numa.c 20 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834
  1. /* Common code for 32 and 64-bit NUMA */
  2. #include <linux/kernel.h>
  3. #include <linux/mm.h>
  4. #include <linux/string.h>
  5. #include <linux/init.h>
  6. #include <linux/bootmem.h>
  7. #include <linux/memblock.h>
  8. #include <linux/mmzone.h>
  9. #include <linux/ctype.h>
  10. #include <linux/module.h>
  11. #include <linux/nodemask.h>
  12. #include <linux/sched.h>
  13. #include <linux/topology.h>
  14. #include <asm/e820.h>
  15. #include <asm/proto.h>
  16. #include <asm/dma.h>
  17. #include <asm/acpi.h>
  18. #include <asm/amd_nb.h>
  19. #include "numa_internal.h"
  20. int __initdata numa_off;
  21. nodemask_t numa_nodes_parsed __initdata;
  22. struct pglist_data *node_data[MAX_NUMNODES] __read_mostly;
  23. EXPORT_SYMBOL(node_data);
  24. static struct numa_meminfo numa_meminfo
  25. #ifndef CONFIG_MEMORY_HOTPLUG
  26. __initdata
  27. #endif
  28. ;
  29. static int numa_distance_cnt;
  30. static u8 *numa_distance;
  31. static __init int numa_setup(char *opt)
  32. {
  33. if (!opt)
  34. return -EINVAL;
  35. if (!strncmp(opt, "off", 3))
  36. numa_off = 1;
  37. #ifdef CONFIG_NUMA_EMU
  38. if (!strncmp(opt, "fake=", 5))
  39. numa_emu_cmdline(opt + 5);
  40. #endif
  41. #ifdef CONFIG_ACPI_NUMA
  42. if (!strncmp(opt, "noacpi", 6))
  43. acpi_numa = -1;
  44. #endif
  45. return 0;
  46. }
  47. early_param("numa", numa_setup);
  48. /*
  49. * apicid, cpu, node mappings
  50. */
  51. s16 __apicid_to_node[MAX_LOCAL_APIC] __cpuinitdata = {
  52. [0 ... MAX_LOCAL_APIC-1] = NUMA_NO_NODE
  53. };
  54. int __cpuinit numa_cpu_node(int cpu)
  55. {
  56. int apicid = early_per_cpu(x86_cpu_to_apicid, cpu);
  57. if (apicid != BAD_APICID)
  58. return __apicid_to_node[apicid];
  59. return NUMA_NO_NODE;
  60. }
  61. cpumask_var_t node_to_cpumask_map[MAX_NUMNODES];
  62. EXPORT_SYMBOL(node_to_cpumask_map);
  63. /*
  64. * Map cpu index to node index
  65. */
  66. DEFINE_EARLY_PER_CPU(int, x86_cpu_to_node_map, NUMA_NO_NODE);
  67. EXPORT_EARLY_PER_CPU_SYMBOL(x86_cpu_to_node_map);
  68. void __cpuinit numa_set_node(int cpu, int node)
  69. {
  70. int *cpu_to_node_map = early_per_cpu_ptr(x86_cpu_to_node_map);
  71. /* early setting, no percpu area yet */
  72. if (cpu_to_node_map) {
  73. cpu_to_node_map[cpu] = node;
  74. return;
  75. }
  76. #ifdef CONFIG_DEBUG_PER_CPU_MAPS
  77. if (cpu >= nr_cpu_ids || !cpu_possible(cpu)) {
  78. printk(KERN_ERR "numa_set_node: invalid cpu# (%d)\n", cpu);
  79. dump_stack();
  80. return;
  81. }
  82. #endif
  83. per_cpu(x86_cpu_to_node_map, cpu) = node;
  84. if (node != NUMA_NO_NODE)
  85. set_cpu_numa_node(cpu, node);
  86. }
  87. void __cpuinit numa_clear_node(int cpu)
  88. {
  89. numa_set_node(cpu, NUMA_NO_NODE);
  90. }
  91. /*
  92. * Allocate node_to_cpumask_map based on number of available nodes
  93. * Requires node_possible_map to be valid.
