (int) (jiffies - gem_request->emitted_jiffies));
  359. }
  360. count++;
  361. }
  362. if (!list_empty(&dev_priv->ring[BCS].request_list)) {
  363. seq_printf(m, "BLT requests:\n");
  364. list_for_each_entry(gem_request,
  365. &dev_priv->ring[BCS].request_list,
  366. list) {
  367. seq_printf(m, " %d @ %d\n",
  368. gem_request->seqno,
  369. (int) (jiffies - gem_request->emitted_jiffies));
  370. }
  371. count++;
  372. }
  373. mutex_unlock(&dev->struct_mutex);
  374. if (count == 0)
  375. seq_printf(m, "No requests\n");
  376. return 0;
  377. }
  378. static void i915_ring_seqno_info(struct seq_file *m,
  379. struct intel_ring_buffer *ring)
  380. {
  381. if (ring->get_seqno) {
  382. seq_printf(m, "Current sequence (%s): %d\n",
  383. ring->name, ring->get_seqno(ring));
  384. seq_printf(m, "Waiter sequence (%s): %d\n",
  385. ring->name, ring->waiting_seqno);
  386. seq_printf(m, "IRQ sequence (%s): %d\n",
  387. ring->name, ring->irq_seqno);
  388. }
  389. }
  390. static int i915_gem_seqno_info(struct seq_file *m, void *data)
  391. {
  392. struct drm_info_node *node = (struct drm_info_node *) m->private;
  393. struct drm_device *dev = node->minor->dev;
  394. drm_i915_private_t *dev_priv = dev->dev_private;
  395. int ret, i;
  396. ret = mutex_lock_interruptible(&dev->struct_mutex);
  397. if (ret)
  398. return ret;
  399. for (i = 0; i < I915_NUM_RINGS; i++)
  400. i915_ring_seqno_info(m, &dev_priv->ring[i]);
  401. mutex_unlock(&dev->struct_mutex);
  402. return 0;
  403. }
  404. static int i915_interrupt_info(struct seq_file *m, void *data)
  405. {
  406. struct drm_info_node *node = (struct drm_info_node *) m->private;
  407. struct drm_device *dev = node->minor->dev;
  408. drm_i915_private_t *dev_priv = dev->dev_private;
  409. int ret, i, pipe;
  410. ret = mutex_lock_interruptible(&dev->struct_mutex);
  411. if (ret)
  412. return ret;
  413. if (!HAS_PCH_SPLIT(dev)) {
  414. seq_printf(m, "Interrupt enable: %08x\n",
  415. I915_READ(IER));
  416. seq_printf(m, "Interrupt identity: %08x\n",
  417. I915_READ(IIR));
  418. seq_printf(m, "Interrupt mask: %08x\n",
  419. I915_READ(IMR));
  420. for_each_pipe(pipe)
  421. seq_printf(m, "Pipe %c stat: %08x\n",
  422. pipe_name(pipe),
  423. I915_READ(PIPESTAT(pipe)));
  424. } else {
  425. seq_printf(m, "North Display Interrupt enable: %08x\n",
  426. I915_READ(DEIER));
  427. seq_printf(m, "North Display Interrupt identity: %08x\n",
  428. I915_READ(DEIIR));
  429. seq_printf(m, "North Display Interrupt mask: %08x\n",
  430. I915_READ(DEIMR));
  431. seq_printf(m, "South Display Interrupt enable: %08x\n",
  432. I915_READ(SDEIER));
  433. seq_printf(m, "South Display Interrupt identity: %08x\n",
  434. I915_READ(SDEIIR));
  435. seq_printf(m, "South Display Interrupt mask: %08x\n",
  436. I915_READ(SDEIMR));
  437. seq_printf(m, "Graphics Interrupt enable: %08x\n",
  438. I915_READ(GTIER));
  439. seq_printf(m, "Graphics Interrupt identity: %08x\n",
  440. I915_READ(GTIIR));
  441. seq_printf(m, "Graphics Interrupt mask: %08x\n",
  442. I915_READ(GTIMR));
  443. }
  444. seq_printf(m, "Interrupts received: %d\n",
  445. atomic_read(&dev_priv->irq_received));
  446. for (i = 0; i < I915_NUM_RINGS; i++) {
  447. if (IS_GEN6(dev) || IS_GEN7(dev)) {
  448. seq_printf(m, "Graphics Interrupt mask (%s): %08x\n",
  449. dev_priv->ring[i].name,
  450. I915_READ_IMR(&dev_priv->ring[i]));
  451. }
  452. i915_ring_seqno_info(m, &dev_priv->ring[i]);
  453. }
  454. mutex_unlock(&dev->struct_mutex);
  455. return 0;
  456. }
  457. static int i915_gem_fence_regs_info(struct seq_file *m, void *data)
  458. {
  459. struct drm_info_node *node = (struct drm_info_node *) m->private;
  460. struct drm_device *dev = node->minor->dev;
  461. drm_i915_private_t *dev_priv = dev->dev_private;
  462. int i, ret;
  463. ret = mutex_lock_interruptible(&dev->struct_mutex);
  464. if (ret)
  465. return ret;
  466. seq_printf(m, "Reserved fences = %d\n", dev_priv->fence_reg_start);
  467. seq_printf(m, "Total fences = %d\n", dev_priv->num_fence_regs);
  468. for (i = 0; i < dev_priv->num_fence_regs; i++) {
  469. struct drm_i915_gem_object *obj = dev_priv->fence_regs[i].obj;
  470. seq_printf(m, "Fenced object[%2d] = ", i);
  471. if (obj == NULL)
  472. seq_printf(m, "unused");
  473. else
  474. describe_obj(m, obj);
  475. seq_printf(m, "\n");
  476. }
  477. mutex_unlock(&dev->struct_mutex);
  478. return 0;
  479. }
  480. static int i915_hws_info(struct seq_file *m, void *data)
  481. {
  482. struct drm_info_node *node = (struct drm_info_node *) m->private;
  483. struct drm_device *dev = node->minor->dev;
  484. drm_i915_private_t *dev_priv = dev->dev_private;
  485. struct intel_ring_buffer *ring;
  486. const volatile u32 __iomem *hws;
  487. int i;
  488. ring = &dev_priv->ring[(uintptr_t)node->info_ent->data];
  489. hws = (volatile u32 __iomem *)ring->status_page.page_addr;
  490. if (hws == NULL)
  491. return 0;
  492. for (i = 0; i < 4096 / sizeof(u32) / 4; i += 4) {
  493. seq_printf(m, "0x%08x: 0x%08x 0x%08x 0x%08x 0x%08x\n",
  494. i * 4,
  495. hws[i], hws[i + 1], hws[i + 2], hws[i + 3]);
  496. }
  497. return 0;
  498. }
  499. static int i915_ringbuffer_data(struct seq_file *m, void *data)
  500. {
  501. struct drm_info_node *node = (struct drm_info_node *) m->private;
  502. struct drm_device *dev = node->minor->dev;
  503. drm_i915_private_t *dev_priv = dev->dev_private;
  504. struct intel_ring_buffer *ring;
  505. int ret;
  506. ret = mutex_lock_interruptible(&dev->struct_mutex);
  507. if (ret)
  508. return ret;
  509. ring = &dev_priv->ring[(uintptr_t)node->info_ent->data];
  510. if (!ring->obj) {
  511. seq_printf(m, "No ringbuffer setup\n");
  512. } else {
  513. const u8 __iomem *virt = ring->virtual_start;
  514. uint32_t off;
  515. for (off = 0; off < ring->size; off += 4) {
  516. uint32_t *ptr = (uint32_t *)(virt + off);
  517. seq_printf(m, "%08x : %08x\n", off, *ptr);
  518. }
  519. }
  520. mutex_unlock(&dev->struct_mutex);
  521. return 0;
  522. }
  523. static int i915_ringbuffer_info(struct seq_file *m, void *data)
  524. {
  525. struct drm_info_node *node = (struct drm_info_node *) m->private;
  526. struct drm_device *dev = node->minor->dev;
  527. drm_i915_private_t *dev_priv = dev->dev_private;
  528. struct intel_ring_buffer *ring;
  529. int ret;
  530. ring = &dev_priv->ring[(uintptr_t)node->info_ent->data];
  531. if (ring->size == 0)
  532. return 0;
  533. ret = mutex_lock_interruptible(&dev->struct_mutex);
