random.c 40 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378
  1. /*
  2. * random.c -- A strong random number generator
  3. *
  4. * Copyright Matt Mackall <mpm@selenic.com>, 2003, 2004, 2005
  5. *
  6. * Copyright Theodore Ts'o, 1994, 1995, 1996, 1997, 1998, 1999. All
  7. * rights reserved.
  8. *
  9. * Redistribution and use in source and binary forms, with or without
  10. * modification, are permitted provided that the following conditions
  11. * are met:
  12. * 1. Redistributions of source code must retain the above copyright
  13. * notice, and the entire permission notice in its entirety,
  14. * including the disclaimer of warranties.
  15. * 2. Redistributions in binary form must reproduce the above copyright
  16. * notice, this list of conditions and the following disclaimer in the
  17. * documentation and/or other materials provided with the distribution.
  18. * 3. The name of the author may not be used to endorse or promote
  19. * products derived from this software without specific prior
  20. * written permission.
  21. *
  22. * ALTERNATIVELY, this product may be distributed under the terms of
  23. * the GNU General Public License, in which case the provisions of the GPL are
  24. * required INSTEAD OF the above restrictions. (This clause is
  25. * necessary due to a potential bad interaction between the GPL and
  26. * the restrictions contained in a BSD-style copyright.)
  27. *
  28. * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
  29. * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
  30. * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, ALL OF
  31. * WHICH ARE HEREBY DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE
  32. * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
  33. * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT
  34. * OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
  35. * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
  36. * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
  37. * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
  38. * USE OF THIS SOFTWARE, EVEN IF NOT ADVISED OF THE POSSIBILITY OF SUCH
  39. * DAMAGE.
  40. */
  41. /*
  42. * (now, with legal B.S. out of the way.....)
  43. *
  44. * This routine gathers environmental noise from device drivers, etc.,
  45. * and returns good random numbers, suitable for cryptographic use.
  46. * Besides the obvious cryptographic uses, these numbers are also good
  47. * for seeding TCP sequence numbers, and other places where it is
  48. * desirable to have numbers which are not only random, but hard to
  49. * predict by an attacker.
  50. *
  51. * Theory of operation
  52. * ===================
  53. *
  54. * Computers are very predictable devices. Hence it is extremely hard
  55. * to produce truly random numbers on a computer --- as opposed to
  56. * pseudo-random numbers, which can easily generated by using a
  57. * algorithm. Unfortunately, it is very easy for attackers to guess
  58. * the sequence of pseudo-random number generators, and for some
  59. * applications this is not acceptable. So instead, we must try to
  60. * gather "environmental noise" from the computer's environment, which
  61. * must be hard for outside attackers to observe, and use that to
  62. * generate random numbers. In a Unix environment, this is best done
  63. * from inside the kernel.
  64. *
  65. * Sources of randomness from the environment include inter-keyboard
  66. * timings, inter-interrupt timings from some interrupts, and other
  67. * events which are both (a) non-deterministic and (b) hard for an
  68. * outside observer to measure. Randomness from these sources are
  69. * added to an "entropy pool", which is mixed using a CRC-like function.
  70. * This is not cryptographically strong, but it is adequate assuming
  71. * the randomness is not chosen maliciously, and it is fast enough that
  72. * the overhead of doing it on every interrupt is very reasonable.
  73. * As random bytes are mixed into the entropy pool, the routines keep
  74. * an *estimate* of how many bits of randomness have been stored into
  75. * the random number generator's internal state.
  76. *
  77. * When random bytes are desired, they are obtained by taking the SHA
  78. * hash of the contents of the "entropy pool". The SHA hash avoids
  79. * exposing the internal state of the entropy pool. It is believed to
  80. * be computationally infeasible to derive any useful information
  81. * about the input of SHA from its output. Even if it is possible to
  82. * analyze SHA in some clever way, as long as the amount of data
  83. * returned from the generator is less than the inherent entropy in
  84. * the pool, the output data is totally unpredictable. For this
  85. * reason, the routine decreases its internal estimate of how many
  86. * bits of "true randomness" are contained in the entropy pool as it
  87. * outputs random numbers.
  88. *
  89. * If this estimate goes to zero, the routine can still generate
  90. * random numbers; however, an attacker may (at least in theory) be
  91. * able to infer the future output of the generator from prior
  92. * outputs. This requires successful cryptanalysis of SHA, which is
  93. * not believed to be feasible, but there is a remote possibility.
  94. * Nonetheless, these numbers should be useful for the vast majority
  95. * of purposes.
  96. *
  97. * Exported interfaces ---- output
  98. * ===============================
  99. *
  100. * There are three exported interfaces; the first is one designed to
  101. * be used from within the kernel:
  102. *
  103. * void get_random_bytes(void *buf, int nbytes);
  104. *
  105. * This interface will return the requested number of random bytes,
  106. * and place it in the requested buffer.
  107. *
  108. * The two other interfaces are two character devices /dev/random and
  109. * /dev/urandom. /dev/random is suitable for use when very high
  110. * quality randomness is desired (for example, for key generation or
  111. * one-time pads), as it will only return a maximum of the number of
  112. * bits of randomness (as estimated by the random number generator)
  113. * contained in the entropy pool.
  114. *
  115. * The /dev/urandom device does not have this limit, and will return
  116. * as many bytes as are requested. As more and more random bytes are
  117. * requested without giving time for the entropy pool to recharge,
  118. * this will result in random numbers that are merely cryptographically
  119. * strong. For many applications, however, this is acceptable.
  120. *
  121. * Exported interfaces ---- input
  122. * ==============================
  123. *
  124. * The current exported interfaces for gathering environmental noise
  125. * from the devices are:
  126. *
  127. * void add_input_randomness(unsigned int type, unsigned int code,
  128. * unsigned int value);
  129. * void add_interrupt_randomness(int irq);
  130. * void add_disk_randomness(struct gendisk *disk);
  131. *
  132. * add_input_randomness() uses the input layer interrupt timing, as well as
  133. * the event type information from the hardware.
  134. *
  135. * add_interrupt_randomness() uses the inter-interrupt timing as random
  136. * inputs to the entropy pool. Note that not all interrupts are good
  137. * sources of randomness! For example, the timer interrupts is not a
  138. * good choice, because the periodicity of the interrupts is too
  139. * regular, and hence predictable to an attacker. Network Interface
  140. * Controller interrupts are a better measure, since the timing of the
  141. * NIC interrupts are more unpredictable.