  94. *
  95. * Note: cpumask_of_node() is not valid until after this is done.
  96. * (Use CONFIG_DEBUG_PER_CPU_MAPS to check this.)
  97. */
  98. void __init setup_node_to_cpumask_map(void)
  99. {
  100. unsigned int node, num = 0;
  101. /* setup nr_node_ids if not done yet */
  102. if (nr_node_ids == MAX_NUMNODES) {
  103. for_each_node_mask(node, node_possible_map)
  104. num = node;
  105. nr_node_ids = num + 1;
  106. }
  107. /* allocate the map */
  108. for (node = 0; node < nr_node_ids; node++)
  109. alloc_bootmem_cpumask_var(&node_to_cpumask_map[node]);
  110. /* cpumask_of_node() will now work */
  111. pr_debug("Node to cpumask map for %d nodes\n", nr_node_ids);
  112. }
  113. static int __init numa_add_memblk_to(int nid, u64 start, u64 end,
  114. struct numa_meminfo *mi)
  115. {
  116. /* ignore zero length blks */
  117. if (start == end)
  118. return 0;
  119. /* whine about and ignore invalid blks */
  120. if (start > end || nid < 0 || nid >= MAX_NUMNODES) {
  121. pr_warning("NUMA: Warning: invalid memblk node %d (%Lx-%Lx)\n",
  122. nid, start, end);
  123. return 0;
  124. }
  125. if (mi->nr_blks >= NR_NODE_MEMBLKS) {
  126. pr_err("NUMA: too many memblk ranges\n");
  127. return -EINVAL;
  128. }
  129. mi->blk[mi->nr_blks].start = start;
  130. mi->blk[mi->nr_blks].end = end;
  131. mi->blk[mi->nr_blks].nid = nid;
  132. mi->nr_blks++;
  133. return 0;
  134. }
  135. /**
  136. * numa_remove_memblk_from - Remove one numa_memblk from a numa_meminfo
  137. * @idx: Index of memblk to remove
  138. * @mi: numa_meminfo to remove memblk from
  139. *
  140. * Remove @idx'th numa_memblk from @mi by shifting @mi->blk[] and
  141. * decrementing @mi->nr_blks.
  142. */
  143. void __init numa_remove_memblk_from(int idx, struct numa_meminfo *mi)
  144. {
  145. mi->nr_blks--;
  146. memmove(&mi->blk[idx], &mi->blk[idx + 1],
  147. (mi->nr_blks - idx) * sizeof(mi->blk[0]));
  148. }
  149. /**
  150. * numa_add_memblk - Add one numa_memblk to numa_meminfo
  151. * @nid: NUMA node ID of the new memblk
  152. * @start: Start address of the new memblk
  153. * @end: End address of the new memblk
  154. *
  155. * Add a new memblk to the default numa_meminfo.
  156. *
  157. * RETURNS:
  158. * 0 on success, -errno on failure.
  159. */
  160. int __init numa_add_memblk(int nid, u64 start, u64 end)
  161. {
  162. return numa_add_memblk_to(nid, start, end, &numa_meminfo);
  163. }
  164. /* Initialize NODE_DATA for a node on the local memory */
  165. static void __init setup_node_data(int nid, u64 start, u64 end)
  166. {
  167. const size_t nd_size = roundup(sizeof(pg_data_t), PAGE_SIZE);
  168. bool remapped = false;
  169. u64 nd_pa;
  170. void *nd;
  171. int tnid;
  172. /*
  173. * Don't confuse VM with a node that doesn't have the
  174. * minimum amount of memory:
  175. */
  176. if (end && (end - start) < NODE_MIN_SIZE)
  177. return;
  178. /* initialize remap allocator before aligning to ZONE_ALIGN */
  179. init_alloc_remap(nid, start, end);
  180. start = roundup(start, ZONE_ALIGN);
  181. printk(KERN_INFO "Initmem setup node %d %016Lx-%016Lx\n",
  182. nid, start, end);
  183. /*
  184. * Allocate node data. Try remap allocator first, node-local
  185. * memory and then any node. Never allocate in DMA zone.