  534. if (ret)
  535. return ret;
  536. seq_printf(m, "Ring %s:\n", ring->name);
  537. seq_printf(m, " Head : %08x\n", I915_READ_HEAD(ring) & HEAD_ADDR);
  538. seq_printf(m, " Tail : %08x\n", I915_READ_TAIL(ring) & TAIL_ADDR);
  539. seq_printf(m, " Size : %08x\n", ring->size);
  540. seq_printf(m, " Active : %08x\n", intel_ring_get_active_head(ring));
  541. seq_printf(m, " NOPID : %08x\n", I915_READ_NOPID(ring));
  542. if (IS_GEN6(dev) || IS_GEN7(dev)) {
  543. seq_printf(m, " Sync 0 : %08x\n", I915_READ_SYNC_0(ring));
  544. seq_printf(m, " Sync 1 : %08x\n", I915_READ_SYNC_1(ring));
  545. }
  546. seq_printf(m, " Control : %08x\n", I915_READ_CTL(ring));
  547. seq_printf(m, " Start : %08x\n", I915_READ_START(ring));
  548. mutex_unlock(&dev->struct_mutex);
  549. return 0;
  550. }
  551. static const char *ring_str(int ring)
  552. {
  553. switch (ring) {
  554. case RCS: return "render";
  555. case VCS: return "bsd";
  556. case BCS: return "blt";
  557. default: return "";
  558. }
  559. }
  560. static const char *pin_flag(int pinned)
  561. {
  562. if (pinned > 0)
  563. return " P";
  564. else if (pinned < 0)
  565. return " p";
  566. else
  567. return "";
  568. }
  569. static const char *tiling_flag(int tiling)
  570. {
  571. switch (tiling) {
  572. default:
  573. case I915_TILING_NONE: return "";
  574. case I915_TILING_X: return " X";
  575. case I915_TILING_Y: return " Y";
  576. }
  577. }
  578. static const char *dirty_flag(int dirty)
  579. {
  580. return dirty ? " dirty" : "";
  581. }
  582. static const char *purgeable_flag(int purgeable)
  583. {
  584. return purgeable ? " purgeable" : "";
  585. }
  586. static void print_error_buffers(struct seq_file *m,
  587. const char *name,
  588. struct drm_i915_error_buffer *err,
  589. int count)
  590. {
  591. seq_printf(m, "%s [%d]:\n", name, count);
  592. while (count--) {
  593. seq_printf(m, " %08x %8u %04x %04x %08x%s%s%s%s%s%s%s",
  594. err->gtt_offset,
  595. err->size,
  596. err->read_domains,
  597. err->write_domain,
  598. err->seqno,
  599. pin_flag(err->pinned),
  600. tiling_flag(err->tiling),
  601. dirty_flag(err->dirty),
  602. purgeable_flag(err->purgeable),
  603. err->ring != -1 ? " " : "",
  604. ring_str(err->ring),
  605. cache_level_str(err->cache_level));
  606. if (err->name)
  607. seq_printf(m, " (name: %d)", err->name);
  608. if (err->fence_reg != I915_FENCE_REG_NONE)
  609. seq_printf(m, " (fence: %d)", err->fence_reg);
  610. seq_printf(m, "\n");
  611. err++;
  612. }
  613. }
  614. static void i915_ring_error_state(struct seq_file *m,
  615. struct drm_device *dev,
  616. struct drm_i915_error_state *error,
  617. unsigned ring)
  618. {
  619. seq_printf(m, "%s command stream:\n", ring_str(ring));
  620. seq_printf(m, " HEAD: 0x%08x\n", error->head[ring]);
  621. seq_printf(m, " TAIL: 0x%08x\n", error->tail[ring]);
  622. seq_printf(m, " ACTHD: 0x%08x\n", error->acthd[ring]);
  623. seq_printf(m, " IPEIR: 0x%08x\n", error->ipeir[ring]);
  624. seq_printf(m, " IPEHR: 0x%08x\n", error->ipehr[ring]);
  625. seq_printf(m, " INSTDONE: 0x%08x\n", error->instdone[ring]);
  626. if (ring == RCS && INTEL_INFO(dev)->gen >= 4) {
  627. seq_printf(m, " INSTDONE1: 0x%08x\n", error->instdone1);
  628. seq_printf(m, " BBADDR: 0x%08llx\n", error->bbaddr);
  629. }
  630. if (INTEL_INFO(dev)->gen >= 4)
  631. seq_printf(m, " INSTPS: 0x%08x\n", error->instps[ring]);
  632. seq_printf(m, " INSTPM: 0x%08x\n", error->instpm[ring]);
  633. if (INTEL_INFO(dev)->gen >= 6) {
  634. seq_printf(m, " FADDR: 0x%08x\n", error->faddr[ring]);
  635. seq_printf(m, " FAULT_REG: 0x%08x\n", error->fault_reg[ring]);
  636. seq_printf(m, " SYNC_0: 0x%08x\n",
  637. error->semaphore_mboxes[ring][0]);
  638. seq_printf(m, " SYNC_1: 0x%08x\n",
  639. error->semaphore_mboxes[ring][1]);
  640. }
  641. seq_printf(m, " seqno: 0x%08x\n", error->seqno[ring]);
  642. seq_printf(m, " ring->head: 0x%08x\n", error->cpu_ring_head[ring]);
  643. seq_printf(m, " ring->tail: 0x%08x\n", error->cpu_ring_tail[ring]);
  644. }
  645. static int i915_error_state(struct seq_file *m, void *unused)
  646. {
  647. struct drm_info_node *node = (struct drm_info_node *) m->private;
  648. struct drm_device *dev = node->minor->dev;
  649. drm_i915_private_t *dev_priv = dev->dev_private;
  650. struct drm_i915_error_state *error;
  651. unsigned long flags;
  652. int i, j, page, offset, elt;
  653. spin_lock_irqsave(&dev_priv->error_lock, flags);
  654. if (!dev_priv->first_error) {
  655. seq_printf(m, "no error state collected\n");
  656. goto out;
  657. }
  658. error = dev_priv->first_error;
  659. seq_printf(m, "Time: %ld s %ld us\n", error->time.tv_sec,
  660. error->time.tv_usec);
  661. seq_printf(m, "PCI ID: 0x%04x\n", dev->pci_device);
  662. seq_printf(m, "EIR: 0x%08x\n", error->eir);
  663. seq_printf(m, "PGTBL_ER: 0x%08x\n", error->pgtbl_er);
  664. for (i = 0; i < dev_priv->num_fence_regs; i++)
  665. seq_printf(m, " fence[%d] = %08llx\n", i, error->fence[i]);
  666. if (INTEL_INFO(dev)->gen >= 6) {
  667. seq_printf(m, "ERROR: 0x%08x\n", error->error);
  668. seq_printf(m, "DONE_REG: 0x%08x\n", error->done_reg);
  669. }
  670. i915_ring_error_state(m, dev, error, RCS);
  671. if (HAS_BLT(dev))
  672. i915_ring_error_state(m, dev, error, BCS);
  673. if (HAS_BSD(dev))
  674. i915_ring_error_state(m, dev, error, VCS);
  675. if (error->active_bo)
  676. print_error_buffers(m, "Active",
  677. error->active_bo,
  678. error->active_bo_count);
  679. if (error->pinned_bo)
  680. print_error_buffers(m, "Pinned",
  681. error->pinned_bo,
  682. error->pinned_bo_count);
  683. for (i = 0; i < ARRAY_SIZE(error->ring); i++) {
  684. struct drm_i915_error_object *obj;
  685. if ((obj = error->ring[i].batchbuffer)) {
  686. seq_printf(m, "%s --- gtt_offset = 0x%08x\n",
  687. dev_priv->ring[i].name,
  688. obj->gtt_offset);
  689. offset = 0;
  690. for (page = 0; page < obj->page_count; page++) {
  691. for (elt = 0; elt < PAGE_SIZE/4; elt++) {
  692. seq_printf(m, "%08x : %08x\n", offset, obj->pages[page][elt]);
  693. offset += 4;
  694. }
  695. }
  696. }
  697. if (error->ring[i].num_requests) {
  698. seq_printf(m, "%s --- %d requests\n",
  699. dev_priv->ring[i].name,
  700. error->ring[i].num_requests);
  701. for (j = 0; j < error->ring[i].num_requests; j++) {
  702. seq_printf(m, " seqno 0x%08x, emitted %ld, tail 0x%08x\n",
  703. error->ring[i].requests[j].seqno,
  704. error->ring[i].requests[j].jiffies,
  705. error->ring[i].requests[j].tail);
