sb_edac.c 46 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899
  1. /* Intel Sandy Bridge -EN/-EP/-EX Memory Controller kernel module
  2. *
  3. * This driver supports the memory controllers found on the Intel
  4. * processor family Sandy Bridge.
  5. *
  6. * This file may be distributed under the terms of the
  7. * GNU General Public License version 2 only.
  8. *
  9. * Copyright (c) 2011 by:
  10. * Mauro Carvalho Chehab <mchehab@redhat.com>
  11. */
  12. #include <linux/module.h>
  13. #include <linux/init.h>
  14. #include <linux/pci.h>
  15. #include <linux/pci_ids.h>
  16. #include <linux/slab.h>
  17. #include <linux/delay.h>
  18. #include <linux/edac.h>
  19. #include <linux/mmzone.h>
  20. #include <linux/smp.h>
  21. #include <linux/bitmap.h>
  22. #include <linux/math64.h>
  23. #include <asm/processor.h>
  24. #include <asm/mce.h>
  25. #include "edac_core.h"
  26. /* Static vars */
  27. static LIST_HEAD(sbridge_edac_list);
  28. static DEFINE_MUTEX(sbridge_edac_lock);
  29. static int probed;
  30. /*
  31. * Alter this version for the module when modifications are made
  32. */
  33. #define SBRIDGE_REVISION " Ver: 1.0.0 "
  34. #define EDAC_MOD_STR "sbridge_edac"
  35. /*
  36. * Debug macros
  37. */
  38. #define sbridge_printk(level, fmt, arg...) \
  39. edac_printk(level, "sbridge", fmt, ##arg)
  40. #define sbridge_mc_printk(mci, level, fmt, arg...) \
  41. edac_mc_chipset_printk(mci, level, "sbridge", fmt, ##arg)
  42. /*
  43. * Get a bit field at register value <v>, from bit <lo> to bit <hi>
  44. */
  45. #define GET_BITFIELD(v, lo, hi) \
  46. (((v) & ((1ULL << ((hi) - (lo) + 1)) - 1) << (lo)) >> (lo))
  47. /*
  48. * sbridge Memory Controller Registers
  49. */
  50. /*
  51. * FIXME: For now, let's order by device function, as it makes
  52. * easier for driver's development proccess. This table should be
  53. * moved to pci_id.h when submitted upstream
  54. */
  55. #define PCI_DEVICE_ID_INTEL_SBRIDGE_SAD0 0x3cf4 /* 12.6 */
  56. #define PCI_DEVICE_ID_INTEL_SBRIDGE_SAD1 0x3cf6 /* 12.7 */
  57. #define PCI_DEVICE_ID_INTEL_SBRIDGE_BR 0x3cf5 /* 13.6 */
  58. #define PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_HA0 0x3ca0 /* 14.0 */
  59. #define PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TA 0x3ca8 /* 15.0 */
  60. #define PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_RAS 0x3c71 /* 15.1 */
  61. #define PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD0 0x3caa /* 15.2 */
  62. #define PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD1 0x3cab /* 15.3 */
  63. #define PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD2 0x3cac /* 15.4 */
  64. #define PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD3 0x3cad /* 15.5 */
  65. #define PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_DDRIO 0x3cb8 /* 17.0 */
  66. /*
  67. * Currently, unused, but will be needed in the future
  68. * implementations, as they hold the error counters
  69. */
  70. #define PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_ERR0 0x3c72 /* 16.2 */
  71. #define PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_ERR1 0x3c73 /* 16.3 */
  72. #define PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_ERR2 0x3c76 /* 16.6 */
  73. #define PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_ERR3 0x3c77 /* 16.7 */
  74. /* Devices 12 Function 6, Offsets 0x80 to 0xcc */
  75. static const u32 dram_rule[] = {
  76. 0x80, 0x88, 0x90, 0x98, 0xa0,
  77. 0xa8, 0xb0, 0xb8, 0xc0, 0xc8,
  78. };
  79. #define MAX_SAD ARRAY_SIZE(dram_rule)
  80. #define SAD_LIMIT(reg) ((GET_BITFIELD(reg, 6, 25) << 26) | 0x3ffffff)
  81. #define DRAM_ATTR(reg) GET_BITFIELD(reg, 2, 3)
  82. #define INTERLEAVE_MODE(reg) GET_BITFIELD(reg, 1, 1)
  83. #define DRAM_RULE_ENABLE(reg) GET_BITFIELD(reg, 0, 0)
  84. static char *get_dram_attr(u32 reg)
  85. {
  86. switch(DRAM_ATTR(reg)) {
  87. case 0:
  88. return "DRAM";
  89. case 1:
  90. return "MMCFG";
  91. case 2:
  92. return "NXM";
  93. default:
  94. return "unknown";
  95. }
  96. }
  97. static const u32 interleave_list[] = {
  98. 0x84, 0x8c, 0x94, 0x9c, 0xa4,
  99. 0xac, 0xb4, 0xbc, 0xc4, 0xcc,
  100. };
  101. #define MAX_INTERLEAVE ARRAY_SIZE(interleave_list)
  102. #define SAD_PKG0(reg) GET_BITFIELD(reg, 0, 2)
  103. #define SAD_PKG1(reg) GET_BITFIELD(reg, 3, 5)
  104. #define SAD_PKG2(reg) GET_BITFIELD(reg, 8, 10)
  105. #define SAD_PKG3(reg) GET_BITFIELD(reg, 11, 13)
  106. #define SAD_PKG4(reg) GET_BITFIELD(reg, 16, 18)
  107. #define SAD_PKG5(reg) GET_BITFIELD(reg, 19, 21)
  108. #define SAD_PKG6(reg) GET_BITFIELD(reg, 24, 26)
  109. #define SAD_PKG7(reg) GET_BITFIELD(reg, 27, 29)
  110. static inline int sad_pkg(u32 reg, int interleave)
  111. {
  112. switch (interleave) {
  113. case 0:
  114. return SAD_PKG0(reg);
  115. case 1:
  116. return SAD_PKG1(reg);
  117. case 2:
  118. return SAD_PKG2(reg);
  119. case 3:
  120. return SAD_PKG3(reg);
  121. case 4:
  122. return SAD_PKG4(reg);
  123. case 5:
  124. return SAD_PKG5(reg);
  125. case 6:
  126. return SAD_PKG6(reg);
  127. case 7:
  128. return SAD_PKG7(reg);
  129. default:
  130. return -EINVAL;
  131. }
  132. }
  133. /* Devices 12 Function 7 */
  134. #define TOLM 0x80
  135. #define TOHM 0x84
  136. #define GET_TOLM(reg) ((GET_BITFIELD(reg, 0, 3) << 28) | 0x3ffffff)
  137. #define GET_TOHM(reg) ((GET_BITFIELD(reg, 0, 20) << 25) | 0x3ffffff)
  138. /* Device 13 Function 6 */
  139. #define SAD_TARGET 0xf0
  140. #define SOURCE_ID(reg) GET_BITFIELD(reg, 9, 11)
  141. #define SAD_CONTROL 0xf4
  142. #define NODE_ID(reg) GET_BITFIELD(reg, 0, 2)
  143. /* Device 14 function 0 */
  144. static const u32 tad_dram_rule[] = {
  145. 0x40, 0x44, 0x48, 0x4c,
  146. 0x50, 0x54, 0x58, 0x5c,
  147. 0x60, 0x64, 0x68, 0x6c,
  148. };
  149. #define MAX_TAD ARRAY_SIZE(tad_dram_rule)
  150. #define TAD_LIMIT(reg) ((GET_BITFIELD(reg, 12, 31) << 26) | 0x3ffffff)
  151. #define TAD_SOCK(reg) GET_BITFIELD(reg, 10, 11)
  152. #define TAD_CH(reg) GET_BITFIELD(reg, 8, 9)
  153. #define TAD_TGT3(reg) GET_BITFIELD(reg, 6, 7)
  154. #define TAD_TGT2(reg) GET_BITFIELD(reg, 4, 5)
  155. #define TAD_TGT1(reg) GET_BITFIELD(reg, 2, 3)
  156. #define TAD_TGT0(reg) GET_BITFIELD(reg, 0, 1)
  157. /* Device 15, function 0 */
  158. #define MCMTR 0x7c
  159. #define IS_ECC_ENABLED(mcmtr) GET_BITFIELD(mcmtr, 2, 2)
  160. #define IS_LOCKSTEP_ENABLED(mcmtr) GET_BITFIELD(mcmtr, 1, 1)
  161. #define IS_CLOSE_PG(mcmtr) GET_BITFIELD(mcmtr, 0, 0)
  162. /* Device 15, function 1 */
  163. #define RASENABLES 0xac
  164. #define IS_MIRROR_ENABLED(reg) GET_BITFIELD(reg, 0, 0)
  165. /* Device 15, functions 2-5 */
  166. static const int mtr_regs[] = {
  167. 0x80, 0x84, 0x88,
  168. };
  169. #define RANK_DISABLE(mtr) GET_BITFIELD(mtr, 16, 19)
  170. #define IS_DIMM_PRESENT(mtr) GET_BITFIELD(mtr, 14, 14)
  171. #define RANK_CNT_BITS(mtr) GET_BITFIELD(mtr, 12, 13)
  172. #define RANK_WIDTH_BITS(mtr) GET_BITFIELD(mtr, 2, 4)
  173. #define COL_WIDTH_BITS(mtr) GET_BITFIELD(mtr, 0, 1)
  174. static const u32 tad_ch_nilv_offset[] = {
  175. 0x90, 0x94, 0x98, 0x9c,
  176. 0xa0, 0xa4, 0xa8, 0xac,
  177. 0xb0, 0xb4, 0xb8, 0xbc,
  178. };
  179. #define CHN_IDX_OFFSET(reg) GET_BITFIELD(reg, 28, 29)
  180. #define TAD_OFFSET(reg) (GET_BITFIELD(reg, 6, 25) << 26)
  181. static const u32 rir_way_limit[] = {
  182. 0x108, 0x10c, 0x110, 0x114, 0x118,
  183. };
  184. #define MAX_RIR_RANGES ARRAY_SIZE(rir_way_limit)
  185. #define IS_RIR_VALID(reg) GET_BITFIELD(reg, 31, 31)
  186. #define RIR_WAY(reg) GET_BITFIELD(reg, 28, 29)
  187. #define RIR_LIMIT(reg) ((GET_BITFIELD(reg, 1, 10) << 29)| 0x1fffffff)
  188. #define MAX_RIR_WAY 8
  189. static const u32 rir_offset[MAX_RIR_RANGES][MAX_RIR_WAY] = {
  190. { 0x120, 0x124, 0x128, 0x12c, 0x130, 0x134, 0x138, 0x13c },
  191. { 0x140, 0x144, 0x148, 0x14c, 0x150, 0x154, 0x158, 0x15c },
  192. { 0x160, 0x164, 0x168, 0x16c, 0x170, 0x174, 0x178, 0x17c },
