ste_dma40.c 84 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349
  1. /*
  2. * Copyright (C) Ericsson AB 2007-2008
  3. * Copyright (C) ST-Ericsson SA 2008-2010
  4. * Author: Per Forlin <per.forlin@stericsson.com> for ST-Ericsson
  5. * Author: Jonas Aaberg <jonas.aberg@stericsson.com> for ST-Ericsson
  6. * License terms: GNU General Public License (GPL) version 2
  7. */
  8. #include <linux/dma-mapping.h>
  9. #include <linux/kernel.h>
  10. #include <linux/slab.h>
  11. #include <linux/export.h>
  12. #include <linux/dmaengine.h>
  13. #include <linux/platform_device.h>
  14. #include <linux/clk.h>
  15. #include <linux/delay.h>
  16. #include <linux/pm.h>
  17. #include <linux/pm_runtime.h>
  18. #include <linux/err.h>
  19. #include <linux/amba/bus.h>
  20. #include <plat/ste_dma40.h>
  21. #include "dmaengine.h"
  22. #include "ste_dma40_ll.h"
  23. #define D40_NAME "dma40"
  24. #define D40_PHY_CHAN -1
  25. /* For masking out/in 2 bit channel positions */
  26. #define D40_CHAN_POS(chan) (2 * (chan / 2))
  27. #define D40_CHAN_POS_MASK(chan) (0x3 << D40_CHAN_POS(chan))
  28. /* Maximum iterations taken before giving up suspending a channel */
  29. #define D40_SUSPEND_MAX_IT 500
  30. /* Milliseconds */
  31. #define DMA40_AUTOSUSPEND_DELAY 100
  32. /* Hardware requirement on LCLA alignment */
  33. #define LCLA_ALIGNMENT 0x40000
  34. /* Max number of links per event group */
  35. #define D40_LCLA_LINK_PER_EVENT_GRP 128
  36. #define D40_LCLA_END D40_LCLA_LINK_PER_EVENT_GRP
  37. /* Attempts before giving up to trying to get pages that are aligned */
  38. #define MAX_LCLA_ALLOC_ATTEMPTS 256
  39. /* Bit markings for allocation map */
  40. #define D40_ALLOC_FREE (1 << 31)
  41. #define D40_ALLOC_PHY (1 << 30)
  42. #define D40_ALLOC_LOG_FREE 0
  43. /**
  44. * enum 40_command - The different commands and/or statuses.
  45. *
  46. * @D40_DMA_STOP: DMA channel command STOP or status STOPPED,
  47. * @D40_DMA_RUN: The DMA channel is RUNNING of the command RUN.
  48. * @D40_DMA_SUSPEND_REQ: Request the DMA to SUSPEND as soon as possible.
  49. * @D40_DMA_SUSPENDED: The DMA channel is SUSPENDED.
  50. */
  51. enum d40_command {
  52. D40_DMA_STOP = 0,
  53. D40_DMA_RUN = 1,
  54. D40_DMA_SUSPEND_REQ = 2,
  55. D40_DMA_SUSPENDED = 3
  56. };
  57. /*
  58. * These are the registers that has to be saved and later restored
  59. * when the DMA hw is powered off.
  60. * TODO: Add save/restore of D40_DREG_GCC on dma40 v3 or later, if that works.
  61. */
  62. static u32 d40_backup_regs[] = {
  63. D40_DREG_LCPA,
  64. D40_DREG_LCLA,
  65. D40_DREG_PRMSE,
  66. D40_DREG_PRMSO,
  67. D40_DREG_PRMOE,
  68. D40_DREG_PRMOO,
  69. };
  70. #define BACKUP_REGS_SZ ARRAY_SIZE(d40_backup_regs)
  71. /* TODO: Check if all these registers have to be saved/restored on dma40 v3 */
  72. static u32 d40_backup_regs_v3[] = {
  73. D40_DREG_PSEG1,
  74. D40_DREG_PSEG2,
  75. D40_DREG_PSEG3,
  76. D40_DREG_PSEG4,
  77. D40_DREG_PCEG1,
  78. D40_DREG_PCEG2,
  79. D40_DREG_PCEG3,
  80. D40_DREG_PCEG4,
  81. D40_DREG_RSEG1,
  82. D40_DREG_RSEG2,
  83. D40_DREG_RSEG3,
  84. D40_DREG_RSEG4,
  85. D40_DREG_RCEG1,
  86. D40_DREG_RCEG2,
  87. D40_DREG_RCEG3,
  88. D40_DREG_RCEG4,
  89. };
  90. #define BACKUP_REGS_SZ_V3 ARRAY_SIZE(d40_backup_regs_v3)
  91. static u32 d40_backup_regs_chan[] = {
  92. D40_CHAN_REG_SSCFG,
  93. D40_CHAN_REG_SSELT,
  94. D40_CHAN_REG_SSPTR,
  95. D40_CHAN_REG_SSLNK,
  96. D40_CHAN_REG_SDCFG,
  97. D40_CHAN_REG_SDELT,
  98. D40_CHAN_REG_SDPTR,
  99. D40_CHAN_REG_SDLNK,
  100. };
  101. /**
  102. * struct d40_lli_pool - Structure for keeping LLIs in memory
  103. *
  104. * @base: Pointer to memory area when the pre_alloc_lli's are not large
  105. * enough, IE bigger than the most common case, 1 dst and 1 src. NULL if
  106. * pre_alloc_lli is used.
  107. * @dma_addr: DMA address, if mapped
  108. * @size: The size in bytes of the memory at base or the size of pre_alloc_lli.
  109. * @pre_alloc_lli: Pre allocated area for the most common case of transfers,
  110. * one buffer to one buffer.
  111. */
  112. struct d40_lli_pool {
  113. void *base;
  114. int size;
  115. dma_addr_t dma_addr;
  116. /* Space for dst and src, plus an extra for padding */
  117. u8 pre_alloc_lli[3 * sizeof(struct d40_phy_lli)];
  118. };
  119. /**
  120. * struct d40_desc - A descriptor is one DMA job.
  121. *
  122. * @lli_phy: LLI settings for physical channel. Both src and dst=
  123. * points into the lli_pool, to base if lli_len > 1 or to pre_alloc_lli if
  124. * lli_len equals one.
  125. * @lli_log: Same as above but for logical channels.
  126. * @lli_pool: The pool with two entries pre-allocated.
  127. * @lli_len: Number of llis of current descriptor.
  128. * @lli_current: Number of transferred llis.
  129. * @lcla_alloc: Number of LCLA entries allocated.
  130. * @txd: DMA engine struct. Used for among other things for communication
  131. * during a transfer.
  132. * @node: List entry.
  133. * @is_in_client_list: true if the client owns this descriptor.
  134. * @cyclic: true if this is a cyclic job
  135. *
  136. * This descriptor is used for both logical and physical transfers.
  137. */
  138. struct d40_desc {
  139. /* LLI physical */
  140. struct d40_phy_lli_bidir lli_phy;
  141. /* LLI logical */
  142. struct d40_log_lli_bidir lli_log;
  143. struct d40_lli_pool lli_pool;
  144. int lli_len;
  145. int lli_current;
  146. int lcla_alloc;
  147. struct dma_async_tx_descriptor txd;
  148. struct list_head node;
  149. bool is_in_client_list;
  150. bool cyclic;
  151. };
  152. /**
  153. * struct d40_lcla_pool - LCLA pool settings and data.
  154. *
  155. * @base: The virtual address of LCLA. 18 bit aligned.
  156. * @base_unaligned: The orignal kmalloc pointer, if kmalloc is used.
  157. * This pointer is only there for clean-up on error.
  158. * @pages: The number of pages needed for all physical channels.
  159. * Only used later for clean-up on error
  160. * @lock: Lock to protect the content in this struct.
  161. * @alloc_map: big map over which LCLA entry is own by which job.
  162. */
  163. struct d40_lcla_pool {
  164. void *base;
  165. dma_addr_t dma_addr;
  166. void *base_unaligned;
  167. int pages;
  168. spinlock_t lock;
  169. struct d40_desc **alloc_map;
  170. };
  171. /**
  172. * struct d40_phy_res - struct for handling eventlines mapped to physical
  173. * channels.
  174. *
  175. * @lock: A lock protection this entity.
  176. * @reserved: True if used by secure world or otherwise.
  177. * @num: The physical channel number of this entity.
  178. * @allocated_src: Bit mapped to show which src event line's are mapped to
  179. * this physical channel. Can also be free or physically allocated.
  180. * @allocated_dst: Same as for src but is dst.
  181. * allocated_dst and allocated_src uses the D40_ALLOC* defines as well as
  182. * event line number.
  183. */
  184. struct d40_phy_res {
  185. spinlock_t lock;
  186. bool reserved;
  187. int num;
  188. u32 allocated_src;
  189. u32 allocated_dst;
  190. };
  191. struct d40_base;
  192. /**
  193. * struct d40_chan - Struct that describes a channel.
  194. *
  195. * @lock: A spinlock to protect this struct.
  196. * @log_num: The logical number, if any of this channel.
  197. * @pending_tx: The number of pending transfers. Used between interrupt handler
  198. * and tasklet.
  199. * @busy: Set to true when transfer is ongoing on this channel.
  200. * @phy_chan: Pointer to physical channel which this instance runs on. If this
  201. * point is NULL, then the channel is not allocated.
  202. * @chan: DMA engine handle.
  203. * @tasklet: Tasklet that gets scheduled from interrupt context to complete a
  204. * transfer and call client callback.
  205. * @client: Cliented owned descriptor list.
  206. * @pending_queue: Submitted jobs, to be issued by issue_pending()
  207. * @active: Active descriptor.
  208. * @queue: Queued jobs.
  209. * @prepare_queue: Prepared jobs.
  210. * @dma_cfg: The client configuration of this dma channel.
  211. * @configured: whether the dma_cfg configuration is valid
  212. * @base: Pointer to the device instance struct.
  213. * @src_def_cfg: Default cfg register setting for src.
  214. * @dst_def_cfg: Default cfg register setting for dst.
  215. * @log_def: Default logical channel settings.
  216. * @lcpa: Pointer to dst and src lcpa settings.
  217. * @runtime_addr: runtime configured address.
  218. * @runtime_direction: runtime configured direction.
  219. *
  220. * This struct can either "be" a logical or a physical channel.
  221. */
  222. struct d40_chan {
  223. spinlock_t lock;
  224. int log_num;
  225. int pending_tx;
  226. bool busy;
  227. struct d40_phy_res *phy_chan;
  228. struct dma_chan chan;
  229. struct tasklet_struct tasklet;
  230. struct list_head client;
  231. struct list_head pending_queue;
  232. struct list_head active;
  233. struct list_head queue;
  234. struct list_head prepare_queue;
  235. struct stedma40_chan_cfg dma_cfg;
  236. bool configured;
  237. struct d40_base *base;
  238. /* Default register configurations */
  239. u32 src_def_cfg;
  240. u32 dst_def_cfg;
  241. struct d40_def_lcsp log_def;
  242. struct d40_log_lli_full *lcpa;
  243. /* Runtime reconfiguration */
  244. dma_addr_t runtime_addr;
  245. enum dma_transfer_direction runtime_direction;
  246. };
  247. /**
  248. * struct d40_base - The big global struct, one for each probe'd instance.
  249. *
  250. * @interrupt_lock: Lock used to make sure one interrupt is handle a time.
  251. * @execmd_lock: Lock for execute command usage since several channels share
  252. * the same physical register.
  253. * @dev: The device structure.
  254. * @virtbase: The virtual base address of the DMA's register.
  255. * @rev: silicon revision detected.
  256. * @clk: Pointer to the DMA clock structure.
  257. * @phy_start: Physical memory start of the DMA registers.
  258. * @phy_size: Size of the DMA register map.
  259. * @irq: The IRQ number.
  260. * @num_phy_chans: The number of physical channels. Read from HW. This
  261. * is the number of available channels for this driver, not counting "Secure
  262. * mode" allocated physical channels.
  263. * @num_log_chans: The number of logical channels. Calculated from
  264. * num_phy_chans.
  265. * @dma_both: dma_device channels that can do both memcpy and slave transfers.
  266. * @dma_slave: dma_device channels that can do only do slave transfers.
  267. * @dma_memcpy: dma_device channels that can do only do memcpy transfers.
  268. * @phy_chans: Room for all possible physical channels in system.
  269. * @log_chans: Room for all possible logical channels in system.
  270. * @lookup_log_chans: Used to map interrupt number to logical channel. Points
  271. * to log_chans entries.
  272. * @lookup_phy_chans: Used to map interrupt number to physical channel. Points
  273. * to phy_chans entries.
  274. * @plat_data: Pointer to provided platform_data which is the driver
  275. * configuration.
  276. * @lcpa_regulator: Pointer to hold the regulator for the esram bank for lcla.
  277. * @phy_res: Vector containing all physical channels.
  278. * @lcla_pool: lcla pool settings and data.
  279. * @lcpa_base: The virtual mapped address of LCPA.
  280. * @phy_lcpa: The physical address of the LCPA.
  281. * @lcpa_size: The size of the LCPA area.
  282. * @desc_slab: cache for descriptors.
  283. * @reg_val_backup: Here the values of some hardware registers are stored
  284. * before the DMA is powered off. They are restored when the power is back on.
  285. * @reg_val_backup_v3: Backup of registers that only exits on dma40 v3 and
  286. * later.
  287. * @reg_val_backup_chan: Backup data for standard channel parameter registers.
  288. * @gcc_pwr_off_mask: Mask to maintain the channels that can be turned off.
  289. * @initialized: true if the dma has been initialized
  290. */
  291. struct d40_base {
  292. spinlock_t interrupt_lock;
  293. spinlock_t execmd_lock;
  294. struct device *dev;
  295. void __iomem *virtbase;
  296. u8 rev:4;
  297. struct clk *clk;
  298. phys_addr_t phy_start;
  299. resource_size_t phy_size;
  300. int irq;
  301. int num_phy_chans;
  302. int num_log_chans;
  303. struct dma_device dma_both;
  304. struct dma_device dma_slave;
  305. struct dma_device dma_memcpy;
  306. struct d40_chan *phy_chans;
  307. struct d40_chan *log_chans;
  308. struct d40_chan **lookup_log_chans;
  309. struct d40_chan **lookup_phy_chans;
  310. struct stedma40_platform_data *plat_data;
  311. struct regulator *lcpa_regulator;
  312. /* Physical half channels */
  313. struct d40_phy_res *phy_res;
  314. struct d40_lcla_pool lcla_pool;
  315. void *lcpa_base;
  316. dma_addr_t phy_lcpa;
  317. resource_size_t lcpa_size;
  318. struct kmem_cache *desc_slab;
  319. u32 reg_val_backup[BACKUP_REGS_SZ];
  320. u32 reg_val_backup_v3[BACKUP_REGS_SZ_V3];
  321. u32 *reg_val_backup_chan;
  322. u16 gcc_pwr_off_mask;
  323. bool initialized;
  324. };
  325. /**
  326. * struct d40_interrupt_lookup - lookup table for interrupt handler
  327. *
  328. * @src: Interrupt mask register.
  329. * @clr: Interrupt clear register.
  330. * @is_error: true if this is an error interrupt.
  331. * @offset: start delta in the lookup_log_chans in d40_base. If equals to
  332. * D40_PHY_CHAN, the lookup_phy_chans shall be used instead.
  333. */
  334. struct d40_interrupt_lookup {
  335. u32 src;
  336. u32 clr;
  337. bool is_error;
  338. int offset;
  339. };
  340. /**
  341. * struct d40_reg_val - simple lookup struct
  342. *
  343. * @reg: The register.
  344. * @val: The value that belongs to the register in reg.
