cpufreq_conservative.c 16 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625
  1. /*
  2. * drivers/cpufreq/cpufreq_conservative.c
  3. *
  4. * Copyright (C) 2001 Russell King
  5. * (C) 2003 Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>.
  6. * Jun Nakajima <jun.nakajima@intel.com>
  7. * (C) 2009 Alexander Clouter <alex@digriz.org.uk>
  8. *
  9. * This program is free software; you can redistribute it and/or modify
  10. * it under the terms of the GNU General Public License version 2 as
  11. * published by the Free Software Foundation.
  12. */
  13. #include <linux/kernel.h>
  14. #include <linux/module.h>
  15. #include <linux/init.h>
  16. #include <linux/cpufreq.h>
  17. #include <linux/cpu.h>
  18. #include <linux/jiffies.h>
  19. #include <linux/kernel_stat.h>
  20. #include <linux/mutex.h>
  21. #include <linux/hrtimer.h>
  22. #include <linux/tick.h>
  23. #include <linux/ktime.h>
  24. #include <linux/sched.h>
  25. /*
  26. * dbs is used in this file as a shortform for demandbased switching
  27. * It helps to keep variable names smaller, simpler
  28. */
  29. #define DEF_FREQUENCY_UP_THRESHOLD (80)
  30. #define DEF_FREQUENCY_DOWN_THRESHOLD (20)
  31. /*
  32. * The polling frequency of this governor depends on the capability of
  33. * the processor. Default polling frequency is 1000 times the transition
  34. * latency of the processor. The governor will work on any processor with
  35. * transition latency <= 10mS, using appropriate sampling
  36. * rate.
  37. * For CPUs with transition latency > 10mS (mostly drivers with CPUFREQ_ETERNAL)
  38. * this governor will not work.
  39. * All times here are in uS.
  40. */
  41. #define MIN_SAMPLING_RATE_RATIO (2)
  42. static unsigned int min_sampling_rate;
  43. #define LATENCY_MULTIPLIER (1000)
  44. #define MIN_LATENCY_MULTIPLIER (100)
  45. #define DEF_SAMPLING_DOWN_FACTOR (1)
  46. #define MAX_SAMPLING_DOWN_FACTOR (10)
  47. #define TRANSITION_LATENCY_LIMIT (10 * 1000 * 1000)
  48. static void do_dbs_timer(struct work_struct *work);
  49. struct cpu_dbs_info_s {
  50. cputime64_t prev_cpu_idle;
  51. cputime64_t prev_cpu_wall;
  52. cputime64_t prev_cpu_nice;
  53. struct cpufreq_policy *cur_policy;
  54. struct delayed_work work;
  55. unsigned int down_skip;
  56. unsigned int requested_freq;
  57. int cpu;
  58. unsigned int enable:1;
  59. /*
  60. * percpu mutex that serializes governor limit change with
  61. * do_dbs_timer invocation. We do not want do_dbs_timer to run
  62. * when user is changing the governor or limits.
  63. */
  64. struct mutex timer_mutex;
  65. };
  66. static DEFINE_PER_CPU(struct cpu_dbs_info_s, cs_cpu_dbs_info);
  67. static unsigned int dbs_enable; /* number of CPUs using this policy */
  68. /*
  69. * dbs_mutex protects dbs_enable in governor start/stop.
