aead.c 14 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568
  1. /*
  2. * AEAD: Authenticated Encryption with Associated Data
  3. *
  4. * This file provides API support for AEAD algorithms.
  5. *
  6. * Copyright (c) 2007 Herbert Xu <herbert@gondor.apana.org.au>
  7. *
  8. * This program is free software; you can redistribute it and/or modify it
  9. * under the terms of the GNU General Public License as published by the Free
  10. * Software Foundation; either version 2 of the License, or (at your option)
  11. * any later version.
  12. *
  13. */
  14. #include <crypto/internal/aead.h>
  15. #include <linux/err.h>
  16. #include <linux/init.h>
  17. #include <linux/kernel.h>
  18. #include <linux/module.h>
  19. #include <linux/rtnetlink.h>
  20. #include <linux/sched.h>
  21. #include <linux/slab.h>
  22. #include <linux/seq_file.h>
  23. #include <linux/cryptouser.h>
  24. #include <net/netlink.h>
  25. #include "internal.h"
  26. static int setkey_unaligned(struct crypto_aead *tfm, const u8 *key,
  27. unsigned int keylen)
  28. {
  29. struct aead_alg *aead = crypto_aead_alg(tfm);
  30. unsigned long alignmask = crypto_aead_alignmask(tfm);
  31. int ret;
  32. u8 *buffer, *alignbuffer;
  33. unsigned long absize;
  34. absize = keylen + alignmask;
  35. buffer = kmalloc(absize, GFP_ATOMIC);
  36. if (!buffer)
  37. return -ENOMEM;
  38. alignbuffer = (u8 *)ALIGN((unsigned long)buffer, alignmask + 1);
  39. memcpy(alignbuffer, key, keylen);
  40. ret = aead->setkey(tfm, alignbuffer, keylen);
  41. memset(alignbuffer, 0, keylen);
  42. kfree(buffer);
  43. return ret;
  44. }
  45. static int setkey(struct crypto_aead *tfm, const u8 *key, unsigned int keylen)
  46. {
  47. struct aead_alg *aead = crypto_aead_alg(tfm);
  48. unsigned long alignmask = crypto_aead_alignmask(tfm);
  49. if ((unsigned long)key & alignmask)
  50. return setkey_unaligned(tfm, key, keylen);
  51. return aead->setkey(tfm, key, keylen);
  52. }
  53. int crypto_aead_setauthsize(struct crypto_aead *tfm, unsigned int authsize)
  54. {
  55. struct aead_tfm *crt = crypto_aead_crt(tfm);
  56. int err;
  57. if (authsize > crypto_aead_alg(tfm)->maxauthsize)
  58. return -EINVAL;
  59. if (crypto_aead_alg(tfm)->setauthsize) {
  60. err = crypto_aead_alg(tfm)->setauthsize(crt->base, authsize);
  61. if (err)
  62. return err;
  63. }
  64. crypto_aead_crt(crt->base)->authsize = authsize;
  65. crt->authsize = authsize;
  66. return 0;
  67. }
  68. EXPORT_SYMBOL_GPL(crypto_aead_setauthsize);
  69. static unsigned int crypto_aead_ctxsize(struct crypto_alg *alg, u32 type,
  70. u32 mask)
  71. {
  72. return alg->cra_ctxsize;
  73. }
  74. static int no_givcrypt(struct aead_givcrypt_request *req)
  75. {
  76. return -ENOSYS;
  77. }
  78. static int crypto_init_aead_ops(struct crypto_tfm *tfm, u32 type, u32 mask)
  79. {
  80. struct aead_alg *alg = &tfm->__crt_alg->cra_aead;
  81. struct aead_tfm *crt = &tfm->crt_aead;
  82. if (max(alg->maxauthsize, alg->ivsize) > PAGE_SIZE / 8)
  83. return -EINVAL;
  84. crt->setkey = tfm->__crt_alg->cra_flags & CRYPTO_ALG_GENIV ?