  186. */
  187. nd = alloc_remap(nid, nd_size);
  188. if (nd) {
  189. nd_pa = __pa(nd);
  190. remapped = true;
  191. } else {
  192. nd_pa = memblock_alloc_nid(nd_size, SMP_CACHE_BYTES, nid);
  193. if (!nd_pa) {
  194. pr_err("Cannot find %zu bytes in node %d\n",
  195. nd_size, nid);
  196. return;
  197. }
  198. nd = __va(nd_pa);
  199. }
  200. /* report and initialize */
  201. printk(KERN_INFO " NODE_DATA [%016Lx - %016Lx]%s\n",
  202. nd_pa, nd_pa + nd_size - 1, remapped ? " (remapped)" : "");
  203. tnid = early_pfn_to_nid(nd_pa >> PAGE_SHIFT);
  204. if (!remapped && tnid != nid)
  205. printk(KERN_INFO " NODE_DATA(%d) on node %d\n", nid, tnid);
  206. node_data[nid] = nd;
  207. memset(NODE_DATA(nid), 0, sizeof(pg_data_t));
  208. NODE_DATA(nid)->node_id = nid;
  209. NODE_DATA(nid)->node_start_pfn = start >> PAGE_SHIFT;
  210. NODE_DATA(nid)->node_spanned_pages = (end - start) >> PAGE_SHIFT;
  211. node_set_online(nid);
  212. }
  213. /**
  214. * numa_cleanup_meminfo - Cleanup a numa_meminfo
  215. * @mi: numa_meminfo to clean up
  216. *
  217. * Sanitize @mi by merging and removing unncessary memblks. Also check for
  218. * conflicts and clear unused memblks.
  219. *
  220. * RETURNS:
  221. * 0 on success, -errno on failure.
  222. */
  223. int __init numa_cleanup_meminfo(struct numa_meminfo *mi)
  224. {
  225. const u64 low = 0;
  226. const u64 high = PFN_PHYS(max_pfn);
  227. int i, j, k;
  228. /* first, trim all entries */
  229. for (i = 0; i < mi->nr_blks; i++) {
  230. struct numa_memblk *bi = &mi->blk[i];
  231. /* make sure all blocks are inside the limits */
  232. bi->start = max(bi->start, low);
  233. bi->end = min(bi->end, high);
  234. /* and there's no empty block */
  235. if (bi->start >= bi->end)
  236. numa_remove_memblk_from(i--, mi);
  237. }
  238. /* merge neighboring / overlapping entries */
  239. for (i = 0; i < mi->nr_blks; i++) {
  240. struct numa_memblk *bi = &mi->blk[i];
  241. for (j = i + 1; j < mi->nr_blks; j++) {
  242. struct numa_memblk *bj = &mi->blk[j];
  243. u64 start, end;
  244. /*
  245. * See whether there are overlapping blocks. Whine
  246. * about but allow overlaps of the same nid. They
  247. * will be merged below.
  248. */
  249. if (bi->end > bj->start && bi->start < bj->end) {
  250. if (bi->nid != bj->nid) {
  251. pr_err("NUMA: node %d (%Lx-%Lx) overlaps with node %d (%Lx-%Lx)\n",
  252. bi->nid, bi->start, bi->end,
  253. bj->nid, bj->start, bj->end);
  254. return -EINVAL;
  255. }
  256. pr_warning("NUMA: Warning: node %d (%Lx-%Lx) overlaps with itself (%Lx-%Lx)\n",
  257. bi->nid, bi->start, bi->end,
  258. bj->start, bj->end);
  259. }
  260. /*
  261. * Join together blocks on the same node, holes
  262. * between which don't overlap with memory on other
  263. * nodes.