  142. *
  143. * add_disk_randomness() uses what amounts to the seek time of block
  144. * layer request events, on a per-disk_devt basis, as input to the
  145. * entropy pool. Note that high-speed solid state drives with very low
  146. * seek times do not make for good sources of entropy, as their seek
  147. * times are usually fairly consistent.
  148. *
  149. * All of these routines try to estimate how many bits of randomness a
  150. * particular randomness source. They do this by keeping track of the
  151. * first and second order deltas of the event timings.
  152. *
  153. * Ensuring unpredictability at system startup
  154. * ============================================
  155. *
  156. * When any operating system starts up, it will go through a sequence
  157. * of actions that are fairly predictable by an adversary, especially
  158. * if the start-up does not involve interaction with a human operator.
  159. * This reduces the actual number of bits of unpredictability in the
  160. * entropy pool below the value in entropy_count. In order to
  161. * counteract this effect, it helps to carry information in the
  162. * entropy pool across shut-downs and start-ups. To do this, put the
  163. * following lines an appropriate script which is run during the boot
  164. * sequence:
  165. *
  166. * echo "Initializing random number generator..."
  167. * random_seed=/var/run/random-seed
  168. * # Carry a random seed from start-up to start-up
  169. * # Load and then save the whole entropy pool
  170. * if [ -f $random_seed ]; then
  171. * cat $random_seed >/dev/urandom
  172. * else
  173. * touch $random_seed
  174. * fi
  175. * chmod 600 $random_seed
  176. * dd if=/dev/urandom of=$random_seed count=1 bs=512
  177. *
  178. * and the following lines in an appropriate script which is run as
  179. * the system is shutdown:
  180. *
  181. * # Carry a random seed from shut-down to start-up
  182. * # Save the whole entropy pool
  183. * echo "Saving random seed..."
  184. * random_seed=/var/run/random-seed
  185. * touch $random_seed
  186. * chmod 600 $random_seed
  187. * dd if=/dev/urandom of=$random_seed count=1 bs=512
  188. *
  189. * For example, on most modern systems using the System V init
  190. * scripts, such code fragments would be found in
  191. * /etc/rc.d/init.d/random. On older Linux systems, the correct script
  192. * location might be in /etc/rcb.d/rc.local or /etc/rc.d/rc.0.
  193. *
  194. * Effectively, these commands cause the contents of the entropy pool
  195. * to be saved at shut-down time and reloaded into the entropy pool at
  196. * start-up. (The 'dd' in the addition to the bootup script is to
  197. * make sure that /etc/random-seed is different for every start-up,
  198. * even if the system crashes without executing rc.0.) Even with
  199. * complete knowledge of the start-up activities, predicting the state
  200. * of the entropy pool requires knowledge of the previous history of
  201. * the system.
  202. *
  203. * Configuring the /dev/random driver under Linux
  204. * ==============================================
  205. *
  206. * The /dev/random driver under Linux uses minor numbers 8 and 9 of
  207. * the /dev/mem major number (#1). So if your system does not have
  208. * /dev/random and /dev/urandom created already, they can be created
  209. * by using the commands:
  210. *
  211. * mknod /dev/random c 1 8
  212. * mknod /dev/urandom c 1 9
  213. *
  214. * Acknowledgements:
  215. * =================
  216. *
  217. * Ideas for constructing this random number generator were derived
  218. * from Pretty Good Privacy's random number generator, and from private
  219. * discussions with Phil Karn. Colin Plumb provided a faster random
  220. * number generator, which speed up the mixing function of the entropy
  221. * pool, taken from PGPfone. Dale Worley has also contributed many
  222. * useful ideas and suggestions to improve this driver.
  223. *
  224. * Any flaws in the design are solely my responsibility, and should
  225. * not be attributed to the Phil, Colin, or any of authors of PGP.
  226. *
  227. * Further background information on this topic may be obtained from
  228. * RFC 1750, "Randomness Recommendations for Security", by Donald
  229. * Eastlake, Steve Crocker, and Jeff Schiller.
  230. */
  231. #include <linux/utsname.h>
  232. #include <linux/module.h>
  233. #include <linux/kernel.h>
  234. #include <linux/major.h>
  235. #include <linux/string.h>
  236. #include <linux/fcntl.h>
  237. #include <linux/slab.h>
  238. #include <linux/random.h>
  239. #include <linux/poll.h>
  240. #include <linux/init.h>
  241. #include <linux/fs.h>
  242. #include <linux/genhd.h>
  243. #include <linux/interrupt.h>
  244. #include <linux/mm.h>
  245. #include <linux/spinlock.h>
  246. #include <linux/percpu.h>
  247. #include <linux/cryptohash.h>
  248. #include <linux/fips.h>
  249. #ifdef CONFIG_GENERIC_HARDIRQS
  250. # include <linux/irq.h>
  251. #endif
  252. #include <asm/processor.h>
  253. #include <asm/uaccess.h>
  254. #include <asm/irq.h>
  255. #include <asm/io.h>
  256. /*
  257. * Configuration information
  258. */
  259. #define INPUT_POOL_WORDS 128
  260. #define OUTPUT_POOL_WORDS 32
  261. #define SEC_XFER_SIZE 512
  262. #define EXTRACT_SIZE 10
  263. /*
  264. * The minimum number of bits of entropy before we wake up a read on
  265. * /dev/random. Should be enough to do a significant reseed.
  266. */
  267. static int random_read_wakeup_thresh = 64;
  268. /*
  269. * If the entropy count falls under this number of bits, then we
  270. * should wake up processes which are selecting or polling on write
  271. * access to /dev/random.
  272. */
  273. static int random_write_wakeup_thresh = 128;
  274. /*
  275. * When the input pool goes over trickle_thresh, start dropping most
  276. * samples to avoid wasting CPU time and reduce lock contention.
  277. */
  278. static int trickle_thresh __read_mostly = INPUT_POOL_WORDS * 28;
  279. static DEFINE_PER_CPU(int, trickle_count);
  280. /*
  281. * A pool of size .poolwords is stirred with a primitive polynomial
  282. * of degree .poolwords over GF(2). The taps for various sizes are
  283. * defined below. They are chosen to be evenly spaced (minimum RMS
  284. * distance from evenly spaced; the numbers in the comments are a
  285. * scaled squared error sum) except for the last tap, which is 1 to
  286. * get the twisting happening as fast as possible.