  345. */
  346. struct d40_reg_val {
  347. unsigned int reg;
  348. unsigned int val;
  349. };
  350. static struct device *chan2dev(struct d40_chan *d40c)
  351. {
  352. return &d40c->chan.dev->device;
  353. }
  354. static bool chan_is_physical(struct d40_chan *chan)
  355. {
  356. return chan->log_num == D40_PHY_CHAN;
  357. }
  358. static bool chan_is_logical(struct d40_chan *chan)
  359. {
  360. return !chan_is_physical(chan);
  361. }
  362. static void __iomem *chan_base(struct d40_chan *chan)
  363. {
  364. return chan->base->virtbase + D40_DREG_PCBASE +
  365. chan->phy_chan->num * D40_DREG_PCDELTA;
  366. }
  367. #define d40_err(dev, format, arg...) \
  368. dev_err(dev, "[%s] " format, __func__, ## arg)
  369. #define chan_err(d40c, format, arg...) \
  370. d40_err(chan2dev(d40c), format, ## arg)
  371. static int d40_pool_lli_alloc(struct d40_chan *d40c, struct d40_desc *d40d,
  372. int lli_len)
  373. {
  374. bool is_log = chan_is_logical(d40c);
  375. u32 align;
  376. void *base;
  377. if (is_log)
  378. align = sizeof(struct d40_log_lli);
  379. else
  380. align = sizeof(struct d40_phy_lli);
  381. if (lli_len == 1) {
  382. base = d40d->lli_pool.pre_alloc_lli;
  383. d40d->lli_pool.size = sizeof(d40d->lli_pool.pre_alloc_lli);
  384. d40d->lli_pool.base = NULL;
  385. } else {
  386. d40d->lli_pool.size = lli_len * 2 * align;
  387. base = kmalloc(d40d->lli_pool.size + align, GFP_NOWAIT);
  388. d40d->lli_pool.base = base;
  389. if (d40d->lli_pool.base == NULL)
  390. return -ENOMEM;
  391. }
  392. if (is_log) {
  393. d40d->lli_log.src = PTR_ALIGN(base, align);
  394. d40d->lli_log.dst = d40d->lli_log.src + lli_len;
  395. d40d->lli_pool.dma_addr = 0;
  396. } else {
  397. d40d->lli_phy.src = PTR_ALIGN(base, align);
  398. d40d->lli_phy.dst = d40d->lli_phy.src + lli_len;
  399. d40d->lli_pool.dma_addr = dma_map_single(d40c->base->dev,
  400. d40d->lli_phy.src,
  401. d40d->lli_pool.size,
  402. DMA_TO_DEVICE);
  403. if (dma_mapping_error(d40c->base->dev,
  404. d40d->lli_pool.dma_addr)) {
  405. kfree(d40d->lli_pool.base);
  406. d40d->lli_pool.base = NULL;
  407. d40d->lli_pool.dma_addr = 0;
  408. return -ENOMEM;
  409. }
  410. }
  411. return 0;
  412. }
  413. static void d40_pool_lli_free(struct d40_chan *d40c, struct d40_desc *d40d)
  414. {
  415. if (d40d->lli_pool.dma_addr)
  416. dma_unmap_single(d40c->base->dev, d40d->lli_pool.dma_addr,
  417. d40d->lli_pool.size, DMA_TO_DEVICE);
  418. kfree(d40d->lli_pool.base);
  419. d40d->lli_pool.base = NULL;
  420. d40d->lli_pool.size = 0;
  421. d40d->lli_log.src = NULL;
  422. d40d->lli_log.dst = NULL;
  423. d40d->lli_phy.src = NULL;
  424. d40d->lli_phy.dst = NULL;
  425. }
  426. static int d40_lcla_alloc_one(struct d40_chan *d40c,
  427. struct d40_desc *d40d)
  428. {
  429. unsigned long flags;
  430. int i;
  431. int ret = -EINVAL;
  432. int p;
  433. spin_lock_irqsave(&d40c->base->lcla_pool.lock, flags);
  434. p = d40c->phy_chan->num * D40_LCLA_LINK_PER_EVENT_GRP;
  435. /*
  436. * Allocate both src and dst at the same time, therefore the half
  437. * start on 1 since 0 can't be used since zero is used as end marker.
  438. */
  439. for (i = 1 ; i < D40_LCLA_LINK_PER_EVENT_GRP / 2; i++) {
  440. if (!d40c->base->lcla_pool.alloc_map[p + i]) {
  441. d40c->base->lcla_pool.alloc_map[p + i] = d40d;
  442. d40d->lcla_alloc++;
  443. ret = i;
  444. break;
  445. }
  446. }
  447. spin_unlock_irqrestore(&d40c->base->lcla_pool.lock, flags);
  448. return ret;
  449. }
  450. static int d40_lcla_free_all(struct d40_chan *d40c,
  451. struct d40_desc *d40d)
  452. {
  453. unsigned long flags;
  454. int i;
  455. int ret = -EINVAL;
  456. if (chan_is_physical(d40c))
  457. return 0;
  458. spin_lock_irqsave(&d40c->base->lcla_pool.lock, flags);
  459. for (i = 1 ; i < D40_LCLA_LINK_PER_EVENT_GRP / 2; i++) {
  460. if (d40c->base->lcla_pool.alloc_map[d40c->phy_chan->num *
  461. D40_LCLA_LINK_PER_EVENT_GRP + i] == d40d) {
  462. d40c->base->lcla_pool.alloc_map[d40c->phy_chan->num *
  463. D40_LCLA_LINK_PER_EVENT_GRP + i] = NULL;
  464. d40d->lcla_alloc--;
  465. if (d40d->lcla_alloc == 0) {
  466. ret = 0;
  467. break;
  468. }
  469. }
  470. }
  471. spin_unlock_irqrestore(&d40c->base->lcla_pool.lock, flags);
  472. return ret;
  473. }
  474. static void d40_desc_remove(struct d40_desc *d40d)
  475. {
  476. list_del(&d40d->node);
  477. }
  478. static struct d40_desc *d40_desc_get(struct d40_chan *d40c)
  479. {
  480. struct d40_desc *desc = NULL;
  481. if (!list_empty(&d40c->client)) {
  482. struct d40_desc *d;
  483. struct d40_desc *_d;
  484. list_for_each_entry_safe(d, _d, &d40c->client, node) {
  485. if (async_tx_test_ack(&d->txd)) {
  486. d40_desc_remove(d);
  487. desc = d;
  488. memset(desc, 0, sizeof(*desc));
  489. break;
  490. }
  491. }
  492. }
  493. if (!desc)
  494. desc = kmem_cache_zalloc(d40c->base->desc_slab, GFP_NOWAIT);
  495. if (desc)
  496. INIT_LIST_HEAD(&desc->node);
  497. return desc;
  498. }
  499. static void d40_desc_free(struct d40_chan *d40c, struct d40_desc *d40d)
  500. {
  501. d40_pool_lli_free(d40c, d40d);
  502. d40_lcla_free_all(d40c, d40d);
  503. kmem_cache_free(d40c->base->desc_slab, d40d);
  504. }
  505. static void d40_desc_submit(struct d40_chan *d40c, struct d40_desc *desc)
  506. {
  507. list_add_tail(&desc->node, &d40c->active);
  508. }
  509. static void d40_phy_lli_load(struct d40_chan *chan, struct d40_desc *desc)
  510. {
  511. struct d40_phy_lli *lli_dst = desc->lli_phy.dst;
  512. struct d40_phy_lli *lli_src = desc->lli_phy.src;
  513. void __iomem *base = chan_base(chan);
  514. writel(lli_src->reg_cfg, base + D40_CHAN_REG_SSCFG);
  515. writel(lli_src->reg_elt, base + D40_CHAN_REG_SSELT);
  516. writel(lli_src->reg_ptr, base + D40_CHAN_REG_SSPTR);
  517. writel(lli_src->reg_lnk, base + D40_CHAN_REG_SSLNK);
  518. writel(lli_dst->reg_cfg, base + D40_CHAN_REG_SDCFG);
  519. writel(lli_dst->reg_elt, base + D40_CHAN_REG_SDELT);
  520. writel(lli_dst->reg_ptr, base + D40_CHAN_REG_SDPTR);
  521. writel(lli_dst->reg_lnk, base + D40_CHAN_REG_SDLNK);
  522. }
  523. static void d40_log_lli_to_lcxa(struct d40_chan *chan, struct d40_desc *desc)
  524. {
  525. struct d40_lcla_pool *pool = &chan->base->lcla_pool;
  526. struct d40_log_lli_bidir *lli = &desc->lli_log;
  527. int lli_current = desc->lli_current;
  528. int lli_len = desc->lli_len;
  529. bool cyclic = desc->cyclic;
  530. int curr_lcla = -EINVAL;
  531. int first_lcla = 0;
  532. bool use_esram_lcla = chan->base->plat_data->use_esram_lcla;
  533. bool linkback;
  534. /*
  535. * We may have partially running cyclic transfers, in case we did't get
  536. * enough LCLA entries.
  537. */
  538. linkback = cyclic && lli_current == 0;
  539. /*
  540. * For linkback, we need one LCLA even with only one link, because we
  541. * can't link back to the one in LCPA space
  542. */
  543. if (linkback || (lli_len - lli_current > 1)) {
  544. curr_lcla = d40_lcla_alloc_one(chan, desc);
  545. first_lcla = curr_lcla;
  546. }
  547. /*
  548. * For linkback, we normally load the LCPA in the loop since we need to
  549. * link it to the second LCLA and not the first. However, if we
  550. * couldn't even get a first LCLA, then we have to run in LCPA and
  551. * reload manually.
  552. */
  553. if (!linkback || curr_lcla == -EINVAL) {
  554. unsigned int flags = 0;
  555. if (curr_lcla == -EINVAL)
  556. flags |= LLI_TERM_INT;
  557. d40_log_lli_lcpa_write(chan->lcpa,
  558. &lli->dst[lli_current],
  559. &lli->src[lli_current],
  560. curr_lcla,
  561. flags);
  562. lli_current++;
  563. }
  564. if (curr_lcla < 0)
  565. goto out;
  566. for (; lli_current < lli_len; lli_current++) {
  567. unsigned int lcla_offset = chan->phy_chan->num * 1024 +
  568. 8 * curr_lcla * 2;
  569. struct d40_log_lli *lcla = pool->base + lcla_offset;
  570. unsigned int flags = 0;
  571. int next_lcla;
  572. if (lli_current + 1 < lli_len)
  573. next_lcla = d40_lcla_alloc_one(chan, desc);
  574. else
  575. next_lcla = linkback ? first_lcla : -EINVAL;
  576. if (cyclic || next_lcla == -EINVAL)
  577. flags |= LLI_TERM_INT;
  578. if (linkback && curr_lcla == first_lcla) {
  579. /* First link goes in both LCPA and LCLA */
  580. d40_log_lli_lcpa_write(chan->lcpa,
  581. &lli->dst[lli_current],
  582. &lli->src[lli_current],
  583. next_lcla, flags);
  584. }
  585. /*
  586. * One unused LCLA in the cyclic case if the very first
  587. * next_lcla fails...
  588. */
  589. d40_log_lli_lcla_write(lcla,
  590. &lli->dst[lli_current],
  591. &lli->src[lli_current],
  592. next_lcla, flags);
  593. /*
  594. * Cache maintenance is not needed if lcla is
  595. * mapped in esram
  596. */
  597. if (!use_esram_lcla) {
  598. dma_sync_single_range_for_device(chan->base->dev,
  599. pool->dma_addr, lcla_offset,
  600. 2 * sizeof(struct d40_log_lli),
  601. DMA_TO_DEVICE);
  602. }
  603. curr_lcla = next_lcla;
  604. if (curr_lcla == -EINVAL || curr_lcla == first_lcla) {
  605. lli_current++;
  606. break;
  607. }
  608. }
  609. out:
  610. desc->lli_current = lli_current;
  611. }
  612. static void d40_desc_load(struct d40_chan *d40c, struct d40_desc *d40d)
  613. {
  614. if (chan_is_physical(d40c)) {
  615. d40_phy_lli_load(d40c, d40d);
  616. d40d->lli_current = d40d->lli_len;
  617. } else
  618. d40_log_lli_to_lcxa(d40c, d40d);
  619. }
  620. static struct d40_desc *d40_first_active_get(struct d40_chan *d40c)
  621. {
  622. struct d40_desc *d;
  623. if (list_empty(&d40c->active))
  624. return NULL;
  625. d = list_first_entry(&d40c->active,
  626. struct d40_desc,
  627. node);
  628. return d;
  629. }
  630. /* remove desc from current queue and add it to the pending_queue */
  631. static void d40_desc_queue(struct d40_chan *d40c, struct d40_desc *desc)
  632. {
  633. d40_desc_remove(desc);
  634. desc->is_in_client_list = false;
  635. list_add_tail(&desc->node, &d40c->pending_queue);
  636. }
  637. static struct d40_desc *d40_first_pending(struct d40_chan *d40c)
  638. {
  639. struct d40_desc *d;
  640. if (list_empty(&d40c->pending_queue))
  641. return NULL;
  642. d = list_first_entry(&d40c->pending_queue,
  643. struct d40_desc,
  644. node);
  645. return d;
  646. }
  647. static struct d40_desc *d40_first_queued(struct d40_chan *d40c)
  648. {
  649. struct d40_desc *d;
  650. if (list_empty(&d40c->queue))
  651. return NULL;
  652. d = list_first_entry(&d40c->queue,
  653. struct d40_desc,
  654. node);
  655. return d;
  656. }
  657. static int d40_psize_2_burst_size(bool is_log, int psize)
  658. {
  659. if (is_log) {
  660. if (psize == STEDMA40_PSIZE_LOG_1)
  661. return 1;
  662. } else {
  663. if (psize == STEDMA40_PSIZE_PHY_1)
  664. return 1;
  665. }
  666. return 2 << psize;
  667. }
  668. /*
  669. * The dma only supports transmitting packages up to
  670. * STEDMA40_MAX_SEG_SIZE << data_width. Calculate the total number of
  671. * dma elements required to send the entire sg list
  672. */
  673. static int d40_size_2_dmalen(int size, u32 data_width1, u32 data_width2)
  674. {
  675. int dmalen;
  676. u32 max_w = max(data_width1, data_width2);
  677. u32 min_w = min(data_width1, data_width2);
  678. u32 seg_max = ALIGN(STEDMA40_MAX_SEG_SIZE << min_w, 1 << max_w);
  679. if (seg_max > STEDMA40_MAX_SEG_SIZE)
  680. seg_max -= (1 << max_w);
  681. if (!IS_ALIGNED(size, 1 << max_w))
  682. return -EINVAL;
  683. if (size <= seg_max)
  684. dmalen = 1;
  685. else {
  686. dmalen = size / seg_max;
  687. if (dmalen * seg_max < size)
  688. dmalen++;
  689. }
  690. return dmalen;
  691. }
  692. static int d40_sg_2_dmalen(struct scatterlist *sgl, int sg_len,
  693. u32 data_width1, u32 data_width2)
  694. {
  695. struct scatterlist *sg;
  696. int i;
  697. int len = 0;
  698. int ret;
  699. for_each_sg(sgl, sg, sg_len, i) {
  700. ret = d40_size_2_dmalen(sg_dma_len(sg),
  701. data_width1, data_width2);
  702. if (ret < 0)
  703. return ret;
  704. len += ret;
  705. }
  706. return len;
  707. }
  708. #ifdef CONFIG_PM
  709. static void dma40_backup(void __iomem *baseaddr, u32 *backup,
  710. u32 *regaddr, int num, bool save)
  711. {
  712. int i;
  713. for (i = 0; i < num; i++) {
  714. void __iomem *addr = baseaddr + regaddr[i];
  715. if (save)
  716. backup[i] = readl_relaxed(addr);
  717. else
  718. writel_relaxed(backup[i], addr);
  719. }
  720. }
  721. static void d40_save_restore_registers(struct d40_base *base, bool save)
  722. {
  723. int i;
  724. /* Save/Restore channel specific registers */
  725. for (i = 0; i < base->num_phy_chans; i++) {
  726. void __iomem *addr;
  727. int idx;
  728. if (base->phy_res[i].reserved)
  729. continue;
  730. addr = base->virtbase + D40_DREG_PCBASE + i * D40_DREG_PCDELTA;
  731. idx = i * ARRAY_SIZE(d40_backup_regs_chan);
  732. dma40_backup(addr, &base->reg_val_backup_chan[idx],
  733. d40_backup_regs_chan,
  734. ARRAY_SIZE(d40_backup_regs_chan),
  735. save);
  736. }
  737. /* Save/Restore global registers */
  738. dma40_backup(base->virtbase, base->reg_val_backup,
  739. d40_backup_regs, ARRAY_SIZE(d40_backup_regs),
  740. save);
  741. /* Save/Restore registers only existing on dma40 v3 and later */
  742. if (base->rev >= 3)
  743. dma40_backup(base->virtbase, base->reg_val_backup_v3,
  744. d40_backup_regs_v3,
  745. ARRAY_SIZE(d40_backup_regs_v3),
  746. save);
  747. }
  748. #else
  749. static void d40_save_restore_registers(struct d40_base *base, bool save)
  750. {
  751. }
  752. #endif
  753. static int d40_channel_execute_command(struct d40_chan *d40c,
  754. enum d40_command command)
  755. {
  756. u32 status;
  757. int i;
  758. void __iomem *active_reg;
  759. int ret = 0;
  760. unsigned long flags;
  761. u32 wmask;
  762. spin_lock_irqsave(&d40c->base->execmd_lock, flags);
  763. if (d40c->phy_chan->num % 2 == 0)
  764. active_reg = d40c->base->virtbase + D40_DREG_ACTIVE;
  765. else
  766. active_reg = d40c->base->virtbase + D40_DREG_ACTIVO;
  767. if (command == D40_DMA_SUSPEND_REQ) {
  768. status = (readl(active_reg) &
  769. D40_CHAN_POS_MASK(d40c->phy_chan->num)) >>
  770. D40_CHAN_POS(d40c->phy_chan->num);
  771. if (status == D40_DMA_SUSPENDED || status == D40_DMA_STOP)
  772. goto done;
  773. }
  774. wmask = 0xffffffff & ~(D40_CHAN_POS_MASK(d40c->phy_chan->num));
  775. writel(wmask | (command << D40_CHAN_POS(d40c->phy_chan->num)),
  776. active_reg);
  777. if (command == D40_DMA_SUSPEND_REQ) {
  778. for (i = 0 ; i < D40_SUSPEND_MAX_IT; i++) {
  779. status = (readl(active_reg) &
  780. D40_CHAN_POS_MASK(d40c->phy_chan->num)) >>
  781. D40_CHAN_POS(d40c->phy_chan->num);
  782. cpu_relax();
  783. /*
  784. * Reduce the number of bus accesses while
  785. * waiting for the DMA to suspend.