  706. }
  707. }
  708. if ((obj = error->ring[i].ringbuffer)) {
  709. seq_printf(m, "%s --- ringbuffer = 0x%08x\n",
  710. dev_priv->ring[i].name,
  711. obj->gtt_offset);
  712. offset = 0;
  713. for (page = 0; page < obj->page_count; page++) {
  714. for (elt = 0; elt < PAGE_SIZE/4; elt++) {
  715. seq_printf(m, "%08x : %08x\n",
  716. offset,
  717. obj->pages[page][elt]);
  718. offset += 4;
  719. }
  720. }
  721. }
  722. }
  723. if (error->overlay)
  724. intel_overlay_print_error_state(m, error->overlay);
  725. if (error->display)
  726. intel_display_print_error_state(m, dev, error->display);
  727. out:
  728. spin_unlock_irqrestore(&dev_priv->error_lock, flags);
  729. return 0;
  730. }
  731. static int i915_rstdby_delays(struct seq_file *m, void *unused)
  732. {
  733. struct drm_info_node *node = (struct drm_info_node *) m->private;
  734. struct drm_device *dev = node->minor->dev;
  735. drm_i915_private_t *dev_priv = dev->dev_private;
  736. u16 crstanddelay;
  737. int ret;
  738. ret = mutex_lock_interruptible(&dev->struct_mutex);
  739. if (ret)
  740. return ret;
  741. crstanddelay = I915_READ16(CRSTANDVID);
  742. mutex_unlock(&dev->struct_mutex);
  743. seq_printf(m, "w/ctx: %d, w/o ctx: %d\n", (crstanddelay >> 8) & 0x3f, (crstanddelay & 0x3f));
  744. return 0;
  745. }
  746. static int i915_cur_delayinfo(struct seq_file *m, void *unused)
  747. {
  748. struct drm_info_node *node = (struct drm_info_node *) m->private;
  749. struct drm_device *dev = node->minor->dev;
  750. drm_i915_private_t *dev_priv = dev->dev_private;
  751. int ret;
  752. if (IS_GEN5(dev)) {
  753. u16 rgvswctl = I915_READ16(MEMSWCTL);
  754. u16 rgvstat = I915_READ16(MEMSTAT_ILK);
  755. seq_printf(m, "Requested P-state: %d\n", (rgvswctl >> 8) & 0xf);
  756. seq_printf(m, "Requested VID: %d\n", rgvswctl & 0x3f);
  757. seq_printf(m, "Current VID: %d\n", (rgvstat & MEMSTAT_VID_MASK) >>
  758. MEMSTAT_VID_SHIFT);
  759. seq_printf(m, "Current P-state: %d\n",
  760. (rgvstat & MEMSTAT_PSTATE_MASK) >> MEMSTAT_PSTATE_SHIFT);
  761. } else if (IS_GEN6(dev) || IS_GEN7(dev)) {
  762. u32 gt_perf_status = I915_READ(GEN6_GT_PERF_STATUS);
  763. u32 rp_state_limits = I915_READ(GEN6_RP_STATE_LIMITS);
  764. u32 rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
  765. u32 rpstat;
  766. u32 rpupei, rpcurup, rpprevup;
  767. u32 rpdownei, rpcurdown, rpprevdown;
  768. int max_freq;
  769. /* RPSTAT1 is in the GT power well */
  770. ret = mutex_lock_interruptible(&dev->struct_mutex);
  771. if (ret)
  772. return ret;
  773. gen6_gt_force_wake_get(dev_priv);
  774. rpstat = I915_READ(GEN6_RPSTAT1);
  775. rpupei = I915_READ(GEN6_RP_CUR_UP_EI);
  776. rpcurup = I915_READ(GEN6_RP_CUR_UP);
  777. rpprevup = I915_READ(GEN6_RP_PREV_UP);
  778. rpdownei = I915_READ(GEN6_RP_CUR_DOWN_EI);
  779. rpcurdown = I915_READ(GEN6_RP_CUR_DOWN);
  780. rpprevdown = I915_READ(GEN6_RP_PREV_DOWN);
  781. gen6_gt_force_wake_put(dev_priv);
  782. mutex_unlock(&dev->struct_mutex);
  783. seq_printf(m, "GT_PERF_STATUS: 0x%08x\n", gt_perf_status);
  784. seq_printf(m, "RPSTAT1: 0x%08x\n", rpstat);
  785. seq_printf(m, "Render p-state ratio: %d\n",
  786. (gt_perf_status & 0xff00) >> 8);
  787. seq_printf(m, "Render p-state VID: %d\n",
  788. gt_perf_status & 0xff);
  789. seq_printf(m, "Render p-state limit: %d\n",
  790. rp_state_limits & 0xff);
  791. seq_printf(m, "CAGF: %dMHz\n", ((rpstat & GEN6_CAGF_MASK) >>
  792. GEN6_CAGF_SHIFT) * 50);
  793. seq_printf(m, "RP CUR UP EI: %dus\n", rpupei &
  794. GEN6_CURICONT_MASK);
  795. seq_printf(m, "RP CUR UP: %dus\n", rpcurup &
  796. GEN6_CURBSYTAVG_MASK);
  797. seq_printf(m, "RP PREV UP: %dus\n", rpprevup &
  798. GEN6_CURBSYTAVG_MASK);
  799. seq_printf(m, "RP CUR DOWN EI: %dus\n", rpdownei &
  800. GEN6_CURIAVG_MASK);
  801. seq_printf(m, "RP CUR DOWN: %dus\n", rpcurdown &
  802. GEN6_CURBSYTAVG_MASK);
  803. seq_printf(m, "RP PREV DOWN: %dus\n", rpprevdown &
  804. GEN6_CURBSYTAVG_MASK);
  805. max_freq = (rp_state_cap & 0xff0000) >> 16;
  806. seq_printf(m, "Lowest (RPN) frequency: %dMHz\n",
  807. max_freq * 50);
  808. max_freq = (rp_state_cap & 0xff00) >> 8;
  809. seq_printf(m, "Nominal (RP1) frequency: %dMHz\n",
  810. max_freq * 50);
  811. max_freq = rp_state_cap & 0xff;
  812. seq_printf(m, "Max non-overclocked (RP0) frequency: %dMHz\n",
  813. max_freq * 50);
  814. } else {
  815. seq_printf(m, "no P-state info available\n");
  816. }
  817. return 0;
  818. }
  819. static int i915_delayfreq_table(struct seq_file *m, void *unused)
  820. {
  821. struct drm_info_node *node = (struct drm_info_node *) m->private;
  822. struct drm_device *dev = node->minor->dev;
  823. drm_i915_private_t *dev_priv = dev->dev_private;
  824. u32 delayfreq;
  825. int ret, i;
  826. ret = mutex_lock_interruptible(&dev->struct_mutex);
  827. if (ret)
  828. return ret;
  829. for (i = 0; i < 16; i++) {
  830. delayfreq = I915_READ(PXVFREQ_BASE + i * 4);
  831. seq_printf(m, "P%02dVIDFREQ: 0x%08x (VID: %d)\n", i, delayfreq,
  832. (delayfreq & PXVFREQ_PX_MASK) >> PXVFREQ_PX_SHIFT);
  833. }
  834. mutex_unlock(&dev->struct_mutex);
  835. return 0;
  836. }
  837. static inline int MAP_TO_MV(int map)
  838. {
  839. return 1250 - (map * 25);
  840. }
  841. static int i915_inttoext_table(struct seq_file *m, void *unused)
  842. {
  843. struct drm_info_node *node = (struct drm_info_node *) m->private;
  844. struct drm_device *dev = node->minor->dev;
  845. drm_i915_private_t *dev_priv = dev->dev_private;
  846. u32 inttoext;
  847. int ret, i;
  848. ret = mutex_lock_interruptible(&dev->struct_mutex);
  849. if (ret)
  850. return ret;
  851. for (i = 1; i <= 32; i++) {
  852. inttoext = I915_READ(INTTOEXT_BASE_ILK + i * 4);
  853. seq_printf(m, "INTTOEXT%02d: 0x%08x\n", i, inttoext);
  854. }
  855. mutex_unlock(&dev->struct_mutex);
  856. return 0;
  857. }
  858. static int ironlake_drpc_info(struct seq_file *m)
  859. {
  860. struct drm_info_node *node = (struct drm_info_node *) m->private;
  861. struct drm_device *dev = node->minor->dev;
  862. drm_i915_private_t *dev_priv = dev->dev_private;
  863. u32 rgvmodectl, rstdbyctl;
  864. u16 crstandvid;
  865. int ret;
  866. ret = mutex_lock_interruptible(&dev->struct_mutex);
  867. if (ret)
  868. return ret;
  869. rgvmodectl = I915_READ(MEMMODECTL);
  870. rstdbyctl = I915_READ(RSTDBYCTL);
  871. crstandvid = I915_READ16(CRSTANDVID);
  872. mutex_unlock(&dev->struct_mutex);
  873. seq_printf(m, "HD boost: %s\n", (rgvmodectl & MEMMODE_BOOST_EN) ?