  70. */
  71. static DEFINE_MUTEX(dbs_mutex);
  72. static struct dbs_tuners {
  73. unsigned int sampling_rate;
  74. unsigned int sampling_down_factor;
  75. unsigned int up_threshold;
  76. unsigned int down_threshold;
  77. unsigned int ignore_nice;
  78. unsigned int freq_step;
  79. } dbs_tuners_ins = {
  80. .up_threshold = DEF_FREQUENCY_UP_THRESHOLD,
  81. .down_threshold = DEF_FREQUENCY_DOWN_THRESHOLD,
  82. .sampling_down_factor = DEF_SAMPLING_DOWN_FACTOR,
  83. .ignore_nice = 0,
  84. .freq_step = 5,
  85. };
  86. static inline u64 get_cpu_idle_time_jiffy(unsigned int cpu, u64 *wall)
  87. {
  88. u64 idle_time;
  89. u64 cur_wall_time;
  90. u64 busy_time;
  91. cur_wall_time = jiffies64_to_cputime64(get_jiffies_64());
  92. busy_time = kcpustat_cpu(cpu).cpustat[CPUTIME_USER];
  93. busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_SYSTEM];
  94. busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_IRQ];
  95. busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_SOFTIRQ];
  96. busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_STEAL];
  97. busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_NICE];
  98. idle_time = cur_wall_time - busy_time;
  99. if (wall)
  100. *wall = jiffies_to_usecs(cur_wall_time);
  101. return jiffies_to_usecs(idle_time);
  102. }
  103. static inline cputime64_t get_cpu_idle_time(unsigned int cpu, cputime64_t *wall)
  104. {
  105. u64 idle_time = get_cpu_idle_time_us(cpu, NULL);
  106. if (idle_time == -1ULL)
  107. return get_cpu_idle_time_jiffy(cpu, wall);
  108. else
  109. idle_time += get_cpu_iowait_time_us(cpu, wall);
  110. return idle_time;
  111. }
  112. /* keep track of frequency transitions */
  113. static int
  114. dbs_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
  115. void *data)
  116. {
  117. struct cpufreq_freqs *freq = data;
  118. struct cpu_dbs_info_s *this_dbs_info = &per_cpu(cs_cpu_dbs_info,
  119. freq->cpu);
  120. struct cpufreq_policy *policy;
  121. if (!this_dbs_info->enable)
  122. return 0;
  123. policy = this_dbs_info->cur_policy;
  124. /*
  125. * we only care if our internally tracked freq moves outside
  126. * the 'valid' ranges of freqency available to us otherwise
  127. * we do not change it
  128. */
  129. if (this_dbs_info->requested_freq > policy->max
  130. || this_dbs_info->requested_freq < policy->min)
  131. this_dbs_info->requested_freq = freq->new;
  132. return 0;
  133. }
  134. static struct notifier_block dbs_cpufreq_notifier_block = {
  135. .notifier_call = dbs_cpufreq_notifier
  136. };
  137. /************************** sysfs interface ************************/
  138. static ssize_t show_sampling_rate_min(struct kobject *kobj,
  139. struct attribute *attr, char *buf)
  140. {
  141. return sprintf(buf, "%u\n", min_sampling_rate);
  142. }
  143. define_one_global_ro(sampling_rate_min);
  144. /* cpufreq_conservative Governor Tunables */
  145. #define show_one(file_name, object) \
  146. static ssize_t show_##file_name \
  147. (struct kobject *kobj, struct attribute *attr, char *buf) \
  148. { \
  149. return sprintf(buf, "%u\n", dbs_tuners_ins.object); \
  150. }
  151. show_one(sampling_rate, sampling_rate);
  152. show_one(sampling_down_factor, sampling_down_factor);
  153. show_one(up_threshold, up_threshold);
  154. show_one(down_threshold, down_threshold);
  155. show_one(ignore_nice_load, ignore_nice);
  156. show_one(freq_step, freq_step);
  157. static ssize_t store_sampling_down_factor(struct kobject *a,
  158. struct attribute *b,
  159. const char *buf, size_t count)
  160. {
  161. unsigned int input;
  162. int ret;
  163. ret = sscanf(buf, "%u", &input);
  164. if (ret != 1 || input > MAX_SAMPLING_DOWN_FACTOR || input < 1)
  165. return -EINVAL;
  166. dbs_tuners_ins.sampling_down_factor = input;
  167. return count;
  168. }
  169. static ssize_t store_sampling_rate(struct kobject *a, struct attribute *b,