  287. */
  288. static struct poolinfo {
  289. int poolwords;
  290. int tap1, tap2, tap3, tap4, tap5;
  291. } poolinfo_table[] = {
  292. /* x^128 + x^103 + x^76 + x^51 +x^25 + x + 1 -- 105 */
  293. { 128, 103, 76, 51, 25, 1 },
  294. /* x^32 + x^26 + x^20 + x^14 + x^7 + x + 1 -- 15 */
  295. { 32, 26, 20, 14, 7, 1 },
  296. #if 0
  297. /* x^2048 + x^1638 + x^1231 + x^819 + x^411 + x + 1 -- 115 */
  298. { 2048, 1638, 1231, 819, 411, 1 },
  299. /* x^1024 + x^817 + x^615 + x^412 + x^204 + x + 1 -- 290 */
  300. { 1024, 817, 615, 412, 204, 1 },
  301. /* x^1024 + x^819 + x^616 + x^410 + x^207 + x^2 + 1 -- 115 */
  302. { 1024, 819, 616, 410, 207, 2 },
  303. /* x^512 + x^411 + x^308 + x^208 + x^104 + x + 1 -- 225 */
  304. { 512, 411, 308, 208, 104, 1 },
  305. /* x^512 + x^409 + x^307 + x^206 + x^102 + x^2 + 1 -- 95 */
  306. { 512, 409, 307, 206, 102, 2 },
  307. /* x^512 + x^409 + x^309 + x^205 + x^103 + x^2 + 1 -- 95 */
  308. { 512, 409, 309, 205, 103, 2 },
  309. /* x^256 + x^205 + x^155 + x^101 + x^52 + x + 1 -- 125 */
  310. { 256, 205, 155, 101, 52, 1 },
  311. /* x^128 + x^103 + x^78 + x^51 + x^27 + x^2 + 1 -- 70 */
  312. { 128, 103, 78, 51, 27, 2 },
  313. /* x^64 + x^52 + x^39 + x^26 + x^14 + x + 1 -- 15 */
  314. { 64, 52, 39, 26, 14, 1 },
  315. #endif
  316. };
  317. #define POOLBITS poolwords*32
  318. #define POOLBYTES poolwords*4
  319. /*
  320. * For the purposes of better mixing, we use the CRC-32 polynomial as
  321. * well to make a twisted Generalized Feedback Shift Reigster
  322. *
  323. * (See M. Matsumoto & Y. Kurita, 1992. Twisted GFSR generators. ACM
  324. * Transactions on Modeling and Computer Simulation 2(3):179-194.
  325. * Also see M. Matsumoto & Y. Kurita, 1994. Twisted GFSR generators
  326. * II. ACM Transactions on Mdeling and Computer Simulation 4:254-266)
  327. *
  328. * Thanks to Colin Plumb for suggesting this.
  329. *
  330. * We have not analyzed the resultant polynomial to prove it primitive;
  331. * in fact it almost certainly isn't. Nonetheless, the irreducible factors
  332. * of a random large-degree polynomial over GF(2) are more than large enough
  333. * that periodicity is not a concern.
  334. *
  335. * The input hash is much less sensitive than the output hash. All
  336. * that we want of it is that it be a good non-cryptographic hash;
  337. * i.e. it not produce collisions when fed "random" data of the sort
  338. * we expect to see. As long as the pool state differs for different
  339. * inputs, we have preserved the input entropy and done a good job.
  340. * The fact that an intelligent attacker can construct inputs that
  341. * will produce controlled alterations to the pool's state is not
  342. * important because we don't consider such inputs to contribute any
  343. * randomness. The only property we need with respect to them is that
  344. * the attacker can't increase his/her knowledge of the pool's state.
  345. * Since all additions are reversible (knowing the final state and the
  346. * input, you can reconstruct the initial state), if an attacker has
  347. * any uncertainty about the initial state, he/she can only shuffle
  348. * that uncertainty about, but never cause any collisions (which would
  349. * decrease the uncertainty).
  350. *
  351. * The chosen system lets the state of the pool be (essentially) the input
  352. * modulo the generator polymnomial. Now, for random primitive polynomials,
  353. * this is a universal class of hash functions, meaning that the chance
  354. * of a collision is limited by the attacker's knowledge of the generator
  355. * polynomail, so if it is chosen at random, an attacker can never force
  356. * a collision. Here, we use a fixed polynomial, but we *can* assume that
  357. * ###--> it is unknown to the processes generating the input entropy. <-###
  358. * Because of this important property, this is a good, collision-resistant
  359. * hash; hash collisions will occur no more often than chance.
  360. */
  361. /*
  362. * Static global variables
  363. */
  364. static DECLARE_WAIT_QUEUE_HEAD(random_read_wait);
  365. static DECLARE_WAIT_QUEUE_HEAD(random_write_wait);
  366. static struct fasync_struct *fasync;
  367. #if 0
  368. static bool debug;
  369. module_param(debug, bool, 0644);
  370. #define DEBUG_ENT(fmt, arg...) do { \
  371. if (debug) \
  372. printk(KERN_DEBUG "random %04d %04d %04d: " \
  373. fmt,\
  374. input_pool.entropy_count,\
  375. blocking_pool.entropy_count,\
  376. nonblocking_pool.entropy_count,\
  377. ## arg); } while (0)
  378. #else
  379. #define DEBUG_ENT(fmt, arg...) do {} while (0)
  380. #endif
  381. /**********************************************************************
  382. *
  383. * OS independent entropy store. Here are the functions which handle
  384. * storing entropy in an entropy pool.
  385. *
  386. **********************************************************************/
  387. struct entropy_store;
  388. struct entropy_store {
  389. /* read-only data: */
  390. struct poolinfo *poolinfo;
  391. __u32 *pool;
  392. const char *name;
  393. struct entropy_store *pull;
  394. int limit;
  395. /* read-write data: */
  396. spinlock_t lock;
  397. unsigned add_ptr;
  398. int entropy_count;
  399. int input_rotate;
  400. __u8 last_data[EXTRACT_SIZE];
  401. };
  402. static __u32 input_pool_data[INPUT_POOL_WORDS];
  403. static __u32 blocking_pool_data[OUTPUT_POOL_WORDS];
  404. static __u32 nonblocking_pool_data[OUTPUT_POOL_WORDS];
  405. static struct entropy_store input_pool = {
  406. .poolinfo = &poolinfo_table[0],
  407. .name = "input",
  408. .limit = 1,
  409. .lock = __SPIN_LOCK_UNLOCKED(&input_pool.lock),
  410. .pool = input_pool_data
  411. };
  412. static struct entropy_store blocking_pool = {
  413. .poolinfo = &poolinfo_table[1],
  414. .name = "blocking",
  415. .limit = 1,
  416. .pull = &input_pool,
  417. .lock = __SPIN_LOCK_UNLOCKED(&blocking_pool.lock),
  418. .pool = blocking_pool_data
  419. };
  420. static struct entropy_store nonblocking_pool = {
  421. .poolinfo = &poolinfo_table[1],
  422. .name = "nonblocking",
  423. .pull = &input_pool,
  424. .lock = __SPIN_LOCK_UNLOCKED(&nonblocking_pool.lock),
  425. .pool = nonblocking_pool_data
  426. };
  427. /*
  428. * This function adds bytes into the entropy "pool". It does not
  429. * update the entropy estimate. The caller should call
  430. * credit_entropy_bits if this is appropriate.