  85. alg->setkey : setkey;
  86. crt->encrypt = alg->encrypt;
  87. crt->decrypt = alg->decrypt;
  88. crt->givencrypt = alg->givencrypt ?: no_givcrypt;
  89. crt->givdecrypt = alg->givdecrypt ?: no_givcrypt;
  90. crt->base = __crypto_aead_cast(tfm);
  91. crt->ivsize = alg->ivsize;
  92. crt->authsize = alg->maxauthsize;
  93. return 0;
  94. }
  95. #ifdef CONFIG_NET
  96. static int crypto_aead_report(struct sk_buff *skb, struct crypto_alg *alg)
  97. {
  98. struct crypto_report_aead raead;
  99. struct aead_alg *aead = &alg->cra_aead;
  100. snprintf(raead.type, CRYPTO_MAX_ALG_NAME, "%s", "aead");
  101. snprintf(raead.geniv, CRYPTO_MAX_ALG_NAME, "%s",
  102. aead->geniv ?: "<built-in>");
  103. raead.blocksize = alg->cra_blocksize;
  104. raead.maxauthsize = aead->maxauthsize;
  105. raead.ivsize = aead->ivsize;
  106. NLA_PUT(skb, CRYPTOCFGA_REPORT_AEAD,
  107. sizeof(struct crypto_report_aead), &raead);
  108. return 0;
  109. nla_put_failure:
  110. return -EMSGSIZE;
  111. }
  112. #else
  113. static int crypto_aead_report(struct sk_buff *skb, struct crypto_alg *alg)
  114. {
  115. return -ENOSYS;
  116. }
  117. #endif
  118. static void crypto_aead_show(struct seq_file *m, struct crypto_alg *alg)
  119. __attribute__ ((unused));
  120. static void crypto_aead_show(struct seq_file *m, struct crypto_alg *alg)
  121. {
  122. struct aead_alg *aead = &alg->cra_aead;
  123. seq_printf(m, "type : aead\n");
  124. seq_printf(m, "async : %s\n", alg->cra_flags & CRYPTO_ALG_ASYNC ?
  125. "yes" : "no");
  126. seq_printf(m, "blocksize : %u\n", alg->cra_blocksize);
  127. seq_printf(m, "ivsize : %u\n", aead->ivsize);
  128. seq_printf(m, "maxauthsize : %u\n", aead->maxauthsize);
  129. seq_printf(m, "geniv : %s\n", aead->geniv ?: "<built-in>");
  130. }
  131. const struct crypto_type crypto_aead_type = {
  132. .ctxsize = crypto_aead_ctxsize,
  133. .init = crypto_init_aead_ops,
  134. #ifdef CONFIG_PROC_FS
  135. .show = crypto_aead_show,
  136. #endif
  137. .report = crypto_aead_report,
  138. };
  139. EXPORT_SYMBOL_GPL(crypto_aead_type);
  140. static int aead_null_givencrypt(struct aead_givcrypt_request *req)
  141. {
  142. return crypto_aead_encrypt(&req->areq);
  143. }
  144. static int aead_null_givdecrypt(struct aead_givcrypt_request *req)
  145. {
  146. return crypto_aead_decrypt(&req->areq);
  147. }
  148. static int crypto_init_nivaead_ops(struct crypto_tfm *tfm, u32 type, u32 mask)
  149. {
  150. struct aead_alg *alg = &tfm->__crt_alg->cra_aead;
  151. struct aead_tfm *crt = &tfm->crt_aead;
  152. if (max(alg->maxauthsize, alg->ivsize) > PAGE_SIZE / 8)
  153. return -EINVAL;
  154. crt->setkey = setkey;
  155. crt->encrypt = alg->encrypt;
  156. crt->decrypt = alg->decrypt;
  157. if (!alg->ivsize) {
  158. crt->givencrypt = aead_null_givencrypt;
  159. crt->givdecrypt = aead_null_givdecrypt;
  160. }
  161. crt->base = __crypto_aead_cast(tfm);
  162. crt->ivsize = alg->ivsize;
  163. crt->authsize = alg->maxauthsize;
  164. return 0;
  165. }
  166. #ifdef CONFIG_NET
  167. static int crypto_nivaead_report(struct sk_buff *skb, struct crypto_alg *alg)
  168. {
  169. struct crypto_report_aead raead;
  170. struct aead_alg *aead = &alg->cra_aead;
  171. snprintf(raead.type, CRYPTO_MAX_ALG_NAME, "%s", "nivaead");
  172. snprintf(raead.geniv, CRYPTO_MAX_ALG_NAME, "%s", aead->geniv);
  173. raead.blocksize = alg->cra_blocksize;
  174. raead.maxauthsize = aead->maxauthsize;
  175. raead.ivsize = aead->ivsize;
  176. NLA_PUT(skb, CRYPTOCFGA_REPORT_AEAD,
  177. sizeof(struct crypto_report_aead), &raead);
  178. return 0;
  179. nla_put_failure:
  180. return -EMSGSIZE;
  181. }
  182. #else
  183. static int crypto_nivaead_report(struct sk_buff *skb, struct crypto_alg *alg)
  184. {
  185. return -ENOSYS;
  186. }
  187. #endif
  188. static void crypto_nivaead_show(struct seq_file *m, struct crypto_alg *alg)
  189. __attribute__ ((unused));
  190. static void crypto_nivaead_show(struct seq_file *m, struct crypto_alg *alg)
  191. {
  192. struct aead_alg *aead = &alg->cra_aead;
  193. seq_printf(m, "type : nivaead\n");
  194. seq_printf(m, "async : %s\n", alg->cra_flags & CRYPTO_ALG_ASYNC ?