  264. */
  265. if (bi->nid != bj->nid)
  266. continue;
  267. start = min(bi->start, bj->start);
  268. end = max(bi->end, bj->end);
  269. for (k = 0; k < mi->nr_blks; k++) {
  270. struct numa_memblk *bk = &mi->blk[k];
  271. if (bi->nid == bk->nid)
  272. continue;
  273. if (start < bk->end && end > bk->start)
  274. break;
  275. }
  276. if (k < mi->nr_blks)
  277. continue;
  278. printk(KERN_INFO "NUMA: Node %d [%Lx,%Lx) + [%Lx,%Lx) -> [%Lx,%Lx)\n",
  279. bi->nid, bi->start, bi->end, bj->start, bj->end,
  280. start, end);
  281. bi->start = start;
  282. bi->end = end;
  283. numa_remove_memblk_from(j--, mi);
  284. }
  285. }
  286. /* clear unused ones */
  287. for (i = mi->nr_blks; i < ARRAY_SIZE(mi->blk); i++) {
  288. mi->blk[i].start = mi->blk[i].end = 0;
  289. mi->blk[i].nid = NUMA_NO_NODE;
  290. }
  291. return 0;
  292. }
  293. /*
  294. * Set nodes, which have memory in @mi, in *@nodemask.
  295. */
  296. static void __init numa_nodemask_from_meminfo(nodemask_t *nodemask,
  297. const struct numa_meminfo *mi)
  298. {
  299. int i;
  300. for (i = 0; i < ARRAY_SIZE(mi->blk); i++)
  301. if (mi->blk[i].start != mi->blk[i].end &&
  302. mi->blk[i].nid != NUMA_NO_NODE)
  303. node_set(mi->blk[i].nid, *nodemask);
  304. }
  305. /**
  306. * numa_reset_distance - Reset NUMA distance table
  307. *
  308. * The current table is freed. The next numa_set_distance() call will
  309. * create a new one.
  310. */
  311. void __init numa_reset_distance(void)
  312. {
  313. size_t size = numa_distance_cnt * numa_distance_cnt * sizeof(numa_distance[0]);
  314. /* numa_distance could be 1LU marking allocation failure, test cnt */
  315. if (numa_distance_cnt)
  316. memblock_free(__pa(numa_distance), size);
  317. numa_distance_cnt = 0;
  318. numa_distance = NULL; /* enable table creation */
  319. }
  320. static int __init numa_alloc_distance(void)
  321. {
  322. nodemask_t nodes_parsed;
  323. size_t size;
  324. int i, j, cnt = 0;
  325. u64 phys;
  326. /* size the new table and allocate it */
  327. nodes_parsed = numa_nodes_parsed;
  328. numa_nodemask_from_meminfo(&nodes_parsed, &numa_meminfo);
  329. for_each_node_mask(i, nodes_parsed)
  330. cnt = i;
  331. cnt++;
  332. size = cnt * cnt * sizeof(numa_distance[0]);
  333. phys = memblock_find_in_range(0, PFN_PHYS(max_pfn_mapped),
  334. size, PAGE_SIZE);
  335. if (!phys) {
  336. pr_warning("NUMA: Warning: can't allocate distance table!\n");
  337. /* don't retry until explicitly reset */
  338. numa_distance = (void *)1LU;
  339. return -ENOMEM;
  340. }
  341. memblock_reserve(phys, size);
  342. numa_distance = __va(phys);
  343. numa_distance_cnt = cnt;
  344. /* fill with the default distances */
  345. for (i = 0; i < cnt; i++)
  346. for (j = 0; j < cnt; j++)
  347. numa_distance[i * cnt + j] = i == j ?