  170. const char *buf, size_t count)
  171. {
  172. unsigned int input;
  173. int ret;
  174. ret = sscanf(buf, "%u", &input);
  175. if (ret != 1)
  176. return -EINVAL;
  177. dbs_tuners_ins.sampling_rate = max(input, min_sampling_rate);
  178. return count;
  179. }
  180. static ssize_t store_up_threshold(struct kobject *a, struct attribute *b,
  181. const char *buf, size_t count)
  182. {
  183. unsigned int input;
  184. int ret;
  185. ret = sscanf(buf, "%u", &input);
  186. if (ret != 1 || input > 100 ||
  187. input <= dbs_tuners_ins.down_threshold)
  188. return -EINVAL;
  189. dbs_tuners_ins.up_threshold = input;
  190. return count;
  191. }
  192. static ssize_t store_down_threshold(struct kobject *a, struct attribute *b,
  193. const char *buf, size_t count)
  194. {
  195. unsigned int input;
  196. int ret;
  197. ret = sscanf(buf, "%u", &input);
  198. /* cannot be lower than 11 otherwise freq will not fall */
  199. if (ret != 1 || input < 11 || input > 100 ||
  200. input >= dbs_tuners_ins.up_threshold)
  201. return -EINVAL;
  202. dbs_tuners_ins.down_threshold = input;
  203. return count;
  204. }
  205. static ssize_t store_ignore_nice_load(struct kobject *a, struct attribute *b,
  206. const char *buf, size_t count)
  207. {
  208. unsigned int input;
  209. int ret;
  210. unsigned int j;
  211. ret = sscanf(buf, "%u", &input);
  212. if (ret != 1)
  213. return -EINVAL;
  214. if (input > 1)
  215. input = 1;
  216. if (input == dbs_tuners_ins.ignore_nice) /* nothing to do */
  217. return count;
  218. dbs_tuners_ins.ignore_nice = input;
  219. /* we need to re-evaluate prev_cpu_idle */
  220. for_each_online_cpu(j) {
  221. struct cpu_dbs_info_s *dbs_info;
  222. dbs_info = &per_cpu(cs_cpu_dbs_info, j);
  223. dbs_info->prev_cpu_idle = get_cpu_idle_time(j,
  224. &dbs_info->prev_cpu_wall);
  225. if (dbs_tuners_ins.ignore_nice)
  226. dbs_info->prev_cpu_nice = kcpustat_cpu(j).cpustat[CPUTIME_NICE];
  227. }
  228. return count;
  229. }
  230. static ssize_t store_freq_step(struct kobject *a, struct attribute *b,
  231. const char *buf, size_t count)
  232. {
  233. unsigned int input;
  234. int ret;
  235. ret = sscanf(buf, "%u", &input);
  236. if (ret != 1)
  237. return -EINVAL;
  238. if (input > 100)
  239. input = 100;
  240. /* no need to test here if freq_step is zero as the user might actually
  241. * want this, they would be crazy though :) */
  242. dbs_tuners_ins.freq_step = input;
  243. return count;
  244. }
  245. define_one_global_rw(sampling_rate);
  246. define_one_global_rw(sampling_down_factor);
  247. define_one_global_rw(up_threshold);
  248. define_one_global_rw(down_threshold);
  249. define_one_global_rw(ignore_nice_load);
  250. define_one_global_rw(freq_step);
  251. static struct attribute *dbs_attributes[] = {
  252. &sampling_rate_min.attr,
  253. &sampling_rate.attr,
  254. &sampling_down_factor.attr,
  255. &up_threshold.attr,
  256. &down_threshold.attr,
  257. &ignore_nice_load.attr,
  258. &freq_step.attr,
  259. NULL
  260. };
  261. static struct attribute_group dbs_attr_group = {
  262. .attrs = dbs_attributes,
  263. .name = "conservative",
  264. };
  265. /************************** sysfs end ************************/
  266. static void dbs_check_cpu(struct cpu_dbs_info_s *this_dbs_info)
  267. {
  268. unsigned int load = 0;
  269. unsigned int max_load = 0;
  270. unsigned int freq_target;
  271. struct cpufreq_policy *policy;
  272. unsigned int j;
  273. policy = this_dbs_info->cur_policy;
  274. /*
  275. * Every sampling_rate, we check, if current idle time is less
  276. * than 20% (default), then we try to increase frequency
  277. * Every sampling_rate*sampling_down_factor, we check, if current
  278. * idle time is more than 80%, then we try to decrease frequency
  279. *
  280. * Any frequency increase takes it to the maximum frequency.