  874. "yes" : "no");
  875. seq_printf(m, "Boost freq: %d\n",
  876. (rgvmodectl & MEMMODE_BOOST_FREQ_MASK) >>
  877. MEMMODE_BOOST_FREQ_SHIFT);
  878. seq_printf(m, "HW control enabled: %s\n",
  879. rgvmodectl & MEMMODE_HWIDLE_EN ? "yes" : "no");
  880. seq_printf(m, "SW control enabled: %s\n",
  881. rgvmodectl & MEMMODE_SWMODE_EN ? "yes" : "no");
  882. seq_printf(m, "Gated voltage change: %s\n",
  883. rgvmodectl & MEMMODE_RCLK_GATE ? "yes" : "no");
  884. seq_printf(m, "Starting frequency: P%d\n",
  885. (rgvmodectl & MEMMODE_FSTART_MASK) >> MEMMODE_FSTART_SHIFT);
  886. seq_printf(m, "Max P-state: P%d\n",
  887. (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT);
  888. seq_printf(m, "Min P-state: P%d\n", (rgvmodectl & MEMMODE_FMIN_MASK));
  889. seq_printf(m, "RS1 VID: %d\n", (crstandvid & 0x3f));
  890. seq_printf(m, "RS2 VID: %d\n", ((crstandvid >> 8) & 0x3f));
  891. seq_printf(m, "Render standby enabled: %s\n",
  892. (rstdbyctl & RCX_SW_EXIT) ? "no" : "yes");
  893. seq_printf(m, "Current RS state: ");
  894. switch (rstdbyctl & RSX_STATUS_MASK) {
  895. case RSX_STATUS_ON:
  896. seq_printf(m, "on\n");
  897. break;
  898. case RSX_STATUS_RC1:
  899. seq_printf(m, "RC1\n");
  900. break;
  901. case RSX_STATUS_RC1E:
  902. seq_printf(m, "RC1E\n");
  903. break;
  904. case RSX_STATUS_RS1:
  905. seq_printf(m, "RS1\n");
  906. break;
  907. case RSX_STATUS_RS2:
  908. seq_printf(m, "RS2 (RC6)\n");
  909. break;
  910. case RSX_STATUS_RS3:
  911. seq_printf(m, "RC3 (RC6+)\n");
  912. break;
  913. default:
  914. seq_printf(m, "unknown\n");
  915. break;
  916. }
  917. return 0;
  918. }
  919. static int gen6_drpc_info(struct seq_file *m)
  920. {
  921. struct drm_info_node *node = (struct drm_info_node *) m->private;
  922. struct drm_device *dev = node->minor->dev;
  923. struct drm_i915_private *dev_priv = dev->dev_private;
  924. u32 rpmodectl1, gt_core_status, rcctl1;
  925. unsigned forcewake_count;
  926. int count=0, ret;
  927. ret = mutex_lock_interruptible(&dev->struct_mutex);
  928. if (ret)
  929. return ret;
  930. spin_lock_irq(&dev_priv->gt_lock);
  931. forcewake_count = dev_priv->forcewake_count;
  932. spin_unlock_irq(&dev_priv->gt_lock);
  933. if (forcewake_count) {
  934. seq_printf(m, "RC information inaccurate because somebody "
  935. "holds a forcewake reference \n");
  936. } else {
  937. /* NB: we cannot use forcewake, else we read the wrong values */
  938. while (count++ < 50 && (I915_READ_NOTRACE(FORCEWAKE_ACK) & 1))
  939. udelay(10);
  940. seq_printf(m, "RC information accurate: %s\n", yesno(count < 51));
  941. }
  942. gt_core_status = readl(dev_priv->regs + GEN6_GT_CORE_STATUS);
  943. trace_i915_reg_rw(false, GEN6_GT_CORE_STATUS, gt_core_status, 4);
  944. rpmodectl1 = I915_READ(GEN6_RP_CONTROL);
  945. rcctl1 = I915_READ(GEN6_RC_CONTROL);
  946. mutex_unlock(&dev->struct_mutex);
  947. seq_printf(m, "Video Turbo Mode: %s\n",
  948. yesno(rpmodectl1 & GEN6_RP_MEDIA_TURBO));
  949. seq_printf(m, "HW control enabled: %s\n",
  950. yesno(rpmodectl1 & GEN6_RP_ENABLE));
  951. seq_printf(m, "SW control enabled: %s\n",
  952. yesno((rpmodectl1 & GEN6_RP_MEDIA_MODE_MASK) ==
  953. GEN6_RP_MEDIA_SW_MODE));
  954. seq_printf(m, "RC1e Enabled: %s\n",
  955. yesno(rcctl1 & GEN6_RC_CTL_RC1e_ENABLE));
  956. seq_printf(m, "RC6 Enabled: %s\n",
  957. yesno(rcctl1 & GEN6_RC_CTL_RC6_ENABLE));
  958. seq_printf(m, "Deep RC6 Enabled: %s\n",
  959. yesno(rcctl1 & GEN6_RC_CTL_RC6p_ENABLE));
  960. seq_printf(m, "Deepest RC6 Enabled: %s\n",
  961. yesno(rcctl1 & GEN6_RC_CTL_RC6pp_ENABLE));
  962. seq_printf(m, "Current RC state: ");
  963. switch (gt_core_status & GEN6_RCn_MASK) {
  964. case GEN6_RC0:
  965. if (gt_core_status & GEN6_CORE_CPD_STATE_MASK)
  966. seq_printf(m, "Core Power Down\n");
  967. else
  968. seq_printf(m, "on\n");
  969. break;
  970. case GEN6_RC3:
  971. seq_printf(m, "RC3\n");
  972. break;
  973. case GEN6_RC6:
  974. seq_printf(m, "RC6\n");
  975. break;
  976. case GEN6_RC7:
  977. seq_printf(m, "RC7\n");
  978. break;
  979. default:
  980. seq_printf(m, "Unknown\n");
  981. break;
  982. }
  983. seq_printf(m, "Core Power Down: %s\n",
  984. yesno(gt_core_status & GEN6_CORE_CPD_STATE_MASK));
  985. return 0;
  986. }
  987. static int i915_drpc_info(struct seq_file *m, void *unused)
  988. {
  989. struct drm_info_node *node = (struct drm_info_node *) m->private;
  990. struct drm_device *dev = node->minor->dev;
  991. if (IS_GEN6(dev) || IS_GEN7(dev))
  992. return gen6_drpc_info(m);
  993. else
  994. return ironlake_drpc_info(m);
  995. }
  996. static int i915_fbc_status(struct seq_file *m, void *unused)
  997. {
  998. struct drm_info_node *node = (struct drm_info_node *) m->private;
  999. struct drm_device *dev = node->minor->dev;
  1000. drm_i915_private_t *dev_priv = dev->dev_private;
  1001. if (!I915_HAS_FBC(dev)) {
  1002. seq_printf(m, "FBC unsupported on this chipset\n");
  1003. return 0;
  1004. }
  1005. if (intel_fbc_enabled(dev)) {
  1006. seq_printf(m, "FBC enabled\n");
  1007. } else {
  1008. seq_printf(m, "FBC disabled: ");
  1009. switch (dev_priv->no_fbc_reason) {
  1010. case FBC_NO_OUTPUT:
  1011. seq_printf(m, "no outputs");
  1012. break;
  1013. case FBC_STOLEN_TOO_SMALL:
  1014. seq_printf(m, "not enough stolen memory");
  1015. break;
  1016. case FBC_UNSUPPORTED_MODE:
  1017. seq_printf(m, "mode not supported");
  1018. break;
  1019. case FBC_MODE_TOO_LARGE:
  1020. seq_printf(m, "mode too large");
  1021. break;
  1022. case FBC_BAD_PLANE:
  1023. seq_printf(m, "FBC unsupported on plane");
  1024. break;
  1025. case FBC_NOT_TILED:
  1026. seq_printf(m, "scanout buffer not tiled");
  1027. break;
  1028. case FBC_MULTIPLE_PIPES:
  1029. seq_printf(m, "multiple pipes are enabled");