  348. LOCAL_DISTANCE : REMOTE_DISTANCE;
  349. printk(KERN_DEBUG "NUMA: Initialized distance table, cnt=%d\n", cnt);
  350. return 0;
  351. }
  352. /**
  353. * numa_set_distance - Set NUMA distance from one NUMA to another
  354. * @from: the 'from' node to set distance
  355. * @to: the 'to' node to set distance
  356. * @distance: NUMA distance
  357. *
  358. * Set the distance from node @from to @to to @distance. If distance table
  359. * doesn't exist, one which is large enough to accommodate all the currently
  360. * known nodes will be created.
  361. *
  362. * If such table cannot be allocated, a warning is printed and further
  363. * calls are ignored until the distance table is reset with
  364. * numa_reset_distance().
  365. *
  366. * If @from or @to is higher than the highest known node or lower than zero
  367. * at the time of table creation or @distance doesn't make sense, the call
  368. * is ignored.
  369. * This is to allow simplification of specific NUMA config implementations.
  370. */
  371. void __init numa_set_distance(int from, int to, int distance)
  372. {
  373. if (!numa_distance && numa_alloc_distance() < 0)
  374. return;
  375. if (from >= numa_distance_cnt || to >= numa_distance_cnt ||
  376. from < 0 || to < 0) {
  377. pr_warn_once("NUMA: Warning: node ids are out of bound, from=%d to=%d distance=%d\n",
  378. from, to, distance);
  379. return;
  380. }
  381. if ((u8)distance != distance ||
  382. (from == to && distance != LOCAL_DISTANCE)) {
  383. pr_warn_once("NUMA: Warning: invalid distance parameter, from=%d to=%d distance=%d\n",
  384. from, to, distance);
  385. return;
  386. }
  387. numa_distance[from * numa_distance_cnt + to] = distance;
  388. }
  389. int __node_distance(int from, int to)
  390. {
  391. if (from >= numa_distance_cnt || to >= numa_distance_cnt)
  392. return from == to ? LOCAL_DISTANCE : REMOTE_DISTANCE;
  393. return numa_distance[from * numa_distance_cnt + to];
  394. }
  395. EXPORT_SYMBOL(__node_distance);
  396. /*
  397. * Sanity check to catch more bad NUMA configurations (they are amazingly
  398. * common). Make sure the nodes cover all memory.
  399. */
  400. static bool __init numa_meminfo_cover_memory(const struct numa_meminfo *mi)
  401. {
  402. u64 numaram, e820ram;
  403. int i;
  404. numaram = 0;
  405. for (i = 0; i < mi->nr_blks; i++) {
  406. u64 s = mi->blk[i].start >> PAGE_SHIFT;
  407. u64 e = mi->blk[i].end >> PAGE_SHIFT;
  408. numaram += e - s;
  409. numaram -= __absent_pages_in_range(mi->blk[i].nid, s, e);
  410. if ((s64)numaram < 0)
  411. numaram = 0;
  412. }
  413. e820ram = max_pfn - absent_pages_in_range(0, max_pfn);
  414. /* We seem to lose 3 pages somewhere. Allow 1M of slack. */
  415. if ((s64)(e820ram - numaram) >= (1 << (20 - PAGE_SHIFT))) {
  416. printk(KERN_ERR "NUMA: nodes only cover %LuMB of your %LuMB e820 RAM. Not used.\n",
  417. (numaram << PAGE_SHIFT) >> 20,
  418. (e820ram << PAGE_SHIFT) >> 20);
  419. return false;
  420. }
  421. return true;
  422. }
  423. static int __init numa_register_memblks(struct numa_meminfo *mi)
  424. {
  425. unsigned long uninitialized_var(pfn_align);
  426. int i, nid;
  427. /* Account for nodes with cpus and no memory */
  428. node_possible_map = numa_nodes_parsed;
  429. numa_nodemask_from_meminfo(&node_possible_map, mi);
  430. if (WARN_ON(nodes_empty(node_possible_map)))
  431. return -EINVAL;
  432. for (i = 0; i < mi->nr_blks; i++) {
  433. struct numa_memblk *mb = &mi->blk[i];
  434. memblock_set_node(mb->start, mb->end - mb->start, mb->nid);
  435. }
  436. /*
  437. * If sections array is gonna be used for pfn -> nid mapping, check
  438. * whether its granularity is fine enough.