  786. */
  787. udelay(3);
  788. if (status == D40_DMA_STOP ||
  789. status == D40_DMA_SUSPENDED)
  790. break;
  791. }
  792. if (i == D40_SUSPEND_MAX_IT) {
  793. chan_err(d40c,
  794. "unable to suspend the chl %d (log: %d) status %x\n",
  795. d40c->phy_chan->num, d40c->log_num,
  796. status);
  797. dump_stack();
  798. ret = -EBUSY;
  799. }
  800. }
  801. done:
  802. spin_unlock_irqrestore(&d40c->base->execmd_lock, flags);
  803. return ret;
  804. }
  805. static void d40_term_all(struct d40_chan *d40c)
  806. {
  807. struct d40_desc *d40d;
  808. struct d40_desc *_d;
  809. /* Release active descriptors */
  810. while ((d40d = d40_first_active_get(d40c))) {
  811. d40_desc_remove(d40d);
  812. d40_desc_free(d40c, d40d);
  813. }
  814. /* Release queued descriptors waiting for transfer */
  815. while ((d40d = d40_first_queued(d40c))) {
  816. d40_desc_remove(d40d);
  817. d40_desc_free(d40c, d40d);
  818. }
  819. /* Release pending descriptors */
  820. while ((d40d = d40_first_pending(d40c))) {
  821. d40_desc_remove(d40d);
  822. d40_desc_free(d40c, d40d);
  823. }
  824. /* Release client owned descriptors */
  825. if (!list_empty(&d40c->client))
  826. list_for_each_entry_safe(d40d, _d, &d40c->client, node) {
  827. d40_desc_remove(d40d);
  828. d40_desc_free(d40c, d40d);
  829. }
  830. /* Release descriptors in prepare queue */
  831. if (!list_empty(&d40c->prepare_queue))
  832. list_for_each_entry_safe(d40d, _d,
  833. &d40c->prepare_queue, node) {
  834. d40_desc_remove(d40d);
  835. d40_desc_free(d40c, d40d);
  836. }
  837. d40c->pending_tx = 0;
  838. d40c->busy = false;
  839. }
  840. static void __d40_config_set_event(struct d40_chan *d40c, bool enable,
  841. u32 event, int reg)
  842. {
  843. void __iomem *addr = chan_base(d40c) + reg;
  844. int tries;
  845. if (!enable) {
  846. writel((D40_DEACTIVATE_EVENTLINE << D40_EVENTLINE_POS(event))
  847. | ~D40_EVENTLINE_MASK(event), addr);
  848. return;
  849. }
  850. /*
  851. * The hardware sometimes doesn't register the enable when src and dst
  852. * event lines are active on the same logical channel. Retry to ensure
  853. * it does. Usually only one retry is sufficient.
  854. */
  855. tries = 100;
  856. while (--tries) {
  857. writel((D40_ACTIVATE_EVENTLINE << D40_EVENTLINE_POS(event))
  858. | ~D40_EVENTLINE_MASK(event), addr);
  859. if (readl(addr) & D40_EVENTLINE_MASK(event))
  860. break;
  861. }
  862. if (tries != 99)
  863. dev_dbg(chan2dev(d40c),
  864. "[%s] workaround enable S%cLNK (%d tries)\n",
  865. __func__, reg == D40_CHAN_REG_SSLNK ? 'S' : 'D',
  866. 100 - tries);
  867. WARN_ON(!tries);
  868. }
  869. static void d40_config_set_event(struct d40_chan *d40c, bool do_enable)
  870. {
  871. unsigned long flags;
  872. spin_lock_irqsave(&d40c->phy_chan->lock, flags);
  873. /* Enable event line connected to device (or memcpy) */
  874. if ((d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_MEM) ||
  875. (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_PERIPH)) {
  876. u32 event = D40_TYPE_TO_EVENT(d40c->dma_cfg.src_dev_type);
  877. __d40_config_set_event(d40c, do_enable, event,
  878. D40_CHAN_REG_SSLNK);
  879. }
  880. if (d40c->dma_cfg.dir != STEDMA40_PERIPH_TO_MEM) {
  881. u32 event = D40_TYPE_TO_EVENT(d40c->dma_cfg.dst_dev_type);
  882. __d40_config_set_event(d40c, do_enable, event,
  883. D40_CHAN_REG_SDLNK);
  884. }
  885. spin_unlock_irqrestore(&d40c->phy_chan->lock, flags);
  886. }
  887. static u32 d40_chan_has_events(struct d40_chan *d40c)
  888. {
  889. void __iomem *chanbase = chan_base(d40c);
  890. u32 val;
  891. val = readl(chanbase + D40_CHAN_REG_SSLNK);
  892. val |= readl(chanbase + D40_CHAN_REG_SDLNK);
  893. return val;
  894. }
  895. static u32 d40_get_prmo(struct d40_chan *d40c)
  896. {
  897. static const unsigned int phy_map[] = {
  898. [STEDMA40_PCHAN_BASIC_MODE]
  899. = D40_DREG_PRMO_PCHAN_BASIC,
  900. [STEDMA40_PCHAN_MODULO_MODE]
  901. = D40_DREG_PRMO_PCHAN_MODULO,
  902. [STEDMA40_PCHAN_DOUBLE_DST_MODE]
  903. = D40_DREG_PRMO_PCHAN_DOUBLE_DST,
  904. };
  905. static const unsigned int log_map[] = {
  906. [STEDMA40_LCHAN_SRC_PHY_DST_LOG]
  907. = D40_DREG_PRMO_LCHAN_SRC_PHY_DST_LOG,
  908. [STEDMA40_LCHAN_SRC_LOG_DST_PHY]
  909. = D40_DREG_PRMO_LCHAN_SRC_LOG_DST_PHY,
  910. [STEDMA40_LCHAN_SRC_LOG_DST_LOG]
  911. = D40_DREG_PRMO_LCHAN_SRC_LOG_DST_LOG,
  912. };
  913. if (chan_is_physical(d40c))
  914. return phy_map[d40c->dma_cfg.mode_opt];
  915. else
  916. return log_map[d40c->dma_cfg.mode_opt];
  917. }
  918. static void d40_config_write(struct d40_chan *d40c)
  919. {
  920. u32 addr_base;
  921. u32 var;
  922. /* Odd addresses are even addresses + 4 */
  923. addr_base = (d40c->phy_chan->num % 2) * 4;
  924. /* Setup channel mode to logical or physical */
  925. var = ((u32)(chan_is_logical(d40c)) + 1) <<
  926. D40_CHAN_POS(d40c->phy_chan->num);
  927. writel(var, d40c->base->virtbase + D40_DREG_PRMSE + addr_base);
  928. /* Setup operational mode option register */
  929. var = d40_get_prmo(d40c) << D40_CHAN_POS(d40c->phy_chan->num);
  930. writel(var, d40c->base->virtbase + D40_DREG_PRMOE + addr_base);
  931. if (chan_is_logical(d40c)) {
  932. int lidx = (d40c->phy_chan->num << D40_SREG_ELEM_LOG_LIDX_POS)
  933. & D40_SREG_ELEM_LOG_LIDX_MASK;
  934. void __iomem *chanbase = chan_base(d40c);
  935. /* Set default config for CFG reg */
  936. writel(d40c->src_def_cfg, chanbase + D40_CHAN_REG_SSCFG);
  937. writel(d40c->dst_def_cfg, chanbase + D40_CHAN_REG_SDCFG);
  938. /* Set LIDX for lcla */
  939. writel(lidx, chanbase + D40_CHAN_REG_SSELT);
  940. writel(lidx, chanbase + D40_CHAN_REG_SDELT);
  941. /* Clear LNK which will be used by d40_chan_has_events() */
  942. writel(0, chanbase + D40_CHAN_REG_SSLNK);
  943. writel(0, chanbase + D40_CHAN_REG_SDLNK);
  944. }
  945. }
  946. static u32 d40_residue(struct d40_chan *d40c)
  947. {
  948. u32 num_elt;
  949. if (chan_is_logical(d40c))
  950. num_elt = (readl(&d40c->lcpa->lcsp2) & D40_MEM_LCSP2_ECNT_MASK)
  951. >> D40_MEM_LCSP2_ECNT_POS;
  952. else {
  953. u32 val = readl(chan_base(d40c) + D40_CHAN_REG_SDELT);
  954. num_elt = (val & D40_SREG_ELEM_PHY_ECNT_MASK)
  955. >> D40_SREG_ELEM_PHY_ECNT_POS;
  956. }
  957. return num_elt * (1 << d40c->dma_cfg.dst_info.data_width);
  958. }
  959. static bool d40_tx_is_linked(struct d40_chan *d40c)
  960. {
  961. bool is_link;
  962. if (chan_is_logical(d40c))
  963. is_link = readl(&d40c->lcpa->lcsp3) & D40_MEM_LCSP3_DLOS_MASK;
  964. else
  965. is_link = readl(chan_base(d40c) + D40_CHAN_REG_SDLNK)
  966. & D40_SREG_LNK_PHYS_LNK_MASK;
  967. return is_link;
  968. }
  969. static int d40_pause(struct d40_chan *d40c)
  970. {
  971. int res = 0;
  972. unsigned long flags;
  973. if (!d40c->busy)
  974. return 0;
  975. pm_runtime_get_sync(d40c->base->dev);
  976. spin_lock_irqsave(&d40c->lock, flags);
  977. res = d40_channel_execute_command(d40c, D40_DMA_SUSPEND_REQ);
  978. if (res == 0) {
  979. if (chan_is_logical(d40c)) {
  980. d40_config_set_event(d40c, false);
  981. /* Resume the other logical channels if any */
  982. if (d40_chan_has_events(d40c))
  983. res = d40_channel_execute_command(d40c,
  984. D40_DMA_RUN);
  985. }
  986. }
  987. pm_runtime_mark_last_busy(d40c->base->dev);
  988. pm_runtime_put_autosuspend(d40c->base->dev);
  989. spin_unlock_irqrestore(&d40c->lock, flags);
  990. return res;
  991. }
  992. static int d40_resume(struct d40_chan *d40c)
  993. {
  994. int res = 0;
  995. unsigned long flags;
  996. if (!d40c->busy)
  997. return 0;
  998. spin_lock_irqsave(&d40c->lock, flags);
  999. pm_runtime_get_sync(d40c->base->dev);
  1000. if (d40c->base->rev == 0)
  1001. if (chan_is_logical(d40c)) {
  1002. res = d40_channel_execute_command(d40c,
  1003. D40_DMA_SUSPEND_REQ);
  1004. goto no_suspend;
  1005. }
  1006. /* If bytes left to transfer or linked tx resume job */
  1007. if (d40_residue(d40c) || d40_tx_is_linked(d40c)) {
  1008. if (chan_is_logical(d40c))
  1009. d40_config_set_event(d40c, true);
  1010. res = d40_channel_execute_command(d40c, D40_DMA_RUN);
  1011. }
  1012. no_suspend:
  1013. pm_runtime_mark_last_busy(d40c->base->dev);
  1014. pm_runtime_put_autosuspend(d40c->base->dev);
  1015. spin_unlock_irqrestore(&d40c->lock, flags);
  1016. return res;
  1017. }
  1018. static int d40_terminate_all(struct d40_chan *chan)
  1019. {
  1020. unsigned long flags;
  1021. int ret = 0;
  1022. ret = d40_pause(chan);
  1023. if (!ret && chan_is_physical(chan))
  1024. ret = d40_channel_execute_command(chan, D40_DMA_STOP);
  1025. spin_lock_irqsave(&chan->lock, flags);
  1026. d40_term_all(chan);
  1027. spin_unlock_irqrestore(&chan->lock, flags);
  1028. return ret;
  1029. }
  1030. static dma_cookie_t d40_tx_submit(struct dma_async_tx_descriptor *tx)
  1031. {
  1032. struct d40_chan *d40c = container_of(tx->chan,
  1033. struct d40_chan,
  1034. chan);
  1035. struct d40_desc *d40d = container_of(tx, struct d40_desc, txd);
  1036. unsigned long flags;
  1037. dma_cookie_t cookie;
  1038. spin_lock_irqsave(&d40c->lock, flags);
  1039. cookie = dma_cookie_assign(tx);
  1040. d40_desc_queue(d40c, d40d);
  1041. spin_unlock_irqrestore(&d40c->lock, flags);
  1042. return cookie;
  1043. }
  1044. static int d40_start(struct d40_chan *d40c)
  1045. {
  1046. if (d40c->base->rev == 0) {
  1047. int err;
  1048. if (chan_is_logical(d40c)) {
  1049. err = d40_channel_execute_command(d40c,
  1050. D40_DMA_SUSPEND_REQ);
  1051. if (err)
  1052. return err;
  1053. }
  1054. }
  1055. if (chan_is_logical(d40c))
  1056. d40_config_set_event(d40c, true);
  1057. return d40_channel_execute_command(d40c, D40_DMA_RUN);
  1058. }
  1059. static struct d40_desc *d40_queue_start(struct d40_chan *d40c)
  1060. {
  1061. struct d40_desc *d40d;
  1062. int err;
  1063. /* Start queued jobs, if any */
  1064. d40d = d40_first_queued(d40c);
  1065. if (d40d != NULL) {
  1066. if (!d40c->busy)
  1067. d40c->busy = true;
  1068. pm_runtime_get_sync(d40c->base->dev);
  1069. /* Remove from queue */
  1070. d40_desc_remove(d40d);
  1071. /* Add to active queue */
  1072. d40_desc_submit(d40c, d40d);
  1073. /* Initiate DMA job */
  1074. d40_desc_load(d40c, d40d);
  1075. /* Start dma job */
  1076. err = d40_start(d40c);
  1077. if (err)
  1078. return NULL;
  1079. }
  1080. return d40d;
  1081. }
  1082. /* called from interrupt context */
  1083. static void dma_tc_handle(struct d40_chan *d40c)
  1084. {
  1085. struct d40_desc *d40d;
  1086. /* Get first active entry from list */
  1087. d40d = d40_first_active_get(d40c);
  1088. if (d40d == NULL)
  1089. return;
  1090. if (d40d->cyclic) {
  1091. /*
  1092. * If this was a paritially loaded list, we need to reloaded
  1093. * it, and only when the list is completed. We need to check
  1094. * for done because the interrupt will hit for every link, and
  1095. * not just the last one.