  193. { 0x180, 0x184, 0x188, 0x18c, 0x190, 0x194, 0x198, 0x19c },
  194. { 0x1a0, 0x1a4, 0x1a8, 0x1ac, 0x1b0, 0x1b4, 0x1b8, 0x1bc },
  195. };
  196. #define RIR_RNK_TGT(reg) GET_BITFIELD(reg, 16, 19)
  197. #define RIR_OFFSET(reg) GET_BITFIELD(reg, 2, 14)
  198. /* Device 16, functions 2-7 */
  199. /*
  200. * FIXME: Implement the error count reads directly
  201. */
  202. static const u32 correrrcnt[] = {
  203. 0x104, 0x108, 0x10c, 0x110,
  204. };
  205. #define RANK_ODD_OV(reg) GET_BITFIELD(reg, 31, 31)
  206. #define RANK_ODD_ERR_CNT(reg) GET_BITFIELD(reg, 16, 30)
  207. #define RANK_EVEN_OV(reg) GET_BITFIELD(reg, 15, 15)
  208. #define RANK_EVEN_ERR_CNT(reg) GET_BITFIELD(reg, 0, 14)
  209. static const u32 correrrthrsld[] = {
  210. 0x11c, 0x120, 0x124, 0x128,
  211. };
  212. #define RANK_ODD_ERR_THRSLD(reg) GET_BITFIELD(reg, 16, 30)
  213. #define RANK_EVEN_ERR_THRSLD(reg) GET_BITFIELD(reg, 0, 14)
  214. /* Device 17, function 0 */
  215. #define RANK_CFG_A 0x0328
  216. #define IS_RDIMM_ENABLED(reg) GET_BITFIELD(reg, 11, 11)
  217. /*
  218. * sbridge structs
  219. */
  220. #define NUM_CHANNELS 4
  221. #define MAX_DIMMS 3 /* Max DIMMS per channel */
  222. struct sbridge_info {
  223. u32 mcmtr;
  224. };
  225. struct sbridge_channel {
  226. u32 ranks;
  227. u32 dimms;
  228. };
  229. struct pci_id_descr {
  230. int dev;
  231. int func;
  232. int dev_id;
  233. int optional;
  234. };
  235. struct pci_id_table {
  236. const struct pci_id_descr *descr;
  237. int n_devs;
  238. };
  239. struct sbridge_dev {
  240. struct list_head list;
  241. u8 bus, mc;
  242. u8 node_id, source_id;
  243. struct pci_dev **pdev;
  244. int n_devs;
  245. struct mem_ctl_info *mci;
  246. };
  247. struct sbridge_pvt {
  248. struct pci_dev *pci_ta, *pci_ddrio, *pci_ras;
  249. struct pci_dev *pci_sad0, *pci_sad1, *pci_ha0;
  250. struct pci_dev *pci_br;
  251. struct pci_dev *pci_tad[NUM_CHANNELS];
  252. struct sbridge_dev *sbridge_dev;
  253. struct sbridge_info info;
  254. struct sbridge_channel channel[NUM_CHANNELS];
  255. int csrow_map[NUM_CHANNELS][MAX_DIMMS];
  256. /* Memory type detection */
  257. bool is_mirrored, is_lockstep, is_close_pg;
  258. /* Fifo double buffers */
  259. struct mce mce_entry[MCE_LOG_LEN];
  260. struct mce mce_outentry[MCE_LOG_LEN];
  261. /* Fifo in/out counters */
  262. unsigned mce_in, mce_out;
  263. /* Count indicator to show errors not got */
  264. unsigned mce_overrun;
  265. /* Memory description */
  266. u64 tolm, tohm;
  267. };
  268. #define PCI_DESCR(device, function, device_id) \
  269. .dev = (device), \
  270. .func = (function), \
  271. .dev_id = (device_id)
  272. static const struct pci_id_descr pci_dev_descr_sbridge[] = {
  273. /* Processor Home Agent */
  274. { PCI_DESCR(14, 0, PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_HA0) },
  275. /* Memory controller */
  276. { PCI_DESCR(15, 0, PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TA) },
  277. { PCI_DESCR(15, 1, PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_RAS) },
  278. { PCI_DESCR(15, 2, PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD0) },
  279. { PCI_DESCR(15, 3, PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD1) },
  280. { PCI_DESCR(15, 4, PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD2) },
  281. { PCI_DESCR(15, 5, PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD3) },
  282. { PCI_DESCR(17, 0, PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_DDRIO) },
  283. /* System Address Decoder */
  284. { PCI_DESCR(12, 6, PCI_DEVICE_ID_INTEL_SBRIDGE_SAD0) },
  285. { PCI_DESCR(12, 7, PCI_DEVICE_ID_INTEL_SBRIDGE_SAD1) },
  286. /* Broadcast Registers */
  287. { PCI_DESCR(13, 6, PCI_DEVICE_ID_INTEL_SBRIDGE_BR) },
  288. };
  289. #define PCI_ID_TABLE_ENTRY(A) { .descr=A, .n_devs = ARRAY_SIZE(A) }
  290. static const struct pci_id_table pci_dev_descr_sbridge_table[] = {
  291. PCI_ID_TABLE_ENTRY(pci_dev_descr_sbridge),
  292. {0,} /* 0 terminated list. */
  293. };
  294. /*
  295. * pci_device_id table for which devices we are looking for
  296. */
  297. static DEFINE_PCI_DEVICE_TABLE(sbridge_pci_tbl) = {
  298. {PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TA)},
  299. {0,} /* 0 terminated list. */
  300. };
  301. /****************************************************************************
  302. Anciliary status routines
  303. ****************************************************************************/
  304. static inline int numrank(u32 mtr)
  305. {
  306. int ranks = (1 << RANK_CNT_BITS(mtr));
  307. if (ranks > 4) {
  308. debugf0("Invalid number of ranks: %d (max = 4) raw value = %x (%04x)",
  309. ranks, (unsigned int)RANK_CNT_BITS(mtr), mtr);
  310. return -EINVAL;
  311. }
  312. return ranks;
  313. }
  314. static inline int numrow(u32 mtr)
  315. {
  316. int rows = (RANK_WIDTH_BITS(mtr) + 12);
  317. if (rows < 13 || rows > 18) {
  318. debugf0("Invalid number of rows: %d (should be between 14 and 17) raw value = %x (%04x)",
  319. rows, (unsigned int)RANK_WIDTH_BITS(mtr), mtr);
  320. return -EINVAL;
  321. }
  322. return 1 << rows;
  323. }
  324. static inline int numcol(u32 mtr)
  325. {
  326. int cols = (COL_WIDTH_BITS(mtr) + 10);
  327. if (cols > 12) {
  328. debugf0("Invalid number of cols: %d (max = 4) raw value = %x (%04x)",
  329. cols, (unsigned int)COL_WIDTH_BITS(mtr), mtr);
  330. return -EINVAL;
  331. }
  332. return 1 << cols;
  333. }
  334. static struct sbridge_dev *get_sbridge_dev(u8 bus)
  335. {
  336. struct sbridge_dev *sbridge_dev;
  337. list_for_each_entry(sbridge_dev, &sbridge_edac_list, list) {
  338. if (sbridge_dev->bus == bus)
  339. return sbridge_dev;
  340. }
  341. return NULL;
  342. }
  343. static struct sbridge_dev *alloc_sbridge_dev(u8 bus,
  344. const struct pci_id_table *table)
  345. {
  346. struct sbridge_dev *sbridge_dev;
  347. sbridge_dev = kzalloc(sizeof(*sbridge_dev), GFP_KERNEL);
  348. if (!sbridge_dev)
  349. return NULL;
  350. sbridge_dev->pdev = kzalloc(sizeof(*sbridge_dev->pdev) * table->n_devs,
  351. GFP_KERNEL);
  352. if (!sbridge_dev->pdev) {
  353. kfree(sbridge_dev);
  354. return NULL;
  355. }
  356. sbridge_dev->bus = bus;
  357. sbridge_dev->n_devs = table->n_devs;
  358. list_add_tail(&sbridge_dev->list, &sbridge_edac_list);
  359. return sbridge_dev;
  360. }
  361. static void free_sbridge_dev(struct sbridge_dev *sbridge_dev)
  362. {
  363. list_del(&sbridge_dev->list);
  364. kfree(sbridge_dev->pdev);
  365. kfree(sbridge_dev);
  366. }
  367. /****************************************************************************
  368. Memory check routines
  369. ****************************************************************************/
  370. static struct pci_dev *get_pdev_slot_func(u8 bus, unsigned slot,
  371. unsigned func)
  372. {
  373. struct sbridge_dev *sbridge_dev = get_sbridge_dev(bus);
  374. int i;
  375. if (!sbridge_dev)
  376. return NULL;
  377. for (i = 0; i < sbridge_dev->n_devs; i++) {
  378. if (!sbridge_dev->pdev[i])
  379. continue;
  380. if (PCI_SLOT(sbridge_dev->pdev[i]->devfn) == slot &&
  381. PCI_FUNC(sbridge_dev->pdev[i]->devfn) == func) {
  382. debugf1("Associated %02x.%02x.%d with %p\n",
  383. bus, slot, func, sbridge_dev->pdev[i]);
  384. return sbridge_dev->pdev[i];
  385. }
  386. }
  387. return NULL;
  388. }
  389. /**
  390. * sbridge_get_active_channels() - gets the number of channels and csrows
  391. * bus: Device bus
  392. * @channels: Number of channels that will be returned
  393. * @csrows: Number of csrows found
  394. *
  395. * Since EDAC core needs to know in advance the number of available channels
  396. * and csrows, in order to allocate memory for csrows/channels, it is needed
  397. * to run two similar steps. At the first step, implemented on this function,
  398. * it checks the number of csrows/channels present at one socket, identified
  399. * by the associated PCI bus.