  281. * Frequency reduction happens at minimum steps of
  282. * 5% (default) of maximum frequency
  283. */
  284. /* Get Absolute Load */
  285. for_each_cpu(j, policy->cpus) {
  286. struct cpu_dbs_info_s *j_dbs_info;
  287. cputime64_t cur_wall_time, cur_idle_time;
  288. unsigned int idle_time, wall_time;
  289. j_dbs_info = &per_cpu(cs_cpu_dbs_info, j);
  290. cur_idle_time = get_cpu_idle_time(j, &cur_wall_time);
  291. wall_time = (unsigned int)
  292. (cur_wall_time - j_dbs_info->prev_cpu_wall);
  293. j_dbs_info->prev_cpu_wall = cur_wall_time;
  294. idle_time = (unsigned int)
  295. (cur_idle_time - j_dbs_info->prev_cpu_idle);
  296. j_dbs_info->prev_cpu_idle = cur_idle_time;
  297. if (dbs_tuners_ins.ignore_nice) {
  298. u64 cur_nice;
  299. unsigned long cur_nice_jiffies;
  300. cur_nice = kcpustat_cpu(j).cpustat[CPUTIME_NICE] -
  301. j_dbs_info->prev_cpu_nice;
  302. /*
  303. * Assumption: nice time between sampling periods will
  304. * be less than 2^32 jiffies for 32 bit sys
  305. */
  306. cur_nice_jiffies = (unsigned long)
  307. cputime64_to_jiffies64(cur_nice);
  308. j_dbs_info->prev_cpu_nice = kcpustat_cpu(j).cpustat[CPUTIME_NICE];
  309. idle_time += jiffies_to_usecs(cur_nice_jiffies);
  310. }
  311. if (unlikely(!wall_time || wall_time < idle_time))
  312. continue;
  313. load = 100 * (wall_time - idle_time) / wall_time;
  314. if (load > max_load)
  315. max_load = load;
  316. }
  317. /*
  318. * break out if we 'cannot' reduce the speed as the user might
  319. * want freq_step to be zero
  320. */
  321. if (dbs_tuners_ins.freq_step == 0)
  322. return;
  323. /* Check for frequency increase */
  324. if (max_load > dbs_tuners_ins.up_threshold) {
  325. this_dbs_info->down_skip = 0;
  326. /* if we are already at full speed then break out early */
  327. if (this_dbs_info->requested_freq == policy->max)
  328. return;
  329. freq_target = (dbs_tuners_ins.freq_step * policy->max) / 100;
  330. /* max freq cannot be less than 100. But who knows.... */
  331. if (unlikely(freq_target == 0))
  332. freq_target = 5;
  333. this_dbs_info->requested_freq += freq_target;
  334. if (this_dbs_info->requested_freq > policy->max)
  335. this_dbs_info->requested_freq = policy->max;
  336. __cpufreq_driver_target(policy, this_dbs_info->requested_freq,
  337. CPUFREQ_RELATION_H);
  338. return;
  339. }
  340. /*
  341. * The optimal frequency is the frequency that is the lowest that
  342. * can support the current CPU usage without triggering the up
  343. * policy. To be safe, we focus 10 points under the threshold.