  1096. */
  1097. if (d40d->lli_current < d40d->lli_len
  1098. && !d40_tx_is_linked(d40c)
  1099. && !d40_residue(d40c)) {
  1100. d40_lcla_free_all(d40c, d40d);
  1101. d40_desc_load(d40c, d40d);
  1102. (void) d40_start(d40c);
  1103. if (d40d->lli_current == d40d->lli_len)
  1104. d40d->lli_current = 0;
  1105. }
  1106. } else {
  1107. d40_lcla_free_all(d40c, d40d);
  1108. if (d40d->lli_current < d40d->lli_len) {
  1109. d40_desc_load(d40c, d40d);
  1110. /* Start dma job */
  1111. (void) d40_start(d40c);
  1112. return;
  1113. }
  1114. if (d40_queue_start(d40c) == NULL)
  1115. d40c->busy = false;
  1116. pm_runtime_mark_last_busy(d40c->base->dev);
  1117. pm_runtime_put_autosuspend(d40c->base->dev);
  1118. }
  1119. d40c->pending_tx++;
  1120. tasklet_schedule(&d40c->tasklet);
  1121. }
  1122. static void dma_tasklet(unsigned long data)
  1123. {
  1124. struct d40_chan *d40c = (struct d40_chan *) data;
  1125. struct d40_desc *d40d;
  1126. unsigned long flags;
  1127. dma_async_tx_callback callback;
  1128. void *callback_param;
  1129. spin_lock_irqsave(&d40c->lock, flags);
  1130. /* Get first active entry from list */
  1131. d40d = d40_first_active_get(d40c);
  1132. if (d40d == NULL)
  1133. goto err;
  1134. if (!d40d->cyclic)
  1135. dma_cookie_complete(&d40d->txd);
  1136. /*
  1137. * If terminating a channel pending_tx is set to zero.
  1138. * This prevents any finished active jobs to return to the client.
  1139. */
  1140. if (d40c->pending_tx == 0) {
  1141. spin_unlock_irqrestore(&d40c->lock, flags);
  1142. return;
  1143. }
  1144. /* Callback to client */
  1145. callback = d40d->txd.callback;
  1146. callback_param = d40d->txd.callback_param;
  1147. if (!d40d->cyclic) {
  1148. if (async_tx_test_ack(&d40d->txd)) {
  1149. d40_desc_remove(d40d);
  1150. d40_desc_free(d40c, d40d);
  1151. } else {
  1152. if (!d40d->is_in_client_list) {
  1153. d40_desc_remove(d40d);
  1154. d40_lcla_free_all(d40c, d40d);
  1155. list_add_tail(&d40d->node, &d40c->client);
  1156. d40d->is_in_client_list = true;
  1157. }
  1158. }
  1159. }
  1160. d40c->pending_tx--;
  1161. if (d40c->pending_tx)
  1162. tasklet_schedule(&d40c->tasklet);
  1163. spin_unlock_irqrestore(&d40c->lock, flags);
  1164. if (callback && (d40d->txd.flags & DMA_PREP_INTERRUPT))
  1165. callback(callback_param);
  1166. return;
  1167. err:
  1168. /* Rescue manoeuvre if receiving double interrupts */
  1169. if (d40c->pending_tx > 0)
  1170. d40c->pending_tx--;
  1171. spin_unlock_irqrestore(&d40c->lock, flags);
  1172. }
  1173. static irqreturn_t d40_handle_interrupt(int irq, void *data)
  1174. {
  1175. static const struct d40_interrupt_lookup il[] = {
  1176. {D40_DREG_LCTIS0, D40_DREG_LCICR0, false, 0},
  1177. {D40_DREG_LCTIS1, D40_DREG_LCICR1, false, 32},
  1178. {D40_DREG_LCTIS2, D40_DREG_LCICR2, false, 64},
  1179. {D40_DREG_LCTIS3, D40_DREG_LCICR3, false, 96},
  1180. {D40_DREG_LCEIS0, D40_DREG_LCICR0, true, 0},
  1181. {D40_DREG_LCEIS1, D40_DREG_LCICR1, true, 32},
  1182. {D40_DREG_LCEIS2, D40_DREG_LCICR2, true, 64},
  1183. {D40_DREG_LCEIS3, D40_DREG_LCICR3, true, 96},
  1184. {D40_DREG_PCTIS, D40_DREG_PCICR, false, D40_PHY_CHAN},
  1185. {D40_DREG_PCEIS, D40_DREG_PCICR, true, D40_PHY_CHAN},
  1186. };
  1187. int i;
  1188. u32 regs[ARRAY_SIZE(il)];
  1189. u32 idx;
  1190. u32 row;
  1191. long chan = -1;
  1192. struct d40_chan *d40c;
  1193. unsigned long flags;
  1194. struct d40_base *base = data;
  1195. spin_lock_irqsave(&base->interrupt_lock, flags);
  1196. /* Read interrupt status of both logical and physical channels */
  1197. for (i = 0; i < ARRAY_SIZE(il); i++)
  1198. regs[i] = readl(base->virtbase + il[i].src);
  1199. for (;;) {
  1200. chan = find_next_bit((unsigned long *)regs,
  1201. BITS_PER_LONG * ARRAY_SIZE(il), chan + 1);
  1202. /* No more set bits found? */
  1203. if (chan == BITS_PER_LONG * ARRAY_SIZE(il))
  1204. break;
  1205. row = chan / BITS_PER_LONG;
  1206. idx = chan & (BITS_PER_LONG - 1);
  1207. /* ACK interrupt */
  1208. writel(1 << idx, base->virtbase + il[row].clr);
  1209. if (il[row].offset == D40_PHY_CHAN)
  1210. d40c = base->lookup_phy_chans[idx];
  1211. else
  1212. d40c = base->lookup_log_chans[il[row].offset + idx];
  1213. spin_lock(&d40c->lock);
  1214. if (!il[row].is_error)
  1215. dma_tc_handle(d40c);
  1216. else
  1217. d40_err(base->dev, "IRQ chan: %ld offset %d idx %d\n",
  1218. chan, il[row].offset, idx);
  1219. spin_unlock(&d40c->lock);
  1220. }
  1221. spin_unlock_irqrestore(&base->interrupt_lock, flags);
  1222. return IRQ_HANDLED;
  1223. }
  1224. static int d40_validate_conf(struct d40_chan *d40c,
  1225. struct stedma40_chan_cfg *conf)
  1226. {
  1227. int res = 0;
  1228. u32 dst_event_group = D40_TYPE_TO_GROUP(conf->dst_dev_type);
  1229. u32 src_event_group = D40_TYPE_TO_GROUP(conf->src_dev_type);
  1230. bool is_log = conf->mode == STEDMA40_MODE_LOGICAL;
  1231. if (!conf->dir) {
  1232. chan_err(d40c, "Invalid direction.\n");
  1233. res = -EINVAL;
  1234. }
  1235. if (conf->dst_dev_type != STEDMA40_DEV_DST_MEMORY &&
  1236. d40c->base->plat_data->dev_tx[conf->dst_dev_type] == 0 &&
  1237. d40c->runtime_addr == 0) {
  1238. chan_err(d40c, "Invalid TX channel address (%d)\n",
  1239. conf->dst_dev_type);
  1240. res = -EINVAL;
  1241. }
  1242. if (conf->src_dev_type != STEDMA40_DEV_SRC_MEMORY &&
  1243. d40c->base->plat_data->dev_rx[conf->src_dev_type] == 0 &&
  1244. d40c->runtime_addr == 0) {
  1245. chan_err(d40c, "Invalid RX channel address (%d)\n",
  1246. conf->src_dev_type);
  1247. res = -EINVAL;
  1248. }
  1249. if (conf->dir == STEDMA40_MEM_TO_PERIPH &&
  1250. dst_event_group == STEDMA40_DEV_DST_MEMORY) {
  1251. chan_err(d40c, "Invalid dst\n");
  1252. res = -EINVAL;
  1253. }
  1254. if (conf->dir == STEDMA40_PERIPH_TO_MEM &&
  1255. src_event_group == STEDMA40_DEV_SRC_MEMORY) {
  1256. chan_err(d40c, "Invalid src\n");
  1257. res = -EINVAL;
  1258. }
  1259. if (src_event_group == STEDMA40_DEV_SRC_MEMORY &&
  1260. dst_event_group == STEDMA40_DEV_DST_MEMORY && is_log) {
  1261. chan_err(d40c, "No event line\n");
  1262. res = -EINVAL;
  1263. }
  1264. if (conf->dir == STEDMA40_PERIPH_TO_PERIPH &&
  1265. (src_event_group != dst_event_group)) {
  1266. chan_err(d40c, "Invalid event group\n");
  1267. res = -EINVAL;
  1268. }
  1269. if (conf->dir == STEDMA40_PERIPH_TO_PERIPH) {
  1270. /*
  1271. * DMAC HW supports it. Will be added to this driver,
  1272. * in case any dma client requires it.
  1273. */
  1274. chan_err(d40c, "periph to periph not supported\n");
  1275. res = -EINVAL;
  1276. }
  1277. if (d40_psize_2_burst_size(is_log, conf->src_info.psize) *
  1278. (1 << conf->src_info.data_width) !=
  1279. d40_psize_2_burst_size(is_log, conf->dst_info.psize) *
  1280. (1 << conf->dst_info.data_width)) {
  1281. /*
  1282. * The DMAC hardware only supports
  1283. * src (burst x width) == dst (burst x width)
  1284. */
  1285. chan_err(d40c, "src (burst x width) != dst (burst x width)\n");
  1286. res = -EINVAL;
  1287. }
  1288. return res;
  1289. }
  1290. static bool d40_alloc_mask_set(struct d40_phy_res *phy,
  1291. bool is_src, int log_event_line, bool is_log,
  1292. bool *first_user)
  1293. {
  1294. unsigned long flags;
  1295. spin_lock_irqsave(&phy->lock, flags);
  1296. *first_user = ((phy->allocated_src | phy->allocated_dst)
  1297. == D40_ALLOC_FREE);
  1298. if (!is_log) {
  1299. /* Physical interrupts are masked per physical full channel */
  1300. if (phy->allocated_src == D40_ALLOC_FREE &&
  1301. phy->allocated_dst == D40_ALLOC_FREE) {
  1302. phy->allocated_dst = D40_ALLOC_PHY;
  1303. phy->allocated_src = D40_ALLOC_PHY;
  1304. goto found;
  1305. } else
  1306. goto not_found;
  1307. }
  1308. /* Logical channel */
  1309. if (is_src) {
  1310. if (phy->allocated_src == D40_ALLOC_PHY)
  1311. goto not_found;
  1312. if (phy->allocated_src == D40_ALLOC_FREE)
  1313. phy->allocated_src = D40_ALLOC_LOG_FREE;
  1314. if (!(phy->allocated_src & (1 << log_event_line))) {
  1315. phy->allocated_src |= 1 << log_event_line;
  1316. goto found;
  1317. } else
  1318. goto not_found;
  1319. } else {
  1320. if (phy->allocated_dst == D40_ALLOC_PHY)
  1321. goto not_found;
  1322. if (phy->allocated_dst == D40_ALLOC_FREE)
  1323. phy->allocated_dst = D40_ALLOC_LOG_FREE;
  1324. if (!(phy->allocated_dst & (1 << log_event_line))) {
  1325. phy->allocated_dst |= 1 << log_event_line;
  1326. goto found;
  1327. } else
  1328. goto not_found;
  1329. }
  1330. not_found:
  1331. spin_unlock_irqrestore(&phy->lock, flags);
  1332. return false;
  1333. found:
  1334. spin_unlock_irqrestore(&phy->lock, flags);
  1335. return true;
  1336. }
  1337. static bool d40_alloc_mask_free(struct d40_phy_res *phy, bool is_src,
  1338. int log_event_line)
  1339. {
  1340. unsigned long flags;
  1341. bool is_free = false;
  1342. spin_lock_irqsave(&phy->lock, flags);
  1343. if (!log_event_line) {
  1344. phy->allocated_dst = D40_ALLOC_FREE;
  1345. phy->allocated_src = D40_ALLOC_FREE;
  1346. is_free = true;
  1347. goto out;
  1348. }
  1349. /* Logical channel */
  1350. if (is_src) {
  1351. phy->allocated_src &= ~(1 << log_event_line);
  1352. if (phy->allocated_src == D40_ALLOC_LOG_FREE)
  1353. phy->allocated_src = D40_ALLOC_FREE;
  1354. } else {
  1355. phy->allocated_dst &= ~(1 << log_event_line);
  1356. if (phy->allocated_dst == D40_ALLOC_LOG_FREE)
  1357. phy->allocated_dst = D40_ALLOC_FREE;
  1358. }
  1359. is_free = ((phy->allocated_src | phy->allocated_dst) ==
  1360. D40_ALLOC_FREE);
  1361. out:
  1362. spin_unlock_irqrestore(&phy->lock, flags);
  1363. return is_free;
  1364. }
  1365. static int d40_allocate_channel(struct d40_chan *d40c, bool *first_phy_user)
  1366. {
  1367. int dev_type;
  1368. int event_group;
  1369. int event_line;
  1370. struct d40_phy_res *phys;
  1371. int i;
  1372. int j;
  1373. int log_num;
  1374. bool is_src;
  1375. bool is_log = d40c->dma_cfg.mode == STEDMA40_MODE_LOGICAL;
  1376. phys = d40c->base->phy_res;
  1377. if (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_MEM) {
  1378. dev_type = d40c->dma_cfg.src_dev_type;
  1379. log_num = 2 * dev_type;
  1380. is_src = true;
  1381. } else if (d40c->dma_cfg.dir == STEDMA40_MEM_TO_PERIPH ||
  1382. d40c->dma_cfg.dir == STEDMA40_MEM_TO_MEM) {
  1383. /* dst event lines are used for logical memcpy */
  1384. dev_type = d40c->dma_cfg.dst_dev_type;
  1385. log_num = 2 * dev_type + 1;
  1386. is_src = false;
  1387. } else
  1388. return -EINVAL;
  1389. event_group = D40_TYPE_TO_GROUP(dev_type);
  1390. event_line = D40_TYPE_TO_EVENT(dev_type);
  1391. if (!is_log) {
  1392. if (d40c->dma_cfg.dir == STEDMA40_MEM_TO_MEM) {
  1393. /* Find physical half channel */
  1394. for (i = 0; i < d40c->base->num_phy_chans; i++) {
  1395. if (d40_alloc_mask_set(&phys[i], is_src,
  1396. 0, is_log,
  1397. first_phy_user))
  1398. goto found_phy;
  1399. }
  1400. } else
  1401. for (j = 0; j < d40c->base->num_phy_chans; j += 8) {
  1402. int phy_num = j + event_group * 2;
  1403. for (i = phy_num; i < phy_num + 2; i++) {
  1404. if (d40_alloc_mask_set(&phys[i],
  1405. is_src,
  1406. 0,
  1407. is_log,
  1408. first_phy_user))
  1409. goto found_phy;
  1410. }
  1411. }
  1412. return -EINVAL;
  1413. found_phy:
  1414. d40c->phy_chan = &phys[i];
  1415. d40c->log_num = D40_PHY_CHAN;
  1416. goto out;
  1417. }
  1418. if (dev_type == -1)
  1419. return -EINVAL;
  1420. /* Find logical channel */
  1421. for (j = 0; j < d40c->base->num_phy_chans; j += 8) {
  1422. int phy_num = j + event_group * 2;
  1423. if (d40c->dma_cfg.use_fixed_channel) {
  1424. i = d40c->dma_cfg.phy_channel;
  1425. if ((i != phy_num) && (i != phy_num + 1)) {
  1426. dev_err(chan2dev(d40c),
  1427. "invalid fixed phy channel %d\n", i);
  1428. return -EINVAL;
  1429. }
  1430. if (d40_alloc_mask_set(&phys[i], is_src, event_line,
  1431. is_log, first_phy_user))
  1432. goto found_log;
  1433. dev_err(chan2dev(d40c),
  1434. "could not allocate fixed phy channel %d\n", i);
  1435. return -EINVAL;
  1436. }
  1437. /*
  1438. * Spread logical channels across all available physical rather
  1439. * than pack every logical channel at the first available phy
  1440. * channels.