  1030. break;
  1031. case FBC_MODULE_PARAM:
  1032. seq_printf(m, "disabled per module param (default off)");
  1033. break;
  1034. default:
  1035. seq_printf(m, "unknown reason");
  1036. }
  1037. seq_printf(m, "\n");
  1038. }
  1039. return 0;
  1040. }
  1041. static int i915_sr_status(struct seq_file *m, void *unused)
  1042. {
  1043. struct drm_info_node *node = (struct drm_info_node *) m->private;
  1044. struct drm_device *dev = node->minor->dev;
  1045. drm_i915_private_t *dev_priv = dev->dev_private;
  1046. bool sr_enabled = false;
  1047. if (HAS_PCH_SPLIT(dev))
  1048. sr_enabled = I915_READ(WM1_LP_ILK) & WM1_LP_SR_EN;
  1049. else if (IS_CRESTLINE(dev) || IS_I945G(dev) || IS_I945GM(dev))
  1050. sr_enabled = I915_READ(FW_BLC_SELF) & FW_BLC_SELF_EN;
  1051. else if (IS_I915GM(dev))
  1052. sr_enabled = I915_READ(INSTPM) & INSTPM_SELF_EN;
  1053. else if (IS_PINEVIEW(dev))
  1054. sr_enabled = I915_READ(DSPFW3) & PINEVIEW_SELF_REFRESH_EN;
  1055. seq_printf(m, "self-refresh: %s\n",
  1056. sr_enabled ? "enabled" : "disabled");
  1057. return 0;
  1058. }
  1059. static int i915_emon_status(struct seq_file *m, void *unused)
  1060. {
  1061. struct drm_info_node *node = (struct drm_info_node *) m->private;
  1062. struct drm_device *dev = node->minor->dev;
  1063. drm_i915_private_t *dev_priv = dev->dev_private;
  1064. unsigned long temp, chipset, gfx;
  1065. int ret;
  1066. ret = mutex_lock_interruptible(&dev->struct_mutex);
  1067. if (ret)
  1068. return ret;
  1069. temp = i915_mch_val(dev_priv);
  1070. chipset = i915_chipset_val(dev_priv);
  1071. gfx = i915_gfx_val(dev_priv);
  1072. mutex_unlock(&dev->struct_mutex);
  1073. seq_printf(m, "GMCH temp: %ld\n", temp);
  1074. seq_printf(m, "Chipset power: %ld\n", chipset);
  1075. seq_printf(m, "GFX power: %ld\n", gfx);
  1076. seq_printf(m, "Total power: %ld\n", chipset + gfx);
  1077. return 0;
  1078. }
  1079. static int i915_ring_freq_table(struct seq_file *m, void *unused)
  1080. {
  1081. struct drm_info_node *node = (struct drm_info_node *) m->private;
  1082. struct drm_device *dev = node->minor->dev;
  1083. drm_i915_private_t *dev_priv = dev->dev_private;
  1084. int ret;
  1085. int gpu_freq, ia_freq;
  1086. if (!(IS_GEN6(dev) || IS_GEN7(dev))) {
  1087. seq_printf(m, "unsupported on this chipset\n");
  1088. return 0;
  1089. }
  1090. ret = mutex_lock_interruptible(&dev->struct_mutex);
  1091. if (ret)
  1092. return ret;
  1093. seq_printf(m, "GPU freq (MHz)\tEffective CPU freq (MHz)\n");
  1094. for (gpu_freq = dev_priv->min_delay; gpu_freq <= dev_priv->max_delay;
  1095. gpu_freq++) {
  1096. I915_WRITE(GEN6_PCODE_DATA, gpu_freq);
  1097. I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY |
  1098. GEN6_PCODE_READ_MIN_FREQ_TABLE);
  1099. if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) &
  1100. GEN6_PCODE_READY) == 0, 10)) {
  1101. DRM_ERROR("pcode read of freq table timed out\n");
  1102. continue;
  1103. }
  1104. ia_freq = I915_READ(GEN6_PCODE_DATA);
  1105. seq_printf(m, "%d\t\t%d\n", gpu_freq * 50, ia_freq * 100);
  1106. }
  1107. mutex_unlock(&dev->struct_mutex);
  1108. return 0;
  1109. }
  1110. static int i915_gfxec(struct seq_file *m, void *unused)
  1111. {
  1112. struct drm_info_node *node = (struct drm_info_node *) m->private;
  1113. struct drm_device *dev = node->minor->dev;
  1114. drm_i915_private_t *dev_priv = dev->dev_private;
  1115. int ret;
  1116. ret = mutex_lock_interruptible(&dev->struct_mutex);
  1117. if (ret)
  1118. return ret;
  1119. seq_printf(m, "GFXEC: %ld\n", (unsigned long)I915_READ(0x112f4));
  1120. mutex_unlock(&dev->struct_mutex);
  1121. return 0;
  1122. }
  1123. static int i915_opregion(struct seq_file *m, void *unused)
  1124. {
  1125. struct drm_info_node *node = (struct drm_info_node *) m->private;
  1126. struct drm_device *dev = node->minor->dev;
  1127. drm_i915_private_t *dev_priv = dev->dev_private;
  1128. struct intel_opregion *opregion = &dev_priv->opregion;
  1129. int ret;
  1130. ret = mutex_lock_interruptible(&dev->struct_mutex);
  1131. if (ret)
  1132. return ret;
  1133. if (opregion->header)
  1134. seq_write(m, opregion->header, OPREGION_SIZE);
  1135. mutex_unlock(&dev->struct_mutex);
  1136. return 0;
  1137. }
  1138. static int i915_gem_framebuffer_info(struct seq_file *m, void *data)
  1139. {
  1140. struct drm_info_node *node = (struct drm_info_node *) m->private;
  1141. struct drm_device *dev = node->minor->dev;
  1142. drm_i915_private_t *dev_priv = dev->dev_private;
  1143. struct intel_fbdev *ifbdev;
  1144. struct intel_framebuffer *fb;
  1145. int ret;
  1146. ret = mutex_lock_interruptible(&dev->mode_config.mutex);
  1147. if (ret)
  1148. return ret;
  1149. ifbdev = dev_priv->fbdev;
  1150. fb = to_intel_framebuffer(ifbdev->helper.fb);
  1151. seq_printf(m, "fbcon size: %d x %d, depth %d, %d bpp, obj ",
  1152. fb->base.width,
  1153. fb->base.height,
  1154. fb->base.depth,
  1155. fb->base.bits_per_pixel);
  1156. describe_obj(m, fb->obj);
  1157. seq_printf(m, "\n");
  1158. list_for_each_entry(fb, &dev->mode_config.fb_list, base.head) {
  1159. if (&fb->base == ifbdev->helper.fb)
  1160. continue;
  1161. seq_printf(m, "user size: %d x %d, depth %d, %d bpp, obj ",
  1162. fb->base.width,
  1163. fb->base.height,
  1164. fb->base.depth,
  1165. fb->base.bits_per_pixel);
  1166. describe_obj(m, fb->obj);
  1167. seq_printf(m, "\n");
  1168. }
  1169. mutex_unlock(&dev->mode_config.mutex);
  1170. return 0;
  1171. }
  1172. static int i915_context_status(struct seq_file *m, void *unused)
  1173. {
  1174. struct drm_info_node *node = (struct drm_info_node *) m->private;
  1175. struct drm_device *dev = node->minor->dev;
  1176. drm_i915_private_t *dev_priv = dev->dev_private;