  439. */
  440. #ifdef NODE_NOT_IN_PAGE_FLAGS
  441. pfn_align = node_map_pfn_alignment();
  442. if (pfn_align && pfn_align < PAGES_PER_SECTION) {
  443. printk(KERN_WARNING "Node alignment %LuMB < min %LuMB, rejecting NUMA config\n",
  444. PFN_PHYS(pfn_align) >> 20,
  445. PFN_PHYS(PAGES_PER_SECTION) >> 20);
  446. return -EINVAL;
  447. }
  448. #endif
  449. if (!numa_meminfo_cover_memory(mi))
  450. return -EINVAL;
  451. /* Finally register nodes. */
  452. for_each_node_mask(nid, node_possible_map) {
  453. u64 start = PFN_PHYS(max_pfn);
  454. u64 end = 0;
  455. for (i = 0; i < mi->nr_blks; i++) {
  456. if (nid != mi->blk[i].nid)
  457. continue;
  458. start = min(mi->blk[i].start, start);
  459. end = max(mi->blk[i].end, end);
  460. }
  461. if (start < end)
  462. setup_node_data(nid, start, end);
  463. }
  464. /* Dump memblock with node info and return. */
  465. memblock_dump_all();
  466. return 0;
  467. }
  468. /*
  469. * There are unfortunately some poorly designed mainboards around that
  470. * only connect memory to a single CPU. This breaks the 1:1 cpu->node
  471. * mapping. To avoid this fill in the mapping for all possible CPUs,
  472. * as the number of CPUs is not known yet. We round robin the existing
  473. * nodes.
  474. */
  475. static void __init numa_init_array(void)
  476. {
  477. int rr, i;
  478. rr = first_node(node_online_map);
  479. for (i = 0; i < nr_cpu_ids; i++) {
  480. if (early_cpu_to_node(i) != NUMA_NO_NODE)
  481. continue;
  482. numa_set_node(i, rr);
  483. rr = next_node(rr, node_online_map);
  484. if (rr == MAX_NUMNODES)
  485. rr = first_node(node_online_map);
  486. }
  487. }
  488. static int __init numa_init(int (*init_func)(void))
  489. {
  490. int i;
  491. int ret;
  492. for (i = 0; i < MAX_LOCAL_APIC; i++)
  493. set_apicid_to_node(i, NUMA_NO_NODE);
  494. nodes_clear(numa_nodes_parsed);
  495. nodes_clear(node_possible_map);
  496. nodes_clear(node_online_map);
  497. memset(&numa_meminfo, 0, sizeof(numa_meminfo));
  498. WARN_ON(memblock_set_node(0, ULLONG_MAX, MAX_NUMNODES));
  499. numa_reset_distance();
  500. ret = init_func();
  501. if (ret < 0)
  502. return ret;
  503. ret = numa_cleanup_meminfo(&numa_meminfo);
  504. if (ret < 0)
  505. return ret;
  506. numa_emulation(&numa_meminfo, numa_distance_cnt);
  507. ret = numa_register_memblks(&numa_meminfo);
  508. if (ret < 0)
  509. return ret;
  510. for (i = 0; i < nr_cpu_ids; i++) {
  511. int nid = early_cpu_to_node(i);
  512. if (nid == NUMA_NO_NODE)
  513. continue;
  514. if (!node_online(nid))
  515. numa_clear_node(i);
  516. }
  517. numa_init_array();
  518. return 0;
  519. }
  520. /**
  521. * dummy_numa_init - Fallback dummy NUMA init
  522. *
  523. * Used if there's no underlying NUMA architecture, NUMA initialization
  524. * fails, or NUMA is disabled on the command line.
  525. *
  526. * Must online at least one node and add memory blocks that cover all
  527. * allowed memory. This function must not fail.