  1441. */
  1442. if (is_src) {
  1443. for (i = phy_num; i < phy_num + 2; i++) {
  1444. if (d40_alloc_mask_set(&phys[i], is_src,
  1445. event_line, is_log,
  1446. first_phy_user))
  1447. goto found_log;
  1448. }
  1449. } else {
  1450. for (i = phy_num + 1; i >= phy_num; i--) {
  1451. if (d40_alloc_mask_set(&phys[i], is_src,
  1452. event_line, is_log,
  1453. first_phy_user))
  1454. goto found_log;
  1455. }
  1456. }
  1457. }
  1458. return -EINVAL;
  1459. found_log:
  1460. d40c->phy_chan = &phys[i];
  1461. d40c->log_num = log_num;
  1462. out:
  1463. if (is_log)
  1464. d40c->base->lookup_log_chans[d40c->log_num] = d40c;
  1465. else
  1466. d40c->base->lookup_phy_chans[d40c->phy_chan->num] = d40c;
  1467. return 0;
  1468. }
  1469. static int d40_config_memcpy(struct d40_chan *d40c)
  1470. {
  1471. dma_cap_mask_t cap = d40c->chan.device->cap_mask;
  1472. if (dma_has_cap(DMA_MEMCPY, cap) && !dma_has_cap(DMA_SLAVE, cap)) {
  1473. d40c->dma_cfg = *d40c->base->plat_data->memcpy_conf_log;
  1474. d40c->dma_cfg.src_dev_type = STEDMA40_DEV_SRC_MEMORY;
  1475. d40c->dma_cfg.dst_dev_type = d40c->base->plat_data->
  1476. memcpy[d40c->chan.chan_id];
  1477. } else if (dma_has_cap(DMA_MEMCPY, cap) &&
  1478. dma_has_cap(DMA_SLAVE, cap)) {
  1479. d40c->dma_cfg = *d40c->base->plat_data->memcpy_conf_phy;
  1480. } else {
  1481. chan_err(d40c, "No memcpy\n");
  1482. return -EINVAL;
  1483. }
  1484. return 0;
  1485. }
  1486. static int d40_free_dma(struct d40_chan *d40c)
  1487. {
  1488. int res = 0;
  1489. u32 event;
  1490. struct d40_phy_res *phy = d40c->phy_chan;
  1491. bool is_src;
  1492. /* Terminate all queued and active transfers */
  1493. d40_term_all(d40c);
  1494. if (phy == NULL) {
  1495. chan_err(d40c, "phy == null\n");
  1496. return -EINVAL;
  1497. }
  1498. if (phy->allocated_src == D40_ALLOC_FREE &&
  1499. phy->allocated_dst == D40_ALLOC_FREE) {
  1500. chan_err(d40c, "channel already free\n");
  1501. return -EINVAL;
  1502. }
  1503. if (d40c->dma_cfg.dir == STEDMA40_MEM_TO_PERIPH ||
  1504. d40c->dma_cfg.dir == STEDMA40_MEM_TO_MEM) {
  1505. event = D40_TYPE_TO_EVENT(d40c->dma_cfg.dst_dev_type);
  1506. is_src = false;
  1507. } else if (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_MEM) {
  1508. event = D40_TYPE_TO_EVENT(d40c->dma_cfg.src_dev_type);
  1509. is_src = true;
  1510. } else {
  1511. chan_err(d40c, "Unknown direction\n");
  1512. return -EINVAL;
  1513. }
  1514. pm_runtime_get_sync(d40c->base->dev);
  1515. res = d40_channel_execute_command(d40c, D40_DMA_SUSPEND_REQ);
  1516. if (res) {
  1517. chan_err(d40c, "suspend failed\n");
  1518. goto out;
  1519. }
  1520. if (chan_is_logical(d40c)) {
  1521. /* Release logical channel, deactivate the event line */
  1522. d40_config_set_event(d40c, false);
  1523. d40c->base->lookup_log_chans[d40c->log_num] = NULL;
  1524. /*
  1525. * Check if there are more logical allocation
  1526. * on this phy channel.
  1527. */
  1528. if (!d40_alloc_mask_free(phy, is_src, event)) {
  1529. /* Resume the other logical channels if any */
  1530. if (d40_chan_has_events(d40c)) {
  1531. res = d40_channel_execute_command(d40c,
  1532. D40_DMA_RUN);
  1533. if (res)
  1534. chan_err(d40c,
  1535. "Executing RUN command\n");
  1536. }
  1537. goto out;
  1538. }
  1539. } else {
  1540. (void) d40_alloc_mask_free(phy, is_src, 0);
  1541. }
  1542. /* Release physical channel */
  1543. res = d40_channel_execute_command(d40c, D40_DMA_STOP);
  1544. if (res) {
  1545. chan_err(d40c, "Failed to stop channel\n");
  1546. goto out;
  1547. }
  1548. if (d40c->busy) {
  1549. pm_runtime_mark_last_busy(d40c->base->dev);
  1550. pm_runtime_put_autosuspend(d40c->base->dev);
  1551. }
  1552. d40c->busy = false;
  1553. d40c->phy_chan = NULL;
  1554. d40c->configured = false;
  1555. d40c->base->lookup_phy_chans[phy->num] = NULL;
  1556. out:
  1557. pm_runtime_mark_last_busy(d40c->base->dev);
  1558. pm_runtime_put_autosuspend(d40c->base->dev);
  1559. return res;
  1560. }
  1561. static bool d40_is_paused(struct d40_chan *d40c)
  1562. {
  1563. void __iomem *chanbase = chan_base(d40c);
  1564. bool is_paused = false;
  1565. unsigned long flags;
  1566. void __iomem *active_reg;
  1567. u32 status;
  1568. u32 event;
  1569. spin_lock_irqsave(&d40c->lock, flags);
  1570. if (chan_is_physical(d40c)) {
  1571. if (d40c->phy_chan->num % 2 == 0)
  1572. active_reg = d40c->base->virtbase + D40_DREG_ACTIVE;
  1573. else
  1574. active_reg = d40c->base->virtbase + D40_DREG_ACTIVO;
  1575. status = (readl(active_reg) &
  1576. D40_CHAN_POS_MASK(d40c->phy_chan->num)) >>
  1577. D40_CHAN_POS(d40c->phy_chan->num);
  1578. if (status == D40_DMA_SUSPENDED || status == D40_DMA_STOP)
  1579. is_paused = true;
  1580. goto _exit;
  1581. }
  1582. if (d40c->dma_cfg.dir == STEDMA40_MEM_TO_PERIPH ||
  1583. d40c->dma_cfg.dir == STEDMA40_MEM_TO_MEM) {
  1584. event = D40_TYPE_TO_EVENT(d40c->dma_cfg.dst_dev_type);
  1585. status = readl(chanbase + D40_CHAN_REG_SDLNK);
  1586. } else if (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_MEM) {
  1587. event = D40_TYPE_TO_EVENT(d40c->dma_cfg.src_dev_type);
  1588. status = readl(chanbase + D40_CHAN_REG_SSLNK);
  1589. } else {
  1590. chan_err(d40c, "Unknown direction\n");
  1591. goto _exit;
  1592. }
  1593. status = (status & D40_EVENTLINE_MASK(event)) >>
  1594. D40_EVENTLINE_POS(event);
  1595. if (status != D40_DMA_RUN)
  1596. is_paused = true;
  1597. _exit:
  1598. spin_unlock_irqrestore(&d40c->lock, flags);
  1599. return is_paused;
  1600. }
  1601. static u32 stedma40_residue(struct dma_chan *chan)
  1602. {
  1603. struct d40_chan *d40c =
  1604. container_of(chan, struct d40_chan, chan);
  1605. u32 bytes_left;
  1606. unsigned long flags;
  1607. spin_lock_irqsave(&d40c->lock, flags);
  1608. bytes_left = d40_residue(d40c);
  1609. spin_unlock_irqrestore(&d40c->lock, flags);
  1610. return bytes_left;
  1611. }
  1612. static int
  1613. d40_prep_sg_log(struct d40_chan *chan, struct d40_desc *desc,
  1614. struct scatterlist *sg_src, struct scatterlist *sg_dst,
  1615. unsigned int sg_len, dma_addr_t src_dev_addr,
  1616. dma_addr_t dst_dev_addr)
  1617. {
  1618. struct stedma40_chan_cfg *cfg = &chan->dma_cfg;
  1619. struct stedma40_half_channel_info *src_info = &cfg->src_info;
  1620. struct stedma40_half_channel_info *dst_info = &cfg->dst_info;
  1621. int ret;
  1622. ret = d40_log_sg_to_lli(sg_src, sg_len,
  1623. src_dev_addr,
  1624. desc->lli_log.src,
  1625. chan->log_def.lcsp1,
  1626. src_info->data_width,
  1627. dst_info->data_width);
  1628. ret = d40_log_sg_to_lli(sg_dst, sg_len,
  1629. dst_dev_addr,
  1630. desc->lli_log.dst,
  1631. chan->log_def.lcsp3,
  1632. dst_info->data_width,
  1633. src_info->data_width);
  1634. return ret < 0 ? ret : 0;
  1635. }
  1636. static int
  1637. d40_prep_sg_phy(struct d40_chan *chan, struct d40_desc *desc,
  1638. struct scatterlist *sg_src, struct scatterlist *sg_dst,
  1639. unsigned int sg_len, dma_addr_t src_dev_addr,
  1640. dma_addr_t dst_dev_addr)
  1641. {
  1642. struct stedma40_chan_cfg *cfg = &chan->dma_cfg;
  1643. struct stedma40_half_channel_info *src_info = &cfg->src_info;
  1644. struct stedma40_half_channel_info *dst_info = &cfg->dst_info;
  1645. unsigned long flags = 0;
  1646. int ret;
  1647. if (desc->cyclic)
  1648. flags |= LLI_CYCLIC | LLI_TERM_INT;
  1649. ret = d40_phy_sg_to_lli(sg_src, sg_len, src_dev_addr,
  1650. desc->lli_phy.src,
  1651. virt_to_phys(desc->lli_phy.src),
  1652. chan->src_def_cfg,
  1653. src_info, dst_info, flags);
  1654. ret = d40_phy_sg_to_lli(sg_dst, sg_len, dst_dev_addr,
  1655. desc->lli_phy.dst,
  1656. virt_to_phys(desc->lli_phy.dst),
  1657. chan->dst_def_cfg,
  1658. dst_info, src_info, flags);
  1659. dma_sync_single_for_device(chan->base->dev, desc->lli_pool.dma_addr,
  1660. desc->lli_pool.size, DMA_TO_DEVICE);
  1661. return ret < 0 ? ret : 0;
  1662. }
  1663. static struct d40_desc *
  1664. d40_prep_desc(struct d40_chan *chan, struct scatterlist *sg,
  1665. unsigned int sg_len, unsigned long dma_flags)
  1666. {
  1667. struct stedma40_chan_cfg *cfg = &chan->dma_cfg;
  1668. struct d40_desc *desc;
  1669. int ret;
  1670. desc = d40_desc_get(chan);
  1671. if (!desc)
  1672. return NULL;
  1673. desc->lli_len = d40_sg_2_dmalen(sg, sg_len, cfg->src_info.data_width,
  1674. cfg->dst_info.data_width);
  1675. if (desc->lli_len < 0) {
  1676. chan_err(chan, "Unaligned size\n");
  1677. goto err;
  1678. }
  1679. ret = d40_pool_lli_alloc(chan, desc, desc->lli_len);
  1680. if (ret < 0) {
  1681. chan_err(chan, "Could not allocate lli\n");
  1682. goto err;
  1683. }
  1684. desc->lli_current = 0;
  1685. desc->txd.flags = dma_flags;
  1686. desc->txd.tx_submit = d40_tx_submit;
  1687. dma_async_tx_descriptor_init(&desc->txd, &chan->chan);
  1688. return desc;
  1689. err:
  1690. d40_desc_free(chan, desc);
  1691. return NULL;
  1692. }
  1693. static dma_addr_t
  1694. d40_get_dev_addr(struct d40_chan *chan, enum dma_transfer_direction direction)
  1695. {
  1696. struct stedma40_platform_data *plat = chan->base->plat_data;
  1697. struct stedma40_chan_cfg *cfg = &chan->dma_cfg;
  1698. dma_addr_t addr = 0;
  1699. if (chan->runtime_addr)
  1700. return chan->runtime_addr;
  1701. if (direction == DMA_DEV_TO_MEM)
  1702. addr = plat->dev_rx[cfg->src_dev_type];
  1703. else if (direction == DMA_MEM_TO_DEV)
  1704. addr = plat->dev_tx[cfg->dst_dev_type];
  1705. return addr;
  1706. }
  1707. static struct dma_async_tx_descriptor *
  1708. d40_prep_sg(struct dma_chan *dchan, struct scatterlist *sg_src,
  1709. struct scatterlist *sg_dst, unsigned int sg_len,
  1710. enum dma_transfer_direction direction, unsigned long dma_flags)
  1711. {
  1712. struct d40_chan *chan = container_of(dchan, struct d40_chan, chan);
  1713. dma_addr_t src_dev_addr = 0;
  1714. dma_addr_t dst_dev_addr = 0;
  1715. struct d40_desc *desc;
  1716. unsigned long flags;
  1717. int ret;
  1718. if (!chan->phy_chan) {
  1719. chan_err(chan, "Cannot prepare unallocated channel\n");
  1720. return NULL;
  1721. }
  1722. spin_lock_irqsave(&chan->lock, flags);
  1723. desc = d40_prep_desc(chan, sg_src, sg_len, dma_flags);
  1724. if (desc == NULL)
  1725. goto err;
  1726. if (sg_next(&sg_src[sg_len - 1]) == sg_src)
  1727. desc->cyclic = true;
  1728. if (direction != DMA_NONE) {
  1729. dma_addr_t dev_addr = d40_get_dev_addr(chan, direction);
  1730. if (direction == DMA_DEV_TO_MEM)
  1731. src_dev_addr = dev_addr;
  1732. else if (direction == DMA_MEM_TO_DEV)
  1733. dst_dev_addr = dev_addr;
  1734. }
  1735. if (chan_is_logical(chan))
  1736. ret = d40_prep_sg_log(chan, desc, sg_src, sg_dst,
  1737. sg_len, src_dev_addr, dst_dev_addr);
  1738. else
  1739. ret = d40_prep_sg_phy(chan, desc, sg_src, sg_dst,
  1740. sg_len, src_dev_addr, dst_dev_addr);
  1741. if (ret) {
  1742. chan_err(chan, "Failed to prepare %s sg job: %d\n",
  1743. chan_is_logical(chan) ? "log" : "phy", ret);
  1744. goto err;
  1745. }
  1746. /*
  1747. * add descriptor to the prepare queue in order to be able
  1748. * to free them later in terminate_all
  1749. */
  1750. list_add_tail(&desc->node, &chan->prepare_queue);
  1751. spin_unlock_irqrestore(&chan->lock, flags);
  1752. return &desc->txd;
  1753. err:
  1754. if (desc)
  1755. d40_desc_free(chan, desc);
  1756. spin_unlock_irqrestore(&chan->lock, flags);
  1757. return NULL;
  1758. }
  1759. bool stedma40_filter(struct dma_chan *chan, void *data)
  1760. {
  1761. struct stedma40_chan_cfg *info = data;
  1762. struct d40_chan *d40c =
  1763. container_of(chan, struct d40_chan, chan);
  1764. int err;
  1765. if (data) {
  1766. err = d40_validate_conf(d40c, info);
  1767. if (!err)
  1768. d40c->dma_cfg = *info;
  1769. } else
  1770. err = d40_config_memcpy(d40c);
  1771. if (!err)
  1772. d40c->configured = true;
  1773. return err == 0;
  1774. }
  1775. EXPORT_SYMBOL(stedma40_filter);
  1776. static void __d40_set_prio_rt(struct d40_chan *d40c, int dev_type, bool src)
  1777. {
  1778. bool realtime = d40c->dma_cfg.realtime;
  1779. bool highprio = d40c->dma_cfg.high_priority;
  1780. u32 prioreg = highprio ? D40_DREG_PSEG1 : D40_DREG_PCEG1;
  1781. u32 rtreg = realtime ? D40_DREG_RSEG1 : D40_DREG_RCEG1;
  1782. u32 event = D40_TYPE_TO_EVENT(dev_type);
  1783. u32 group = D40_TYPE_TO_GROUP(dev_type);
  1784. u32 bit = 1 << event;
  1785. /* Destination event lines are stored in the upper halfword */
  1786. if (!src)
  1787. bit <<= 16;
  1788. writel(bit, d40c->base->virtbase + prioreg + group * 4);
  1789. writel(bit, d40c->base->virtbase + rtreg + group * 4);
  1790. }
  1791. static void d40_set_prio_realtime(struct d40_chan *d40c)
  1792. {
  1793. if (d40c->base->rev < 3)
  1794. return;
  1795. if ((d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_MEM) ||
  1796. (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_PERIPH))
  1797. __d40_set_prio_rt(d40c, d40c->dma_cfg.src_dev_type, true);
  1798. if ((d40c->dma_cfg.dir == STEDMA40_MEM_TO_PERIPH) ||
  1799. (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_PERIPH))
  1800. __d40_set_prio_rt(d40c, d40c->dma_cfg.dst_dev_type, false);
  1801. }
  1802. /* DMA ENGINE functions */
  1803. static int d40_alloc_chan_resources(struct dma_chan *chan)
  1804. {
  1805. int err;
  1806. unsigned long flags;
  1807. struct d40_chan *d40c =
  1808. container_of(chan, struct d40_chan, chan);
  1809. bool is_free_phy;
  1810. spin_lock_irqsave(&d40c->lock, flags);
  1811. dma_cookie_init(chan);
  1812. /* If no dma configuration is set use default configuration (memcpy) */
  1813. if (!d40c->configured) {
  1814. err = d40_config_memcpy(d40c);
  1815. if (err) {
  1816. chan_err(d40c, "Failed to configure memcpy channel\n");
  1817. goto fail;
  1818. }
  1819. }
  1820. err = d40_allocate_channel(d40c, &is_free_phy);
  1821. if (err) {
  1822. chan_err(d40c, "Failed to allocate channel\n");
  1823. d40c->configured = false;
  1824. goto fail;
  1825. }
  1826. pm_runtime_get_sync(d40c->base->dev);
  1827. /* Fill in basic CFG register values */
  1828. d40_phy_cfg(&d40c->dma_cfg, &d40c->src_def_cfg,
  1829. &d40c->dst_def_cfg, chan_is_logical(d40c));
  1830. d40_set_prio_realtime(d40c);
  1831. if (chan_is_logical(d40c)) {
  1832. d40_log_cfg(&d40c->dma_cfg,
  1833. &d40c->log_def.lcsp1, &d40c->log_def.lcsp3);
  1834. if (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_MEM)
  1835. d40c->lcpa = d40c->base->lcpa_base +
  1836. d40c->dma_cfg.src_dev_type * D40_LCPA_CHAN_SIZE;
  1837. else
  1838. d40c->lcpa = d40c->base->lcpa_base +
  1839. d40c->dma_cfg.dst_dev_type *
  1840. D40_LCPA_CHAN_SIZE + D40_LCPA_CHAN_DST_DELTA;
  1841. }
  1842. dev_dbg(chan2dev(d40c), "allocated %s channel (phy %d%s)\n",
  1843. chan_is_logical(d40c) ? "logical" : "physical",
  1844. d40c->phy_chan->num,
  1845. d40c->dma_cfg.use_fixed_channel ? ", fixed" : "");
  1846. /*
  1847. * Only write channel configuration to the DMA if the physical
  1848. * resource is free. In case of multiple logical channels
  1849. * on the same physical resource, only the first write is necessary.