  344. */
  345. if (max_load < (dbs_tuners_ins.down_threshold - 10)) {
  346. freq_target = (dbs_tuners_ins.freq_step * policy->max) / 100;
  347. this_dbs_info->requested_freq -= freq_target;
  348. if (this_dbs_info->requested_freq < policy->min)
  349. this_dbs_info->requested_freq = policy->min;
  350. /*
  351. * if we cannot reduce the frequency anymore, break out early
  352. */
  353. if (policy->cur == policy->min)
  354. return;
  355. __cpufreq_driver_target(policy, this_dbs_info->requested_freq,
  356. CPUFREQ_RELATION_H);
  357. return;
  358. }
  359. }
  360. static void do_dbs_timer(struct work_struct *work)
  361. {
  362. struct cpu_dbs_info_s *dbs_info =
  363. container_of(work, struct cpu_dbs_info_s, work.work);
  364. unsigned int cpu = dbs_info->cpu;
  365. /* We want all CPUs to do sampling nearly on same jiffy */
  366. int delay = usecs_to_jiffies(dbs_tuners_ins.sampling_rate);
  367. delay -= jiffies % delay;
  368. mutex_lock(&dbs_info->timer_mutex);
  369. dbs_check_cpu(dbs_info);
  370. schedule_delayed_work_on(cpu, &dbs_info->work, delay);
  371. mutex_unlock(&dbs_info->timer_mutex);
  372. }
  373. static inline void dbs_timer_init(struct cpu_dbs_info_s *dbs_info)
  374. {
  375. /* We want all CPUs to do sampling nearly on same jiffy */
  376. int delay = usecs_to_jiffies(dbs_tuners_ins.sampling_rate);
  377. delay -= jiffies % delay;
  378. dbs_info->enable = 1;
  379. INIT_DELAYED_WORK_DEFERRABLE(&dbs_info->work, do_dbs_timer);
  380. schedule_delayed_work_on(dbs_info->cpu, &dbs_info->work, delay);
  381. }
  382. static inline void dbs_timer_exit(struct cpu_dbs_info_s *dbs_info)
  383. {
  384. dbs_info->enable = 0;
  385. cancel_delayed_work_sync(&dbs_info->work);
  386. }
  387. static int cpufreq_governor_dbs(struct cpufreq_policy *policy,
  388. unsigned int event)
  389. {
  390. unsigned int cpu = policy->cpu;
  391. struct cpu_dbs_info_s *this_dbs_info;
  392. unsigned int j;
  393. int rc;
  394. this_dbs_info = &per_cpu(cs_cpu_dbs_info, cpu);
  395. switch (event) {
  396. case CPUFREQ_GOV_START:
  397. if ((!cpu_online(cpu)) || (!policy->cur))
  398. return -EINVAL;
  399. mutex_lock(&dbs_mutex);
  400. for_each_cpu(j, policy->cpus) {
  401. struct cpu_dbs_info_s *j_dbs_info;
  402. j_dbs_info = &per_cpu(cs_cpu_dbs_info, j);
  403. j_dbs_info->cur_policy = policy;
  404. j_dbs_info->prev_cpu_idle = get_cpu_idle_time(j,
  405. &j_dbs_info->prev_cpu_wall);
  406. if (dbs_tuners_ins.ignore_nice)
  407. j_dbs_info->prev_cpu_nice =
  408. kcpustat_cpu(j).cpustat[CPUTIME_NICE];
  409. }
  410. this_dbs_info->down_skip = 0;
  411. this_dbs_info->requested_freq = policy->cur;
  412. mutex_init(&this_dbs_info->timer_mutex);
  413. dbs_enable++;
  414. /*
  415. * Start the timerschedule work, when this governor
  416. * is used for first time
  417. */
  418. if (dbs_enable == 1) {
  419. unsigned int latency;
  420. /* policy latency is in nS. Convert it to uS first */
  421. latency = policy->cpuinfo.transition_latency / 1000;