  400. * this is used in order to properly allocate the size of mci components.
  401. * Note: one csrow is one dimm.
  402. */
  403. static int sbridge_get_active_channels(const u8 bus, unsigned *channels,
  404. unsigned *csrows)
  405. {
  406. struct pci_dev *pdev = NULL;
  407. int i, j;
  408. u32 mcmtr;
  409. *channels = 0;
  410. *csrows = 0;
  411. pdev = get_pdev_slot_func(bus, 15, 0);
  412. if (!pdev) {
  413. sbridge_printk(KERN_ERR, "Couldn't find PCI device "
  414. "%2x.%02d.%d!!!\n",
  415. bus, 15, 0);
  416. return -ENODEV;
  417. }
  418. pci_read_config_dword(pdev, MCMTR, &mcmtr);
  419. if (!IS_ECC_ENABLED(mcmtr)) {
  420. sbridge_printk(KERN_ERR, "ECC is disabled. Aborting\n");
  421. return -ENODEV;
  422. }
  423. for (i = 0; i < NUM_CHANNELS; i++) {
  424. u32 mtr;
  425. /* Device 15 functions 2 - 5 */
  426. pdev = get_pdev_slot_func(bus, 15, 2 + i);
  427. if (!pdev) {
  428. sbridge_printk(KERN_ERR, "Couldn't find PCI device "
  429. "%2x.%02d.%d!!!\n",
  430. bus, 15, 2 + i);
  431. return -ENODEV;
  432. }
  433. (*channels)++;
  434. for (j = 0; j < ARRAY_SIZE(mtr_regs); j++) {
  435. pci_read_config_dword(pdev, mtr_regs[j], &mtr);
  436. debugf1("Bus#%02x channel #%d MTR%d = %x\n", bus, i, j, mtr);
  437. if (IS_DIMM_PRESENT(mtr))
  438. (*csrows)++;
  439. }
  440. }
  441. debugf0("Number of active channels: %d, number of active dimms: %d\n",
  442. *channels, *csrows);
  443. return 0;
  444. }
  445. static int get_dimm_config(const struct mem_ctl_info *mci)
  446. {
  447. struct sbridge_pvt *pvt = mci->pvt_info;
  448. struct csrow_info *csr;
  449. int i, j, banks, ranks, rows, cols, size, npages;
  450. int csrow = 0;
  451. unsigned long last_page = 0;
  452. u32 reg;
  453. enum edac_type mode;
  454. enum mem_type mtype;
  455. pci_read_config_dword(pvt->pci_br, SAD_TARGET, &reg);
  456. pvt->sbridge_dev->source_id = SOURCE_ID(reg);
  457. pci_read_config_dword(pvt->pci_br, SAD_CONTROL, &reg);
  458. pvt->sbridge_dev->node_id = NODE_ID(reg);
  459. debugf0("mc#%d: Node ID: %d, source ID: %d\n",
  460. pvt->sbridge_dev->mc,
  461. pvt->sbridge_dev->node_id,
  462. pvt->sbridge_dev->source_id);
  463. pci_read_config_dword(pvt->pci_ras, RASENABLES, &reg);
  464. if (IS_MIRROR_ENABLED(reg)) {
  465. debugf0("Memory mirror is enabled\n");
  466. pvt->is_mirrored = true;
  467. } else {
  468. debugf0("Memory mirror is disabled\n");
  469. pvt->is_mirrored = false;
  470. }
  471. pci_read_config_dword(pvt->pci_ta, MCMTR, &pvt->info.mcmtr);
  472. if (IS_LOCKSTEP_ENABLED(pvt->info.mcmtr)) {
  473. debugf0("Lockstep is enabled\n");
  474. mode = EDAC_S8ECD8ED;
  475. pvt->is_lockstep = true;
  476. } else {
  477. debugf0("Lockstep is disabled\n");
  478. mode = EDAC_S4ECD4ED;
  479. pvt->is_lockstep = false;
  480. }
  481. if (IS_CLOSE_PG(pvt->info.mcmtr)) {
  482. debugf0("address map is on closed page mode\n");
  483. pvt->is_close_pg = true;
  484. } else {
  485. debugf0("address map is on open page mode\n");
  486. pvt->is_close_pg = false;
  487. }
  488. pci_read_config_dword(pvt->pci_ta, RANK_CFG_A, &reg);
  489. if (IS_RDIMM_ENABLED(reg)) {
  490. /* FIXME: Can also be LRDIMM */
  491. debugf0("Memory is registered\n");
  492. mtype = MEM_RDDR3;
  493. } else {
  494. debugf0("Memory is unregistered\n");
  495. mtype = MEM_DDR3;
  496. }
  497. /* On all supported DDR3 DIMM types, there are 8 banks available */
  498. banks = 8;
  499. for (i = 0; i < NUM_CHANNELS; i++) {
  500. u32 mtr;
  501. for (j = 0; j < ARRAY_SIZE(mtr_regs); j++) {
  502. pci_read_config_dword(pvt->pci_tad[i],
  503. mtr_regs[j], &mtr);
  504. debugf4("Channel #%d MTR%d = %x\n", i, j, mtr);
  505. if (IS_DIMM_PRESENT(mtr)) {
  506. pvt->channel[i].dimms++;
  507. ranks = numrank(mtr);
  508. rows = numrow(mtr);
  509. cols = numcol(mtr);
  510. /* DDR3 has 8 I/O banks */
  511. size = (rows * cols * banks * ranks) >> (20 - 3);
  512. npages = MiB_TO_PAGES(size);
  513. debugf0("mc#%d: channel %d, dimm %d, %d Mb (%d pages) bank: %d, rank: %d, row: %#x, col: %#x\n",
  514. pvt->sbridge_dev->mc, i, j,
  515. size, npages,
  516. banks, ranks, rows, cols);
  517. csr = &mci->csrows[csrow];
  518. csr->first_page = last_page;
  519. csr->last_page = last_page + npages - 1;
  520. csr->page_mask = 0UL; /* Unused */
  521. csr->nr_pages = npages;
  522. csr->grain = 32;
  523. csr->csrow_idx = csrow;
  524. csr->dtype = (banks == 8) ? DEV_X8 : DEV_X4;
  525. csr->ce_count = 0;
  526. csr->ue_count = 0;
  527. csr->mtype = mtype;
  528. csr->edac_mode = mode;
  529. csr->nr_channels = 1;
  530. csr->channels[0].chan_idx = i;
  531. csr->channels[0].ce_count = 0;
  532. pvt->csrow_map[i][j] = csrow;
  533. snprintf(csr->channels[0].label,
  534. sizeof(csr->channels[0].label),
  535. "CPU_SrcID#%u_Channel#%u_DIMM#%u",
  536. pvt->sbridge_dev->source_id, i, j);
  537. last_page += npages;
  538. csrow++;
  539. }
  540. }
  541. }
  542. return 0;
  543. }
  544. static void get_memory_layout(const struct mem_ctl_info *mci)
  545. {
  546. struct sbridge_pvt *pvt = mci->pvt_info;
  547. int i, j, k, n_sads, n_tads, sad_interl;
  548. u32 reg;
  549. u64 limit, prv = 0;
  550. u64 tmp_mb;
  551. u32 mb, kb;
  552. u32 rir_way;
  553. /*
  554. * Step 1) Get TOLM/TOHM ranges
  555. */
  556. /* Address range is 32:28 */
  557. pci_read_config_dword(pvt->pci_sad1, TOLM,
  558. &reg);
  559. pvt->tolm = GET_TOLM(reg);
  560. tmp_mb = (1 + pvt->tolm) >> 20;
  561. mb = div_u64_rem(tmp_mb, 1000, &kb);
  562. debugf0("TOLM: %u.%03u GB (0x%016Lx)\n",
  563. mb, kb, (u64)pvt->tolm);
  564. /* Address range is already 45:25 */
  565. pci_read_config_dword(pvt->pci_sad1, TOHM,
  566. &reg);
  567. pvt->tohm = GET_TOHM(reg);
  568. tmp_mb = (1 + pvt->tohm) >> 20;
  569. mb = div_u64_rem(tmp_mb, 1000, &kb);
  570. debugf0("TOHM: %u.%03u GB (0x%016Lx)",
  571. mb, kb, (u64)pvt->tohm);
  572. /*
  573. * Step 2) Get SAD range and SAD Interleave list
  574. * TAD registers contain the interleave wayness. However, it
  575. * seems simpler to just discover it indirectly, with the
  576. * algorithm bellow.