  1177. int ret;
  1178. ret = mutex_lock_interruptible(&dev->mode_config.mutex);
  1179. if (ret)
  1180. return ret;
  1181. if (dev_priv->pwrctx) {
  1182. seq_printf(m, "power context ");
  1183. describe_obj(m, dev_priv->pwrctx);
  1184. seq_printf(m, "\n");
  1185. }
  1186. if (dev_priv->renderctx) {
  1187. seq_printf(m, "render context ");
  1188. describe_obj(m, dev_priv->renderctx);
  1189. seq_printf(m, "\n");
  1190. }
  1191. mutex_unlock(&dev->mode_config.mutex);
  1192. return 0;
  1193. }
  1194. static int i915_gen6_forcewake_count_info(struct seq_file *m, void *data)
  1195. {
  1196. struct drm_info_node *node = (struct drm_info_node *) m->private;
  1197. struct drm_device *dev = node->minor->dev;
  1198. struct drm_i915_private *dev_priv = dev->dev_private;
  1199. unsigned forcewake_count;
  1200. spin_lock_irq(&dev_priv->gt_lock);
  1201. forcewake_count = dev_priv->forcewake_count;
  1202. spin_unlock_irq(&dev_priv->gt_lock);
  1203. seq_printf(m, "forcewake count = %u\n", forcewake_count);
  1204. return 0;
  1205. }
  1206. static const char *swizzle_string(unsigned swizzle)
  1207. {
  1208. switch(swizzle) {
  1209. case I915_BIT_6_SWIZZLE_NONE:
  1210. return "none";
  1211. case I915_BIT_6_SWIZZLE_9:
  1212. return "bit9";
  1213. case I915_BIT_6_SWIZZLE_9_10:
  1214. return "bit9/bit10";
  1215. case I915_BIT_6_SWIZZLE_9_11:
  1216. return "bit9/bit11";
  1217. case I915_BIT_6_SWIZZLE_9_10_11:
  1218. return "bit9/bit10/bit11";
  1219. case I915_BIT_6_SWIZZLE_9_17:
  1220. return "bit9/bit17";
  1221. case I915_BIT_6_SWIZZLE_9_10_17:
  1222. return "bit9/bit10/bit17";
  1223. case I915_BIT_6_SWIZZLE_UNKNOWN:
  1224. return "unkown";
  1225. }
  1226. return "bug";
  1227. }
  1228. static int i915_swizzle_info(struct seq_file *m, void *data)
  1229. {
  1230. struct drm_info_node *node = (struct drm_info_node *) m->private;
  1231. struct drm_device *dev = node->minor->dev;
  1232. struct drm_i915_private *dev_priv = dev->dev_private;
  1233. mutex_lock(&dev->struct_mutex);
  1234. seq_printf(m, "bit6 swizzle for X-tiling = %s\n",
  1235. swizzle_string(dev_priv->mm.bit_6_swizzle_x));
  1236. seq_printf(m, "bit6 swizzle for Y-tiling = %s\n",
  1237. swizzle_string(dev_priv->mm.bit_6_swizzle_y));
  1238. if (IS_GEN3(dev) || IS_GEN4(dev)) {
  1239. seq_printf(m, "DDC = 0x%08x\n",
  1240. I915_READ(DCC));
  1241. seq_printf(m, "C0DRB3 = 0x%04x\n",
  1242. I915_READ16(C0DRB3));
  1243. seq_printf(m, "C1DRB3 = 0x%04x\n",
  1244. I915_READ16(C1DRB3));
  1245. } else if (IS_GEN6(dev) || IS_GEN7(dev)) {
  1246. seq_printf(m, "MAD_DIMM_C0 = 0x%08x\n",
  1247. I915_READ(MAD_DIMM_C0));
  1248. seq_printf(m, "MAD_DIMM_C1 = 0x%08x\n",
  1249. I915_READ(MAD_DIMM_C1));
  1250. seq_printf(m, "MAD_DIMM_C2 = 0x%08x\n",
  1251. I915_READ(MAD_DIMM_C2));
  1252. seq_printf(m, "TILECTL = 0x%08x\n",
  1253. I915_READ(TILECTL));
  1254. seq_printf(m, "ARB_MODE = 0x%08x\n",
  1255. I915_READ(ARB_MODE));
  1256. seq_printf(m, "DISP_ARB_CTL = 0x%08x\n",
  1257. I915_READ(DISP_ARB_CTL));
  1258. }
  1259. mutex_unlock(&dev->struct_mutex);
  1260. return 0;
  1261. }
  1262. static int i915_ppgtt_info(struct seq_file *m, void *data)
  1263. {
  1264. struct drm_info_node *node = (struct drm_info_node *) m->private;
  1265. struct drm_device *dev = node->minor->dev;
  1266. struct drm_i915_private *dev_priv = dev->dev_private;
  1267. struct intel_ring_buffer *ring;
  1268. int i, ret;
  1269. ret = mutex_lock_interruptible(&dev->struct_mutex);
  1270. if (ret)
  1271. return ret;
  1272. if (INTEL_INFO(dev)->gen == 6)
  1273. seq_printf(m, "GFX_MODE: 0x%08x\n", I915_READ(GFX_MODE));
  1274. for (i = 0; i < I915_NUM_RINGS; i++) {
  1275. ring = &dev_priv->ring[i];
  1276. seq_printf(m, "%s\n", ring->name);
  1277. if (INTEL_INFO(dev)->gen == 7)
  1278. seq_printf(m, "GFX_MODE: 0x%08x\n", I915_READ(RING_MODE_GEN7(ring)));
  1279. seq_printf(m, "PP_DIR_BASE: 0x%08x\n", I915_READ(RING_PP_DIR_BASE(ring)));
  1280. seq_printf(m, "PP_DIR_BASE_READ: 0x%08x\n", I915_READ(RING_PP_DIR_BASE_READ(ring)));
  1281. seq_printf(m, "PP_DIR_DCLV: 0x%08x\n", I915_READ(RING_PP_DIR_DCLV(ring)));
  1282. }
  1283. if (dev_priv->mm.aliasing_ppgtt) {
  1284. struct i915_hw_ppgtt *ppgtt = dev_priv->mm.aliasing_ppgtt;
  1285. seq_printf(m, "aliasing PPGTT:\n");
  1286. seq_printf(m, "pd gtt offset: 0x%08x\n", ppgtt->pd_offset);
  1287. }
  1288. seq_printf(m, "ECOCHK: 0x%08x\n", I915_READ(GAM_ECOCHK));
  1289. mutex_unlock(&dev->struct_mutex);
  1290. return 0;
  1291. }
  1292. static int
  1293. i915_debugfs_common_open(struct inode *inode,
  1294. struct file *filp)
  1295. {
  1296. filp->private_data = inode->i_private;
  1297. return 0;
  1298. }
  1299. static ssize_t
  1300. i915_wedged_read(struct file *filp,
  1301. char __user *ubuf,
  1302. size_t max,
  1303. loff_t *ppos)
  1304. {
  1305. struct drm_device *dev = filp->private_data;
  1306. drm_i915_private_t *dev_priv = dev->dev_private;
  1307. char buf[80];
  1308. int len;
  1309. len = snprintf(buf, sizeof(buf),
  1310. "wedged : %d\n",
  1311. atomic_read(&dev_priv->mm.wedged));
  1312. if (len > sizeof(buf))
  1313. len = sizeof(buf);
  1314. return simple_read_from_buffer(ubuf, max, ppos, buf, len);
  1315. }
  1316. static ssize_t
  1317. i915_wedged_write(struct file *filp,
  1318. const char __user *ubuf,
  1319. size_t cnt,
  1320. loff_t *ppos)
  1321. {
  1322. struct drm_device *dev = filp->private_data;
  1323. char buf[20];
  1324. int val = 1;
  1325. if (cnt > 0) {
  1326. if (cnt > sizeof(buf) - 1)
  1327. return -EINVAL;
  1328. if (copy_from_user(buf, ubuf, cnt))
  1329. return -EFAULT;
  1330. buf[cnt] = 0;
  1331. val = simple_strtoul(buf, NULL, 0);
  1332. }