  528. */
  529. static int __init dummy_numa_init(void)
  530. {
  531. printk(KERN_INFO "%s\n",
  532. numa_off ? "NUMA turned off" : "No NUMA configuration found");
  533. printk(KERN_INFO "Faking a node at %016Lx-%016Lx\n",
  534. 0LLU, PFN_PHYS(max_pfn));
  535. node_set(0, numa_nodes_parsed);
  536. numa_add_memblk(0, 0, PFN_PHYS(max_pfn));
  537. return 0;
  538. }
  539. /**
  540. * x86_numa_init - Initialize NUMA
  541. *
  542. * Try each configured NUMA initialization method until one succeeds. The
  543. * last fallback is dummy single node config encomapssing whole memory and
  544. * never fails.
  545. */
  546. void __init x86_numa_init(void)
  547. {
  548. if (!numa_off) {
  549. #ifdef CONFIG_X86_NUMAQ
  550. if (!numa_init(numaq_numa_init))
  551. return;
  552. #endif
  553. #ifdef CONFIG_ACPI_NUMA
  554. if (!numa_init(x86_acpi_numa_init))
  555. return;
  556. #endif
  557. #ifdef CONFIG_AMD_NUMA
  558. if (!numa_init(amd_numa_init))
  559. return;
  560. #endif
  561. }
  562. numa_init(dummy_numa_init);
  563. }
  564. static __init int find_near_online_node(int node)
  565. {
  566. int n, val;
  567. int min_val = INT_MAX;
  568. int best_node = -1;
  569. for_each_online_node(n) {
  570. val = node_distance(node, n);
  571. if (val < min_val) {
  572. min_val = val;
  573. best_node = n;
  574. }
  575. }
  576. return best_node;
  577. }
  578. /*
  579. * Setup early cpu_to_node.
  580. *
  581. * Populate cpu_to_node[] only if x86_cpu_to_apicid[],
  582. * and apicid_to_node[] tables have valid entries for a CPU.
  583. * This means we skip cpu_to_node[] initialisation for NUMA
  584. * emulation and faking node case (when running a kernel compiled
  585. * for NUMA on a non NUMA box), which is OK as cpu_to_node[]
  586. * is already initialized in a round robin manner at numa_init_array,
  587. * prior to this call, and this initialization is good enough
  588. * for the fake NUMA cases.
  589. *
  590. * Called before the per_cpu areas are setup.
  591. */
  592. void __init init_cpu_to_node(void)
  593. {
  594. int cpu;
  595. u16 *cpu_to_apicid = early_per_cpu_ptr(x86_cpu_to_apicid);
  596. BUG_ON(cpu_to_apicid == NULL);
  597. for_each_possible_cpu(cpu) {
  598. int node = numa_cpu_node(cpu);
  599. if (node == NUMA_NO_NODE)
  600. continue;
  601. if (!node_online(node))
  602. node = find_near_online_node(node);
  603. numa_set_node(cpu, node);
  604. }
  605. }
  606. #ifndef CONFIG_DEBUG_PER_CPU_MAPS
  607. # ifndef CONFIG_NUMA_EMU
  608. void __cpuinit numa_add_cpu(int cpu)
  609. {
  610. cpumask_set_cpu(cpu, node_to_cpumask_map[early_cpu_to_node(cpu)]);
  611. }
  612. void __cpuinit numa_remove_cpu(int cpu)
  613. {
  614. cpumask_clear_cpu(cpu, node_to_cpumask_map[early_cpu_to_node(cpu)]);
  615. }
  616. # endif /* !CONFIG_NUMA_EMU */
  617. #else /* !CONFIG_DEBUG_PER_CPU_MAPS */
  618. int __cpu_to_node(int cpu)
  619. {
  620. if (early_per_cpu_ptr(x86_cpu_to_node_map)) {
  621. printk(KERN_WARNING
  622. "cpu_to_node(%d): usage too early!\n", cpu);
  623. dump_stack();
  624. return early_per_cpu_ptr(x86_cpu_to_node_map)[cpu];
  625. }
  626. return per_cpu(x86_cpu_to_node_map, cpu);
  627. }
  628. EXPORT_SYMBOL(__cpu_to_node);
  629. /*
  630. * Same function as cpu_to_node() but used if called before the
  631. * per_cpu areas are setup.