  577. */
  578. prv = 0;
  579. for (n_sads = 0; n_sads < MAX_SAD; n_sads++) {
  580. /* SAD_LIMIT Address range is 45:26 */
  581. pci_read_config_dword(pvt->pci_sad0, dram_rule[n_sads],
  582. &reg);
  583. limit = SAD_LIMIT(reg);
  584. if (!DRAM_RULE_ENABLE(reg))
  585. continue;
  586. if (limit <= prv)
  587. break;
  588. tmp_mb = (limit + 1) >> 20;
  589. mb = div_u64_rem(tmp_mb, 1000, &kb);
  590. debugf0("SAD#%d %s up to %u.%03u GB (0x%016Lx) %s reg=0x%08x\n",
  591. n_sads,
  592. get_dram_attr(reg),
  593. mb, kb,
  594. ((u64)tmp_mb) << 20L,
  595. INTERLEAVE_MODE(reg) ? "Interleave: 8:6" : "Interleave: [8:6]XOR[18:16]",
  596. reg);
  597. prv = limit;
  598. pci_read_config_dword(pvt->pci_sad0, interleave_list[n_sads],
  599. &reg);
  600. sad_interl = sad_pkg(reg, 0);
  601. for (j = 0; j < 8; j++) {
  602. if (j > 0 && sad_interl == sad_pkg(reg, j))
  603. break;
  604. debugf0("SAD#%d, interleave #%d: %d\n",
  605. n_sads, j, sad_pkg(reg, j));
  606. }
  607. }
  608. /*
  609. * Step 3) Get TAD range
  610. */
  611. prv = 0;
  612. for (n_tads = 0; n_tads < MAX_TAD; n_tads++) {
  613. pci_read_config_dword(pvt->pci_ha0, tad_dram_rule[n_tads],
  614. &reg);
  615. limit = TAD_LIMIT(reg);
  616. if (limit <= prv)
  617. break;
  618. tmp_mb = (limit + 1) >> 20;
  619. mb = div_u64_rem(tmp_mb, 1000, &kb);
  620. debugf0("TAD#%d: up to %u.%03u GB (0x%016Lx), socket interleave %d, memory interleave %d, TGT: %d, %d, %d, %d, reg=0x%08x\n",
  621. n_tads, mb, kb,
  622. ((u64)tmp_mb) << 20L,
  623. (u32)TAD_SOCK(reg),
  624. (u32)TAD_CH(reg),
  625. (u32)TAD_TGT0(reg),
  626. (u32)TAD_TGT1(reg),
  627. (u32)TAD_TGT2(reg),
  628. (u32)TAD_TGT3(reg),
  629. reg);
  630. prv = limit;
  631. }
  632. /*
  633. * Step 4) Get TAD offsets, per each channel
  634. */
  635. for (i = 0; i < NUM_CHANNELS; i++) {
  636. if (!pvt->channel[i].dimms)
  637. continue;
  638. for (j = 0; j < n_tads; j++) {
  639. pci_read_config_dword(pvt->pci_tad[i],
  640. tad_ch_nilv_offset[j],
  641. &reg);
  642. tmp_mb = TAD_OFFSET(reg) >> 20;
  643. mb = div_u64_rem(tmp_mb, 1000, &kb);
  644. debugf0("TAD CH#%d, offset #%d: %u.%03u GB (0x%016Lx), reg=0x%08x\n",
  645. i, j,
  646. mb, kb,
  647. ((u64)tmp_mb) << 20L,
  648. reg);
  649. }
  650. }
  651. /*
  652. * Step 6) Get RIR Wayness/Limit, per each channel
  653. */
  654. for (i = 0; i < NUM_CHANNELS; i++) {
  655. if (!pvt->channel[i].dimms)
  656. continue;
  657. for (j = 0; j < MAX_RIR_RANGES; j++) {
  658. pci_read_config_dword(pvt->pci_tad[i],
  659. rir_way_limit[j],
  660. &reg);
  661. if (!IS_RIR_VALID(reg))
  662. continue;
  663. tmp_mb = RIR_LIMIT(reg) >> 20;
  664. rir_way = 1 << RIR_WAY(reg);
  665. mb = div_u64_rem(tmp_mb, 1000, &kb);
  666. debugf0("CH#%d RIR#%d, limit: %u.%03u GB (0x%016Lx), way: %d, reg=0x%08x\n",
  667. i, j,
  668. mb, kb,
  669. ((u64)tmp_mb) << 20L,
  670. rir_way,
  671. reg);
  672. for (k = 0; k < rir_way; k++) {
  673. pci_read_config_dword(pvt->pci_tad[i],
  674. rir_offset[j][k],
  675. &reg);
  676. tmp_mb = RIR_OFFSET(reg) << 6;
  677. mb = div_u64_rem(tmp_mb, 1000, &kb);
  678. debugf0("CH#%d RIR#%d INTL#%d, offset %u.%03u GB (0x%016Lx), tgt: %d, reg=0x%08x\n",
  679. i, j, k,
  680. mb, kb,
  681. ((u64)tmp_mb) << 20L,
  682. (u32)RIR_RNK_TGT(reg),
  683. reg);
  684. }
  685. }
  686. }
  687. }
  688. struct mem_ctl_info *get_mci_for_node_id(u8 node_id)
  689. {
  690. struct sbridge_dev *sbridge_dev;
  691. list_for_each_entry(sbridge_dev, &sbridge_edac_list, list) {
  692. if (sbridge_dev->node_id == node_id)
  693. return sbridge_dev->mci;
  694. }
  695. return NULL;
  696. }
  697. static int get_memory_error_data(struct mem_ctl_info *mci,
  698. u64 addr,
  699. u8 *socket,
  700. long *channel_mask,
  701. u8 *rank,
  702. char *area_type)
  703. {
  704. struct mem_ctl_info *new_mci;
  705. struct sbridge_pvt *pvt = mci->pvt_info;
  706. char msg[256];
  707. int n_rir, n_sads, n_tads, sad_way, sck_xch;
  708. int sad_interl, idx, base_ch;
  709. int interleave_mode;
  710. unsigned sad_interleave[MAX_INTERLEAVE];
  711. u32 reg;
  712. u8 ch_way,sck_way;
  713. u32 tad_offset;
  714. u32 rir_way;
  715. u32 mb, kb;
  716. u64 ch_addr, offset, limit, prv = 0;
  717. /*
  718. * Step 0) Check if the address is at special memory ranges
  719. * The check bellow is probably enough to fill all cases where
  720. * the error is not inside a memory, except for the legacy
  721. * range (e. g. VGA addresses). It is unlikely, however, that the
  722. * memory controller would generate an error on that range.