  1333. DRM_INFO("Manually setting wedged to %d\n", val);
  1334. i915_handle_error(dev, val);
  1335. return cnt;
  1336. }
  1337. static const struct file_operations i915_wedged_fops = {
  1338. .owner = THIS_MODULE,
  1339. .open = i915_debugfs_common_open,
  1340. .read = i915_wedged_read,
  1341. .write = i915_wedged_write,
  1342. .llseek = default_llseek,
  1343. };
  1344. static ssize_t
  1345. i915_max_freq_read(struct file *filp,
  1346. char __user *ubuf,
  1347. size_t max,
  1348. loff_t *ppos)
  1349. {
  1350. struct drm_device *dev = filp->private_data;
  1351. drm_i915_private_t *dev_priv = dev->dev_private;
  1352. char buf[80];
  1353. int len;
  1354. len = snprintf(buf, sizeof(buf),
  1355. "max freq: %d\n", dev_priv->max_delay * 50);
  1356. if (len > sizeof(buf))
  1357. len = sizeof(buf);
  1358. return simple_read_from_buffer(ubuf, max, ppos, buf, len);
  1359. }
  1360. static ssize_t
  1361. i915_max_freq_write(struct file *filp,
  1362. const char __user *ubuf,
  1363. size_t cnt,
  1364. loff_t *ppos)
  1365. {
  1366. struct drm_device *dev = filp->private_data;
  1367. struct drm_i915_private *dev_priv = dev->dev_private;
  1368. char buf[20];
  1369. int val = 1;
  1370. if (cnt > 0) {
  1371. if (cnt > sizeof(buf) - 1)
  1372. return -EINVAL;
  1373. if (copy_from_user(buf, ubuf, cnt))
  1374. return -EFAULT;
  1375. buf[cnt] = 0;
  1376. val = simple_strtoul(buf, NULL, 0);
  1377. }
  1378. DRM_DEBUG_DRIVER("Manually setting max freq to %d\n", val);
  1379. /*
  1380. * Turbo will still be enabled, but won't go above the set value.
  1381. */
  1382. dev_priv->max_delay = val / 50;
  1383. gen6_set_rps(dev, val / 50);
  1384. return cnt;
  1385. }
  1386. static const struct file_operations i915_max_freq_fops = {
  1387. .owner = THIS_MODULE,
  1388. .open = i915_debugfs_common_open,
  1389. .read = i915_max_freq_read,
  1390. .write = i915_max_freq_write,
  1391. .llseek = default_llseek,
  1392. };
  1393. static ssize_t
  1394. i915_cache_sharing_read(struct file *filp,
  1395. char __user *ubuf,
  1396. size_t max,
  1397. loff_t *ppos)
  1398. {
  1399. struct drm_device *dev = filp->private_data;
  1400. drm_i915_private_t *dev_priv = dev->dev_private;
  1401. char buf[80];
  1402. u32 snpcr;
  1403. int len;
  1404. mutex_lock(&dev_priv->dev->struct_mutex);
  1405. snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
  1406. mutex_unlock(&dev_priv->dev->struct_mutex);
  1407. len = snprintf(buf, sizeof(buf),
  1408. "%d\n", (snpcr & GEN6_MBC_SNPCR_MASK) >>
  1409. GEN6_MBC_SNPCR_SHIFT);
  1410. if (len > sizeof(buf))
  1411. len = sizeof(buf);
  1412. return simple_read_from_buffer(ubuf, max, ppos, buf, len);
  1413. }
  1414. static ssize_t
  1415. i915_cache_sharing_write(struct file *filp,
  1416. const char __user *ubuf,
  1417. size_t cnt,
  1418. loff_t *ppos)
  1419. {
  1420. struct drm_device *dev = filp->private_data;
  1421. struct drm_i915_private *dev_priv = dev->dev_private;
  1422. char buf[20];
  1423. u32 snpcr;
  1424. int val = 1;
  1425. if (cnt > 0) {
  1426. if (cnt > sizeof(buf) - 1)
  1427. return -EINVAL;
  1428. if (copy_from_user(buf, ubuf, cnt))
  1429. return -EFAULT;
  1430. buf[cnt] = 0;
  1431. val = simple_strtoul(buf, NULL, 0);
  1432. }
  1433. if (val < 0 || val > 3)
  1434. return -EINVAL;
  1435. DRM_DEBUG_DRIVER("Manually setting uncore sharing to %d\n", val);
  1436. /* Update the cache sharing policy here as well */
  1437. snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
  1438. snpcr &= ~GEN6_MBC_SNPCR_MASK;
  1439. snpcr |= (val << GEN6_MBC_SNPCR_SHIFT);
  1440. I915_WRITE(GEN6_MBCUNIT_SNPCR, snpcr);
  1441. return cnt;
  1442. }
  1443. static const struct file_operations i915_cache_sharing_fops = {
  1444. .owner = THIS_MODULE,
  1445. .open = i915_debugfs_common_open,
  1446. .read = i915_cache_sharing_read,
  1447. .write = i915_cache_sharing_write,
  1448. .llseek = default_llseek,
  1449. };
  1450. /* As the drm_debugfs_init() routines are called before dev->dev_private is
  1451. * allocated we need to hook into the minor for release. */
  1452. static int
  1453. drm_add_fake_info_node(struct drm_minor *minor,
  1454. struct dentry *ent,
  1455. const void *key)
  1456. {
  1457. struct drm_info_node *node;
  1458. node = kmalloc(sizeof(struct drm_info_node), GFP_KERNEL);
  1459. if (node == NULL) {
  1460. debugfs_remove(ent);
  1461. return -ENOMEM;
  1462. }
  1463. node->minor = minor;
  1464. node->dent = ent;
  1465. node->info_ent = (void *) key;
  1466. mutex_lock(&minor->debugfs_lock);
  1467. list_add(&node->list, &minor->debugfs_list);
  1468. mutex_unlock(&minor->debugfs_lock);
  1469. return 0;
  1470. }
  1471. static int i915_forcewake_open(struct inode *inode, struct file *file)
  1472. {
  1473. struct drm_device *dev = inode->i_private;
  1474. struct drm_i915_private *dev_priv = dev->dev_private;
  1475. int ret;
  1476. if (INTEL_INFO(dev)->gen < 6)
  1477. return 0;
  1478. ret = mutex_lock_interruptible(&dev->struct_mutex);
  1479. if (ret)
  1480. return ret;
  1481. gen6_gt_force_wake_get(dev_priv);
  1482. mutex_unlock(&dev->struct_mutex);
  1483. return 0;
  1484. }
  1485. int i915_forcewake_release(struct inode *inode, struct file *file)
  1486. {
  1487. struct drm_device *dev = inode->i_private;
  1488. struct drm_i915_private *dev_priv = dev->dev_private;
  1489. if (INTEL_INFO(dev)->gen < 6)
  1490. return 0;
  1491. /*
  1492. * It's bad that we can potentially hang userspace if struct_mutex gets
  1493. * forever stuck. However, if we cannot acquire this lock it means that
  1494. * almost certainly the driver has hung, is not unload-able. Therefore
  1495. * hanging here is probably a minor inconvenience not to be seen my
  1496. * almost every user.