  431. *
  432. * The pool is stirred with a primitive polynomial of the appropriate
  433. * degree, and then twisted. We twist by three bits at a time because
  434. * it's cheap to do so and helps slightly in the expected case where
  435. * the entropy is concentrated in the low-order bits.
  436. */
  437. static void mix_pool_bytes_extract(struct entropy_store *r, const void *in,
  438. int nbytes, __u8 out[64])
  439. {
  440. static __u32 const twist_table[8] = {
  441. 0x00000000, 0x3b6e20c8, 0x76dc4190, 0x4db26158,
  442. 0xedb88320, 0xd6d6a3e8, 0x9b64c2b0, 0xa00ae278 };
  443. unsigned long i, j, tap1, tap2, tap3, tap4, tap5;
  444. int input_rotate;
  445. int wordmask = r->poolinfo->poolwords - 1;
  446. const char *bytes = in;
  447. __u32 w;
  448. unsigned long flags;
  449. /* Taps are constant, so we can load them without holding r->lock. */
  450. tap1 = r->poolinfo->tap1;
  451. tap2 = r->poolinfo->tap2;
  452. tap3 = r->poolinfo->tap3;
  453. tap4 = r->poolinfo->tap4;
  454. tap5 = r->poolinfo->tap5;
  455. spin_lock_irqsave(&r->lock, flags);
  456. input_rotate = r->input_rotate;
  457. i = r->add_ptr;
  458. /* mix one byte at a time to simplify size handling and churn faster */
  459. while (nbytes--) {
  460. w = rol32(*bytes++, input_rotate & 31);
  461. i = (i - 1) & wordmask;
  462. /* XOR in the various taps */
  463. w ^= r->pool[i];
  464. w ^= r->pool[(i + tap1) & wordmask];
  465. w ^= r->pool[(i + tap2) & wordmask];
  466. w ^= r->pool[(i + tap3) & wordmask];
  467. w ^= r->pool[(i + tap4) & wordmask];
  468. w ^= r->pool[(i + tap5) & wordmask];
  469. /* Mix the result back in with a twist */
  470. r->pool[i] = (w >> 3) ^ twist_table[w & 7];
  471. /*
  472. * Normally, we add 7 bits of rotation to the pool.
  473. * At the beginning of the pool, add an extra 7 bits
  474. * rotation, so that successive passes spread the
  475. * input bits across the pool evenly.
  476. */
  477. input_rotate += i ? 7 : 14;
  478. }
  479. r->input_rotate = input_rotate;
  480. r->add_ptr = i;
  481. if (out)
  482. for (j = 0; j < 16; j++)
  483. ((__u32 *)out)[j] = r->pool[(i - j) & wordmask];
  484. spin_unlock_irqrestore(&r->lock, flags);
  485. }
  486. static void mix_pool_bytes(struct entropy_store *r, const void *in, int bytes)
  487. {
  488. mix_pool_bytes_extract(r, in, bytes, NULL);
  489. }
  490. /*
  491. * Credit (or debit) the entropy store with n bits of entropy
  492. */
  493. static void credit_entropy_bits(struct entropy_store *r, int nbits)
  494. {
  495. unsigned long flags;
  496. int entropy_count;
  497. if (!nbits)
  498. return;
  499. spin_lock_irqsave(&r->lock, flags);
  500. DEBUG_ENT("added %d entropy credits to %s\n", nbits, r->name);
  501. entropy_count = r->entropy_count;
  502. entropy_count += nbits;
  503. if (entropy_count < 0) {
  504. DEBUG_ENT("negative entropy/overflow\n");
  505. entropy_count = 0;
  506. } else if (entropy_count > r->poolinfo->POOLBITS)
  507. entropy_count = r->poolinfo->POOLBITS;
  508. r->entropy_count = entropy_count;
  509. /* should we wake readers? */
  510. if (r == &input_pool && entropy_count >= random_read_wakeup_thresh) {
  511. wake_up_interruptible(&random_read_wait);
  512. kill_fasync(&fasync, SIGIO, POLL_IN);
  513. }
  514. spin_unlock_irqrestore(&r->lock, flags);
  515. }
  516. /*********************************************************************
  517. *
  518. * Entropy input management
  519. *
  520. *********************************************************************/
  521. /* There is one of these per entropy source */
  522. struct timer_rand_state {
  523. cycles_t last_time;
  524. long last_delta, last_delta2;
  525. unsigned dont_count_entropy:1;
  526. };
  527. #ifndef CONFIG_GENERIC_HARDIRQS
  528. static struct timer_rand_state *irq_timer_state[NR_IRQS];
  529. static struct timer_rand_state *get_timer_rand_state(unsigned int irq)
  530. {
  531. return irq_timer_state[irq];
  532. }
  533. static void set_timer_rand_state(unsigned int irq,
  534. struct timer_rand_state *state)
  535. {
  536. irq_timer_state[irq] = state;
  537. }
  538. #else
  539. static struct timer_rand_state *get_timer_rand_state(unsigned int irq)
  540. {
  541. struct irq_desc *desc;
  542. desc = irq_to_desc(irq);
  543. return desc->timer_rand_state;
  544. }
  545. static void set_timer_rand_state(unsigned int irq,
  546. struct timer_rand_state *state)
  547. {
  548. struct irq_desc *desc;
  549. desc = irq_to_desc(irq);
  550. desc->timer_rand_state = state;
  551. }
  552. #endif
  553. static struct timer_rand_state input_timer_state;
  554. /*
  555. * This function adds entropy to the entropy "pool" by using timing
  556. * delays. It uses the timer_rand_state structure to make an estimate
  557. * of how many bits of entropy this call has added to the pool.