  1850. */
  1851. if (is_free_phy)
  1852. d40_config_write(d40c);
  1853. fail:
  1854. pm_runtime_mark_last_busy(d40c->base->dev);
  1855. pm_runtime_put_autosuspend(d40c->base->dev);
  1856. spin_unlock_irqrestore(&d40c->lock, flags);
  1857. return err;
  1858. }
  1859. static void d40_free_chan_resources(struct dma_chan *chan)
  1860. {
  1861. struct d40_chan *d40c =
  1862. container_of(chan, struct d40_chan, chan);
  1863. int err;
  1864. unsigned long flags;
  1865. if (d40c->phy_chan == NULL) {
  1866. chan_err(d40c, "Cannot free unallocated channel\n");
  1867. return;
  1868. }
  1869. spin_lock_irqsave(&d40c->lock, flags);
  1870. err = d40_free_dma(d40c);
  1871. if (err)
  1872. chan_err(d40c, "Failed to free channel\n");
  1873. spin_unlock_irqrestore(&d40c->lock, flags);
  1874. }
  1875. static struct dma_async_tx_descriptor *d40_prep_memcpy(struct dma_chan *chan,
  1876. dma_addr_t dst,
  1877. dma_addr_t src,
  1878. size_t size,
  1879. unsigned long dma_flags)
  1880. {
  1881. struct scatterlist dst_sg;
  1882. struct scatterlist src_sg;
  1883. sg_init_table(&dst_sg, 1);
  1884. sg_init_table(&src_sg, 1);
  1885. sg_dma_address(&dst_sg) = dst;
  1886. sg_dma_address(&src_sg) = src;
  1887. sg_dma_len(&dst_sg) = size;
  1888. sg_dma_len(&src_sg) = size;
  1889. return d40_prep_sg(chan, &src_sg, &dst_sg, 1, DMA_NONE, dma_flags);
  1890. }
  1891. static struct dma_async_tx_descriptor *
  1892. d40_prep_memcpy_sg(struct dma_chan *chan,
  1893. struct scatterlist *dst_sg, unsigned int dst_nents,
  1894. struct scatterlist *src_sg, unsigned int src_nents,
  1895. unsigned long dma_flags)
  1896. {
  1897. if (dst_nents != src_nents)
  1898. return NULL;
  1899. return d40_prep_sg(chan, src_sg, dst_sg, src_nents, DMA_NONE, dma_flags);
  1900. }
  1901. static struct dma_async_tx_descriptor *d40_prep_slave_sg(struct dma_chan *chan,
  1902. struct scatterlist *sgl,
  1903. unsigned int sg_len,
  1904. enum dma_transfer_direction direction,
  1905. unsigned long dma_flags,
  1906. void *context)
  1907. {
  1908. if (direction != DMA_DEV_TO_MEM && direction != DMA_MEM_TO_DEV)
  1909. return NULL;
  1910. return d40_prep_sg(chan, sgl, sgl, sg_len, direction, dma_flags);
  1911. }
  1912. static struct dma_async_tx_descriptor *
  1913. dma40_prep_dma_cyclic(struct dma_chan *chan, dma_addr_t dma_addr,
  1914. size_t buf_len, size_t period_len,
  1915. enum dma_transfer_direction direction, void *context)
  1916. {
  1917. unsigned int periods = buf_len / period_len;
  1918. struct dma_async_tx_descriptor *txd;
  1919. struct scatterlist *sg;
  1920. int i;
  1921. sg = kcalloc(periods + 1, sizeof(struct scatterlist), GFP_NOWAIT);
  1922. for (i = 0; i < periods; i++) {
  1923. sg_dma_address(&sg[i]) = dma_addr;
  1924. sg_dma_len(&sg[i]) = period_len;
  1925. dma_addr += period_len;
  1926. }
  1927. sg[periods].offset = 0;
  1928. sg[periods].length = 0;
  1929. sg[periods].page_link =
  1930. ((unsigned long)sg | 0x01) & ~0x02;
  1931. txd = d40_prep_sg(chan, sg, sg, periods, direction,
  1932. DMA_PREP_INTERRUPT);
  1933. kfree(sg);
  1934. return txd;
  1935. }
  1936. static enum dma_status d40_tx_status(struct dma_chan *chan,
  1937. dma_cookie_t cookie,
  1938. struct dma_tx_state *txstate)
  1939. {
  1940. struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
  1941. enum dma_status ret;
  1942. if (d40c->phy_chan == NULL) {
  1943. chan_err(d40c, "Cannot read status of unallocated channel\n");
  1944. return -EINVAL;
  1945. }
  1946. ret = dma_cookie_status(chan, cookie, txstate);
  1947. if (ret != DMA_SUCCESS)
  1948. dma_set_residue(txstate, stedma40_residue(chan));
  1949. if (d40_is_paused(d40c))
  1950. ret = DMA_PAUSED;
  1951. return ret;
  1952. }
  1953. static void d40_issue_pending(struct dma_chan *chan)
  1954. {
  1955. struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
  1956. unsigned long flags;
  1957. if (d40c->phy_chan == NULL) {
  1958. chan_err(d40c, "Channel is not allocated!\n");
  1959. return;
  1960. }
  1961. spin_lock_irqsave(&d40c->lock, flags);
  1962. list_splice_tail_init(&d40c->pending_queue, &d40c->queue);
  1963. /* Busy means that queued jobs are already being processed */
  1964. if (!d40c->busy)
  1965. (void) d40_queue_start(d40c);
  1966. spin_unlock_irqrestore(&d40c->lock, flags);
  1967. }
  1968. static int
  1969. dma40_config_to_halfchannel(struct d40_chan *d40c,
  1970. struct stedma40_half_channel_info *info,
  1971. enum dma_slave_buswidth width,
  1972. u32 maxburst)
  1973. {
  1974. enum stedma40_periph_data_width addr_width;
  1975. int psize;
  1976. switch (width) {
  1977. case DMA_SLAVE_BUSWIDTH_1_BYTE:
  1978. addr_width = STEDMA40_BYTE_WIDTH;
  1979. break;
  1980. case DMA_SLAVE_BUSWIDTH_2_BYTES:
  1981. addr_width = STEDMA40_HALFWORD_WIDTH;
  1982. break;
  1983. case DMA_SLAVE_BUSWIDTH_4_BYTES:
  1984. addr_width = STEDMA40_WORD_WIDTH;
  1985. break;
  1986. case DMA_SLAVE_BUSWIDTH_8_BYTES:
  1987. addr_width = STEDMA40_DOUBLEWORD_WIDTH;
  1988. break;
  1989. default:
  1990. dev_err(d40c->base->dev,
  1991. "illegal peripheral address width "
  1992. "requested (%d)\n",
  1993. width);
  1994. return -EINVAL;
  1995. }
  1996. if (chan_is_logical(d40c)) {
  1997. if (maxburst >= 16)
  1998. psize = STEDMA40_PSIZE_LOG_16;
  1999. else if (maxburst >= 8)
  2000. psize = STEDMA40_PSIZE_LOG_8;
  2001. else if (maxburst >= 4)
  2002. psize = STEDMA40_PSIZE_LOG_4;
  2003. else
  2004. psize = STEDMA40_PSIZE_LOG_1;
  2005. } else {
  2006. if (maxburst >= 16)
  2007. psize = STEDMA40_PSIZE_PHY_16;
  2008. else if (maxburst >= 8)
  2009. psize = STEDMA40_PSIZE_PHY_8;
  2010. else if (maxburst >= 4)
  2011. psize = STEDMA40_PSIZE_PHY_4;
  2012. else
  2013. psize = STEDMA40_PSIZE_PHY_1;
  2014. }
  2015. info->data_width = addr_width;
  2016. info->psize = psize;
  2017. info->flow_ctrl = STEDMA40_NO_FLOW_CTRL;
  2018. return 0;
  2019. }
  2020. /* Runtime reconfiguration extension */
  2021. static int d40_set_runtime_config(struct dma_chan *chan,
  2022. struct dma_slave_config *config)
  2023. {
  2024. struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
  2025. struct stedma40_chan_cfg *cfg = &d40c->dma_cfg;
  2026. enum dma_slave_buswidth src_addr_width, dst_addr_width;
  2027. dma_addr_t config_addr;
  2028. u32 src_maxburst, dst_maxburst;
  2029. int ret;
  2030. src_addr_width = config->src_addr_width;
  2031. src_maxburst = config->src_maxburst;
  2032. dst_addr_width = config->dst_addr_width;
  2033. dst_maxburst = config->dst_maxburst;
  2034. if (config->direction == DMA_DEV_TO_MEM) {
  2035. dma_addr_t dev_addr_rx =
  2036. d40c->base->plat_data->dev_rx[cfg->src_dev_type];
  2037. config_addr = config->src_addr;
  2038. if (dev_addr_rx)
  2039. dev_dbg(d40c->base->dev,
  2040. "channel has a pre-wired RX address %08x "
  2041. "overriding with %08x\n",
  2042. dev_addr_rx, config_addr);
  2043. if (cfg->dir != STEDMA40_PERIPH_TO_MEM)
  2044. dev_dbg(d40c->base->dev,
  2045. "channel was not configured for peripheral "
  2046. "to memory transfer (%d) overriding\n",
  2047. cfg->dir);
  2048. cfg->dir = STEDMA40_PERIPH_TO_MEM;
  2049. /* Configure the memory side */
  2050. if (dst_addr_width == DMA_SLAVE_BUSWIDTH_UNDEFINED)
  2051. dst_addr_width = src_addr_width;
  2052. if (dst_maxburst == 0)
  2053. dst_maxburst = src_maxburst;
  2054. } else if (config->direction == DMA_MEM_TO_DEV) {
  2055. dma_addr_t dev_addr_tx =
  2056. d40c->base->plat_data->dev_tx[cfg->dst_dev_type];
  2057. config_addr = config->dst_addr;
  2058. if (dev_addr_tx)
  2059. dev_dbg(d40c->base->dev,
  2060. "channel has a pre-wired TX address %08x "
  2061. "overriding with %08x\n",
  2062. dev_addr_tx, config_addr);
  2063. if (cfg->dir != STEDMA40_MEM_TO_PERIPH)
  2064. dev_dbg(d40c->base->dev,
  2065. "channel was not configured for memory "
  2066. "to peripheral transfer (%d) overriding\n",
  2067. cfg->dir);
  2068. cfg->dir = STEDMA40_MEM_TO_PERIPH;
  2069. /* Configure the memory side */
  2070. if (src_addr_width == DMA_SLAVE_BUSWIDTH_UNDEFINED)
  2071. src_addr_width = dst_addr_width;
  2072. if (src_maxburst == 0)
  2073. src_maxburst = dst_maxburst;
  2074. } else {
  2075. dev_err(d40c->base->dev,
  2076. "unrecognized channel direction %d\n",
  2077. config->direction);
  2078. return -EINVAL;
  2079. }
  2080. if (src_maxburst * src_addr_width != dst_maxburst * dst_addr_width) {
  2081. dev_err(d40c->base->dev,
  2082. "src/dst width/maxburst mismatch: %d*%d != %d*%d\n",
  2083. src_maxburst,
  2084. src_addr_width,
  2085. dst_maxburst,
  2086. dst_addr_width);
  2087. return -EINVAL;
  2088. }
  2089. ret = dma40_config_to_halfchannel(d40c, &cfg->src_info,
  2090. src_addr_width,
  2091. src_maxburst);
  2092. if (ret)
  2093. return ret;
  2094. ret = dma40_config_to_halfchannel(d40c, &cfg->dst_info,
  2095. dst_addr_width,
  2096. dst_maxburst);
  2097. if (ret)
  2098. return ret;
  2099. /* Fill in register values */
  2100. if (chan_is_logical(d40c))
  2101. d40_log_cfg(cfg, &d40c->log_def.lcsp1, &d40c->log_def.lcsp3);
  2102. else
  2103. d40_phy_cfg(cfg, &d40c->src_def_cfg,
  2104. &d40c->dst_def_cfg, false);
  2105. /* These settings will take precedence later */
  2106. d40c->runtime_addr = config_addr;
  2107. d40c->runtime_direction = config->direction;
  2108. dev_dbg(d40c->base->dev,
  2109. "configured channel %s for %s, data width %d/%d, "