  723. */
  724. if ((addr > (u64) pvt->tolm) && (addr < (1LL << 32))) {
  725. sprintf(msg, "Error at TOLM area, on addr 0x%08Lx", addr);
  726. edac_mc_handle_ce_no_info(mci, msg);
  727. return -EINVAL;
  728. }
  729. if (addr >= (u64)pvt->tohm) {
  730. sprintf(msg, "Error at MMIOH area, on addr 0x%016Lx", addr);
  731. edac_mc_handle_ce_no_info(mci, msg);
  732. return -EINVAL;
  733. }
  734. /*
  735. * Step 1) Get socket
  736. */
  737. for (n_sads = 0; n_sads < MAX_SAD; n_sads++) {
  738. pci_read_config_dword(pvt->pci_sad0, dram_rule[n_sads],
  739. &reg);
  740. if (!DRAM_RULE_ENABLE(reg))
  741. continue;
  742. limit = SAD_LIMIT(reg);
  743. if (limit <= prv) {
  744. sprintf(msg, "Can't discover the memory socket");
  745. edac_mc_handle_ce_no_info(mci, msg);
  746. return -EINVAL;
  747. }
  748. if (addr <= limit)
  749. break;
  750. prv = limit;
  751. }
  752. if (n_sads == MAX_SAD) {
  753. sprintf(msg, "Can't discover the memory socket");
  754. edac_mc_handle_ce_no_info(mci, msg);
  755. return -EINVAL;
  756. }
  757. area_type = get_dram_attr(reg);
  758. interleave_mode = INTERLEAVE_MODE(reg);
  759. pci_read_config_dword(pvt->pci_sad0, interleave_list[n_sads],
  760. &reg);
  761. sad_interl = sad_pkg(reg, 0);
  762. for (sad_way = 0; sad_way < 8; sad_way++) {
  763. if (sad_way > 0 && sad_interl == sad_pkg(reg, sad_way))
  764. break;
  765. sad_interleave[sad_way] = sad_pkg(reg, sad_way);
  766. debugf0("SAD interleave #%d: %d\n",
  767. sad_way, sad_interleave[sad_way]);
  768. }
  769. debugf0("mc#%d: Error detected on SAD#%d: address 0x%016Lx < 0x%016Lx, Interleave [%d:6]%s\n",
  770. pvt->sbridge_dev->mc,
  771. n_sads,
  772. addr,
  773. limit,
  774. sad_way + 7,
  775. interleave_mode ? "" : "XOR[18:16]");
  776. if (interleave_mode)
  777. idx = ((addr >> 6) ^ (addr >> 16)) & 7;
  778. else
  779. idx = (addr >> 6) & 7;
  780. switch (sad_way) {
  781. case 1:
  782. idx = 0;
  783. break;
  784. case 2:
  785. idx = idx & 1;
  786. break;
  787. case 4:
  788. idx = idx & 3;
  789. break;
  790. case 8:
  791. break;
  792. default:
  793. sprintf(msg, "Can't discover socket interleave");
  794. edac_mc_handle_ce_no_info(mci, msg);
  795. return -EINVAL;
  796. }
  797. *socket = sad_interleave[idx];
  798. debugf0("SAD interleave index: %d (wayness %d) = CPU socket %d\n",
  799. idx, sad_way, *socket);
  800. /*
  801. * Move to the proper node structure, in order to access the
  802. * right PCI registers
  803. */
  804. new_mci = get_mci_for_node_id(*socket);
  805. if (!new_mci) {
  806. sprintf(msg, "Struct for socket #%u wasn't initialized",
  807. *socket);
  808. edac_mc_handle_ce_no_info(mci, msg);
  809. return -EINVAL;
  810. }
  811. mci = new_mci;
  812. pvt = mci->pvt_info;
  813. /*
  814. * Step 2) Get memory channel
  815. */
  816. prv = 0;
  817. for (n_tads = 0; n_tads < MAX_TAD; n_tads++) {
  818. pci_read_config_dword(pvt->pci_ha0, tad_dram_rule[n_tads],
  819. &reg);
  820. limit = TAD_LIMIT(reg);
  821. if (limit <= prv) {
  822. sprintf(msg, "Can't discover the memory channel");
  823. edac_mc_handle_ce_no_info(mci, msg);
  824. return -EINVAL;
  825. }
  826. if (addr <= limit)
  827. break;
  828. prv = limit;
  829. }
  830. ch_way = TAD_CH(reg) + 1;
  831. sck_way = TAD_SOCK(reg) + 1;
  832. /*
  833. * FIXME: Is it right to always use channel 0 for offsets?
  834. */
  835. pci_read_config_dword(pvt->pci_tad[0],
  836. tad_ch_nilv_offset[n_tads],
  837. &tad_offset);
  838. if (ch_way == 3)
  839. idx = addr >> 6;
  840. else
  841. idx = addr >> (6 + sck_way);
  842. idx = idx % ch_way;
  843. /*
  844. * FIXME: Shouldn't we use CHN_IDX_OFFSET() here, when ch_way == 3 ???
  845. */
  846. switch (idx) {
  847. case 0:
  848. base_ch = TAD_TGT0(reg);
  849. break;
  850. case 1:
  851. base_ch = TAD_TGT1(reg);
  852. break;
  853. case 2:
  854. base_ch = TAD_TGT2(reg);
  855. break;
  856. case 3:
  857. base_ch = TAD_TGT3(reg);
  858. break;
  859. default:
  860. sprintf(msg, "Can't discover the TAD target");
  861. edac_mc_handle_ce_no_info(mci, msg);
  862. return -EINVAL;
  863. }
  864. *channel_mask = 1 << base_ch;
  865. if (pvt->is_mirrored) {
  866. *channel_mask |= 1 << ((base_ch + 2) % 4);
  867. switch(ch_way) {
  868. case 2:
  869. case 4:
  870. sck_xch = 1 << sck_way * (ch_way >> 1);
  871. break;
  872. default:
  873. sprintf(msg, "Invalid mirror set. Can't decode addr");
  874. edac_mc_handle_ce_no_info(mci, msg);
  875. return -EINVAL;
  876. }
  877. } else
  878. sck_xch = (1 << sck_way) * ch_way;
  879. if (pvt->is_lockstep)
  880. *channel_mask |= 1 << ((base_ch + 1) % 4);
  881. offset = TAD_OFFSET(tad_offset);
  882. debugf0("TAD#%d: address 0x%016Lx < 0x%016Lx, socket interleave %d, channel interleave %d (offset 0x%08Lx), index %d, base ch: %d, ch mask: 0x%02lx\n",
  883. n_tads,
  884. addr,
  885. limit,
  886. (u32)TAD_SOCK(reg),
  887. ch_way,
  888. offset,
  889. idx,
  890. base_ch,
  891. *channel_mask);
  892. /* Calculate channel address */
  893. /* Remove the TAD offset */
  894. if (offset > addr) {
  895. sprintf(msg, "Can't calculate ch addr: TAD offset 0x%08Lx is too high for addr 0x%08Lx!",
  896. offset, addr);
  897. edac_mc_handle_ce_no_info(mci, msg);
  898. return -EINVAL;
  899. }
  900. addr -= offset;
  901. /* Store the low bits [0:6] of the addr */
  902. ch_addr = addr & 0x7f;
  903. /* Remove socket wayness and remove 6 bits */
  904. addr >>= 6;
  905. addr = div_u64(addr, sck_xch);
  906. #if 0
  907. /* Divide by channel way */
  908. addr = addr / ch_way;
  909. #endif
  910. /* Recover the last 6 bits */
  911. ch_addr |= addr << 6;
  912. /*
  913. * Step 3) Decode rank
  914. */
  915. for (n_rir = 0; n_rir < MAX_RIR_RANGES; n_rir++) {
  916. pci_read_config_dword(pvt->pci_tad[base_ch],
  917. rir_way_limit[n_rir],
  918. &reg);
  919. if (!IS_RIR_VALID(reg))
  920. continue;
  921. limit = RIR_LIMIT(reg);
  922. mb = div_u64_rem(limit >> 20, 1000, &kb);
  923. debugf0("RIR#%d, limit: %u.%03u GB (0x%016Lx), way: %d\n",
  924. n_rir,
  925. mb, kb,
  926. limit,
  927. 1 << RIR_WAY(reg));
  928. if (ch_addr <= limit)
  929. break;
  930. }
  931. if (n_rir == MAX_RIR_RANGES) {
  932. sprintf(msg, "Can't discover the memory rank for ch addr 0x%08Lx",
  933. ch_addr);
  934. edac_mc_handle_ce_no_info(mci, msg);
  935. return -EINVAL;
  936. }
  937. rir_way = RIR_WAY(reg);
  938. if (pvt->is_close_pg)
  939. idx = (ch_addr >> 6);
  940. else
  941. idx = (ch_addr >> 13); /* FIXME: Datasheet says to shift by 15 */
  942. idx %= 1 << rir_way;
  943. pci_read_config_dword(pvt->pci_tad[base_ch],
  944. rir_offset[n_rir][idx],
  945. &reg);
  946. *rank = RIR_RNK_TGT(reg);
  947. debugf0("RIR#%d: channel address 0x%08Lx < 0x%08Lx, RIR interleave %d, index %d\n",
  948. n_rir,
  949. ch_addr,
  950. limit,
  951. rir_way,
  952. idx);
  953. return 0;
  954. }
  955. /****************************************************************************
  956. Device initialization routines: put/get, init/exit
  957. ****************************************************************************/
  958. /*
  959. * sbridge_put_all_devices 'put' all the devices that we have
  960. * reserved via 'get'
  961. */
  962. static void sbridge_put_devices(struct sbridge_dev *sbridge_dev)
  963. {
  964. int i;