  558. *
  559. * The number "num" is also added to the pool - it should somehow describe
  560. * the type of event which just happened. This is currently 0-255 for
  561. * keyboard scan codes, and 256 upwards for interrupts.
  562. *
  563. */
  564. static void add_timer_randomness(struct timer_rand_state *state, unsigned num)
  565. {
  566. struct {
  567. long jiffies;
  568. unsigned cycles;
  569. unsigned num;
  570. } sample;
  571. long delta, delta2, delta3;
  572. preempt_disable();
  573. /* if over the trickle threshold, use only 1 in 4096 samples */
  574. if (input_pool.entropy_count > trickle_thresh &&
  575. ((__this_cpu_inc_return(trickle_count) - 1) & 0xfff))
  576. goto out;
  577. sample.jiffies = jiffies;
  578. /* Use arch random value, fall back to cycles */
  579. if (!arch_get_random_int(&sample.cycles))
  580. sample.cycles = get_cycles();
  581. sample.num = num;
  582. mix_pool_bytes(&input_pool, &sample, sizeof(sample));
  583. /*
  584. * Calculate number of bits of randomness we probably added.
  585. * We take into account the first, second and third-order deltas
  586. * in order to make our estimate.
  587. */
  588. if (!state->dont_count_entropy) {
  589. delta = sample.jiffies - state->last_time;
  590. state->last_time = sample.jiffies;
  591. delta2 = delta - state->last_delta;
  592. state->last_delta = delta;
  593. delta3 = delta2 - state->last_delta2;
  594. state->last_delta2 = delta2;
  595. if (delta < 0)
  596. delta = -delta;
  597. if (delta2 < 0)
  598. delta2 = -delta2;
  599. if (delta3 < 0)
  600. delta3 = -delta3;
  601. if (delta > delta2)
  602. delta = delta2;
  603. if (delta > delta3)
  604. delta = delta3;
  605. /*
  606. * delta is now minimum absolute delta.
  607. * Round down by 1 bit on general principles,
  608. * and limit entropy entimate to 12 bits.
  609. */
  610. credit_entropy_bits(&input_pool,
  611. min_t(int, fls(delta>>1), 11));
  612. }
  613. out:
  614. preempt_enable();
  615. }
  616. void add_input_randomness(unsigned int type, unsigned int code,
  617. unsigned int value)
  618. {
  619. static unsigned char last_value;
  620. /* ignore autorepeat and the like */
  621. if (value == last_value)
  622. return;
  623. DEBUG_ENT("input event\n");
  624. last_value = value;
  625. add_timer_randomness(&input_timer_state,
  626. (type << 4) ^ code ^ (code >> 4) ^ value);
  627. }
  628. EXPORT_SYMBOL_GPL(add_input_randomness);
  629. void add_interrupt_randomness(int irq)
  630. {
  631. struct timer_rand_state *state;
  632. state = get_timer_rand_state(irq);
  633. if (state == NULL)
  634. return;
  635. DEBUG_ENT("irq event %d\n", irq);
  636. add_timer_randomness(state, 0x100 + irq);
  637. }
  638. #ifdef CONFIG_BLOCK
  639. void add_disk_randomness(struct gendisk *disk)
  640. {
  641. if (!disk || !disk->random)
  642. return;
  643. /* first major is 1, so we get >= 0x200 here */
  644. DEBUG_ENT("disk event %d:%d\n",
  645. MAJOR(disk_devt(disk)), MINOR(disk_devt(disk)));
  646. add_timer_randomness(disk->random, 0x100 + disk_devt(disk));
  647. }
  648. #endif
  649. /*********************************************************************
  650. *
  651. * Entropy extraction routines
  652. *
  653. *********************************************************************/
  654. static ssize_t extract_entropy(struct entropy_store *r, void *buf,
  655. size_t nbytes, int min, int rsvd);
  656. /*
  657. * This utility inline function is responsible for transferring entropy
  658. * from the primary pool to the secondary extraction pool. We make
  659. * sure we pull enough for a 'catastrophic reseed'.
  660. */
  661. static void xfer_secondary_pool(struct entropy_store *r, size_t nbytes)
  662. {
  663. __u32 tmp[OUTPUT_POOL_WORDS];
  664. if (r->pull && r->entropy_count < nbytes * 8 &&
  665. r->entropy_count < r->poolinfo->POOLBITS) {
  666. /* If we're limited, always leave two wakeup worth's BITS */
  667. int rsvd = r->limit ? 0 : random_read_wakeup_thresh/4;
  668. int bytes = nbytes;
  669. /* pull at least as many as BYTES as wakeup BITS */
  670. bytes = max_t(int, bytes, random_read_wakeup_thresh / 8);
  671. /* but never more than the buffer size */
  672. bytes = min_t(int, bytes, sizeof(tmp));
  673. DEBUG_ENT("going to reseed %s with %d bits "
  674. "(%d of %d requested)\n",
  675. r->name, bytes * 8, nbytes * 8, r->entropy_count);
  676. bytes = extract_entropy(r->pull, tmp, bytes,
  677. random_read_wakeup_thresh / 8, rsvd);
  678. mix_pool_bytes(r, tmp, bytes);
  679. credit_entropy_bits(r, bytes*8);
  680. }
  681. }
  682. /*
  683. * These functions extracts randomness from the "entropy pool", and
  684. * returns it in a buffer.
  685. *
  686. * The min parameter specifies the minimum amount we can pull before
  687. * failing to avoid races that defeat catastrophic reseeding while the
  688. * reserved parameter indicates how much entropy we must leave in the
  689. * pool after each pull to avoid starving other readers.
  690. *
  691. * Note: extract_entropy() assumes that .poolwords is a multiple of 16 words.