  2110. "maxburst %d/%d elements, LE, no flow control\n",
  2111. dma_chan_name(chan),
  2112. (config->direction == DMA_DEV_TO_MEM) ? "RX" : "TX",
  2113. src_addr_width, dst_addr_width,
  2114. src_maxburst, dst_maxburst);
  2115. return 0;
  2116. }
  2117. static int d40_control(struct dma_chan *chan, enum dma_ctrl_cmd cmd,
  2118. unsigned long arg)
  2119. {
  2120. struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
  2121. if (d40c->phy_chan == NULL) {
  2122. chan_err(d40c, "Channel is not allocated!\n");
  2123. return -EINVAL;
  2124. }
  2125. switch (cmd) {
  2126. case DMA_TERMINATE_ALL:
  2127. return d40_terminate_all(d40c);
  2128. case DMA_PAUSE:
  2129. return d40_pause(d40c);
  2130. case DMA_RESUME:
  2131. return d40_resume(d40c);
  2132. case DMA_SLAVE_CONFIG:
  2133. return d40_set_runtime_config(chan,
  2134. (struct dma_slave_config *) arg);
  2135. default:
  2136. break;
  2137. }
  2138. /* Other commands are unimplemented */
  2139. return -ENXIO;
  2140. }
  2141. /* Initialization functions */
  2142. static void __init d40_chan_init(struct d40_base *base, struct dma_device *dma,
  2143. struct d40_chan *chans, int offset,
  2144. int num_chans)
  2145. {
  2146. int i = 0;
  2147. struct d40_chan *d40c;
  2148. INIT_LIST_HEAD(&dma->channels);
  2149. for (i = offset; i < offset + num_chans; i++) {
  2150. d40c = &chans[i];
  2151. d40c->base = base;
  2152. d40c->chan.device = dma;
  2153. spin_lock_init(&d40c->lock);
  2154. d40c->log_num = D40_PHY_CHAN;
  2155. INIT_LIST_HEAD(&d40c->active);
  2156. INIT_LIST_HEAD(&d40c->queue);
  2157. INIT_LIST_HEAD(&d40c->pending_queue);
  2158. INIT_LIST_HEAD(&d40c->client);
  2159. INIT_LIST_HEAD(&d40c->prepare_queue);
  2160. tasklet_init(&d40c->tasklet, dma_tasklet,
  2161. (unsigned long) d40c);
  2162. list_add_tail(&d40c->chan.device_node,
  2163. &dma->channels);
  2164. }
  2165. }
  2166. static void d40_ops_init(struct d40_base *base, struct dma_device *dev)
  2167. {
  2168. if (dma_has_cap(DMA_SLAVE, dev->cap_mask))
  2169. dev->device_prep_slave_sg = d40_prep_slave_sg;
  2170. if (dma_has_cap(DMA_MEMCPY, dev->cap_mask)) {
  2171. dev->device_prep_dma_memcpy = d40_prep_memcpy;
  2172. /*
  2173. * This controller can only access address at even
  2174. * 32bit boundaries, i.e. 2^2
  2175. */
  2176. dev->copy_align = 2;
  2177. }
  2178. if (dma_has_cap(DMA_SG, dev->cap_mask))
  2179. dev->device_prep_dma_sg = d40_prep_memcpy_sg;
  2180. if (dma_has_cap(DMA_CYCLIC, dev->cap_mask))
  2181. dev->device_prep_dma_cyclic = dma40_prep_dma_cyclic;
  2182. dev->device_alloc_chan_resources = d40_alloc_chan_resources;
  2183. dev->device_free_chan_resources = d40_free_chan_resources;
  2184. dev->device_issue_pending = d40_issue_pending;
  2185. dev->device_tx_status = d40_tx_status;
  2186. dev->device_control = d40_control;
  2187. dev->dev = base->dev;
  2188. }
  2189. static int __init d40_dmaengine_init(struct d40_base *base,
  2190. int num_reserved_chans)
  2191. {
  2192. int err ;
  2193. d40_chan_init(base, &base->dma_slave, base->log_chans,
  2194. 0, base->num_log_chans);
  2195. dma_cap_zero(base->dma_slave.cap_mask);
  2196. dma_cap_set(DMA_SLAVE, base->dma_slave.cap_mask);
  2197. dma_cap_set(DMA_CYCLIC, base->dma_slave.cap_mask);
  2198. d40_ops_init(base, &base->dma_slave);
  2199. err = dma_async_device_register(&base->dma_slave);
  2200. if (err) {
  2201. d40_err(base->dev, "Failed to register slave channels\n");
  2202. goto failure1;
  2203. }
  2204. d40_chan_init(base, &base->dma_memcpy, base->log_chans,
  2205. base->num_log_chans, base->plat_data->memcpy_len);
  2206. dma_cap_zero(base->dma_memcpy.cap_mask);
  2207. dma_cap_set(DMA_MEMCPY, base->dma_memcpy.cap_mask);
  2208. dma_cap_set(DMA_SG, base->dma_memcpy.cap_mask);
  2209. d40_ops_init(base, &base->dma_memcpy);
  2210. err = dma_async_device_register(&base->dma_memcpy);
  2211. if (err) {
  2212. d40_err(base->dev,
  2213. "Failed to regsiter memcpy only channels\n");
  2214. goto failure2;
  2215. }
  2216. d40_chan_init(base, &base->dma_both, base->phy_chans,
  2217. 0, num_reserved_chans);
  2218. dma_cap_zero(base->dma_both.cap_mask);
  2219. dma_cap_set(DMA_SLAVE, base->dma_both.cap_mask);
  2220. dma_cap_set(DMA_MEMCPY, base->dma_both.cap_mask);
  2221. dma_cap_set(DMA_SG, base->dma_both.cap_mask);
  2222. dma_cap_set(DMA_CYCLIC, base->dma_slave.cap_mask);
  2223. d40_ops_init(base, &base->dma_both);
  2224. err = dma_async_device_register(&base->dma_both);
  2225. if (err) {
  2226. d40_err(base->dev,
  2227. "Failed to register logical and physical capable channels\n");
  2228. goto failure3;
  2229. }
  2230. return 0;
  2231. failure3:
  2232. dma_async_device_unregister(&base->dma_memcpy);
  2233. failure2:
  2234. dma_async_device_unregister(&base->dma_slave);
  2235. failure1:
  2236. return err;
  2237. }
  2238. /* Suspend resume functionality */
  2239. #ifdef CONFIG_PM
  2240. static int dma40_pm_suspend(struct device *dev)
  2241. {
  2242. struct platform_device *pdev = to_platform_device(dev);
  2243. struct d40_base *base = platform_get_drvdata(pdev);
  2244. int ret = 0;
  2245. if (!pm_runtime_suspended(dev))
  2246. return -EBUSY;
  2247. if (base->lcpa_regulator)
  2248. ret = regulator_disable(base->lcpa_regulator);
  2249. return ret;
  2250. }
  2251. static int dma40_runtime_suspend(struct device *dev)
  2252. {
  2253. struct platform_device *pdev = to_platform_device(dev);
  2254. struct d40_base *base = platform_get_drvdata(pdev);
  2255. d40_save_restore_registers(base, true);
  2256. /* Don't disable/enable clocks for v1 due to HW bugs */
  2257. if (base->rev != 1)
  2258. writel_relaxed(base->gcc_pwr_off_mask,
  2259. base->virtbase + D40_DREG_GCC);
  2260. return 0;
  2261. }
  2262. static int dma40_runtime_resume(struct device *dev)
  2263. {
  2264. struct platform_device *pdev = to_platform_device(dev);
  2265. struct d40_base *base = platform_get_drvdata(pdev);
  2266. if (base->initialized)
  2267. d40_save_restore_registers(base, false);
  2268. writel_relaxed(D40_DREG_GCC_ENABLE_ALL,
  2269. base->virtbase + D40_DREG_GCC);
  2270. return 0;
  2271. }
  2272. static int dma40_resume(struct device *dev)
  2273. {
  2274. struct platform_device *pdev = to_platform_device(dev);
  2275. struct d40_base *base = platform_get_drvdata(pdev);
  2276. int ret = 0;
  2277. if (base->lcpa_regulator)
  2278. ret = regulator_enable(base->lcpa_regulator);
  2279. return ret;
  2280. }
  2281. static const struct dev_pm_ops dma40_pm_ops = {
  2282. .suspend = dma40_pm_suspend,
  2283. .runtime_suspend = dma40_runtime_suspend,
  2284. .runtime_resume = dma40_runtime_resume,
  2285. .resume = dma40_resume,
  2286. };
  2287. #define DMA40_PM_OPS (&dma40_pm_ops)
  2288. #else
  2289. #define DMA40_PM_OPS NULL
  2290. #endif
  2291. /* Initialization functions. */
  2292. static int __init d40_phy_res_init(struct d40_base *base)
  2293. {
  2294. int i;
  2295. int num_phy_chans_avail = 0;
  2296. u32 val[2];
  2297. int odd_even_bit = -2;
  2298. int gcc = D40_DREG_GCC_ENA;
  2299. val[0] = readl(base->virtbase + D40_DREG_PRSME);
  2300. val[1] = readl(base->virtbase + D40_DREG_PRSMO);
  2301. for (i = 0; i < base->num_phy_chans; i++) {
  2302. base->phy_res[i].num = i;
  2303. odd_even_bit += 2 * ((i % 2) == 0);
  2304. if (((val[i % 2] >> odd_even_bit) & 3) == 1) {
  2305. /* Mark security only channels as occupied */
  2306. base->phy_res[i].allocated_src = D40_ALLOC_PHY;
  2307. base->phy_res[i].allocated_dst = D40_ALLOC_PHY;
  2308. base->phy_res[i].reserved = true;
  2309. gcc |= D40_DREG_GCC_EVTGRP_ENA(D40_PHYS_TO_GROUP(i),
  2310. D40_DREG_GCC_SRC);
  2311. gcc |= D40_DREG_GCC_EVTGRP_ENA(D40_PHYS_TO_GROUP(i),
  2312. D40_DREG_GCC_DST);
  2313. } else {
  2314. base->phy_res[i].allocated_src = D40_ALLOC_FREE;
  2315. base->phy_res[i].allocated_dst = D40_ALLOC_FREE;
  2316. base->phy_res[i].reserved = false;
  2317. num_phy_chans_avail++;
  2318. }
  2319. spin_lock_init(&base->phy_res[i].lock);
  2320. }
  2321. /* Mark disabled channels as occupied */
  2322. for (i = 0; base->plat_data->disabled_channels[i] != -1; i++) {
  2323. int chan = base->plat_data->disabled_channels[i];
  2324. base->phy_res[chan].allocated_src = D40_ALLOC_PHY;
  2325. base->phy_res[chan].allocated_dst = D40_ALLOC_PHY;
  2326. base->phy_res[chan].reserved = true;
  2327. gcc |= D40_DREG_GCC_EVTGRP_ENA(D40_PHYS_TO_GROUP(chan),
  2328. D40_DREG_GCC_SRC);
  2329. gcc |= D40_DREG_GCC_EVTGRP_ENA(D40_PHYS_TO_GROUP(chan),
  2330. D40_DREG_GCC_DST);
  2331. num_phy_chans_avail--;
  2332. }
  2333. dev_info(base->dev, "%d of %d physical DMA channels available\n",
  2334. num_phy_chans_avail, base->num_phy_chans);
  2335. /* Verify settings extended vs standard */
  2336. val[0] = readl(base->virtbase + D40_DREG_PRTYP);
  2337. for (i = 0; i < base->num_phy_chans; i++) {
  2338. if (base->phy_res[i].allocated_src == D40_ALLOC_FREE &&
  2339. (val[0] & 0x3) != 1)
  2340. dev_info(base->dev,
  2341. "[%s] INFO: channel %d is misconfigured (%d)\n",
  2342. __func__, i, val[0] & 0x3);
  2343. val[0] = val[0] >> 2;
  2344. }
  2345. /*
  2346. * To keep things simple, Enable all clocks initially.
  2347. * The clocks will get managed later post channel allocation.
  2348. * The clocks for the event lines on which reserved channels exists
  2349. * are not managed here.