  195. "yes" : "no");
  196. seq_printf(m, "blocksize : %u\n", alg->cra_blocksize);
  197. seq_printf(m, "ivsize : %u\n", aead->ivsize);
  198. seq_printf(m, "maxauthsize : %u\n", aead->maxauthsize);
  199. seq_printf(m, "geniv : %s\n", aead->geniv);
  200. }
  201. const struct crypto_type crypto_nivaead_type = {
  202. .ctxsize = crypto_aead_ctxsize,
  203. .init = crypto_init_nivaead_ops,
  204. #ifdef CONFIG_PROC_FS
  205. .show = crypto_nivaead_show,
  206. #endif
  207. .report = crypto_nivaead_report,
  208. };
  209. EXPORT_SYMBOL_GPL(crypto_nivaead_type);
  210. static int crypto_grab_nivaead(struct crypto_aead_spawn *spawn,
  211. const char *name, u32 type, u32 mask)
  212. {
  213. struct crypto_alg *alg;
  214. int err;
  215. type &= ~(CRYPTO_ALG_TYPE_MASK | CRYPTO_ALG_GENIV);
  216. type |= CRYPTO_ALG_TYPE_AEAD;
  217. mask |= CRYPTO_ALG_TYPE_MASK | CRYPTO_ALG_GENIV;
  218. alg = crypto_alg_mod_lookup(name, type, mask);
  219. if (IS_ERR(alg))
  220. return PTR_ERR(alg);
  221. err = crypto_init_spawn(&spawn->base, alg, spawn->base.inst, mask);
  222. crypto_mod_put(alg);
  223. return err;
  224. }
  225. struct crypto_instance *aead_geniv_alloc(struct crypto_template *tmpl,
  226. struct rtattr **tb, u32 type,
  227. u32 mask)
  228. {
  229. const char *name;
  230. struct crypto_aead_spawn *spawn;
  231. struct crypto_attr_type *algt;
  232. struct crypto_instance *inst;
  233. struct crypto_alg *alg;
  234. int err;
  235. algt = crypto_get_attr_type(tb);
  236. err = PTR_ERR(algt);
  237. if (IS_ERR(algt))
  238. return ERR_PTR(err);
  239. if ((algt->type ^ (CRYPTO_ALG_TYPE_AEAD | CRYPTO_ALG_GENIV)) &
  240. algt->mask)
  241. return ERR_PTR(-EINVAL);
  242. name = crypto_attr_alg_name(tb[1]);
  243. err = PTR_ERR(name);
  244. if (IS_ERR(name))
  245. return ERR_PTR(err);
  246. inst = kzalloc(sizeof(*inst) + sizeof(*spawn), GFP_KERNEL);
  247. if (!inst)
  248. return ERR_PTR(-ENOMEM);
  249. spawn = crypto_instance_ctx(inst);
  250. /* Ignore async algorithms if necessary. */
  251. mask |= crypto_requires_sync(algt->type, algt->mask);
  252. crypto_set_aead_spawn(spawn, inst);
  253. err = crypto_grab_nivaead(spawn, name, type, mask);
  254. if (err)
  255. goto err_free_inst;
  256. alg = crypto_aead_spawn_alg(spawn);
  257. err = -EINVAL;
  258. if (!alg->cra_aead.ivsize)
  259. goto err_drop_alg;
  260. /*
  261. * This is only true if we're constructing an algorithm with its
  262. * default IV generator. For the default generator we elide the
  263. * template name and double-check the IV generator.