  692. */
  693. static size_t account(struct entropy_store *r, size_t nbytes, int min,
  694. int reserved)
  695. {
  696. unsigned long flags;
  697. /* Hold lock while accounting */
  698. spin_lock_irqsave(&r->lock, flags);
  699. BUG_ON(r->entropy_count > r->poolinfo->POOLBITS);
  700. DEBUG_ENT("trying to extract %d bits from %s\n",
  701. nbytes * 8, r->name);
  702. /* Can we pull enough? */
  703. if (r->entropy_count / 8 < min + reserved) {
  704. nbytes = 0;
  705. } else {
  706. /* If limited, never pull more than available */
  707. if (r->limit && nbytes + reserved >= r->entropy_count / 8)
  708. nbytes = r->entropy_count/8 - reserved;
  709. if (r->entropy_count / 8 >= nbytes + reserved)
  710. r->entropy_count -= nbytes*8;
  711. else
  712. r->entropy_count = reserved;
  713. if (r->entropy_count < random_write_wakeup_thresh) {
  714. wake_up_interruptible(&random_write_wait);
  715. kill_fasync(&fasync, SIGIO, POLL_OUT);
  716. }
  717. }
  718. DEBUG_ENT("debiting %d entropy credits from %s%s\n",
  719. nbytes * 8, r->name, r->limit ? "" : " (unlimited)");
  720. spin_unlock_irqrestore(&r->lock, flags);
  721. return nbytes;
  722. }
  723. static void extract_buf(struct entropy_store *r, __u8 *out)
  724. {
  725. int i;
  726. __u32 hash[5], workspace[SHA_WORKSPACE_WORDS];
  727. __u8 extract[64];
  728. /* Generate a hash across the pool, 16 words (512 bits) at a time */
  729. sha_init(hash);
  730. for (i = 0; i < r->poolinfo->poolwords; i += 16)
  731. sha_transform(hash, (__u8 *)(r->pool + i), workspace);
  732. /*
  733. * We mix the hash back into the pool to prevent backtracking
  734. * attacks (where the attacker knows the state of the pool
  735. * plus the current outputs, and attempts to find previous
  736. * ouputs), unless the hash function can be inverted. By
  737. * mixing at least a SHA1 worth of hash data back, we make
  738. * brute-forcing the feedback as hard as brute-forcing the
  739. * hash.
  740. */
  741. mix_pool_bytes_extract(r, hash, sizeof(hash), extract);
  742. /*
  743. * To avoid duplicates, we atomically extract a portion of the
  744. * pool while mixing, and hash one final time.
  745. */
  746. sha_transform(hash, extract, workspace);
  747. memset(extract, 0, sizeof(extract));
  748. memset(workspace, 0, sizeof(workspace));
  749. /*
  750. * In case the hash function has some recognizable output
  751. * pattern, we fold it in half. Thus, we always feed back
  752. * twice as much data as we output.
  753. */
  754. hash[0] ^= hash[3];
  755. hash[1] ^= hash[4];
  756. hash[2] ^= rol32(hash[2], 16);
  757. memcpy(out, hash, EXTRACT_SIZE);
  758. memset(hash, 0, sizeof(hash));
  759. }
  760. static ssize_t extract_entropy(struct entropy_store *r, void *buf,
  761. size_t nbytes, int min, int reserved)
  762. {
  763. ssize_t ret = 0, i;
  764. __u8 tmp[EXTRACT_SIZE];
  765. unsigned long flags;
  766. xfer_secondary_pool(r, nbytes);
  767. nbytes = account(r, nbytes, min, reserved);
  768. while (nbytes) {
  769. extract_buf(r, tmp);
  770. if (fips_enabled) {
  771. spin_lock_irqsave(&r->lock, flags);
  772. if (!memcmp(tmp, r->last_data, EXTRACT_SIZE))
  773. panic("Hardware RNG duplicated output!\n");
  774. memcpy(r->last_data, tmp, EXTRACT_SIZE);
  775. spin_unlock_irqrestore(&r->lock, flags);
  776. }
  777. i = min_t(int, nbytes, EXTRACT_SIZE);
  778. memcpy(buf, tmp, i);
  779. nbytes -= i;
  780. buf += i;
  781. ret += i;
  782. }
  783. /* Wipe data just returned from memory */
  784. memset(tmp, 0, sizeof(tmp));
  785. return ret;
  786. }
  787. static ssize_t extract_entropy_user(struct entropy_store *r, void __user *buf,
  788. size_t nbytes)
  789. {
  790. ssize_t ret = 0, i;
  791. __u8 tmp[EXTRACT_SIZE];
  792. xfer_secondary_pool(r, nbytes);
  793. nbytes = account(r, nbytes, 0, 0);
  794. while (nbytes) {
  795. if (need_resched()) {
  796. if (signal_pending(current)) {
  797. if (ret == 0)
  798. ret = -ERESTARTSYS;
  799. break;
  800. }
  801. schedule();
  802. }
  803. extract_buf(r, tmp);
  804. i = min_t(int, nbytes, EXTRACT_SIZE);
  805. if (copy_to_user(buf, tmp, i)) {
  806. ret = -EFAULT;
  807. break;
  808. }
  809. nbytes -= i;
  810. buf += i;
  811. ret += i;
  812. }
  813. /* Wipe data just returned from memory */
  814. memset(tmp, 0, sizeof(tmp));
  815. return ret;
  816. }
  817. /*
  818. * This function is the exported kernel interface. It returns some
  819. * number of good random numbers, suitable for seeding TCP sequence
  820. * numbers, etc.
  821. */
  822. void get_random_bytes(void *buf, int nbytes)
  823. {
  824. char *p = buf;
  825. while (nbytes) {
  826. unsigned long v;
  827. int chunk = min(nbytes, (int)sizeof(unsigned long));
  828. if (!arch_get_random_long(&v))
  829. break;
  830. memcpy(p, &v, chunk);
  831. p += chunk;
  832. nbytes -= chunk;
  833. }
  834. extract_entropy(&nonblocking_pool, p, nbytes, 0, 0);
  835. }
  836. EXPORT_SYMBOL(get_random_bytes);
  837. /*
  838. * init_std_data - initialize pool with system data
  839. *
  840. * @r: pool to initialize
  841. *
  842. * This function clears the pool's entropy count and mixes some system
  843. * data into the pool to prepare it for use. The pool is not cleared
  844. * as that can only decrease the entropy in the pool.
  845. */
  846. static void init_std_data(struct entropy_store *r)
  847. {
  848. int i;
  849. ktime_t now;
  850. unsigned long flags;
  851. spin_lock_irqsave(&r->lock, flags);
  852. r->entropy_count = 0;
  853. spin_unlock_irqrestore(&r->lock, flags);
  854. now = ktime_get_real();
  855. mix_pool_bytes(r, &now, sizeof(now));
  856. for (i = r->poolinfo->POOLBYTES; i > 0; i -= sizeof flags) {
  857. if (!arch_get_random_long(&flags))
  858. break;
  859. mix_pool_bytes(r, &flags, sizeof(flags));
  860. }
  861. mix_pool_bytes(r, utsname(), sizeof(*(utsname())));
  862. }
  863. static int rand_initialize(void)
  864. {
  865. init_std_data(&input_pool);
  866. init_std_data(&blocking_pool);
  867. init_std_data(&nonblocking_pool);
  868. return 0;
  869. }
  870. module_init(rand_initialize);
  871. void rand_initialize_irq(int irq)
  872. {
  873. struct timer_rand_state *state;
  874. state = get_timer_rand_state(irq);
  875. if (state)
  876. return;
  877. /*
  878. * If kzalloc returns null, we just won't use that entropy
  879. * source.