  1497. */
  1498. mutex_lock(&dev->struct_mutex);
  1499. gen6_gt_force_wake_put(dev_priv);
  1500. mutex_unlock(&dev->struct_mutex);
  1501. return 0;
  1502. }
  1503. static const struct file_operations i915_forcewake_fops = {
  1504. .owner = THIS_MODULE,
  1505. .open = i915_forcewake_open,
  1506. .release = i915_forcewake_release,
  1507. };
  1508. static int i915_forcewake_create(struct dentry *root, struct drm_minor *minor)
  1509. {
  1510. struct drm_device *dev = minor->dev;
  1511. struct dentry *ent;
  1512. ent = debugfs_create_file("i915_forcewake_user",
  1513. S_IRUSR,
  1514. root, dev,
  1515. &i915_forcewake_fops);
  1516. if (IS_ERR(ent))
  1517. return PTR_ERR(ent);
  1518. return drm_add_fake_info_node(minor, ent, &i915_forcewake_fops);
  1519. }
  1520. static int i915_debugfs_create(struct dentry *root,
  1521. struct drm_minor *minor,
  1522. const char *name,
  1523. const struct file_operations *fops)
  1524. {
  1525. struct drm_device *dev = minor->dev;
  1526. struct dentry *ent;
  1527. ent = debugfs_create_file(name,
  1528. S_IRUGO | S_IWUSR,
  1529. root, dev,
  1530. fops);
  1531. if (IS_ERR(ent))
  1532. return PTR_ERR(ent);
  1533. return drm_add_fake_info_node(minor, ent, fops);
  1534. }
  1535. static struct drm_info_list i915_debugfs_list[] = {
  1536. {"i915_capabilities", i915_capabilities, 0},
  1537. {"i915_gem_objects", i915_gem_object_info, 0},
  1538. {"i915_gem_gtt", i915_gem_gtt_info, 0},
  1539. {"i915_gem_active", i915_gem_object_list_info, 0, (void *) ACTIVE_LIST},
  1540. {"i915_gem_flushing", i915_gem_object_list_info, 0, (void *) FLUSHING_LIST},
  1541. {"i915_gem_inactive", i915_gem_object_list_info, 0, (void *) INACTIVE_LIST},
  1542. {"i915_gem_pinned", i915_gem_object_list_info, 0, (void *) PINNED_LIST},
  1543. {"i915_gem_deferred_free", i915_gem_object_list_info, 0, (void *) DEFERRED_FREE_LIST},
  1544. {"i915_gem_pageflip", i915_gem_pageflip_info, 0},
  1545. {"i915_gem_request", i915_gem_request_info, 0},
  1546. {"i915_gem_seqno", i915_gem_seqno_info, 0},
  1547. {"i915_gem_fence_regs", i915_gem_fence_regs_info, 0},
  1548. {"i915_gem_interrupt", i915_interrupt_info, 0},
  1549. {"i915_gem_hws", i915_hws_info, 0, (void *)RCS},
  1550. {"i915_gem_hws_blt", i915_hws_info, 0, (void *)BCS},
  1551. {"i915_gem_hws_bsd", i915_hws_info, 0, (void *)VCS},
  1552. {"i915_ringbuffer_data", i915_ringbuffer_data, 0, (void *)RCS},
  1553. {"i915_ringbuffer_info", i915_ringbuffer_info, 0, (void *)RCS},
  1554. {"i915_bsd_ringbuffer_data", i915_ringbuffer_data, 0, (void *)VCS},
  1555. {"i915_bsd_ringbuffer_info", i915_ringbuffer_info, 0, (void *)VCS},
  1556. {"i915_blt_ringbuffer_data", i915_ringbuffer_data, 0, (void *)BCS},
  1557. {"i915_blt_ringbuffer_info", i915_ringbuffer_info, 0, (void *)BCS},
  1558. {"i915_error_state", i915_error_state, 0},
  1559. {"i915_rstdby_delays", i915_rstdby_delays, 0},
  1560. {"i915_cur_delayinfo", i915_cur_delayinfo, 0},
  1561. {"i915_delayfreq_table", i915_delayfreq_table, 0},
  1562. {"i915_inttoext_table", i915_inttoext_table, 0},
  1563. {"i915_drpc_info", i915_drpc_info, 0},
  1564. {"i915_emon_status", i915_emon_status, 0},
  1565. {"i915_ring_freq_table", i915_ring_freq_table, 0},
  1566. {"i915_gfxec", i915_gfxec, 0},
  1567. {"i915_fbc_status", i915_fbc_status, 0},
  1568. {"i915_sr_status", i915_sr_status, 0},
  1569. {"i915_opregion", i915_opregion, 0},
  1570. {"i915_gem_framebuffer", i915_gem_framebuffer_info, 0},
  1571. {"i915_context_status", i915_context_status, 0},
  1572. {"i915_gen6_forcewake_count", i915_gen6_forcewake_count_info, 0},
  1573. {"i915_swizzle_info", i915_swizzle_info, 0},
  1574. {"i915_ppgtt_info", i915_ppgtt_info, 0},
  1575. };
  1576. #define I915_DEBUGFS_ENTRIES ARRAY_SIZE(i915_debugfs_list)
  1577. int i915_debugfs_init(struct drm_minor *minor)
  1578. {
  1579. int ret;
  1580. ret = i915_debugfs_create(minor->debugfs_root, minor,
  1581. "i915_wedged",
  1582. &i915_wedged_fops);
  1583. if (ret)
  1584. return ret;
  1585. ret = i915_forcewake_create(minor->debugfs_root, minor);
  1586. if (ret)
  1587. return ret;
  1588. ret = i915_debugfs_create(minor->debugfs_root, minor,
  1589. "i915_max_freq",
  1590. &i915_max_freq_fops);
  1591. if (ret)
  1592. return ret;
  1593. ret = i915_debugfs_create(minor->debugfs_root, minor,
  1594. "i915_cache_sharing",
  1595. &i915_cache_sharing_fops);
  1596. if (ret)
  1597. return ret;
  1598. return drm_debugfs_create_files(i915_debugfs_list,
  1599. I915_DEBUGFS_ENTRIES,
  1600. minor->debugfs_root, minor);
  1601. }
  1602. void i915_debugfs_cleanup(struct drm_minor *minor)
  1603. {
  1604. drm_debugfs_remove_files(i915_debugfs_list,
  1605. I915_DEBUGFS_ENTRIES, minor);
  1606. drm_debugfs_remove_files((struct drm_info_list *) &i915_forcewake_fops,
  1607. 1, minor);
  1608. drm_debugfs_remove_files((struct drm_info_list *) &i915_wedged_fops,
  1609. 1, minor);
  1610. drm_debugfs_remove_files((struct drm_info_list *) &i915_max_freq_fops,
  1611. 1, minor);
  1612. drm_debugfs_remove_files((struct drm_info_list *) &i915_cache_sharing_fops,
  1613. 1, minor);
  1614. }
  1615. #endif /* CONFIG_DEBUG_FS */