  632. */
  633. int early_cpu_to_node(int cpu)
  634. {
  635. if (early_per_cpu_ptr(x86_cpu_to_node_map))
  636. return early_per_cpu_ptr(x86_cpu_to_node_map)[cpu];
  637. if (!cpu_possible(cpu)) {
  638. printk(KERN_WARNING
  639. "early_cpu_to_node(%d): no per_cpu area!\n", cpu);
  640. dump_stack();
  641. return NUMA_NO_NODE;
  642. }
  643. return per_cpu(x86_cpu_to_node_map, cpu);
  644. }
  645. void debug_cpumask_set_cpu(int cpu, int node, bool enable)
  646. {
  647. struct cpumask *mask;
  648. char buf[64];
  649. if (node == NUMA_NO_NODE) {
  650. /* early_cpu_to_node() already emits a warning and trace */
  651. return;
  652. }
  653. mask = node_to_cpumask_map[node];
  654. if (!mask) {
  655. pr_err("node_to_cpumask_map[%i] NULL\n", node);
  656. dump_stack();
  657. return;
  658. }
  659. if (enable)
  660. cpumask_set_cpu(cpu, mask);
  661. else
  662. cpumask_clear_cpu(cpu, mask);
  663. cpulist_scnprintf(buf, sizeof(buf), mask);
  664. printk(KERN_DEBUG "%s cpu %d node %d: mask now %s\n",
  665. enable ? "numa_add_cpu" : "numa_remove_cpu",
  666. cpu, node, buf);
  667. return;
  668. }
  669. # ifndef CONFIG_NUMA_EMU
  670. static void __cpuinit numa_set_cpumask(int cpu, bool enable)
  671. {
  672. debug_cpumask_set_cpu(cpu, early_cpu_to_node(cpu), enable);
  673. }
  674. void __cpuinit numa_add_cpu(int cpu)
  675. {
  676. numa_set_cpumask(cpu, true);
  677. }
  678. void __cpuinit numa_remove_cpu(int cpu)
  679. {
  680. numa_set_cpumask(cpu, false);
  681. }
  682. # endif /* !CONFIG_NUMA_EMU */
  683. /*
  684. * Returns a pointer to the bitmask of CPUs on Node 'node'.
  685. */
  686. const struct cpumask *cpumask_of_node(int node)
  687. {
  688. if (node >= nr_node_ids) {
  689. printk(KERN_WARNING
  690. "cpumask_of_node(%d): node > nr_node_ids(%d)\n",
  691. node, nr_node_ids);
  692. dump_stack();
  693. return cpu_none_mask;
  694. }
  695. if (node_to_cpumask_map[node] == NULL) {
  696. printk(KERN_WARNING
  697. "cpumask_of_node(%d): no node_to_cpumask_map!\n",
  698. node);
  699. dump_stack();
  700. return cpu_online_mask;
  701. }
  702. return node_to_cpumask_map[node];
  703. }
  704. EXPORT_SYMBOL(cpumask_of_node);
  705. #endif /* !CONFIG_DEBUG_PER_CPU_MAPS */
  706. #ifdef CONFIG_MEMORY_HOTPLUG
  707. int memory_add_physaddr_to_nid(u64 start)
  708. {
  709. struct numa_meminfo *mi = &numa_meminfo;
  710. int nid = mi->blk[0].nid;
  711. int i;
  712. for (i = 0; i < mi->nr_blks; i++)
  713. if (mi->blk[i].start <= start && mi->blk[i].end > start)
  714. nid = mi->blk[i].nid;
  715. return nid;
  716. }
  717. EXPORT_SYMBOL_GPL(memory_add_physaddr_to_nid);
  718. #endif