  880. */
  881. state = kzalloc(sizeof(struct timer_rand_state), GFP_KERNEL);
  882. if (state)
  883. set_timer_rand_state(irq, state);
  884. }
  885. #ifdef CONFIG_BLOCK
  886. void rand_initialize_disk(struct gendisk *disk)
  887. {
  888. struct timer_rand_state *state;
  889. /*
  890. * If kzalloc returns null, we just won't use that entropy
  891. * source.
  892. */
  893. state = kzalloc(sizeof(struct timer_rand_state), GFP_KERNEL);
  894. if (state)
  895. disk->random = state;
  896. }
  897. #endif
  898. static ssize_t
  899. random_read(struct file *file, char __user *buf, size_t nbytes, loff_t *ppos)
  900. {
  901. ssize_t n, retval = 0, count = 0;
  902. if (nbytes == 0)
  903. return 0;
  904. while (nbytes > 0) {
  905. n = nbytes;
  906. if (n > SEC_XFER_SIZE)
  907. n = SEC_XFER_SIZE;
  908. DEBUG_ENT("reading %d bits\n", n*8);
  909. n = extract_entropy_user(&blocking_pool, buf, n);
  910. DEBUG_ENT("read got %d bits (%d still needed)\n",
  911. n*8, (nbytes-n)*8);
  912. if (n == 0) {
  913. if (file->f_flags & O_NONBLOCK) {
  914. retval = -EAGAIN;
  915. break;
  916. }
  917. DEBUG_ENT("sleeping?\n");
  918. wait_event_interruptible(random_read_wait,
  919. input_pool.entropy_count >=
  920. random_read_wakeup_thresh);
  921. DEBUG_ENT("awake\n");
  922. if (signal_pending(current)) {
  923. retval = -ERESTARTSYS;
  924. break;
  925. }
  926. continue;
  927. }
  928. if (n < 0) {
  929. retval = n;
  930. break;
  931. }
  932. count += n;
  933. buf += n;
  934. nbytes -= n;
  935. break; /* This break makes the device work */
  936. /* like a named pipe */
  937. }
  938. return (count ? count : retval);
  939. }
  940. static ssize_t
  941. urandom_read(struct file *file, char __user *buf, size_t nbytes, loff_t *ppos)
  942. {
  943. return extract_entropy_user(&nonblocking_pool, buf, nbytes);
  944. }
  945. static unsigned int
  946. random_poll(struct file *file, poll_table * wait)
  947. {
  948. unsigned int mask;
  949. poll_wait(file, &random_read_wait, wait);
  950. poll_wait(file, &random_write_wait, wait);
  951. mask = 0;
  952. if (input_pool.entropy_count >= random_read_wakeup_thresh)
  953. mask |= POLLIN | POLLRDNORM;
  954. if (input_pool.entropy_count < random_write_wakeup_thresh)
  955. mask |= POLLOUT | POLLWRNORM;
  956. return mask;
  957. }
  958. static int
  959. write_pool(struct entropy_store *r, const char __user *buffer, size_t count)
  960. {
  961. size_t bytes;
  962. __u32 buf[16];
  963. const char __user *p = buffer;
  964. while (count > 0) {
  965. bytes = min(count, sizeof(buf));
  966. if (copy_from_user(&buf, p, bytes))
  967. return -EFAULT;
  968. count -= bytes;
  969. p += bytes;
  970. mix_pool_bytes(r, buf, bytes);
  971. cond_resched();
  972. }
  973. return 0;
  974. }
  975. static ssize_t random_write(struct file *file, const char __user *buffer,
  976. size_t count, loff_t *ppos)
  977. {
  978. size_t ret;
  979. ret = write_pool(&blocking_pool, buffer, count);
  980. if (ret)
  981. return ret;
  982. ret = write_pool(&nonblocking_pool, buffer, count);
  983. if (ret)
  984. return ret;
  985. return (ssize_t)count;
  986. }
  987. static long random_ioctl(struct file *f, unsigned int cmd, unsigned long arg)
  988. {
  989. int size, ent_count;
  990. int __user *p = (int __user *)arg;
  991. int retval;
  992. switch (cmd) {
  993. case RNDGETENTCNT:
  994. /* inherently racy, no point locking */
  995. if (put_user(input_pool.entropy_count, p))
  996. return -EFAULT;
  997. return 0;
  998. case RNDADDTOENTCNT:
  999. if (!capable(CAP_SYS_ADMIN))
  1000. return -EPERM;
  1001. if (get_user(ent_count, p))
  1002. return -EFAULT;
  1003. credit_entropy_bits(&input_pool, ent_count);
  1004. return 0;
  1005. case RNDADDENTROPY:
  1006. if (!capable(CAP_SYS_ADMIN))
  1007. return -EPERM;
  1008. if (get_user(ent_count, p++))
  1009. return -EFAULT;
  1010. if (ent_count < 0)
  1011. return -EINVAL;
  1012. if (get_user(size, p++))
  1013. return -EFAULT;
  1014. retval = write_pool(&input_pool, (const char __user *)p,
  1015. size);
  1016. if (retval < 0)
  1017. return retval;
  1018. credit_entropy_bits(&input_pool, ent_count);
  1019. return 0;
  1020. case RNDZAPENTCNT:
  1021. case RNDCLEARPOOL:
  1022. /* Clear the entropy pool counters. */
  1023. if (!capable(CAP_SYS_ADMIN))
  1024. return -EPERM;
  1025. rand_initialize();
  1026. return 0;
  1027. default:
  1028. return -EINVAL;
  1029. }
  1030. }
  1031. static int random_fasync(int fd, struct file *filp, int on)
  1032. {
  1033. return fasync_helper(fd, filp, on, &fasync);
  1034. }
  1035. const struct file_operations random_fops = {
  1036. .read = random_read,
  1037. .write = random_write,
  1038. .poll = random_poll,
  1039. .unlocked_ioctl = random_ioctl,
  1040. .fasync = random_fasync,
  1041. .llseek = noop_llseek,
  1042. };
  1043. const struct file_operations urandom_fops = {
  1044. .read = urandom_read,
  1045. .write = random_write,
  1046. .unlocked_ioctl = random_ioctl,
  1047. .fasync = random_fasync,
  1048. .llseek = noop_llseek,
  1049. };
  1050. /***************************************************************
  1051. * Random UUID interface
  1052. *
  1053. * Used here for a Boot ID, but can be useful for other kernel
  1054. * drivers.