  965. debugf0(__FILE__ ": %s()\n", __func__);
  966. for (i = 0; i < sbridge_dev->n_devs; i++) {
  967. struct pci_dev *pdev = sbridge_dev->pdev[i];
  968. if (!pdev)
  969. continue;
  970. debugf0("Removing dev %02x:%02x.%d\n",
  971. pdev->bus->number,
  972. PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn));
  973. pci_dev_put(pdev);
  974. }
  975. }
  976. static void sbridge_put_all_devices(void)
  977. {
  978. struct sbridge_dev *sbridge_dev, *tmp;
  979. list_for_each_entry_safe(sbridge_dev, tmp, &sbridge_edac_list, list) {
  980. sbridge_put_devices(sbridge_dev);
  981. free_sbridge_dev(sbridge_dev);
  982. }
  983. }
  984. /*
  985. * sbridge_get_all_devices Find and perform 'get' operation on the MCH's
  986. * device/functions we want to reference for this driver
  987. *
  988. * Need to 'get' device 16 func 1 and func 2
  989. */
  990. static int sbridge_get_onedevice(struct pci_dev **prev,
  991. u8 *num_mc,
  992. const struct pci_id_table *table,
  993. const unsigned devno)
  994. {
  995. struct sbridge_dev *sbridge_dev;
  996. const struct pci_id_descr *dev_descr = &table->descr[devno];
  997. struct pci_dev *pdev = NULL;
  998. u8 bus = 0;
  999. sbridge_printk(KERN_INFO,
  1000. "Seeking for: dev %02x.%d PCI ID %04x:%04x\n",
  1001. dev_descr->dev, dev_descr->func,
  1002. PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
  1003. pdev = pci_get_device(PCI_VENDOR_ID_INTEL,
  1004. dev_descr->dev_id, *prev);
  1005. if (!pdev) {
  1006. if (*prev) {
  1007. *prev = pdev;
  1008. return 0;
  1009. }
  1010. if (dev_descr->optional)
  1011. return 0;
  1012. if (devno == 0)
  1013. return -ENODEV;
  1014. sbridge_printk(KERN_INFO,
  1015. "Device not found: dev %02x.%d PCI ID %04x:%04x\n",
  1016. dev_descr->dev, dev_descr->func,
  1017. PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
  1018. /* End of list, leave */
  1019. return -ENODEV;
  1020. }
  1021. bus = pdev->bus->number;
  1022. sbridge_dev = get_sbridge_dev(bus);
  1023. if (!sbridge_dev) {
  1024. sbridge_dev = alloc_sbridge_dev(bus, table);
  1025. if (!sbridge_dev) {
  1026. pci_dev_put(pdev);
  1027. return -ENOMEM;
  1028. }
  1029. (*num_mc)++;
  1030. }
  1031. if (sbridge_dev->pdev[devno]) {
  1032. sbridge_printk(KERN_ERR,
  1033. "Duplicated device for "
  1034. "dev %02x:%d.%d PCI ID %04x:%04x\n",
  1035. bus, dev_descr->dev, dev_descr->func,
  1036. PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
  1037. pci_dev_put(pdev);
  1038. return -ENODEV;
  1039. }
  1040. sbridge_dev->pdev[devno] = pdev;
  1041. /* Sanity check */
  1042. if (unlikely(PCI_SLOT(pdev->devfn) != dev_descr->dev ||
  1043. PCI_FUNC(pdev->devfn) != dev_descr->func)) {
  1044. sbridge_printk(KERN_ERR,
  1045. "Device PCI ID %04x:%04x "
  1046. "has dev %02x:%d.%d instead of dev %02x:%02x.%d\n",
  1047. PCI_VENDOR_ID_INTEL, dev_descr->dev_id,
  1048. bus, PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn),
  1049. bus, dev_descr->dev, dev_descr->func);
  1050. return -ENODEV;
  1051. }
  1052. /* Be sure that the device is enabled */
  1053. if (unlikely(pci_enable_device(pdev) < 0)) {
  1054. sbridge_printk(KERN_ERR,
  1055. "Couldn't enable "
  1056. "dev %02x:%d.%d PCI ID %04x:%04x\n",
  1057. bus, dev_descr->dev, dev_descr->func,
  1058. PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
  1059. return -ENODEV;
  1060. }
  1061. debugf0("Detected dev %02x:%d.%d PCI ID %04x:%04x\n",
  1062. bus, dev_descr->dev,
  1063. dev_descr->func,
  1064. PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
  1065. /*
  1066. * As stated on drivers/pci/search.c, the reference count for
  1067. * @from is always decremented if it is not %NULL. So, as we need
  1068. * to get all devices up to null, we need to do a get for the device
  1069. */
  1070. pci_dev_get(pdev);
  1071. *prev = pdev;
  1072. return 0;
  1073. }
  1074. static int sbridge_get_all_devices(u8 *num_mc)
  1075. {
  1076. int i, rc;
  1077. struct pci_dev *pdev = NULL;
  1078. const struct pci_id_table *table = pci_dev_descr_sbridge_table;
  1079. while (table && table->descr) {
  1080. for (i = 0; i < table->n_devs; i++) {
  1081. pdev = NULL;
  1082. do {
  1083. rc = sbridge_get_onedevice(&pdev, num_mc,
  1084. table, i);
  1085. if (rc < 0) {
  1086. if (i == 0) {
  1087. i = table->n_devs;
  1088. break;
  1089. }
  1090. sbridge_put_all_devices();
  1091. return -ENODEV;
  1092. }
  1093. } while (pdev);
  1094. }
  1095. table++;
  1096. }
  1097. return 0;
  1098. }
  1099. static int mci_bind_devs(struct mem_ctl_info *mci,
  1100. struct sbridge_dev *sbridge_dev)
  1101. {
  1102. struct sbridge_pvt *pvt = mci->pvt_info;
  1103. struct pci_dev *pdev;
  1104. int i, func, slot;
  1105. for (i = 0; i < sbridge_dev->n_devs; i++) {
  1106. pdev = sbridge_dev->pdev[i];
  1107. if (!pdev)
  1108. continue;
  1109. slot = PCI_SLOT(pdev->devfn);
  1110. func = PCI_FUNC(pdev->devfn);
  1111. switch (slot) {
  1112. case 12:
  1113. switch (func) {
  1114. case 6:
  1115. pvt->pci_sad0 = pdev;
  1116. break;
  1117. case 7:
  1118. pvt->pci_sad1 = pdev;
  1119. break;
  1120. default:
  1121. goto error;
  1122. }
  1123. break;
  1124. case 13:
  1125. switch (func) {
  1126. case 6:
  1127. pvt->pci_br = pdev;
  1128. break;
  1129. default:
  1130. goto error;
  1131. }
  1132. break;
  1133. case 14:
  1134. switch (func) {
  1135. case 0:
  1136. pvt->pci_ha0 = pdev;
  1137. break;
  1138. default:
  1139. goto error;
  1140. }
  1141. break;
  1142. case 15:
  1143. switch (func) {
  1144. case 0:
  1145. pvt->pci_ta = pdev;
  1146. break;
  1147. case 1:
  1148. pvt->pci_ras = pdev;
  1149. break;
  1150. case 2:
  1151. case 3:
  1152. case 4:
  1153. case 5:
  1154. pvt->pci_tad[func - 2] = pdev;
  1155. break;
  1156. default:
  1157. goto error;
  1158. }
  1159. break;
  1160. case 17:
  1161. switch (func) {
  1162. case 0:
  1163. pvt->pci_ddrio = pdev;
  1164. break;
  1165. default:
  1166. goto error;
  1167. }
  1168. break;
  1169. default:
  1170. goto error;
  1171. }
  1172. debugf0("Associated PCI %02x.%02d.%d with dev = %p\n",
  1173. sbridge_dev->bus,
  1174. PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn),
  1175. pdev);
  1176. }
  1177. /* Check if everything were registered */
  1178. if (!pvt->pci_sad0 || !pvt->pci_sad1 || !pvt->pci_ha0 ||
  1179. !pvt-> pci_tad || !pvt->pci_ras || !pvt->pci_ta ||
  1180. !pvt->pci_ddrio)
  1181. goto enodev;
  1182. for (i = 0; i < NUM_CHANNELS; i++) {
  1183. if (!pvt->pci_tad[i])
  1184. goto enodev;
  1185. }
  1186. return 0;
  1187. enodev:
  1188. sbridge_printk(KERN_ERR, "Some needed devices are missing\n");
  1189. return -ENODEV;
  1190. error:
  1191. sbridge_printk(KERN_ERR, "Device %d, function %d "
  1192. "is out of the expected range\n",
  1193. slot, func);
  1194. return -EINVAL;
  1195. }
  1196. /****************************************************************************
  1197. Error check routines
  1198. ****************************************************************************/
  1199. /*
  1200. * While Sandy Bridge has error count registers, SMI BIOS read values from
  1201. * and resets the counters. So, they are not reliable for the OS to read
  1202. * from them. So, we have no option but to just trust on whatever MCE is
  1203. * telling us about the errors.