  264. */
  265. if (algt->mask & CRYPTO_ALG_GENIV) {
  266. if (strcmp(tmpl->name, alg->cra_aead.geniv))
  267. goto err_drop_alg;
  268. memcpy(inst->alg.cra_name, alg->cra_name, CRYPTO_MAX_ALG_NAME);
  269. memcpy(inst->alg.cra_driver_name, alg->cra_driver_name,
  270. CRYPTO_MAX_ALG_NAME);
  271. } else {
  272. err = -ENAMETOOLONG;
  273. if (snprintf(inst->alg.cra_name, CRYPTO_MAX_ALG_NAME,
  274. "%s(%s)", tmpl->name, alg->cra_name) >=
  275. CRYPTO_MAX_ALG_NAME)
  276. goto err_drop_alg;
  277. if (snprintf(inst->alg.cra_driver_name, CRYPTO_MAX_ALG_NAME,
  278. "%s(%s)", tmpl->name, alg->cra_driver_name) >=
  279. CRYPTO_MAX_ALG_NAME)
  280. goto err_drop_alg;
  281. }
  282. inst->alg.cra_flags = CRYPTO_ALG_TYPE_AEAD | CRYPTO_ALG_GENIV;
  283. inst->alg.cra_flags |= alg->cra_flags & CRYPTO_ALG_ASYNC;
  284. inst->alg.cra_priority = alg->cra_priority;
  285. inst->alg.cra_blocksize = alg->cra_blocksize;
  286. inst->alg.cra_alignmask = alg->cra_alignmask;
  287. inst->alg.cra_type = &crypto_aead_type;
  288. inst->alg.cra_aead.ivsize = alg->cra_aead.ivsize;
  289. inst->alg.cra_aead.maxauthsize = alg->cra_aead.maxauthsize;
  290. inst->alg.cra_aead.geniv = alg->cra_aead.geniv;
  291. inst->alg.cra_aead.setkey = alg->cra_aead.setkey;
  292. inst->alg.cra_aead.setauthsize = alg->cra_aead.setauthsize;
  293. inst->alg.cra_aead.encrypt = alg->cra_aead.encrypt;
  294. inst->alg.cra_aead.decrypt = alg->cra_aead.decrypt;
  295. out:
  296. return inst;
  297. err_drop_alg:
  298. crypto_drop_aead(spawn);
  299. err_free_inst:
  300. kfree(inst);
  301. inst = ERR_PTR(err);
  302. goto out;
  303. }
  304. EXPORT_SYMBOL_GPL(aead_geniv_alloc);
  305. void aead_geniv_free(struct crypto_instance *inst)
  306. {
  307. crypto_drop_aead(crypto_instance_ctx(inst));
  308. kfree(inst);
  309. }
  310. EXPORT_SYMBOL_GPL(aead_geniv_free);
  311. int aead_geniv_init(struct crypto_tfm *tfm)
  312. {
  313. struct crypto_instance *inst = (void *)tfm->__crt_alg;
  314. struct crypto_aead *aead;
  315. aead = crypto_spawn_aead(crypto_instance_ctx(inst));
  316. if (IS_ERR(aead))
  317. return PTR_ERR(aead);
  318. tfm->crt_aead.base = aead;
  319. tfm->crt_aead.reqsize += crypto_aead_reqsize(aead);
  320. return 0;
  321. }
  322. EXPORT_SYMBOL_GPL(aead_geniv_init);
  323. void aead_geniv_exit(struct crypto_tfm *tfm)
  324. {
  325. crypto_free_aead(tfm->crt_aead.base);
  326. }
  327. EXPORT_SYMBOL_GPL(aead_geniv_exit);
  328. static int crypto_nivaead_default(struct crypto_alg *alg, u32 type, u32 mask)
  329. {
  330. struct rtattr *tb[3];
  331. struct {
  332. struct rtattr attr;
  333. struct crypto_attr_type data;
  334. } ptype;
  335. struct {
  336. struct rtattr attr;
  337. struct crypto_attr_alg data;
  338. } palg;
  339. struct crypto_template *tmpl;
  340. struct crypto_instance *inst;
  341. struct crypto_alg *larval;
  342. const char *geniv;
  343. int err;
  344. larval = crypto_larval_lookup(alg->cra_driver_name,
  345. CRYPTO_ALG_TYPE_AEAD | CRYPTO_ALG_GENIV,
  346. CRYPTO_ALG_TYPE_MASK | CRYPTO_ALG_GENIV);
  347. err = PTR_ERR(larval);
  348. if (IS_ERR(larval))
  349. goto out;
  350. err = -EAGAIN;
  351. if (!crypto_is_larval(larval))
  352. goto drop_larval;
  353. ptype.attr.rta_len = sizeof(ptype);
  354. ptype.attr.rta_type = CRYPTOA_TYPE;
  355. ptype.data.type = type | CRYPTO_ALG_GENIV;
  356. /* GENIV tells the template that we're making a default geniv. */
  357. ptype.data.mask = mask | CRYPTO_ALG_GENIV;