  1055. ***************************************************************/
  1056. /*
  1057. * Generate random UUID
  1058. */
  1059. void generate_random_uuid(unsigned char uuid_out[16])
  1060. {
  1061. get_random_bytes(uuid_out, 16);
  1062. /* Set UUID version to 4 --- truly random generation */
  1063. uuid_out[6] = (uuid_out[6] & 0x0F) | 0x40;
  1064. /* Set the UUID variant to DCE */
  1065. uuid_out[8] = (uuid_out[8] & 0x3F) | 0x80;
  1066. }
  1067. EXPORT_SYMBOL(generate_random_uuid);
  1068. /********************************************************************
  1069. *
  1070. * Sysctl interface
  1071. *
  1072. ********************************************************************/
  1073. #ifdef CONFIG_SYSCTL
  1074. #include <linux/sysctl.h>
  1075. static int min_read_thresh = 8, min_write_thresh;
  1076. static int max_read_thresh = INPUT_POOL_WORDS * 32;
  1077. static int max_write_thresh = INPUT_POOL_WORDS * 32;
  1078. static char sysctl_bootid[16];
  1079. /*
  1080. * These functions is used to return both the bootid UUID, and random
  1081. * UUID. The difference is in whether table->data is NULL; if it is,
  1082. * then a new UUID is generated and returned to the user.
  1083. *
  1084. * If the user accesses this via the proc interface, it will be returned
  1085. * as an ASCII string in the standard UUID format. If accesses via the
  1086. * sysctl system call, it is returned as 16 bytes of binary data.
  1087. */
  1088. static int proc_do_uuid(ctl_table *table, int write,
  1089. void __user *buffer, size_t *lenp, loff_t *ppos)
  1090. {
  1091. ctl_table fake_table;
  1092. unsigned char buf[64], tmp_uuid[16], *uuid;
  1093. uuid = table->data;
  1094. if (!uuid) {
  1095. uuid = tmp_uuid;
  1096. uuid[8] = 0;
  1097. }
  1098. if (uuid[8] == 0)
  1099. generate_random_uuid(uuid);
  1100. sprintf(buf, "%pU", uuid);
  1101. fake_table.data = buf;
  1102. fake_table.maxlen = sizeof(buf);
  1103. return proc_dostring(&fake_table, write, buffer, lenp, ppos);
  1104. }
  1105. static int sysctl_poolsize = INPUT_POOL_WORDS * 32;
  1106. ctl_table random_table[] = {
  1107. {
  1108. .procname = "poolsize",
  1109. .data = &sysctl_poolsize,
  1110. .maxlen = sizeof(int),
  1111. .mode = 0444,
  1112. .proc_handler = proc_dointvec,
  1113. },
  1114. {
  1115. .procname = "entropy_avail",
  1116. .maxlen = sizeof(int),
  1117. .mode = 0444,
  1118. .proc_handler = proc_dointvec,
  1119. .data = &input_pool.entropy_count,
  1120. },
  1121. {
  1122. .procname = "read_wakeup_threshold",
  1123. .data = &random_read_wakeup_thresh,
  1124. .maxlen = sizeof(int),
  1125. .mode = 0644,
  1126. .proc_handler = proc_dointvec_minmax,
  1127. .extra1 = &min_read_thresh,
  1128. .extra2 = &max_read_thresh,
  1129. },
  1130. {
  1131. .procname = "write_wakeup_threshold",
  1132. .data = &random_write_wakeup_thresh,
  1133. .maxlen = sizeof(int),
  1134. .mode = 0644,
  1135. .proc_handler = proc_dointvec_minmax,
  1136. .extra1 = &min_write_thresh,
  1137. .extra2 = &max_write_thresh,
  1138. },
  1139. {
  1140. .procname = "boot_id",
  1141. .data = &sysctl_bootid,
  1142. .maxlen = 16,
  1143. .mode = 0444,
  1144. .proc_handler = proc_do_uuid,
  1145. },
  1146. {
  1147. .procname = "uuid",
  1148. .maxlen = 16,
  1149. .mode = 0444,
  1150. .proc_handler = proc_do_uuid,
  1151. },
  1152. { }
  1153. };
  1154. #endif /* CONFIG_SYSCTL */
  1155. static u32 random_int_secret[MD5_MESSAGE_BYTES / 4] ____cacheline_aligned;
  1156. static int __init random_int_secret_init(void)
  1157. {
  1158. get_random_bytes(random_int_secret, sizeof(random_int_secret));
  1159. return 0;
  1160. }
  1161. late_initcall(random_int_secret_init);
  1162. /*
  1163. * Get a random word for internal kernel use only. Similar to urandom but
  1164. * with the goal of minimal entropy pool depletion. As a result, the random
  1165. * value is not cryptographically secure but for several uses the cost of
  1166. * depleting entropy is too high
  1167. */
  1168. DEFINE_PER_CPU(__u32 [MD5_DIGEST_WORDS], get_random_int_hash);
  1169. unsigned int get_random_int(void)
  1170. {
  1171. __u32 *hash;
  1172. unsigned int ret;
  1173. if (arch_get_random_int(&ret))
  1174. return ret;
  1175. hash = get_cpu_var(get_random_int_hash);
  1176. hash[0] += current->pid + jiffies + get_cycles();
  1177. md5_transform(hash, random_int_secret);
  1178. ret = hash[0];
  1179. put_cpu_var(get_random_int_hash);
  1180. return ret;
  1181. }
  1182. /*
  1183. * randomize_range() returns a start address such that
  1184. *
  1185. * [...... <range> .....]
  1186. * start end
  1187. *
  1188. * a <range> with size "len" starting at the return value is inside in the
  1189. * area defined by [start, end], but is otherwise randomized.
  1190. */
  1191. unsigned long
  1192. randomize_range(unsigned long start, unsigned long end, unsigned long len)
  1193. {
  1194. unsigned long range = end - len - start;
  1195. if (end <= start + len)
  1196. return 0;
  1197. return PAGE_ALIGN(get_random_int() % range + start);
  1198. }