  1204. */
  1205. static void sbridge_mce_output_error(struct mem_ctl_info *mci,
  1206. const struct mce *m)
  1207. {
  1208. struct mem_ctl_info *new_mci;
  1209. struct sbridge_pvt *pvt = mci->pvt_info;
  1210. char *type, *optype, *msg, *recoverable_msg;
  1211. bool ripv = GET_BITFIELD(m->mcgstatus, 0, 0);
  1212. bool overflow = GET_BITFIELD(m->status, 62, 62);
  1213. bool uncorrected_error = GET_BITFIELD(m->status, 61, 61);
  1214. bool recoverable = GET_BITFIELD(m->status, 56, 56);
  1215. u32 core_err_cnt = GET_BITFIELD(m->status, 38, 52);
  1216. u32 mscod = GET_BITFIELD(m->status, 16, 31);
  1217. u32 errcode = GET_BITFIELD(m->status, 0, 15);
  1218. u32 channel = GET_BITFIELD(m->status, 0, 3);
  1219. u32 optypenum = GET_BITFIELD(m->status, 4, 6);
  1220. long channel_mask, first_channel;
  1221. u8 rank, socket;
  1222. int csrow, rc, dimm;
  1223. char *area_type = "Unknown";
  1224. if (ripv)
  1225. type = "NON_FATAL";
  1226. else
  1227. type = "FATAL";
  1228. /*
  1229. * According with Table 15-9 of the Intel Archictecture spec vol 3A,
  1230. * memory errors should fit in this mask:
  1231. * 000f 0000 1mmm cccc (binary)
  1232. * where:
  1233. * f = Correction Report Filtering Bit. If 1, subsequent errors
  1234. * won't be shown
  1235. * mmm = error type
  1236. * cccc = channel
  1237. * If the mask doesn't match, report an error to the parsing logic
  1238. */
  1239. if (! ((errcode & 0xef80) == 0x80)) {
  1240. optype = "Can't parse: it is not a mem";
  1241. } else {
  1242. switch (optypenum) {
  1243. case 0:
  1244. optype = "generic undef request";
  1245. break;
  1246. case 1:
  1247. optype = "memory read";
  1248. break;
  1249. case 2:
  1250. optype = "memory write";
  1251. break;
  1252. case 3:
  1253. optype = "addr/cmd";
  1254. break;
  1255. case 4:
  1256. optype = "memory scrubbing";
  1257. break;
  1258. default:
  1259. optype = "reserved";
  1260. break;
  1261. }
  1262. }
  1263. rc = get_memory_error_data(mci, m->addr, &socket,
  1264. &channel_mask, &rank, area_type);
  1265. if (rc < 0)
  1266. return;
  1267. new_mci = get_mci_for_node_id(socket);
  1268. if (!new_mci) {
  1269. edac_mc_handle_ce_no_info(mci, "Error: socket got corrupted!");
  1270. return;
  1271. }
  1272. mci = new_mci;
  1273. pvt = mci->pvt_info;
  1274. first_channel = find_first_bit(&channel_mask, NUM_CHANNELS);
  1275. if (rank < 4)
  1276. dimm = 0;
  1277. else if (rank < 8)
  1278. dimm = 1;
  1279. else
  1280. dimm = 2;
  1281. csrow = pvt->csrow_map[first_channel][dimm];
  1282. if (uncorrected_error && recoverable)
  1283. recoverable_msg = " recoverable";
  1284. else
  1285. recoverable_msg = "";
  1286. /*
  1287. * FIXME: What should we do with "channel" information on mcelog?
  1288. * Probably, we can just discard it, as the channel information
  1289. * comes from the get_memory_error_data() address decoding
  1290. */
  1291. msg = kasprintf(GFP_ATOMIC,
  1292. "%d %s error(s): %s on %s area %s%s: cpu=%d Err=%04x:%04x (ch=%d), "
  1293. "addr = 0x%08llx => socket=%d, Channel=%ld(mask=%ld), rank=%d\n",
  1294. core_err_cnt,
  1295. area_type,
  1296. optype,
  1297. type,
  1298. recoverable_msg,
  1299. overflow ? "OVERFLOW" : "",
  1300. m->cpu,
  1301. mscod, errcode,
  1302. channel, /* 1111b means not specified */
  1303. (long long) m->addr,
  1304. socket,
  1305. first_channel, /* This is the real channel on SB */
  1306. channel_mask,
  1307. rank);
  1308. debugf0("%s", msg);
  1309. /* Call the helper to output message */
  1310. if (uncorrected_error)
  1311. edac_mc_handle_fbd_ue(mci, csrow, 0, 0, msg);
  1312. else
  1313. edac_mc_handle_fbd_ce(mci, csrow, 0, msg);
  1314. kfree(msg);
  1315. }
  1316. /*
  1317. * sbridge_check_error Retrieve and process errors reported by the
  1318. * hardware. Called by the Core module.
  1319. */
  1320. static void sbridge_check_error(struct mem_ctl_info *mci)
  1321. {
  1322. struct sbridge_pvt *pvt = mci->pvt_info;
  1323. int i;
  1324. unsigned count = 0;
  1325. struct mce *m;
  1326. /*
  1327. * MCE first step: Copy all mce errors into a temporary buffer
  1328. * We use a double buffering here, to reduce the risk of
  1329. * loosing an error.
  1330. */
  1331. smp_rmb();
  1332. count = (pvt->mce_out + MCE_LOG_LEN - pvt->mce_in)
  1333. % MCE_LOG_LEN;
  1334. if (!count)
  1335. return;
  1336. m = pvt->mce_outentry;
  1337. if (pvt->mce_in + count > MCE_LOG_LEN) {
  1338. unsigned l = MCE_LOG_LEN - pvt->mce_in;
  1339. memcpy(m, &pvt->mce_entry[pvt->mce_in], sizeof(*m) * l);
  1340. smp_wmb();
  1341. pvt->mce_in = 0;
  1342. count -= l;
  1343. m += l;
  1344. }
  1345. memcpy(m, &pvt->mce_entry[pvt->mce_in], sizeof(*m) * count);
  1346. smp_wmb();
  1347. pvt->mce_in += count;
  1348. smp_rmb();
  1349. if (pvt->mce_overrun) {
  1350. sbridge_printk(KERN_ERR, "Lost %d memory errors\n",
  1351. pvt->mce_overrun);
  1352. smp_wmb();
  1353. pvt->mce_overrun = 0;
  1354. }
  1355. /*
  1356. * MCE second step: parse errors and display
  1357. */
  1358. for (i = 0; i < count; i++)
  1359. sbridge_mce_output_error(mci, &pvt->mce_outentry[i]);
  1360. }
  1361. /*
  1362. * sbridge_mce_check_error Replicates mcelog routine to get errors
  1363. * This routine simply queues mcelog errors, and
  1364. * return. The error itself should be handled later
  1365. * by sbridge_check_error.
  1366. * WARNING: As this routine should be called at NMI time, extra care should
  1367. * be taken to avoid deadlocks, and to be as fast as possible.
  1368. */
  1369. static int sbridge_mce_check_error(struct notifier_block *nb, unsigned long val,
  1370. void *data)
  1371. {
  1372. struct mce *mce = (struct mce *)data;
  1373. struct mem_ctl_info *mci;
  1374. struct sbridge_pvt *pvt;
  1375. mci = get_mci_for_node_id(mce->socketid);
  1376. if (!mci)
  1377. return NOTIFY_BAD;
  1378. pvt = mci->pvt_info;
  1379. /*
  1380. * Just let mcelog handle it if the error is
  1381. * outside the memory controller. A memory error
  1382. * is indicated by bit 7 = 1 and bits = 8-11,13-15 = 0.
  1383. * bit 12 has an special meaning.