  358. tb[0] = &ptype.attr;
  359. palg.attr.rta_len = sizeof(palg);
  360. palg.attr.rta_type = CRYPTOA_ALG;
  361. /* Must use the exact name to locate ourselves. */
  362. memcpy(palg.data.name, alg->cra_driver_name, CRYPTO_MAX_ALG_NAME);
  363. tb[1] = &palg.attr;
  364. tb[2] = NULL;
  365. geniv = alg->cra_aead.geniv;
  366. tmpl = crypto_lookup_template(geniv);
  367. err = -ENOENT;
  368. if (!tmpl)
  369. goto kill_larval;
  370. inst = tmpl->alloc(tb);
  371. err = PTR_ERR(inst);
  372. if (IS_ERR(inst))
  373. goto put_tmpl;
  374. if ((err = crypto_register_instance(tmpl, inst))) {
  375. tmpl->free(inst);
  376. goto put_tmpl;
  377. }
  378. /* Redo the lookup to use the instance we just registered. */
  379. err = -EAGAIN;
  380. put_tmpl:
  381. crypto_tmpl_put(tmpl);
  382. kill_larval:
  383. crypto_larval_kill(larval);
  384. drop_larval:
  385. crypto_mod_put(larval);
  386. out:
  387. crypto_mod_put(alg);
  388. return err;
  389. }
  390. static struct crypto_alg *crypto_lookup_aead(const char *name, u32 type,
  391. u32 mask)
  392. {
  393. struct crypto_alg *alg;
  394. alg = crypto_alg_mod_lookup(name, type, mask);
  395. if (IS_ERR(alg))
  396. return alg;
  397. if (alg->cra_type == &crypto_aead_type)
  398. return alg;
  399. if (!alg->cra_aead.ivsize)
  400. return alg;
  401. crypto_mod_put(alg);
  402. alg = crypto_alg_mod_lookup(name, type | CRYPTO_ALG_TESTED,
  403. mask & ~CRYPTO_ALG_TESTED);
  404. if (IS_ERR(alg))
  405. return alg;
  406. if (alg->cra_type == &crypto_aead_type) {
  407. if ((alg->cra_flags ^ type ^ ~mask) & CRYPTO_ALG_TESTED) {
  408. crypto_mod_put(alg);
  409. alg = ERR_PTR(-ENOENT);
  410. }
  411. return alg;
  412. }
  413. BUG_ON(!alg->cra_aead.ivsize);
  414. return ERR_PTR(crypto_nivaead_default(alg, type, mask));
  415. }
  416. int crypto_grab_aead(struct crypto_aead_spawn *spawn, const char *name,
  417. u32 type, u32 mask)
  418. {
  419. struct crypto_alg *alg;
  420. int err;
  421. type &= ~(CRYPTO_ALG_TYPE_MASK | CRYPTO_ALG_GENIV);
  422. type |= CRYPTO_ALG_TYPE_AEAD;
  423. mask &= ~(CRYPTO_ALG_TYPE_MASK | CRYPTO_ALG_GENIV);
  424. mask |= CRYPTO_ALG_TYPE_MASK;
  425. alg = crypto_lookup_aead(name, type, mask);
  426. if (IS_ERR(alg))
  427. return PTR_ERR(alg);
  428. err = crypto_init_spawn(&spawn->base, alg, spawn->base.inst, mask);
  429. crypto_mod_put(alg);
  430. return err;
  431. }
  432. EXPORT_SYMBOL_GPL(crypto_grab_aead);
  433. struct crypto_aead *crypto_alloc_aead(const char *alg_name, u32 type, u32 mask)
  434. {
  435. struct crypto_tfm *tfm;
  436. int err;
  437. type &= ~(CRYPTO_ALG_TYPE_MASK | CRYPTO_ALG_GENIV);
  438. type |= CRYPTO_ALG_TYPE_AEAD;
  439. mask &= ~(CRYPTO_ALG_TYPE_MASK | CRYPTO_ALG_GENIV);
  440. mask |= CRYPTO_ALG_TYPE_MASK;
  441. for (;;) {
  442. struct crypto_alg *alg;
  443. alg = crypto_lookup_aead(alg_name, type, mask);
  444. if (IS_ERR(alg)) {
  445. err = PTR_ERR(alg);
  446. goto err;
  447. }
  448. tfm = __crypto_alloc_tfm(alg, type, mask);
  449. if (!IS_ERR(tfm))
  450. return __crypto_aead_cast(tfm);
  451. crypto_mod_put(alg);
  452. err = PTR_ERR(tfm);
  453. err:
  454. if (err != -EAGAIN)
  455. break;
  456. if (signal_pending(current)) {
  457. err = -EINTR;
  458. break;
  459. }
  460. }
  461. return ERR_PTR(err);
  462. }
  463. EXPORT_SYMBOL_GPL(crypto_alloc_aead);
  464. MODULE_LICENSE("GPL");
  465. MODULE_DESCRIPTION("Authenticated Encryption with Associated Data (AEAD)");