  2350. */
  2351. writel(D40_DREG_GCC_ENABLE_ALL, base->virtbase + D40_DREG_GCC);
  2352. base->gcc_pwr_off_mask = gcc;
  2353. return num_phy_chans_avail;
  2354. }
  2355. static struct d40_base * __init d40_hw_detect_init(struct platform_device *pdev)
  2356. {
  2357. struct stedma40_platform_data *plat_data;
  2358. struct clk *clk = NULL;
  2359. void __iomem *virtbase = NULL;
  2360. struct resource *res = NULL;
  2361. struct d40_base *base = NULL;
  2362. int num_log_chans = 0;
  2363. int num_phy_chans;
  2364. int i;
  2365. u32 pid;
  2366. u32 cid;
  2367. u8 rev;
  2368. clk = clk_get(&pdev->dev, NULL);
  2369. if (IS_ERR(clk)) {
  2370. d40_err(&pdev->dev, "No matching clock found\n");
  2371. goto failure;
  2372. }
  2373. clk_enable(clk);
  2374. /* Get IO for DMAC base address */
  2375. res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "base");
  2376. if (!res)
  2377. goto failure;
  2378. if (request_mem_region(res->start, resource_size(res),
  2379. D40_NAME " I/O base") == NULL)
  2380. goto failure;
  2381. virtbase = ioremap(res->start, resource_size(res));
  2382. if (!virtbase)
  2383. goto failure;
  2384. /* This is just a regular AMBA PrimeCell ID actually */
  2385. for (pid = 0, i = 0; i < 4; i++)
  2386. pid |= (readl(virtbase + resource_size(res) - 0x20 + 4 * i)
  2387. & 255) << (i * 8);
  2388. for (cid = 0, i = 0; i < 4; i++)
  2389. cid |= (readl(virtbase + resource_size(res) - 0x10 + 4 * i)
  2390. & 255) << (i * 8);
  2391. if (cid != AMBA_CID) {
  2392. d40_err(&pdev->dev, "Unknown hardware! No PrimeCell ID\n");
  2393. goto failure;
  2394. }
  2395. if (AMBA_MANF_BITS(pid) != AMBA_VENDOR_ST) {
  2396. d40_err(&pdev->dev, "Unknown designer! Got %x wanted %x\n",
  2397. AMBA_MANF_BITS(pid),
  2398. AMBA_VENDOR_ST);
  2399. goto failure;
  2400. }
  2401. /*
  2402. * HW revision:
  2403. * DB8500ed has revision 0
  2404. * ? has revision 1
  2405. * DB8500v1 has revision 2
  2406. * DB8500v2 has revision 3
  2407. */
  2408. rev = AMBA_REV_BITS(pid);
  2409. /* The number of physical channels on this HW */
  2410. num_phy_chans = 4 * (readl(virtbase + D40_DREG_ICFG) & 0x7) + 4;
  2411. dev_info(&pdev->dev, "hardware revision: %d @ 0x%x\n",
  2412. rev, res->start);
  2413. plat_data = pdev->dev.platform_data;
  2414. /* Count the number of logical channels in use */
  2415. for (i = 0; i < plat_data->dev_len; i++)
  2416. if (plat_data->dev_rx[i] != 0)
  2417. num_log_chans++;
  2418. for (i = 0; i < plat_data->dev_len; i++)
  2419. if (plat_data->dev_tx[i] != 0)
  2420. num_log_chans++;
  2421. base = kzalloc(ALIGN(sizeof(struct d40_base), 4) +
  2422. (num_phy_chans + num_log_chans + plat_data->memcpy_len) *
  2423. sizeof(struct d40_chan), GFP_KERNEL);
  2424. if (base == NULL) {
  2425. d40_err(&pdev->dev, "Out of memory\n");
  2426. goto failure;
  2427. }
  2428. base->rev = rev;
  2429. base->clk = clk;
  2430. base->num_phy_chans = num_phy_chans;
  2431. base->num_log_chans = num_log_chans;
  2432. base->phy_start = res->start;
  2433. base->phy_size = resource_size(res);
  2434. base->virtbase = virtbase;
  2435. base->plat_data = plat_data;
  2436. base->dev = &pdev->dev;
  2437. base->phy_chans = ((void *)base) + ALIGN(sizeof(struct d40_base), 4);
  2438. base->log_chans = &base->phy_chans[num_phy_chans];
  2439. base->phy_res = kzalloc(num_phy_chans * sizeof(struct d40_phy_res),
  2440. GFP_KERNEL);
  2441. if (!base->phy_res)
  2442. goto failure;
  2443. base->lookup_phy_chans = kzalloc(num_phy_chans *
  2444. sizeof(struct d40_chan *),
  2445. GFP_KERNEL);
  2446. if (!base->lookup_phy_chans)
  2447. goto failure;
  2448. if (num_log_chans + plat_data->memcpy_len) {
  2449. /*
  2450. * The max number of logical channels are event lines for all
  2451. * src devices and dst devices
  2452. */
  2453. base->lookup_log_chans = kzalloc(plat_data->dev_len * 2 *
  2454. sizeof(struct d40_chan *),
  2455. GFP_KERNEL);
  2456. if (!base->lookup_log_chans)
  2457. goto failure;
  2458. }
  2459. base->reg_val_backup_chan = kmalloc(base->num_phy_chans *
  2460. sizeof(d40_backup_regs_chan),
  2461. GFP_KERNEL);
  2462. if (!base->reg_val_backup_chan)
  2463. goto failure;
  2464. base->lcla_pool.alloc_map =
  2465. kzalloc(num_phy_chans * sizeof(struct d40_desc *)
  2466. * D40_LCLA_LINK_PER_EVENT_GRP, GFP_KERNEL);
  2467. if (!base->lcla_pool.alloc_map)
  2468. goto failure;
  2469. base->desc_slab = kmem_cache_create(D40_NAME, sizeof(struct d40_desc),
  2470. 0, SLAB_HWCACHE_ALIGN,
  2471. NULL);
  2472. if (base->desc_slab == NULL)
  2473. goto failure;
  2474. return base;
  2475. failure:
  2476. if (!IS_ERR(clk)) {
  2477. clk_disable(clk);
  2478. clk_put(clk);
  2479. }
  2480. if (virtbase)
  2481. iounmap(virtbase);
  2482. if (res)
  2483. release_mem_region(res->start,
  2484. resource_size(res));
  2485. if (virtbase)
  2486. iounmap(virtbase);
  2487. if (base) {
  2488. kfree(base->lcla_pool.alloc_map);
  2489. kfree(base->lookup_log_chans);
  2490. kfree(base->lookup_phy_chans);
  2491. kfree(base->phy_res);
  2492. kfree(base);
  2493. }
  2494. return NULL;
  2495. }
  2496. static void __init d40_hw_init(struct d40_base *base)
  2497. {
  2498. static struct d40_reg_val dma_init_reg[] = {
  2499. /* Clock every part of the DMA block from start */
  2500. { .reg = D40_DREG_GCC, .val = D40_DREG_GCC_ENABLE_ALL},
  2501. /* Interrupts on all logical channels */
  2502. { .reg = D40_DREG_LCMIS0, .val = 0xFFFFFFFF},
  2503. { .reg = D40_DREG_LCMIS1, .val = 0xFFFFFFFF},
  2504. { .reg = D40_DREG_LCMIS2, .val = 0xFFFFFFFF},
  2505. { .reg = D40_DREG_LCMIS3, .val = 0xFFFFFFFF},
  2506. { .reg = D40_DREG_LCICR0, .val = 0xFFFFFFFF},
  2507. { .reg = D40_DREG_LCICR1, .val = 0xFFFFFFFF},
  2508. { .reg = D40_DREG_LCICR2, .val = 0xFFFFFFFF},
  2509. { .reg = D40_DREG_LCICR3, .val = 0xFFFFFFFF},
  2510. { .reg = D40_DREG_LCTIS0, .val = 0xFFFFFFFF},
  2511. { .reg = D40_DREG_LCTIS1, .val = 0xFFFFFFFF},
  2512. { .reg = D40_DREG_LCTIS2, .val = 0xFFFFFFFF},
  2513. { .reg = D40_DREG_LCTIS3, .val = 0xFFFFFFFF}
  2514. };
  2515. int i;
  2516. u32 prmseo[2] = {0, 0};
  2517. u32 activeo[2] = {0xFFFFFFFF, 0xFFFFFFFF};
  2518. u32 pcmis = 0;
  2519. u32 pcicr = 0;
  2520. for (i = 0; i < ARRAY_SIZE(dma_init_reg); i++)
  2521. writel(dma_init_reg[i].val,
  2522. base->virtbase + dma_init_reg[i].reg);
  2523. /* Configure all our dma channels to default settings */
  2524. for (i = 0; i < base->num_phy_chans; i++) {
  2525. activeo[i % 2] = activeo[i % 2] << 2;
  2526. if (base->phy_res[base->num_phy_chans - i - 1].allocated_src
  2527. == D40_ALLOC_PHY) {
  2528. activeo[i % 2] |= 3;
  2529. continue;
  2530. }
  2531. /* Enable interrupt # */
  2532. pcmis = (pcmis << 1) | 1;
  2533. /* Clear interrupt # */
  2534. pcicr = (pcicr << 1) | 1;
  2535. /* Set channel to physical mode */
  2536. prmseo[i % 2] = prmseo[i % 2] << 2;
  2537. prmseo[i % 2] |= 1;
  2538. }
  2539. writel(prmseo[1], base->virtbase + D40_DREG_PRMSE);
  2540. writel(prmseo[0], base->virtbase + D40_DREG_PRMSO);
  2541. writel(activeo[1], base->virtbase + D40_DREG_ACTIVE);
  2542. writel(activeo[0], base->virtbase + D40_DREG_ACTIVO);
  2543. /* Write which interrupt to enable */
  2544. writel(pcmis, base->virtbase + D40_DREG_PCMIS);
  2545. /* Write which interrupt to clear */
  2546. writel(pcicr, base->virtbase + D40_DREG_PCICR);
  2547. }
  2548. static int __init d40_lcla_allocate(struct d40_base *base)
  2549. {
  2550. struct d40_lcla_pool *pool = &base->lcla_pool;
  2551. unsigned long *page_list;
  2552. int i, j;
  2553. int ret = 0;
  2554. /*
  2555. * This is somewhat ugly. We need 8192 bytes that are 18 bit aligned,
  2556. * To full fill this hardware requirement without wasting 256 kb
  2557. * we allocate pages until we get an aligned one.
  2558. */
  2559. page_list = kmalloc(sizeof(unsigned long) * MAX_LCLA_ALLOC_ATTEMPTS,
  2560. GFP_KERNEL);
  2561. if (!page_list) {
  2562. ret = -ENOMEM;
  2563. goto failure;
  2564. }
  2565. /* Calculating how many pages that are required */
  2566. base->lcla_pool.pages = SZ_1K * base->num_phy_chans / PAGE_SIZE;
  2567. for (i = 0; i < MAX_LCLA_ALLOC_ATTEMPTS; i++) {
  2568. page_list[i] = __get_free_pages(GFP_KERNEL,
  2569. base->lcla_pool.pages);
  2570. if (!page_list[i]) {
  2571. d40_err(base->dev, "Failed to allocate %d pages.\n",
  2572. base->lcla_pool.pages);
  2573. for (j = 0; j < i; j++)
  2574. free_pages(page_list[j], base->lcla_pool.pages);
  2575. goto failure;
  2576. }
  2577. if ((virt_to_phys((void *)page_list[i]) &
  2578. (LCLA_ALIGNMENT - 1)) == 0)
  2579. break;
  2580. }
  2581. for (j = 0; j < i; j++)
  2582. free_pages(page_list[j], base->lcla_pool.pages);
  2583. if (i < MAX_LCLA_ALLOC_ATTEMPTS) {
  2584. base->lcla_pool.base = (void *)page_list[i];
  2585. } else {
  2586. /*
  2587. * After many attempts and no succees with finding the correct
  2588. * alignment, try with allocating a big buffer.
  2589. */
  2590. dev_warn(base->dev,
  2591. "[%s] Failed to get %d pages @ 18 bit align.\n",
  2592. __func__, base->lcla_pool.pages);
  2593. base->lcla_pool.base_unaligned = kmalloc(SZ_1K *
  2594. base->num_phy_chans +
  2595. LCLA_ALIGNMENT,
  2596. GFP_KERNEL);
  2597. if (!base->lcla_pool.base_unaligned) {
  2598. ret = -ENOMEM;
  2599. goto failure;
  2600. }
  2601. base->lcla_pool.base = PTR_ALIGN(base->lcla_pool.base_unaligned,
  2602. LCLA_ALIGNMENT);
  2603. }
  2604. pool->dma_addr = dma_map_single(base->dev, pool->base,
  2605. SZ_1K * base->num_phy_chans,
  2606. DMA_TO_DEVICE);
  2607. if (dma_mapping_error(base->dev, pool->dma_addr)) {
  2608. pool->dma_addr = 0;
  2609. ret = -ENOMEM;
  2610. goto failure;
  2611. }
  2612. writel(virt_to_phys(base->lcla_pool.base),
  2613. base->virtbase + D40_DREG_LCLA);
  2614. failure:
  2615. kfree(page_list);
  2616. return ret;
  2617. }
  2618. static int __init d40_probe(struct platform_device *pdev)
  2619. {
  2620. int err;
  2621. int ret = -ENOENT;
  2622. struct d40_base *base;
  2623. struct resource *res = NULL;
  2624. int num_reserved_chans;
  2625. u32 val;
  2626. base = d40_hw_detect_init(pdev);
  2627. if (!base)
  2628. goto failure;
  2629. num_reserved_chans = d40_phy_res_init(base);
  2630. platform_set_drvdata(pdev, base);
  2631. spin_lock_init(&base->interrupt_lock);
  2632. spin_lock_init(&base->execmd_lock);
  2633. /* Get IO for logical channel parameter address */
  2634. res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "lcpa");
  2635. if (!res) {
  2636. ret = -ENOENT;
  2637. d40_err(&pdev->dev, "No \"lcpa\" memory resource\n");
  2638. goto failure;
  2639. }
  2640. base->lcpa_size = resource_size(res);
  2641. base->phy_lcpa = res->start;
  2642. if (request_mem_region(res->start, resource_size(res),
  2643. D40_NAME " I/O lcpa") == NULL) {
  2644. ret = -EBUSY;
  2645. d40_err(&pdev->dev,
  2646. "Failed to request LCPA region 0x%x-0x%x\n",
  2647. res->start, res->end);
  2648. goto failure;
  2649. }
  2650. /* We make use of ESRAM memory for this. */
  2651. val = readl(base->virtbase + D40_DREG_LCPA);
  2652. if (res->start != val && val != 0) {
  2653. dev_warn(&pdev->dev,
  2654. "[%s] Mismatch LCPA dma 0x%x, def 0x%x\n",
  2655. __func__, val, res->start);
  2656. } else
  2657. writel(res->start, base->virtbase + D40_DREG_LCPA);
  2658. base->lcpa_base = ioremap(res->start, resource_size(res));
  2659. if (!base->lcpa_base) {
  2660. ret = -ENOMEM;
  2661. d40_err(&pdev->dev, "Failed to ioremap LCPA region\n");
  2662. goto failure;
  2663. }
  2664. /* If lcla has to be located in ESRAM we don't need to allocate */
  2665. if (base->plat_data->use_esram_lcla) {
  2666. res = platform_get_resource_byname(pdev, IORESOURCE_MEM,
  2667. "lcla_esram");
  2668. if (!res) {
  2669. ret = -ENOENT;
  2670. d40_err(&pdev->dev,
  2671. "No \"lcla_esram\" memory resource\n");
  2672. goto failure;
  2673. }
  2674. base->lcla_pool.base = ioremap(res->start,
  2675. resource_size(res));
  2676. if (!base->lcla_pool.base) {
  2677. ret = -ENOMEM;
  2678. d40_err(&pdev->dev, "Failed to ioremap LCLA region\n");
  2679. goto failure;
  2680. }
  2681. writel(res->start, base->virtbase + D40_DREG_LCLA);
  2682. } else {
  2683. ret = d40_lcla_allocate(base);
  2684. if (ret) {
  2685. d40_err(&pdev->dev, "Failed to allocate LCLA area\n");
  2686. goto failure;
  2687. }
  2688. }
  2689. spin_lock_init(&base->lcla_pool.lock);
  2690. base->irq = platform_get_irq(pdev, 0);
  2691. ret = request_irq(base->irq, d40_handle_interrupt, 0, D40_NAME, base);
  2692. if (ret) {
  2693. d40_err(&pdev->dev, "No IRQ defined\n");
  2694. goto failure;
  2695. }
  2696. pm_runtime_irq_safe(base->dev);
  2697. pm_runtime_set_autosuspend_delay(base->dev, DMA40_AUTOSUSPEND_DELAY);
  2698. pm_runtime_use_autosuspend(base->dev);
  2699. pm_runtime_enable(base->dev);
  2700. pm_runtime_resume(base->dev);
  2701. if (base->plat_data->use_esram_lcla) {
  2702. base->lcpa_regulator = regulator_get(base->dev, "lcla_esram");
  2703. if (IS_ERR(base->lcpa_regulator)) {
  2704. d40_err(&pdev->dev, "Failed to get lcpa_regulator\n");
  2705. base->lcpa_regulator = NULL;
  2706. goto failure;
  2707. }
  2708. ret = regulator_enable(base->lcpa_regulator);
  2709. if (ret) {
  2710. d40_err(&pdev->dev,
  2711. "Failed to enable lcpa_regulator\n");
  2712. regulator_put(base->lcpa_regulator);
  2713. base->lcpa_regulator = NULL;
  2714. goto failure;
  2715. }
  2716. }
  2717. base->initialized = true;
  2718. err = d40_dmaengine_init(base, num_reserved_chans);
  2719. if (err)
  2720. goto failure;
  2721. d40_hw_init(base);
  2722. dev_info(base->dev, "initialized\n");
  2723. return 0;
  2724. failure:
  2725. if (base) {
  2726. if (base->desc_slab)
  2727. kmem_cache_destroy(base->desc_slab);
  2728. if (base->virtbase)
  2729. iounmap(base->virtbase);
  2730. if (base->lcla_pool.base && base->plat_data->use_esram_lcla) {
  2731. iounmap(base->lcla_pool.base);
  2732. base->lcla_pool.base = NULL;
  2733. }
  2734. if (base->lcla_pool.dma_addr)
  2735. dma_unmap_single(base->dev, base->lcla_pool.dma_addr,
  2736. SZ_1K * base->num_phy_chans,
  2737. DMA_TO_DEVICE);
  2738. if (!base->lcla_pool.base_unaligned && base->lcla_pool.base)
  2739. free_pages((unsigned long)base->lcla_pool.base,
  2740. base->lcla_pool.pages);
  2741. kfree(base->lcla_pool.base_unaligned);
  2742. if (base->phy_lcpa)
  2743. release_mem_region(base->phy_lcpa,
  2744. base->lcpa_size);
  2745. if (base->phy_start)
  2746. release_mem_region(base->phy_start,
  2747. base->phy_size);
  2748. if (base->clk) {
  2749. clk_disable(base->clk);
  2750. clk_put(base->clk);
  2751. }
  2752. if (base->lcpa_regulator) {
  2753. regulator_disable(base->lcpa_regulator);
  2754. regulator_put(base->lcpa_regulator);
  2755. }
  2756. kfree(base->lcla_pool.alloc_map);
  2757. kfree(base->lookup_log_chans);
  2758. kfree(base->lookup_phy_chans);
  2759. kfree(base->phy_res);
  2760. kfree(base);
  2761. }
  2762. d40_err(&pdev->dev, "probe failed\n");
  2763. return ret;
  2764. }
  2765. static struct platform_driver d40_driver = {
  2766. .driver = {
  2767. .owner = THIS_MODULE,
  2768. .name = D40_NAME,
  2769. .pm = DMA40_PM_OPS,
  2770. },
  2771. };
  2772. static int __init stedma40_init(void)
  2773. {
  2774. return platform_driver_probe(&d40_driver, d40_probe);
  2775. }
  2776. subsys_initcall(stedma40_init);