  1384. */
  1385. if ((mce->status & 0xefff) >> 7 != 1)
  1386. return NOTIFY_DONE;
  1387. printk("sbridge: HANDLING MCE MEMORY ERROR\n");
  1388. printk("CPU %d: Machine Check Exception: %Lx Bank %d: %016Lx\n",
  1389. mce->extcpu, mce->mcgstatus, mce->bank, mce->status);
  1390. printk("TSC %llx ", mce->tsc);
  1391. printk("ADDR %llx ", mce->addr);
  1392. printk("MISC %llx ", mce->misc);
  1393. printk("PROCESSOR %u:%x TIME %llu SOCKET %u APIC %x\n",
  1394. mce->cpuvendor, mce->cpuid, mce->time,
  1395. mce->socketid, mce->apicid);
  1396. /* Only handle if it is the right mc controller */
  1397. if (cpu_data(mce->cpu).phys_proc_id != pvt->sbridge_dev->mc)
  1398. return NOTIFY_DONE;
  1399. smp_rmb();
  1400. if ((pvt->mce_out + 1) % MCE_LOG_LEN == pvt->mce_in) {
  1401. smp_wmb();
  1402. pvt->mce_overrun++;
  1403. return NOTIFY_DONE;
  1404. }
  1405. /* Copy memory error at the ringbuffer */
  1406. memcpy(&pvt->mce_entry[pvt->mce_out], mce, sizeof(*mce));
  1407. smp_wmb();
  1408. pvt->mce_out = (pvt->mce_out + 1) % MCE_LOG_LEN;
  1409. /* Handle fatal errors immediately */
  1410. if (mce->mcgstatus & 1)
  1411. sbridge_check_error(mci);
  1412. /* Advice mcelog that the error were handled */
  1413. return NOTIFY_STOP;
  1414. }
  1415. static struct notifier_block sbridge_mce_dec = {
  1416. .notifier_call = sbridge_mce_check_error,
  1417. };
  1418. /****************************************************************************
  1419. EDAC register/unregister logic
  1420. ****************************************************************************/
  1421. static void sbridge_unregister_mci(struct sbridge_dev *sbridge_dev)
  1422. {
  1423. struct mem_ctl_info *mci = sbridge_dev->mci;
  1424. struct sbridge_pvt *pvt;
  1425. if (unlikely(!mci || !mci->pvt_info)) {
  1426. debugf0("MC: " __FILE__ ": %s(): dev = %p\n",
  1427. __func__, &sbridge_dev->pdev[0]->dev);
  1428. sbridge_printk(KERN_ERR, "Couldn't find mci handler\n");
  1429. return;
  1430. }
  1431. pvt = mci->pvt_info;
  1432. debugf0("MC: " __FILE__ ": %s(): mci = %p, dev = %p\n",
  1433. __func__, mci, &sbridge_dev->pdev[0]->dev);
  1434. mce_unregister_decode_chain(&sbridge_mce_dec);
  1435. /* Remove MC sysfs nodes */
  1436. edac_mc_del_mc(mci->dev);
  1437. debugf1("%s: free mci struct\n", mci->ctl_name);
  1438. kfree(mci->ctl_name);
  1439. edac_mc_free(mci);
  1440. sbridge_dev->mci = NULL;
  1441. }
  1442. static int sbridge_register_mci(struct sbridge_dev *sbridge_dev)
  1443. {
  1444. struct mem_ctl_info *mci;
  1445. struct sbridge_pvt *pvt;
  1446. int rc, channels, csrows;
  1447. /* Check the number of active and not disabled channels */
  1448. rc = sbridge_get_active_channels(sbridge_dev->bus, &channels, &csrows);
  1449. if (unlikely(rc < 0))
  1450. return rc;
  1451. /* allocate a new MC control structure */
  1452. mci = edac_mc_alloc(sizeof(*pvt), csrows, channels, sbridge_dev->mc);
  1453. if (unlikely(!mci))
  1454. return -ENOMEM;
  1455. debugf0("MC: " __FILE__ ": %s(): mci = %p, dev = %p\n",
  1456. __func__, mci, &sbridge_dev->pdev[0]->dev);
  1457. pvt = mci->pvt_info;
  1458. memset(pvt, 0, sizeof(*pvt));
  1459. /* Associate sbridge_dev and mci for future usage */
  1460. pvt->sbridge_dev = sbridge_dev;
  1461. sbridge_dev->mci = mci;
  1462. mci->mtype_cap = MEM_FLAG_DDR3;
  1463. mci->edac_ctl_cap = EDAC_FLAG_NONE;
  1464. mci->edac_cap = EDAC_FLAG_NONE;
  1465. mci->mod_name = "sbridge_edac.c";
  1466. mci->mod_ver = SBRIDGE_REVISION;
  1467. mci->ctl_name = kasprintf(GFP_KERNEL, "Sandy Bridge Socket#%d", mci->mc_idx);
  1468. mci->dev_name = pci_name(sbridge_dev->pdev[0]);
  1469. mci->ctl_page_to_phys = NULL;
  1470. /* Set the function pointer to an actual operation function */
  1471. mci->edac_check = sbridge_check_error;
  1472. /* Store pci devices at mci for faster access */
  1473. rc = mci_bind_devs(mci, sbridge_dev);
  1474. if (unlikely(rc < 0))
  1475. goto fail0;
  1476. /* Get dimm basic config and the memory layout */
  1477. get_dimm_config(mci);
  1478. get_memory_layout(mci);
  1479. /* record ptr to the generic device */
  1480. mci->dev = &sbridge_dev->pdev[0]->dev;
  1481. /* add this new MC control structure to EDAC's list of MCs */
  1482. if (unlikely(edac_mc_add_mc(mci))) {
  1483. debugf0("MC: " __FILE__
  1484. ": %s(): failed edac_mc_add_mc()\n", __func__);
  1485. rc = -EINVAL;
  1486. goto fail0;
  1487. }
  1488. mce_register_decode_chain(&sbridge_mce_dec);
  1489. return 0;
  1490. fail0:
  1491. kfree(mci->ctl_name);
  1492. edac_mc_free(mci);
  1493. sbridge_dev->mci = NULL;
  1494. return rc;
  1495. }
  1496. /*
  1497. * sbridge_probe Probe for ONE instance of device to see if it is
  1498. * present.
  1499. * return:
  1500. * 0 for FOUND a device
  1501. * < 0 for error code
  1502. */
  1503. static int __devinit sbridge_probe(struct pci_dev *pdev,
  1504. const struct pci_device_id *id)
  1505. {
  1506. int rc;
  1507. u8 mc, num_mc = 0;
  1508. struct sbridge_dev *sbridge_dev;
  1509. /* get the pci devices we want to reserve for our use */
  1510. mutex_lock(&sbridge_edac_lock);
  1511. /*
  1512. * All memory controllers are allocated at the first pass.
  1513. */
  1514. if (unlikely(probed >= 1)) {
  1515. mutex_unlock(&sbridge_edac_lock);
  1516. return -ENODEV;
  1517. }
  1518. probed++;
  1519. rc = sbridge_get_all_devices(&num_mc);
  1520. if (unlikely(rc < 0))
  1521. goto fail0;
  1522. mc = 0;
  1523. list_for_each_entry(sbridge_dev, &sbridge_edac_list, list) {
  1524. debugf0("Registering MC#%d (%d of %d)\n", mc, mc + 1, num_mc);
  1525. sbridge_dev->mc = mc++;
  1526. rc = sbridge_register_mci(sbridge_dev);
  1527. if (unlikely(rc < 0))
  1528. goto fail1;
  1529. }
  1530. sbridge_printk(KERN_INFO, "Driver loaded.\n");
  1531. mutex_unlock(&sbridge_edac_lock);
  1532. return 0;
  1533. fail1:
  1534. list_for_each_entry(sbridge_dev, &sbridge_edac_list, list)
  1535. sbridge_unregister_mci(sbridge_dev);
  1536. sbridge_put_all_devices();
  1537. fail0:
  1538. mutex_unlock(&sbridge_edac_lock);
  1539. return rc;
  1540. }
  1541. /*
  1542. * sbridge_remove destructor for one instance of device
  1543. *
  1544. */
  1545. static void __devexit sbridge_remove(struct pci_dev *pdev)
  1546. {
  1547. struct sbridge_dev *sbridge_dev;
  1548. debugf0(__FILE__ ": %s()\n", __func__);
  1549. /*
  1550. * we have a trouble here: pdev value for removal will be wrong, since
  1551. * it will point to the X58 register used to detect that the machine
  1552. * is a Nehalem or upper design. However, due to the way several PCI
  1553. * devices are grouped together to provide MC functionality, we need
  1554. * to use a different method for releasing the devices
  1555. */
  1556. mutex_lock(&sbridge_edac_lock);
  1557. if (unlikely(!probed)) {
  1558. mutex_unlock(&sbridge_edac_lock);
  1559. return;
  1560. }
  1561. list_for_each_entry(sbridge_dev, &sbridge_edac_list, list)
  1562. sbridge_unregister_mci(sbridge_dev);
  1563. /* Release PCI resources */
  1564. sbridge_put_all_devices();
  1565. probed--;
  1566. mutex_unlock(&sbridge_edac_lock);
  1567. }
  1568. MODULE_DEVICE_TABLE(pci, sbridge_pci_tbl);
  1569. /*
  1570. * sbridge_driver pci_driver structure for this module
  1571. *
  1572. */
  1573. static struct pci_driver sbridge_driver = {
  1574. .name = "sbridge_edac",
  1575. .probe = sbridge_probe,
  1576. .remove = __devexit_p(sbridge_remove),
  1577. .id_table = sbridge_pci_tbl,
  1578. };
  1579. /*
  1580. * sbridge_init Module entry function
  1581. * Try to initialize this module for its devices
  1582. */
  1583. static int __init sbridge_init(void)
  1584. {
  1585. int pci_rc;
  1586. debugf2("MC: " __FILE__ ": %s()\n", __func__);
  1587. /* Ensure that the OPSTATE is set correctly for POLL or NMI */
  1588. opstate_init();
  1589. pci_rc = pci_register_driver(&sbridge_driver);
  1590. if (pci_rc >= 0)
  1591. return 0;
  1592. sbridge_printk(KERN_ERR, "Failed to register device with error %d.\n",
  1593. pci_rc);
  1594. return pci_rc;
  1595. }
  1596. /*
  1597. * sbridge_exit() Module exit function
  1598. * Unregister the driver
  1599. */
  1600. static void __exit sbridge_exit(void)
  1601. {
  1602. debugf2("MC: " __FILE__ ": %s()\n", __func__);
  1603. pci_unregister_driver(&sbridge_driver);
  1604. }
  1605. module_init(sbridge_init);
  1606. module_exit(sbridge_exit);
  1607. module_param(edac_op_state, int, 0444);
  1608. MODULE_PARM_DESC(edac_op_state, "EDAC Error Reporting state: 0=Poll,1=NMI");
  1609. MODULE_LICENSE("GPL");
  1610. MODULE_AUTHOR("Mauro Carvalho Chehab <mchehab@redhat.com>");
  1611. MODULE_AUTHOR("Red Hat Inc. (http://www.redhat.com)");
  1612. MODULE_DESCRIPTION("MC Driver for Intel Sandy Bridge memory controllers - "
  1613. SBRIDGE_REVISION);