  422. if (latency == 0)
  423. latency = 1;
  424. rc = sysfs_create_group(cpufreq_global_kobject,
  425. &dbs_attr_group);
  426. if (rc) {
  427. mutex_unlock(&dbs_mutex);
  428. return rc;
  429. }
  430. /*
  431. * conservative does not implement micro like ondemand
  432. * governor, thus we are bound to jiffes/HZ
  433. */
  434. min_sampling_rate =
  435. MIN_SAMPLING_RATE_RATIO * jiffies_to_usecs(10);
  436. /* Bring kernel and HW constraints together */
  437. min_sampling_rate = max(min_sampling_rate,
  438. MIN_LATENCY_MULTIPLIER * latency);
  439. dbs_tuners_ins.sampling_rate =
  440. max(min_sampling_rate,
  441. latency * LATENCY_MULTIPLIER);
  442. cpufreq_register_notifier(
  443. &dbs_cpufreq_notifier_block,
  444. CPUFREQ_TRANSITION_NOTIFIER);
  445. }
  446. mutex_unlock(&dbs_mutex);
  447. dbs_timer_init(this_dbs_info);
  448. break;
  449. case CPUFREQ_GOV_STOP:
  450. dbs_timer_exit(this_dbs_info);
  451. mutex_lock(&dbs_mutex);
  452. dbs_enable--;
  453. mutex_destroy(&this_dbs_info->timer_mutex);
  454. /*
  455. * Stop the timerschedule work, when this governor
  456. * is used for first time
  457. */
  458. if (dbs_enable == 0)
  459. cpufreq_unregister_notifier(
  460. &dbs_cpufreq_notifier_block,
  461. CPUFREQ_TRANSITION_NOTIFIER);
  462. mutex_unlock(&dbs_mutex);
  463. if (!dbs_enable)
  464. sysfs_remove_group(cpufreq_global_kobject,
  465. &dbs_attr_group);
  466. break;
  467. case CPUFREQ_GOV_LIMITS:
  468. mutex_lock(&this_dbs_info->timer_mutex);
  469. if (policy->max < this_dbs_info->cur_policy->cur)
  470. __cpufreq_driver_target(
  471. this_dbs_info->cur_policy,
  472. policy->max, CPUFREQ_RELATION_H);
  473. else if (policy->min > this_dbs_info->cur_policy->cur)
  474. __cpufreq_driver_target(
  475. this_dbs_info->cur_policy,
  476. policy->min, CPUFREQ_RELATION_L);
  477. mutex_unlock(&this_dbs_info->timer_mutex);
  478. break;
  479. }
  480. return 0;
  481. }
  482. #ifndef CONFIG_CPU_FREQ_DEFAULT_GOV_CONSERVATIVE
  483. static
  484. #endif
  485. struct cpufreq_governor cpufreq_gov_conservative = {
  486. .name = "conservative",
  487. .governor = cpufreq_governor_dbs,
  488. .max_transition_latency = TRANSITION_LATENCY_LIMIT,
  489. .owner = THIS_MODULE,
  490. };
  491. static int __init cpufreq_gov_dbs_init(void)
  492. {
  493. return cpufreq_register_governor(&cpufreq_gov_conservative);
  494. }
  495. static void __exit cpufreq_gov_dbs_exit(void)
  496. {
  497. cpufreq_unregister_governor(&cpufreq_gov_conservative);
  498. }
  499. MODULE_AUTHOR("Alexander Clouter <alex@digriz.org.uk>");
  500. MODULE_DESCRIPTION("'cpufreq_conservative' - A dynamic cpufreq governor for "
  501. "Low Latency Frequency Transition capable processors "
  502. "optimised for use in a battery environment");
  503. MODULE_LICENSE("GPL");
  504. #ifdef CONFIG_CPU_FREQ_DEFAULT_GOV_CONSERVATIVE
  505. fs_initcall(cpufreq_gov_dbs_init);
  506. #else
  507. module_init(cpufreq_gov_dbs_init);
  508. #endif
  509. module_exit(cpufreq_gov_dbs_exit);